TW201719914A - Photovoltaic element and method for manufacturing same - Google Patents

Photovoltaic element and method for manufacturing same Download PDF

Info

Publication number
TW201719914A
TW201719914A TW105123720A TW105123720A TW201719914A TW 201719914 A TW201719914 A TW 201719914A TW 105123720 A TW105123720 A TW 105123720A TW 105123720 A TW105123720 A TW 105123720A TW 201719914 A TW201719914 A TW 201719914A
Authority
TW
Taiwan
Prior art keywords
layer
copper
transparent conductive
power generation
amorphous semiconductor
Prior art date
Application number
TW105123720A
Other languages
Chinese (zh)
Inventor
Kimikazu HASHIMOTO
Eiji Kobayashi
Seiji Sato
Original Assignee
Choshu Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Choshu Industry Co Ltd filed Critical Choshu Industry Co Ltd
Publication of TW201719914A publication Critical patent/TW201719914A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided are: a photovoltaic element that has a low contact resistance in a collecting electrode, and that can increase conversion efficiency since the collecting electrode is formed with thin wires; and a method for manufacturing the photovoltaic element. The photovoltaic element is provided with: a layer structural body that has a transparent conductive film at least as an outermost layer on one side and that generates an electromotive force through photoirradiation; and a linear collecting electrode arranged on the outer surface of the transparent conductive film. The collecting electrode is characterized by having: a barrier layer that is layered on the outer surface of the transparent conductive film and that contains silver, copper, and at least one of palladium and gallium; and a copper layer that is layered on the outer surface of the barrier layer and of which the main ingredient is copper. The layer structural body preferably further has: a p-type or n-type crystal semiconductor substrate; a first true amorphous semiconductor layer and a p-type amorphous semiconductor layer that are layered in this order on one surface side of the crystal semiconductor substrate; and a n-layer side intermediate layer and a n-type amorphous semiconductor layer that are layered in this order on the other surface side of the crystal semiconductor substrate.

Description

光發電元件及其製造方法Photoelectric power generation element and method of manufacturing same

本發明涉及光發電元件及其製造方法。The present invention relates to a photovoltaic power generation element and a method of manufacturing the same.

近年來,太陽能電池作為不產生CO2 等溫室效應氣體的清潔的發電手段或者作為代替核能發電的操作安全性高的發電手段而特別受到注目。作為太陽能電池(光發電元件),廣泛使用的是在外表面設有透明導電膜的層結構的電池,在該透明導電體的外表面配設有用於收集所產生的電的集電極。In recent years, solar cells have been attracting attention as a clean power generation means that does not generate a greenhouse gas such as CO 2 or as a power generation means that is highly safe in operation in place of nuclear power generation. As a solar cell (photovoltaic element), a battery having a layer structure in which a transparent conductive film is provided on the outer surface is widely used, and a collector for collecting generated electric current is disposed on the outer surface of the transparent conductor.

配設在外表面的集電極為線狀,並且可以通過將該集電極細線化來增加光獲取量。作為形成被細線化的集電極的方法,公開了利用使用了抗蝕劑膜(也稱作掩模等)的鍍敷處理來形成集電極的方法(參照日本特開2010-98232號公報)。但是,若將集電極細線化,則與透明導電膜的接觸電阻變大,並且相對於沿著該集電極流入的電流的電阻損失變大,無法充分取出發電的電力。為此,作為集電極,較佳使用沿著線狀電極的方向的導電性良好的金屬,在上述公報中還利用鍍敷處理形成鍍銀電極層。但是,在進行鍍銀的情況下,在鍍敷液中通常使用氰化銀等,從安全性等方面出發,期望形成包含其他金屬的鍍敷層。The collector disposed on the outer surface is linear, and the amount of light acquisition can be increased by thinning the collector. As a method of forming a thinned collector, a method of forming a collector by a plating process using a resist film (also referred to as a mask) is disclosed (refer to Japanese Laid-Open Patent Publication No. 2010-98232). However, when the collector is thinned, the contact resistance with the transparent conductive film increases, and the electric resistance loss with respect to the current flowing along the collector increases, and the generated electric power cannot be sufficiently taken out. Therefore, as the collector, it is preferable to use a metal having good conductivity along the direction of the linear electrode, and in the above publication, a silver plating electrode layer is formed by a plating treatment. However, in the case of silver plating, silver cyanide or the like is usually used for the plating liquid, and it is desirable to form a plating layer containing another metal from the viewpoint of safety and the like.

為此,考慮利用導電性僅次於銀的銅來形成鍍敷層。但是,銅容易氧化,並且透明導電膜通常由氧化物形成。因此,在將銅層疊在透明導電膜上的情況下,銅容易在與透明導電膜的介面發生氧化,使接觸電阻上升。另外,銅容易產生因退火而向透明導電膜側的擴散,這也是導電性降低的主要原因。For this reason, it is considered to form a plating layer by using copper which is second only to silver in conductivity. However, copper is easily oxidized, and a transparent conductive film is usually formed of an oxide. Therefore, in the case where copper is laminated on the transparent conductive film, copper is easily oxidized at the interface with the transparent conductive film to increase the contact resistance. Further, copper tends to diffuse toward the transparent conductive film side by annealing, which is also a cause of a decrease in conductivity.

現有技術文獻 專利文獻 專利文獻1:日本特開2010-98232號公報PRIOR ART DOCUMENT Patent Document Patent Document 1: Japanese Patent Laid-Open Publication No. 2010-98232

發明要解決的課題Problem to be solved by the invention

本發明為基於以上所述的情況完成的發明,其目的在於,提供集電極的接觸電阻小、能夠利用集電極的細線化來提高轉換效率的光發電元件及其製造方法。The present invention has been made in view of the above circumstances, and an object of the invention is to provide a photovoltaic power generation element which has a small contact resistance of a collecting electrode and can improve conversion efficiency by thinning of a collecting electrode, and a method of manufacturing the same.

用於解決課題的手段Means for solving problems

為了解決上述課題而完成的本發明為一種光發電元件,其特徵在於,其是包含具有透明導電膜作為至少一方的最外層且利用光照射產生電動勢的層結構體、和配設在上述透明導電膜的外表面的線狀集電極的光發電元件,上述集電極具有層疊在上述透明導電膜的外表面的阻擋層和層疊在該阻擋層的外表面且包含銅作為主成分的銅層,所述阻擋層包含鈀及鎵中的至少一種、銀和銅。The present invention has been made in order to solve the above problems, and is a photovoltaic device comprising a layered structure including at least one outermost layer having a transparent conductive film and generating an electromotive force by light irradiation, and a transparent conductive layer disposed thereon a photovoltaic power generation element having a linear collector on an outer surface of the film, wherein the collector has a barrier layer laminated on an outer surface of the transparent conductive film, and a copper layer laminated on an outer surface of the barrier layer and containing copper as a main component. The barrier layer comprises at least one of palladium and gallium, silver and copper.

在該光發電元件中,可以利用包含鈀及鎵中的至少一種、銀和銅的阻擋層來抑制銅層被透明導電膜氧化。另一方面,具有此種組成的阻擋層本身因氧化所致的電阻上升也較小。進而,利用該阻擋層還會抑制銅層的擴散。因此,根據該光發電元件,即能利用集電極的細線化來增加光的獲取量,又能抑制電阻的上升,因此可以提高轉換效率。In the photovoltaic power generation element, a barrier layer containing at least one of palladium and gallium, silver, and copper can be used to suppress oxidation of the copper layer by the transparent conductive film. On the other hand, the barrier layer having such a composition itself has a small increase in resistance due to oxidation. Further, the barrier layer suppresses the diffusion of the copper layer. Therefore, according to the photovoltaic power generation element, the amount of light can be increased by the thinning of the collector, and the increase in resistance can be suppressed, so that the conversion efficiency can be improved.

上述集電極較佳還具有層疊在上述銅層的外表面的覆蓋層。通過具有覆蓋層,從而抑制銅層表面的氧化,其結果可以抑制轉換效率的降低。Preferably, the collector further has a coating layer laminated on the outer surface of the copper layer. By having a coating layer, oxidation of the surface of the copper layer is suppressed, and as a result, a decrease in conversion efficiency can be suppressed.

上述覆蓋層較佳包含錫作為主成分。利用包含錫作為主成分的覆蓋層,可以有效地抑制銅層的表面氧化。另外,由於錫的光反射率高,因此在透明導電膜外表面反射的光容易在覆蓋膜的背面再度發生反射,可以增加光的獲取量。進而,通過將錫用於覆蓋層,從而可以提高軟釺焊時的潤濕性等。The cover layer preferably contains tin as a main component. The surface oxidation of the copper layer can be effectively suppressed by using a coating layer containing tin as a main component. Further, since the light reflectance of tin is high, light reflected on the outer surface of the transparent conductive film is easily reflected again on the back surface of the cover film, and the amount of light can be increased. Further, by using tin as a coating layer, wettability and the like at the time of soft soldering can be improved.

