TW201725590A - 資料儲存裝置及其操作方法 - Google Patents

資料儲存裝置及其操作方法 Download PDF

Info

Publication number
TW201725590A
TW201725590A TW105116346A TW105116346A TW201725590A TW 201725590 A TW201725590 A TW 201725590A TW 105116346 A TW105116346 A TW 105116346A TW 105116346 A TW105116346 A TW 105116346A TW 201725590 A TW201725590 A TW 201725590A
Authority
TW
Taiwan
Prior art keywords
data
bit
unreliable
read
bits
Prior art date
Application number
TW105116346A
Other languages
English (en)
Other versions
TWI693608B (zh
Inventor
李炯珉
Original Assignee
愛思開海力士有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛思開海力士有限公司 filed Critical 愛思開海力士有限公司
Publication of TW201725590A publication Critical patent/TW201725590A/zh
Application granted granted Critical
Publication of TWI693608B publication Critical patent/TWI693608B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • G06F11/1064Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices in cache or content addressable memories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0614Improving the reliability of storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • G06F11/1048Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices using arrangements adapted for a specific error detection or correction feature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/064Management of blocks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/52Protection of memory contents; Detection of errors in memory contents
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C29/50004Marginal testing, e.g. race, voltage or current testing of threshold voltage

Abstract

本發明提供一種用於操作資料儲存裝置的方法,其包括:基於讀取偏壓,從對應於聯接至目標字元線的目標記憶體單元的複數個頁面讀取複數個資料組塊;基於識別偏壓,獲得對應於目標記憶體單元的識別資料;基於複數個資料組塊和識別資料,確定複數個資料組塊中的目標資料組塊中的不可靠位元;以及確定不可靠位元是否為錯誤位元。

