TW201710498A - 過大腺相關載體之製造 - Google Patents

過大腺相關載體之製造 Download PDF

Info

Publication number
TW201710498A
TW201710498A TW105110751A TW105110751A TW201710498A TW 201710498 A TW201710498 A TW 201710498A TW 105110751 A TW105110751 A TW 105110751A TW 105110751 A TW105110751 A TW 105110751A TW 201710498 A TW201710498 A TW 201710498A
Authority
TW
Taiwan
Prior art keywords
aav
raav
aav2
genome
cell line
Prior art date
Application number
TW105110751A
Other languages
English (en)
Other versions
TWI707951B (zh
Inventor
摩爾 西爾卡 寇斯蒂歐
大衛 蘇沙
凱倫 文森
Original Assignee
健臻公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56943906&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201710498(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 健臻公司 filed Critical 健臻公司
Publication of TW201710498A publication Critical patent/TW201710498A/zh
Application granted granted Critical
Publication of TWI707951B publication Critical patent/TWI707951B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14151Methods of production or purification of viral material
    • C12N2750/14152Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles

Abstract

本文中提供用於產生含有超大重組腺相關病毒(AAV)基因組(例如,大於4.7kb)的AAV顆粒的方法。在一些態樣,本發明提供了包含超大rAAV基因組的AAV載體和AAV顆粒。還提供了生產細胞系以產生包含超大基因組的AAV顆粒。

Description

過大腺相關載體之製造 對相關申請的交叉引用
本申請要求2015年4月8日提交的美國臨時申請No.62/144,862和2015年9月17日提交的美國臨時申請No.62/220,067的優先權,在此通過提及完整併入每篇的內容用於所有目的。
ASCII文字檔上的下述提交的內容通過提述以其整體併入本文:序列表的計算可讀形式(CRF)(檔案名稱:159792013240SEQLIST.txt,記錄日期:[日期],大小:[大小])。
本發明涉及用於產生具有超大重組AAV基因組的腺相關病毒(AAV)顆粒的方法和細胞系。
重組AAV(rAAV)載體已經變為用於針對遺傳和慢性疾病的基因轉移的有吸引力的投遞媒介物。使用rAAV載體的限制之一是它們的小包裝容量,其已經阻礙了用於許多需要大cDNA的臨床應用的基因療法,例如因子VIII(FVIII)、抗肌萎縮蛋白、dysferlin和囊性纖維化跨膜傳導調節蛋白(CFTR)。早期研究限定包裝限制為4.7至4.8kb(Dong,J-Y等(1996)Human Gene Therapy 7:2101-2112)。新近的研究已經對AAV2、AAV5或AAV8殼體(capsid)確認了大致在5.0至5.2kb大小的包裝載體基因組的限 制。在這些研究中,兩種極性的超大(或「片段化」)基因組在5’端通常是缺失的,並且大多數包裝的基因組不超過約5.2kb(Lu,H.等(2008)Human Gene Therapy 19:648-654;Wu,Z.等(2010)Molecular Therapy 18:80-86;Grose,W.E.等(2012)PLoS One 7:e39233)。