上述層結構體較佳還具有p型或n型的結晶半導體基板、在該結晶半導體基板的一面側按照以下順序依次層疊的第一本征非晶質系半導體層13及p型非晶質系半導體層14、和在上述結晶半導體基板的另一面側按照以下順序依次層疊的n層側中間層及n型非晶質系半導體層17,且上述n層側中間層為第二本征非晶質系半導體層或電阻率比上述n型非晶質系半導體層17高的高電阻n型非晶質系半導體層17。發明人發現:在光發電元件為此種所謂異質結型的情況下,利用退火處理會使抑制載流子複合的本征非晶質系半導體層等的鈍化能力提高,並且使光發電元件的輸出特性提高。另一方面,由於該光發電元件的集電極具有上述阻擋層,因此利用退火處理還能抑制銅層的氧化和擴散,集電極的接觸電阻的上升較小。因此,通過在異質結型的元件中採用該光發電元件,從而可以進一步提高轉換效率等。The layer structure preferably further includes a p-type or n-type crystalline semiconductor substrate, and a first intrinsic amorphous semiconductor layer 13 and a p-type amorphous layer which are sequentially laminated on one surface side of the crystalline semiconductor substrate in the following order The semiconductor layer 14 and the n-layer side intermediate layer and the n-type amorphous semiconductor layer 17 which are sequentially stacked in the following order on the other surface side of the crystalline semiconductor substrate, and the n-layer side intermediate layer is the second intrinsic amorphous The high-resistance n-type amorphous semiconductor layer 17 having a higher resistivity than the n-type amorphous semiconductor layer 17 is used. The inventors have found that when the photovoltaic power generation element is of such a heterojunction type, the annealing treatment improves the passivation ability of the intrinsic amorphous semiconductor layer and the like which suppress carrier recombination, and the photovoltaic power generation element is improved. The output characteristics are improved. On the other hand, since the collector of the photovoltaic power generation element has the barrier layer described above, oxidation and diffusion of the copper layer can be suppressed by the annealing treatment, and the rise in contact resistance of the collector is small. Therefore, by using the photovoltaic power generation element in a heterojunction type element, conversion efficiency and the like can be further improved.

為了解決上述課題而完成的另一發明為一種光發電元件的製造方法,其依次包含:在具有透明導電膜作為至少一方的最外層且利用光照射產生電動勢的層結構體的外表面層疊包含鈀及鎵中的至少一種、銀和銅的金屬膜的步驟;在上述金屬膜的外表面的一部分形成抗蝕劑膜的步驟;利用鍍敷處理在上述金屬膜的外表面的露出部分層疊包含銅作為主成分的銅層的步驟;利用鍍敷處理在上述銅層的外表面層疊覆蓋層的步驟;除去上述抗蝕劑膜的步驟;以及將已經除去上述抗蝕劑膜的區域的上述金屬膜除去的步驟。Another invention to solve the above problems is a method for producing a photovoltaic power generation device, which comprises sequentially laminating palladium on the outer surface of a layer structure having at least one outermost layer of a transparent conductive film and generating electromotive force by light irradiation. And a step of forming at least one of gallium and a metal film of silver and copper; forming a resist film on a portion of the outer surface of the metal film; and depositing copper on the exposed portion of the outer surface of the metal film by a plating treatment a step of forming a copper layer as a main component; a step of laminating a coating layer on the outer surface of the copper layer by a plating treatment; a step of removing the resist film; and removing the metal film in a region where the resist film has been removed A step of.

根據該製造方法,可以得到集電極的接觸電阻小、且通過將集電極細線化而轉換效率高的光發電元件。According to this manufacturing method, it is possible to obtain a photovoltaic power generation element having a small contact resistance and a high conversion efficiency by thinning the collector.

較佳在上述金屬膜除去步驟後還包含對上述層結構體進行退火處理的步驟。通過如此地進行退火,從而可以提高異質結型的光電轉換元件的性能,並且,即使進行退火也能抑制銅層的氧化和擴散,因此可以得到輸出特性更優異的光電轉換元件。Preferably, after the step of removing the metal film, the step of annealing the layer structure is further included. By performing the annealing in this manner, the performance of the heterojunction type photoelectric conversion element can be improved, and oxidation and diffusion of the copper layer can be suppressed even by annealing, so that a photoelectric conversion element having more excellent output characteristics can be obtained.

在此,“主成分”是指以重量基準計含量最多的成分。非晶質系半導體層中的“非晶質系”不僅包含完全的非晶質體情況,而且還包含在非晶質中存在微結晶的情況。另外,本征非晶質系半導體層中的“本征”是指有意不摻雜雜質的情況,其含義還包括存在原本在原料中包含的雜質和在製造過程中無意混入的雜質的情況。Here, the "main component" means a component having the highest content on a weight basis. The "amorphous system" in the amorphous semiconductor layer includes not only a completely amorphous body but also a case where microcrystals are present in the amorphous material. Further, the "intrinsic" in the intrinsic amorphous semiconductor layer means a case where impurities are intentionally not doped, and the meaning thereof also includes the presence of impurities originally contained in the raw material and impurities which are inadvertently mixed in the manufacturing process.

發明效果Effect of the invention

根據本發明的光發電元件,集電極的接觸電阻小,可以利用集電極的細線化來提高轉換效率。另外,根據本發明的光發電元件的製造方法,可以製造此種光發電元件。According to the photovoltaic power generation element of the present invention, the contact resistance of the collector is small, and the thinning of the collector can be utilized to improve the conversion efficiency. Further, according to the method of manufacturing a photovoltaic power generation element of the present invention, such a photovoltaic power generation element can be manufactured.

以下,適當參照附圖對本發明的一個實施方式涉及的光發電元件及其製造方法進行詳細的說明。Hereinafter, a photovoltaic power generation element according to an embodiment of the present invention and a method of manufacturing the same will be described in detail with reference to the accompanying drawings.

<光發電元件><Photovoltaic power generation element>

圖1的光發電元件10包含通過照射光而產生電動勢的層結構體11。層結構體11具有:n型結晶半導體基板12;在n型結晶半導體基板12的一面側(圖1中的上側)按照以下順序依次層疊的第一本征非晶質系半導體層13、p型非晶質系半導體層14及第一透明導電膜15;和在n型結晶半導體基板12的另一面側(圖1中的下側)按照以下順序依次層疊的n層側中間層16、n型非晶質系半導體層17及第二透明導電膜18。即,第一透明導電膜15和第二透明導電膜18為層結構體11的最外層。進而,光發電元件10包含配設在層結構體11的外表面(表面及背面)、即第一透明導電膜15的外表面及第二透明導電膜18的外表面的多個線狀集電極19。予以說明,“外表面”是指以n型結晶半導體基板12為中心且與n型結晶半導體基板12相反一側的面。另外,“內表面”是指n型結晶半導體基板12一側的面。The photovoltaic power generation element 10 of Fig. 1 includes a layer structure 11 that generates an electromotive force by irradiating light. The layer structure 11 has an n-type crystalline semiconductor substrate 12 and a first intrinsic amorphous semiconductor layer 13 and a p-type layer which are sequentially laminated on one surface side (upper side in FIG. 1) of the n-type crystalline semiconductor substrate 12 in the following order. The amorphous semiconductor layer 14 and the first transparent conductive film 15; and the n-side intermediate layer 16 and the n-type which are sequentially laminated on the other surface side (the lower side in FIG. 1) of the n-type crystalline semiconductor substrate 12 in the following order The amorphous semiconductor layer 17 and the second transparent conductive film 18. That is, the first transparent conductive film 15 and the second transparent conductive film 18 are the outermost layers of the layer structure 11. Further, the photovoltaic power generation element 10 includes a plurality of linear collectors disposed on the outer surface (surface and back surface) of the layer structure 11, that is, the outer surface of the first transparent conductive film 15 and the outer surface of the second transparent conductive film 18. 19. In addition, the "outer surface" means a surface on the opposite side of the n-type crystalline semiconductor substrate 12 and on the opposite side to the n-type crystalline semiconductor substrate 12. In addition, the "inner surface" means a surface on the side of the n-type crystalline semiconductor substrate 12.

n型結晶半導體基板12由n型結晶半導體形成。通過使用n型基板,從而可以避免p型基板特有的光劣化現象。n型結晶半導體通常為在矽等半導體中添加微量的5價元素而成的結晶體。作為構成n型結晶半導體基板12的結晶半導體,除矽(Si)外,還可列舉SiC、SiGe等,但是,從生產率等方面出發,較佳矽。n型結晶半導體基板12可以單晶體,也可以為多晶體。The n-type crystalline semiconductor substrate 12 is formed of an n-type crystalline semiconductor. By using an n-type substrate, it is possible to avoid the phenomenon of photodegradation peculiar to the p-type substrate. The n-type crystalline semiconductor is usually a crystal obtained by adding a trace amount of a pentavalent element to a semiconductor such as ruthenium. In addition to bismuth (Si), SiC, SiGe, and the like are exemplified as the crystalline semiconductor constituting the n-type crystalline semiconductor substrate 12. However, from the viewpoint of productivity and the like, it is preferable. The n-type crystalline semiconductor substrate 12 may be a single crystal or a polycrystalline body.

