TW201723182A - 用於轉殖基因表現之植物啟動子 - Google Patents

用於轉殖基因表現之植物啟動子 Download PDF

Info

Publication number
TW201723182A
TW201723182A TW105134199A TW105134199A TW201723182A TW 201723182 A TW201723182 A TW 201723182A TW 105134199 A TW105134199 A TW 105134199A TW 105134199 A TW105134199 A TW 105134199A TW 201723182 A TW201723182 A TW 201723182A
Authority
TW
Taiwan
Prior art keywords
gene
plant cell
promoter
sequence
plant
Prior art date
Application number
TW105134199A
Other languages
English (en)
Inventor
約翰 戴維斯
大衛 曼恩
詹姆士 派翠克 康乃爾
威廉 T 四世 賓森
Original Assignee
道禮責任有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 道禮責任有限公司 filed Critical 道禮責任有限公司
Publication of TW201723182A publication Critical patent/TW201723182A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8229Meristem-specific, e.g. nodal, apical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8233Female-specific, e.g. pistil, ovule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)

Abstract

本發明係關於採用來自玉蜀黍KN1基因之啟動子促進核苷酸序列在植物或植物細胞中轉錄的組合物及方法。一些實施例係關於來自玉蜀黍KN1基因之啟動子,其在植物中用於促進可操作地連接之核苷酸序列之轉錄。