Description

資料儲存裝置及其操作方法
本申請要求於2016年1月8日提交的申請號為10-2016-0002782的韓國申請的優先權,其全文通過引用併入本文。
各種實施例整體關於一種包括非揮發性記憶體裝置的資料儲存裝置。
資料儲存裝置回應於寫入請求儲存由外部裝置提供的資料。資料儲存裝置還可以回應於讀取請求將儲存的資料提供給外部裝置。使用資料儲存裝置的外部裝置的實例包括電腦、數位相機、行動電話等。資料儲存裝置可以被嵌入外部裝置中或者被分別製造然後連接。
在一個實施例中,用於操作資料儲存裝置的方法可包括:基於讀取偏壓,從對應於聯接至目標字元線的目標記憶體單元的複數個頁面讀取複數個資料組塊;基於識別偏壓,獲得對應於目標記憶體單元的識別資料;基於複數個資料組塊和識別資料,確定複數個資料組塊中的目標資料組塊中的不可靠位元;以及確定不可靠位元是否為錯誤位元。
在一個實施例中,用於操作資料儲存裝置的方法可包括:從複數個記憶體單元中的目標記憶體單元讀取包括複數個位元的資料;確定複數個位元中的不可靠位元;以及確定不可靠位元是否為錯誤位元。
在一個實施例中,資料儲存裝置可包括:非揮發性記憶體裝置,其包括聯接至目標字元線並對應於複數個頁面的目標記憶體單元;以及控制器,其適於基於讀取偏壓從複數個頁面讀取複數個資料組塊、基於識別偏壓獲得對應於目標記憶體單元的識別資料、基於複數個資料組塊和識別資料確定複數個資料組塊中的目標資料組塊中的不可靠位元以及確定不可靠位元是否為錯誤位元。
下面將通過本發明的示例性實施例,參照附圖,對根據本發明的資料儲存裝置及其操作方法進行描述。然而,本發明可以不同的形式實施並且不應被理解為限於此處所陳述的實施例。而是,這些實施例被提供以詳細描述本發明至本發明所屬領域的技術人員能夠實施本發明的技術方案的程度。
應理解的是,本發明的實施例不限於附圖中所示的細節,附圖不一定按照比例繪製,並且在一些情況下,比例可以被擴大以更清楚地描繪本發明的某些特徵。儘管使用特定術語,但應理解的是所使用的術語只是用於描述特定的實施例,而且不旨在限制本發明的範圍。
圖1為圖示根據一個實施例的資料儲存裝置10的方塊圖。
資料儲存裝置10可被配置為回應於來自外部裝置(未示出)的寫入請求儲存從外部裝置提供的資料。而且,資料儲存裝置10可被配置為回應於來自外部裝置的讀取請求將所儲存的資料提供給外部裝置。
資料儲存裝置10可由國際個人電腦記憶卡協會(PCMCIA)卡、小型快閃記憶體(CF)卡、智慧媒介卡、記憶棒、多媒體卡(MMC)、嵌入式MMC(eMMC)、縮小尺寸的多媒體卡(RS-MMC)和微型版本MMC(微型-MMC)、安全數位(SD)卡、迷你安全數位(迷你-SD)卡和微型安全數位(微型–SD)卡、通用快閃記憶體(UFS)或固態硬碟(SSD)配置。
資料儲存裝置10可包括控制器100和非揮發性記憶體裝置200。
控制器100可包括處理器110、記憶體120和錯誤校正碼(ECC)單元130。
處理器110可控制資料儲存裝置10的一般操作。處理器110可回應於從外部裝置傳輸的寫入請求,將資料儲存在非揮發性記憶體裝置200中,並可回應於從外部裝置傳輸的讀取請求,讀取儲存在非揮發性記憶體裝置200中的資料並將讀取的資料輸出到外部裝置。
處理器110可從聯接至非揮發性記憶體裝置200的目標字元線的目標記憶體單元讀取目標資料組塊,並可對目標資料組塊執行基於圖案(pattern)的錯誤校正操作。根據一個實施例,當根據ECC單元130的ECC演算法對於目標資料組塊的錯誤校正操作失敗時,處理器110可對目標資料組塊執行基於圖案的錯誤校正操作。
詳細地,當執行基於圖案的錯誤校正操作時,處理器110可基於讀取偏壓從對應於目標記憶體單元的複數個頁面讀取複數個資料組塊,可以基於識別偏壓獲得對應於目標記憶體單元的識別資料,並可基於複數個資料組塊和識別資料確定目標資料組塊中的不可靠位元。
讀取偏壓和識別偏壓劃定記憶體單元的閾值電壓的區域,且不可靠位元可以是從對應於閾值電壓的區域中的不可靠區域的目標記憶體單元讀取的一個。不可靠區域可包括關於被用於讀取目標資料組塊的讀取偏壓的預定範圍。當閾值電壓的區域對應於預定的資料圖案時,不可靠位元可以是對應於從目標記憶體單元讀取的複數個位元的資料圖案中的位元,其與相鄰資料圖案中的位元不匹配。
處理器110可確定根據上述方法所確定的不可靠位元是否為錯誤位元。根據上述方法所確定的不可靠位元為錯誤位元的可能性很高,因此,處理器110可最終確定不可靠位元是否為錯誤位元。詳細地,處理器110可獲得與目標資料組塊一起分組的資料組塊和同位檢查資料,並可基於分組的資料組塊和同位檢查資料確定不可靠位元是否為錯誤位元。分組的資料組塊可表示對應於共同同位檢查資料的資料組塊。
一個或複數個分組的資料組塊可被包括在從對應於目標記憶體單元的頁面讀取的資料組塊中。在這種情況下,處理器110可獲得和使用來自已經從對應於目標記憶體單元的頁面讀取的資料組塊的分組的資料組塊,以確定不可靠位元。
記憶體120可用作處理器110的工作記憶體、緩衝記憶體或快取記憶體。作為工作記憶體的記憶體120可儲存待由處理器110驅動的軟體程式和各種程式資料。作為緩衝記憶體的記憶體120可緩衝在外部裝置和諸如非揮發性記憶體裝置200的儲存媒體之間傳輸的資料。作為快取記憶體的記憶體120可暫時儲存快取資料。
通過編碼待被儲存在非揮發性記憶體裝置200中的資料和解碼從非揮發性記憶體裝置200讀取的資料,ECC單元130可根據ECC演算法執行錯誤校正操作。
根據控制器100的控制,非揮發性記憶體裝置200可儲存從控制器100傳輸的資料以及可讀取儲存的資料並將讀取的資料傳輸到控制器100。根據控制器100的控制,非揮發性記憶體裝置200可基於讀取偏壓從對應於目標記憶體單元的複數個頁面讀取複數個資料組塊,並將複數個資料組塊傳輸至控制器100。根據控制器100的控制,非揮發性記憶體裝置200可基於識別偏壓獲得對應於目標記憶體單元的識別資料,並將識別資料傳輸到控制器100。
非揮發性記憶體裝置200可包括諸如NAND快閃記憶體或者NOR快閃記憶體的快閃記憶體裝置、鐵電材料隨機存取記憶體(FeRAM)、相變隨機存取記憶體(PCRAM)、磁阻隨機存取記憶體(MRAM)或電阻隨機存取記憶體(ReRAM)。
圖2為圖示根據一個實施例的非揮發性記憶體裝置的方塊圖。例如,圖2的非揮發性記憶體裝置可以是圖1中所示的非揮發性記憶體裝置200。
非揮發性記憶體裝置200可包括控制邏輯210、電壓供給單元220、介面單元230、位址解碼器240、資料輸入/輸出單元250和記憶體區域260。
控制邏輯210可根據控制器100的控制,控制非揮發性記憶體裝置200的一般操作。控制邏輯210可從介面單元230接收從控制器100傳輸的指令,並可回應於指令將控制信號傳輸到非揮發性記憶體裝置200的內部單元。