在n型結晶半導體基板12的雙面形成棱錐狀的微細凹凸結構。利用此種結構,可以提高光限制功能。該凹凸結構(紋理結構)的高度或大小可以不一致,也可以使相鄰的凹凸的一部分重疊。另外,可以使頂點和穀部帶圓角。作為該凹凸的高度,為數μm~數十μm左右。此種凹凸結構例如可以通過在包含約1~5重量%的氫氧化鈉的蝕刻液中浸漬基板材料並對基板材料的(100)面進行各向異性蝕刻來得到。A pyramid-shaped fine concavo-convex structure is formed on both surfaces of the n-type crystalline semiconductor substrate 12. With this configuration, the light confinement function can be improved. The height or size of the uneven structure (texture structure) may not be uniform, and a part of adjacent unevenness may be overlapped. In addition, the vertices and valleys can be rounded. The height of the unevenness is about several μm to several tens of μm. Such a concavo-convex structure can be obtained, for example, by immersing a substrate material in an etching solution containing about 1 to 5% by weight of sodium hydroxide and anisotropically etching the (100) plane of the substrate material.

作為n型結晶半導體基板12的平均厚度,並無特別限制。作為該平均厚度的上限,例如為300μm,較佳為200μm。另外,作為該下限,例如可以設為50μm。這樣,通過將n型結晶半導體基板12薄型化,從而可以實現光發電元件10自身的小型化、低成本化等。The average thickness of the n-type crystalline semiconductor substrate 12 is not particularly limited. The upper limit of the average thickness is, for example, 300 μm, preferably 200 μm. Further, the lower limit can be, for example, 50 μm. By thinning the n-type crystalline semiconductor substrate 12 in this manner, it is possible to reduce the size and cost of the photovoltaic power generation element 10 itself.

第一本征非晶質系半導體層13為在n型結晶半導體基板12與p型非晶質系半導體層14之間存在的層,其是作為抑制載流子複合的鈍化層發揮功能的層。第一本征非晶質系半導體層13通常由矽形成。利用此種本征非晶質系半導體層,可以抑制載流子的複合,並且可以提高輸出特性。予以說明,作為第一本征非晶質系半導體層13的平均厚度,例如可以設為1nm以上且10nm以下。The first intrinsic amorphous semiconductor layer 13 is a layer existing between the n-type crystalline semiconductor substrate 12 and the p-type amorphous semiconductor layer 14 and functions as a layer that functions as a passivation layer that suppresses carrier recombination. . The first intrinsic amorphous semiconductor layer 13 is usually formed of tantalum. By using such an intrinsic amorphous semiconductor layer, recombination of carriers can be suppressed, and output characteristics can be improved. In addition, the average thickness of the first intrinsic amorphous semiconductor layer 13 can be, for example, 1 nm or more and 10 nm or less.

p型非晶質系半導體層14通常為在矽中添加微量的3價元素而成的非晶質層。作為p型非晶質系半導體層14的平均厚度,例如可以設為1nm以上且20nm以下。The p-type amorphous semiconductor layer 14 is usually an amorphous layer obtained by adding a trace amount of a trivalent element to ruthenium. The average thickness of the p-type amorphous semiconductor layer 14 can be, for example, 1 nm or more and 20 nm or less.

n層側中間層16為在n型結晶半導體基板12與n型非晶質系半導體層17之間存在的層,其是作為抑制載流子複合的鈍化層發揮功能的層。n層側中間層16為第二本征非晶質系半導體層或電阻率比n型非晶質系半導體層17高的高電阻n型非晶質系半導體層17。在n層側中間層16為本征非晶質系半導體層的情況下,該層通常由矽形成。在n層側中間層16為高電阻n型非晶質系半導體層17的情況下,通常為在矽中添加微量的5價元素而成的非晶質層。高電阻n型非晶質系半導體層17因5價元素的添加量(摻雜量)比n型非晶質系半導體層17少而成為高電阻。利用此種n層側中間層16(本征非晶質系半導體層或高電阻n型非晶質系半導體層17),可以抑制載流子複合,並且可以提高輸出特性。予以說明,作為n層側中間層16的平均厚度,例如可以設為1nm以上且10nm以下。The n-layer side intermediate layer 16 is a layer existing between the n-type crystalline semiconductor substrate 12 and the n-type amorphous semiconductor layer 17, and functions as a layer that functions as a passivation layer for suppressing carrier recombination. The n-layer side intermediate layer 16 is a second intrinsic amorphous semiconductor layer or a high-resistance n-type amorphous semiconductor layer 17 having a higher specific resistance than the n-type amorphous semiconductor layer 17. In the case where the n-layer side intermediate layer 16 is an intrinsic amorphous semiconductor layer, the layer is usually formed of tantalum. When the n-layer side intermediate layer 16 is the high-resistance n-type amorphous semiconductor layer 17, an amorphous layer in which a trace amount of a pentavalent element is added to ruthenium is usually used. The high-resistance n-type amorphous semiconductor layer 17 has a high resistance due to the addition amount (doping amount) of the pentavalent element being smaller than that of the n-type amorphous semiconductor layer 17. By using the n-layer side intermediate layer 16 (intrinsic amorphous semiconductor layer or high-resistance n-type amorphous semiconductor layer 17), carrier recombination can be suppressed, and output characteristics can be improved. In addition, the average thickness of the n-layer side intermediate layer 16 can be, for example, 1 nm or more and 10 nm or less.

n型非晶質系半導體層17通常為在矽中添加微量的5價元素而成的非晶質層。作為n型非晶質系半導體層17的平均厚度,例如可以設為1nm以上且20nm以下。The n-type amorphous semiconductor layer 17 is usually an amorphous layer obtained by adding a trace amount of a pentavalent element to ruthenium. The average thickness of the n-type amorphous semiconductor layer 17 can be, for example, 1 nm or more and 20 nm or less.

作為構成第一透明導電膜15及第二透明導電膜18的透明導電性材料,可列舉例如銦錫氧化物(ITO)、銦鎢氧化物(IWO)、銦鈰氧化物(ICO)等。作為第一透明導電膜15及第二透明導電膜18的平均膜厚,並無特別限制,例如可以分別設為40nm以上且200nm以下。Examples of the transparent conductive material constituting the first transparent conductive film 15 and the second transparent conductive film 18 include indium tin oxide (ITO), indium tungsten oxide (IWO), and indium antimony oxide (ICO). The average thickness of the first transparent conductive film 15 and the second transparent conductive film 18 is not particularly limited, and may be, for example, 40 nm or more and 200 nm or less.

各集電極19為具有阻擋層20、銅層21及覆蓋層22的層結構體11。Each of the collectors 19 is a layer structure 11 having a barrier layer 20, a copper layer 21, and a cover layer 22.

阻擋層20層疊在透明導電膜(第一透明導電膜15及第二透明導電膜18)的外表面。阻擋層20包含:銀(Ag);鈀(Pd)及鎵(Ga)中的至少一種;和銅(Cu)。包含此種成分的阻擋層20發揮出銅層21與第一透明導電膜15或第二透明導電膜18之間的良好阻擋性,可以抑制銅層21因與透明導電膜接觸所致的氧化。另一方面,具有此種組成的阻擋層20本身因氧化所致的電阻上升較小。另外,該阻擋層20還可以抑制形成銅層21的銅的擴散。進而,通過由此種成分形成阻擋層20,從而可以利用鍍敷處理等在該阻擋層20上有效地層疊銅層21。The barrier layer 20 is laminated on the outer surfaces of the transparent conductive films (the first transparent conductive film 15 and the second transparent conductive film 18). The barrier layer 20 includes: silver (Ag); at least one of palladium (Pd) and gallium (Ga); and copper (Cu). The barrier layer 20 containing such a component exhibits good barrier properties between the copper layer 21 and the first transparent conductive film 15 or the second transparent conductive film 18, and can suppress oxidation of the copper layer 21 due to contact with the transparent conductive film. On the other hand, the barrier layer 20 having such a composition itself has a small increase in resistance due to oxidation. In addition, the barrier layer 20 can also suppress the diffusion of copper forming the copper layer 21. Further, by forming the barrier layer 20 from such a component, the copper layer 21 can be effectively laminated on the barrier layer 20 by a plating treatment or the like.

阻擋層20較佳由以Ag為主成分且添加Pd及Ga中的至少一種和Cu而成的Ag-Pd-Cu系或Ag-Ga-Cu系銀合金形成。作為阻擋層20中Ag的含量,例如可以設為90原子%以上且99原子%以下。作為阻擋層20中Pd的含量,例如可以設為0.2原子%以上且5原子%以下。作為阻擋層20中Ga的含量,例如可以設為0.2原子%以上且5原子%以下。阻擋層20可以含有Pd及Ga兩者,作為Pd及Ga的總含量,例如可以設為0.2原子%以上且5原子%以下。作為阻擋層20中Cu的含量,例如可以設為0.1原子%以上且5原子%以下。通過使阻擋層20由此種組成的銀金屬形成,從而可以作為銅層21的阻擋層更良好地發揮功能。予以說明,在阻擋層20中可以在不阻礙本發明效果的範圍含有其他成分。The barrier layer 20 is preferably formed of an Ag-Pd-Cu-based or Ag-Ga-Cu-based silver alloy containing Ag as a main component and adding at least one of Pd and Ga and Cu. The content of Ag in the barrier layer 20 can be, for example, 90 atom% or more and 99 atom% or less. The content of Pd in the barrier layer 20 can be, for example, 0.2 atom% or more and 5 atom% or less. The content of Ga in the barrier layer 20 can be, for example, 0.2 atom% or more and 5 atom% or less. The barrier layer 20 may contain both Pd and Ga, and the total content of Pd and Ga may be, for example, 0.2 atom% or more and 5 atom% or less. The content of Cu in the barrier layer 20 can be, for example, 0.1 atom% or more and 5 atom% or less. By forming the barrier layer 20 from a silver metal having such a composition, it is possible to function more as a barrier layer of the copper layer 21. Incidentally, in the barrier layer 20, other components may be contained in a range that does not inhibit the effects of the present invention.