Description

用於轉殖基因表現之植物啟動子
許多植物種類能夠經轉殖基因轉型以引入農藝學上所需之性狀或特徵。所得植物種類經開發及/或修飾以具有特定所需性狀。一般而言,所需性狀包括例如改良營養價值品質、增加產率、賦予害蟲或疾病抗性、增加乾旱及逆境(stress)耐受性、改良園藝品質(例如色素沉著及生長)、賦予除草劑耐受性、使得能夠由植物產生工業上適用之化合物及/或材料、及/或使得能夠產生醫藥。
包含多個轉殖基因堆疊在單個基因組基因座之轉殖基因植物種類經由植物轉型技術而產生。植物轉型技術使得轉殖基因引入至植物細胞中,回收在植物基因組中含有穩定整合之轉殖基因複本的可育轉殖基因植物,且經由轉錄及轉譯的後續轉殖基因表現產生具有所需性狀及表型之轉殖基因植物。然而,允許產生轉殖基因植物種類以高度表現經工程改造為性狀堆疊之多個轉殖基因的新穎基因調節元件為所需的。
同樣,允許轉殖基因在植物之特定組織或器官內表現的新穎基因調節元件為所需的。舉例而言,增加植物對受土壤媒介病原體感染之抗性可藉由用病原體抗性基因轉型植物基因組,使得病原體抗性蛋白在植物根內穩固表現來實現。或者,可能需要在特定生長或發育階段(諸如細胞分裂 或伸長)中在植物組織中表現轉殖基因。此外,可能需要在植物之葉及莖組織中表現轉殖基因以提供針對除草劑之耐受性或針對地上昆蟲及害蟲之抗性。
因此,需要可驅動轉殖基因在特定植物組織中表現所需水準的新的基因調節元件。
相關申請案之交叉參考
本申請案主張2015年10月22日申請之美國臨時專利申請案序號62/244843之權益的優先權,該臨時專利申請案之揭示內容以全文引用的方式併入本文中。
以引用的方式併入以電子方式提交之材料
以全文引用的方式併入的為與本申請案同時提交且如下標識之電腦可讀核苷酸/胺基酸序列表:創建於2015年10月21日的命名為「77670-US-PSP-20151021-Sequence-Listing-ST25.txt」的一個30.7 KB ACII(本文)文件。
在本發明之實施例中,本發明係關於一種核酸載體,其包含可操作地連接於多連接子(polylinker)序列;非玉蜀黍KN1基因;或多連接子序列與非玉蜀黍KN1基因之組合的啟動子,其中該啟動子包含與SEQ ID NO:1具有至少90%序列一致性之聚核苷酸序列。在一實施例中,啟動子為1,407bp長。在其他實施例中,啟動子由與SEQ ID NO:1具有至少90%序列一致性之聚核苷酸序列組成。此外,上述實施例包含編碼可選標記之序列。在其他實施例中,啟動子可操作地連接於轉殖基因。因此,轉殖基因編碼賦予殺昆蟲抗性、除草劑耐受性、氮使用效率、水使用效率、 RNAi表現或營養品質之可選標記或基因產物。在其他實施例中,核酸載體另外包含3'非轉譯聚核苷酸序列。在額外實施例中,核酸載體另外包含5'非轉譯聚核苷酸序列。在其他實施例中,核酸載體另外包含內含子序列。在一實施例中,啟動子具有生殖分生組織特異性表現。
在本發明之實施例中,本發明係關於一種轉殖基因植物,其包含與SEQ ID NO:1具有至少90%序列一致性且可操作地連接於轉殖基因之聚核苷酸序列。在實施例中,植物係選自玉蜀黍、小麥、水稻、高樑、燕麥、黑麥、香蕉、甘蔗、大豆、棉花、芥菜屬(Arabidopsis)、菸草、向日葵及芥花。在一實施例中,轉殖基因插入至轉殖基因植物之基因組中。在此實施例中,啟動子包含與SEQ ID NO:1具有至少90%序列一致性之聚核苷酸序列且該啟動子可操作地連接於轉殖基因。在其他實施例中轉殖基因植物另外包含3'非轉譯序列。在一實施例中,轉殖基因具有生殖分生組織特異性表現。在另一實施例中,啟動子為1,407bp長。
在本發明之實施例中,本發明係關於一種用於產生轉殖基因植物細胞之方法,該方法包含以下步驟:用包含可操作地連接於至少一個所關注之聚核苷酸序列之玉蜀黍KN1啟動子的基因表現卡匣轉型植物細胞,分離包含該基因表現卡匣之經轉型植物細胞,及產生包含可操作地連接於至少一個所關注之聚核苷酸序列之玉蜀黍KN1啟動子的轉殖基因植物細胞。在其他實施例中,使用轉型方法使植物轉型。轉型方法可選自以下方法中之任一者:農桿菌屬(Agrobacterium)介導之轉型方法、基因槍轉型方法、碳化矽轉型方法、原生質體轉型方法及脂質體轉型方法。在實施例中,所關注之聚核苷酸序列組成性表現在整個轉殖基因植物細胞中。在其他實施例中,所關注之聚核苷酸序列穩定整合至轉殖基因植物細胞之基因組中。 使植物細胞轉型之其他步驟包括使轉殖基因植物細胞再生成轉殖基因植物,及獲得該轉殖基因植物,其中該轉殖基因植物包含具有可操作地連接於至少一個所關注之聚核苷酸序列之技術方案1的玉蜀黍KN1啟動子的基因表現卡匣。在實施例中,玉蜀黍KN1啟動子包含SEQ ID NO:1之聚核苷酸。在其他實施例中,玉蜀黍KN1啟動子可操作地連接於所關注之第一聚核苷酸序列,該第一聚核苷酸序列可操作地連接於SEQ ID NO:1之3'端。在一實施例中,轉殖基因植物細胞為單子葉轉殖基因植物細胞或雙子葉轉殖基因植物細胞。雙子葉轉殖基因植物細胞之實例包括芥菜屬植物細胞、菸草植物細胞、大豆植物細胞、芥花植物細胞及棉花植物細胞。單子葉轉殖基因植物細胞之實例包括玉蜀黍植物細胞、水稻植物細胞及小麥植物細胞。
在本發明之實施例中,本發明係關於一種用於在植物細胞中表現所關注之聚核苷酸序列的方法,該方法包含將可操作地連接於玉蜀黍KN1啟動子之所關注之聚核苷酸序列引入至該植物細胞中。在實施例中,可操作地連接於玉蜀黍KN1啟動子之所關注之聚核苷酸序列藉由植物轉型方法引入至植物細胞中。此類植物轉型方法之實例包括農桿菌屬介導之轉型方法、基因槍轉型方法、碳化矽轉型方法、原生質體轉型方法及脂質體轉型方法。在其他實施例中,所關注之聚核苷酸序列藉由玉蜀黍KN1啟動子表現於生殖分生組織中。在額外實施例中,所關注之聚核苷酸序列穩定整合至植物細胞之基因組中。在此類實施例中,轉殖基因植物細胞為單子葉植物細胞或雙子葉植物細胞。雙子葉植物細胞之實例包括芥菜屬植物細胞、菸草植物細胞、大豆植物細胞、芥花植物細胞及棉花植物細胞。單子葉植物細胞之實例包括玉蜀黍植物細胞、水稻植物細胞及小麥植物細胞。
在本發明之實施例中,本發明係關於一種包含玉蜀黍KN1啟動子之轉殖基因植物細胞。在一實施例中,轉殖基因植物細胞包含轉殖基因事件。在其他實施例中,轉殖基因事件包含農藝性狀。農藝性狀之實例包括殺昆蟲抗性性狀、除草劑耐受性性狀、氮使用效率性狀、水使用效率性狀、營養品質性狀、DNA結合性狀、可選標記性狀、小RNA性狀或其任何組合。在一些實施例中,除草劑耐受性性狀包含aad-1編碼序列。在其他實施例中,轉殖基因植物細胞產生商品。商品之實例包括蛋白濃縮物、蛋白分離物、穀物、粉料(meal)、麵粉、油或纖維。在其他實施例中,轉殖基因植物細胞選自由雙子葉植物細胞或單子葉植物細胞組成之群。在一些實施例中,轉殖基因植物細胞為玉蜀黍植物細胞。在額外實施例中,玉蜀黍KN1啟動子包含與SEQ ID NO:1之聚核苷酸具有至少90%序列一致性之聚核苷酸。在其他實施例中,玉蜀黍KN1啟動子為1,407bp長。在其他實施例中,玉蜀黍KN1啟動子由SEQ ID NO:1組成。在一實施例中,所關注之第一聚核苷酸序列可操作地連接於SEQ ID NO:1之3'端。在實施例中,農藝性狀表現於生殖分生組織中。
在本發明之實施例中,本發明係關於一種經分離之聚核苷酸,其包含與SEQ ID NO:1之聚核苷酸具有至少90%序列一致性之核酸序列。在其他實施例中,包含與SEQ ID NO:1之聚核苷酸具有至少90%序列一致性之核酸序列的經分離之聚核苷酸驅動生殖分生組織特異性表現。關於此類實施例,表現活性存在於植物細胞內。在另一實施例中,編碼多肽之開放閱讀框架聚核苷酸及終止序列可操作地連接於包含與SEQ ID NO:1之聚核苷酸具有至少90%序列一致性之核酸序列的經分離之聚核苷酸。在其他實施例中,包含與SEQ ID NO:1之聚核苷酸具有至少90%序列一致性 之核酸序列的經分離之聚核苷酸包含1,407bp長之序列。
前述及其他特徵將由以下參照附圖繼續的數個實施例之詳細描述而變得更清楚。
I. 數個實施例之概述
轉殖基因植物產品的開發正變得愈來愈複雜。商業上可行的轉殖基因植物現需要將多個轉殖基因堆疊至單個基因座中。用於基礎研究或生物技術應用之植物啟動子及3 'UTR一般為單向的,僅導向已稠合在啟動子之3'端(下游)或3' UTR之5'端(上游)的一個基因。因此,各轉殖基因通常需要啟動子及3' UTR以用於表現,其中表現一個基因堆疊內之多個轉殖基因需要多個調節元件。隨著基因堆疊中轉殖基因之數目增加,常規地使用相同啟動子及/或3' UTR以獲得不同轉殖基因之最佳水準的表現模式。獲得最佳的轉殖基因表現水準為產生單個多基因性狀所必需的。令人遺憾的是,已知由相同啟動子及/或3' UTR驅動的多基因構築體引起基因沉默,導致本領域中的有效轉殖基因產物較少。重複的啟動子及/或3' UTR元件可引起基於同源性之基因沉默。另外,轉殖基因內之重複序列可引起基因在基因座內的同源重組,導致聚核苷酸重排。轉殖基因的沉默及重排將可能對所產生的轉殖基因植物表現轉殖基因的效能具有不合需要的影響。另外,歸因於啟動子重複之轉錄因子(TF)結合位點過量可造成內源性TF耗盡,引起轉錄失活。考慮到需要引入多個基因至植物中以用於代謝工程改造及性狀堆疊,需要多種啟動子及/或3' UTR以產生驅動多個基因表現之轉殖基因作物。
啟動子及/或3' UTR鑑別中之特定問題為需要鑑別與植物中之特定細 胞類型、發育階段及/或功能相關但在其他植物組織中不表現之組織特異性啟動子。組織特異性(亦即組織較佳)或器官特異性啟動子驅動諸如植物之核、根、葉或絨氈層之某一組織中之基因表現。組織及發育階段特異性啟動子及/或3' UTR可最初由觀測基因之表現來鑑別,該等基因在特定組織中或在植物發育期間之特定時間段表現。此等組織特異性啟動子及/或3' UTR為轉殖基因植物行業中之某些應用所需的,且由於其允許異源基因以組織及/或發育階段選擇性方式特異性表現而合乎需要,表明異源基因有差異地在各種器官、組織及/或時間表現,但不在其他非所需組織表現。舉例而言,增加植物對受土壤媒介病原體感染之抗性可藉由用病原體抗性基因轉型植物基因組,使得病原體抗性蛋白在植物根內穩固表現來實現。或者,可能需要在特定生長或發育階段(諸如細胞分裂或伸長)中在植物組織中表現轉殖基因。另一應用為期望使用組織特異性啟動子及/或3' UTR限制編碼農藝性狀之轉殖基因在如發育中的薄壁細胞的特定組織類型中的表現。因此,啟動子及/或3' UTR鑑別中之特定問題為如何鑑別啟動子及如何使所鑑別的啟動子與細胞之發育特性相關以用於特異性組織表現。
關於啟動子鑑別之另一問題為需要選殖所有相關順式作用及反式活化轉錄控制元件以便所選殖的DNA片段以想要的特定表現模式驅動轉錄。考慮到此類控制元件位於轉譯起始位點遠端,經選擇以包含啟動子之聚核苷酸的尺寸對於提供啟動子聚核苷酸序列之表現水準及表現模式至關重要。已知啟動子長度包括功能資訊,且已顯示不同基因具有與基因組中其他基因之啟動子相比較長或較短的啟動子。闡明啟動子之轉錄起始位點及預測啟動子區中之功能性基因元件具有挑戰性。另外增加挑戰性的為調節基元及順式與反式調節元件之複雜性、多樣性及固有簡併性質 (Blanchette,Mathieu等人,「Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression.」Genome research 16.5(2006):656-668)。順式及反式調節元件位於啟動子之遠端部分,其調節基因之空間及時間表現以僅在所需位點及特定時間存在(Porto,Milena Silva等人,「Plant promoters:an approach of structure and function.」Molecular biotechnology 56.1(2014):38-49)。現有啟動子分析工具無法可靠地鑑別基因組序列中之此類順式調節元件,因此確實預測過多錯誤,因為此等工具一般僅集中於序列含量(Fickett JW,Hatzigeorgiou AG(1997)Eukaryotic promoter recognition.Genome research 7:861-878)。因此,鑑別啟動子調節元件需要獲得具有特定尺寸之適當序列,該序列將以所需方式引起經可操作地連接之轉殖基因的驅動表現。
提供經由使用玉蜀黍KNOTTED1(KN1)調節元件克服此類問題以在植物界中表現轉殖基因的方法及組合物。
II. 術語及縮寫
在本申請案通篇,使用多種術語。為了提供對本說明書及申請專利範圍(包括欲給出此類術語之範疇)的清楚且一致的理解,提供以下定義。
如本文所用,術語「內含子」係指基因(或所關注之經表現聚核苷酸序列)中所包含之經轉錄但未經轉譯之任何核酸序列。內含子包括DNA的表現序列以及由其轉錄之RNA分子的相應序列內的非轉譯核酸序列。本文所述之構築體亦可含有增強轉譯及/或mRNA穩定性之序列,諸如內含子。一個此類內含子之實例為擬南芥(Arabidopsis thaliana)之組蛋白H3變體之基因II的第一內含子或任何其他通常已知的內含子序列。內含子可 與啟動子序列組合使用以增強轉譯及/或mRNA穩定性。
如本文所用,術語「經分離」意指已自其天然環境移除,或當化合物首先形成時,自存在之其他化合物移除。術語「經分離」涵蓋自天然來源分離之材料以及在藉由於宿主細胞中重組表現製備之後回收的材料(例如核酸及蛋白質)或化學合成之化合物(諸如核酸分子、蛋白質及肽)。
如本文所用,術語「經純化」係關於以如下形式分離分子或化合物:實質上擺脫天然環境中通常與該分子或化合物相關聯之污染物,或當該化合物首先形成時,實質上增濃相對於存在之其他化合物的濃度,且意指已由於與原始組合物之其他組分分離而增加純度。術語「經純化之核酸」在本文中用以描述已與包括(但不限於)多肽、脂質及碳水化合物之其他生物學化合物分離、隔開產生或純化遠離,同時實現組分之化學或功能改變的核酸序列(例如,核酸可藉由移除染色體中之蛋白污染物及斷裂連接該核酸與其餘DNA的化學鍵而自染色體純化)。
如本文所用,術語「合成」係指經由化學合成作為活體外方法形成的聚核苷酸(亦即DNA或RNA)分子。舉例而言,合成DNA可在反應期間在EppendorfTM試管內形成,以便由天然DNA或RNA股酶促產生合成DNA。可採用其他實驗室方法合成聚核苷酸序列。寡核苷酸可在寡核苷酸合成儀上使用胺基磷酸酯經由固相合成而化學合成。所合成的寡核苷酸可彼此黏接為複合物,由此產生「合成」聚核苷酸。用於化學合成聚核苷酸的其他方法為此項技術中已知的,且可易於實施以用於本發明。
如本文所用,術語「約」意指比所述值或值範圍大或小10%,但不欲將任何值或值範圍指定為僅此較寬定義。前面有術語「約」之各值或值範圍亦意欲涵蓋所述絕對值或值範圍之實施例。
出於本發明之目的,「基因」包括編碼基因產物(參見下文)之DNA區,以及調節基因產物產生之所有DNA區,無論此類調節序列是否鄰近編碼序列及/或轉錄序列。因此,基因包括(但不一定限於)啟動子序列、終止子、轉譯調節序列(諸如核糖體結合位點及內部核糖體入口位點)、強化子、靜止子、絕緣子、邊界元件、複製起點、基質附接位點、內含子及基因座控制區。
如本文所用,術語「天然(native或natural)」定義自然界中所發現之條件。「天然DNA序列」為自然界中存在之藉由天然手段或傳統育種技術產生而非藉由遺傳工程改造(例如使用分子生物學/轉型技術)產生之DNA序列。
如本文所用,「轉殖基因」定義為編碼基因產物之核酸序列,包括例如(但不限於)mRNA。在一個實施例中,轉殖基因為外源性核酸,其中該轉殖基因序列已藉由遺傳工程改造引入至通常未發現該轉殖基因之宿主細胞中(或其子代)。在一個實例中,轉殖基因編碼工業上或醫藥學上適用之化合物,或為編碼所需農業性狀之基因(例如除草劑抗性基因)。在另一實例中,轉殖基因為反義核酸序列,其中該反義核酸序列之表現抑制目標核酸序列之表現。在一個實施例中,轉殖基因為內源性核酸,其中該內源性核酸之額外基因組複本為所需的;或相對於宿主生物體中之目標核酸序列呈反義方向的核酸。
如本文所用,術語「非玉蜀黍KN1轉殖基因」或「非ZmKN1基因」為與玉蜀黍KN1基因編碼序列(SEQ ID NO:5,Genbank NCBI寄存編號AY312169.1)具有小於80%序列一致性之任何轉殖基因。
如本文所定義之「基因產物」為藉由該基因產生之任何產物。舉例 而言,基因產物可為基因之直接轉錄產物(例如mRNA、tRNA、rRNA、反義RNA、干擾RNA、核糖核酸酶、結構RNA或任何其他類型之RNA)或藉由mRNA轉譯產生之蛋白質。基因產物亦包括藉由諸如加帽、聚腺苷酸化、甲基化及編輯之方法修飾之RNA及藉由例如甲基化、乙醯化、磷酸化、泛素化、ADP核糖基化、豆蔻醯化及糖基化修飾之蛋白質。基因表現可受外部信號影響,例如細胞、組織或生物體暴露於增加或降低基因表現之藥劑。亦可在自DNA至RNA至蛋白質之路徑中的任何位置調節基因之表現。基因表現之調節例如經由控制對轉錄、轉譯、RNA運輸及加工之作用、諸如mRNA之中間分子的降解、或經由特異性蛋白分子在其已製得之後的活化、失活、區室化或降解、或藉由其組合而發生。基因表現可藉由此項技術中已知之任何方法在RNA水準或蛋白質水準上加以量測,該方法包括(但不限於)北方墨點法、RT-PCR、西方墨點法、或活體外、原位或活體內蛋白質活性分析。
如本文所用,術語「基因表現」係關於使核酸轉錄單元(包括例如基因組DNA)之編碼資訊轉化成細胞之操作性、非操作性或結構部分的過程,其常常包括蛋白質合成。基因表現可受外部信號影響;例如細胞、組織或生物體暴露於增加或降低基因表現之藥劑。亦可在自DNA至RNA至蛋白質之路徑中的任何位置調節基因之表現。基因表現之調節例如經由控制對轉錄、轉譯、RNA運輸及加工之作用、諸如mRNA之中間分子的降解、或經由特異性蛋白分子在其已製得之後的活化、失活、區室化或降解、或藉由其組合而發生。基因表現可藉由此項技術中已知之任何方法在RNA水準或蛋白質水準上加以量測,該方法包括(但不限於)北方墨點法、RT-PCR、西方墨點法、或活體外、原位或活體內蛋白質活性分析。
如本文所用,「基於同源性之基因沉默」(HBGS)為包括轉錄基因沉默及轉錄後基因沉默之通用術語。目標基因座藉由非連鎖沉默基因座之沉默可由於產生分別對應於啟動子或轉錄序列之雙股RNA(dsRNA)而由轉錄抑制(轉錄基因沉默;TGS)或mRNA降解(轉錄後基因沉默;PTGS)引起。各過程中不同細胞組分之參與表明dsRNA誘導之TGS及PTGS可能由古老常見機制之多樣化引起。然而,TGS及PTGS之嚴格比較已難以達成,因為其一般依賴於對不同沉默基因座之分析。在一些情況下,單個轉殖基因基因座可由於產生對應於不同目標基因之啟動子及轉錄序列的dsRNA而觸發TGS及PTGS。Mourrain等人(2007)Planta 225:365-79。siRNA可能為在同源序列上觸發TGS及PTGS之實際分子:siRNA將在此模型中經由將轉殖基因序列之甲基化擴展至內源性啟動子中而以順式及反式觸發同源序列之沉默及甲基化。
如本文所用,術語「核酸分子」(或「核酸」或「聚核苷酸」)可指聚合物形式的核苷酸,其可包括RNA、cDNA、基因組DNA及合成形式之有義股及反義股及以上各物的混合聚合物。核苷酸可指核糖核苷酸、去氧核糖核苷酸或任一類型核苷酸之修飾形式。如本文所用,「核酸分子」與「核酸」及「聚核苷酸」同義。除非另外規定,否則核酸分子的長度通常為至少10個鹼基。該術語可指具有不確定長度之RNA或DNA分子。該術語包括單股及雙股形式之DNA。核酸分子可包括天然存在之核苷酸及由天然存在之核苷酸鍵及/或非天然存在之核苷酸鍵連接在一起的經修飾核苷酸中之任一者或兩者。
如熟習此項技術者應易於瞭解,核酸分子可經化學或生物化學修飾,或可含有非天然或衍生化核苷酸鹼基。此類修飾包括例如標記、甲基 化、用類似物取代天然存在之核苷酸中之一或多者、核苷酸間修飾(例如不帶電鍵:例如膦酸甲酯、磷酸三酯、胺基磷酸酯、胺基甲酸酯等;帶電鍵:例如硫代磷酸酯、二硫代磷酸酯等;側接部分:例如肽;嵌入劑:例如吖啶、補骨脂素等;螯合劑;烷基化劑;及經修飾鍵:例如α變旋異構核酸等)。術語「核酸分子」亦包括任何拓撲構形,包括單股、雙股、部分雙螺旋、三螺旋、髮夾、環形及鎖式構形。
轉錄以5'至3'方式沿著DNA股前進。此意味著RNA藉由依序添加核糖核苷酸-5'-三磷酸至生長鏈之3'端(同時必需消除焦磷酸)來製造。在線性或環形核酸分子中,離散元件(例如特定核苷酸序列)若在另一元件之5'方向結合或將結合至同一核酸,則可相對於該另一元件稱為「上游」或「5'」。類似地,離散元件若在另一元件之3'方向結合至或將結合至同一核酸,則可為相對於該另一元件之「下游」或「3'」。
如本文所用,鹼基「位置」係指指定核酸內給定鹼基或核苷酸殘基的位置。指定核酸可藉由與參考核酸之比對(參見下文)來定義。
雜交係關於兩個聚核苷酸股經由氫鍵結合。寡核苷酸及其類似物藉由互補鹼基之間的氫鍵結雜交,該氫鍵結包括沃森-克里克(Watson-Crick)氫鍵結、胡斯坦(Hoogsteen)氫鍵結或反向胡斯坦氫鍵結。一般而言,核酸分子由含氮鹼基組成,含氮鹼基為嘧啶(胞嘧啶(C)、尿嘧啶(U)及胸腺嘧啶(T))或嘌呤(腺嘌呤(A)及鳥嘌呤(G))。此等含氮鹼基在嘧啶及嘌呤之間形成氫鍵,且嘧啶與嘌呤之鍵結稱為「鹼基配對」。更特定言之,A將與T或U氫鍵結且G將與C氫鍵結。「互補」係指在兩個不同核酸序列之間或在同一核酸序列之兩個不同區之間存在鹼基配對。
「可特異性雜交」及「特異性互補」為指示互補程度足以在寡核苷 酸及DNA或RNA目標之間發生穩定及特異性結合的術語。寡核苷酸無需與其可特異性雜交之目標序列100%互補。當寡核苷酸與目標DNA或RNA分子之結合干擾目標DNA或RNA之正常功能時,該寡核苷酸為可特異性雜交的,且在需要特異性結合之條件下,例如在活體內分析或系統之情況下,在生理條件下,存在足夠的互補程度以避免該寡核苷酸與非目標序列之非特異性結合。此類結合稱為特異性雜交。
引起特定嚴格性程度的雜交條件將視所選擇的雜交方法及雜交核酸序列之組成及長度而改變。一般而言,雜交溫度及雜交緩衝液之離子強度(尤其Na+及/或Mg2+濃度)將促成雜交嚴格性,但洗滌時間亦影響嚴格性。關於獲得特定嚴格性程度所需的雜交條件的計算論述在Sambrook等人(編),Molecular Cloning:A Laboratory Manual,第2版,第1-3卷,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York,1989,第9及11章中。
如本文所用,「嚴格條件」涵蓋雜交將僅在雜交分子與DNA目標之間存在小於50%錯配時發生的條件。「嚴格條件」包括其他特定嚴格性水準。因此,如本文所用,「中等嚴格性」條件為序列錯配大於50%之分子將不雜交的條件;「高嚴格性」條件為錯配大於20%之序列將不雜交的條件;及「極高嚴格性」條件為錯配大於10%之序列將不雜交的條件。
在特定實施例中,嚴格條件可包括在65℃下雜交,接著在65℃下用0.1×SSC/0.1%SDS洗滌40分鐘。
以下為代表性、非限制性雜交條件:極高嚴格性:在5×SSC緩衝液中在65℃下雜交16小時;在2×SSC緩衝液中在室溫下洗滌兩次,每次15分鐘;及在0.5×SSC緩衝液中在65℃下 洗滌兩次,每次20分鐘。
