TW201724199A - 基板處理方法及基板處理裝置 - Google Patents

基板處理方法及基板處理裝置 Download PDF

Info

Publication number
TW201724199A
TW201724199A TW105120261A TW105120261A TW201724199A TW 201724199 A TW201724199 A TW 201724199A TW 105120261 A TW105120261 A TW 105120261A TW 105120261 A TW105120261 A TW 105120261A TW 201724199 A TW201724199 A TW 201724199A
Authority
TW
Taiwan
Prior art keywords
gas
processing
exhaust port
gas supply
exhaust
Prior art date
Application number
TW105120261A
Other languages
English (en)
Other versions
TWI706445B (zh
Inventor
三浦繁博
佐藤潤
Original Assignee
東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京威力科創股份有限公司 filed Critical 東京威力科創股份有限公司
Publication of TW201724199A publication Critical patent/TW201724199A/zh
Application granted granted Critical
Publication of TWI706445B publication Critical patent/TWI706445B/zh

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一種基板處理方法,係使用處理室來進行基板處理,該處理室具有:第1處理氣體供給區域;第1排氣口,係用以將供給於該第1處理氣體供給區域之第1處理氣體加以排氣而設者;第2處理氣體供給區域;第2排氣口,係用以將供給於該第2處理氣體供給區域之第2處理氣體加以排氣而設者;以及連通空間,係將該第1排氣口與該第2排氣口加以連通;使得該第1排氣口之排氣壓力較該第2排氣口之排氣壓力高出既定壓力,防止該第2處理氣體混入該第1排氣口來進行基板處理。