作為阻擋層20的平均厚度,並無特別限定,作為下限,例如較佳為10nm,更佳為20nm,進一步較佳為30nm。另一方面,作為其上限,較佳為300nm,更佳為150nm,進一步較佳為100nm。在阻擋層20的平均厚度不足上述下限的情況下,有時無法體現充分的阻擋性。相反,在阻擋層20的平均厚度超出上述上限的情況下,在製造步驟中不需要部分的除去(回蝕)變得不容易等而生產率降低。The average thickness of the barrier layer 20 is not particularly limited, and is preferably, for example, 10 nm, more preferably 20 nm, still more preferably 30 nm. On the other hand, as the upper limit thereof, it is preferably 300 nm, more preferably 150 nm, still more preferably 100 nm. When the average thickness of the barrier layer 20 is less than the above lower limit, sufficient barrier properties may not be exhibited. On the contrary, in the case where the average thickness of the barrier layer 20 exceeds the above upper limit, it is not necessary to partially remove (etch back) in the manufacturing step, and the productivity is lowered.

銅層21層疊在阻擋層20的外表面。銅層21包含銅(Cu)作為主成分。作為銅層21中Cu的含量的下限,例如為80重量%,較佳為95重量%,更佳為99重量%。其上限可以為100重量%。但是,在不阻礙本發明效果的範圍內也可以在銅層21中含有除Cu以外的其他成分。The copper layer 21 is laminated on the outer surface of the barrier layer 20. The copper layer 21 contains copper (Cu) as a main component. The lower limit of the content of Cu in the copper layer 21 is, for example, 80% by weight, preferably 95% by weight, and more preferably 99% by weight. The upper limit may be 100% by weight. However, the copper layer 21 may contain other components than Cu in a range that does not impair the effects of the present invention.

作為銅層21的平均厚度,並無特別限定,例如可以設為1μm以上且50μm以下。在銅層21的平均厚度不足上述下限的情況下,有時無法發揮充分的導電性和集電性等。相反,在銅層21的平均厚度超出上述上限的情況下,存在導致成本高、生產率降低的風險。The average thickness of the copper layer 21 is not particularly limited, and may be, for example, 1 μm or more and 50 μm or less. When the average thickness of the copper layer 21 is less than the above lower limit, sufficient conductivity, current collecting property, and the like may not be exhibited. On the other hand, when the average thickness of the copper layer 21 exceeds the above upper limit, there is a risk that the cost is high and the productivity is lowered.

覆蓋層22較佳層疊在銅層21的外表面。利用覆蓋層22可以防止銅層21表面的氧化。覆蓋層22通常由金屬形成。作為形成覆蓋層22的金屬,並無特別限定,較佳使覆蓋層22包含錫(Sn)作為主成分。Sn由於光反射率高,因此例如在第一透明導電膜15的外表面反射的光容易在覆蓋膜22的背面(內表面)再度發生反射,可以增加光的獲取量。另外,通過將Sn用於覆蓋層22,從而可以提高焊錫的潤濕性等。作為覆蓋層22中Sn的含量的下限,例如為80重量%,較佳為95重量%,更佳為99重量%。其上限可以為100重量%。但是,在不阻礙本發明效果的範圍內也可以在覆蓋層22中含有除Sn以外的其他成分。The cover layer 22 is preferably laminated on the outer surface of the copper layer 21. The oxidation of the surface of the copper layer 21 can be prevented by the cover layer 22. The cover layer 22 is typically formed of a metal. The metal forming the coating layer 22 is not particularly limited, and it is preferable that the coating layer 22 contains tin (Sn) as a main component. Since Sn has a high light reflectance, for example, light reflected on the outer surface of the first transparent conductive film 15 is easily reflected again on the back surface (inner surface) of the cover film 22, and the amount of light can be increased. Further, by using Sn for the cover layer 22, the wettability of the solder and the like can be improved. The lower limit of the content of Sn in the cover layer 22 is, for example, 80% by weight, preferably 95% by weight, and more preferably 99% by weight. The upper limit may be 100% by weight. However, other components than Sn may be contained in the cover layer 22 within a range not inhibiting the effects of the present invention.

作為覆蓋層22的平均厚度,並無特別限定,例如可以設為0.5μm以上且5μm以下。在覆蓋層22的平均厚度不足上述下限的情況下,有時無法體現充分的功能。相反,在覆蓋層22的平均厚度超出上述上限的情況下,存在導致成本高、生產率降低的風險。The average thickness of the coating layer 22 is not particularly limited, and may be, for example, 0.5 μm or more and 5 μm or less. When the average thickness of the cover layer 22 is less than the above lower limit, a sufficient function may not be exhibited. On the contrary, in the case where the average thickness of the cover layer 22 exceeds the above upper limit, there is a risk that the cost is high and the productivity is lowered.

多個線狀集電極19相互平行地配設。作為集電極19的線寬的下限,例如較佳為5μm,更佳為10μm。另一方面,作為該線寬的上限,例如較佳為100μm,更佳為50μm。通過使集電極19的線寬為上述範圍,從而即能增加光獲取量又能確保導電性。The plurality of linear collectors 19 are arranged in parallel with each other. The lower limit of the line width of the collecting electrode 19 is, for example, preferably 5 μm, more preferably 10 μm. On the other hand, the upper limit of the line width is, for example, preferably 100 μm, more preferably 50 μm. By setting the line width of the collecting electrode 19 to the above range, it is possible to increase the amount of light acquisition and to ensure conductivity.

作為集電極19的間距(相鄰的集電極19的中心間的距離),並無特別限定,作為下限,較佳為0.5mm,更佳為1mm。另一方面,作為其上限,較佳為10mm,更佳為5mm。通過使集電極19的間距為上述範圍,從而即能增加光獲取量又能確保集電性。The pitch of the collecting electrode 19 (the distance between the centers of the adjacent collecting electrodes 19) is not particularly limited, and is preferably 0.5 mm, more preferably 1 mm, as the lower limit. On the other hand, as the upper limit thereof, it is preferably 10 mm, more preferably 5 mm. By setting the pitch of the collecting electrodes 19 to the above range, the amount of light acquisition can be increased and the current collecting property can be ensured.

在該光發電元件10中,光入射面可以為第一透明導電膜15側,也可以為第二透明導電膜18側。也可以按照從雙面受光的方式來使用。通常串聯連接使用多個光發電元件10。通過串聯連接使用多個光發電元件10,從而可以提高發電電壓。In the photovoltaic power generation element 10, the light incident surface may be the first transparent conductive film 15 side or the second transparent conductive film 18 side. It can also be used in such a way as to receive light from both sides. A plurality of photovoltaic power generation elements 10 are usually used in series connection. By using a plurality of photovoltaic power generation elements 10 in series, the power generation voltage can be increased.

<光發電元件的製造方法><Method of Manufacturing Photovoltaic Power Generation Element>

光發電元件10的製造方法包含得到層結構體11的步驟和形成集電極19的步驟。The method of manufacturing the photovoltaic power generation element 10 includes the steps of obtaining the layer structure 11 and the step of forming the collector 19.

層結構體11可以利用習知的方法來得到,具體而言,具有:在n型結晶半導體基板12的一面側層疊第一本征非晶質系半導體層13的步驟;進而層疊p型非晶質系半導體層14的步驟;進而層疊第一透明導電膜15的步驟;在n型結晶半導體基板12的另一面側層疊n層側中間層16的步驟;進而層疊n型非晶質系半導體層17的步驟;以及進而層疊第二透明導電膜18的步驟。予以說明,各步驟的順序只要為能夠得到層結構體11的層結構的順序,則並無特別限定。The layer structure 11 can be obtained by a conventional method, and specifically includes a step of laminating the first intrinsic amorphous semiconductor layer 13 on one surface side of the n-type crystalline semiconductor substrate 12; a step of laminating the semiconductor layer 14; a step of laminating the first transparent conductive film 15; a step of laminating the n-side intermediate layer 16 on the other surface side of the n-type crystalline semiconductor substrate 12; and further laminating an n-type amorphous semiconductor layer a step of 17; and a step of laminating the second transparent conductive film 18 in turn. Incidentally, the order of the respective steps is not particularly limited as long as the order of the layer structure of the layer structure 11 can be obtained.