因而,需要用於超大載體的更好的生產平臺,其容許穩健產率及足夠質量的產生。
本文中描述了通過生產細胞系(PCL)平臺的超大載體產生的全面分析。如下文描述,此PCL平臺產生較高產率的較好質量的超大重組腺相關病毒(rAAV)載體。相比於通過標準三重轉染方法產生的載體中觀察到的,產生的rAAV載體含有更高量的殼體化的較大基因組。另外,細胞系是穩定的,並且載體含有較少的污染性異常DNA。載體在基因轉移後在體內產生完全的表現盒,並且導致功能性蛋白質的產生。
本發明提供了用於產生包含超大重組AAV基因組的腺相關病毒(AAV)顆粒的方法,所述方法包括:a)在產生rAAV顆粒的條件下培養AAV生產細胞系,其中所述AAV生產細胞系包含:i)編碼AAV rep和cap基因的核酸,和ii)rAAV基因組,其中所述rAAV基因組大於約4.7kb;b)提供AAV輔助功能;並c)收集包含超大rAAV基因組的rAAV顆粒。在一些實施方案中,所述編碼AAV rep和cap基因的核酸和/或所述rAAV基因組在所述生產細胞系中穩定維持。在一些實施方案中,所述編碼AAV rep和cap基因的核酸和/或所述rAAV基因組穩定整合入所述生產細胞系的基因組中。在一些實施方案中,所述rAAV基因組包含一個或多個AAV反向末端重複(ITR)和異源轉基因。在一些實施方案中,所述rAAV基因組包含兩個AAV ITR。在一些實施方案中,rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb。 在一些實施方案中,步驟c)中收集的AAV顆粒包含大於約4.7kb的rAAV基因組。在一些實施方案中,步驟c)中收集的AAV顆粒包含約4.7kb-約9.4kb,任選地約4.7kb-6.7kb的rAAV基因組。在一些實施方案中,rAAV基因組是約4.7kb-約5kb、約4.7kb-約6kb、約4.7kb-約7kb、約4.7kb-約8kb或約4.7kb-約9kb。在一些實施方案中,rAAV基因組是約4.7kb-6.7kb或約5.2kb-約8.7kb。在一些實施方案中,rAAV基因組的長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、8.0kb、或9.0kb中任一者或其間的任何數值。
在上述方法的一些實施方案中,異源轉基因編碼治療性轉基因產物。在一些實施方案中,異源轉基因是人類轉基因。在一些實施方案中,異源轉基因編碼因子VIII、抗肌萎縮蛋白、dysferlin或囊性纖維化跨膜傳導調節蛋白(CFTR)。在一些實施方案中,異源轉基因與啟動子可操作連接。在別的實施方案中,啟動子是小鼠轉甲狀腺素(mTTR)啟動子。在一些實施方案中,rAAV基因組包含內含子。在別的實施方案中,內含子是合成內含子。在一些實施方案中,rAAV基因組包含多聚腺苷酸化信號。在別的實施方案中,多聚腺苷酸化信號是合成多聚腺苷酸化信號或牛生長激素多聚腺苷酸化信號。
在上述方法的一些實施方案中,rAAV顆粒包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體。在一些實施方案中,AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。在上 述方法的一些實施方案中,AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。在一些實施方案中,AAV ITR是AAV2 ITR。在一些實施方案中,rAAV顆粒的ITR和殼體源自相同AAV血清型。在一些實施方案中,ITR和所述殼體源自AAV2。在其它實施方案中,rAAV顆粒的ITR和殼體源自不同AAV血清型。在一些實施方案中,AAV顆粒包含AAV2 ITR和AAVrh8R殼體。在一些實施方案中,AAV顆粒包含AAV2 ITR和AAV8殼體。
在上述方法的一些實施方案中,生產細胞系源自靈長類細胞。在一些實施方案中,生產細胞系源自HeLa、293、A549或Perc.6細胞。在一些實施方案中,生產細胞系適合於在懸浮液中生長。在一些實施方案中,AAV輔助功能由腺病毒或HSV提供。在一些實施方案中,在提供輔助功能後約48小時-約96小時收集所述rAAV顆粒。在一些實施方案中,方法進一步包括純化rAAV顆粒。在一些實施方案中,純化包括一個或多個層析步驟。在一些態樣中,本發明提供了通過本文中描述的方法產生的包含超大rAAV基因組的rAAV顆粒。