Description

基板處理方法及基板處理裝置
本發明係關於一種基板處理方法及基板處理裝置。
以往,將會相互反應之至少2種類的反應氣體依序供給於基板表面且實行此供給循環來多數積層出反應生成物層而形成薄膜的成膜方法中,具有:於真空容器內之旋轉台上載置基板,使得旋轉台進行旋轉之製程;從在旋轉方向上相互分離而設置於真空容器的第1反應氣體供給機構以及第2反應氣體供給機構,對於旋轉台之基板載置區域側的面分別供給第1反應氣體以及第2反應氣體之製程;以及,從旋轉方向上位於第1反應氣體供給機構與第2反應氣體供給機構之間的分離區域處所設之分離氣體供給機構來供給分離氣體,而於此分離氣體供給機構之旋轉方向兩側使得前述分離氣體擴散至真空容器之天花板面與旋轉台之間的狹窄空間之製程。
相關成膜方法,包含:從自旋轉台之旋轉中心觀看在第1處理區域與相對於此第1處理區域鄰接於旋轉方向下游側之分離區域之間處所開口的第1排氣流路之排氣口、以及從自旋轉台之旋轉中心觀看在第2處理區域與相對於此第2處理區域鄰接於旋轉方向下游側之分離區域之間處所開口的第2排氣流路之排氣口,使得反應氣體連同往分離區域兩側擴散之分離氣體受到排氣之際,從第1處理區域以及第2處理區域讓此等氣體分別獨立受到排氣之製程;以及,將第1排氣流路內以及第2排氣流路內分別藉由第1真空排氣機構以及第2真空排氣機構來相互獨立加以排氣之製程,而從第1處理區域以及第2處理區域分別將第1反應氣體以及第2反應氣 體加以獨立排氣。此外,由於旋轉台下方所存在之間隙空間也成為極為狹窄之構成,故供給於第1處理區域之第1反應氣體與供給於第2處理區域之第2反應氣體不會連通旋轉台之下方,而從第1排氣口以及第2排氣口相互獨立受到排氣。
但是,伴隨近年來程序的多樣化,有時需要在旋轉台下方形成有間隙的狀態下進行程序。具體而言,高溫程序中,將晶圓搬入真空容器而載置於旋轉台上之際,由於晶圓明顯翹曲,在翹曲消失之前無法開始程序,為儘早開始程序,故有時旋轉台以可升降方式構成,於晶圓載置時使得旋轉台下降來加大空間,翹曲消失後使得旋轉台上升來實行程序。
相關程序中,由於在旋轉台上升後的狀態下進行程序,有時會於旋轉台之下方產生間隙,第1反應氣體與第2反應氣體通過此間隙而相混,而變得無法進行獨立之排氣。由於第1反應氣體與第2反應氣體會相互反應生成反應生成物,故若第1反應氣體與第2反應氣體在第1排氣口附近或是第2排氣口附近反應,則不必要的反應生成物會生成於第1排氣口或是第2排氣口,而發生真空容器內部受到污染之問題。
是以,本發明係提供一種基板處理方法及基板處理裝置,即使是於相關旋轉台之下方產生間隙的程序,也可在第1以及第2排氣口進行個別獨立的排氣。
本發明之一態樣相關的基板處理方法,係使用處理室來進行基板處理,該處理室具有:第1處理氣體供給區域;第1排氣口,係用以將供給於該第1處理氣體供給區域之第1處理氣體加以排氣而設者;第2處理氣體供給區域;第2排氣口,係用以將供給於該第2處理氣體供給區域之第2處理氣體加以排氣而設者;以及連通空間,係將該第1排氣口與該第2排氣口加以連通;使得該第1排氣口之排氣壓力較該第2排氣口之排氣壓力高出既定壓力,防止該第2處理氣體混入該第1排氣口來進行基板處理。
本發明之其他態樣相關的一種基板處理裝置,具有:處理室; 旋轉台,係設置於該處理室內,可於表面上載置基板,並可進行升降;第1以及第2處理氣體供給區域,係沿著該旋轉台之周向在該旋轉台上方相互分離設置;第1以及第2排氣口,係分別對應於該第1以及第2處理氣體供給區域相較於該旋轉台設置於下方;第1以及第2壓力調整閥,係用以調整該第1以及第2排氣口之排氣壓力;分離區域,係從該處理室之天花板面往下方突出,在該旋轉台之上方以將該第1處理氣體供給區域與該第2處理氣體供給區域加以分離的方式設置於該第1處理氣體供給區域與該第2處理氣體供給區域之間;以及控制機構,係以下述方式進行控制:當該基板載置於該旋轉台上時,使得該旋轉台下降,在該旋轉台進行旋轉而進行基板處理之時使得該旋轉台上升,且為了防止該第2處理氣體通過因該旋轉台之上升所產生之連通該第1排氣口與該第2排氣口之連通空間而從該第1排氣口被排氣,係以該第1排氣口之排氣壓力較該第2排氣口之排氣壓力高出既定壓力的方式來控制該第1以及第2壓力調整閥。
本發明之其他態樣相關的基板處理方法,係使用處理室來進行基板處理者;該處理室具有:旋轉台,可於上面載置基板;於該旋轉台之上方沿著旋轉方向上相互分離配置之對該基板供給原料氣體之第1原料氣體供給區域、供給可和該原料氣體起反應而生成反應生成物之反應氣體的第1反應氣體供給區域、供給該原料氣體之第2原料氣體供給區域、以及供給該反應氣體之第2反應氣體供給區域;用以將供給於該第1原料氣體供給區域之該原料氣體加以排氣而設之第1排氣口、用以將供給於該第1反應氣體供給區域之該反應氣體加以排氣而設之第2排氣口、用以將供給於該第2原料氣體供給區域之該原料氣體加以排氣而設之第3排氣口、以及用以將供給於該第2反應氣體供給區域之該反應氣體加以排氣而設之第4排氣口;以及連通空間,係將該第1至第4排氣口彼此加以連通; 使得該第1排氣口之排氣壓力較該第2至第4排氣口之排氣壓力高出既定壓力,防止該反應氣體混入該第1排氣口來進行基板處理。
本發明之其他態樣相關的基板處理裝置,具有:處理室;旋轉台,係設置於該處理室內,可於表面上載置基板,並可進行升降;沿著該旋轉台之旋轉方向在該旋轉台上方相互分離設置之對該旋轉台供給原料氣體之第1原料氣體供給區域、供給可和該原料氣體起反應而生成反應生成物之反應氣體之第1反應氣體供給區域、供給該原料氣體之第2原料氣體供給區域、以及供給該反應氣體之第2反應氣體供給區域;分別對應於該第1原料氣體供給區域、該第1反應氣體供給區域、該第2原料氣體供給區域以及該第2反應氣體供給區域而相較於該旋轉台設置於下方之第1至第4排氣口;用以調整該第1至第4排氣口之排氣壓力的第1至第4壓力調整閥;分離區域,係從該處理室之天花板面往下方突出,在該旋轉台之上方以將該第1原料氣體供給區域、該第1反應氣體供給區域、該第2原料氣體供給區域以及該第2反應氣體供給區域彼此加以分離的方式設置在該第1原料氣體供給區域、該第1反應氣體供給區域、該第2原料氣體供給區域以及該第2反應氣體供給區域彼此之間;控制機構,係以下述方式進行控制:當該基板載置於該旋轉台上時,使得該旋轉台下降,在該旋轉台進行旋轉而進行基板處理之時使得該旋轉台上升,且為了防止該反應氣體通過因該旋轉台之上升所產生之該第1至第4排氣口彼此相連通之連通空間而從該第1排氣口被排氣,以該第1排氣口之排氣壓力較該第2至第4排氣口之排氣壓力高出既定壓力的方式來控制該第1至第4壓力調整閥。
1‧‧‧真空容器
2‧‧‧旋轉台
4‧‧‧凸狀部
5‧‧‧突出部
7‧‧‧加熱器單元
7a‧‧‧蓋構件
10‧‧‧搬送臂
11‧‧‧頂板
12‧‧‧容器本體
12a‧‧‧突出部
13‧‧‧密封構件
14‧‧‧底部
15‧‧‧搬送口
16‧‧‧波紋管
17‧‧‧升降機構
20‧‧‧盒體
21‧‧‧核心部
22‧‧‧旋轉軸
23‧‧‧驅動部
24‧‧‧凹部
31‧‧‧處理氣體噴嘴
31a‧‧‧氣體導入埠
32‧‧‧處理氣體噴嘴
32a‧‧‧氣體導入埠
33‧‧‧氣體噴出孔
41‧‧‧分離氣體噴嘴
41a‧‧‧氣體導入埠
42‧‧‧分離氣體噴嘴
42a‧‧‧氣體導入埠
42h‧‧‧氣體噴出孔
43‧‧‧溝槽部
44‧‧‧天花板面
45‧‧‧天花板面
46‧‧‧彎曲部
50‧‧‧間隙
51‧‧‧分離氣體供給管
52‧‧‧空間
71‧‧‧蓋構件
71a‧‧‧內側構件
71b‧‧‧外側構件
72‧‧‧沖洗氣體供給管
73‧‧‧沖洗氣體供給管
80‧‧‧電漿產生器
92‧‧‧電漿氣體噴嘴
92a‧‧‧氣體導入埠
100‧‧‧控制部
101‧‧‧記憶部
102‧‧‧記録媒體
310‧‧‧第3處理氣體噴嘴
320‧‧‧第4處理氣體噴嘴
410‧‧‧分離氣體噴嘴
420‧‧‧分離氣體噴嘴
481‧‧‧空間
482‧‧‧空間
610‧‧‧第1排氣口
611‧‧‧排氣口
620‧‧‧第2排氣口
621‧‧‧排氣口
630‧‧‧排氣管
631‧‧‧排氣管
640‧‧‧真空泵
641‧‧‧真空泵
650‧‧‧自動壓力控制機器
651‧‧‧自動壓力控制器
C‧‧‧中心區域
D‧‧‧分離區域
d1,d2‧‧‧距離
E1‧‧‧第1排氣區域
E2‧‧‧第2排氣區域
H‧‧‧分離空間
h1‧‧‧高度
P1‧‧‧第1處理區域
P2‧‧‧第2處理區域
P3‧‧‧第3處理區域
P4‧‧‧第4處理區域
W‧‧‧晶圓
所附圖式係納入本說明書之一部分而顯示本揭示之實施形態,連同上述一般性說明以及後述實施形態的詳細內容來說明本揭示之概念。
圖1係顯示本發明之第1實施形態之基板處理裝置之概略截面圖。
圖2係顯示圖1之基板處理裝置之真空容器內構成之概略立體圖。
圖3係顯示圖1之基板處理裝置之真空容器內構成之概略俯視圖。
圖4係顯示圖1之基板處理裝置之真空容器內沿著以可旋轉方式所設之旋轉台的同心圓,該真空容器之概略截面圖。
圖5係顯示圖1之基板處理裝置之其他概略截面圖。
圖6係顯示旋轉台下降後狀態之一例之圖。
圖7係顯示旋轉台上升後狀態之一例之圖。
圖8係顯示包含圖9以後所示模擬結果之容器本體配置狀態的基本處理條件之圖。
圖9係顯示第1模擬結果之圖。
圖10係顯示第2模擬結果之圖。
圖11係顯示第3模擬結果之圖。
圖12係顯示第4模擬結果之圖。
圖13係用以說明本發明之實施例之圖。
圖14係顯示圖13所示實施例之結果之圖。
圖15係顯示第5模擬結果之圖。
圖16係顯示第6模擬結果之圖。
圖17係顯示第7模擬結果之圖。
圖18係顯示第8模擬結果之圖。
圖19係顯示本發明之第2實施形態相關的基板處理裝置之一例之圖。
圖20係顯示本發明之第2實施形態相關的基板處理方法之第1模擬實驗結果之圖。
圖21係顯示本發明之第2實施形態相關的基板處理方法之第2模擬實驗結果之圖。
圖22係顯示本發明之第2實施形態相關的基板處理方法之第3模擬實驗結果之圖。
圖23係顯示本發明之第2實施形態相關的基板處理方法之第4模擬實驗結果之圖。
圖24係顯示本發明之第2實施形態相關的基板處理方法之第5模擬實驗結果之圖。
圖25係顯示本發明之第2實施形態相關的基板處理方法之第6模擬實驗結果之圖。
圖26係顯示本發明之第2實施形態相關的基板處理方法之第7模擬實驗結果之圖。
以下,參見圖式來說明用以實施本發明之形態。下述詳細說明中,係以可充分理解本揭示的方式賦予許多具體詳細內容。但是,即使無如此詳細的說明,業界人士可完成本揭示也為顯然的事項。其他例中,為了避免不易理解各種實施形態,針對公知的方法、順序、系統、構成要素未詳細顯示。
〔第1實施形態〕
參見圖1至圖3,本發明之第1實施形態相關的基板處理裝置具備有:扁平的真空容器1,係具有大致圓形的平面形狀;以及,旋轉台2,係設置於此真空容器1內,於真空容器1之中心具有旋轉中心。真空容器1為內部收容晶圓W來進行基板處理之處理室。真空容器1具有:容器本體12,具有有底的圓筒形狀;以及頂板11,對於容器本體12之上面經由例如O型環等密封構件13(圖1)以氣密可裝卸方式受到配置。
旋轉台2以中心部固定於圓筒形狀之核心部21,此核心部21係固定於朝鉛直方向延伸之旋轉軸22之上端。旋轉軸22貫通真空容器1之底部14,其下端安裝於使得旋轉軸22(圖1)繞鉛直軸進行旋轉的驅動部23處。旋轉軸22以及驅動部23係收納於上面開口之筒狀的盒體20內。此盒體20之上面所設凸緣部分係氣密地安裝於真空容器1之底部14下面,維持盒體20之內部雰圍與外部雰圍之氣密狀態。
於旋轉台2之表面部如圖2以及圖3所示般沿著旋轉方向(周向)設有用以載置複數(圖示例為5片)做為基板之半導體晶圓(以下稱為「晶圓」)W的圓形狀的凹部24。此外圖3中權宜上僅於1個凹部24顯示了晶圓W。此 凹部24具有較晶圓W之直徑略大例如4mm之內徑、以及和晶圓W厚度大致相等的深度。從而,若晶圓W收容於凹部24,則晶圓W之表面與旋轉台2之表面(未載置晶圓W之區域)會成為相同高度。於凹部24之底面形成有貫通孔(均未圖示),支撐晶圓W內面使得晶圓W進行升降之例如3根的升降銷可貫通其中。
圖2以及圖3係說明真空容器1內構造之圖,於說明之權宜上係省略頂板11之圖示。如圖2以及圖3所示般,於旋轉台2之上方分別有例如石英所構成之處理氣體噴嘴31、處理氣體噴嘴32、分離氣體噴嘴41,42、以及電漿氣體噴嘴92在真空容器1之周向(旋轉台2之旋轉方向(圖3之箭頭A))上相互保持間隔來配置。圖示之例,從後述之搬送口15繞順時鐘(旋轉台2之旋轉方向)依序配置有電漿氣體噴嘴92、分離氣體噴嘴41、處理氣體噴嘴31、分離氣體噴嘴42、以及處理氣體噴嘴32。此等噴嘴92、31、32、41、42係將做為各噴嘴92、31、32、41、42之基端部的氣體導入埠92a、31a、32a、41a、42a(圖3)固定於容器本體12之外周壁以從真空容器1之外周壁導入真空容器1內,以沿著容器本體12之半徑方向對旋轉台2進行水平延伸的方式受到安裝。
此外,於電漿氣體噴嘴92之上方在圖3中係以虛線簡化顯示的方式設有電漿產生器80。電漿產生器80只需視必要來設置即可,也可無須。從而,本實施形態中係簡化顯示。
處理氣體噴嘴31係經由未圖示之配管以及流量調整器等來連接於做為第1處理氣體之含Si(矽)氣體之供給源(未圖示)。處理氣體噴嘴32係經由未圖示之配管以及流量調整器等來連接於做為第2處理氣體之氧化氣體之供給源(未圖示)。分離氣體噴嘴41、42均經由未圖示之配管以及流量調整閥等來連接於做為分離氣體之氮(N2)氣體之供給源(未圖示)。
含Si氣體可使用例如二異丙基胺基矽烷等有機胺基矽烷氣體,做為氧化氣體可使用例如O3(臭氧)氣體或是O2(氧)氣體或是此等混合氣體。
於處理氣體噴嘴31、32,朝旋轉台2開口之複數氣體噴出孔33係沿著處理氣體噴嘴31、32之長度方向以例如10mm之間隔來配置著。處理氣體噴嘴31之下方區域成為用以將含Si氣體吸附於晶圓W之第1處理區域P1。 處理氣體噴嘴32之下方區域係成為使得於第1處理區域P1被吸附於晶圓W之含Si氣體進行氧化之第2處理區域P2。此外,第1處理區域P1以及第2處理區域P2由於分別為供給第1處理氣體以及第2處理氣體之區域,故也可稱為第1處理氣體供給區域P1以及第2處理氣體供給區域P2。
參見圖2以及圖3,於真空容器1內設有2個凸狀部4。凸狀部4由於和分離氣體噴嘴41、42構成分離區域D,故如後述般係以朝旋轉台2突出的方式安裝於頂板11之內面。此外,凸狀部4具有頂部被切斷成為圓弧狀之扇型平面形狀,本實施形態中,內圓弧連結於突出部5(後述),外圓弧係沿著真空容器1之容器本體12之內周面來配置。