作為將第一本征非晶質系半導體層13及作為本征非晶質系半導體層的n層側中間層16加以層疊的方法,可列舉例如化學氣相沉積法等習知的方法。作為化學氣相沉積法,可列舉例如等離子CVD法、催化劑CVD法(別名熱絲CVD法)等。在採用等離子CVD法的情況下,作為原料氣體,可以使用例如SiH4 與H2 的混合氣體。As a method of laminating the first intrinsic amorphous semiconductor layer 13 and the n-layer intermediate layer 16 which is an intrinsic amorphous semiconductor layer, a conventional method such as a chemical vapor deposition method can be mentioned. Examples of the chemical vapor deposition method include a plasma CVD method, a catalyst CVD method (alias hot filament CVD method), and the like. In the case of the plasma CVD method, as the material gas, for example, a mixed gas of SiH 4 and H 2 can be used.

作為將p型非晶質系半導體層14及n型非晶質系半導體層17加以層疊的方法,也可以利用與本征非晶質系半導體層的層疊同樣的化學氣相沉積法等習知的方法來進行成膜。在採用等離子CVD法的情況下,作為原料氣體,在p型非晶質系半導體層14中可以使用例如SiH4 、H2 和B2 H6 的混合氣體。在n型非晶質系半導體層17中可以使用例如SiH4 、H2 和PH3 的混合氣體。As a method of laminating the p-type amorphous semiconductor layer 14 and the n-type amorphous semiconductor layer 17, a chemical vapor deposition method similar to the lamination of the intrinsic amorphous semiconductor layer may be used. The method is used to form a film. In the case of the plasma CVD method, as the source gas, a mixed gas of, for example, SiH 4 , H 2 and B 2 H 6 can be used for the p-type amorphous semiconductor layer 14 . A mixed gas of, for example, SiH 4 , H 2 , and PH 3 can be used in the n-type amorphous semiconductor layer 17.

作為高電阻n型非晶質系半導體層17的n層側中間層16也可以與n型非晶質系半導體層17同樣地利用化學氣相沉積法等習知的方法來進行成膜。高電阻n型非晶質系半導體層17可以通過比n型非晶質系半導體層17進一步減少摻雜劑量來形成。例如,在利用使用了包含SiH4 和PH3 的混合氣體的等離子CVD法形成高電阻n型非晶質系半導體層17的情況下,將以SiH4 為基準的作為摻雜劑的PH3 的引入量控制在1000ppm以下來進行制膜,由此可以得到高電阻n型非晶質系半導體層17。另外,在對該高電阻n型非晶質系半導體層17進行制膜時的上述PH3 的引入量(濃度)可以設為對n型非晶質系半導體層17進行製膜時的引入量(濃度)的1/100以上且1/5以下。The n-layer side intermediate layer 16 which is the high-resistance n-type amorphous semiconductor layer 17 can be formed by a conventional method such as chemical vapor deposition in the same manner as the n-type amorphous semiconductor layer 17 . The high-resistance n-type amorphous semiconductor layer 17 can be formed by further reducing the doping amount than the n-type amorphous semiconductor layer 17. For example, using the case of using a mixed gas containing SiH 4 and PH 3 plasma CVD method is a high-resistance n-type amorphous semiconductor layer 17, it will SiH 4 as a reference PH 3 as a dopant of When the amount of introduction is controlled to 1000 ppm or less, film formation is performed, whereby the high-resistance n-type amorphous semiconductor layer 17 can be obtained. In addition, when the high-resistance n-type amorphous semiconductor layer 17 is formed into a film, the introduction amount (concentration) of the PH 3 can be introduced as a film for forming the n-type amorphous semiconductor layer 17 (concentration) is 1/100 or more and 1/5 or less.

作為將第一透明導電膜15及第二透明導電膜18加以層疊的方法,可列舉例如濺射法、真空蒸鍍法、離子鍍法(反應性等離子蒸鍍法)等,但較佳採用濺射法及離子鍍法。濺射法的膜厚控制性等優異,並且能夠以比離子鍍法等更低的成本來施行。另一方面,根據離子鍍法,可以進行抑制了缺陷發生的成膜。Examples of the method of laminating the first transparent conductive film 15 and the second transparent conductive film 18 include a sputtering method, a vacuum deposition method, and an ion plating method (reactive plasma evaporation method), but it is preferred to use a sputtering method. Shooting method and ion plating method. The sputtering method is excellent in film thickness controllability and the like, and can be performed at a lower cost than ion plating or the like. On the other hand, according to the ion plating method, film formation in which the occurrence of defects is suppressed can be performed.

集電極19例如可以通過依次經過以下的步驟(a)~(f)來形成。The collector electrode 19 can be formed, for example, by sequentially passing through the following steps (a) to (f).

在層結構體11的外表面層疊包含鈀及鎵中的至少一種、銀和銅的金屬膜30的步驟(a)Step (a) of laminating a metal film 30 containing at least one of palladium and gallium, silver and copper on the outer surface of the layer structure 11

在上述金屬膜30的外表面的一部分形成抗蝕劑膜31的步驟(b)Step (b) of forming a resist film 31 on a part of the outer surface of the above metal film 30

利用鍍敷處理在上述金屬膜30的外表面的露出部分層疊包含銅作為主成分的銅層21的步驟(c)Step (c) of laminating a copper layer 21 containing copper as a main component on the exposed portion of the outer surface of the above-described metal film 30 by a plating treatment

利用鍍敷處理在銅層21的外表面層疊覆蓋層22的步驟(d)Step (d) of laminating the cover layer 22 on the outer surface of the copper layer 21 by a plating treatment

除去上述抗蝕劑膜31的步驟(e)Step (e) of removing the above resist film 31

將已經除去上述抗蝕劑膜31的區域的上述金屬膜30除去的步驟(f)Step (f) of removing the above-described metal film 30 in the region where the above resist film 31 has been removed

以下,參照圖2對各步驟進行說明。Hereinafter, each step will be described with reference to Fig. 2 .

[步驟(a)][Step (a)]

在步驟(a)中,在層結構體11的外表面層疊包含鈀及鎵中的至少一種、銀和銅的金屬膜30(參照圖2(a))。予以說明,層結構體11的最外層為第一透明導電膜15或第二透明導電膜18(圖2中未進行圖示)。金屬膜30成為圖1的光發電元件10的阻擋層20。作為金屬膜30的層疊方法,並無特別限定,可以適當利用濺射進行層疊。該濺射可以使用包含阻擋層20的組成的濺射靶來進行。另外,可以通過使用構成阻擋層20的各元素的濺射靶、控制放電量並同時進行濺射來進行成膜。In the step (a), a metal film 30 containing at least one of palladium and gallium, silver and copper is laminated on the outer surface of the layer structure 11 (see FIG. 2(a)). Incidentally, the outermost layer of the layer structure 11 is the first transparent conductive film 15 or the second transparent conductive film 18 (not shown in FIG. 2). The metal film 30 becomes the barrier layer 20 of the photovoltaic power generation element 10 of Fig. 1 . The lamination method of the metal film 30 is not particularly limited, and lamination can be suitably performed by sputtering. This sputtering can be performed using a sputtering target including the composition of the barrier layer 20. Further, film formation can be performed by using a sputtering target constituting each element of the barrier layer 20, controlling the amount of discharge, and simultaneously performing sputtering.

[步驟(b)][Step (b)]

在步驟(b)中,在金屬膜30的外表面的一部分形成抗蝕劑膜31(參照圖2(b))。抗蝕劑膜31也稱作掩模、鍍敷抗蝕劑等,未層疊抗蝕劑膜31的部分成為形成集電極19的部分。抗蝕劑膜31例如可以利用噴墨印刷來形成。作為形成抗蝕劑膜31的材料,並無特別限定,可以使用通常所使用的無機材料、有機材料。作為抗蝕劑材料,在利用噴墨印刷形成抗蝕劑膜31的情況下,較佳使用石蠟。若利用噴墨印刷將加熱後的熔融狀態的石蠟印刷至金屬膜30表面,則印刷後石蠟在金屬膜30表面固化。由此,可以有效地形成側面陡峭的抗蝕劑膜31。另外,由石蠟形成的抗蝕劑膜31的除去也可以容易地進行。予以說明,抗蝕劑膜31也可以由其他材料例如光致抗蝕劑材料等來形成。In the step (b), a resist film 31 is formed on a part of the outer surface of the metal film 30 (see FIG. 2(b)). The resist film 31 is also referred to as a mask, a plating resist, or the like, and a portion where the resist film 31 is not laminated is a portion where the collector electrode 19 is formed. The resist film 31 can be formed, for example, by inkjet printing. The material for forming the resist film 31 is not particularly limited, and an inorganic material or an organic material which is generally used can be used. As the resist material, in the case where the resist film 31 is formed by inkjet printing, paraffin wax is preferably used. When the heated paraffin wax in the molten state is printed on the surface of the metal film 30 by inkjet printing, the paraffin wax is cured on the surface of the metal film 30 after printing. Thereby, the resist film 31 having a steep side surface can be efficiently formed. Further, the removal of the resist film 31 formed of paraffin can also be easily performed. Incidentally, the resist film 31 may be formed of other materials such as a photoresist material or the like.

[步驟(c)][Step (c)]

在步驟(c)中,利用鍍敷處理在金屬膜30的外表面的露出部分層疊包含銅作為主成分的銅層21(參照圖2(c))。該鍍銅可以利用硫酸鹽浴等習知的方法來進行。In the step (c), the copper layer 21 containing copper as a main component is laminated on the exposed portion of the outer surface of the metal film 30 by a plating treatment (see FIG. 2(c)). This copper plating can be carried out by a conventional method such as a sulfate bath.