根據控制邏輯210的控制,電壓供給單元220可生成用於非揮發性記憶體裝置200的一般操作所需的各種操作電壓。電壓供給單元220可提供例如讀取偏壓和識別偏壓至位址解碼器240。
介面單元230可與控制器100交換包括指令和位址的各種控制信號和資料。介面單元230可將輸入至其的各種控制信號和資料傳輸至非揮發性記憶體裝置200的內部單元。
位址解碼器240可解碼位址以選擇記憶體區域260中待被存取的部分。位址解碼器240可根據解碼結果選擇性地驅動字元線WL並控制資料輸入/輸出單元250以選擇性地驅動位元線BL。
資料輸入/輸出單元250可通過位元線BL將從介面單元230傳輸的資料傳輸至記憶體區域260。資料輸入/輸出單元250可將通過位元線BL從記憶體區域260讀取的資料傳輸至介面單元230。資料輸入/輸出單元250可感測從包括在記憶體區域260中的記憶體單元形成的電流回應於讀取偏壓被開啟和關閉,並且可根據感測結果獲取從記憶體單元讀取的資料。
記憶體區域260可通過字元線WL與位址解碼器240聯接,並且可通過字元線BL與資料輸入/輸出單元250聯接。記憶體區域260可包括複數個記憶體單元,其中複數個記憶體單元被分別設置在字元線WL和位元線BL彼此相交且資料被儲存在其中的區域處。記憶體區域260可包括二維或三維結構的記憶體單元陣列。
記憶體區域260可包括複數個記憶體區塊BK0至BKj。記憶體區塊BK0至BKj的每一個可包括複數個頁面P0至Pk。
圖3為圖示記憶體區塊BK的詳細圖。例如,圖3的記憶體區塊BK可以是圖2中所示的記憶體區塊BK0至BKj中的一個。圖2中所示的記憶體區塊BK0至BKj中的每一個可以與記憶體區塊BK大致相同的方式配置。
參照圖3,記憶體區塊BK可包括字串STR0至STRm。字串STR0至STRm的每一個可被聯接在源極線SL和對應的位元線之間。例如,字串STR0可被聯接在源極線SL和位元線BL0之間。
字串STR1至STRm可以與字串STR0大致相同的方式配置,因此,將字串STR0作為一個實例進行描述。字串STR0可包括汲極選擇電晶體DST、記憶體單元MC00至MCn0和源極選擇電晶體SST。汲極選擇電晶體DST可具有聯接至位元線BL0的汲極和聯接至汲極選擇線DSL的閘極。源極選擇電晶體SST可具有聯接至源極線SL的源極和聯接至源極選擇線SSL的閘極。記憶體單元MC00至MCn0可串聯地聯接在源極選擇電晶體SST和汲極選擇電晶體DST之間。記憶體單元MC00至MCn0的閘極可分別聯接至字元線WL0至WLn。
字元線WL0至WLn的每一個可被聯接至字串STR0至STRm的對應的記憶體單元。例如,字元線WL1可被聯接至分別包括在字串STR0至STRm中的記憶體單元MC10至MC1m。當對應的字元線在寫入操作中被選擇時,記憶體單元可被寫入。當字元線WL1在寫入操作中被選擇時,記憶體單元MC10至MC1m可被同時寫入。
根據被儲存在每個記憶體單元中的資料位元的數量,每個字元線或聯接至每個字元線的記憶體單元可對應於複數個頁面。例如,當3個位元即最低有效位元(LSB)、中央有效位元(CSB)和最高有效位元(MSB)被儲存在每個記憶體單元中時,每個字元線可對應於分別儲存LSB、CSB和MSB的LSB頁面、CSB頁面和MSB頁面。其中3個位元被儲存在每個記憶體單元中的情況將被作為實例在下面描述,然而,應注意的是,實施例並不限於該實例。
圖4A為圖示記憶體單元的閾值電壓分佈VD1至VD8的實例的簡圖。水準軸Vth表示記憶體單元的閾值電壓,而豎直軸#表示對應於閾值電壓的記憶體單元的數量。
參照圖4A,記憶體單元可根據儲存在其中的資料形成預定的閾值電壓分佈VD1至VD8。根據儲存在其中的3-位元資料,記憶體單元可被控制以具有對應於8個閾值電壓分佈VD1至VD8中的任何一個的閾值電壓。例如,儲存有資料“111”的記憶體單元可具有對應於閾值電壓分佈VD1的閾值電壓。
當通過對應的字元線施加預定的讀取偏壓時,記憶體單元可以根據閾值電壓被開啟或關閉。而且,當施加大於其閾值電壓的讀取偏壓時,記憶體單元可被開啟,當施加小於其閾值電壓的讀取偏壓時,記憶體單元可被關閉。通過感測當記憶體單元被開啟或關閉始形成的電流,可以確定對應於記憶體單元的閾值電壓分佈,並且可以讀取對應於閾值電壓分佈的資料。
為了讀取儲存在記憶體單元中的資料,可以使用能夠辨別閾值電壓分佈VD1至VD8的讀取偏壓R1至R7。讀取偏壓R1至R7可以劃定閾值電壓的區域AREA1至AREA8,並且區域AREA1至AREA8可分別包括閾值電壓分佈VD1至VD8。
由於當讀取偏壓R3和R7被施加至記憶體單元時,LSB值根據記憶體單元的閾值電壓而變得不同,讀取偏壓R3和R7可被用於讀取儲存在LSB頁面中的資料組塊。由於當讀取偏壓R2、R4和R6被施加至記憶體單元時,CSB值根據記憶體單元的閾值電壓而變得不同,讀取偏壓R2、R4和R6可被用於讀取儲存在CSB頁面中的資料組塊。由於當讀取偏壓R1和R5被施加至記憶體單元時,MSB值根據記憶體單元的閾值電壓而變得不同,讀取偏壓R1和R5可被用於讀取儲存在MSB頁面中的資料組塊。
圖4B為圖示不同的閾值電壓分佈VD1’至VD8’的實例的簡圖。
參照圖4B,因為各種原因,比如相鄰記憶體單元之間的干擾和由於時間的流逝而導致的放電,記憶體單元可具有不同的閾值電壓。因此,圖4A的閾值電壓分佈VD1至VD8可變化為閾值電壓分佈VD1’至VD8’,並且讀取偏壓R1至R7可被設置在相互重疊的閾值電壓分佈VD1’至VD8’上。對應於閾值電壓分佈VD1’至VD8’相互重疊的區域的記憶體單元可以輸出錯誤位元。例如,基於讀取偏壓R1至R7被確定為設置在閾值電壓的區域AREA3中的記憶體單元可以形成閾值電壓分佈VD3’,也可以形成閾值電壓分佈VD2’,但具有比讀取偏壓R2大的閾值電壓,或者也可以形成閾值電壓分佈VD4’,但具有比讀取偏壓R3小的閾值電壓。然而,在任何情況下,記憶體單元將輸出資料“001”。因此,在後面的兩種情況下,記憶體單元可以輸出與初始儲存的資料不同的資料。
根據一個實施例,控制器100可以估計對於不同閾值電壓分佈VD1’至VD8’的最佳讀取偏壓。最佳讀取偏壓可以是能夠使從記憶體單元讀取的錯誤位元最小化的偏壓。最佳讀取偏壓可被設置在閾值電壓分佈VD1’至VD8’之間的凹處中。控制器100可以使用估計的最佳讀取偏壓來讀取儲存在記憶體單元中的資料。
圖5為圖示通過使用同位檢查資料PD來校正錯誤位元的方法的簡圖。
資料組塊DCK1、DCK2和DCK3可被分組以生成同位檢查資料PD。儘管圖5示出了3個資料組塊DCK1、DCK2和DCK3被分組,但應注意到,被分組的資料組塊的數量不被明確地限制。
基於被分組的資料組塊DCK1、DCK2和DCK3,可以生成同位檢查資料PD。例如,可以通過關於資料組塊DCK1、DCK2和DCK3的XOR邏輯函數來生成同位檢查資料PD。例如,可以通過關於分別從資料組塊DCK1、DCK2和DCK3中分組的位元B11、B21和B31的XOR邏輯函數來生成同位檢查位元P1。