圖4係顯示從處理氣體噴嘴31到處理氣體噴嘴32沿著旋轉台2之同心圓的真空容器1之截面。如圖示般,由於在頂板11之內面安裝著凸狀部4,故於真空容器1內存在著做為凸狀部4之下面亦即平坦的低的天花板面44(第1天花板面)、以及位於此天花板面44之周向兩側而較天花板面44來得高的天花板面45(第2天花板面)。天花板面44具有頂部被切斷成為圓弧狀之扇型平面形狀。此外,如圖示般,於凸狀部4在周向中央形成有以朝半徑方向延伸的方式所形成之溝槽部43,分離氣體噴嘴42被收容於溝槽部43內。另一凸狀部4也同樣形成有溝槽部43,於該處收容著分離氣體噴嘴41。此外,於高的天花板面45之下方之空間481、482分別設有處理氣體噴嘴31、32。此等處理氣體噴嘴31、32從天花板面45分離而設置於晶圓W附近。
此外,收容於凸狀部4之溝槽部43的分離氣體噴嘴41、42處,朝旋轉台2開口之複數氣體噴出孔42h(參見圖4)係沿著分離氣體噴嘴41、42之長度方向以例如10mm之間隔來配置。
天花板面44係相對於旋轉台2形成狹窄空間之分離空間H。若從分離氣體噴嘴42之噴出孔42h供給N2氣體,則此N2氣體會通過分離空間H而往空間481以及空間482流動。此時,由於分離空間H之容積小於空間481以及482之容積,而可藉由N2氣體使得分離空間H之壓力高於空間481以及482之壓力。亦即,於空間481以及482之間形成高壓力之分離空間H。此外,從分離空間H往空間481以及482流出之N2氣體係發揮對於來 自第1區域P1之含Si氣體與來自第2區域P2之氧化氣體之逆向流的功用。從而,來自第1區域P1之含Si氣體與來自第2區域P2之氧化氣體被分離空間H所分離。從而,可抑制含Si氣體與氧化氣體於真空容器1內相混合而反應。
此外,天花板面44相對於旋轉台2上面之高度h1,若考慮成膜時之真空容器1內之壓力、旋轉台2之旋轉速度、所供給之分離氣體(N2氣體)之供給量等,則設定為適合讓分離空間H之壓力高於空間481、482之壓力的高度為佳。
另一方面,於頂板11之下面設有將固定旋轉台2之核心部21外周加以包圍的突出部5(圖1至圖3)。此突出部5於本實施形態中係和凸狀部4之旋轉中心側部位相連續,其下面形成為和天花板面44相同高度。
先前參見之圖1為沿著圖3之I-I'線之截面圖,顯示了設有天花板面45之區域。另一方面,圖5係顯示設有天花板面44之區域的截面圖。如圖5所示般,於扇型凸狀部4之周緣部(真空容器1之外緣側部位)係以對向於旋轉台2外端面的方式形成有彎曲為L字形的彎曲部46。此彎曲部46和凸狀部4同樣地係抑制處理氣體從分離區域D兩側侵入而抑制兩處理氣體之混合。扇型之凸狀部4係設於頂板11,頂板11可從容器本體12卸除,故於彎曲部46之外周面與容器本體12之間有些微的間隙。彎曲部46之內周面與旋轉台2之外端面的間隙、以及彎曲部46之外周面與容器本體12之間隙例如設定為和天花板面44相對於旋轉台2上面之高度為同樣的尺寸。
容器本體12之內周壁於分離區域D如圖4所示般和彎曲部46之外周面接近而形成為垂直面,而分離區域D以外之部位如圖1所示般例如從和旋轉台2之外端面成為對向之部位在整個底部14往外方側凹陷。以下,基於說明之權宜起見,將具有大致矩形截面形狀的凹陷部分記為排氣區域。具體而言,將連通於第1處理區域P1之排氣區域記為第1排氣區域E1,將連通於第2處理區域P2之區域記為第2排氣區域E2。於此等第1排氣區域E1以及第2排氣區域E2之底部,如圖1至圖3所示般分別形成有第1排氣口610以及第2排氣口620。第1排氣口610以及第2排氣口620如 圖1以及圖3所示般分別經由排氣管630、631而連接於做為真空排氣機構之例如真空泵640、641。此外,於第1排氣口610與真空泵640之間的排氣管630設有做為壓力調整機構之自動壓力控制機器(APC,Auto Pressure Controller)650。同樣地,於第2排氣口620與真空泵641之間的排氣管631設有做為壓力調整機構之自動壓力控制器651,第1排氣口610以及第2排氣口620之排氣壓力可分別獨立控制。
於旋轉台2與真空容器1之底部14之間的空間,如圖1以及圖5所示般設有做為加熱機構之加熱器單元7,經由旋轉台2而將旋轉台2上之晶圓W加熱至由程序配方所決定之溫度(例如450℃)。於旋轉台2之周緣附近下方側,為了將從旋轉台2之上方空間到排氣區域E1、E2之雰圍與加熱器單元7所處雰圍加以區劃來抑制氣體朝旋轉台2之下方區域侵入而設有環狀之蓋構件71(圖5)。此蓋構件71具備有:內側構件71a,係從下方側靠近旋轉台2之外緣部以及外緣部之更外周側而設;以及,外側構件71b,係設置於此內側構件71a與真空容器1之內壁面之間。外側構件71b於分離區域D在凸狀部4之外緣部所形成之彎曲部46下方係和彎曲部46鄰接設置,內側構件71a於旋轉台2之外緣部下方(以及相對於外緣部略為外側部分之下方)係將加熱器單元7在整個全周包圍。
相對於配置著加熱器單元7之空間靠近旋轉中心部位的底部14係以接近於旋轉台2之下面中心部附近的核心部21的方式往上方側突出成為突出部12a。此突出部12a與核心部21之間成為狹窄空間,此外貫通底部14的旋轉軸22之貫通孔的內周面與旋轉軸22之間隙成為狹窄,此等狹窄空間連通於盒體20。此外於盒體20設有沖洗氣體供給管72用以將沖洗氣體之N2氣體供給至狹窄空間內來進行沖洗。此外於真空容器1之底部14,在加熱器單元7下方於周向上以既定角度間隔設有用以對加熱器單元7之配置空間進行沖洗之複數沖洗氣體供給管73(圖5中顯示一個沖洗氣體供給管73)。此外,於加熱器單元7與旋轉台2之間設有從外側構件71b之內周壁(內側構件71a之上面)到突出部12a之上端部之間將整個周向加以覆蓋之蓋構件7a,以抑制氣體侵入設有加熱器單元7之區域。蓋構件7a能以例如石英所製作。
此外,於真空容器1之頂板11之中心部連接著分離氣體供給管51,對頂板11與核心部21之間的空間52供給做為分離氣體之N2氣體。對此空間52所供給之分離氣體係經由突出部5與旋轉台2之狹窄間隙50而沿著旋轉台2之晶圓載置區域側的表面朝周緣噴出。空間50可藉由分離氣體而被維持在較空間481以及空間482更高壓力。從而,可藉由空間50來抑制被供給於第1處理區域P1之含Si氣體與被供給於第2處理區域P2之氧化氣體通過中心區域C而混合。亦即,空間50(或是中心區域C)可和分離空間H(或是分離區域D)發揮同樣機能。
再者,於真空容器1之側壁,如圖3所示般,形成有用以在外部之搬送臂10與旋轉台2之間進行基板亦即晶圓W之傳輸的搬送口15。此搬送口15藉由未圖示之閘閥來開閉。此外旋轉台2中做為晶圓載置區域之凹部24係於靠近此搬送口15之位置來和搬送臂10之間進行晶圓W之傳輸,故於旋轉台2之下方側對應於傳輸位置之部位係設有貫通凹部24用以將晶圓W從內面上舉之傳輸用升降銷及其升降機構(均未圖示)。
此外,本實施形態之基板處理裝置如圖1所示般設有用以進行裝置全體之動作控制的由電腦所構成之控制部100,於此控制部100之記憶體內儲存有用以在控制部100之控制下而於基板處理裝置實施後述基板處理方法之程式。此程式係以實行後述基板處理方法的方式組入有步驟群,記憶於硬碟、光碟、光磁碟、記憶卡、軟碟等記録媒體102中,藉由既定的讀取裝置讀至記憶部101,而安裝到控制部100內。
再者,如圖1所示般,在旋轉軸22周圍之容器本體12之底部14與盒體20之間設有波紋管16。此外,於波紋管16之外側設有可升降旋轉台2而變更旋轉台2之高度的升降機構17。藉由相關升降機構17使得旋轉台2做升降,並對應於旋轉台2之升降使得波紋管16做伸縮,而可變更天花板面45與晶圓W之間的距離。藉由在構成旋轉台2之旋轉軸的構成要素之一部分設置波紋管16以及升降機構17,可使得晶圓W之處理面保持著平行之狀態下來變更天花板面45與晶圓W之間的距離。此外,升降機構17只要是可使得旋轉台2做升降即可,可藉由各種構成來實現,例如也可為藉由齒輪等來伸縮旋轉軸22長度的構造。
設置相關升降機構17之理由在於,當真空容器1內保持在400℃以上之高溫而進行了基板處理之情況,即使為了進行晶圓W之搬出以及搬入而停止了加熱器單元7,真空容器1內尚維持在高溫,故對真空容器1內搬入晶圓W而載置於旋轉台2上之際,會發生晶圓W大幅翹曲之現象。
圖6係顯示旋轉台2下降狀態一例之部分放大圖。如圖5以及圖6所示,當晶圓W載置於旋轉台2上之際,事先使得旋轉台2下降,即便晶圓W存在著翹曲,也保持著具有不致接觸於天花板面44的距離d1之空間(天花板面44與突出部5之下面為相同高度)。另一方面,當所有的晶圓W復原,使得旋轉台2進行旋轉來對晶圓W施以成膜處理之際,由於必須狹窄保持晶圓W與天花板面44之空隙,而在使得旋轉台2成為上升後之狀態來進行成膜處理。藉由設置如此之旋轉台2之升降機構17,可防止翹曲後的晶圓W與天花板面44、45之接觸所致晶圓W的損傷。此外,即使載置於旋轉台2上之晶圓W仍處在翹曲狀態,仍可無須等待翹曲復原便使得旋轉台2間歇性地進行旋轉移動,而可將晶圓W依序載置於複數凹部24,可提高生產性。亦即,由於在旋轉台2與天花板面44、45之間保有空間上的彈性,故可將1片的晶圓W載置於旋轉台2之凹部24上之後,在所載置之晶圓W的翹曲復原前將下一片的晶圓W載置於下一凹部24上。藉此,可縮短將複數片的晶圓W載置於旋轉台2上之全體時間,可提高生產性。此外,旋轉台2與天花板面44之空間的距離d1為8~18mm之範圍,較佳為設定在10~15mm之範圍,具體而言例如可設定為13mm。
如圖5以及圖6所示,當旋轉台2下降時,會於旋轉台2之上方形成相對於天花板面44之距離d1之空間,且旋轉台2之下面與蓋構件7a之間的間隔之距離d2會變得非常地狹窄例如為3mm程度。此狀態下,處理氣體幾乎不會通過旋轉台2之下方,供給至第2處理區域P2之第2處理氣體幾乎不會通過旋轉台2之下面到達第1處理區域P1而從第1排氣口610受到排氣。
圖7係顯示旋轉台2上升後狀態一例之圖。如圖7所示,若旋轉台2上升,則旋轉台2與處理氣體噴嘴31、32之間隔的距離d1變得非常地狹窄,例如成為3mm程度,而旋轉台2與蓋構件7a之間隔的距離d2則變大, 成為處理氣體可連通的空間。如上述般,若最初旋轉台2之下面為3mm的空隙(距離d2),上升後與天花板面44成為3mm之空隙(距離d1),則旋轉台2之下面之蓋構件7a之間隔的距離d2會成為8~18mm程度(例如13mm)。若於如此之狀態下對晶圓W進行成膜等處理,會發生處理氣體會連通於在旋轉台2之下所形成之連通空間,第2處理氣體到達第1處理區域P1而從第1排氣口610受到排氣之現象。如此一來,第1處理氣體與第2處理氣體會進行CVD(Chemical Vapor Deposition)反應,矽氧化膜等不希望的反應生成物會堆積於第1排氣口610。
為了防止相關現象,本發明之實施形態相關的基板處理方法以及基板處理裝置藉由調整第1排氣口610以及第2排氣口620之排氣壓力來進行控制使得第2處理氣體不會從第1排氣口610排氣而是從第2排氣口620被排氣。以下,針對其具體內容,使用模擬結果來說明。
圖8係顯示包含圖9以後所示模擬結果之容器本體12之配置狀態的基本處理條件圖。如圖8所示,以搬送口15配置於紙面下側、第1排氣口610配置於右上、第2排氣口620配置於左上的方式來配置著容器本體12之狀態,顯示以後之模擬結果。此外,從處理氣體噴嘴31使得屬於含Si氣體一種之二異丙基胺基矽烷氣體以300sccm(0.3slm)的流量和做為載氣之Ar氣體一同被供給(Ar氣體為1000sccm(1slm)之流量)。此外,從處理氣體噴嘴32以6slm之流量供給臭氧氣體。進而,從電漿氣體噴嘴92以Ar氣體15slm、氧氣體75sccm之流量做為混合氣體來供給。此外,真空容器1內之壓力為2Torr,晶圓W之溫度被設定於400℃。此外,從旋轉軸22上方的分離氣體供給管51以3slm供給Ar氣體,從沖洗氣體供給管72以10slm供給Ar氣體。從分離氣體噴嘴41、42以5slm供給Ar氣體。
此處,處理氣體噴嘴31在第1處理區域P1內,處理氣體噴嘴32在第2處理區域P2內,第2處理區域P2具有第1處理區域P1之3倍以上的廣度。例如,第1處理區域P1之開角為30~60度程度,相對於此,第2處理區域P2之開角為120~270度程度,典型而言,第1處理區域P1係設定於75度,第2處理區域P2係設定於165度程度。此外,第1以及第2排氣口610、620皆在第1以及第2處理區域P1、P2內之旋轉台2之旋轉方向 下游端,由於處理氣體噴嘴32位於第2處理區域P2之上游端,故處理氣體噴嘴32與第1排氣口610之距離會小於處理氣體噴嘴32與第2排氣口620之距離。
從相關基本條件,使得包含第1以及第2排氣口610、620之排氣壓力的條件做若干變化,對於處理氣體噴嘴32所供給之臭氧氣體以及處理氣體噴嘴31所供給之二異丙基胺基矽烷氣體之流量分布進行了模擬。
圖9係顯示第1以及第2排氣口610、620之排氣壓力皆為2Torr、來自旋轉軸22下方的沖洗氣體供給管720之Ar氣體的供給量降低至1.8slm之狀態的模擬結果圖。圖9(a)係顯示旋轉台2上之氧濃度之模擬結果圖,圖9(b)係顯示旋轉台2之下方之氧濃度之模擬結果圖。此外,將高濃度檢測出氧濃度之區域顯示為等級A,將未明顯檢測出氧濃度之區域顯示為等級B,將幾乎未檢測出氧濃度之區域顯示為等級C。
如圖9(a)所示,於旋轉台2上在第1排氣口610處檢測出氧濃度60%,確認臭氧氣體混入第1排氣口610為少量。
另一方面,如圖9(b)所示,可知臭氧氣體在旋轉台2之下方也到達第2排氣口620,同時也到達第1排氣口610。亦即,原本全部的臭氧氣體應從第2排氣口620被排氣,但卻成為相當多的量係從第1排氣口610被排氣之狀態。
圖9(c)係顯示旋轉台2上之二異丙基胺基矽烷濃度的模擬結果圖,圖9(d)係顯示旋轉台2下方之二異丙基胺基矽烷濃度之模擬結果圖。此外,將高濃度檢測出二異丙基胺基矽烷濃度之區域顯示為等級A,將未明顯檢測出二異丙基胺基矽烷濃度之區域顯示為等級B,將幾乎未檢測出二異丙基胺基矽烷濃度之區域顯示為等級C。
如圖9(c)所示,可知於旋轉台2上,二異丙基胺基矽烷氣體供給於第1處理區域P1而從第1排氣口610受到適切排氣。
此外,如圖9(d)所示,可知即使於旋轉台2之下方,由於第1排氣口610之二異丙基胺基矽烷氣體之濃度為等級B,而為無問題之等級。
如此般,可知當第1排氣口610與第2排氣口620之排氣壓力同樣為2Torr之情況,於旋轉台2之下方,臭氧氣體會混入第1排氣口610。
圖10係顯示第1以及第2排氣口610、620之排氣壓力皆為2Torr,來自旋轉軸22下方之沖洗氣體供給管72的Ar氣體之供給量增加為10slm之狀態的模擬結果圖。圖10(a)係顯示旋轉台2上之氧濃度之模擬結果圖,圖10(b)係顯示旋轉台2之下方之氧濃度之模擬結果圖。此外,和圖9(a)、(b)同樣地,將高濃度檢測出氧濃度之區域顯示為等級A,將未明顯檢測出氧濃度之區域顯示為等級B,將幾乎未檢測出氧濃度之區域顯示為等級C。