[步驟(d)][Step (d)]

在步驟(d)中,利用鍍敷處理在銅層21的外表面層疊覆蓋層22(參照圖2(d))。該鍍敷處理可以利用習知的方法來進行,例如在進行鍍錫的情況下,可以利用硫酸鹽浴等來進行。In the step (d), the cover layer 22 is laminated on the outer surface of the copper layer 21 by a plating treatment (see FIG. 2(d)). This plating treatment can be carried out by a known method. For example, in the case of tin plating, it can be carried out by using a sulfate bath or the like.

[步驟(e)][Step (e)]

在步驟(e)中,除去抗蝕劑膜31(參照圖2(e))。該抗蝕劑膜31的除去可以使用酸溶液、鹼溶液等來進行。在抗蝕劑膜31由石蠟形成的情況下,例如可以利用氫氧化鉀水溶液有效地除去抗蝕劑膜31。作為該氫氧化鉀水溶液的濃度,例如為1重量%以上且5重量%以下左右。In the step (e), the resist film 31 is removed (see Fig. 2(e)). The removal of the resist film 31 can be carried out using an acid solution, an alkali solution or the like. In the case where the resist film 31 is formed of paraffin, the resist film 31 can be effectively removed by, for example, an aqueous potassium hydroxide solution. The concentration of the aqueous potassium hydroxide solution is, for example, about 1% by weight or more and about 5% by weight or less.

[步驟(f)][Step (f)]

在步驟(f)中,將已經除去抗蝕劑膜31的區域、即未層疊銅層21的區域的金屬膜30除去(回蝕)(參照圖2(f))。由此形成集電極19。金屬膜30的除去可以利用能夠溶解金屬膜30的蝕刻液來進行。作為此種蝕刻液,可列舉例如磷酸系水溶液等。作為金屬膜30的蝕刻液,較佳的是磷酸的含量為50重量%以上且70%以下、硝酸的含量為0.1重量%以上且9.9重量%以下、乙酸的含量為10重量%以上且30重量%以下、氟化銨的含量為0.1重量%以上且2.0重量%以下的水溶液。In the step (f), the region where the resist film 31 has been removed, that is, the metal film 30 in the region where the copper layer 21 is not laminated is removed (etched back) (see FIG. 2(f)). The collector electrode 19 is thus formed. The removal of the metal film 30 can be performed by using an etching solution capable of dissolving the metal film 30. Examples of such an etching solution include a phosphoric acid aqueous solution and the like. The etching liquid of the metal film 30 preferably has a phosphoric acid content of 50% by weight or more and 70% or less, a nitric acid content of 0.1% by weight or more and 9.9% by weight or less, and an acetic acid content of 10% by weight or more and 30% by weight. An aqueous solution having a content of ammonium fluoride or less of 0.1% by weight or more and 2.0% by weight or less.

予以說明,利用此種步驟得到的圖2(f)所示的集電極19呈現上表面比底面略寬且側面稍彎曲成凹狀的形狀。在該集電極19為此種形狀的情況下,在透明導電膜外表面反射的光在集電極19的側面等再度發生反射,容易入射到透明導電膜內。由此可以增加光的獲取量。Incidentally, the collector electrode 19 shown in Fig. 2(f) obtained by such a step has a shape in which the upper surface is slightly wider than the bottom surface and the side surface is slightly curved to be concave. When the collector electrode 19 has such a shape, the light reflected on the outer surface of the transparent conductive film is again reflected on the side surface of the collector electrode 19 or the like, and is easily incident on the transparent conductive film. This can increase the amount of light acquired.

該製造方法較佳還包含在除去未層疊銅層21的區域的金屬膜30後對層結構體11進行退火處理的步驟。通過進行此種退火,從而使第一本征非晶質系半導體層13的鈍化能力等提高,可以提高異質結型的光電轉換元件的輸出特性。另一方面,在該退火時,集電極19也被退火,通過進行該退火,還會利用阻擋層20抑制銅層21的氧化和擴散,因此電阻不會大幅上升,可以得到發電效率優異的光電轉換元件。The manufacturing method preferably further includes a step of annealing the layer structure 11 after removing the metal film 30 in the region where the copper layer 21 is not laminated. By performing such annealing, the passivation ability and the like of the first intrinsic amorphous semiconductor layer 13 are improved, and the output characteristics of the heterojunction type photoelectric conversion element can be improved. On the other hand, at the time of the annealing, the collector electrode 19 is also annealed, and by performing the annealing, the oxidation and diffusion of the copper layer 21 are suppressed by the barrier layer 20, so that the electric resistance is not greatly increased, and photovoltaics having excellent power generation efficiency can be obtained. Conversion component.

作為退火處理的條件,並無特別限定,例如,作為處理溫度,可以設為150℃以上且250℃以下。另外,作為處理時間,可以設為10分鐘以上且1小時以下。The conditions for the annealing treatment are not particularly limited, and for example, the treatment temperature may be 150° C. or higher and 250° C. or lower. Further, the treatment time may be 10 minutes or longer and 1 hour or shorter.

本發明並不限定於上述的實施方式,也可以在不改變本發明主旨的範圍內改變其構成。例如,雙面的集電極19中的背面側的集電極19可以由被整面層疊的金屬等來形成。作為此種金屬,可以適當使用銀、Ag-Pd-Cu系合金、Ag-Ga-Cu系合金等。另外,在層結構體11構成異質結型的情況下,也可以使用p型結晶半導體基板。進而,只要至少在入射面側形成透明導電膜即可,背面側可以不形成透明導電膜。但是,通過在背面側的非晶質系半導體層外表面層疊透明導電膜,從而抑制缺陷能級的產生,可以提高轉換效率。The present invention is not limited to the above-described embodiments, and the configuration may be changed within a range that does not change the gist of the present invention. For example, the collector 19 on the back side of the double-sided collector 19 may be formed of a metal or the like laminated on the entire surface. As such a metal, silver, an Ag-Pd-Cu alloy, an Ag-Ga-Cu alloy, or the like can be suitably used. Further, when the layer structure 11 constitutes a heterojunction type, a p-type crystalline semiconductor substrate may be used. Further, the transparent conductive film may be formed on at least the incident surface side, and the transparent conductive film may not be formed on the back surface side. However, by laminating a transparent conductive film on the outer surface of the amorphous semiconductor layer on the back side, generation of a defect level can be suppressed, and conversion efficiency can be improved.

實施例Example

以下,列舉實施例及比較例對本發明的內容進行更具體的說明。予以說明,本發明並不限定於以下的實施例。Hereinafter, the contents of the present invention will be more specifically described by way of examples and comparative examples. It should be noted that the present invention is not limited to the following examples.

<實施例1><Example 1>

製成包含第一透明導電膜15/p型非晶質系矽層/第一本征非晶質系矽層/n型結晶矽基板/第二本征非晶質系矽層(n層側中間層16)/n型非晶質系矽層/第二透明導電膜18的層結構體11。n型結晶矽基板使用在雙面形成了具有無數具有棱錐形狀的微細凹凸結構(紋理結構)的單晶基板。該凹凸結構通過在包含約3重量%的氫氧化鈉的蝕刻液中浸漬基板材料、並對基板材料的(100)面進行各向異性蝕刻來形成。另外,各矽層利用等離子CVD法進行層疊。各透明導電膜使用含有3重量%氧化錫的氧化銦(UMICORE公司的濺射靶)、並利用濺射進行層疊。予以說明,p型非晶質系矽層、第一本征非晶質系矽層、n型結晶矽基板、第二本征非晶質系矽層、n型非晶質系矽層分別與p型非晶質系半導體層14、第一本征非晶質系半導體層13、n型結晶半導體基板12、第二本征非晶質系半導體層、n型非晶質系半導體層17對應。Formed to include a first transparent conductive film 15 / p type amorphous germanium layer / first intrinsic amorphous germanium layer / n type crystalline germanium substrate / second intrinsic amorphous germanium layer (n layer side The intermediate layer 16)/n-type amorphous enamel layer/layer structure 11 of the second transparent conductive film 18. The n-type crystalline germanium substrate is formed by using a single crystal substrate having a fine uneven structure (texture structure) having a plurality of pyramidal shapes on both surfaces. The uneven structure is formed by immersing a substrate material in an etching solution containing about 3% by weight of sodium hydroxide and anisotropically etching the (100) plane of the substrate material. Further, each of the tantalum layers was laminated by a plasma CVD method. In each of the transparent conductive films, indium oxide (a sputtering target of UMICORE Co., Ltd.) containing 3% by weight of tin oxide was used and laminated by sputtering. It is to be noted that the p-type amorphous germanium layer, the first intrinsic amorphous germanium layer, the n-type crystalline germanium substrate, the second intrinsic amorphous germanium layer, and the n-type amorphous germanium layer are respectively The p-type amorphous semiconductor layer 14, the first intrinsic amorphous semiconductor layer 13, the n-type crystalline semiconductor substrate 12, the second intrinsic amorphous semiconductor layer, and the n-type amorphous semiconductor layer 17 correspond to each other. .