同位檢查資料PD可被用於校正隨後在資料組塊DCK1、DCK2和DCK3中出現的錯誤位元。例如,當確定資料組塊DCK1包括錯誤位元時,基於與資料組塊DCK1一起分組的剩餘資料組塊DCK2和DCK3和同位檢查資料PD,可以對資料組塊DCK1執行錯誤校正操作。例如,位元B11可以匹配通過執行關於剩餘的分組位元B21和B31和同位檢查位元P1的XOR邏輯函數獲得的值,並因此可被確定為正常位元。例如,位元B12可與通過執行關於剩餘的分組位元B22和B32和同位檢查位元P2的XOR邏輯函數獲得的值不同,並因此可被確定為錯誤位元並被翻轉(flip)。
然而,如圖5中所示,當資料組塊DCK2包括錯誤位元B23時,對資料組塊DCK1的錯誤校正操作可能失效。即,即使位元B13是正常位元,但由於通過包括錯誤位元B23而執行的XOR邏輯函數,位元B13可被確定為錯誤位元並被翻轉。總之,當被分組的資料組塊中的至少兩個的每一個包括錯誤位元時,上述使用同位檢查資料PD的錯誤校正操作可能失敗。
圖6和圖7為圖示被分組以生成同位檢查資料PD的資料組塊的實例的簡圖。
參照圖6,儲存在對應於單個字元線WL1的LSB頁面、CSB頁面和MSB頁面中的資料組塊DCK1、DCK2和DCK3可被分組,並且可生成用於被分組的資料組塊DCK1、DCK2和DCK3的同位檢查資料PD。
根據非揮發性記憶體裝置200的物理和操作特性,儲存在對應於單個字元線的頁面中的資料組塊有可能同時分別包括錯誤位元。例如,當資料組塊DCK1和DCK2同時分別包括錯誤位元時,可能發生如圖5中所示的情況。因此,當儲存在對應於單個字元線的不同頁面中的資料組塊被分組時,如圖5中所示的錯誤校正操作可具有很高的失敗可能性。
參照圖7,儲存在複數個字元線WL1至WL3中的相同類型的頁面中的資料組塊可被分組。例如,儲存在字元線WL1至WL3的LSB頁面中的資料組塊DCK11、DCK12和DCK13可被分組,並且可生成用於被分組的資料組塊DCK11、DCK12和DCK13的同位檢查資料PD1。
在這種情況下,生成至少頁面種類的數量的同位檢查資料,因此,可存在管理同位檢查資料的費用。而且,甚至在圖7的分組方案中,一起分組的各自資料組塊同時包括錯誤位元的可能性仍然存在,因此,圖5中所示的錯誤校正操作可能仍然是不完善的。
由於圖5中所示的錯誤校正操作在不可能知道資料組塊DCK1中的哪一位元是錯誤位元的狀態下啟動,因此,根本問題是確定位元是否為錯誤位元應該對資料組塊DCK1的所有位元執行。即,儘管位元B13是正常位元,但由於通過使用錯誤位元B23來執行錯誤校正操作,所以產生了新的錯誤位元。
如將在下面所述,根據實施例,不可靠位元可以在資料組塊DCK1中首先確定。然後,所確定的不可靠位元是否為錯誤位元可以被確定。例如,正常位元B13可不被確定為不可靠位元,因此,通過使用錯誤位元B23對正常位元B13的錯誤校正操作可以事先被阻止。特別地,如圖6中所示,當資料組塊DCK1、DCK2和DCK3被儲存在對應於相同字元線的不同頁面中時,正常位元B13可不被確定為不可靠位元。因此,即使資料組塊如圖6所示被分組,錯誤校正操作也可能成功。
圖8為圖示根據實施例的用於確定儲存在記憶體單元中的位元中的不可靠位元的方法的簡圖。
首先,儲存在對應於單個字元線的LSB頁面、CSB頁面和MSB頁面中的資料組塊被讀取,並且可獲得相應記憶體單元的識別資料。
當讀取偏壓R1至R7被施加至記憶體單元時,可以讀取儲存在LSB頁面、CSB頁面和MSB頁面中的資料組塊。讀取偏壓R1至R7可劃定記憶體單元的閾值電壓的區域AREA1至AREA8。如果儲存在LSB頁面、CSB頁面和MSB頁面中的資料組塊被讀取,則可以獲得儲存在每個記憶體單元中的位元,並且在區域AREA1至AREA8中可以確定其中設置了每個記憶體單元的區域。
基於識別偏壓SR1至SR6,可獲得識別資料。當識別偏壓SR1至SR6被施加至記憶體單元時,識別資料可以是從記憶體單元讀取的資料。識別資料可包括對應於各自記憶體單元的識別值SRV。圖8示例性地示出對於識別偏壓SR1至SR6的識別值SRV“1”或“0”。例如,具有小於識別偏壓SR1的閾值電壓的記憶體單元可對應於識別值SRV“1”,具有在識別偏壓SR1和SR2之間的閾值電壓的記憶體單元可對應於識別值SRV“0”。具有在識別偏壓SR2和SR3之間的閾值電壓的記憶體單元可對應於識別值SRV“1”。具有在識別偏壓SR3和SR4之間的閾值電壓的記憶體單元可對應於識別值SRV“0”。具有在識別偏壓SR4和SR5之間的閾值電壓的記憶體單元可對應於識別值SRV“1”。具有在識別偏壓SR5和SR6之間的閾值電壓的記憶體單元可對應於識別值SRV“0”。具有大於識別偏壓SR6的閾值電壓的記憶體單元可對應於識別值SRV“1”。識別偏壓SR1至SR6可細分閾值電壓的區域AREA1至AREA8。
基於資料組塊和識別資料,不可靠位元可以在儲存於每個記憶體單元中的位元中被確定。例如,在對應於資料“011”和識別值SRV“1”的記憶體單元中,不可靠位元可以是MSB。在對應於資料“011”和識別值SRV“0”的記憶體單元中,不可靠位元可以是CSB。在對應於資料“001”和識別值SRV“0”的記憶體單元中,不可靠位元可以是CSB。在對應於資料“001”和識別值SRV“1”的記憶體單元中,不可靠位元可以是LSB。在對應於資料“000”和識別值SRV“1”的記憶體單元中,不可靠位元可以是LSB。在對應於資料“100”和識別值SRV“1”的記憶體單元中,不可靠位元可以是LSB。在對應於資料“101”和識別值SRV“1”的記憶體單元中,不可靠位元可以是LSB。下面將參照圖9A和圖9B對確定不可靠位元的原則進行詳細描述。
圖9A和圖9B為圖示根據記憶體單元被設置在其中的細分區域來確定不可靠位元的方法的簡圖。
參照圖9A,首先,可以通過將讀取偏壓R1至R8施加至記憶體單元讀取儲存在記憶體單元中的資料“000”,並且可以確定記憶體單元被設置在區域AREA4中。在這種情況下,可以估計,記憶體單元形成閾值電壓分佈VD4’,形成閾值電壓分佈VD3’但具有比讀取偏壓R3大的閾值電壓,或形成閾值電壓分佈VD5’但具有比讀取偏壓R4小的閾值電壓。
當記憶體單元具有大於識別偏壓SR3的閾值電壓時,可以另外獲得記憶體單元的識別值SRV“0”。因此,可確定記憶體單元被設置在如附圖中所示的細分區域或精細區域中。即,基於識別值SRV“0”可以確定相較區域AREA3,記憶體單元被設置為更靠近區域AREA5。