高嚴格性:在5×-6×SSC緩衝液中在65-70℃下雜交16-20小時;在2×SSC緩衝液中在室溫下洗滌兩次,每次5-20分鐘;及在1×SSC緩衝液中在55-70℃下洗滌兩次,每次30分鐘。
中等嚴格性:在6×SSC緩衝液中在室溫至55℃下雜交16-20小時;在2×-3×SSC緩衝液中在室溫至55℃下洗滌至少兩次,每次20-30分鐘。
在特定實施例中,可特異性雜交之核酸分子可在極高嚴格性雜交條件下保持結合。在此等及其他實施例中,可特異性雜交之核酸分子可在高嚴格性雜交條件下保持結合。在此等及其他實施例中,可特異性雜交之核酸分子可在中等嚴格性雜交條件下保持結合。
寡核苷酸:寡核苷酸為短核酸聚合物。寡核苷酸可藉由較長核酸區段裂解或藉由個別核苷酸前體聚合而形成。自動化合成儀允許合成至多數百個鹼基對長的寡核苷酸。因為寡核苷酸可結合至互補核苷酸序列,故其可以用作探針以偵測DNA或RNA。由DNA組成之寡核苷酸(寡去氧核糖核苷酸)可用於小DNA序列擴增技術PCR中。在PCR中,寡核苷酸通常稱為「引子」,其允許DNA聚合酶延伸寡核苷酸且複製互補股。
如本文所用,術語「序列一致性」或「一致性」如本文在兩個核酸或多肽序列之情形下所用,可指兩個序列中之殘基在經規定比較窗口比對最大對應性時為相同的。
如本文所用,術語「序列一致性百分比」可指藉由經比較窗口比較兩個最佳比對序列(例如核酸序列及胺基酸序列)所確定之值,其中在該比較窗口中之序列部分與用於兩個序列最優比對之參考序列(其不包含添加或缺失)相比,可包含添加或缺失(亦即空隙)。該百分比計算如下:藉由 測定在兩個序列中出現一致核苷酸或胺基酸殘基的位置數以得到匹配位置數,該匹配位置數除以比較窗口中之位置總數且結果乘以100以得到序列一致性百分比。
用於比對序列進行比較之方法為此項技術中熟知的。各種程式及比對演算法描述於例如:Smith及Waterman(1981)Adv.Appl.Math.2:482;Needleman及Wunsch(1970)J.Mol.Biol.48:443;Pearson及Lipman(1988)Proc.Natl.Acad.Sci.U.S.A.85:2444;Higgins及Sharp(1988)Gene 73:237-44;Higgins及Sharp(1989)CABIOS 5:151-3;Corpet等人(1988)Nucleic Acids Res.16:10881-90;Huang等人(1992)Comp.Appl.Biosci.8:155-65;Pearson等人(1994)Methods Mol.Biol.24:307-31;Tatiana等人(1999)FEMS Microbiol.Lett.174:247-50中。序列比對方法及同源性計算之詳細考量可見於例如Altschul等人(1990)J.Mol.Biol.215:403-10中。
國家生物技術資訊中心(National Center for Biotechnology Information,NCBI)鹼基局部比對檢索工具(BLASTTM;Altschul等人(1990))可購自數個來源,包括國家生物技術資訊中心(Bethesda,MD)及網際網路上,與數個序列分析程式結合使用。如何使用此程式確定序列一致性之描述可在網際網路上BLASTTM之「幫助」部分獲得。為了比較核酸序列,可採用使用預設參數之BLASTTM程式之「Blast 2序列」功能(Blastn)。當藉由此方法評定時,與參考序列具有甚至更大相似性之核酸序列將展示增加的一致性百分比。
如本文所用,術語「可操作地連接」係關於當第一核酸序列與第二核酸序列成功能關係時,第一核酸序列與第二核酸序列可操作地連接。舉 例而言,當啟動子影響編碼序列之轉錄或表現時,啟動子與編碼序列可操作地連接。當以重組方式產生時,可操作地連接之核酸序列一般為鄰接的且在必需接合兩個蛋白質編碼區時,在同一閱讀框架中。然而,元件無需鄰接以便可操作地連接。
如本文所用,術語「啟動子」係指一般位於基因上游(朝向基因之5'區)且為起始及驅動基因轉錄所需之DNA區。啟動子可使其控制之基因適當活化或抑制。啟動子可含有由轉錄因子識別之特異性序列。此等因子可結合至啟動子DNA序列,其導致RNA聚合酶(由基因編碼區合成RNA之酶)的募集。啟動子一般係指位於基因上游之所有基因調節元件,包括上游啟動子、5'-UTR、內含子及前導序列。
如本文所用,術語「上游啟動子」係指足以引導轉錄起始之鄰接聚核苷酸序列。如本文所用,上游啟動子涵蓋轉錄起始位點與數個序列基元,包括TATA盒、起始序列、TFIIB識別元件及其他啟動子基元(Jennifer,E.F.等人,(2002)Genes & Dev.,16:2583-2592)。上游啟動子提供RNA聚合酶II與如TFIIA、B、D、E、F及H之基本或通用轉錄因子之作用位點,RNA聚合酶II為多次單位酶。此等因子組裝成轉錄前起始複合物,該複合物催化由DNA模板合成RNA。
上游啟動子之活化藉由其他順序之調節DNA序列元件來進行,該等序列元件與各種蛋白質結合且隨後與轉錄起始複合物相互作用以活化基因表現。此等基因調節元件序列與特異性DNA結合因子相互作用。此等序列基元可有時稱為順式元件。單獨或組合地與組織特異性或發育特異性轉錄因子結合之此類順式元件可在轉錄水準下決定啟動子之時空表現模式。此等順式元件在其施加於經可操作地連接之基因的控制類型方面變化廣 泛。一些元件用於響應於環境反應(例如溫度、濕度及受傷)增加經可操作地連接之基因的轉錄。其他順式元件可對發育提示(例如發芽、種子成熟及開花)或對空間資訊(例如組織特異性)起反應。參見例如Langridge等人,(1989)Proc.Natl.Acad.Sci.USA 86:3219-23。此等順式元件位於距轉錄起始點之不同距離處,一些順式元件(稱為近端元件)鄰近最小核心啟動子區,而其他元件可位於啟動子(強化子)上游或下游之數千個鹼基處。
如本文所用,術語「5'非轉譯區」或「5'-UTR」定義為前mRNA或成熟mRNA之5'端的非轉譯區段。舉例而言,在成熟mRNA上,5'-UTR通常在其5'端上含有7-甲基鳥苷帽且參與許多過程,諸如剪接、聚腺苷酸化、mRNA輸出至細胞質、由轉譯機構鑑別mRNA之5'端及保護mRNA免於降解。
如本文所用,術語「轉錄終止子」定義為前mRNA或成熟mRNA之3'端的轉錄區段。舉例而言,「聚腺苷酸化信號」位點之外較長延伸的DNA轉錄為前mRNA。此DNA序列通常含有轉錄終止信號以便將前mRNA適當加工為成熟mRNA。
如本文所用,術語「3'非轉譯區」或「3'-UTR」定義為前mRNA或成熟mRNA之3'端的非轉譯區段。舉例而言,在成熟mRNA上,此區含有聚(A)尾部且已知在mRNA穩定性、轉譯起始及mRNA輸出中具有許多作用。另外,3'-UTR視為包括聚腺苷酸化信號及轉錄終止子。
如本文所用,術語「聚腺苷酸化信號」指示mRNA轉錄物中存在之核酸序列,當在聚(A)聚合酶存在下時,允許轉錄物在例如位於聚(A)信號下游10至30個鹼基處的聚腺苷酸化位點上聚腺苷酸化。許多聚腺苷酸化信號為此項技術中已知的且適用於本發明。例示性序列包括AAUAAA及 其變體,如Loke J.,等人,(2005)Plant Physiology 138(3);1457-1468中所述。
「DNA結合轉殖基因」為編碼DNA結合蛋白之聚核苷酸編碼序列。DNA結合蛋白隨後能夠結合至另一分子。結合蛋白可結合至例如DNA分子(DNA結合蛋白)、RNA分子(RNA結合蛋白)及/或蛋白質分子(蛋白質結合蛋白)。在蛋白質結合蛋白之情況下,其可結合至其自身(以形成同二聚體、同三聚體等),及/或其可結合至一或多個不同蛋白質分子。一種結合蛋白可具有一種以上類型的結合活性。舉例而言,鋅指蛋白具有DNA結合、RNA結合及蛋白質結合活性。
DNA結合蛋白之實例包括巨核酸酶(meganucleases)、鋅指、CRISPRs及TALEN結合域,其可「經工程改造」以結合至預定核苷酸序列。通常,經工程改造之DNA結合蛋白(例如鋅指、CRISPRs或TALENs)為非天然存在之蛋白質。用於工程改造DNA結合蛋白之方法的非限制性實例為設計及選擇。所設計的DNA結合蛋白為自然界中不存在的蛋白質,其設計/組成主要地由合理準則產生。設計之合理準則包括應用取代法則及電腦化算法以處理現有ZFP、CRISPR及/或TALEN設計及結合資料之資料庫儲存資訊中之資訊。參見例如美國專利6,140,081;6,453,242;及6,534,261;亦參見WO 98/53058;WO 98/53059;WO 98/53060;WO 02/016536及WO 03/016496及美國公開案第20110301073號、第20110239315號及第20119145940號。
「鋅指DNA結合蛋白」(或結合域)為經由一或多個鋅指以序列特異性方式結合DNA之蛋白質或較大蛋白質內的一域,該等鋅指為該結合域內結構經由鋅離子配位穩定之胺基酸序列區。術語鋅指DNA結合蛋白常 常縮寫為鋅指蛋白或ZFP。鋅指結合域可「經工程改造」以結合至預定核苷酸序列。用於工程改造鋅指蛋白之方法的非限制性實例為設計及選擇。所設計的鋅指蛋白為自然界中不存在的蛋白質,其設計/組成主要地由合理準則產生。設計之合理準則包括應用取代法則及電腦化算法以處理現有ZFP設計及結合資料之資料庫儲存資訊中之資訊。參見例如美國專利第6,140,081號;第6,453,242號;第6,534,261號及第6,794,136號;亦參見WO 98/53058;WO 98/53059;WO 98/53060;WO 02/016536及WO 03/016496。
在其他實例中,一或多種核酸酶之DNA結合域包含天然存在或經工程改造(非天然存在)之TAL效應子DNA結合域。參見例如美國專利公開案第20110301073號,其以全文引用的方式併入本文中。已知黃單胞菌屬(Xanthomonas)之植物病原細菌引起重要作物中之許多疾病。黃單胞菌屬之病原性視保守性III型分泌(T3S)系統而定,該系統將更多不同效應蛋白注入植物細胞中。轉錄活化因子樣(TALEN)效應子在此等注入蛋白質當中,其模擬植物轉錄活化因子且操控植物轉錄組(參見Kay等人(2007)Science 318:648-651)。此等蛋白質含有DNA結合域及轉錄活化域。一種最充分表徵之TAL效應子為來自野油菜黃單胞菌斑點病致病變種(Xanthomonas campestgris pv.Vesicatoria)之AvrBs3(參見Bonas等人(1989)Mol Gen Genet 218:127-136及WO2010079430)。TAL效應子含有串聯重複序列之集中域,各重複序列含有大致34個胺基酸,其為此等蛋白質之DNA結合特異性的關鍵。另外,其含有核定位序列及酸性轉錄活化域(關於綜述,參見Schornack S,等人(2006)J Plant Physiol 163(3):256-272)。另外,在植物病原性細菌青枯雷爾氏菌(Ralstonia solanacearum)中,已發現青枯雷爾氏菌生物變種菌株GMI1000及生物變種4菌株RS1000中命名為brg11hpx17之兩種基因與黃單胞菌屬之AvrBs3家族同源(參見Heuer等人(2007)Appl and Enviro Micro 73(13):4379-4384)。此等基因彼此之核苷酸序列98.9%一致,但不同之處在於hpx17之重複序列域中缺失1,575bp。然而,兩種基因產物與黃單胞菌屬AvrBs3家族蛋白質具有小於40%序列一致性。參見例如美國專利公開案第20110301073號,其以全文引用的方式併入本文中。
此等TAL效應子之特異性視串聯重複序列中所發現之序列而定。重複序列包含大致102bp且重複序列通常彼此91-100%同源(Bonas等人,同上)。重複序列之多形現象通常位於位置12及13,且在位置12及13之高變雙殘基的身分標識與TAL效應子目標序列之連續核苷酸的身分標識之間似乎存在一對一的對應性(參見Moscou及Bogdanove,(2009)Science 326:1501及Boch等人(2009)Science 326:1509-1512)。已用實驗方式測定此等TAL效應子用於DNA識別之天然編碼,使得位置12及13之HD序列結合至胞嘧啶(C),NG結合至T,NI結合至A、C、G或T,NN結合至A或G,及ING結合至T。此等DNA結合重複序列已與新組合及數目的重複序列組裝成蛋白質,以製造能夠與新序列相互作用且活化非內源性報導基因在植物細胞中表現的人工轉錄因子(Boch等人,同上)。經工程改造之TAL蛋白已連接至FokI裂解半域,以產生在酵母報導體分析(基於質體之目標)中展現活性之TAL效應域核酸酶融合物(TALEN)。
CRISPR(叢集規律間隔短回文重複序列)/Cas(CRISPR相關聯)核酸酶系統為近來經工程改造之核酸酶系統,其基於可用於基因組工程改造之細菌系統。其係基於許多細菌及古菌之適應性免疫反應的一部分。當病毒 或質體侵入細菌時,侵入者的DNA區段藉由『免疫』反應轉化成CRISPR RNA(crRNA)。此crRNA接著經由部分互補區與稱為tracrRNA的另一類型的RNA結合,以引導Cas9核酸酶至與目標DNA中之crRNA同源的稱為「原間隔子」之區。Cas9在由crRNA轉錄物內含有之20個核苷酸的引導序列指定的位點處裂解DNA,以在雙股斷裂(DSB)處產生鈍端。Cas9需要crRNA及tracrRNA以用於位點特異性DNA識別及裂解。此系統現已經工程改造以使得crRNA及tracrRNA可組合成一個分子(「單個引導RNA」),且單個引導RNA之crRNA等效部分可經工程改造以引導Cas9核酸酶靶向任何所需序列(參見Jinek等人,(2012)Science 337,第816-821頁;Jinek等人,(2013),eLife 2:e00471及David Segal,(2013)eLife 2:e00563)。因此,CRISPR/Cas系統可經工程改造以在基因組中之所需目標處形成DSB,且DSB之修復可受修復抑制劑之使用影響以使得易出錯的修復增加。
在其他實例中,DNA結合轉殖基因為包含經工程改造(非天然存在)之巨核酸酶(亦描述為歸巢核酸內切酶)之位點特異性核酸酶。諸如I-SceI、I-CeuI、PI-PspI、PI-Sce、I-SceIV、I-CsmI、I-PanI、I-SceII、I-PpoI、I-SceIII、I-CreI、I-TevI、I-TevII及I-TevIII之歸巢核酸內切酶或巨核酸酶的識別序列為已知的。亦參見美國專利第5,420,032號;美國專利第6,833,252號;Belfort等人(1997)Nucleic Acids Res.25:3379-30 3388;Dujon等人(1989)Gene 82:115-118;Perler等人(1994)Nucleic Acids Res.22,11127;Jasin(1996)Trends Genet.12:224-228;Gimble等人,(1996)J.Mol.Biol.263:163-180;Argast等人(1998)J.Mol.Biol.280:345-353及New England Biolabs目錄。另外,歸巢核酸內切酶 及巨核酸酶的DNA結合特異性可經工程改造以結合非天然目標位點。參見例如Chevalier等人(2002)Molec.Cell 10:895-905;Epinat等人(2003)Nucleic Acids Res.5 31:2952-2962;Ashworth等人(2006)Nature 441:656-659;Paques等人(2007)Current Gene Therapy 7:49-66;美國專利公開案第20070117128號。歸巢核酸內切酶及巨核酸酶之DNA結合域可在核酸酶作為整體之情形下改變(亦即使得核酸酶包括同源裂解域)或可與異源裂解域融合。
如本文所用,術語「轉型」涵蓋可將核酸分子引入至此類細胞中之所有技術。實例包括(但不限於):用病毒載體轉染;用質體載體轉型;電穿孔;脂質體轉染;顯微注射(Mueller等人,(1978)Cell 15:579-85);農桿菌屬介導之轉移;直接DNA吸收;WHISKERSTM介導之轉型;及微彈轟擊。此等技術可用於植物細胞之穩定轉型及暫時轉型。「穩定轉型」係指核酸片段引入至宿主生物體基因組中導致基因上穩定遺傳。一旦穩定轉型,核酸片段穩定整合於宿主生物體及任何子代之基因組中。含有經轉型核酸片段之宿主生物體稱為「轉殖基因」生物體。「暫時轉型」係指核酸片段引入至宿主生物體之細胞核或含DNA之細胞器中,在無基因上穩定遺傳的情況下導致基因表現。
外源性核酸序列。在一個實例中,轉殖基因為基因序列(例如除草劑抗性基因)、編碼工業上或醫藥學上適用之化合物的基因或編碼所需農業性狀之基因。在另一實例中,轉殖基因為反義核酸序列,其中該反義核酸序列之表現抑制目標核酸序列之表現。轉殖基因可含有可操作地連接於轉殖基因之調節序列(例如啟動子)。在一些實施例中,所關注之聚核苷酸序列為轉殖基因。然而,在其他實施例中,所關注之聚核苷酸序列為內源性 核酸序列,其中該內源性核酸序列之額外基因組複本為所需的,或相對於宿主生物體之目標核酸分子的序列呈反義方向的核酸序列。
如本文所用,術語轉殖基因「事件」藉由以下步驟產生:用異源DNA,亦即包括所關注之轉殖基因的核酸構築體轉型植物細胞,由該轉殖基因插入至植物基因組中引起植物群體再生,及選擇藉由插入至特定基因組位置中表徵之特定植物。術語「事件」係指包括異源DNA之原始轉型體及轉型體之子代。術語「事件」亦指藉由轉型體與包括基因組/轉殖基因DNA之另一品種之間的有性異型雜交產生之子代。即使在與輪回親本重複回交之後,來自經轉型親本之所插入的轉殖基因DNA及側接基因組DNA(基因組/轉殖基因DNA)仍存在於雜交子代之相同染色體位置。術語「事件」亦指來自原始轉型體及其子代之包含所插入的DNA及緊鄰所插入的DNA的側接基因組序列的DNA將預期由於包括所插入的DNA的一個親本系(例如原始轉型體及由自交產生之子代)與不含所插入的DNA的親本系的有性雜交而轉移至接受所插入的包括所關注之轉殖基因的DNA的子代。
如本文所用,術語「聚合酶鏈反應」或「PCR」定義微量核酸、RNA及/或DNA如1987年7月28日頒佈之美國專利第4,683,195號中所述擴增之程序或技術。一般而言,來自所關注區末端或以外的序列資訊需要為可用的,以便可設計寡核苷酸引子;此等引子將在序列上與有待擴增之模板的相反股一致或類似。兩個引子之5'端核苷酸可與所擴增物質之末端一致。PCR可用於擴增特異性RNA序列、來自總基因組DNA之特異性DNA序列及自總細胞RNA轉錄之cDNA、噬菌體或質體序列等。一般參見Mullis等人,Cold Spring Harbor Symp.Quant.Biol.,51:263(1987); Erlich編,PCR Technology,(Stockton Press,NY,1989)。
如本文所用,術語「引子」係指當條件適於合成引子延伸產物時,能夠充當沿著互補股合成之起始點的寡核苷酸。合成條件包括存在四種不同三磷酸去氧核糖核苷酸及至少一種聚合誘導劑,諸如反轉錄酶或DNA聚合酶。其存在於適合的緩衝液中,該緩衝液可包括在各種適合的溫度下作為輔助因子或影響諸如pH及其類似物之條件的成分。引子較佳為單股序列,以使得擴增效率最佳化,但亦可採用雙股序列。
如本文所用,術語「探針」係指與目標序列雜交之寡核苷酸。在TaqMan®或TaqMan®型式分析程序中,探針與定位於兩個引子之黏接位點之間的一部分目標雜交。探針包括約八個核苷酸、約十個核苷酸、約十五個核苷酸、約二十個核苷酸、約三十個核苷酸、約四十個核苷酸或約五十個核苷酸。在一些實施例中,探針包括約八個核苷酸至約十五個核苷酸。探針可另外包括可偵測標記,例如螢光團(Texas-Red®、異硫氰酸螢光素等)。可偵測標記可直接共價連接至探針寡核苷酸,例如位於探針之5'端或探針之3'端。包括螢光團之探針亦可另外包括淬滅劑,例如Black Hole QuencherTM、Iowa BlackTM等。
如本文所用,術語「限制性核酸內切酶」及「限制酶」係指細菌酶,其中之每一者在特異性核苷酸序列處或附近切割雙股DNA。2型限制酶在相同位點處識別及裂解DNA,且包括(但不限於)XbaI、BamHI、HindIII、EcoRI、XhoI、SalI、KpnI、AvaI、PstI及SmaI。
如本文所用,術語「載體」與術語「構築體」、「選殖載體」及「表現載體」可互換使用,且意指可將DNA或RNA序列(例如外源基因)引入至宿主細胞中以便轉型宿主及促進所引入之序列表現(例如轉錄及轉 譯)的載體。「非病毒載體」欲意指不包含病毒或反轉錄病毒之任何載體。在一些實施例中,「載體」為包含至少一個DNA複製起點及至少一個可選標記基因之DNA序列。實例包括(但不限於)攜載外源性DNA至細胞中之質體、黏質體、噬菌體、細菌人工染色體(BAC)。載體亦可包括一或多個基因、反義分子及/或可選標記基因及此項技術中已知的其他遺傳元件。載體可轉導、轉型或感染細胞,由此使得細胞表現由載體編碼之核酸分子及/或蛋白質。術語「質體」定義在原核或真核宿主細胞中能夠常染色體複製之環形股核酸。該術語包括可為DNA或RNA且可為單股或雙股之核酸。具有該定義之質體亦可包括相當於細菌複製起點之序列。
如本文所用,術語「可選標記基因」如本文所用定義編碼有助於鑑別插入可選標記基因之細胞的蛋白質的基因或其他表現卡匣。舉例而言,「可選標記基因」涵蓋報導基因以及用於植物轉型以例如保護植物細胞免於選擇性藥劑或提供對選擇性藥劑之抗性/耐受性的基因。在一個實施例中,僅接受功能性可選標記之彼等細胞或植物能夠在具有選擇性藥劑之條件下分裂或生長。選擇性藥劑之實例可包括例如抗生素,包括大觀黴素(spectinomycin)、新黴素(neomycin)、卡那黴素(kanamycin)、巴龍黴素(paromomycin)、慶大黴素(gentamicin)及潮黴素(hygromycin)。此等可選標記包括新黴素磷酸轉移酶(npt II),其表現賦予抗生素卡那黴素抗性之酶;及相關抗生素新黴素、巴龍黴素、慶大黴素及G418之基因;或表現賦予潮黴素抗性之酶潮黴素磷酸轉移酶(hpt)之基因。其他可選標記基因可包括編碼包括bar或pat之除草劑抗性(針對草銨膦(glufosinate ammonium)或草丁膦(phosphinothricin)之抗性);乙醯乳酸合成酶之基因(ALS,針對諸如磺醯脲(SU)、咪唑啉酮(IMI)、三唑并嘧啶(TP)、嘧啶基 氧基苯甲酸酯(POB)及磺醯基胺基羰基三唑啉酮之防止分支鏈胺基酸合成第一步之抑制劑的抗性)、編碼草甘膦(glyphosate)、2,4-D及金屬抗性或敏感性之基因。可用作可選標記基因之「報導基因」之實例包括目視觀測所表現之報導基因蛋白,諸如編碼β-葡糖醛酸酶(GUS)、螢光素酶、綠色螢光蛋白(GFP)、黃色螢光蛋白(YFP)、DsRed、β-半乳糖苷酶、氯黴素乙醯轉移酶(CAT)、鹼性磷酸酶及其類似物之蛋白質。短語「標記陽性」係指植物已經轉型以包括可選標記基因。