在一些態樣中,本發明提供了包含rAAV顆粒的組合物,其中至少約15%、至少約20%、至少約25%、至少約30%、至少約35%、至少約40%、至少約45%、至少約50%、至少約55%、至少約60%或至少約70%的所述rAAV顆粒殼體化大於約4.7kb的rAAV基因組。在一些實施方案中,所述rAAV基因組包含一個或多個AAV反向末端重複(ITR)和異源轉基因。在一些實施方案中,所述rAAV基因組包含兩個AAV ITR。在一些實施方案中,rAAV基因組是約4.7kb-約9.4kb。在一些實施方案中,rAAV基因組是約4.7kb-約5kb、約4.7kb-約6kb、約4.7kb-約7kb、約4.7kb-約8kb或 約4.7kb-約9kb。在一些實施方案中,rAAV基因組是約4.7kb-6.7kb或約5.2kb-約8.7kb。在一些實施方案中,rAAV基因組的長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、8.0kb、或9.0kb中任一者或其間的任何數值。
在上述組合物的一些實施方案中,異源轉基因編碼治療性轉基因產物。在一些實施方案中,異源轉基因是人類轉基因。在一些實施方案中,異源轉基因編碼因子VIII、抗肌萎縮蛋白、dysferlin或囊性纖維化跨膜傳導調節蛋白(CFTR)。在一些實施方案中,異源轉基因與啟動子可操作連接。在別的實施方案中,啟動子是小鼠轉甲狀腺素(mTTR)啟動子。在一些實施方案中,rAAV基因組包含內含子。在別的實施方案中,內含子是合成內含子。在一些實施方案中,rAAV基因組包含多聚腺苷酸化信號。在別的實施方案中,多聚腺苷酸化信號是合成多聚腺苷酸化信號或牛生長激素多聚腺苷酸化信號。
在上述組合物的一些實施方案中,rAAV顆粒包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體。在一些實施方案中,AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。在上述方法的一些實施方案中,AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。在一些實施方案中,AAV ITR是AAV2 ITR。在一 些實施方案中,rAAV顆粒的ITR和殼體源自相同AAV血清型。在一些實施方案中,ITR和所述殼體源自AAV2。在其它實施方案中,rAAV顆粒的ITR和殼體源自不同AAV血清型。在一些實施方案中,AAV顆粒包含AAV2 ITR和AAVrh8R殼體。在一些實施方案中,AAV顆粒包含AAV2 ITR和AAV8殼體。
在上述組合物的一些實施方案中,在生產細胞中產生包含超大AAV基因組的AAV顆粒。在一些實施方案中,生產細胞系源自靈長類細胞。在一些實施方案中,生產細胞系源自HeLa、293、A549或Perc.6細胞。在一些實施方案中,生產細胞系適合於在懸浮液中生長。在一些實施方案中,AAV輔助功能由腺病毒或HSV提供。在一些實施方案中,在提供輔助功能後約48小時-約96小時收集所述rAAV顆粒。
在一些態樣中,本發明提供了用於增強超大rAAV基因組的表現的方法,所述方法包括通過對生產細胞系提供AAV輔助功能而在所述細胞系中產生rAAV顆粒,其中所述生產細胞系包含:a)編碼AAV rep和cap基因的核酸,和b)rAAV基因組,其中所述rAAV基因組大於約4.7kb。在一些實施方案中,超大rAAV基因組的表現是來自通過瞬時轉染產生的rAAV顆粒的所述超大rAAV基因組的表現的大約1.25倍、約1.5倍、約1.75倍、約2.0倍、約2.5倍、約2.75倍、約3倍、或約5倍。在一些實施方案中,與來自通過瞬時轉染產生的rAAV顆粒的超大rAAV基因組的表現動力學相比,來自由生產細胞系產生的rAAV顆粒的所述超大rAAV基因組的表現動力學是更快的表現動力學。在一些實施方案中,由生產細胞系產生的超大rAAV基因組的表現動力學比來自通過瞬時轉染產生的rAAV顆粒的超大rAAV基因組的表現動力學快約5%、快約10%、快約25%、快約50%、快約75%、或快約90%。