因此,可確定記憶體單元極有可能形成閾值電壓分佈VD4’或者閾值電壓分佈VD5’,而不是形成閾值電壓分佈VD3’。在這種情況下,在儲存於記憶體單元中的複數個位元“000”中,與對應於相鄰區域AREA5的相鄰資料圖案“010”的對應位元匹配的位元,即LSB“0”和MSB“0”可以是可靠位元,因為不管記憶體單元是否形成閾值電壓分佈VD4’或閾值電壓分佈VD5’,其都具有相同的值。然而,在儲存於記憶體單元中的複數個位元“000”中,與相鄰資料圖案“010”的對應位元不匹配的位元,即CSB“0”可以被確定為不可靠。而且,當記憶體單元形成閾值電壓分佈VD4’時,從記憶體單元讀取的CSB“0”可以是正常位元,並且當記憶體單元形成閾值電壓分佈VD5’時,從記憶體單元讀取的CSB“0”可以是錯誤位元。
基於上述原則,再次參照圖8,可以被確認的是,當設置在區域AREA4中的記憶體單元對應於識別值SRV“0”時,不可靠位元是CSB。
參照圖9B,與圖9A不同,當記憶體單元具有小於識別偏壓SR3的閾值電壓時,可以獲得記憶體單元的識別值SRV“1”。基於識別值SRV“1”,可以確定記憶體單元被設置在如附圖所示的細分區域或精細區域中。因此,可以確定記憶體單元極有可能形成閾值電壓分佈VD3’或閾值電壓分佈VD4’。
在這種情況下,在儲存於記憶體單元中的複數個位元“000”中,與對應於相鄰區域AREA3的相鄰資料圖案“001”的對應位元匹配的位元,即CSB“0”和MSB“0”可以是可靠位元,因為不管記憶體單元是否形成閾值電壓分佈VD3’或閾值電壓分佈VD4’,其都具有相同的值。然而,在儲存於記憶體單元中的複數個位元“000”中,與相鄰資料圖案“001”的對應位元不匹配的位元,即LSB“0”可以被確定為不可靠。
如上面參照圖8至圖9B所述,當記憶體單元被設置在左細分區域和右細分區域之間的細分區域中時,基於對應的閾值電壓區域中的識別偏壓,可以確定不可靠位元。即,其中設置有記憶體單元的細分區域和不可靠位元即LSB、CSB或MSB的類型可相互對應。因此,根據不可靠位元是否為LSB、CSB或MSB,可以規定其中設置有記憶體單元的細分區域。因此,如下面將被描述的,可以根據頁面即LSB頁面、CSB頁面或MSB頁面的類型定義不可靠區域。
圖10A至圖10C為圖示用於基於根據頁面的類型的不可靠區域確定資料組塊中的不可靠位元的方法的簡圖。圖10A至圖10C分別示出LSB頁面、CSB頁面和MSB頁面的不可靠區域。
參照圖10A,在LSB資料組塊中,從對應於附圖所示的不可靠區域的記憶體單元讀取的位元可以被確定為不可靠位元。基於用於讀取LSB資料組塊的讀取偏壓R3和R7,不可靠區域可包括由相鄰的識別偏壓限定的預定範圍。例如,不可靠區域可包括基於讀取偏壓R3由識別偏壓SR2和SR3限定的預定範圍,並可包括基於讀取偏壓R7由識別偏壓SR6限定的預定範圍。
參照圖10B,在CSB資料組塊中,從對應於附圖所示的不可靠區域的記憶體單元讀取的位元可以被確定為不可靠位元。基於用於讀取CSB資料組塊的讀取偏壓R2、R4和R6,不可靠區域可包括由相鄰的識別偏壓限定的預定範圍。例如,不可靠區域可包括基於讀取偏壓R2由識別偏壓SR1和SR2限定的預定範圍,可包括基於讀取偏壓R4由識別偏壓SR3和SR4限定的預定範圍,並可包括基於讀取偏壓R6由識別偏壓SR5和SR6限定的預定範圍。
參照圖10C,在MSB資料組塊中,從對應於附圖所示的不可靠區域的記憶體單元讀取的位元可以被確定為不可靠位元。基於用於讀取MSB資料組塊的讀取偏壓R1和R5,不可靠區域可包括由相鄰的識別偏壓限定的預定範圍。例如,不可靠區域可包括基於讀取偏壓R1由識別偏壓SR1限定的預定範圍,並可包括基於讀取偏壓R5由識別偏壓SR4和SR5限定的預定範圍。
匯總這些,根據實施例,基於從記憶體單元讀取的複數個位元和記憶體單元的識別值,可以確定對應於記憶體單元的細分區域,並且可以確定在複數個位元中的哪一位元是不可靠位元。即,確定從頁面中讀取的資料組塊中哪一位元是不可靠位元可以通過確定相應記憶體單元是否對應於根據頁面的類型所規定的不可靠區域來執行。
如果不可靠位元在資料組塊中被確定,則基於一起分組的剩餘位元和生成的同位檢查位元,可以確定不可靠位元是否為錯誤位元。即,當通過執行關於剩餘被分組的位元和同位檢查位元的XOR邏輯函數而獲得的值與不可靠位元匹配時,不可靠位元可以被確定為正常位元,並且當值與不可靠位元不匹配時,不可靠位元可以被確定為錯誤位元。
再次參照圖5,由於不可能準確地確定資料組塊DCK1中的哪一位元是錯誤位元,因此通過使用錯誤位元B23執行對正常位元B13的錯誤校正操作,由此,產生了新的錯誤位元。然而,根據實施例,如果資料組塊DCK1至DCK3被儲存在相同字元線的不同頁面中,則正常位元B13可能不被確定為不可靠位元。原因是,如上面參照圖9A和圖9B所述,由於只有儲存於記憶體單元中的複數個位元中的一個被確定為不可靠位元,因此只有錯誤位元B23將被確定為不可靠位元。因此,正常位元B13不被確定為不可靠位元,並且可以對正常位元B13不執行錯誤校正操作。
圖11為圖示用於操作根據一個實施例的資料儲存裝置的方法的流程圖。例如,圖11的方法可以是用於操作圖1的資料儲存裝置10的方法。參照圖11,示出了控制器100對從非揮發性記憶體裝置200的目標記憶體單元讀取的目標資料組塊執行錯誤校正操作的方法。
在步驟S110中,控制器100可基於讀取偏壓從對應於目標記憶體單元的複數個頁面讀取複數個資料組塊。
在步驟S120中,基於識別偏壓,控制器100可獲得對應於目標記憶體單元的識別資料。識別偏壓可以與讀取偏壓交替的方式被分別設置在讀取偏壓之間。
在步驟S130中,基於複數個資料組塊和識別資料,控制器100可確定目標資料組塊中的不可靠位元。當讀取偏壓劃定記憶體單元的閾值電壓的區域且區域對應於資料圖案時,不可靠位元可以是對應於從目標記憶體單元讀取的複數個位元的資料圖案中的位元,其與相鄰資料圖案中的對應的位元不匹配。不可靠位元可以是從對應於閾值電壓的區域中的不可靠區域的目標記憶體單元讀取的位元。不可靠區域可包括基於用於讀取目標資料組塊的讀取偏壓由相鄰的識別偏壓限定的預定範圍。
在步驟S140中,控制器100可確定不可靠位元是否為錯誤位元。詳細地,基於分組的資料組塊和同位檢查資料,控制器100可獲得與目標資料組塊和同位檢查資料一起分組的資料組塊,並可確定不可靠位元是否為錯誤位元。
在步驟S150中,控制器100可根據確定結果校正錯誤位元。
圖12為圖示根據一個實施例的固態硬碟(SSD)1000的方塊圖。
SSD 1000可包括控制器1100和儲存媒體1200。
控制器1100可控制主機裝置1500和儲存媒體1200之間的資料交換。控制器1100可包括處理器1110、隨機存取記憶體(RAM)1120、唯讀記憶體(ROM)1130、錯誤校正碼(ECC)單元1140、主機介面1150和儲存媒體介面1160。
處理器1110可控制控制器1100的一般操作。根據來自主機裝置1500的資料處理請求,處理器1110可將資料儲存在儲存媒體1200中並從儲存媒體1200讀取儲存的資料。為了有效地管理儲存媒體1200,處理器1110可控制SSD 1000的內部操作,諸如合併操作、損耗均衡操作等。