如本文所用,術語「可偵測標記」係指能夠偵測之標記,諸如放射性同位素、螢光化合物、生物發光化合物、化學發光化合物、金屬螯合劑或酶。可偵測標記之實例包括(但不限於)以下:螢光標記(例如FITC、若丹明(rhodamine)、鑭系磷光體)、酶標記(例如辣根過氧化酶、β-半乳糖苷酶、螢光素酶、鹼性磷酸酶)、化學發光標記、生物素基、由二級報導體識別之預先確定的多肽抗原決定基(例如白胺酸拉鏈配對序列、二級抗體之結合位點、金屬結合域、抗原決定基標籤)。在一實施例中,可偵測標記可藉由各種長度之間隔臂連接以減小潛在位阻。
如本文所用,術語「卡匣」、「表現卡匣」及「基因表現卡匣」係指可在特異性限制性位點或藉由同源重組插入至核酸或聚核苷酸中之DNA區段。如本文所用,該DNA區段包含編碼所關注之多肽的聚核苷酸,且卡匣及限制性位點經設計以確保卡匣插入在適當閱讀框架中以便轉錄及轉譯。在一實施例中,表現卡匣可包括編碼所關注之多肽的聚核苷酸且具有除有助於特定宿主細胞轉型之聚核苷酸以外的元件。在一實施例中,基因表現卡匣亦可包括使得編碼所關注之多肽的聚核苷酸在宿主細胞中之表現增強的元件。此等元件可包括(但不限於):啟動子、最小啟動 子、強化子、反應元件、終止子序列、聚腺苷酸化序列及其類似物。
如本文所用,「連接子」或「間隔子」為使兩個分離實體彼此結合之鍵、分子或分子群。連接子及間隔子可向兩個實體提供最佳間距,或可另外供應允許兩個實體彼此分離之不穩定連接。不穩定連接包括光可裂解基團、酸不穩定部分、鹼不穩定部分及酶可裂解基團。如本文所用,術語「多連接子」或「多選殖位點」定義彼此位於核酸序列之10個核苷酸內的三個或三個以上2型限制酶位點叢集。在其他情形中,如本文所用之術語「多連接子」係指經由任何已知無縫選殖方法(亦即Gibson Assembly®、NEBuilder HiFiDNA Assembly®、Golden Gate Assembly®、BioBrick® Assembly等)經靶向以接合兩個序列之一段核苷酸。包含多連接子之構築體用於諸如基因編碼區之核酸序列的插入及/或切除。
如本文所用,術語「對照物」係指在用於比較目的之分析程序中所用的樣品。對照物可為「陽性」或「陰性」。舉例而言,在分析程序之目的為偵測細胞或組織中差異表現之轉錄物或多肽的情況下,一般較佳包括陽性對照物,諸如已知展現所需表現之植物的樣品;及陰性對照物,諸如已知缺乏所需表現之植物的樣品。
如本文所用,術語「植物」包括完整植物及植物之任何後代、細胞、組織或一部分。可用於本發明中之植物類別一般與能夠突變誘發之高等及低等植物類別一樣廣泛,包括被子植物(單子葉及雙子葉植物)、裸子植物、蕨類植物及多細胞藻類。因此,「植物」包括雙子葉植物及單子葉植物。術語「植物部分」包括植物之任何部分,包括例如且不限於:種子(包括成熟種子及未成熟種子);植物插條;植物細胞;植物細胞培養物;植物器官(例如花粉、胚芽、花、果實、芽、葉、根、莖及外植體)。植物 組織或植物器官可為種子、原生質體、癒合組織或組織成結構或功能單元之任何其他植物細胞群。植物細胞或組織培養物可能能夠再生具有獲得該細胞或組織之植物的生理及形態特徵的植物,且能夠再生具有與該植物實質上相同基因型之植物。相比之下,一些植物細胞不能夠再生以產生植物。植物細胞或組織培養物中之可再生細胞可為胚芽、原生質體、分生細胞、癒合組織、花粉、葉、花藥、根、根尖、穗絲、花、果仁、穗、穗軸、苞葉或梗。
植物部分包括可收穫部分及適用於子代植物繁殖之部分。適用於繁殖之植物部分包括例如且不限於:種子;果實;插條;幼苗;塊莖;及根莖。植物之可收穫部分可為植物之任何可用部分,包括例如且不限於:花;花粉;幼苗;塊莖;葉;莖;果實;種子;及根。
植物細胞為植物之結構及生理單元,包含原生質體及細胞壁。植物細胞可呈經分離之單細胞或細胞聚集物(例如脆弱的癒合組織及經培養細胞)形式,且可為較高級組織單元(例如植物組織、植物器官及植物)之一部分。因此,植物細胞可為原生質體、配子產生細胞或可再生成完整植物之細胞或細胞集合。因此,包含多個植物細胞且能夠再生成完整植物之種子在本文實施例中視為「植物細胞」。
如本文所用,術語「小RNA」係指數個類別之非編碼核糖核酸(ncRNA)。術語小RNA描述在細菌細胞、動物、植物及真菌中產生之短鏈ncRNA。此等短鏈ncRNA可在細胞內天然產生或可藉由引入表現短鏈或ncRNA之外源性序列產生。小RNA序列不直接編碼蛋白質且在功能方面與其他RNA不同,因為小RNA序列僅轉錄且不轉譯。小RNA序列參與其他細胞功能,包括基因表現及修飾。小RNA分子通常由約20至30個核苷 酸組成。小RNA序列可來源於較長前體。前體形成在自身互補區彼此折回的結構;其接著藉由動物中之核酸酶Dicer或植物中之核酸酶DCL1加工。
許多類型之小RNA以天然或人工產生的形式存在,包括微RNA(miRNA)、短干擾RNA(siRNA)、反義RNA、短髮夾RNA(shRNA)及小核仁RNA(snoRNA)。某些類型之小RNA(諸如微RNA及siRNA)在基因沉默及RNA干擾(RNAi)中為重要的。基因沉默為遺傳調節之方法,其中通常應表現之基因由細胞內元件(在此情況下,小RNA)「關閉」。通常應藉由此遺傳資訊形成之蛋白質由於干擾而不形成,且基因中編碼之資訊由表現阻斷。
如本文所用,術語「小RNA」涵蓋文獻中描述為「微小RNA」(Storz,(2002)Science 296:1260-3;Illangasekare等人,(1999)RNA 5:1482-1489);原核「小RNA」(sRNA)(Wassarman等人,(1999)Trends Microbiol.7:37-45);真核「非編碼RNA(ncRNA)」;「微RNA(miRNA)」;「小非mRNA(snmRNA)」;「功能性RNA(fRNA)」;「轉移RNA(tRNA)」;「催化性RNA」[例如核酶,包括自身醯化核酶(Illangaskare等人,(1999)RNA 5:1482-1489);「小核仁RNA(snoRNA)」、「tmRNA」(亦稱為「10S RNA」,Muto等人,(1998)Trends Biochem Sci.23:25-29;及Gillet等人,(2001)Mol Microbiol.42:879-885)的RNA分子;RNAi分子,包括(但不限於)「小干擾RNA(siRNA)」、「內切核糖核酸酶製備之siRNA(e-siRNA)」、「短髮夾RNA(shRNA)」及「小時間調節RNA(stRNA)」、「切割的siRNA(d-siRNA)」及適體;包含至少一個尿嘧啶鹼基之寡核苷酸及其他合成核 酸。
除非另外特定闡述,否則本文所用之所有技術及科學術語具有與一般熟習本發明所屬技術者通常所理解相同的含義。分子生物學中之常見術語的定義可見於例如:Lewin,Genes V,Oxford University Press,1994(ISBN 0-19-854287-9);Kendrew等人(編),The Encyclopedia of Molecular Biology,Blackwell Science Ltd.,1994(ISBN 0-632-02182-9);及Meyers(編),Molecular Biology and Biotechnology:A Comprehensive Desk Reference,VCH Publishers,Inc.,1995(ISBN 1-56081-569-8)。
如本文所用,除非上下文另外明確且不含糊地指出,否則冠詞「一(a/an)」及「該」包括複數個提及物。
III. 玉蜀黍KN1基因調節元件及包含其之核酸
提供使用來自玉蜀黍KN1基因之啟動子在植物中表現非玉蜀黍KN1轉殖基因之方法及組合物。在一實施例中,啟動子可為SEQ ID NO:1之玉蜀黍KN1基因啟動子。
在一實施例中,提供包含啟動子之聚核苷酸,其中該啟動子與SEQ ID NO:1至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%或100%一致。在一實施例中,啟動子為玉蜀黍KN1基因啟動子,其包含與SEQ ID NO:1之聚核苷酸至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%或100%一致的聚核苷酸。在一實施例中,提供經分離之聚核苷酸,其包含與SEQ ID NO:1之聚核苷酸至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、 99.5%、99.8%或100%一致性。在一實施例中,提供核酸載體,其包含SEQ ID NO:1之玉蜀黍KN1基因啟動子。在一實施例中,提供聚核苷酸,其包含可操作地連接於多連接子之玉蜀黍KN1基因啟動子。在一實施例中,提供基因表現卡匣,其包含可操作地連接於非金屬硫蛋白樣轉殖基因之玉蜀黍KN1基因啟動子。在一實施例中,提供核酸載體,其包含可操作地連接於非玉蜀黍KN1轉殖基因之玉蜀黍KN1基因啟動子。在一個實施例中,啟動子由SEQ ID NO:1組成。在一說明性實施例中,核酸載體包含可操作地連接於轉殖基因之玉蜀黍KN1基因啟動子,其中該轉殖基因可為殺昆蟲抗性轉殖基因、除草劑耐受性轉殖基因、氮使用效率轉殖基因、水使用效率轉殖基因、營養品質轉殖基因、DNA結合轉殖基因、小RNA轉殖基因、可選標記轉殖基因或其組合。
在一實施例中,核酸載體包含如本文所揭示之基因表現卡匣。在一實施例中,載體可為適用於直接轉型或基因靶向諸如供體DNA之質體、黏質體、細菌人工染色體(BAC)、噬菌體、病毒或經剪切聚核苷酸片段。
轉殖基因表現亦可藉由位於啟動子序列下游之5'-UTR區來調節。啟動子及5'-UTR均可調節轉殖基因表現。儘管啟動子為驅動轉錄所必需的,但5'-UTR之存在可提高表現水準,產生mRNA轉錄物以用於轉譯及蛋白質合成。5'-UTR基因區輔助轉殖基因之穩定表現。在另一實施例中,5'-UTR可操作地連接於玉蜀黍KN1基因啟動子。
轉殖基因表現亦可藉由位於啟動子序列下游之內含子區來調節。啟動子及內含子均可調節轉殖基因表現。儘管啟動子為驅動轉錄所必需的,但內含子之存在可提高表現水準,產生mRNA轉錄物以用於轉譯及蛋白質合成。內含子基因區輔助轉殖基因之穩定表現。在另一實施例中,內含子 可操作地連接於玉蜀黍KN1基因啟動子。
在一實施例中,提供核酸載體,其包含如本文所述中玉蜀黍KN1基因啟動子及內含子,其中該內含子與SEQ ID NO:7之聚核苷酸至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.8%或100%一致。在一實施例中,提供核酸載體,其包含如本文所述之玉蜀黍KN1基因啟動子及內含子,其中該玉蜀黍KN1基因啟動子及內含子均可操作地連接於多連接子之相對端。在一實施例中,提供基因表現卡匣,其包含如本文所述中玉蜀黍KN1基因啟動子及內含子,其中該玉蜀黍KN1基因啟動子及內含子均可操作地連接於非玉蜀黍KN1轉殖基因之相對端。在一個實施例中,內含子由SEQ ID NO:7組成。在此實施例之一態樣中,內含子由SEQ ID NO:7組成。在此實施例之另一態樣中,啟動子由SEQ ID NO:1組成。在一說明性實施例中,基因表現卡匣包含可操作地連接於轉殖基因之玉蜀黍KN1基因啟動子及SEQ ID NO:2之玉蜀黍乙醇脫氫酶I內含子6/玉米條紋病毒前導序列1,其中該轉殖基因可為殺昆蟲抗性轉殖基因、除草劑耐受性轉殖基因、氮使用效率轉殖基因、水使用效率轉殖基因、營養品質轉殖基因、DNA結合轉殖基因、小RNA轉殖基因、可選標記轉殖基因或其組合。在另一實施例中,轉殖基因可操作地連接於玉蜀黍KN1基因啟動子及來自任何技術認可內含子序列之內含子。
根據一個實施例,提供包含重組基因表現卡匣之核酸載體,其中該重組基因表現卡匣包含可操作地連接於多連接子序列、非玉蜀黍KN1基因或玉蜀黍KN1轉殖基因或其組合之玉蜀黍KN1基因啟動子。在一個實施例中,重組基因卡匣包含可操作地連接於非玉蜀黍KN1基因或轉殖基因之玉 蜀黍KN1基因啟動子。在一個實施例中,重組基因卡匣包含可操作地連接於多連接子序列之如本文所揭示之玉蜀黍KN1基因啟動子。多連接子以一定方式可操作地連接於玉蜀黍KN1基因啟動子,使得編碼序列插入至多連接子之一個限制性位點中將可操作地連接該編碼序列,從而允許當載體經轉型或轉染至宿主細胞中時表現該編碼序列。
根據一個實施例,提供包含基因卡匣之核酸載體,該基因卡匣由玉蜀黍KN1基因啟動子及非玉蜀黍KN1基因組成。在一實施例中,SEQ ID NO:1之玉蜀黍KN1基因啟動子可操作地連接於非玉蜀黍KN1基因或轉殖基因之3'端。在另一實施例中,玉蜀黍KN1基因啟動子序列包含SEQ ID NO:1或與SEQ ID NO:1具有80、85、90、95、99或100%序列一致性之序列。根據一個實施例,提供包含基因卡匣之核酸載體,該基因卡匣由玉蜀黍KN1基因啟動子、非玉蜀黍KN1基因組成,其中該玉蜀黍KN1基因啟動子可操作地連接於非玉蜀黍KN1基因之5'端,且該玉蜀黍KN1基因啟動子序列包含SEQ ID NO:1或與SEQ ID NO:1具有80、85、90、95、99或100%序列一致性之序列。在另一實施例中,玉蜀黍KN1基因啟動子序列由SEQ ID NO:1或與SEQ ID NO:1具有80、85、90、95或99%序列一致性之1,407bp序列組成。
玉蜀黍KN1基因啟動子亦可包含一或多個額外序列元件。在一些實施例中,玉蜀黍KN1基因啟動子可包含外顯子(例如前導序列或信號肽,諸如葉綠體轉運肽或ER滯留信號)。例如且不限於,玉蜀黍KN1基因啟動子可編碼併入玉蜀黍KN1基因啟動子中之外顯子作為另一實施例。
在一個實施例中,提供核酸構築體,其包含玉蜀黍KN1基因啟動子及非玉蜀黍KN1基因及視情況選用之以下元件中之一或多者: a)5'非轉譯區;b)內含子;及c)3'非轉譯區,其中,該玉蜀黍KN1基因啟動子由SEQ ID NO:1或與SEQ ID NO:1具有98%序列一致性之序列組成;該內含子區由已知內含子序列或SEQ ID NO:7之內含子組成;及該3'非轉譯區由已知3'非轉譯區組成;另外其中該玉蜀黍KN1基因啟動子可操作地連接於該轉殖基因且各視情況選用之元件(若存在)亦可操作地連接於該啟動子及該轉殖基因。在另一實施例中,提供轉殖基因細胞,其包含上文剛剛揭示之核酸構築體。在一個實施例中,轉殖基因細胞為植物細胞,且在另一個實施例中,提供植物,其中該植物包含該等轉殖基因細胞。
在一個實施例中,提供核酸構築體,其包含與玉蜀黍乙醇脫氫酶I內含子6融合之玉蜀黍KN1基因啟動子及非玉蜀黍轉殖基因及視情況選用之以下元件中之一或多者:a)5'非轉譯區;及b)3'非轉譯區,其中,該啟動子及內含子融合物由SEQ ID NO:2或與SEQ ID NO:2具有98%序列一致性之序列組成;該5' UTR區由已知5' UTR序列組成;該3'非轉譯區由已知3' UTR序列組成;另外其中該玉蜀黍KN1基因 啟動子可操作地連接於該轉殖基因且各視情況選用之元件(若存在)亦可操作地連接於該啟動子及該轉殖基因。在另一實施例中,提供轉殖基因細胞,其包含上文剛剛揭示之核酸構築體。在一個實施例中,轉殖基因細胞為植物細胞,且在另一個實施例中,提供植物,其中該植物包含該等轉殖基因細胞。
根據一個實施例,核酸載體另外包含編碼可選標記之序列。根據一個實施例,重組基因卡匣可操作地連接於農桿菌屬T-DNA邊界。根據一個實施例,重組基因卡匣另外包含第一及第二T-DNA邊界,其中該第一T-DNA邊界可操作地連接於基因構築體之一端,且該第二T-DNA邊界可操作地連接於基因構築體之另一端。第一及第二農桿菌屬T-DNA邊界可獨立地選自來源於選自由以下組成之群的細菌菌株的T-DNA邊界序列:合成胭脂鹼之農桿菌屬T-DNA邊界、合成章魚鹼之農桿菌屬T-DNA邊界、合成甘露鹼之農桿菌屬T-DNA邊界、合成琥珀鹼之農桿菌屬T-邊界或其任何組合。在一個實施例中,提供選自由胭脂鹼合成菌株、甘露鹼合成菌株、琥珀鹼合成菌株或章魚鹼合成菌株組成之群的農桿菌屬菌株,其中該菌株包含質體,其中該質體包含可操作地連接於選自SEQ ID NO:1或與SEQ ID NO:1具有80、85、90、95或99%序列一致性之序列的序列的轉殖基因。
適用於本發明所揭示之構築體之所關注的轉殖基因包括(但不限於)賦予(1)對害蟲或疾病之抗性;(2)對除草劑之耐受性;(3)增加價值之農藝性狀,諸如產率改良、氮使用效率、水使用效率及營養品質;(4)蛋白質與DNA以位點特異性方式結合;(5)表現小RNA及(6)可選標記之編碼序列。根據一個實施例,轉殖基因編碼賦予殺昆蟲抗性、除草劑耐受性、小 RNA表現、氮使用效率、水使用效率或營養品質之可選標記或基因產物。
1. 昆蟲抗性
亦描述為報導基因之各種可選標記可操作地連接於玉蜀黍KN1基因啟動子,該啟動子包含SEQ ID NO:1或與SEQ ID NO:1具有80、85、90、95或99%序列一致性之序列。可操作地連接之序列可接著併入所選載體中以允許鑑別及選擇經轉型植物(「轉型體」)。例示性昆蟲抗性編碼序列為此項技術中已知的。作為可操作地連接於本發明之調節元件的昆蟲抗性編碼序列的實施例,提供以下性狀。提供例示性鱗翅目昆蟲抗性之編碼序列包括:cry1Acry1A.105cry1Abcry1Ab(截短);cry1Ab-Ac(融合蛋白);cry1Ac(以Widestrike®市售);cry1Ccry1F(以Widestrike®市售);cry1Fa2cry2Ab2cry2Aecry9Cmocry1F;pinII(蛋白酶抑制蛋白);vip3A(a);及vip3Aa20。提供例示性鞘翅目昆蟲抗性之編碼序列包括:cry34Ab1(以Herculex®市售);cry35Ab1(以Herculex®市售);cry3Acry3Bb1dvsnf7;及mcry3A。提供例示性多昆蟲抗性之編碼序列包括ecry31.Ab。以上昆蟲抗性基因清單不意欲為限制性的。本發明涵蓋任何昆蟲抗性基因。
2. 除草劑耐受性
亦描述為報導基因之各種可選標記可操作地連接於玉蜀黍KN1基因啟動子,該啟動子包含SEQ ID NO:1或與SEQ ID NO:1具有80、85、90、95或99%序列一致性之序列。可操作地連接之序列可接著併入所選載體中以允許鑑別及選擇經轉型植物(「轉型體」)。例示性除草劑耐受性編碼序列為此項技術中已知的。作為可操作地連接於本發明之調節元件的除 草劑耐受性編碼序列的實施例,提供以下性狀。草甘膦除草劑含有藉由抑制EPSPS酶(5-烯醇丙酮醯莽草酸-3-磷酸合成酶)之作用模式。此酶參與植物生長及發育必需的芳族胺基酸的生物合成。可用於抑制此酶之各種酶機制為此項技術中已知的。編碼此類酶之基因可操作地連接於本發明之基因調節元件。在一實施例中,可選標記基因包括(但不限於)編碼包括以下草甘膦抗性基因之基因:突變EPSPS基因,諸如2mEPSPS基因、cp4 EPSPS基因、mEPSPS基因、dgt-28基因;aroA基因;及草甘膦降解基因,諸如草甘膦乙醯轉移酶基因(gat)及草甘膦氧化酶基因(gox)。此等性狀目前以Gly-TolTM、Optimum® GAT®、Agrisure® GT及Roundup Ready®市售。草銨膦及/或畢拉草(bialaphos)化合物之抗性基因包括dsm-2barpat基因。barpat性狀目前以LibertyLink®市售。亦包括提供對2,4-D之抗性的耐受性基因,諸如aad-1基因(應注意aad-1基因具有對芳氧基苯氧基丙酸酯除草劑之其他活性)及aad-12基因(應注意aad-12基因具有對吡啶氧基乙酸酯合成植物生長素之其他活性)。此等性狀作為Enlist®作物保護技術市售。ALS抑制劑(磺醯脲、咪唑啉酮、三唑并嘧啶、嘧啶基硫代苯甲酸酯及磺醯基胺基-羰基-三唑啉酮)之抗性基因為此項技術中已知的。此等抗性基因最常由ALS編碼基因序列之點突變引起。其他ALS抑制劑抗性基因包括hra基因、csr1-2基因、Sr-HrA基因及surB基因。一些性狀以商標Clearfield®市售。抑制HPPD之除草劑包括吡唑啉酮,諸如苄草唑(pyrazoxyfen)、吡草酮(benzofenap)及苯吡唑草酮(topramezone);三酮,諸如甲基磺草酮(mesotrione)、磺草酮(sulcotrione)、環磺酮(tembotrione)、苯并雙環酮(benzobicyclon);及二酮腈,諸如異噁唑草酮(isoxaflutole)。此等例示性HPPD除草劑可藉由已知性狀耐受。HPPD抑 制劑之實例包括hppaPF_W336基因(關於對異噁唑草酮之抗性)及avhppd-03基因(關於對甲基磺草酮之抗性)。苯腈除草劑耐受性狀之實例包括bxn基因,其已展示賦予對除草劑/抗生素溴苯腈(bromoxynil)之抗性。汰克草(dicamba)之抗性基因包括如國際PCT公開案第WO 2008/105890號中所揭示之汰克草單加氧酶基因(amo)。PPO或PROTOX抑制劑類型除草劑(例如三氟羧草醚(acifluorfen)、氟丙嘧草酯(butafenacil)、氟丙草酯(flupropazil)、環戊噁草酮(pentoxazone)、唑草酮(carfentrazone)、異丙吡草酯(fluazolate)、吡草醚(pyraflufen)、苯草醚(aclonifen)、草芬定(azafenidin)、丙炔氟草胺(flumioxazin)、氟烯草酸(flumiclorac)、必芬諾(bifenox)、乙氧氟草醚(oxyfluorfen)、乳氟禾草靈(lactofen)、氟磺胺草醚(fomesafen)、乙羧氟草醚(fluoroglycofen)及甲磺草胺(sulfentrazone))之抗性基因為此項技術中已知的。賦予對PPO之抗性的例示性基因包括野生型擬南芥PPO酶之過度表現(Lermontova I及Grimm B,(2000)Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen.Plant Physiol 122:75-83.)、枯草桿菌(B.subtilis)PPO基因(Li,X.及Nicholl D.2005.Development of PPO inhibitor-resistant cultures and crops.Pest Manag.Sci.61:277-285及Choi KW,Han O,Lee HJ,Yun YC,Moon YH,Kim MK,Kuk YI,Han SU及Guh JO,(1998)Generation of resistance to the diphenyl ether herbicide,oxyfluorfen,via expression of the Bacillus subtilis protoporphyrinogen oxidase gene in transgenic tobacco plants.Biosci Biotechnol Biochem 62:558-560)。吡啶氧基或苯氧基丙酸及環己酮之抗性基因包括ACC酶抑制劑編碼基因(例如Acc1-S1、Acc1-S2及 Acc1-S3)。賦予對環己二酮及/或芳氧基苯氧基丙酸之抗性的例示性基因包括精吡氟氯禾靈(haloxyfop)、禾草靈(diclofop)、精噁唑禾草靈酸(fenoxyprop)、吡氟禾草靈(fluazifop)及喹禾靈(quizalofop)。最後,可抑制光合成之除草劑(包括三嗪或苯甲腈)藉由psbA基因(對三嗪之耐受性)、1s+基因(對三嗪之耐受性)及腈酶基因(對苯甲腈之耐受性)提供耐受性。以上除草劑耐受性基因清單不意欲為限制性的。本發明涵蓋任何除草劑耐受性基因。