在超大rAAV基因組的增強表現的一些實施方案中,所述編 碼AAV rep和cap基因的核酸和/或所述rAAV基因組在所述生產細胞系中穩定維持。在一些實施方案中,所述編碼AAV rep和cap基因的核酸和/或所述rAAV基因組穩定整合入所述生產細胞系的基因組中。在一些實施方案中,所述rAAV基因組包含一個或多個AAV反向末端重複(ITR)和異源轉基因。在一些實施方案中,所述rAAV基因組包含兩個AAV ITR。在一些實施方案中,rAAV基因組是約4.7kb-約9.4kb。在一些實施方案中,rAAV基因組是約4.7kb-約5kb、約4.7kb-約6kb、約4.7kb-約7kb、約4.7kb-約8kb或約4.7kb-約9kb。在一些實施方案中,rAAV基因組是約4.7kb-6.7kb或約5.2kb-約8.7kb。
在超大rAAV基因組的增強表現的一些實施方案中,異源轉基因編碼治療性轉基因產物。在一些實施方案中,異源轉基因編碼因子VIII、抗肌萎縮蛋白、dysferlin或囊性纖維化跨膜傳導調節蛋白(CFTR)。在一些實施方案中,異源轉基因是人類轉基因。在一些實施方案中,異源轉基因與啟動子可操作連接。在一些實施方案中,啟動子是小鼠轉甲狀腺素(mTTR)啟動子。在一些實施方案中,rAAV基因組包含內含子。在一些實施方案中,內含子是合成內含子。在一些實施方案中,rAAV基因組包含多聚腺苷酸化信號。在一些實施方案中,多聚腺苷酸化信號是合成多聚腺苷酸化信號或牛生長激素多聚腺苷酸化信號。
在超大rAAV基因組的增強表現的一些實施方案中,rAAV顆粒包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體。在一些實施方案中,AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、 或AAVrh10。在一些實施方案中,AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。在一些實施方案中,AAV ITR是AAV2 ITR。在一些實施方案中,rAAV顆粒的ITR和殼體源自相同AAV血清型。在一些實施方案中,ITR和所述殼體源自AAV2。在一些實施方案中,rAAV顆粒的ITR和殼體源自不同AAV血清型。在一些實施方案中,AAV顆粒包含AAV2 ITR和AAVrh8R殼體。在一些實施方案中,AAV顆粒包含AAV2 ITR和AAV8殼體。
在超大rAAV基因組的增強表現的一些實施方案中,生產細胞系源自靈長類細胞。在一些實施方案中,生產細胞系源自HeLa、293、A549或Perc.6細胞。在一些實施方案中,生產細胞系適合於在懸浮液中生長。在一些實施方案中,AAV輔助功能由腺病毒、HSV或杆狀病毒提供。在一些實施方案中,在提供輔助功能後約48小時-約96小時收集所述rAAV顆粒。在一些實施方案中,方法進一步包括純化rAAV顆粒。在一些實施方案中,純化包括一個或多個層析步驟。
在一些態樣中,本發明提供了用於產生包含超大重組AAV基因組的腺相關病毒(AAV)顆粒的細胞系,所述細胞系包含:a)編碼AAV rep和cap基因的核酸,和b)rAAV基因組,其中所述rAAV基因組大於約4.7kb。在一些實施方案中,所述編碼AAV rep和cap基因的核酸和/或所述rAAV基因組在所述生產細胞系中穩定維持。在一些實施方案中,所述編碼AAV rep和cap基因的核酸和/或所述rAAV基因組穩定整合入所述生產細胞系的基因組中。在一些實施方案中,所述rAAV基因組包含一個或多個AAV反向末端重複(ITR)和異源轉基因。在一些實施方案中,rAAV基因組是約4.7kb-約9.4kb。在一些實施方案中,rAAV基因組是約4.7kb-約5kb、約4.7kb-約6kb、 約4.7kb-約7kb、約4.7kb-約8kb或約4.7kb-約9kb。在一些實施方案中,rAAV基因組是約4.7kb-6.7kb或約5.2kb-約8.7kb。在一些實施方案中,rAAV基因組的長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、8.0kb、8.7kb、或9.0kb中任一者或其間的任何數值。