另外,處理器1110可以與圖1中所示的處理器110基本上類似的方式操作。處理器1110可基於讀取偏壓從對應於目標記憶體單元的複數個頁面讀取複數個資料組塊,可基於識別偏壓獲得對應於目標記憶體單元的識別資料,並可基於複數個資料組塊和識別資料確定目標資料組塊中的不可靠位元。處理器1110可獲得與目標資料組塊和同位檢查資料一起分組的資料組塊,並可基於分組的資料組塊和同位檢查資料來確定不可靠位元是否為錯誤位元。
RAM 1120可以儲存待由處理器1110使用的程式和程式資料。RAM 1120可在將從主機介面1150傳輸的資料傳輸至儲存媒體1200之前暫時地儲存它,並可在將從儲存媒體1200傳輸的資料傳輸至主機裝置1500之前暫時地儲存它。
ROM 1130可以儲存待由處理器1110讀取的程式編碼。程式編碼可以包括待被處理器1110處理的用於處理器1110控制控制器1100的內部單元的指令。
ECC單元1140可編碼待儲存在儲存媒體1200中的資料,並可解碼從儲存媒體1200讀取的資料。ECC單元1140可根據ECC演算法檢測和校正資料中出現的錯誤。
主機介面1150可與主機裝置1500交換資料處理請求、資料等。
儲存媒體介面1160可將控制信號和資料傳輸至儲存媒體1200。儲存媒體介面1160可包括從儲存媒體1200傳輸的資料。儲存媒體介面1160可通過複數個通道CH0至CHn與儲存媒體1200聯接。
儲存媒體1200可包括複數個非揮發性記憶體裝置NVM0至NVMn。複數個非揮發性記憶體裝置NVM0至NVMn的每一個可根據控制器1100的控制,執行寫入操作和讀取操作。
圖13為圖示根據實施例的資料儲存裝置10被應用在其中的資料處理系統2000的方塊圖。
資料處理系統2000可包括電腦、筆記型電腦、上網本、智慧型電話、數位電視、數位相機、導航器等。資料處理系統2000可包括主處理器2100、主記憶體裝置2200、資料儲存裝置2300和輸入/輸出裝置2400。資料處理系統2000的內部單元可通過系統匯流排2500交換資料、控制信號等。
主處理器2100可控制資料處理系統2000的一般操作。主處理器2100可以是諸如微處理器的中央處理單元。主處理器2100可以執行在主記憶體裝置2200上的諸如作業系統、應用、裝置驅動器等的軟體。
主記憶體裝置2200可儲存待被主處理器2100使用的程式和程式資料。主記憶體裝置2200可暫時儲存待被傳輸到資料儲存裝置2300和輸入/輸出裝置2400的資料
資料儲存裝置2300可包括控制器2310和儲存媒體2320。資料儲存裝置2300可被配置為以與圖1中所示的資料儲存裝置10基本上類似的方式操作。
輸入/輸出裝置2400可包括能夠與使用者交換資料諸如從使用者接收用於控制資料處理系統2000的指令或者將處理的結果提供給使用者的鍵盤、掃描器、觸控式螢幕、螢幕監視器、印表機、滑鼠等。
根據一個實施例,資料處理系統2000可通過諸如區域網路(LAN)、廣域網路(WAN)、無線網路等網路2600與至少一個伺服器2700通信。資料處理系統2000可包括網路介面(未示出)以存取網路2600。
儘管上面已經描述了各種實施例,但對本領域技術人員而言應理解的是,所描述的實施例僅僅是實例。因此,此處所描述的資料儲存裝置及其操作方法不應被限制於所述實施例。
10‧‧‧資料儲存裝置
100‧‧‧控制器
110‧‧‧處理器
120‧‧‧記憶體
130‧‧‧錯誤校正碼(ECC)單元
200‧‧‧非揮發性記憶體裝置
210‧‧‧控制邏輯
220‧‧‧電壓供給單元
230‧‧‧介面單元
240‧‧‧位址解碼器
250‧‧‧資料輸入/輸出單元
260‧‧‧記憶體區域
1000‧‧‧固態硬碟(SSD)
1100‧‧‧控制器
1110‧‧‧處理器
1120‧‧‧隨機存取記憶體(RAM)
1130‧‧‧唯讀記憶體(ROM)
1140‧‧‧錯誤校正碼(ECC)單元
1150‧‧‧主機介面
1160‧‧‧儲存媒體介面
1200‧‧‧儲存媒體
1500‧‧‧主機裝置
2000‧‧‧資料處理系統
2100‧‧‧主處理器
2200‧‧‧主記憶體裝置
2300‧‧‧資料儲存裝置
2310‧‧‧控制器
2320‧‧‧儲存媒體
2400‧‧‧輸入/輸出裝置
2500‧‧‧系統匯流排
2600‧‧‧網路
2700‧‧‧伺服器
AREA1-AREA8‧‧‧區域
B11-B14‧‧‧位元
B21-B24‧‧‧位元
B31-B34‧‧‧位元
BK‧‧‧記憶體區塊
BK0-BKj‧‧‧記憶體區塊
BL, BL0-BLm‧‧‧位元線
CH0-CHn‧‧‧通道
CSB‧‧‧中央有效位元
DCK1-DCK3‧‧‧資料組塊
DCK11-DCK13‧‧‧資料組塊
DCK21-DCK23‧‧‧資料組塊
DCK31-DCK33‧‧‧資料組塊
DSL‧‧‧汲極選擇線
DST‧‧‧汲極選擇電晶體
LSB‧‧‧最低有效位元
MC00-MCn0‧‧‧記憶體單元
MC10-MC1m‧‧‧記憶體單元
MSB‧‧‧最高有效位元
NVM0-NVMn‧‧‧非揮發性記憶體裝置
P0-Pk‧‧‧頁面
P1-P4‧‧‧同位檢查位元
PD, PD1-PD3‧‧‧同位檢查資料
R1-R7‧‧‧讀取偏壓
S110-S150‧‧‧步驟
SL‧‧‧源極線
SR1-SR6‧‧‧識別偏壓
SRV‧‧‧識別值
SSL‧‧‧源極選擇線
SST‧‧‧源極選擇電晶體
STR0-STRm‧‧‧字串
VD1-VD8‧‧‧閾值電壓分佈
VD1’-VD8’‧‧‧閾值電壓分佈
Vth‧‧‧記憶體單元的閾值電壓
WL‧‧‧字元線
WL0-WLn‧‧‧字元線
#‧‧‧對應於閾值電壓的記憶體單元的數量
[圖1]圖1為圖示根據一個實施例的資料儲存裝置的方塊圖。 [圖2]圖2為圖示根據一個實施例的非揮發性記憶體裝置的方塊圖。 [圖3]圖3為圖示記憶體區塊的詳細圖。 [圖4A]圖4A為圖示記憶體單元的閾值電壓分佈的實例的簡圖。 [圖4B]圖4B為圖示不同的閾值電壓分佈的實例的簡圖。 [圖5]圖5為圖示通過使用同位檢查資料來校正錯誤位元的方法的簡圖。 [圖6, 圖7]圖6和圖7為圖示被分組以生成同位檢查資料的資料組塊的實例的簡圖。 [圖8]圖8為圖示用於確定儲存在記憶體單元中的位元中的不可靠位元的方法的簡圖。 [圖9A, 圖9B]圖9A和圖9B為圖示用於根據記憶體單元所位於的細分區域確定不可靠位元的方法的簡圖。 [圖10A-圖10C]圖10A至圖10C為圖示用於基於根據頁面的類型的不可靠區域確定資料組塊中的不可靠位元的方法的簡圖。 [圖11]圖11為圖示用於操作根據一個實施例的資料儲存裝置的方法的流程圖。 [圖12]圖12為圖示根據一個實施例的固態硬碟(SSD)的方塊圖。 [圖13]圖13為圖示將根據一個實施例的資料儲存裝置應用於其資料處理系統的方塊圖。
10‧‧‧資料儲存裝置
100‧‧‧控制器
110‧‧‧處理器
120‧‧‧記憶體
130‧‧‧ECC單元
200‧‧‧非揮發性記憶體裝置