如圖10(a)所示,於旋轉台2上,在第1排氣口610檢測出氧濃度40%。可知藉由增加來自旋轉軸22下方的Ar氣體之流量,則相較於圖9(a)之情況,可減少若干臭氧氣體朝第1排氣口610之混入。但是,仍少量存在朝第1排氣口610之混入。
此外,如圖10(b)所示,可知旋轉台2之下方相較於圖9(b)之情況,氧濃度之分散減少了,但臭氧氣體仍然到達第1以及第2排氣口610、620之雙方。亦即,原本所有的臭氧氣體應從第2排氣口620受到排氣,但和圖9(b)之情況同樣地,成為相當多的量從第1排氣口610受到排氣之狀態。
圖10(c)係顯示旋轉台2上之二異丙基胺基矽烷濃度之模擬結果圖,圖10(d)係顯示旋轉台2下方之二異丙基胺基矽烷濃度之模擬結果圖。此外,和圖9(c)、(d)同樣地,將高濃度檢測出二異丙基胺基矽烷濃度之區域顯示為等級A,將未明顯檢測出二異丙基胺基矽烷濃度之區域顯示為等級B,將幾乎未檢測出二異丙基胺基矽烷濃度之區域顯示為等級C。
如圖10(c)所示,可知於旋轉台2上,二異丙基胺基矽烷氣體被供給於第1處理區域P1而從第1排氣口610適切地受到排氣。
此外,如圖10(d)所示,可知即使是旋轉台2之下方,由於第1排氣口610之二異丙基胺基矽烷氣體之濃度為等級B,而為無問題之等級。
如此般,可知當第1排氣口610與第2排氣口620之排氣壓力同樣為2Torr之情況,即便增加從旋轉軸22之下方所供給之沖洗氣體量,於旋轉台2之下方,臭氧氣體仍會混入第1排氣口610。
圖11係顯示第1排氣口610之排氣壓力定為2.1Torr、第2排氣口620之排氣壓力定為2Torr,設置0.1Torr之壓差的狀態之模擬結果圖。圖11(a)係顯示旋轉台2上之氧濃度之模擬結果圖,圖11(b)係顯示旋轉台2之下方 之氧濃度之模擬結果圖。此外,和圖9(a)、(b)以及圖10(a)、(b)同樣地,將高濃度檢測出氧濃度之區域顯示為等級A,將未明顯檢測出氧濃度之區域顯示為等級B,將幾乎未檢測出氧濃度之區域顯示為等級C。
如圖11(a)所示,可知於旋轉台2上,於第1排氣口610處氧濃度僅檢測出等級B之程度,為未明顯見到混入之狀態。
此外,如圖11(b)所示,可知旋轉台2之下方相較於圖10(b)之情況雖氧濃度之分散減少了,但臭氧氣體也少量到達了第1排氣口610。亦即,原本所有的臭氧氣體應從第2排氣口620被排氣,但卻成為少量從第1排氣口610受到排氣之狀態。
圖11(c)係顯示旋轉台2上之二異丙基胺基矽烷濃度之模擬結果圖,圖11(d)係顯示旋轉台2之下方之二異丙基胺基矽烷濃度之模擬結果圖。此外,和圖9(c)、(d)以及圖10(c)、(d)同樣,將高濃度檢測出二異丙基胺基矽烷濃度之區域顯示為等級A,將未明顯檢測出二異丙基胺基矽烷濃度之區域顯示為等級B,將幾乎未檢測出二異丙基胺基矽烷濃度之區域顯示為等級C。
如圖11(c)所示,可知於旋轉台2上,二異丙基胺基矽烷氣體供給於第1處理區域P1而從第1排氣口610適切被排氣。
此外,如圖11(d)所示,即使是旋轉台2之下方,由於第1排氣口610之二異丙基胺基矽烷氣體之濃度為等級B,而為無問題之等級。
如此般,可知將第1排氣口610之排氣壓力定為2.1Torr、第2排氣口620之排氣壓力定為2Torr,設置0.1Torr之壓差之情況,雖見到改善,但於旋轉台2之下方有少量的臭氧氣體混入第1排氣口610。
圖12係顯示第1排氣口610之排氣壓力定為2.2Torr、第2排氣口620之排氣壓力定為2Torr,設置0.2Torr之壓差之狀態的模擬結果圖。圖12(a)係顯示旋轉台2上之氧濃度之模擬結果圖,圖12(b)係顯示旋轉台2之下方之氧濃度之模擬結果圖。此外,和圖9(a)、(b)乃至圖11(a)、(b)同樣地,將高濃度檢測出氧濃度之區域顯示為等級A,將未明顯檢測出氧濃度之區域顯示為等級B,將幾乎未檢測出氧濃度之區域顯示為等級C。
如圖12(a)所示,可知於旋轉台2上,於第1排氣口610僅檢測出等級C之量的氧濃度,為幾乎未見到混入之狀態。
此外,如圖12(b)所示,即便是旋轉台2之下方,臭氧氣體並未到達第1排氣口610,僅到達第2排氣口620。如此般,可知做為第2處理氣體之臭氧氣體僅從第2排氣口620受到排氣,而達成了原本應有的狀態。
圖12(c)係顯示旋轉台2上之二異丙基胺基矽烷濃度之模擬結果圖,圖12(d)係顯示旋轉台2之下方之二異丙基胺基矽烷濃度之模擬結果圖。此外,和圖9(c)、(d)乃至圖11(c)、(d)同樣地,將高濃度檢測出二異丙基胺基矽烷濃度之區域顯示為等級A,將未明顯檢測出二異丙基胺基矽烷濃度之區域顯示為等級B,將幾乎未檢測出二異丙基胺基矽烷濃度之區域顯示為等級C。
如圖12(c)所示,可知於旋轉台2上,二異丙基胺基矽烷氣體被供給於第1處理區域P1,從第1排氣口610受到適切排氣。
此外,如圖12(d)所示,即使是旋轉台2之下方,由於第1排氣口610之二異丙基胺基矽烷氣體之濃度為等級B,而為無問題之等級。
如此般,將第1排氣口610之排氣壓力定為2.2Torr、第2排氣口620之排氣壓力定為2Torr,設置0.2Torr之壓差的情況,可防止旋轉台2之下方之臭氧氣體混入第1排氣口610。
圖13係用以說明在旋轉台2未進行旋轉之狀態下,於旋轉台2上載置6片的晶圓W,改變第1以及第2排氣口610、620之排氣壓力條件來進行成膜處理之情況的實施例之圖。圖13(a)係顯示晶圓W之配置位置圖,圖13(b)係顯示膜厚測定點之圖。
如圖13(a)所示,於下側配置有搬送口15、右上配置有第1排氣口610、左上配置有第2排氣口620、右上配置有處理氣體噴嘴31、右下配置有處理氣體噴嘴32之狀態來進行了模擬。
此外,如圖13(b)所示,設定了P1~P49之49個膜厚測定點。於半徑方向以3列且個別列在360度上幾乎無遺漏地配置了膜厚測定點。此外,如圖13(a)所示,第1排氣口610在膜厚測定點P44附近。
圖14係顯示了圖13所示實施例之結果圖。如圖14所示,當第1排氣口610與第2排氣口620之排氣壓力同樣設定為1.8Torr之情況,於膜厚測 定點P42~P46附近的膜厚會增加。由於在第1排氣口610之附近,此意涵於第1排氣口610附近發生了CVD反應。
另一方面,當第1排氣口610之排氣壓力設定為2.0Torr、第2排氣口620之排氣壓力設定為1.8Torr之情況,即使於膜厚測定點P42~P46附近也不會增加膜厚,未發生任何成膜。此意涵第2處理氣體並未混入第1排氣口610。
如此般,從本實施例可知,當第1排氣口610之排氣壓力與第2排氣口620之排氣壓力設定於2.0Torr附近之情況,藉由設置10%的0.2Torr之壓差使得第1排氣口610之排氣壓力高於第2排氣口620之排氣壓力,可防止第2處理氣體從第1排氣口610之混合排氣。
圖15顯示當第1以及第2排氣口610、620之排氣壓力皆設定為4Torr,而未設置壓差之情況的模擬結果圖。圖15(a)係顯示旋轉台2上之氧濃度之模擬結果圖,圖15(b)係顯示旋轉台2之下方之氧濃度之模擬結果圖。此外,和圖9(a)、(b)乃至圖12(a)、(b)同樣地,將高濃度檢測出氧濃度之區域顯示為等級A,將未明顯檢測出氧濃度之區域顯示為等級B,將幾乎未檢測出氧濃度之區域顯示為等級C。
如圖15(a)所示,可知於旋轉台2上,於第1排氣口610處氧濃度僅檢測出等級B之程度,為未明顯見到混入之狀態。
另一方面,如圖15(b)所示,可知於旋轉台2之下方,臭氧氣體會到達第2排氣口620,但同時也會到達第1排氣口610附近。亦即,原本所有的臭氧氣體應從第2排氣口620受到排氣,但卻成為也可從第1排氣口610受到排氣之狀態。
圖15(c)係顯示旋轉台2上之二異丙基胺基矽烷濃度之模擬結果圖,圖15(d)係顯示旋轉台2之下方之二異丙基胺基矽烷濃度之模擬結果圖。此外,和圖9(c)、(d)乃至圖12(c)、(d)同樣地,將高濃度檢測出二異丙基胺基矽烷濃度之區域顯示為等級A,將未明顯檢測出二異丙基胺基矽烷濃度之區域顯示為等級B,將幾乎未檢測出二異丙基胺基矽烷濃度之區域顯示為等級C。
如圖15(c)所示,可知於旋轉台2上,二異丙基胺基矽烷氣體係供給於第1處理區域P1而從第1排氣口610適切地受到排氣。
此外,如圖15(d)所示,即使是旋轉台2之下方,由於第1排氣口610之二異丙基胺基矽烷氣體之濃度為等級B,而為無問題之等級。
如此般,可知當第1以及第2排氣口610、620之排氣壓力同樣設定為4Torr而未設置壓差之情況,雖旋轉台2上並無問題,但於旋轉台2之下方,做為第2處理氣體之臭氧氣體有混入第1排氣口610之虞。
圖16係顯示將第1排氣口610之排氣壓力定為4.075Torr、第2排氣口620之排氣壓力定為4Torr,設置0.75Torr之壓差的狀態之模擬結果圖。圖16(a)係顯示旋轉台2上之氧濃度之模擬結果圖,圖16(b)係顯示旋轉台2之下方之氧濃度之模擬結果圖。此外,和圖9(a)、(b)乃至圖12(a)、(b)同樣地,將高濃度檢測出氧濃度之區域顯示為等級A,將未明顯檢測出氧濃度之區域顯示為等級B,將幾乎未檢測出氧濃度之區域顯示為等級C。
如圖16(a)所示,可知於旋轉台2上,於第1排氣口610僅檢測出等級C之量的氧濃度,為幾乎未見到混入之狀態。
此外,如圖16(b)所示,即使是旋轉台2之下方,臭氧氣體並未到達第1排氣口610,僅到達第2排氣口620。如此般,可知做為第2處理氣體之臭氧氣體僅從第2排氣口620受到排氣,而達成了原本應有的狀態。
圖16(c)係顯示旋轉台2上之二異丙基胺基矽烷濃度之模擬結果圖,圖16(d)係顯示旋轉台2之下方之二異丙基胺基矽烷濃度之模擬結果圖。此外,和圖9(c)、(d)乃至圖12(c)、(d)同樣地,將高濃度檢測出二異丙基胺基矽烷濃度之區域顯示為等級A,將未明顯檢測出二異丙基胺基矽烷濃度之區域顯示為等級B,將幾乎未檢測出二異丙基胺基矽烷濃度之區域顯示為等級C。
如圖16(c)所示,可知於旋轉台2上,二異丙基胺基矽烷氣體係供給於第1處理區域P1而從第1排氣口610受到適切排氣。
此外,如圖16(d)所示,即使是旋轉台2之下方,由於第1排氣口610之二異丙基胺基矽烷氣體之濃度為等級B,而為無問題之等級。
如此般,將第1排氣口610之排氣壓力定為4.075Torr、第2排氣口620之排氣壓力定為4Torr,在約4Torr之排氣壓力的條件下,設置0.75Torr之壓差之情況,可防止旋轉台2之下方處,臭氧氣體混入第1排氣口610。
圖17係顯示第1以及第2排氣口610、620之排氣壓力皆定為7Torr而未設置壓差之情況的模擬結果圖。在其他成膜條件方面,將來自沖洗氣體供給管72之Ar氣體之供給量減少為6slm,將來自分離氣體噴嘴41、42之Ar氣體之供給量增加為8slm。圖17(a)係旋轉台2上之氧濃度之模擬結果圖,圖17(b)係旋轉台2之下方之氧濃度之模擬結果圖。此外,和圖9(a)、(b)乃至圖12(a)、(b)同樣地,將高濃度檢測出氧濃度之區域顯示為等級A,將未明顯檢測出氧濃度之區域顯示為等級B,將幾乎未檢測出氧濃度之區域顯示為等級C。
如圖17(a)所示,可知於旋轉台2上,在第1排氣口610處氧濃度僅檢測出等級C,為幾乎未見到混入之狀態。
另一方面,如圖17(b)所示,可知於旋轉台2之下方,雖臭氧氣體會到達第2排氣口620,但同時也會到達第1排氣口610附近。亦即,原本所有的臭氧氣體應從第2排氣口620受到排氣,但卻成為也從第1排氣口610受到排氣之狀態。
圖17(c)係旋轉台2上之二異丙基胺基矽烷濃度之模擬結果圖,圖17(d)係旋轉台2之下方之二異丙基胺基矽烷濃度之模擬結果圖。此外,和圖9(c)、(d)乃至圖12(c)、(d)同樣地,將高濃度檢測出二異丙基胺基矽烷濃度之區域顯示為等級A,將未明顯檢測出二異丙基胺基矽烷濃度之區域顯示為等級B,將幾乎未檢測出二異丙基胺基矽烷濃度之區域顯示為等級C。
如圖17(c)所示,可知於旋轉台2上,二異丙基胺基矽烷氣體被供給於第1處理區域P1而從第1排氣口610受到適切排氣。
此外,如圖17(d)所示,即使是旋轉台2之下方,由於第1排氣口610之二異丙基胺基矽烷氣體之濃度為等級B,而為無問題之等級。
如此般,可知當使得第1以及第2排氣口610、620之排氣壓力同樣成為7Torr而未設置壓差之情況,雖旋轉台2上並無問題,但於旋轉台2之下方,但做為第2處理氣體之臭氧氣體有混入第1排氣口610之虞。
圖18係將第1排氣口610之排氣壓力定為7.02Torr、第2排氣口620之排氣壓力定為7Torr,設置0.02Torr之壓差的狀態之模擬結果圖。在其他成膜條件方面,將來自沖洗氣體供給管72之Ar氣體之供給量減少為6slm,將來自分離氣體噴嘴41、42之Ar氣體之供給量增加為8slm。圖18(a)係旋轉台2上之氧濃度之模擬結果圖,圖18(b)係旋轉台2之下方之氧濃度之模擬結果圖。此外,和圖9(a)、(b)乃至圖12(a)、(b)同樣地,將高濃度檢測出氧濃度之區域顯示為等級A,將未明顯檢測出氧濃度之區域顯示為等級B,將幾乎未檢測出氧濃度之區域顯示為等級C。
如圖18(a)所示,可知於旋轉台2上,於第1排氣口610僅檢測出等級C之量的氧濃度,成為幾乎未見到混入之狀態。
此外,如圖18(b)所示般,即使是旋轉台2之下方,臭氧氣體並不會到達第1排氣口610,僅到達第2排氣口620。如此般,可知做為第2處理氣體之臭氧氣體僅從第2排氣口620受到排氣,而達成了原本應有的狀態。
圖18(c)係旋轉台2上之二異丙基胺基矽烷濃度之模擬結果圖,圖18(d)係旋轉台2之下方之二異丙基胺基矽烷濃度之模擬結果圖。此外,和圖9(c)、(d)乃至圖12(c)、(d)同樣地,將高濃度檢測出二異丙基胺基矽烷濃度之區域顯示為等級A,將未明顯檢測出二異丙基胺基矽烷濃度之區域顯示為等級B,將幾乎未檢測出二異丙基胺基矽烷濃度之區域顯示為等級C。
如圖18(c)所示,可知於旋轉台2上,二異丙基胺基矽烷氣體被供給於第1處理區域P1而從第1排氣口610受到適切排氣。
此外,如圖18(d)所示,即使是旋轉台2之下方,由於第1排氣口610之二異丙基胺基矽烷氣體之濃度為等級B,而為無問題之等級。
如此般,將第1排氣口610之排氣壓力定為7.02Torr、第2排氣口620之排氣壓力定為7Torr,在約7Torr之排氣壓力的條件下設置0.02Torr之壓差的情況,可防止旋轉台2之下方處臭氧氣體混入第1排氣口610。
如此般,如圖12~圖14、圖16以及圖18所說明般,第1以及第2排氣口610、620之排氣壓力愈高,則即使第1排氣口610之排氣壓力與第2排氣口620之排氣壓力之壓差小也可得到充分的處理氣體之獨立排氣效果。
此等壓力從模擬試驗顯示了與真空容器1內之壓力具有相關性。具體而言,做為真空容器1之壓力依存條件,較佳為當真空容器1內之壓力為1~3Torr時,第1排氣口610之排氣壓力設定為較第2排氣口620之排氣壓力高0.1~0.3Torr之壓力範圍,當真空容器1內之壓力為3~5Torr時,第1排氣口610之排氣壓力設定為較第2排氣口620之排氣壓力高0.05~0.1Torr之壓力範圍,當真空容器1內之壓力為5~10Torr時,第1排氣口610之排氣壓力設定為較第2排氣口620之排氣壓力高0.01~0.05Torr之壓力範圍。