3. 農藝性狀
亦描述為報導基因之各種可選標記可操作地連接於玉蜀黍KN1基因啟動子,該啟動子包含SEQ ID NO:1或與SEQ ID NO:1具有80、85、90、95或99%序列一致性之序列。可操作地連接之序列可接著併入所選載體中以允許鑑別及選擇經轉型植物(「轉型體」)。例示性農藝性狀編碼序列為此項技術中已知的。作為可操作地連接於本發明之調節元件的農藝性狀編碼序列的實施例,提供以下性狀。如由pg基因提供之延遲果實軟化抑製造成細胞壁中果膠分子斷裂之聚半乳糖醛酸酶的產生且因此造成果實延遲軟化。另外,acc基因之延遲果實熟化/老化用於抑制天然acc合成酶基因之正常表現,從而導致乙烯產生減少及果實熟化延遲。然而,accd基因使果實熟化激素乙烯之前體代謝,從而導致果實熟化延遲。或者,sam-k基因藉由減少產生乙烯之受質S-腺苷甲硫胺酸(SAM)而造成熟化延遲。如由cspB基因提供之乾旱逆境(stress)耐受性表型係藉由保留RNA穩定性及轉譯而在水逆境條件下維持正常細胞功能。另一實例包括催化賦予水逆境耐受性之滲透保護化合物甘胺酸甜菜鹼產生的EcBetA基因。另外,RmBetA基因催化賦予水逆境耐受性之滲透保護化合物甘胺酸甜菜鹼產 生。藉由表現與一或多種內源性轉錄因子相互作用以調節植物之日/夜生理過程之蛋白質的bbx32基因來提供光合成及產率提高。可藉由表現編碼熱穩定α-澱粉酶之amy797E基因增加乙醇產量,該酶藉由增加降解澱粉時所用之澱粉酶的熱穩定性而提高生物乙醇產量。最後,可藉由表現編碼二氫吡啶二羧酸酯合成酶之cordapA基因產生經修飾之胺基酸組合物,該酶增加胺基酸離胺酸之產量。以上農藝性狀編碼序列清單不意欲為限制性的。本發明涵蓋任何農藝性狀編碼序列。
4. DNA結合蛋白
亦描述為報導基因之各種可選標記可操作地連接於玉蜀黍KN1基因啟動子,該啟動子包含SEQ ID NO:1或與SEQ ID NO:1具有80、85、90、95或99%序列一致性之序列。可操作地連接之序列可接著併入所選載體中以允許鑑別及選擇經轉型植物(「轉型體」)。例示性DNA結合蛋白編碼序列為此項技術中已知的。作為可操作地連接於本發明之調節元件之DNA結合蛋白編碼序列的實施例,可包括以下類型的DNA結合蛋白:鋅指、TALENS、CRISPRS及巨核酸酶。以上DNA結合蛋白編碼序列清單不意欲為限制性的。本發明涵蓋任何DNA結合蛋白編碼序列。
5. 小RNA
亦描述為報導基因之各種可選標記可操作地連接於玉蜀黍KN1基因啟動子,該啟動子包含SEQ ID NO:1或與SEQ ID NO:1具有80、85、90、95或99%序列一致性之序列。可操作地連接之序列可接著併入所選載體中以允許鑑別及選擇經轉型植物(「轉型體」)。例示性小RNA性狀為此項技術中已知的。作為可操作地連接於本發明之調節元件的小RNA編碼序列的實施例,提供以下性狀。舉例而言,延遲果實熟化/老化之抗efe小 RNA藉由編碼乙烯形成酶之ACO基因沉默抑制乙烯產生來延遲熟化。改變木質素產量之ccomt小RNA藉由抑制內源性S-腺苷-L-甲硫胺酸:反式咖啡醯基CoA 3-O-甲基轉移酶(CCOMT基因)減少愈創木基(G)木質素之含量。另外,突狀馬鈴薯(Solanum verrucosum)中之黑斑傷痕耐受性可藉由Ppo5小RNA觸發Ppo5轉錄物降解以阻斷黑斑傷痕發生來減少。亦包括與含有西方玉米根蟲Snf7基因之240bp片段的dsRNA一起抑制西方玉米根蟲之dvsnf7小RNA。改質澱粉/碳水化合物可由諸如pPhL小RNA(降解PhL轉錄物以限制經由澱粉降解形成還原糖)及pR1小RNA(降解R1轉錄物以限制經由澱粉降解形成還原糖)之小RNA產生。另外,由觸發Asn1降解以削弱天冬醯胺形成及減少聚丙烯醯胺之asn1小RNA產生諸如丙烯醯胺減少之益處。最後,pgas ppo抑制小RNA之非褐變表型抑制PPO,從而產生具有非褐變表型之蘋果。以上小RNA清單不意欲為限制性的。本發明涵蓋任何小RNA編碼序列。
6. 可選標記
亦描述為報導基因之各種可選標記可操作地連接於玉蜀黍KN1基因啟動子,該啟動子包含SEQ ID NO:1或與SEQ ID NO:1具有80、85、90、95或99%序列一致性之序列。該可操作地連接之序列可接著併入所選載體中以允許鑑別及選擇經轉型植物(「轉型體」)。許多方法可用於確認可選標記在經轉型植物中之表現,包括例如DNA定序及PCR(聚合酶鏈反應)、南方墨點法、RNA墨點法、用於偵測由載體表現之蛋白質的免疫方法。然而,通常經由目視觀察表現時產生有色產物之蛋白質來觀察報導基因。例示性報導基因為此項技術中已知的且編碼β-葡糖醛酸酶(GUS)、螢光素酶綠色螢光蛋白(GFP)、黃色螢光蛋白(YFP、Phi-YFP)、紅色螢光 蛋白(DsRFP、RFP等)、β-半乳糖苷酶及其類似物(參見Sambrook等人,Molecular Cloning:A Laboratory Manual,第三版,Cold Spring Harbor Press,N.Y.,2001,其內容以全文引用的方式併入本文中)。
採用可選標記基因選擇經轉型細胞或組織。可選標記基因包括編碼抗生素抗性之基因,諸如編碼新黴素磷酸轉移酶II(NEO)、大觀黴素/鏈黴素抗性(AAD)及潮黴素磷酸轉移酶(HPT或HGR)之基因,以及賦予除草化合物抗性的基因。除草劑抗性基因一般編碼對除草劑不敏感的經修飾目標蛋白或在除草劑可作用之前使其在植物中降解或脫毒之酶。舉例而言,已藉由使用編碼突變目標酶5-烯醇丙酮醯莽草酸(shikimate)-3-磷酸合成酶(EPSPS)之基因獲得對草甘膦之抗性。EPSPS之基因及突變體為眾所熟知且進一步描述於下文。已藉由使用編碼PAT或DSM-2、腈酶、AAD-1或AAD-12(各為使其相應除草劑脫毒之蛋白質的實例)之細菌基因獲得對草銨膦、溴苯腈及2,4-二氯苯氧基乙酸酯(2,4-D)之抗性。
在一實施例中,除草劑可抑制生長點或分生組織,包括咪唑啉酮或磺醯脲,且關於此等除草劑之乙醯羥基酸合成酶(AHAS)及乙醯乳酸合成酶(ALS)抗性/耐受性基因為吾人所熟知。草甘膦抗性基因包括突變5-烯醇丙酮醯莽草酸-3-磷酸合成酶(EPSPs)及dgt-28基因(分別經由引入重組核酸及/或天然EPSPs基因之各種形式的活體內突變誘發)、aroA基因及草甘膦乙醯基轉移酶(GAT)基因)。其他膦醯基化合物之抗性基因包括來自包括吸水鏈黴菌(Streptomyces hygroscopicus)及綠色產色鏈黴菌(Streptomyces viridichromogenes)鏈黴菌屬之barpat基因,及吡啶氧基或苯氧基丙酸及環己酮(ACC酶抑制劑編碼基因)。賦予對環己二酮及/或芳氧基苯氧基丙酸(包括精吡氟氯禾靈、禾草靈、精噁唑禾草靈酸、吡氟 禾草靈、喹禾靈)之抗性的例示性基因包括乙醯輔酶A羧化酶(ACC酶)之基因;Acc1-S1、Acc1-S2及Acc1-S3。在一實施例中,除草劑可抑制光合成,包括三嗪(psbA及1s+基因)或苯甲腈(腈酶基因)。此外,此類可選標記可包括陽性選擇標記,諸如磷酸甘露糖異構酶(PMI)。
在一實施例中,可選標記基因包括(但不限於)編碼以下之基因:2,4-D;新黴素磷酸轉移酶II;氰胺水合酶;天冬胺酸激酶;二氫吡啶二羧酸酯合成酶;色胺酸脫羧酶;二氫吡啶二羧酸酯合成酶及脫敏的天冬胺酸激酶;bar基因;色胺酸脫羧酶;新黴素磷酸轉移酶(NEO);潮黴素磷酸轉移酶(HPT或HYG);二氫葉酸還原酶(DHFR);草丁膦乙醯轉移酶;2,2-二氯丙酸去鹵酶;乙醯羥基酸合成酶;5-烯醇丙酮醯莽草酸-磷酸合成酶(aroA);鹵芳基腈酶;乙醯輔酶A羧化酶;二氫葉酸合成酶(sul I);及32kD光系統II多肽(psbA)。一實施例亦包括編碼對以下各物之抗性的可選標記基因:氯黴素;甲胺喋呤;潮黴素;大觀黴素;溴苯腈;草甘膦;及草丁膦。以上可選標記基因清單不意欲為限制性的。本發明涵蓋任何報導體或可選標記基因。
在一些實施例中,合成在植物中最佳表現之編碼序列。舉例而言,在一實施例中,基因之編碼序列已藉由密碼子最佳化而經修飾以增強在植物中之表現。殺昆蟲抗性轉殖基因、除草劑耐受性轉殖基因、氮使用效率轉殖基因、水使用效率轉殖基因、營養品質轉殖基因、DNA結合轉殖基因或可選標記轉殖基因可經最佳化以在特定植物種類中表現,或替代地可經修飾以在雙子葉或單子葉植物中最佳表現。植物較佳密碼子可由所關注之特定植物種類中以最大量表現之蛋白質中的最高頻率密碼子來確定。在一實施例中,編碼序列、基因或轉殖基因經設計以在植物中以較高水準表 現,從而產生較高轉型效率。用於基因之植物最佳化的方法為吾人所熟知。關於合成DNA序列之最佳化及產生的指導可見於例如以引用的方式併入本文中之WO2013016546、WO2011146524、WO1997013402、美國專利第6166302號及美國專利第5380831號。
轉型
適用於植物轉型之方法包括可將DNA引入至細胞中之任何方法,例如且不限於:電穿孔(參見例如美國專利5,384,253);微彈轟擊(參見例如美國專利5,015,580、5,550,318、5,538,880、6,160,208、6,399,861及6,403,865);農桿菌屬介導之轉型(參見例如美國專利5,635,055、5,824,877、5,591,616;5,981,840及6,384,301);及原生質體轉型(參見例如美國專利5,508,184)。
DNA構築體可使用諸如與碳化矽纖維一起攪拌之技術而直接引入至植物細胞之基因組DNA中(參見例如美國專利5,302,523及5,464,765),或DNA構築體可使用諸如DNA粒子轟擊之基因槍方法而直接引入至植物組織(參見例如Klein等人(1987)Nature 327:70-73)。或者,DNA構築體可經由奈米粒子轉型引入至植物細胞中(參見例如美國專利公開案第20090104700號,其以全文引用的方式併入本文中)。
另外,基因轉移可使用非農桿菌屬細菌或病毒來達成,諸如根瘤菌屬(Rhizobium sp.)NGR234、苜蓿中華根瘤菌(Sinorhizoboium meliloti)、百脈根根瘤菌(Mesorhizobium loti)、馬鈴薯病毒X、花椰菜嵌紋病毒及木薯脈花葉病毒及/或菸草花葉病毒,參見例如Chung等人(2006)Trends Plant Sci.11(1):1-4。
經由應用轉型技術,幾乎任何植物種類之細胞可經穩定轉型,且此 等細胞可藉由熟知技術發育成轉殖基因植物。舉例而言,可在棉花轉型之情形下特別適用之技術描述於美國專利第5,846,797號、第5,159,135號、第5,004,863號及第6,624,344號中;尤其用於轉型芸苔屬植物之技術描述於例如美國專利5,750,871中;用於轉型大豆之技術描述於例如美國專利6,384,301中;及用於轉型玉蜀黍之技術描述於例如美國專利7,060,876及5,591,616及國際PCT公開案WO 95/06722中。
在實現外源性核酸傳遞至受體細胞之後,經轉型細胞一般經鑑別以用於進一步培養及植物再生。為了改良鑑別轉型體之能力,吾人可能需要採用可選標記基因與用於生成轉型體之轉型載體。在一說明性實施例中,經轉型細胞群體可藉由使細胞暴露於選擇性藥劑而加以分析,或可針對所需標記基因性狀篩選細胞。
暴露於選擇性藥劑而存活之細胞或已在篩選分析中評分呈陽性之細胞可在支持植物再生之培養基中培養。在一實施例中,任何適合之植物組織培養基可藉由包括諸如生長調節劑之其他物質而經修飾。組織可維持在具有生長調節劑之基礎培養基上直至足夠組織可用於開始嘗試植物再生為止,或隨後重複數輪手動選擇,直至組織形態適用於再生為止(例如至少2週),接著轉移至有利於芽形成的培養基。定期轉移培養物,直至已出現足夠的芽形成為止。一旦芽形成,將其轉移至有利於根形成的培養基。一旦足夠根形成,可將植物轉移至土壤以進一步生長及成熟。
分子確認
經轉型植物細胞、癒合組織、組織或植物可藉由針對由轉型DNA上存在之標記基因編碼之性狀選擇或篩選經工程改造之植物來鑑別及分離。舉例而言,可藉由使經工程改造之植物材料在含有抑制量之抗生素或除草 劑的培養基上生長來進行選擇,轉型基因構築體賦予對該抗生素或除草劑之抗性。另外,經轉型植物及植物細胞亦可藉由篩選可存在於重組核酸構築體上之任何可見標記基因(例如β-葡糖醛酸酶、螢光素酶或綠色螢光蛋白基因)之活性來鑑別。此類選擇及篩選方法為熟習此項技術者所熟知。可用以鑑別轉殖基因植物之分子確認方法為熟習此項技術者已知的。下文進一步描述數個例示性方法。
已描述在序列偵測中使用之分子信標。簡言之,FRET寡核苷酸探針經設計以與側接基因組及插入DNA接合點重疊。FRET探針之獨特結構使其含有保持螢光部分及淬滅部分緊密接近之二級結構。FRET探針及PCR引子(插入DNA序列中之一個引子及側接基因組序列中之一個引子)在熱穩定聚合酶及dNTP存在下循環。在成功PCR擴增之後,FRET探針與目標序列之雜交導致探針二級結構之移除及螢光部分與淬滅部分之空間分離。螢光信號指示由於成功擴增及雜交而存在側接基因組/轉殖基因插入序列。用於以擴增反應形式偵測之此類分子信標分析為本發明之一實施例。
水解探針分析,或稱為TAQMAN®(Life Technologies,Foster City,Calif.),為一種偵測及定量DNA序列之存在的方法。簡言之,FRET寡核苷酸探針設計成具有轉殖基因內之一個寡核苷酸及用於事件特異性偵測之側接基因組序列中之一個寡核苷酸。FRET探針及PCR引子(插入DNA序列中之一個引子及側接基因組序列中之一個引子)在熱穩定聚合酶及dNTP存在下循環。FRET探針之雜交導致FRET探針上之螢光部分裂解及釋放遠離淬滅部分。螢光信號指示由於成功擴增及雜交而存在側接/轉殖基因插入序列。用於以擴增反應形式偵測之此類水解探針分析為本發明之一實施例。
KASPar®分析為一種偵測及定量DNA序列之存在的方法。簡言之,使用稱為KASPar®分析系統之基於聚合酶鏈反應(PCR)之分析篩選包含經整合之基因表現卡匣聚核苷酸之基因組DNA樣品。用於本發明實踐之KASPar®分析可利用含有多個引子之KASPar® PCR分析混合物。用於PCR分析混合物之引子可包含至少一個正向引子及至少一個反向引子。正向引子含有對應於DNA聚核苷酸之特定區的序列,且反向引子含有對應於基因組序列之特定區的序列。另外,用於PCR分析混合物之引子可包含至少一個正向引子及至少一個反向引子。舉例而言,KASPar® PCR分析混合物可使用對應於兩個不同對偶基因之兩個正向引子及一個反向引子。該等正向引子中之一者含有對應於內源性基因組序列之特定區的序列。第二正向引子含有對應於DNA聚核苷酸之特定區的序列。反向引子含有對應於基因組序列之特定區的序列。用於偵測擴增反應之此類KASPar®分析為本發明之一實施例。
在一些實施例中,螢光信號或螢光染料選自由以下組成之群:HEX螢光染料、FAM螢光染料、JOE螢光染料、TET螢光染料、Cy 3螢光染料、Cy 3.5螢光染料、Cy 5螢光染料、Cy 5.5螢光染料、Cy 7螢光染料及ROX螢光染料。
在其他實施例中,使用能夠在可藉由流式細胞測量術偵測之濃度範圍使細胞DNA染色且具有可藉由即時熱循環儀偵測之螢光發射光譜的適合的第二螢光DNA染料進行擴增反應。一般熟習此項技術者應瞭解,其他核酸染料為已知的且不斷地經鑑別。可採用具有適當激發及發射光譜之任何適合之核酸染料,諸如YO-PRO-1®、SYTOX Green®、SYBR Green I®、SYTO11®、SYTO12®、SYTO13®、BOBO®、YOYO®及 TOTO®。在一個實施例中,第二螢光DNA染料為在小於10μM、小於4μM或小於2.7μM下使用之SYTO13®。
在其他實施例中,可使用下一代定序(NGS)進行偵測。如由Brautigma等人,2010所述,DNA序列分析可用於測定經分離及擴增之片段的核苷酸序列。經擴增之片段可經分離及次選殖至載體中且使用鏈終止子方法(亦稱為桑格定序(Sanger sequencing))或染料終止子定序來定序。另外,擴增子可用下一代定序來定序。NGS技術不需要次選殖步驟,且多個定序讀取可在單個反應中完成。三個NGS平台為市售的,亦即來自454 Life Sciences/Roche之Genome Sequencer FLXTM、來自Solexa之Illumina Genome AnalyserTM及Applied Biosystem之SOLiDTM(『藉由寡核苷酸接合及偵測定序(Sequencing by Oligo Ligation and Detection)』之字首語)。另外,存在兩種目前正在開發的單分子定序方法。其包括來自Helicos BioscienceTM之true Single Molecule Sequencing(tSMS)及來自Pacific Biosciences之Single Molecule Real TimeTM定序(SMRT)。
由454 Life Sciences/Roche市售之Genome Sequencher FLXTM為長讀取NGS,其使用乳液PCR及焦磷酸定序以產生定序讀取。可使用300-800bp之DNA片段或含有3-20kb片段之文庫。反應每次運行可產生超過一百萬個讀取的約250至400個鹼基,總共產生250至400兆鹼基。此技術產生最長讀取,但每次運行的總序列輸出與其他NGS技術相比較低。
由SolexaTM市售之Illumina Genome AnalyserTM為短讀取NGS,其使用藉由合成途徑與經螢光染料標記之可逆終止子核苷酸定序且基於固相橋式PCR。可使用構築的含有至多10kb DNA片段之配對的末端定序文庫。反應產生超過一億個短讀取,讀取長度為35-76個鹼基。此資料每次運行 可產生3-6千兆鹼基。
由Applied BiosystemsTM市售之藉由寡核苷酸接合及偵測定序(SOLiD)系統為短讀取技術。此NGS技術使用至多10kb長之片段化雙股DNA。該系統使用藉由經染料標記之寡核苷酸引子接合及乳液PCR產生十億個短讀取來定序,每次運行產生至多30千兆鹼基之總序列輸出。
Helicos BioscienceTM之tSMS及Pacific BiosciencesTM之SMRT應用使用單個DNA分子進行序列反應之不同途徑。tSMS HelicosTM系統每次運行產生至多八億個短讀取,得到21千兆鹼基。此等反應使用經螢光染料標記之虛擬終止子核苷酸完成,其描述為『藉由合成定序』途徑。
由Pacific BiosciencesTM市售之SMRT下一代定序系統使用藉由合成之即時定序。此技術由於不受可逆終止子限制,可產生至多1,000bp長之讀取。使用此技術每天可產生相當於二倍體人類基因組之一倍覆蓋度的原始讀取通量。
在另一實施例中,可使用墨點法分析完成偵測,包括西方墨點法、北方墨點法及南方墨點法。此類墨點法分析為生物學研究中用於生物樣品之鑑別及定量的常用技術。此等分析包括首先藉由電泳在凝膠中分離樣品組分,接著將來自凝膠之電泳分離組分轉移至由諸如硝化纖維素、聚偏二氟乙烯(PVDF)或耐綸之材料製成的轉移膜。分析物亦可直接點樣在此等負載物上或藉由施加真空、毛細作用或壓力引導至負載物上之特定區,而無需事先分離。轉移膜接著通常進行轉移後處理,以增強分析物在視覺上或藉由自動化讀取器彼此區分及偵測之能力。
在另一實施例中,可使用ELISA分析完成偵測,該分析使用固相酶免疫分析以偵測液體樣品或濕潤樣品之物質(通常抗原)之存在。來自樣品 之抗原附著至盤表面。接著,將另一特異性抗體施用在表面上以使其可與抗原結合。此抗體連接至酶且在最終步驟中,添加含有酶受質之物質。後續反應產生可偵測信號,最常為受質中之顏色變化。
轉殖基因植物
在一實施例中,植物、植物組織或植物細胞包含玉蜀黍KN1基因啟動子。在一個實施例中,植物、植物組織或植物細胞包含具有選自SEQ ID NO:1之序列或與選自SEQ ID NO:1之序列具有80%、85%、90%、95%或99.5%序列一致性之序列的玉蜀黍KN1基因啟動子。在一實施例中,植物、植物組織或植物細胞包含可操作地連接於非玉蜀黍KN1基因之基因表現卡匣,該基因表現卡匣包含選自SEQ ID NO:1之序列或與選自SEQ ID NO:1之序列具有80%、85%、90%、95%或99.5%序列一致性之序列。在一說明性實施例中,植物、植物組織或植物細胞包含具有可操作地連接於轉殖基因之玉蜀黍KN1基因啟動子的基因表現卡匣,其中該轉殖基因可為殺昆蟲抗性轉殖基因、除草劑耐受性轉殖基因、氮使用效率轉殖基因、水使用效率轉殖基因、營養品質轉殖基因、DNA結合轉殖基因、可選標記轉殖基因或其組合。
根據一個實施例,提供植物、植物組織或植物細胞,其中該植物、植物組織或植物細胞包含可操作地連接於轉殖基因之源於玉蜀黍KN1基因啟動子之序列,其中該源於玉蜀黍KN1基因啟動子之序列包含序列SEQ ID NO:1或於SEQ ID NO:1具有80%、85%、90%、95%或99.5%序列一致性之序列。在一個實施例中,提供植物、植物組織或植物細胞,其中該植物、植物組織或植物細胞包含可操作地連接於非玉蜀黍KN1基因之SEQ ID NO:1或與SEQ ID NO:1具有80%、85%、90%、95%或99.5%序列一 致性之序列。在一個實施例中,植物、植物組織或植物細胞為雙子葉或單子葉植物或來源於雙子葉或單子葉植物之細胞或組織。在一個實施例中,植物選自由以下組成之群:玉蜀黍、小麥、水稻、高樑、燕麥、黑麥、香蕉、甘蔗、大豆、棉花、向日葵及芥花。在一個實施例中,植物為玉蜀黍。根據一個實施例,植物、植物組織或植物細胞包含可操作地連接於非玉蜀黍KN1基因之SEQ ID NO:1或與SEQ ID NO:1具有80%、85%、90%、95%或99.5%序列一致性之序列。在一個實施例中,植物、植物組織或植物細胞包含可操作地連接於轉殖基因之啟動子,其中該啟動子由SEQ ID NO:1或與SEQ ID NO:1具有80%、85%、90%、95%或99.5%序列一致性之序列組成。根據一個實施例,包含可操作地連接於轉殖基因之玉蜀黍KN1基因啟動子序列的基因構築體併入植物、植物組織或植物細胞之基因組中。
在一實施例中,根據本文所揭示之方法的植物、植物組織或植物細胞可為雙子葉植物。雙子葉植物、植物組織或植物細胞可為(但不限於)苜蓿、菜籽、芥花、印度芥菜、埃塞俄比亞芥菜、大豆、向日葵、棉花、菜豆、椰菜、甘藍菜、花椰菜、芹菜、黃瓜、茄子、萵苣;甜瓜、豌豆、胡椒、花生、馬鈴薯、南瓜、蘿蔔、菠菜、甜菜、向日葵、菸草、番茄及西瓜。
熟習此項技術者應認識到,在外源性序列穩定併入於轉殖基因植物中且確認可操作之後,其可藉由有性雜交引入至其他植物中。可使用多種標準育種技術中之任一者,視待雜交之物種而定。
本發明亦涵蓋上文所述之轉殖基因植物的種子,其中該種子具有含有本發明之基因調節元件的轉殖基因或基因構築體。本發明另外涵蓋上文 所述之轉殖基因植物的子代、純系、細胞株或細胞,其中該子代、純系、細胞株或細胞具有含有本發明之基因調節元件的轉殖基因或基因構築體。