Claims (20)

  1. 一種用於操作資料儲存裝置的方法,該方法包括:        基於讀取偏壓,從對應於聯接至目標字元線的目標記憶體單元的複數個頁面讀取複數個資料組塊;        基於識別偏壓,獲得對應於該目標記憶體單元的識別資料;        基於該等複數個資料組塊和該識別資料,確定該等複數個資料組塊中的目標資料組塊中的不可靠位元;以及        確定該不可靠位元是否為錯誤位元。
  2. 如請求項1所述的方法,其中從對應於與該讀取偏壓對應的閾值電壓的區域中的不可靠區域的記憶體單元讀取該不可靠位元。
  3. 如請求項2所述的方法,其中該不可靠區域包括由與被用於讀取該目標資料組塊的讀取偏壓相鄰的識別偏壓確定的預定範圍。
  4. 如請求項1所述的方法,其中確定該不可靠位元是否為該錯誤位元包括:         獲得與該目標資料組塊和同位檢查資料分組的資料組塊;以及        基於所分組的資料組塊和該同位檢查資料確定該不可靠位元是否為該錯誤位元。
  5. 如請求項4所述的方法,其中所分組的資料組塊的至少一個被包括在該等複數個資料組塊中。
  6. 如請求項1所述的方法,其中該識別偏壓被分別設置在該讀取偏壓中的兩個相鄰讀取偏壓之間。
  7. 一種資料儲存裝置,其包括:         非揮發性記憶體裝置,其包括聯接至目標字元線並對應於複數個頁面的目標記憶體單元;以及        控制器,其適於:        基於讀取偏壓,從該等複數個頁面讀取複數個資料組塊;        基於識別偏壓,獲得對應於該目標記憶體單元的識別資料;        基於該等複數個資料組塊和該識別資料,確定該等複數個資料組塊中的目標資料組塊中的不可靠位元;以及        確定該不可靠位元是否為錯誤位元。
  8. 如請求項7所述的資料儲存裝置,其中從對應於與該讀取偏壓對應的閾值電壓的區域中的不可靠區域的記憶體單元讀取該不可靠位元。
  9. 如請求項8所述的資料儲存裝置,其中該不可靠區域包括由與被用於讀取該目標資料組塊的讀取偏壓相鄰的識別偏壓確定的預定範圍。
  10. 如請求項7所述的資料儲存裝置,其中該控制器獲得與該目標資料組塊和同位檢查資料分組的資料組塊;並基於所分組的資料組塊和該同位檢查資料確定該不可靠位元是否為該錯誤位元。
  11. 如請求項10所述的資料儲存裝置,其中至少一個所分組的資料組塊被包括在該等複數個資料組塊中。
  12. 如請求項7所述的資料儲存裝置,其中該識別偏壓被分別設置在該讀取偏壓中的兩個相鄰的讀取偏壓之間。
  13. 一種用於操作資料儲存裝置的方法,該方法包括:         從複數個記憶體單元中的目標記憶體單元讀取包括複數個位元的資料;        確定該等複數個位元中的不可靠位元;以及        確定該不可靠位元是否為錯誤位元。
  14. 如請求項13所述的方法,其中從該目標記憶體單元讀取包括該等複數個位元的資料包括:         通過應用選自對應於複數個閾值電壓區域的複數個讀取偏壓中的一個讀取偏壓,從該目標記憶體單元讀取包括該等複數個位元的資料。
  15. 如請求項14所述的方法,其中確定該等複數個位元中的該不可靠位元包括:         將該等複數個位元與包括在對應於至少一個相鄰區域的另一個資料中的位元進行比較,該至少一個相鄰區域與該等複數個閾值電壓區域中對應於該一個讀取偏壓的特定區域相鄰;以及        基於該等複數個位元和包括在該另一個資料中的該位元之間的比較結果,確定該不可靠位元。
  16. 如請求項15所述的方法,其中基於該比較結果確定該不可靠位元包括:         將與包括在該另一個資料中的該位元的每一個不同的該等複數個位元的每一個確定為該不可靠位元。
  17. 如請求項14所述的方法,其中確定該等複數個位元中的該不可靠位元包括:         基於在對應於該等複數個讀取偏壓的複數個識別偏壓中與該一個讀取偏壓相鄰的一個識別偏壓,確定對應於至少一個相鄰區域的另一個資料。
  18. 如請求項17所述的方法,其中每個該識別偏壓被設置在該等複數個讀取偏壓中的兩個相鄰讀取偏壓之間。
  19. 如請求項13所述的方法,其中確定該不可靠位元是否為該錯誤位元包括:         獲得與該不可靠位元分組以生成同位檢查位元的剩餘位元;以及        基於該剩餘位元和該同位檢查位元,確定該不可靠位元是否為該錯誤位元。
  20. 如請求項13所述的方法,進一步包括:         當確定該不可靠位元為該錯誤位元時,對該不可靠位元執行錯誤校正操作。
TW105116346A 2016-01-08 2016-05-25 資料儲存裝置及其操作方法 TWI693608B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160002782A KR20170083386A (ko) 2016-01-08 2016-01-08 데이터 저장 장치 및 그것의 동작 방법
KR10-2016-0002782 2016-01-08