此外,第1以及第2排氣口610、620之排氣壓力之設定也可藉由控制部100來控制自動壓力控制器651、652之壓力設定值而進行。控制部100也可控制真空容器1內之壓力、溫度。此外,控制部100也可控制旋轉台2之升降動作,故本發明之實施形態相關的基板處理方法可藉由控制部100所進行之控制來實行。此外,控制部100之動作可由配方所規定,配方能以電腦程式的形式記錄於記録媒體102等之狀態被供給,而安裝於記憶部101。
其次,針對本發明之第1實施形態相關的基板處理方法,舉出使用上述基板處理裝置來實施之情況為例而說明。因此,適宜參見到目前所參見之圖式。
首先,在旋轉台2完成下降之狀態,開啟未圖示之閘閥,從外部利用搬送臂10經過搬送口15(圖3)來將晶圓W傳輸至旋轉台2之凹部24內。旋轉台2之下降亦可以控制部100控制升降機構17來進行。此傳輸係當凹部24停止於靠近搬送口15之位置時經由凹部24底面之貫通孔而從真空容器1之底部側使得未圖示之升降銷做升降來進行。如此之晶圓W之傳輸係旋轉台2做間歇性旋轉下來進行,而於旋轉台2之5個凹部24內分別載置晶圓W。此時,雖晶圓W有可能產生翹曲,但由於旋轉台2已下降,於上方形成有空間,故在等待晶圓W之翹曲收斂之前,依序使得旋轉台2進行間歇性旋轉,於凹部24上載置複數片的晶圓W。於晶圓W之載置結束、晶圓W之翹曲充分降低後,控制部100係控制升降機構17使得旋轉台2上升,使得旋轉台2停止於進行基板處理之適切位置。
接著關閉閘閥,藉由真空泵640將真空容器1排氣至最低到達真空度後,從分離氣體噴嘴41、42使得做為分離氣體之Ar氣體或是N2氣體以既定流量噴出,從分離氣體供給管51以及沖洗氣體供給管72、73也使得Ar氣體或是N2氣體以既定流量噴出。伴隨於此,藉由自動壓力控制器650、651將真空容器1內調整為事先設定之處理壓力,並以第1排氣口610與第2排氣口620成為適切壓差的方式來設定排氣壓力。如上述般,因應於真空容器1內之設定壓力來設定適切的壓力差。
此外,當從處理氣體噴嘴31供給吸附性之原料氣體,從處理氣體噴嘴32供給會和氧化氣體、氮化氣體等原料氣體進行反應之反應氣體的情況,係以對應於處理氣體噴嘴31所設之第1排氣口610之排氣壓力高於第2排氣口620之排氣壓力的方式進行設定。由於含Si氣體、含Ti氣體等原料氣體為質量重之吸附性氣體,故其鮮會到達第2排氣口620,而氧化氣體、氮化氣體等反應氣體由於質量輕而具有擴散性,而會充分到達第1排氣口610。此外,當從處理氣體噴嘴31供給反應氣體,從處理氣體噴嘴32供給原料氣體之情況,不用說第1排氣口610與第2排氣口620之壓力關係成為相反。此外,壓力依存條件如上述般。
其次,一邊使得旋轉台2繞順時鐘以例如20rpm之旋轉速度進行旋轉、一邊藉由加熱器單元7將晶圓W加熱至例如400℃。
此後,從處理氣體噴嘴31、32分別噴出含Si氣體以及O3氣體。此外,可依必要性從電漿氣體噴嘴92將以既定流量比混合後的Ar氣體、O2氣體以及H2氣體之混合氣體供給於真空容器1內,從高頻電源對於電漿產生器80之天線以例如700W的電力供給高頻電力。藉此,生成電漿,進形成膜後之膜的改質。
此處,旋轉台2進行一次旋轉之間,係如以下般於晶圓W形成矽氧化膜。亦即,晶圓W首先通過第1處理氣體噴嘴31之下方之第1處理區域P1之際,於晶圓W表面吸附含Si氣體。含Si氣體可為例如有機胺基矽烷氣體,具體而言可為例如二異丙基胺基矽烷。其次,晶圓W通過第2處理氣體噴嘴32之下方之第2處理區域P2之際,係藉由來自第2處理氣體噴嘴32之O3氣體使得晶圓W上之含Si氣體氧化,形成氧化矽之一分子層(或 是數分子層)。其次,當晶圓W通過電漿產生器80之下方的情況,晶圓W上之氧化矽層係暴露於活性氧源以及活性氫源。氧自由基等活性氧源例如存在於含Si氣體中而發揮將氧化矽層中所殘留之有機物加以氧化使其脫離氧化矽層的功用。藉此,可使得氧化矽層高純度化。
此處,於旋轉台2之下方雖形成有O3氣體可到達第1排氣口610之連通空間,但由於第1排氣口610之排氣壓力相較於第2排氣口620之排氣壓力設定為高既定壓力,故O3氣體不會到達第1排氣口610,而從第2排氣口620連同Ar氣體等受到排氣。藉此,可防止於第1排氣口610生成不必要的矽氧化膜。
此外,若第1排氣口610之排氣壓力過高,反而恐發生含Si氣體到達第2排氣口620之現象,故第1排氣口610與第2排氣口620之壓差係設定於適切範圍。
上述模擬結果說明了較佳情況為:當真空容器1內之壓力為1~3Torr時,第1排氣口610之排氣壓力設定為較第2排氣口620之排氣壓力高出0.1~0.3Torr之壓力範圍,當真空容器1內之壓力為3~5Torr時,第1排氣口610之排氣壓力設定為較第2排氣口620之排氣壓力高出0.05~0.1Torr之壓力範圍,當真空容器1內之壓力為5~10Torr時,第1排氣口610之排氣壓力設定為較第2排氣口620之排氣壓力高出0.01~0.05Torr之壓力範圍。
此外,說明了當排氣壓力為2Torr前後之情況以0.2Torr程度之壓差為適切,當排氣壓力為4Torr前後之情況以0.75Torr程度之壓差為適切,當排氣壓力為7Torr前後之情況以0.03Torr程度之壓差為適切。
藉由設定如此之適切壓差,即便於旋轉台2之下方存在著10mm以上之連通空間,也可於第1排氣口610與第2排氣口620之間進行各自獨立之排氣。
以下,使得旋轉台2旋轉達形成具有所希望膜厚的氧化矽膜之次數後,停止含Si氣體、O3氣體、以及視必要性所供給之Ar氣體、O2氣體與NH3氣體之混合氣體的供給來結束基板處理方法。接著,也停止來自分離氣體噴嘴41、42、分離氣體供給管51、以及沖洗氣體供給管72、73之Ar氣體 或是N2氣體之供給,並停止旋轉台2之旋轉。此後,以對真空容器1內搬入晶圓W時的順序為相反的順序從真空容器1內搬出晶圓W。
如此般,依據本發明之第1實施形態相關的基板處理方法以及基板處理裝置,可防止於做為原料氣體用排氣口之第1排氣口610混入屬反應氣體之氧化氣體。
〔第2實施形態〕
其次,針對本發明之第2實施形態相關的基板處理方法以及基板處理裝置來說明。
圖19係顯示本發明之第2實施形態相關的基板處理裝置一例之圖。第2實施形態相關的基板處理裝置在第1處理區域P1以及第2處理區域P2以外尚具備有第3處理區域P3以及第4處理區域P4這點有別於第1實施形態相關的基板處理裝置。此外,第2實施形態相關的基板處理裝置伴隨追加了第3以及第4處理區域P3、P4,在第1排氣口610以及第2排氣口620以外尚追加有第3排氣口611以及第4排氣口621這點係有別於第1實施形態相關的基板處理裝置。
第3處理區域P3和第1處理區域P1同樣地係將含矽氣體等原料氣體供給於晶圓W之區域。此外,第4處理區域P4和第2處理區域P2同樣地係將可和原料氣體起反應來生成反應生成物之反應氣體供給於晶圓W之反應氣體供給區域。此外,第3處理區域P3以及第4處理區域P4係沿著旋轉台2之旋轉方向從上游側起相互分離配置,和第1處理區域P1與第2處理區域P2具有同樣的關係。此外,於第1處理區域P1與第2處理區域P2之間、第2處理區域P2與第3處理區域P3之間、第3處理區域P3與第4處理區域P4之間、以及第4處理區域P4與第1處理區域P1之間分別配置有分離區域D。
此外,如圖19所示,於第3處理區域P3設置用以對晶圓W供給原料氣體之第3處理氣體噴嘴310,於第4處理區域P4設置用以對晶圓W供給反應氣體之第4處理氣體噴嘴320。此外,於新設之分離區域D分別設置和分離氣體噴嘴41、42同樣之分離氣體噴嘴410、420。
藉由相關構成,在第1處理區域P1吸附於晶圓W上之原料氣體會在第2處理區域P2和反應氣體起反應而生成反應生成物,之後,於第3處理區域P3使得原料氣體吸附於晶圓W上(或是反應生成物之膜上),於第4處理區域P4和反應氣體起反應而生成反應生成物。然後,再次反覆從第1處理區域P1起的程序。如此般,第2實施形態相關的基板處理裝置,將會成為於旋轉台2進行1次旋轉之間在晶圓W上進行2次的ALD程序,可提高基板處理速度。例如,若為成膜處理則可提高沉積速率。
此外,為了沿著旋轉台2之周向形成如此之4個處理區域P1~P4,必須將4個處理區域P1~P4以適切的大小(角度)來配置。例如,第1實施形態相關的基板處理裝置中,係將包含搬送口15之搬送部設定為72°,將分離區域D設定為60°×2,將第1處理區域(原料氣體供給區域)P1設定為60°,將第2處理區域P2設定為67.5°。第2實施形態相關的基板處理裝置中,由於必須使得各區域狹窄,故例如雖包含搬送口15之搬送部和第1實施形態同樣確保為72°,但將分離區域D設定為20°×4,將第1以及第3處理區域(原料氣體供給區域)P1、P3設定為52°×2,將第2以及第4處理區域(反應氣體供給區域)P2、P4設定為52°×2,而必須以如此方式將各個區域設定為略為狹窄。
此外,第1以及第3處理區域P1、P3由於皆為將原料氣體供給於晶圓W之區域,故可將第1處理區域P1稱為第1原料氣體供給區域P1,將第3處理區域P3稱為第2原料氣體供給區域P3。同樣地,第2以及第4處理區域P2、P4由於皆為將反應氣體供給於晶圓W之區域,故可將第2處理區域P2稱為第1反應氣體供給區域P2,將第4處理區域P4稱為第2反應氣體供給區域P4。再者,於第2以及第4處理區域P2、P4一邊進行電漿處理一邊供給反應氣體之情況,可將第2以及第4處理區域P2、P4稱為第1以及第2電漿處理區域P2、P4。
排氣口610、611、620、621分別對應於第1以及第2原料氣體供給區域P1、P3、第1以及第2反應氣體供給區域P2、P4而設,在排氣口610將被供給於第1處理區域P1之原料氣體做排氣、在排氣口620將被供給於第2處理區域P2之反應氣體做排氣、在排氣口611將被供給於第3處理區 域P3之原料氣體做排氣,在排氣口621將被供給於第4處理區域P4之反應氣體做排氣的方面係和第1實施形態相關的基板處理裝置同樣。
但是,即使是第2實施形態之基板處理裝置,旋轉台2仍以可上下移動的方式來構成,當晶圓W搬入真空容器1內之際,使得旋轉台2成為下降狀態,於晶圓W復原、開始基板處理之階段進行上升動作。從而,於進行基板處理之際,於旋轉台2之下方產生間隙,第1至第4排氣口610、611、620、621彼此連通,而成為發生例如應於第2排氣口620受排氣之反應氣體混入於待將原料氣體加以排氣之第1排氣口610此種事態的構成。
即便於第2實施形態相關的基板處理方法以及基板處理裝置,藉由調整第1至第4排氣口610、611、620、621之壓力,來進行不會發生如此混入的基板處理。以下,使用模擬實驗結果來進行第2實施形態相關的基板處理方法以及基板處理裝置之說明。
圖20係顯示本發明之第2實施形態相關的基板處理方法之第1模擬實驗結果圖。於第1模擬實驗,將第1至第4排氣口610、611、620、621之壓力皆設定為2Torr。此外,在其他程序條件方面,將晶圓W之溫度設定為400℃,將旋轉台2之旋轉速度設定為20rpm。原料氣體使用DCS(二氯矽烷;Si2Cl2),反應氣體使用NH3,成為成膜出SiN之程序。此外,第2以及第4處理區域P2、P4成為進行電漿處理之程序。從旋轉軸22之上方之分離氣體供給管51使得Ar氣體以3slm來供給,從分離氣體噴嘴41、42(由於設置於所有的分離區域D故為4根)供給5slm×4之Ar氣體。此外,做為原料氣體之DCS之流量定為0.5slm×2,做為反應氣體之NH3之流量定為5slm×2。
圖20(a)係旋轉台2之上方之DCS濃度分布之模擬結果圖。濃度等級和第1實施形態同樣,將最高濃度等級定為等級A,將中等程度之濃度等級定為等級B,將最低可忽略之等級的濃度定為等級C。此外,真空容器1內之處理區域P1~P4之配置和圖19所示配置同樣。即使於以後之模擬結果,此點也同樣,之後不再重複此說明。
如圖20(a)所示,做為原料氣體之DCS之等級A、B之範圍在旋轉台2之上方係控制在第1以及第3處理區域P1、P3內,顯示出適切進行了原料氣體之分離。
圖20(b)係旋轉台2之上方之NH3電漿之濃度分布的模擬結果圖。如圖20(b)所示,等級A、B之範圍控制在第2以及第4處理區域P2、P4內,顯示出於旋轉台2之上方係適切進行了反應氣體之分離。
圖20(c)係旋轉台2之下方之DCS濃度分布之模擬結果圖。如圖20(c)所示,DCS之濃度等級A、B之範圍控制在第1以及第3處理區域P1、P3內,顯示出即使於旋轉台2之下方也適切進行了原料氣體之分離。
圖20(d)係旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖20(d)所示,等級B之範圍係到達第1處理區域P1之第1排氣口610附近。此顯示出反應氣體之影響及於原料氣體供給區域P1之排氣口610,未充分進行反應氣體之分離,而發生了反應氣體之混入。
圖20(e)係將NH3電漿之濃度設定為最大值之10%時的旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖20(e)所示,等級A之範圍到達第1處理區域P1之第1排氣口610,顯示出反應氣體明顯混入了第1排氣口610。
如此般,顯示出當第1至第4排氣口610、611、620、621之壓力全部同樣設定為2Torr之情況,於旋轉台2之下方會發生反應氣體混入第1排氣口610,而無法採用相關基板處理方法。
圖21係顯示本發明之第2實施形態相關的基板處理方法之第2模擬實驗結果圖。第2模擬實驗,將第1排氣口610之壓力設定為2.027Torr,將第2至第4排氣口611、620、621之壓力皆設定為2Torr。其他條件和第1模擬實驗為同一條件。
圖21(a)係旋轉台2之上方之DCS濃度分布之模擬結果圖。如圖21(a)所示,做為原料氣體之DCS之濃度等級A、B之範圍在旋轉台2之上方係控制在第1以及第3處理區域P1、P3內,顯示出適切進行了原料氣體之分離。
圖21(b)係旋轉台2之上方之NH3電漿之濃度分布之模擬結果圖。如圖21(b)所示,濃度等級A、B之範圍控制在第2以及第4處理區域P2、P4內,顯示出於旋轉台2之上方適切進行了反應氣體之分離。
圖21(c)係旋轉台2之下方之DCS濃度分布之模擬結果圖。如圖21(c)所示,DCS之濃度等級A、B之範圍控制在第1以及第3處理區域P1、P3內,顯示出即使於旋轉台2之下方也適切進行了原料氣體之分離。
圖21(d)係旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖21(d)所示,濃度等級B之範圍控制在第2以及第4處理區域P2、P4之範圍內,第2處理區域P2之反應氣體並未到達第1處理區域P1之第1排氣口610。此顯示出即使於旋轉台2之下方也適切進行了反應氣體之分離。