接著,利用以下的方法在第一透明導電膜15及第二透明導電膜18外表面形成多個線狀的集電極19(線寬30μm、間距2mm)。首先,使用FURUYA METAL公司的APC-TR靶,利用濺射在層結構體11的雙面形成平均厚度50nm的Ag-Pd-Cu系金屬膜30。接著,使用石蠟,利用噴墨印刷在金屬膜30上形成用於鍍敷的抗蝕劑膜31。接著,利用鍍敷處理在露出的金屬膜30上形成平均厚度約4μm的銅鍍層。接著,利用鍍敷處理在銅鍍層上形成平均厚度約1μm的錫鍍層。接著,使其在25℃的3重量%氫氧化鉀溶液中浸漬1分鐘,由此除去作為抗蝕劑膜31的石蠟。接著,使其在磷酸系水溶液中浸漬10秒,由此除去露出部分的金屬膜30。之後,在200℃進行30分鐘的退火處理。由此得到實施例1的光發電元件。Next, a plurality of linear collector electrodes 19 (line width 30 μm, pitch 2 mm) were formed on the outer surfaces of the first transparent conductive film 15 and the second transparent conductive film 18 by the following method. First, an Ag-Pd-Cu-based metal film 30 having an average thickness of 50 nm was formed on both surfaces of the layer structure 11 by sputtering using an APC-TR target of FURUYA METAL. Next, a resist film 31 for plating is formed on the metal film 30 by inkjet printing using paraffin wax. Next, a copper plating layer having an average thickness of about 4 μm was formed on the exposed metal film 30 by a plating treatment. Next, a tin plating layer having an average thickness of about 1 μm was formed on the copper plating layer by a plating treatment. Next, it was immersed in a 3% by weight potassium hydroxide solution at 25 ° C for 1 minute to remove paraffin wax as the resist film 31. Next, it was immersed in a phosphoric acid aqueous solution for 10 seconds, thereby removing the exposed portion of the metal film 30. Thereafter, annealing treatment was performed at 200 ° C for 30 minutes. Thus, the photovoltaic power generation element of Example 1 was obtained.

<實施例2><Example 2>

使用AGC靶(Ag:97.0~99.7重量%、Ga:0.2~1.5重量%、Cu:0.1~1.5重量%),利用濺射在層結構體11的雙面形成平均厚度50nm的Ag-Ga-Cu系金屬膜30,除此以外,與實施例1同樣地得到實施例2的光發電元件。Using an AGC target (Ag: 97.0 to 99.7 wt%, Ga: 0.2 to 1.5 wt%, Cu: 0.1 to 1.5 wt%), Ag-Ga-Cu having an average thickness of 50 nm was formed on both surfaces of the layer structure 11 by sputtering. A photovoltaic power generation element of Example 2 was obtained in the same manner as in Example 1 except that the metal film 30 was used.

<比較例1><Comparative Example 1>

利用使用了銀膏的絲網印刷來形成集電極19(線寬80μm、間距2mm),除此以外,與實施例1同樣地得到比較例1的光發電元件。A photovoltaic power generation element of Comparative Example 1 was obtained in the same manner as in Example 1 except that the collecting electrode 19 (line width: 80 μm, pitch: 2 mm) was formed by screen printing using a silver paste.

<比較例2><Comparative Example 2>

利用使用了銀膏的絲網印刷來形成集電極19(線寬30μm、間距2mm),除此以外,與實施例1同樣地得到比較例2的光發電元件。A photovoltaic power generation element of Comparative Example 2 was obtained in the same manner as in Example 1 except that the collecting electrode 19 (line width: 30 μm, pitch: 2 mm) was formed by screen printing using a silver paste.

<評價><evaluation>

對所得的各光發電元件的短路電流(A)、開路電壓(V)、曲線因數及轉換效率(%)進行了測量。結果如表1所示。The short-circuit current (A), open circuit voltage (V), curve factor, and conversion efficiency (%) of each of the obtained photovoltaic power generation elements were measured. The results are shown in Table 1.

表1 Table 1

如表1所示,可知:實施例1及實施例2的光發電元件的曲線因數大,且轉換效率優異。As shown in Table 1, it is understood that the photovoltaic power generation elements of Examples 1 and 2 have a large curve factor and excellent conversion efficiency.

<接觸電阻測定><Measurement of contact resistance>

在包含含有3重量%氧化錫的氧化銦的透明導電膜表面利用濺射形成以下的試驗膜(平均厚度50nm),之後,進行了退火處理(200℃、30分鐘)。對退火處理前後的各試驗膜的接觸電阻率進行了測定。測定結果如圖3所示。予以說明,試驗膜1、2(Ag-Pd-Cu系合金膜)使用實施例1中使用的APC-TR靶進行了制膜。試驗膜3、4(Ag-Ga-Cu系合金膜)使用實施例2中使用的AGC靶進行了製膜。The following test film (average thickness: 50 nm) was formed by sputtering on the surface of a transparent conductive film containing indium oxide containing 3% by weight of tin oxide, and then annealed (200 ° C, 30 minutes). The contact resistivity of each test film before and after the annealing treatment was measured. The measurement results are shown in Fig. 3. Incidentally, the test films 1 and 2 (Ag-Pd-Cu-based alloy film) were formed by using the APC-TR target used in Example 1. The test films 3 and 4 (Ag-Ga-Cu-based alloy film) were formed by using the AGC target used in Example 2.

・試驗膜1:Ag-Pd-Cu系合金(退火處理前)・Test film 1: Ag-Pd-Cu alloy (before annealing treatment)

・試驗膜2:Ag-Pd-Cu系合金(退火處理後)・Test film 2: Ag-Pd-Cu alloy (after annealing)

・試驗膜3:Ag-Ga-Cu系合金(退火處理前)・Test film 3: Ag-Ga-Cu alloy (before annealing treatment)

・試驗膜4:Ag-Ga-Cu系合金(退火處理後)・Test film 4: Ag-Ga-Cu alloy (after annealing)

・試驗膜5:Al-Ni系合金(退火處理前)・Test film 5: Al-Ni alloy (before annealing treatment)

・試驗膜6:Al-Ni系合金(退火處理後)・Test film 6: Al-Ni alloy (after annealing treatment)

・試驗膜7:Mo(退火處理前)・Test film 7: Mo (before annealing treatment)

・試驗膜8:Mo(退火處理後)・Test film 8: Mo (after annealing treatment)

予以說明,任一退火處理均在200℃進行30分鐘。Incidentally, any annealing treatment was carried out at 200 ° C for 30 minutes.

如圖As shown 33 所示,可知:一般作為阻擋層As shown, it can be seen that: generally as a barrier 2020 金屬使用的Metal used AlAl - NiNi 系金屬的電阻高(試驗膜High resistance of metal (test film 55 ),並且通過進行退火處理而使電阻變得更高(試驗膜), and the resistance is made higher by performing annealing treatment (test film 66 )。在使用). In use MoMo 的情況(試驗膜Condition (test film 77 , 88 )下,雖然電阻比Under, although the resistance ratio AlAl - NiNi 系合金低,但是難以利用鍍敷在The alloy is low, but it is difficult to use plating. MoMo 上層疊銅Laminated copper Floor 21twenty one 。另一方面,可知:在使用. On the other hand, we know that: in use AgAg - PdPd - CuCu 系合金的情況(試驗膜Alloy condition (test film 11 , 22 )和使用)and use AgAg - GaGa - CuCu 系合金的情況(試驗膜Alloy condition (test film 33 , 44 )下,在退火處理前後均顯示較低的電阻。Underneath, the lower resistance is shown before and after the annealing treatment.

產業上的可利用性Industrial availability

本發明的光發電元件可以提高轉換效率,並且可以適當用於太陽光發電。The photovoltaic power generation element of the present invention can improve conversion efficiency and can be suitably used for photovoltaic power generation.

10‧‧‧光發電元件
11‧‧‧層結構體
12‧‧‧n型結晶半導體基板
13‧‧‧第一本征非晶質系半導體層
14‧‧‧p型非晶質系半導體層
15‧‧‧第一透明導電膜
16‧‧‧n層側中間層
17‧‧‧n型非晶質系半導體層
18‧‧‧第二透明導電膜
19‧‧‧集電極
20‧‧‧阻擋層
21‧‧‧銅層
22‧‧‧覆蓋層
30‧‧‧金屬膜
31‧‧‧抗蝕劑膜
10‧‧‧Photovoltaic components
11‧‧‧ layer structure
12‧‧‧n type crystalline semiconductor substrate
13‧‧‧First intrinsic amorphous semiconductor layer
14‧‧‧p-type amorphous semiconductor layer
15‧‧‧First transparent conductive film
16‧‧‧n intermediate layer
17‧‧‧n-type amorphous semiconductor layer
18‧‧‧Second transparent conductive film
19‧‧‧ Collector
20‧‧‧Block
21‧‧‧ copper layer
22‧‧‧ Coverage
30‧‧‧Metal film
31‧‧‧Resist film

圖1為本發明的一個實施方式涉及的光發電元件的示意性剖視圖; 圖2的(a)~(f)為表示圖1的光發電元件的製造方法的示意性剖視圖; 圖3為表示實施例中的接觸電阻測定的結果的圖表。1 is a schematic cross-sectional view of a photovoltaic power generation element according to an embodiment of the present invention; (a) to (f) of FIG. 2 are schematic cross-sectional views showing a method of manufacturing the photovoltaic power generation element of FIG. 1; A graph of the results of contact resistance measurements in the examples.