Publications (2)

Publication Number Publication Date
TW201725590A true TW201725590A (zh) 2017-07-16
TWI693608B TWI693608B (zh) 2020-05-11

Family

ID=59275740

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105116346A TWI693608B (zh) 2016-01-08 2016-05-25 資料儲存裝置及其操作方法

Country Status (4)

Country Link
US (1) US10152372B2 (zh)
KR (1) KR20170083386A (zh)
CN (1) CN106959821B (zh)
TW (1) TWI693608B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877824B1 (ko) * 2018-02-12 2018-07-12 엣센클라우드 주식회사 보조 기억 장치
US10607712B1 (en) 2018-09-28 2020-03-31 Toshiba Memory Corporation Media error reporting improvements for storage drives
TWI718975B (zh) * 2020-07-17 2021-02-11 汎思數據股份有限公司 提高記憶體資料讀寫速度的方法及裝置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892307B2 (ja) * 2006-09-08 2012-03-07 株式会社東芝 不揮発性半導体格納装置
JP2009059453A (ja) * 2007-09-03 2009-03-19 Toshiba Corp 不揮発性半導体記憶装置及びメモリシステム
US8406048B2 (en) * 2008-08-08 2013-03-26 Marvell World Trade Ltd. Accessing memory using fractional reference voltages
US8365041B2 (en) 2010-03-17 2013-01-29 Sandisk Enterprise Ip Llc MLC self-raid flash data protection scheme
US8427875B2 (en) * 2010-12-07 2013-04-23 Silicon Motion Inc. Method and memory controller for reading data stored in flash memory by referring to binary digit distribution characteristics of bit sequences read from flash memory
US8913437B2 (en) * 2011-12-15 2014-12-16 Marvell World Trade Ltd. Inter-cell interference cancellation
US9177664B2 (en) 2012-02-22 2015-11-03 Silicon Motion, Inc. Method, memory controller and system for reading data stored in flash memory
CN103594116A (zh) * 2012-08-15 2014-02-19 群联电子股份有限公司 数据读取方法、控制电路、存储器模块与存储器存储装置
CN103870399B (zh) * 2012-12-18 2017-03-01 群联电子股份有限公司 存储器管理方法、存储器控制器与存储器储存装置
TWI508082B (zh) * 2013-09-30 2015-11-11 Phison Electronics Corp 解碼方法、記憶體儲存裝置與記憶體控制電路單元
TWI533305B (zh) * 2014-02-10 2016-05-11 慧榮科技股份有限公司 將資料寫入至快閃記憶體的方法及相關的記憶裝置與快閃記憶體
TWI521529B (zh) * 2014-04-15 2016-02-11 群聯電子股份有限公司 解碼方法、記憶體儲存裝置及記憶體控制電路單元
KR102247087B1 (ko) * 2014-07-08 2021-05-03 삼성전자주식회사 스토리지 장치 및 스토리지 장치의 동작 방법
US9690697B2 (en) * 2014-07-10 2017-06-27 Kabushiki Kaisha Toshiba Memory controller, storage device and memory control method
KR102412781B1 (ko) * 2015-11-03 2022-06-24 삼성전자주식회사 비휘발성 메모리 장치 및 비휘발성 메모리 장치의 독출 방법

Also Published As

Publication number Publication date
KR20170083386A (ko) 2017-07-18
CN106959821A (zh) 2017-07-18
US10152372B2 (en) 2018-12-11
TWI693608B (zh) 2020-05-11
US20170199783A1 (en) 2017-07-13
CN106959821B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
US20150127887A1 (en) Data storage system and operating method thereof
TWI702533B (zh) 資料儲存裝置及其操作方法
KR20160074237A (ko) 데이터 저장 장치 및 그것의 동작 방법
KR102513505B1 (ko) 비휘발성 메모리 장치, 그것을 포함하는 데이터 저장 장치의 동작 방법
US10748626B2 (en) Data storage device and operating method thereof
TWI693608B (zh) 資料儲存裝置及其操作方法
CN107045484B (zh) 数据存储装置
KR20170006976A (ko) 데이터 저장 장치 및 그것의 동작 방법
US10026501B2 (en) Data storage device and operating method thereof
KR102375060B1 (ko) 데이터 저장 장치 및 그것의 동작 방법
US11868647B2 (en) Nonvolatile memory device, with valley search for threshold voltage, memory controller, and reading method of storage device including the same
US9646707B1 (en) Data storage device and operating method thereof
US20220083240A1 (en) Memory system and operating method thereof
US20160322087A1 (en) Data storage device and operating method thereof
KR20200118989A (ko) 메모리 시스템, 메모리 컨트롤러 및 그 동작 방법
US11386018B2 (en) Memory system and operating method thereof
US11275524B2 (en) Memory system, memory controller, and operation method of memory system
US11404137B1 (en) Memory system and operating method of memory system
US20220276796A1 (en) Memory cell level assignment using optimal level permutations in a non-volatile memory
KR20230161676A (ko) 이퓨즈 메모리를 제어하는 컨트롤러 및 그 동작 방법
KR20210057297A (ko) 시스템 및 시스템의 동작 방법