圖21(e)係將NH3電漿之濃度設定為最大值之10%時的旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖21(e)所示,即使電漿之濃度為最大值之10%,第2處理區域P2內之濃度等級A、B之範圍仍未到達第1處理區域P1之第1排氣口610。如此般,顯示出藉由採用第2模擬實驗之條件、亦即將第1排氣口610之壓力設定為略高於其他第2至第4排氣口611、620、621,可確實防止反應氣體混入第1排氣口610。
圖22顯示本發明之第2實施形態相關的基板處理方法之第3模擬實驗結果圖。第3模擬實驗,將第1至第4排氣口610、611、620、621之壓力皆設定為4Torr。此外,真空容器1內之壓力係設定為4Torr。排氣口之壓力以及真空容器1內之壓力以外的條件和第1以及第2模擬實驗為同一條件。
圖22(a)係旋轉台2之上方之DCS濃度分布之模擬結果圖。如圖22(a)所示,做為原料氣體之DCS之濃度等級A、B之範圍在旋轉台2之上方係控制於第1以及第3處理區域P1、P3內,顯示出適切進行了原料氣體之分離。
圖22(b)係旋轉台2之上方之NH3電漿之濃度分布之模擬結果圖。如圖22(b)所示,濃度等級A、B之範圍係控制在第2以及第4處理區域P2、P4內,顯示出於旋轉台2之上方適切進行了反應氣體之分離。
圖22(c)係旋轉台2之下方之DCS濃度分布之模擬結果圖。如圖22(c)所示,DCS之濃度等級A、B之範圍係控制在第1以及第3處理區域P1、P3內,顯示出即使於旋轉台2之下方也適切進行了原料氣體之分離。
圖22(d)係旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖22(d)所示,等級B之範圍係到達第1處理區域P1之第1排氣口610附近。此顯示出反應氣體之影響及於原料氣體供給區域P1之排氣口610附近,可知未充分進行反應氣體之分離,有發生反應氣體之混入之虞。
圖22(e)係將NH3電漿之濃度設定為最大值之10%時之旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖22(e)所示,等級A之範圍到達第1處理區域P1之第1排氣口610,顯示出反應氣體混入了第1排氣口610。
如此般,可知將第1至第4排氣口610、611、620、621之壓力全部同樣設定為4Torr之情況,當電漿濃度為最大,則於旋轉台2之下方會發生反應氣體混入第1排氣口610,而無法採用相關基板處理方法。
圖23係顯示本發明之第2實施形態相關的基板處理方法之第4模擬實驗結果圖。第4模擬實驗,將第1排氣口610之壓力設定為4.01Torr,將第2至第4排氣口611、620、621之壓力皆設定為4Torr。排氣口壓力以外的條件和第3模擬實驗為同一條件。
圖23(a)係旋轉台2之上方之DCS濃度分布之模擬結果圖。如圖23(a)所示,做為原料氣體之DCS之濃度等級A、B之範圍在旋轉台2之上方控制在第1以及第3處理區域P1、P3內,顯示出適切進行了原料氣體之分離。
圖23(b)係旋轉台2之上方之NH3電漿之濃度分布之模擬結果圖。如圖23(b)所示,濃度等級A、B之範圍控制在第2以及第4處理區域P2、P4內,顯示出於旋轉台2之上方適切進行了反應氣體之分離。
圖23(c)係旋轉台2之下方之DCS濃度分布之模擬結果圖。如圖23(c)所示,DCS之濃度等級A、B之範圍控制在第1以及第3處理區域P1、P3內,顯示出即使於旋轉台2之下方也適切進行了原料氣體之分離。
圖23(d)係旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖23(d)所示,濃度等級A、B之範圍控制在第2以及第4處理區域P2、P4之 範圍內,第2處理區域P2之反應氣體並未到達第1處理區域P1之第1排氣口610。此顯示出即使於旋轉台2之下方也適切進行了反應氣體之分離。
圖23(e)係將NH3電漿之濃度設定為最大值之10%時之旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖23(e)所示,即使電漿之濃度成為最大值之10%,第2處理區域P2內之濃度等級A、B之範圍也未到達第1處理區域P1之第1排氣口610。如此般,藉由採用第4模擬實驗之條件、亦即將第1排氣口610之壓力設定為略高於其他第2至第4排氣口611、620、621,可確實防止反應氣體混入第1排氣口610。
圖24係顯示本發明之第2實施形態相關的基板處理方法之第5模擬實驗結果圖。於第5模擬實驗,將第1排氣口610之壓力設定為4.015Torr,第2至第4排氣口611、620、621之壓力皆設定為4Torr。第1排氣口610之壓力以外的條件和第4模擬實驗為同一條件。
圖24(a)係旋轉台2之上方之DCS濃度分布之模擬結果圖。如圖24(a)所示,做為原料氣體之DCS之濃度等級A、B之範圍在旋轉台2之上方控制在第1以及第3處理區域P1、P3內,顯示出適切進行了原料氣體之分離。
圖24(b)係旋轉台2之上方之NH3電漿之濃度分布之模擬結果圖。如圖24(b)所示,濃度等級A、B之範圍控制在第2以及第4處理區域P2、P4內,顯示出於旋轉台2之上方適切進行了反應氣體之分離。
圖24(c)係旋轉台2之下方之DCS濃度分布之模擬結果圖。如圖24(c)所示,DCS之濃度等級A、B之範圍控制在第1以及第3處理區域P1、P3內,顯示出即使於旋轉台2之下方也適切進行了原料氣體之分離。
圖24(d)係旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖24(d)所示,濃度等級A、B之範圍控制在第2以及第4處理區域P2、P4之範圍內,第2處理區域P2之反應氣體並未到達第1處理區域P1之第1排氣口610。此顯示出即使於旋轉台2之下方也適切進行了反應氣體之分離。
圖24(e)係將NH3電漿之濃度設定為最大值之10%時之旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖24(e)所示,即使電漿之濃度為最大值之10%,第2處理區域P2內之濃度等級A、B之範圍並未到達第1處理區域P1之第1排氣口610。並且,濃度等級A、B之範圍的擴展度比 第4模擬實驗結果還更小,更遠離第1排氣口610。從而,顯示出第5模擬實驗、亦即將第1排氣口610之壓力設定為較4.01Torr略高0.005Torr而成為4.015Torr時,可更確實地防止反應氣體混入第1排氣口610。如此般,藉由微妙變化第1排氣口610之壓力,可獲致用以防止反應氣體混入第1排氣口610之最適條件。
圖25係顯示本發明之第2實施形態相關的基板處理方法之第6模擬實驗結果圖。第6模擬實驗係將第1至第4排氣口610、611、620、621之壓力皆設定為6Torr。此外,真空容器1內之壓力設定為6Torr。排氣口之壓力以及真空容器1內之壓力以外的條件和第1乃至第5模擬實驗為同一條件。
圖25(a)係旋轉台2之上方之DCS濃度分布之模擬結果圖。如圖25(a)所示,做為原料氣體之DCS之濃度等級A、B之範圍在旋轉台2之上方係控制在第1以及第3處理區域P1、P3內,顯示出適切進行了原料氣體之分離。
圖25(b)係顯示旋轉台2之上方之NH3電漿之濃度分布之模擬結果圖。如圖25(b)所示,濃度等級A、B之範圍控制在第2以及第4處理區域P2、P4內,顯示出於旋轉台2之上方適切進行了反應氣體之分離。
圖25(c)係旋轉台2之下方之DCS濃度分布之模擬結果圖。如圖25(c)所示,DCS之濃度等級A、B之範圍控制在第1以及第3處理區域P1、P3內,顯示出即使於旋轉台2之下方也適切進行了原料氣體之分離。
圖25(d)係旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖25(d)所示,雖等級B之範圍往第1處理區域P1之第1排氣口610延伸,但並未到達第1排氣口610附近。顯示出即使於旋轉台2之下方也進行了可滿足反應氣體之分離的等級。
圖25(e)係當NH3電漿之濃度設定為最大值之10%時之旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖25(e)所示,等級B之範圍到達第1處理區域P1之第1排氣口610,顯示反應氣體混入了第1排氣口610。
如此般,可知當將第1至第4排氣口610、611、620、621之壓力皆相同設定為6Torr之情況,若電漿濃度成為最大,則於旋轉台2之下方會發生反應氣體混入第1排氣口610,而無法採用相關基板處理方法。
圖26係顯示本發明之第2實施形態相關的基板處理方法之第7模擬實驗結果圖。第7模擬實驗,將第1排氣口610之壓力設定為6.01Torr,將第2至第4排氣口611、620、621之壓力皆設定為6Torr。第1排氣口610之壓力以外的條件和第6模擬實驗為同一條件。
圖26(a)係旋轉台2之上方之DCS濃度分布之模擬結果圖。如圖26(a)所示,做為原料氣體之DCS之濃度等級A、B之範圍在旋轉台2之上方係控制在第1以及第3處理區域P1、P3內,顯示出適切進行了原料氣體之分離。
圖26(b)係旋轉台2之上方之NH3電漿之濃度分布之模擬結果圖。如圖26(b)所示,濃度等級A、B之範圍控制在第2以及第4處理區域P2、P4內,顯示出於旋轉台2之上方適切進行了反應氣體之分離。
圖26(c)係旋轉台2之下方之DCS濃度分布之模擬結果圖。如圖26(c)所示,DCS之濃度等級A、B之範圍控制在第1以及第3處理區域P1、P3內,顯示出即使於旋轉台2之下方也適切進行了原料氣體之分離。
圖26(d)係旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖26(d)所示,濃度等級A、B之範圍係控制在第2以及第4處理區域P2、P4之範圍內,第2處理區域P2之反應氣體並未到達第1處理區域P1之第1排氣口610。此顯示出即使於旋轉台2之下方也適切進行了反應氣體之分離。
圖26(e)係當NH3電漿之濃度設定為最大值之10%時之旋轉台2之下方之NH3電漿之濃度分布之模擬結果圖。如圖26(e)所示,即使電漿之濃度成為最大值之10%,第2處理區域P2內之濃度等級A、B之範圍也未到達第1處理區域P1之第1排氣口610。並且,濃度等級A、B之範圍的擴展度小至和第5模擬實驗結果為同等級。如此般,藉由採用第7模擬實驗之條件、亦即將第1排氣口610之壓力設定為略高於其他第2至第4排氣口611、620、621,可確實防止反應氣體混入第1排氣口610。
此外,真空容器1內之壓力與鄰接於第2處理區域P2之第1排氣口610之壓力條件如以下為佳。
當真空容器1內之壓力為1~3Torr之情況,對應於第1處理區域P1之第1排氣口610之排氣壓力較其他第2至第4排氣口611、620、621之排氣壓力高出0.015~0.06Torr之壓力、或是流通成為同等壓力之配重(ballast)為佳。
此外,當真空容器1內之壓力為3~5Torr之情況,對應於第1處理區域P1之第1排氣口610之排氣壓力較其他第2至第4排氣口611、620、621之排氣壓力高出0.01~0.03Torr之壓力、或是流通成為同等壓力之配重為佳。
再者,當真空容器1內之壓力為5~10Torr之情況,對應於第1處理區域P1之第1排氣口610之排氣壓力較其他第2至第4排氣口611、620、621之排氣壓力高出0.005~0.015Torr之壓力、或是流通成為同等壓力之配重為佳。
此外,相關條件也和第1至第7模擬實驗結果相符。
如以上說明般,即使處理區域P1~P4之數量增加到四個的情況,藉由將第1排氣口610之排氣壓力設定為略高於其他第2至第4排氣口611、620、621之排氣壓力,可防止反應氣體混入第1排氣口610。此外,第3以及第4排氣口611、621,第3處理區域P3以及第4處理區域P4相對狹窄,離開其他處理區域P1、P2之排氣口,處理區域P3、P4內之排氣口611、621對於處理區域P3、P4而言成為最近之排氣口611、612。於如此之情況,由於並不會產生特別問題,故無需連第3以及第4排氣口611、621之排氣壓力也做變化進行複雜設定,只要針對較第2處理氣體噴嘴32所對應之第2排氣口620更靠近之第1排氣口610進行壓差控制即可。
第2實施形態雖舉出將處理區域增加到4個的例來說明,但即使處理區域進而增加成為6個、8個等之情況,相對於處理區域內之排氣口,只要在鄰接之處理區域的排氣口成為接近之部位適用上述壓差控制,即可充分防止反應氣體混入其他處理區域之排氣口。
此外,本實施形態雖原料氣體舉出使用含矽氣體、反應氣體舉出使用氧化氣體之例來說明,但原料氣體與反應氣體之組合可採用各種組合。例如,也可在原料氣體方面使用含矽氣體,在反應氣體方面使用氨等氮化氣體,來形成矽氮化膜。此外,原料氣體也可使用含鈦氣體,反應氣體也可使用氮化氣體,來形成氮化鈦膜。如此般,原料氣體可從有機金屬氣體等各種氣體來選擇,反應氣體也可使用可和氧化氣體、氮化氣體等原料氣體起反應而生成反應生成物之各種反應氣體。
此外,本實施形態中,在基板處理方面係舉出進行成膜處理之例來說明,但只要是具有複數排氣口、使得對應於各處理區域之處理氣體分別獨立進行排氣之基板處理裝置,也可適用於成膜裝置以外之基板處理裝置。
依據本發明,即使於旋轉台之下方存在著連通空間,也能以複數排氣口進行獨立之排氣。
應注意本說明書所揭示之實施形態在所有的點為例示而非用來限制本發明。實際上,上述實施形態能以多種形態來呈現。此外,上述實施形態可在不脫離所附申請專利範圍以及主旨的前提下,以各種形態進行省略、置換、變更。本發明之範圍意圖包含所附申請專利範圍及其均等含意以及範圍內的所有變更。
此揭示係基於2015年6月30提出申請之日本專利申請第2015-130757號以及2015年11月25提出申請之日本專利申請第2015-229391號之優先權利益,將該日本申請內容全數以參見文獻的形式納入本案中。
4‧‧‧凸狀部
5‧‧‧突出部
10‧‧‧搬送臂
12‧‧‧容器本體
15‧‧‧搬送口
21‧‧‧核心部
24‧‧‧凹部
31‧‧‧處理氣體噴嘴
31a‧‧‧氣體導入埠
32‧‧‧處理氣體噴嘴
32a‧‧‧氣體導入埠
41‧‧‧分離氣體噴嘴
41a‧‧‧氣體導入埠
42‧‧‧分離氣體噴嘴
42a‧‧‧氣體導入埠
80‧‧‧電漿產生器
92‧‧‧電漿氣體噴嘴
92a‧‧‧氣體導入埠
100‧‧‧控制部
610‧‧‧第1排氣口
620‧‧‧第2排氣口
630‧‧‧排氣管
631‧‧‧排氣管
640‧‧‧真空泵
641‧‧‧真空泵
650‧‧‧自動壓力控制機器
651‧‧‧自動壓力控制器
D‧‧‧分離區域
E1‧‧‧排氣區域
E2‧‧‧排氣區域
P1‧‧‧第1處理區域
P2‧‧‧第2處理區域
W‧‧‧晶圓