本發明亦涵蓋上文所述之轉殖基因植物的栽培,其中該轉殖基因植物具有含有本發明之基因調節元件的轉殖基因或基因構築體。因此,此類轉殖基因植物可藉由用本發明之核酸分子轉型而經工程改造以尤其具有一或多種所需性狀或含有本發明之基因調節元件的轉殖基因事件,且可藉由熟習此項技術者已知的任何方法修剪或栽培。
表現轉殖基因之方法
在一實施例中,在植物中表現至少一個轉殖基因之方法包含使包含可操作地連接於至少一個轉殖基因或多連接子序列之玉蜀黍KN1基因啟動子之植物生長。在一實施例中,玉蜀黍KN1基因啟動子由選自SEQ ID NO:1之序列或與選自SEQ ID NO:1之序列具有80%、85%、90%、95%或99.5%序列一致性之序列組成。在一實施例中,在植物中表現至少一個轉殖基因之方法包含使包含可操作地連接於至少一個轉殖基因之玉蜀黍KN1基因啟動子之植物生長。在一實施例中,在植物組織或植物細胞中表現至少一個轉殖基因之方法包含培養包含可操作地連接於至少一個轉殖基因之玉蜀黍KN1基因啟動子之植物組織或植物細胞。
在一實施例中,在植物中表現至少一個轉殖基因之方法包含使包含具有可操作地連接於至少一個轉殖基因之玉蜀黍KN1基因啟動子之基因表現卡匣的植物生長。在一個實施例中,玉蜀黍KN1基因啟動子由選自SEQ ID NO:1之序列或與選自SEQ ID NO:1之序列具有80%、85%、90%、95%或99.5%序列一致性之序列組成。在一實施例中,在植物中表現至少一個轉殖基因之方法包含使包含具有可操作地連接於至少一個轉殖基因之 玉蜀黍KN1基因啟動子之基因表現卡匣的植物生長。在一實施例中,在植物中表現至少一個轉殖基因之方法包含使包含具有可操作地連接於至少一個轉殖基因之玉蜀黍KN1基因啟動子之基因表現卡匣的植物生長。在一實施例中,在植物組織或植物細胞中表現至少一個轉殖基因之方法包含培養包含含有可操作地連接於至少一個轉殖基因之玉蜀黍KN1基因啟動子之基因表現卡匣的植物組織或植物細胞。在一實施例中,在植物組織或植物細胞中表現至少一個轉殖基因之方法包含培養包含基因表現卡匣、可操作地連接於至少一個轉殖基因之玉蜀黍KN1基因啟動子的植物組織或植物細胞。
提供以下實例以說明某些具體特徵及/或實施例。實例不應視為將本發明侷限於所例示之具體特徵或實施例。
實例 實例1:來自玉蜀黍KN1基因之最佳化調節元件之組合的新穎設計
來自玉蜀黍KN1基因之啟動子(SEQ ID NO:1)為自玉蜀黍基因組DNA(gDNA)序列鑑別之1,407bp聚核苷酸序列。啟動子序列藉由用玉蜀黍KN1基因對Phytozome資料庫(Goodstein DM,Shu S,Howson R,Neupane R,Hayes RD,Fazo J,Mitros T,Dirks W,Hellsten U,Putnam N,Rokhsar DS(2012)Nucleic Acids Res.40:D1178-1186)進行BLAST來鑑別。分析所得命中結果且選擇單個編碼序列用於進一步分析。為了鑑別新穎的啟動子區,自轉譯起始位點(ATG密碼子)上游擷取1至3kb核苷酸且進行額外電子雜交分析。此等分析包括視需要鑑別任何其他周圍基因之聚核苷酸序列,檢查可能導致基因表現沉默之重複序列的存在或可能含有非編碼外顯子及內含子之5' UTR的存在。基於此等分析,合成玉蜀黍 KN1啟動子序列且繼續另外用於驅動轉殖基因表現。根據橫跨數百萬個鹼基對之鄰接染色體序列的評定,鑑別且分離適用於異源編碼序列表現之1,407bp聚核苷酸序列。此新穎聚核苷酸序列經分析用作調節序列以驅動基因表現。因此,SEQ ID NO:1提供如下:
玉蜀黍KN1啟動子之變體亦設計成含有玉蜀黍乙醇脫氫酶I內含子 6/SEQ ID NO:8之玉米條紋病毒前導序列1(玉蜀黍乙醇脫氫酶I內含子6作為SEQ ID NO:7單獨提供)。玉蜀黍KN1啟動子之此變體稱為玉蜀黍KN1啟動子v2且在本文中揭示為SEQ ID NO:2。因此,SEQ ID NO:2提供如下:
實例2:載體構築(pDAB113372及pDAB1133373)
構建pDAB113372載體以併入調節聚核苷酸序列側接轉殖基因之新穎組合。載體構築體pDAB113372含有基因表現卡匣,其中GUSPlusTM轉殖基因(來自Cambia biosciences之報導基因)由SEQ ID NO:1之玉蜀黍KN1啟動子驅動且側接過氧化物酶5 3 'UTR(美國專利第6,699,984號)。此基因表現卡匣之序列表作為SEQ ID NO:3而提供。載體亦含有可選標記基因表現卡匣,該表現卡匣含有由稻Actin1啟動子(美國專利第5,641,876號)驅動且由玉蜀黍脂肪酶3' UTR(美國專利第7,179,902號)終止之aad-1轉殖基因(美國專利第7,838,733號)。此基因表現卡匣之序列表作為SEQ ID NO:4而提供。此構築體藉由合成新設計的玉蜀黍KN1基因啟動子(ZmKN1啟動子)且使用第三方提供商將該啟動子選殖至GeneArt Seamless CloningTM(Life Technologies)入門載體中來構建。所得入門載體含有驅動GUSPlusTM轉殖基因之玉蜀黍KN1基因啟動子,且使用GatewayTM選殖系統(Life Technologies)整合至目的載體中並電穿孔至由Hood等人(1993,Transgenic Research 2:208-221)構築且描述之根癌農桿菌(Agrobacterium tumefaciens)菌株EHA105中。獲得所得二元質體 pDAB113372之純系且分離質體DNA並經由限制酶消化及定序來確認。所得構築體含有驅動轉殖基因之組成性表現之調節元件的組合。
構建pDAB113373載體以併入調節聚核苷酸序列側接轉殖基因之新穎組合。載體構築體pDAB113373含有基因表現卡匣,其中GUSPlusTM轉殖基因(來自Cambia biosciences之報導基因)由具有玉蜀黍乙醇脫氫酶I內含子6/SEQ ID NO:2之玉米條紋病毒前導序列1的玉蜀黍KN1啟動子融合物驅動且側接玉蜀黍過氧化物酶5 3 'UTR。此基因表現卡匣之序列表作為SEQ ID NO:6而提供。載體亦含有可選標記基因表現卡匣,該表現卡匣含有由稻Actin1啟動子驅動且由玉蜀黍脂肪酶3' UTR終止之aad-1轉殖基因。此基因表現卡匣之序列表作為SEQ ID NO:4而提供。此構築體藉由合成新設計的與玉蜀黍乙醇脫氫酶I內含子6/玉米條紋病毒前導序列1融合之玉蜀黍KN1基因啟動子(ZmKN1啟動子)且使用第三方提供商將該啟動子及內含子調節元件選殖至GeneArt Seamless CloningTM(Life Technologies)入門載體中來構建。所得入門載體含有驅動GUSPlusTM轉殖基因之玉蜀黍KN1基因啟動子及玉蜀黍乙醇脫氫酶I內含子6/玉米條紋病毒前導序列1融合物,且使用GatewayTM選殖系統(Life Technologies)整合至目的載體中並電穿孔至根癌農桿菌菌株EHA105中。獲得所得二元質體pDAB113373之純系且分離質體DNA並經由限制酶消化及定序來確認。所得構築體含有驅動轉殖基因之組成性表現之調節元件的組合。
組裝含有由玉蜀黍泛素-1啟動子(Christensen等人,(1992)Plant Molecular Biology 18;675-689)及玉蜀黍過氧化物酶5 3'UTR調節元件驅動之GUSPlusTM轉殖基因的對照構築體pDAB113352。與pDAB113372中所存在相同的aad-1表現卡匣。此對照構築體使用與pDAB13372相同之試 劑及方案轉型至植物中。
實例3:玉蜀黍轉型 接種根癌農桿菌
將二元表現載體轉型至根癌農桿菌菌株EHA105中。選擇細菌菌落,且分離二元質體DNA並經由限制酶分解來確認。農桿菌屬培養物自丙三醇儲備液劃線且培育生長。在實驗日,將所得農桿菌屬培養物用於玉蜀黍植物之轉型。
玉蜀黍轉型
實驗性構築體經由自近親系玉蜀黍栽培品種B104分離之未成熟胚芽的農桿菌屬介導之轉型而轉型至玉蜀黍中。所用方法類似於由Ishida等人,(1996)Nature Biotechnol 14:745-750及Frame等人,(2006)Plant Cell Rep 25:1024-1034公開之方法,但具有數個修改及改良以使得方法能夠進行高通量轉型。用於產生玉蜀黍之多個轉殖基因事件之方法的實例在美國專利申請公開案第US 2013/0157369 A1號中給出,其以胚芽感染及共培養步驟開始。
實例4:在T0之複本數的分子確認
假定轉殖基因玉蜀黍植物在V2-3葉階段取樣用於使用GUSPlusTMAAD-1定量PCR分析確定轉殖基因存在。使用MagAttract® DNA提取套組(Qiagen)按照製造商說明書自葉沖孔提取總DNA。
為了偵測所關注之基因,使用含有GUSPlusTM基因之經FAM標記之螢光探針及內源性參考基因對照物之經HEX標記之螢光探針的TaqMan®引子/探針組擴增基因特異性DNA片段。
接著,在10μl最終體積之反應物中進行PCR反應,該反應物含有5 μl Roche LightCycler® 480 Probes Master Mix(Roche Applied Sciences,Indianapolis,IN);0.4μl來自10μM儲備液之各引子達到400nM之最終濃度;0.4μl來自5μM儲備液之各探針達到200nM之最終濃度、0.1μl 10%聚乙烯吡咯啶酮(PVP)達到0.1%之最終濃度;2μl 10ng/μl基因組DNA及0.5μl水。DNA在Roche LightCycler® 480系統中在以下條件下擴增:1個循環之95℃持續10分鐘;40個循環之以下3步驟:95℃持續10秒;58℃持續35秒及72℃持續1秒,及最終循環之4℃持續10秒。藉由比較未知樣品之目標(所關注之基因)/參考(轉化酶基因)值(由LightCycler® 480輸出)與GUSPlusTM複本數對照物之目標/參考值來確定Cry34Ab1複本數。
如上文關於GUSPlusTM基因所述,使用內源性參考基因進行AAD-1基因之偵測。
T0植物自交及與玉蜀黍栽培品種B104非轉殖基因轉型系雜交以獲得T1種子。將各測試調節元件構築體之五-六個轉殖基因系或事件繼續用於T1報導體蛋白研究。因此,播種各事件之30-40個T1種子;在V2-3發育階段用SureII®噴灑幼苗以殺死非轉殖基因分離體。
實例5:GUS酶活性之分子確認 發芽
接著,使轉殖基因植物在設定成29℃日間溫度及26℃夜間溫度以及每天14小時照明的溫室環境條件中生長。溫室照明為高壓鈉蒸汽燈及金屬鹵化物燈之混合。來自表2中所定義之事件的T1種子播種3.5cm深,每次填塞至QPlug 60(International Horticultural Technologies)中一個核。種子接著用微細蛭石覆蓋且將QPlug置於溫室中。
階段樣品採集
在標準方法後完成根及葉樣品採集。每一樣品採集根組織的1-cm切片。在V03、V06及V10階段採集葉組織樣品用於轉錄物分析。採集樣品且保存用於RNA提取。將各樣品置於經標記之1.4mL矩陣管(Thermo Scientific)中且用Micronic pierceable TPE capTM(Nova Biostorage Plus)封蓋。樣品管在液氮中急驟冷凍3-5秒且隨後轉移至乾冰上的96孔擱架中。樣品儲存在大致-80℃下。
轉錄物豐度分析
使用MagMAXTM 96總RNA分離套組(Life Technologies)與MagMAXTM Express-96深孔磁性粒子處理儀器以96孔盤型式自冷凍組織樣品分離及純化總RNA。實施樣品加工步驟。進行cDNA合成、定量即時PCR分析及資料分析。目標PhiYFP分析之呈循環閾值(Cq)形式的原始資料相對於內部參考基因歸一化。目標比參考之比率根據式2-(Cq目標-Cq參考)計算得到。計算兩個參考基因歸一化比率之幾何平均值以增加精確性(Vandesompele J,De Preter K,Pattyn F,Poppe B,Van Roy N,De Paepe A,Speleman F(2002)Genome biology 3:research0034)。各組織之樣品使用針對特定組織最佳化之參考基因對的特定組合。
未成熟穗之GUS活性染色及顯微術
自溫室採集未成熟穗,自苞葉剝離出且切割成大致5mm厚的橫截面。穗的切片固定在冰冷的75%丙酮中,簡單抽真空且使其在4℃下固定隔夜。將樣品更換至10mM PBS中,再次抽真空且置於慢速旋轉器上4小時。將樣品更換至新鮮PBS中,且在室溫下在旋轉器上於X-GlcA染色溶液(Sigma-Aldrich)中染色隔夜。樣品接著在新鮮的PBS沖洗且在梯度乙醇 (25、50、75、100%)中脫水。使用Leica M205FA StereomicroscopeTM截取染色穗切片的影像。樣品接著在二甲苯(25、50、75、100%)中清潔且用石蠟浸潤。切片以7μm厚度切割,在二甲苯中去蠟且未染色安置於Polymount-xyleneTM(Polysciences)中。使用Leica DM5000 MicroscopeTM截取切片的影像。
實例6:可操作地連接於玉蜀黍KN1調節元件之基因在作物中的表現概況
如pDAB113372中所提供之SEQ ID NO:1之玉蜀黍KN1啟動子調節元件在玉蜀黍轉殖基因植物事件中產生GUSPlusTM基因之生殖分生組織表現。在分析上文所產生之資料後,確定GUSPlusTM基因在不同組織類型中及在不同發育階段下穩固表現。舉例而言,玉蜀黍KN1啟動子調節元件驅動在諸如發育中的玉蜀黍穗軸及穗絲組織之生殖分生組織中的表現。注意到GUSPlusTM基因在未成熟的雄花中的表現水準低。此外,GUSPlusTM基因在玉蜀黍植物之葉及根中的表現不可偵測。相對地,在經對照構築體pDAB113352轉型之植物事件中觀察到或偵測到GUSPlusTM基因之組成性表現。此構築體pDAB113352之GUSPlusTM轉殖基因在玉蜀黍泛素1啟動子的表現下。所有構築體在所分析之組織中表現aad-1基因。
由此鑑別及表徵新穎的玉蜀黍KN1基因調節元件(SEQ ID NO:1)。首次揭示新穎的啟動子調節元件適用於基因表現構築體。
實例7:可操作地連接於玉蜀黍KN1啟動子之基因的農桿菌屬介導之轉型
大豆可藉由利用專利申請案WO 2007/053482之實例#11或實例#13中先前所描述之相同技術經可操作地連接於玉蜀黍KN1啟動子之基因轉型。
棉花可藉由利用美國專利第7,838,733號之實例#14或專利申請案WO 2007/053482(Wright等人)之實例#12中先前所描述之相同技術經可操作 地連接於玉蜀黍KN1啟動子之基因轉型。
芥花可藉由利用美國專利第7,838,733號之實例#26或專利申請案WO 2007/053482(Wright等人)之實例#22中先前所描述之相同技術經可操作地連接於玉蜀黍KN1啟動子之基因轉型。
小麥可藉由利用專利申請案WO 2013/116700A1(Lira等人)之實例#23中先前所描述之相同技術經可操作地連接於玉蜀黍KN1啟動子之基因轉型。
水稻可藉由利用專利申請案WO 2013/116700A1(Lira等人)之實例#19中先前所描述之相同技術經可操作地連接於玉蜀黍KN1啟動子之基因轉型。
實例8:可操作地連接於玉蜀黍KN1調節元件中基因的農桿菌屬介導之轉型
根據本發明,額外作物可根據本發明之實施例使用此項技術中已知的技術來轉型。關於農桿菌屬介導之黑麥轉型,參見例如Popelka JC,Xu J,Altpeter F.,「Generation of rye with low transgene copy number after biolistic gene transfer and production of(Secale cereale L.)plants instantly marker-free transgenic rye」Transgenic Res.2003年10月;12(5):587-96)。關於農桿菌屬介導之高樑轉型,參見例如Zhao等人,「Agrobacterium-mediated sorghum transformation,」Plant Mol Biol.2000年12月;44(6):789-98。關於農桿菌屬介導之大麥轉型,參見例如Tingay等人,「Agrobacterium tumefaciens-mediated barley transformation」The Plant Journal,(1997)11:1369-1376。關於農桿菌屬介導之小麥轉型,參見例如Cheng等人,「Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens」Plant Physiol.1997年11月;115(3):971-980。關於農桿菌屬介導之水稻轉型,參見例如Hiei等人,「Transformation of rice mediated by Agrobacterium tumefaciens」Plant Mol.Biol.1997年9月;35(1-2):205-18。
此等及其他植物之拉丁名在下文給出。應清楚,其他(非農桿菌屬)轉型技術可用於將可操作地連接於玉蜀黍KN1啟動子之基因例如轉型至此等及其他植物中。實例包括(但不限於):玉米(玉蜀黍)、小麥(小麥屬(Triticum spp.))、水稻(稻屬(Oryza spp.)及菰屬(Zizania spp.))、大麥(大麥屬(Hordeum spp.))、棉花(水麻(Abroma augusta)及棉屬(Gossypium spp.))、大豆(大豆(Glycine max))、糖及食用甜菜(甜菜屬(Beta spp.))、甘蔗(桄榔(Arenga pinnata))、番茄(番茄(Lycopersicon esculentum)及其他種、黏果酸漿(Physalis ixocarpa)、黃水茄(Solanum incanum)及其他種,及樹番茄(Cyphomandra betacea))、馬鈴薯(馬鈴薯(Solanum tuberosum))、甘薯(甘薯(Ipomoea batatas))、黑麥(黑麥屬(Secale spp.))、胡椒(甜椒(Capsicum annuum)、中國辣椒(Capsicum chinense)及小米椒(Capsicum frutescens))、萵苣(萵苣(Lactuca sativa)、山萵菊(Lactuca perennis)及藍萵苣(Lactuca pulchella))、甘藍菜(芸苔屬)、芹菜(芹菜(Apium graveolens))、茄子(茄子(Solanum melongena))、花生(落花生(Arachis hypogea))、高樑(高樑屬(Sorghum spp.))、苜蓿(紫花苜蓿(Medicago sativa))、胡蘿蔔(野胡蘿蔔(Daucus carota))、菜豆(菜豆屬(Phaseolus spp.)及其他屬)、燕麥(燕麥(Avena sativa)及毛燕麥(Avena strigosa)、豌豆(豌豆屬(Pisum)、豇豆屬(Vigna)及翅莢豌豆屬 (Tetragonolobus spp.))、向日葵(向日葵(Helianthus annuus))、南瓜(南瓜屬(Cucurbita spp.))、黃瓜(黃瓜(Cucumis sativa))、菸草(菸草屬(Nicotiana spp.))、芥菜屬(擬南芥)、草皮草(黑麥草屬(Lolium)、剪股穎屬(Agrostis)、早熟禾屬(Poa)、狗牙根屬(Cynodon)及其他屬)、三葉草(車軸草屬(Trifolium))、野豌豆(野豌豆屬(Vicia))。此類植物經例如可操作地連接於擬南芥泛素10之3' UTR的基因轉型涵蓋在本發明之實施例中。
使用玉蜀黍KN1啟動子驅動經可操作地連接之基因可用於許多落葉樹及常青樹種類。此類應用亦在本發明實施例之範疇內。此等種類包括(但不限於):榿木(赤楊屬(Alnus spp.))、白蠟木(白蠟樹屬(Fraxinus spp.))、山楊及白楊種類(白楊屬(Populus spp.))、山毛櫸(山毛櫸屬(Fagus spp.))、樺樹(樺屬(Betula spp.))、櫻桃木(李屬(Prunus spp.))、桉樹(桉屬(Eucalyptus spp.))、山核桃木(山核桃屬(Carya spp.))、楓樹(槭屬(Acer spp.))、橡樹(櫟屬(Quercus spp.))及松樹(松屬(Pinus spp.))。
使用玉蜀黍KN1啟動子驅動經可操作地連接之基因可用於許多觀賞植物及掛果種類。此類應用亦在本發明實施例之範疇內。實例包括(但不限於):玫瑰(薔薇屬(Rosa spp.))、紫衛矛(衛矛屬(Euonymus spp.))、矮牽牛(矮牽牛屬(Petunia spp.))、秋海棠(秋海棠屬(Begonia spp.))、杜鵑花(杜鵑花屬(Rhododendron spp.))、海棠果或蘋果(蘋果屬(Malus spp.))、梨(梨屬(Pyrus spp.))、桃(李屬(Prunus spp.))及金盞花(萬壽菊屬(Tagetes spp.))。
儘管上文已論述多個例示性態樣及實施例,但熟習此項技術者應認 識到某些修改、排列、添加及其子組合。因此,預期以下隨附申請專利範圍及下文引入之申請專利範圍解釋為包括在其真正精神及範疇內之所有此類修改、排列、添加及子組合。
<110> 美商道禮責任有限公司 約翰 戴維斯 大衛 曼恩 詹姆士 派翠克 康乃爾 威廉 T 賓森 四世
<120> 用於轉殖基因表現之植物啟動子
<130> 77670-US-PSP
<160> 8
<170> PatentIn version 3.5
<210> 1
<211> 1407
<212> DNA
<213> 玉蜀黍
<400> 1
<210> 2
<211> 1938
<212> DNA
<213> 人工序列
<220>
<223> 玉蜀黍KN1基因啟動子及玉蜀黍乙醇脫氫酶I內含子6/玉米條紋病毒 前導序列1
<400> 2
<210> 3
<211> 4002
<212> DNA
<213> 人工序列
<220>
<223> 含有由玉蜀黍KN1啟動子驅動且側接玉蜀黍過氧化物酶5 3 'UTR之 GUSPlus轉殖基因的基因表現卡匣
<400> 3
<210> 4
<211> 2673
<212> DNA
<213> 人工序列
<220>
<223> 含有由稻Actin1啟動子驅動且側接玉蜀黍脂肪酶3' UTR之aad-1 轉殖基因的基因表現卡匣
<400> 4
<210> 5
<211> 7153
<212> DNA
<213> 玉蜀黍
<400> 5
<210> 6
<211> 4533
<212> DNA
<213> 人工序列
<220>
<223> 含有由具有玉蜀黍乙醇脫氫酶I內含子6/玉米條紋病毒前導序列1之玉蜀黍KN1啟動子融合物驅動且側接玉蜀黍過氧化物酶5 3 'UTR之GUSPlus轉殖基因的基因表現卡匣
<400> 6
<210> 7
<211> 372
<212> DNA
<213> 玉蜀黍
<400> 7
<210> 8
<211> 531
<212> DNA
<213> 人工序列
<220>
<223> 玉蜀黍乙醇脫氫酶I內含子6/玉米條紋病毒前導序列1融合物聚核苷酸序列
<400> 8