10‧‧‧光發電元件 10‧‧‧Photovoltaic components

11‧‧‧層結構體 11‧‧‧ layer structure

12‧‧‧n型結晶半導體基板 12‧‧‧n type crystalline semiconductor substrate

13‧‧‧第一本征非晶質系半導體層 13‧‧‧First intrinsic amorphous semiconductor layer

14‧‧‧p型非晶質系半導體層 14‧‧‧p-type amorphous semiconductor layer

15‧‧‧第一透明導電膜 15‧‧‧First transparent conductive film

16‧‧‧n層側中間層 16‧‧‧n intermediate layer

17‧‧‧n型非晶質系半導體層 17‧‧‧n-type amorphous semiconductor layer

18‧‧‧第二透明導電膜 18‧‧‧Second transparent conductive film

19‧‧‧集電極 19‧‧‧ Collector

20‧‧‧阻擋層 20‧‧‧Block

21‧‧‧銅層 21‧‧‧ copper layer

22‧‧‧覆蓋層 22‧‧‧ Coverage

Claims (6)

一種光發電元件,包含具有一透明導電膜作為至少一方的最外層且利用光照射產生電動勢的一層結構體、和配設在該透明導電膜的外表面的一線狀集電極的該光發電元件; 該線狀集電極具有層疊在該透明導電膜的外表面的一阻擋層和層疊在該阻擋層的外表面且包含銅作為主成分的一銅層,該阻擋層包含鈀及鎵中的至少一種、銀和銅。A photovoltaic power generation element comprising: a layered structure having a transparent conductive film as at least one outermost layer and generating an electromotive force by light irradiation; and the photovoltaic power generation element disposed on a linear collector of an outer surface of the transparent conductive film; The linear collector has a barrier layer laminated on an outer surface of the transparent conductive film and a copper layer laminated on an outer surface of the barrier layer and containing copper as a main component, the barrier layer containing at least one of palladium and gallium , silver and copper. 如申請專利範圍第1項所述之光發電元件,其中,該線狀集電極還具有層疊在該銅層的外表面的一覆蓋層。The photovoltaic power generation element according to claim 1, wherein the linear collector further has a cover layer laminated on an outer surface of the copper layer. 如申請專利範圍第2項所述之光發電元件,其中,該覆蓋層包含錫作為主成分。The photovoltaic power generation element according to claim 2, wherein the cover layer contains tin as a main component. 如申請專利範圍第1至3項所述之光發電元件,其中,該層結構體還具有:一p型的結晶半導體基板或一n型的結晶半導體基板;在該結晶半導體基板的一面側按照以下順序依次層疊的一第一本征非晶質系半導體層及一p型非晶質系半導體層;以及在該結晶半導體基板的另一面側按照以下順序依次層疊的一n層側中間層及一n型非晶質系半導體層; 該n層側中間層為一第二本征非晶質系半導體層或一電阻率比該n型非晶質系半導體層高的一高電阻n型非晶質系半導體層。The photovoltaic power generation device according to any one of claims 1 to 3, wherein the layer structure further comprises: a p-type crystalline semiconductor substrate or an n-type crystalline semiconductor substrate; and one side of the crystalline semiconductor substrate a first intrinsic amorphous semiconductor layer and a p-type amorphous semiconductor layer which are sequentially stacked in the following order; and an n-side intermediate layer which is sequentially laminated on the other surface side of the crystalline semiconductor substrate in the following order and An n-type amorphous semiconductor layer; the n-layer side intermediate layer is a second intrinsic amorphous semiconductor layer or a high-resistance n-type non-resistivity higher than the n-type amorphous semiconductor layer A crystalline semiconductor layer. 一種光發電元件的製造方法,依次包含: 在具有一透明導電膜作為至少一方的最外層且利用光照射產生電動勢的一層結構體的外表面層疊包含鈀及鎵中的至少一種、銀和銅的一金屬膜的步驟; 在該金屬膜的外表面的一部分形成一抗蝕劑膜的步驟; 利用鍍敷處理在該金屬膜的外表面的露出部分層疊包含銅作為主成分的一銅層的步驟; 利用鍍敷處理在該銅層的外表面層疊一覆蓋層的步驟; 除去該抗蝕劑膜的步驟;以及 將已經除去該抗蝕劑膜的區域的該金屬膜除去的步驟。A method for producing a photovoltaic power generation device, comprising: laminating at least one of palladium and gallium, silver, and copper on an outer surface of a layered structure having at least one outermost layer of a transparent conductive film and generating electromotive force by light irradiation a step of forming a resist film on a portion of the outer surface of the metal film; and a step of laminating a copper layer containing copper as a main component on the exposed portion of the outer surface of the metal film by a plating treatment; a step of laminating a cover layer on the outer surface of the copper layer by a plating treatment; a step of removing the resist film; and a step of removing the metal film in a region where the resist film has been removed. 如申請專利範圍第5項所述之光發電元件的製造方法,其在該金屬膜除去步驟後還包含對該層結構體進行退火處理的步驟。The method for producing a photovoltaic power generation device according to claim 5, further comprising the step of annealing the layer structure after the metal film removing step.
TW105123720A 2015-07-27 2016-07-27 Photovoltaic element and method for manufacturing same TW201719914A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071294 WO2017017771A1 (en) 2015-07-27 2015-07-27 Photovoltaic element and method for manufacturing same

Publications (1)

Publication Number Publication Date
TW201719914A true TW201719914A (en) 2017-06-01

Family

ID=57582224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105123720A TW201719914A (en) 2015-07-27 2016-07-27 Photovoltaic element and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6053082B1 (en)
TW (1) TW201719914A (en)
WO (1) WO2017017771A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563345B (en) * 2020-12-09 2023-04-28 西安交通大学 Outer conductor electrode structure for homogenizing plane type photoconductive switch electric field, photoconductive switch device and method
WO2023157935A1 (en) * 2022-02-16 2023-08-24 株式会社マテリアル・コンセプト Solar cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992464B2 (en) * 1994-11-04 1999-12-20 キヤノン株式会社 Covering wire for current collecting electrode, photovoltaic element using the covering wire for current collecting electrode, and method of manufacturing the same
JP3377931B2 (en) * 1997-06-26 2003-02-17 京セラ株式会社 Solar cell element
JP2003297158A (en) * 2002-04-01 2003-10-17 Canon Inc Transparent conductive film having grid electrode and its manufacturing method
JP4078589B2 (en) * 2002-07-23 2008-04-23 富士電機ホールディングス株式会社 Solar cell module and manufacturing method thereof
US20060231802A1 (en) * 2005-04-14 2006-10-19 Takuya Konno Electroconductive thick film composition, electrode, and solar cell formed therefrom
US8859889B2 (en) * 2010-04-20 2014-10-14 Kyocera Corporation Solar cell elements and solar cell module using same
JP5554409B2 (en) * 2010-06-21 2014-07-23 三菱電機株式会社 Photoelectric conversion device
JP5492354B1 (en) * 2012-10-02 2014-05-14 株式会社カネカ Crystalline silicon solar cell manufacturing method, solar cell module manufacturing method, crystalline silicon solar cell, and solar cell module

Also Published As

Publication number Publication date
JP6053082B1 (en) 2016-12-27
WO2017017771A1 (en) 2017-02-02
JPWO2017017771A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP5570654B2 (en) Solar cell element and solar cell module
JP5019397B2 (en) Solar cell and method for manufacturing the same
KR101110825B1 (en) Interdigitated back contact solar cell and manufacturing method thereof
JP5490231B2 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
US20160197207A1 (en) Solar cell, solar cell module, and manufacturing method of solar cell
JP5856112B2 (en) Manufacturing method of solar cell
US20130125964A1 (en) Solar cell and manufacturing method thereof
JP5927027B2 (en) Photoelectric conversion device
JPWO2018025643A1 (en) Solar cell and method of manufacturing solar cell
JP6452011B2 (en) Solar cell
WO2019163647A1 (en) Method for producing solar cell
TW201719914A (en) Photovoltaic element and method for manufacturing same
JP6254348B2 (en) Photoelectric conversion device
JP5987127B1 (en) Photovoltaic power generation element and manufacturing method thereof
WO2019138613A1 (en) Method for manufacturing solar cell
JPWO2019163648A1 (en) How to manufacture solar cells
JP2018041753A (en) Photovoltaic element and method of manufacturing the same
WO2017010029A1 (en) Photoelectric conversion device
JP7237920B2 (en) Solar cell manufacturing method
JP2018190819A (en) Optical power generation element and manufacturing method thereof
JP7361045B2 (en) How to manufacture solar cells
KR101600628B1 (en) Solar cell and manufacturing method thereof
WO2020022044A1 (en) Manufacturing method for solar cell
JP2020161643A (en) Solar cell and solar cell module
KR20190040157A (en) Manufacturing method of solar cell