Claims (21)

  1. 一種基板處理方法,係使用處理室來進行基板處理,該處理室具有:第1處理氣體供給區域;第1排氣口,係用以將供給於該第1處理氣體供給區域之第1處理氣體加以排氣而設者;第2處理氣體供給區域;第2排氣口,係用以將供給於該第2處理氣體供給區域之第2處理氣體加以排氣而設者;以及連通空間,係將該第1排氣口與該第2排氣口加以連通;使得該第1排氣口之排氣壓力較該第2排氣口之排氣壓力高出既定壓力,防止該第2處理氣體混入該第1排氣口來進行基板處理。
  2. 如申請專利範圍第1項之基板處理方法,其中該既定壓力在既定壓力範圍內。
  3. 如申請專利範圍第2項之基板處理方法,其中該既定壓力範圍為不致產生該第1處理氣體混入該第2排氣口之壓力範圍。
  4. 如申請專利範圍第2項之基板處理方法,其中該連通空間為上面可載置基板之旋轉台的下方空間;該第1以及第2排氣口相較於該連通空間設置於下方;該第1處理氣體供給區域與該第2處理氣體供給區域在該旋轉台之上方係藉由從該處理室之天花板面往下方突出之分離區域而被分離,以避免發生該第2處理氣體混入該第1處理氣體供給區域以及該第1處理氣體混入該第2處理氣體供給區域的方式所構成;一邊實施從該第1排氣口以及該第2排氣口之該第1以及第2處理氣體之排氣、對該第1處理氣體供給區域供給該第1處理氣體、以及對該第2處理氣體供給區域供給該第2處理氣體,一邊使得該旋轉台做旋轉,來進行該基板處理。
  5. 如申請專利範圍第2項之基板處理方法,其中從該分離區域供給沖洗氣體,從該第1排氣口使得該第1處理氣體連同該沖洗氣體被排氣,從該第2排氣口使得該第2處理氣體連同該沖洗氣體被排氣。
  6. 如申請專利範圍第4項之基板處理方法,其中該第1排氣口係設置於該第1處理氣體供給區域在該旋轉台之旋轉方向的下游端,該第2排氣口係設置於該第2處理氣體供給區域在該旋轉台之該旋轉方向的下游端,該 第2處理氣體供給區域在該旋轉方向上較該第1處理氣體供給區域來得長,將該第2處理氣體供給於該第2處理氣體供給區域之第2處理氣體供給噴嘴相對於該第2排氣口係接近於該第1排氣口。
  7. 如申請專利範圍第6項之基板處理方法,其中該基板處理係ALD成膜處理。
  8. 如申請專利範圍第7項之基板處理方法,其中該第1處理氣體為原料氣體;該第2處理氣體為可和該原料氣體起反應而生成反應生成物之反應氣體。
  9. 如申請專利範圍第8項之基板處理方法,其中該既定壓力範圍係依該處理室內之壓力而不同。
  10. 如申請專利範圍第9項之基板處理方法,其中該既定壓力範圍係當該處理室內之壓力愈高則設定於愈小的壓力範圍。
  11. 如申請專利範圍第10項之基板處理方法,其中當該處理室內之壓力為1~3Torr之情況,該既定壓力範圍係設定於0.1~0.3Torr;當該處理室內之壓力為3~5Torr之情況,該既定壓力範圍係設定於0.05~0.1Torr;當該處理室內之壓力為5~10Torr之情況,該既定壓力範圍係設定於0.01~0.05Torr。
  12. 如申請專利範圍第4項之基板處理方法,其中該旋轉台可進行升降,於該旋轉台成為下降之狀態下載置該基板,而於該旋轉台上升後之狀態下來進行該基板處理。
  13. 如申請專利範圍第1項之基板處理方法,其中該處理室內之溫度係設定為400℃以上。
  14. 一種基板處理裝置,具有:處理室;旋轉台,係設置於該處理室內,可於表面上載置基板,並可進行升降;第1以及第2處理氣體供給區域,係沿著該旋轉台之周向在該旋轉台上方相互分離設置; 第1以及第2排氣口,係分別對應於該第1以及第2處理氣體供給區域相較於該旋轉台設置於下方;第1以及第2壓力調整閥,係用以調整該第1以及第2排氣口之排氣壓力;分離區域,係從該處理室之天花板面往下方突出,在該旋轉台之上方以將該第1處理氣體供給區域與該第2處理氣體供給區域加以分離的方式設置於該第1處理氣體供給區域與該第2處理氣體供給區域之間;以及控制機構,係以下述方式進行控制:當該基板載置於該旋轉台上時,使得該旋轉台下降,在該旋轉台進行旋轉而進行基板處理之時使得該旋轉台上升,且為了防止該第2處理氣體通過因該旋轉台之上升所產生之連通該第1排氣口與該第2排氣口之連通空間而從該第1排氣口被排氣,係以該第1排氣口之排氣壓力較該第2排氣口之排氣壓力高出既定壓力的方式來控制該第1以及第2壓力調整閥。
  15. 如申請專利範圍第14項之基板處理裝置,其中該控制機構也控制該處理室之壓力;依該處理室之壓力來變化該既定壓力。
  16. 一種基板處理方法,係使用處理室來進行基板處理者;該處理室具有:旋轉台,可於上面載置基板;於該旋轉台之上方沿著旋轉方向上相互分離配置之對該基板供給原料氣體之第1原料氣體供給區域、供給可和該原料氣體起反應而生成反應生成物之反應氣體的第1反應氣體供給區域、供給該原料氣體之第2原料氣體供給區域、以及供給該反應氣體之第2反應氣體供給區域;用以將供給於該第1原料氣體供給區域之該原料氣體加以排氣而設之第1排氣口、用以將供給於該第1反應氣體供給區域之該反應氣體加以排氣而設之第2排氣口、用以將供給於該第2原料氣體供給區域之該原料氣體加以排氣而設之第3排氣口、以及用以將供給於該第2反應氣體供給區域之該反應氣體加以排氣而設之第4排氣口;以及連通空間,係將該第1至第4排氣口彼此加以連通; 使得該第1排氣口之排氣壓力較該第2至第4排氣口之排氣壓力高出既定壓力,防止該反應氣體混入該第1排氣口來進行基板處理。
  17. 如申請專利範圍第16項之基板處理方法,其中該連通空間為該旋轉台之下方之空間;該第1至第4排氣口相較於該連通空間設置於下方;該第1原料氣體供給區域、該第1反應氣體供給區域、該第2原料氣體供給區域以及該第2反應氣體供給區域彼此在該旋轉台之上方係藉由從該處理室之天花板面往下方突出之分離區域而被分離,以避免發生該反應氣體混入該第1以及第2原料氣體供給區域以及該原料氣體混入該第1以及第2反應氣體供給區域的方式所構成;一邊實施從該第1至第4排氣口之該原料氣體以及該反應氣體之排氣、對該第1以及第2原料氣體供給區域供給該原料氣體之供給、以及對該第1以及第2反應氣體供給區域供給該反應氣體,一邊使得該旋轉台進行旋轉,來進行該基板處理。
  18. 如申請專利範圍第16項之基板處理方法,其中該既定壓力在既定壓力範圍內。
  19. 如申請專利範圍第18項之基板處理方法,其中當該處理室內之壓力為1~3Torr之情況,該既定壓力範圍係設定於0.015~0.06Torr;當該處理室內之壓力為3~5Torr之情況,該既定壓力範圍係設定於0.01~0.03Torr;當該處理室內之壓力為5~10Torr之情況,該既定壓力範圍係設定於0.005~0.015Torr。
  20. 一種基板處理裝置,具有:處理室;旋轉台,係設置於該處理室內,可於表面上載置基板,並可進行升降;沿著該旋轉台之旋轉方向在該旋轉台上方相互分離設置之對該旋轉台供給原料氣體之第1原料氣體供給區域、供給可和該原料氣體起反應而生成反應生成物之反應氣體之第1反應氣體供給區域、供給該原料氣體之第2原料氣體供給區域、以及供給該反應氣體之第2反應氣體供給區域; 分別對應於該第1原料氣體供給區域、該第1反應氣體供給區域、該第2原料氣體供給區域以及該第2反應氣體供給區域而相較於該旋轉台設置於下方之第1至第4排氣口;用以調整該第1至第4排氣口之排氣壓力的第1至第4壓力調整閥;分離區域,係從該處理室之天花板面往下方突出,在該旋轉台之上方以將該第1原料氣體供給區域、該第1反應氣體供給區域、該第2原料氣體供給區域以及該第2反應氣體供給區域彼此加以分離的方式設置在該第1原料氣體供給區域、該第1反應氣體供給區域、該第2原料氣體供給區域以及該第2反應氣體供給區域彼此之間;控制機構,係以下述方式進行控制:當該基板載置於該旋轉台上時,使得該旋轉台下降,在該旋轉台進行旋轉而進行基板處理之時使得該旋轉台上升,且為了防止該反應氣體通過因該旋轉台之上升所產生之該第1至第4排氣口彼此相連通之連通空間而從該第1排氣口被排氣,以該第1排氣口之排氣壓力較該第2至第4排氣口之排氣壓力高出既定壓力的方式來控制該第1至第4壓力調整閥。
  21. 如申請專利範圍第17項之基板處理方法,係從該分離區域供給沖洗氣體,從該第1以及第3排氣口使得該原料氣體連同該沖洗氣體受到排氣,從該第2以及第4排氣口使得該反應氣體連同該沖洗氣體受到排氣。
TW105120261A 2015-06-30 2016-06-28 基板處理方法及基板處理裝置 TWI706445B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-130757 2015-06-30
JP2015130757 2015-06-30
JP2015-229391 2015-11-25
JP2015229391A JP6494495B2 (ja) 2015-06-30 2015-11-25 基板処理方法及び基板処理装置