Claims (57)

  1. 一種核酸載體,其包含啟動子可操作地連接於:a)多連接子(polylinker)序列;b)非玉蜀黍KN1基因;或c)a)與b)之組合,其中該啟動子包含與SEQ ID NO:1具有至少90%序列一致性之聚核苷酸序列。
  2. 如請求項1之核酸載體,其中該啟動子為1,407bp長。
  3. 如請求項1之核酸載體,其中該啟動子係由與SEQ ID NO:1具有至少90%序列一致性之聚核苷酸序列組成。
  4. 如請求項1至3中任一項之核酸載體,其另外包含編碼可選標記之序列。
  5. 如請求項1之核酸載體,其中該啟動子可操作地連接於轉殖基因。
  6. 如請求項5之核酸載體,其中該轉殖基因編碼賦予殺昆蟲抗性、除草劑耐受性、氮使用效率、水使用效率、RNAi表現或營養品質之可選標記或基因產物。
  7. 如請求項1至3或5中任一項之核酸載體,其另外包含3'非轉譯聚核苷 酸序列。
  8. 如請求項1至3或5中任一項之核酸載體,其另外包含5'非轉譯聚核苷酸序列。
  9. 如請求項1至3或5中任一項之核酸載體,其另外包含內含子序列。
  10. 如請求項1之核酸載體,其中該啟動子具有生殖分生組織特異性表現。
  11. 一種用於產生轉殖基因植物之方法,其包含以下步驟:a)用包含與SEQ ID NO:1具有至少90%序列一致性之聚核苷酸序列可操作地連接於轉殖基因的基因表現卡匣轉型植物細胞;b)分離包含該基因表現卡匣之經轉型植物細胞;及c)使該經轉型植物細胞再生成轉殖基因植物。
  12. 如請求項11之方法,其中該轉殖基因植物選自由以下組成之群:玉蜀黍(Zea mays)、小麥、水稻、高樑、燕麥、黑麥、香蕉、甘蔗、大豆、棉花、芥菜屬(Arabidopsis)、菸草、向日葵及芥花(canola)。
  13. 如請求項12之方法,其中該轉殖基因植物為玉蜀黍。
  14. 如請求項11至13中任一項之方法,其中該轉殖基因插入該植物之基 因組中。
  15. 如請求項11之方法,其中該基因表現卡匣另外包含與SEQ ID NO:1具有至少90%序列一致性之聚核苷酸序列的啟動子且該啟動子可操作地連接於轉殖基因。
  16. 如請求項15之方法,其中該基因表現卡匣另外包含3'非轉譯序列。
  17. 如請求項15之方法,其中該轉殖基因具有生殖分生組織特異性表現。
  18. 如請求項15之方法,其中該啟動子為1,407bp長。
  19. 一種用於產生轉殖基因植物細胞之方法,該方法包含以下步驟:a)用包含玉蜀黍KN1啟動子可操作地連接於至少一個所關注之聚核苷酸序列之基因表現卡匣轉型植物細胞;b)分離包含該基因表現卡匣之經轉型植物細胞;及,c)產生包含玉蜀黍KN1啟動子可操作地連接於至少一個所關注之聚核苷酸序列之轉殖基因植物細胞。
  20. 如請求項19之方法,其中轉型植物細胞係用植物轉型方法來進行。
  21. 如請求項20之方法,其中該植物轉型方法選自由以下組成之群:農 桿菌屬(Agrobacterium)介導之轉型方法、基因槍(biolistics)轉型方法、碳化矽轉型方法、原生質體轉型方法及脂質體轉型方法。
  22. 如請求項19之方法,其中該所關注之聚核苷酸序列組成性表現在該轉殖基因植物細胞中。
  23. 如請求項19之方法,其中該所關注之聚核苷酸序列穩定整合至該轉殖基因植物細胞之基因組中。
  24. 如請求項19之方法,該方法另外包含以下步驟:d)使該轉殖基因植物細胞再生成轉殖基因植物;及,e)獲得該轉殖基因植物,其中該轉殖基因植物包含基因表現卡匣,其包含如請求項1之玉蜀黍KN1啟動子可操作地連接於至少一個所關注之聚核苷酸序列。
  25. 如請求項19之方法,其中該轉殖基因植物細胞為單子葉轉殖基因植物細胞或雙子葉轉殖基因植物細胞。
  26. 如請求項25之方法,其中該雙子葉轉殖基因植物細胞選自由以下組成之群:芥菜屬植物細胞、菸草植物細胞、大豆植物細胞、芥花植物細胞及棉花植物細胞。
  27. 如請求項25之方法,其中該單子葉轉殖基因植物細胞選自由以下組 成之群:玉蜀黍植物細胞、水稻植物細胞及小麥植物細胞。
  28. 如請求項19之方法,其中該玉蜀黍KN1啟動子包含SEQ ID NO:1之聚核苷酸。
  29. 如請求項28之方法,其中該玉蜀黍KN1啟動子另外包含所關注之第一聚核苷酸序列可操作地連接於SEQ ID NO:1之3'端。
  30. 一種用於在植物細胞中表現所關注之聚核苷酸序列的方法,該方法包含將所關注之聚核苷酸序列可操作地連接於玉蜀黍KN1啟動子引入該植物細胞中。
  31. 如請求項30之方法,其中該所關注之聚核苷酸序列可操作地連接於玉蜀黍KN1啟動子係藉由植物轉型方法引入該植物細胞中。
  32. 如請求項31之方法,其中該植物轉型方法選自由以下組成之群:農桿菌屬介導之轉型方法、基因槍轉型方法、碳化矽轉型方法、原生質體轉型方法及脂質體轉型方法。
  33. 如請求項30之方法,其中該所關注之聚核苷酸序列表現於生殖分生組織中。
  34. 如請求項30之方法,其中該所關注之聚核苷酸序列穩定整合至該植 物細胞之基因組中。
  35. 如請求項30之方法,其中該轉殖基因植物細胞為單子葉植物細胞或雙子葉植物細胞。
  36. 如請求項35之方法,其中該雙子葉植物細胞選自由以下組成之群:芥菜屬植物細胞、菸草植物細胞、大豆植物細胞、芥花植物細胞及棉花植物細胞。
  37. 如請求項35之方法,其中該單子葉植物細胞選自由以下組成之群:玉蜀黍植物細胞、水稻植物細胞及小麥植物細胞。
  38. 一種轉殖基因植物細胞,其包含玉蜀黍KN1啟動子。
  39. 如請求項38之轉殖基因植物細胞,其中該轉殖基因植物細胞包含轉殖基因事件。
  40. 如請求項39之轉殖基因植物細胞,其中該轉殖基因事件包含農藝性狀。
  41. 如請求項40之轉殖基因植物細胞,其中該農藝性狀選自由以下組成之群:殺昆蟲抗性性狀、除草劑耐受性性狀、氮使用效率性狀、水使用效率性狀、營養品質性狀、DNA結合性狀、可選標記性狀、小RNA性狀或 其任何組合。
  42. 如請求項41之轉殖基因植物細胞,其中該農藝性狀包含除草劑耐受性性狀。
  43. 如請求項42之轉殖基因植物細胞,其中該除草劑耐受性性狀包含aad-1編碼序列。
  44. 如請求項38之轉殖基因植物細胞,其中該轉殖基因植物細胞產生商品。
  45. 如請求項44之轉殖基因植物細胞,其中該商品選自由以下組成之群:蛋白濃縮物、蛋白分離物、穀物、粉料(meal)、麵粉(flour)、油或纖維。
  46. 如請求項45之轉殖基因植物細胞,其中該轉殖基因植物細胞選自由雙子葉植物細胞或單子葉植物細胞組成之群。
  47. 如請求項46之轉殖基因植物細胞,其中該單子葉植物細胞為玉蜀黍植物細胞。
  48. 如請求項38之轉殖基因植物細胞,其中該玉蜀黍KN1啟動子包含與SEQ ID NO:1之聚核苷酸具有至少90%序列一致性之聚核苷酸。
  49. 如請求項48之轉殖基因植物細胞,其中該玉蜀黍KN1啟動子為1,407bp長。
  50. 如請求項48之轉殖基因植物細胞,其中該玉蜀黍KN1啟動子由SEQ ID NO:1組成。
  51. 如請求項48之轉殖基因植物細胞,其另外包含所關注之第一聚核苷酸序列可操作地連接於SEQ ID NO:1之3'端。
  52. 如請求項41之轉殖基因植物細胞,其中該農藝性狀表現於生殖分生組織中。
  53. 一種經分離之聚核苷酸,其包含與SEQ ID NO:1之聚核苷酸具有至少90%序列一致性之核酸序列。
  54. 如請求項53之經分離之聚核苷酸,其具有生殖分生組織特異性表現。
  55. 如請求項53之經分離之聚核苷酸,其在植物細胞內具有表現活性。
  56. 如請求項53之經分離之聚核苷酸,其另外包含編碼多肽之開放閱讀框架聚核苷酸;及終止序列。
  57. 如請求項53之經分離之聚核苷酸,其中SEQ ID NO:1之聚核苷酸為1,407bp長。
TW105134199A 2015-10-22 2016-10-21 用於轉殖基因表現之植物啟動子 TW201723182A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201562244843P 2015-10-22 2015-10-22