Publications (2)

Publication Number Publication Date
TW201724199A true TW201724199A (zh) 2017-07-01
TWI706445B TWI706445B (zh) 2020-10-01

Family

ID=57831016

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105120261A TWI706445B (zh) 2015-06-30 2016-06-28 基板處理方法及基板處理裝置

Country Status (2)

Country Link
JP (1) JP6494495B2 (zh)
TW (1) TWI706445B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6906439B2 (ja) * 2017-12-21 2021-07-21 東京エレクトロン株式会社 成膜方法
JP7253972B2 (ja) 2019-05-10 2023-04-07 東京エレクトロン株式会社 基板処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458982B1 (ko) * 2000-08-09 2004-12-03 주성엔지니어링(주) 회전형 가스분사기를 가지는 반도체소자 제조장치 및 이를이용한 박막증착방법
US6869641B2 (en) * 2002-07-03 2005-03-22 Unaxis Balzers Ltd. Method and apparatus for ALD on a rotary susceptor
JP4718141B2 (ja) * 2004-08-06 2011-07-06 東京エレクトロン株式会社 薄膜形成方法及び薄膜形成装置
KR101020667B1 (ko) * 2006-06-28 2011-03-09 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 반도체 장치의 제조 방법
US20090095422A1 (en) * 2007-09-06 2009-04-16 Hitachi Kokusai Electric Inc. Semiconductor manufacturing apparatus and substrate processing method
JP4661990B2 (ja) * 2008-06-27 2011-03-30 東京エレクトロン株式会社 成膜装置、成膜方法、基板処理装置及び記憶媒体
JP5195676B2 (ja) * 2008-08-29 2013-05-08 東京エレクトロン株式会社 成膜装置、基板処理装置、成膜方法及び記憶媒体
JP5257328B2 (ja) * 2009-11-04 2013-08-07 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
US20120225207A1 (en) * 2011-03-01 2012-09-06 Applied Materials, Inc. Apparatus and Process for Atomic Layer Deposition
US20150056373A1 (en) * 2012-08-09 2015-02-26 Ulvac, Inc. Deposition method and deposition apparatus
JP2014195043A (ja) * 2013-02-27 2014-10-09 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法並びにガス給排方法
JP6230900B2 (ja) * 2013-12-19 2017-11-15 東京エレクトロン株式会社 基板処理装置

Also Published As

Publication number Publication date
TWI706445B (zh) 2020-10-01
JP2017017304A (ja) 2017-01-19
JP6494495B2 (ja) 2019-04-03

Similar Documents

Publication Publication Date Title
JP5195174B2 (ja) 成膜装置及び成膜方法
KR101387289B1 (ko) 성막 장치 및 성막 방법
JP5093162B2 (ja) 成膜装置、成膜方法及び記憶媒体
JP5434484B2 (ja) 成膜装置、成膜方法及び記憶媒体
KR101569944B1 (ko) 성막 장치
JP5131240B2 (ja) 成膜装置、成膜方法及び記憶媒体
KR102010633B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP5195676B2 (ja) 成膜装置、基板処理装置、成膜方法及び記憶媒体
JP5056735B2 (ja) 成膜装置
JP5195175B2 (ja) 成膜装置、成膜方法及び記憶媒体
JP5310512B2 (ja) 基板処理装置
TWI494459B (zh) 成膜裝置、成膜方法及記憶媒體
KR102028237B1 (ko) 기판 처리 장치
US20110155056A1 (en) Film deposition apparatus
JP5093078B2 (ja) 成膜装置
JP2010056472A (ja) 成膜装置
JP7274387B2 (ja) 成膜装置及び成膜方法
TW201724199A (zh) 基板處理方法及基板處理裝置
TW201901739A (zh) 成膜裝置
JP5527106B2 (ja) 真空処理装置
JP2010129983A (ja) 成膜装置
US20240060170A1 (en) Film deposition apparatus and film deposition method
US20230068938A1 (en) Film forming apparatus and film forming method
US20220301865A1 (en) Substrate processing apparatus, reaction tube, method of manufacturing semiconductor device, and recording medium