Publications (1)

Publication Number Publication Date
TW201723182A true TW201723182A (zh) 2017-07-01

Family

ID=57346046

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134199A TW201723182A (zh) 2015-10-22 2016-10-21 用於轉殖基因表現之植物啟動子

Country Status (9)

Country Link
US (2) US10280429B2 (zh)
EP (1) EP3365451B1 (zh)
CN (1) CN108473997B (zh)
AR (1) AR106436A1 (zh)
AU (1) AU2016340893B2 (zh)
CA (1) CA3002151A1 (zh)
TW (1) TW201723182A (zh)
UY (1) UY36957A (zh)
WO (1) WO2017070298A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063649A (zh) * 2020-09-08 2020-12-11 南京农业大学 一种可见光下裸眼可视的植物遗传转化的无损筛选系统、构建方法及其应用

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2011914A (en) 1928-06-29 1935-08-20 Du Pont Fibrous material and process of producing it
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5750871A (en) 1986-05-29 1998-05-12 Calgene, Inc. Transformation and foreign gene expression in Brassica species
US5004863B2 (en) 1986-12-03 2000-10-17 Agracetus Genetic engineering of cotton plants and lines
EP0270496B1 (de) 1986-12-05 1993-03-17 Ciba-Geigy Ag Verbessertes Verfahren zur Transformation von pflanzlichen Protoplasten
US5015580A (en) 1987-07-29 1991-05-14 Agracetus Particle-mediated transformation of soybean plants and lines
US5244802A (en) 1987-11-18 1993-09-14 Phytogen Regeneration of cotton
US5416011A (en) 1988-07-22 1995-05-16 Monsanto Company Method for soybean transformation and regeneration
US5302523A (en) 1989-06-21 1994-04-12 Zeneca Limited Transformation of plant cells
US5550318A (en) 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US7705215B1 (en) 1990-04-17 2010-04-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5641876A (en) 1990-01-05 1997-06-24 Cornell Research Foundation, Inc. Rice actin gene and promoter
WO1991010725A1 (en) 1990-01-22 1991-07-25 Dekalb Plant Genetics Fertile transgenic corn plants
US5484956A (en) 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
US6403865B1 (en) 1990-08-24 2002-06-11 Syngenta Investment Corp. Method of producing transgenic maize using direct transformation of commercially important genotypes
US5384253A (en) 1990-12-28 1995-01-24 Dekalb Genetics Corporation Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes
US5420032A (en) 1991-12-23 1995-05-30 Universitge Laval Homing endonuclease which originates from chlamydomonas eugametos and recognizes and cleaves a 15, 17 or 19 degenerate double stranded nucleotide sequence
US5792632A (en) 1992-05-05 1998-08-11 Institut Pasteur Nucleotide sequence encoding the enzyme I-SceI and the uses thereof
US7060876B2 (en) 1992-07-07 2006-06-13 Japan Tobacco Inc. Method for transforming monocotyledons
EP0604662B1 (en) 1992-07-07 2008-06-18 Japan Tobacco Inc. Method of transforming monocotyledon
CA2148499C (en) 1993-09-03 2006-07-11 Hideaki Saito Method for transforming monocotyledons using scutella of immature embryos
US5635055A (en) 1994-07-19 1997-06-03 Exxon Research & Engineering Company Membrane process for increasing conversion of catalytic cracking or thermal cracking units (law011)
US5846797A (en) 1995-10-04 1998-12-08 Calgene, Inc. Cotton transformation
ES2330168T3 (es) 1995-10-13 2009-12-04 Dow Agrosciences Llc Gen mopdificado de bacillus thuringiensis para combatir los lepidopteros en plantas.
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
GB9710807D0 (en) 1997-05-23 1997-07-23 Medical Res Council Nucleic acid binding proteins
GB9710809D0 (en) 1997-05-23 1997-07-23 Medical Res Council Nucleic acid binding proteins
DK0991764T3 (da) 1997-06-12 2006-11-13 Dow Agrosciences Llc Regulatoriske sekvenser for transgene planter
US6140081A (en) 1998-10-16 2000-10-31 The Scripps Research Institute Zinc finger binding domains for GNN
WO2000031249A1 (en) * 1998-11-24 2000-06-02 Pioneer Hi-Bred International, Inc. Root-preferred promoters and their use
DE19857654A1 (de) * 1998-12-14 2000-06-15 Max Planck Gesellschaft Beeinflussung des Blühverhaltens von Pflanzen durch Expression Saccharose-spaltender Proteine
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6453242B1 (en) 1999-01-12 2002-09-17 Sangamo Biosciences, Inc. Selection of sites for targeting by zinc finger proteins and methods of designing zinc finger proteins to bind to preselected sites
WO2000042207A2 (en) 1999-01-14 2000-07-20 Monsanto Technology Llc Soybean transformation method
US6794136B1 (en) 2000-11-20 2004-09-21 Sangamo Biosciences, Inc. Iterative optimization in the design of binding proteins
PT1240340E (pt) * 1999-12-16 2012-08-01 Monsanto Technology Llc Construções de dna para expressão de polipéptidos heterólogos em plantas
JP2002060786A (ja) 2000-08-23 2002-02-26 Kao Corp 硬質表面用殺菌防汚剤
JP2005500061A (ja) 2001-08-20 2005-01-06 ザ スクリップス リサーチ インスティテュート Cnnについての亜鉛フィンガー結合ドメイン
CA2490274A1 (en) 2002-06-27 2004-01-08 Dow Agrosciences Llc Use of regulatory sequences in transgenic plants
HUE035897T2 (en) * 2003-06-23 2018-05-28 Pioneer Hi Bred Int Incorporating the green-capability of a single gene-controlled option into the plant
EP2308977B2 (en) 2004-04-30 2017-04-26 Dow AgroSciences LLC Novel herbicide resistance gene
EP1817419B1 (en) * 2004-11-25 2013-02-27 CropDesign N.V. Plants having increased yield and a method for making the same
US8021867B2 (en) 2005-10-18 2011-09-20 Duke University Rationally-designed meganucleases with altered sequence specificity and DNA-binding affinity
BRPI0618025B1 (pt) 2005-10-28 2016-12-27 Dow Agrosciences Llc método para controlar ervas daninhas em uma área, polinucleotídeo isolado, célula de planta e planta resistente a herbicida
US7838729B2 (en) 2007-02-26 2010-11-23 Monsanto Technology Llc Chloroplast transit peptides for efficient targeting of DMO and uses thereof
WO2009026580A2 (en) * 2007-08-23 2009-02-26 Pioneer Hi-Bred International, Inc. Maize promoter active in silk and pericarp tissues
US8722410B2 (en) 2007-10-05 2014-05-13 Dow Agrosciences, Llc. Methods for transferring molecular substances into plant cells
CA2743707A1 (en) * 2008-12-04 2010-06-10 Pioneer Hi-Bred International, Inc. Methods and compositions for enhanced yield by targeted expression of knotted1
US20110239315A1 (en) 2009-01-12 2011-09-29 Ulla Bonas Modular dna-binding domains and methods of use
EP2206723A1 (en) 2009-01-12 2010-07-14 Bonas, Ulla Modular DNA-binding domains
JP2012519486A (ja) * 2009-03-05 2012-08-30 ローム アンド ハース カンパニー 植物におけるエチレン感受性を調節する鍵となるエチレンホルモンシグナル伝達経路タンパク質の標的ターンオーバーの制御
EP3156062A1 (en) 2010-05-17 2017-04-19 Sangamo BioSciences, Inc. Novel dna-binding proteins and uses thereof
TW201144442A (en) 2010-05-17 2011-12-16 Dow Agrosciences Llc Production of DHA and other LC-PUFAs in plants
TW201307553A (zh) 2011-07-26 2013-02-16 Dow Agrosciences Llc 在植物中生產二十二碳六烯酸(dha)及其他長鏈多元不飽和脂肪酸(lc-pufa)之技術
WO2013090734A1 (en) 2011-12-15 2013-06-20 Dow Agrosciences Llc Method for improved transformation using agrobacterium
MX344968B (es) 2012-02-01 2017-01-12 Dow Agrosciences Llc Peptido de transito al cloroplasto.
TW201538518A (zh) * 2014-02-28 2015-10-16 Dow Agrosciences Llc 藉由嵌合基因調控元件所賦予之根部特異性表現

Also Published As

Publication number Publication date
UY36957A (es) 2017-05-31
AR106436A1 (es) 2018-01-17
US10280429B2 (en) 2019-05-07
EP3365451A1 (en) 2018-08-29
WO2017070298A1 (en) 2017-04-27
AU2016340893A1 (en) 2018-04-26
US20170114355A1 (en) 2017-04-27
US10731171B2 (en) 2020-08-04
CA3002151A1 (en) 2017-04-27
AU2016340893B2 (en) 2019-06-27
CN108473997B (zh) 2022-04-12
US20190161762A1 (en) 2019-05-30
CN108473997A (zh) 2018-08-31
EP3365451B1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
US20170081676A1 (en) Plant promoter and 3&#39; utr for transgene expression
TW201718864A (zh) 用於轉殖基因表現之植物啟動子及3&#39; utr
US10294485B2 (en) Plant promoter and 3′ UTR for transgene expression
US20190040404A1 (en) Plant promoter and 3&#39; utr for transgene expression
AU2023200524B2 (en) Plant promoter and 3&#39;utr for transgene expression
TW201805425A (zh) 用於轉殖基因表現之植物啟動子與3’utr
TW201814046A (zh) 用於轉殖基因表現之植物啟動子
TW201805424A (zh) 用於轉殖基因表現之植物啟動子與3’ utr
US10731171B2 (en) Plant promoter for transgene expression
TW201643251A (zh) 用於轉殖基因表現之植物啟動子
AU2017259115B2 (en) Plant promoter and 3&#39;UTR for transgene expression
WO2019060145A1 (en) USE OF A NON-TRANSLATED CORN REGION FOR TRANSGENIC EXPRESSION IN PLANTS
TW201643250A (zh) 用於轉殖基因表現之植物啟動子
TW201736600A (zh) 用於轉殖基因表現之植物啟動子及3’utr
TW201723183A (zh) 用於轉殖基因表現之植物啟動子