在細胞系的一些實施方案中,異源轉基因編碼治療性轉基因產物。在一些實施方案中,異源轉基因是人類轉基因。在一些實施方案中,異源轉基因編碼因子VIII、抗肌萎縮蛋白、dysferlin或囊性纖維化跨膜傳導調節蛋白(CFTR)。在一些實施方案中,異源轉基因與啟動子可操作連接。在別的實施方案中,啟動子是小鼠轉甲狀腺素(mTTR)啟動子。在一些實施方案中,rAAV基因組包含內含子。在別的實施方案中,內含子是合成內含子。在一些實施方案中,rAAV基因組包含多聚腺苷酸化信號。在別的實施方案中,多聚腺苷酸化信號是合成多聚腺苷酸化信號或牛生長激素多聚腺苷酸化信號。
在上述細胞系的一些實施方案中,rAAV顆粒包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體。在一些實施方案中,AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。在上述方法的一些實施方案中,AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、 或小鼠AAV血清型ITR。在一些實施方案中,AAV ITR是AAV2 ITR。在一些實施方案中,rAAV顆粒的ITR和殼體源自相同AAV血清型。在一些實施方案中,ITR和所述殼體源自AAV2。在其它實施方案中,rAAV顆粒的ITR和殼體源自不同AAV血清型。在一些實施方案中,AAV顆粒包含AAV2 ITR和AAVrh8R殼體。在一些實施方案中,AAV顆粒包含AAV2 ITR和AAV8殼體。
在上述細胞系的一些實施方案中,生產細胞系源自靈長類細胞。在一些實施方案中,生產細胞系源自HeLa、293、A549或Perc.6細胞。在一些實施方案中,生產細胞系適合於在懸浮液中生長。在一些實施方案中,通過提供AAV輔助功能而在細胞系中生產AAV顆粒。在一些實施方案中,AAV輔助功能由腺病毒或HSV提供。在一些實施方案中,在提供輔助功能後約48小時-約96小時收集所述rAAV顆粒。
在一些態樣中,本發明提供了包含由AAV殼體殼體化的rAAV基因組的腺相關病毒(AAV)顆粒,其中rAAV基因組大於約4.7kb。在一些實施方案中,所述rAAV基因組包含一個或多個AAV反向末端重複(ITR)和異源轉基因。在一些實施方案中,所述rAAV基因組包含兩個AAV ITR。在一些實施方案中,rAAV基因組是約4.7kb-約9.4kb。在一些實施方案中,rAAV基因組是約4.7kb-約5kb、約4.7kb-約6kb、約4.7kb-約7kb、約4.7kb-約8kb或約4.7kb-約9kb。在一些實施方案中,rAAV基因組是約4.7kb-6.7kb或約5.2kb-約8.7kb。在一些實施方案中,rAAV基因組的長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、8.0kb、或9.0kb中任一者或其間的任何數值。
在一些實施方案中,本發明提供了包含超大rAAV基因組的AAV顆粒,其中異源轉基因編碼治療性轉基因產物。在一些實施方案中, 異源轉基因是人類轉基因。在一些實施方案中,異源轉基因編碼因子VIII、抗肌萎縮蛋白、dysferlin或囊性纖維化跨膜傳導調節蛋白(CFTR)。在一些實施方案中,異源轉基因與啟動子可操作連接。在別的實施方案中,啟動子是小鼠轉甲狀腺素(mTTR)啟動子。在一些實施方案中,rAAV基因組包含內含子。在別的實施方案中,內含子是合成內含子。在一些實施方案中,rAAV基因組包含多聚腺苷酸化信號。在別的實施方案中,多聚腺苷酸化信號是合成多聚腺苷酸化信號或牛生長激素多聚腺苷酸化信號。
在上述細胞系的一些實施方案中,rAAV顆粒包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體。在一些實施方案中,AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。在上述方法的一些實施方案中,AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。在一些實施方案中,AAV ITR是AAV2 ITR。在一些實施方案中,rAAV顆粒的ITR和殼體源自相同AAV血清型。在一些實施方案中,ITR和所述殼體源自AAV2。在其它實施方案中,rAAV顆粒的ITR和殼體源自不同AAV血清型。在一些實施方案中,AAV顆粒包含AAV2 ITR和AAVrh8R殼體。在一些實施方案中,AAV顆粒包含AAV2 ITR和AAV8殼體。
在本發明的一些實施方案中,在生產細胞中產生包含超大AAV基因組的AAV顆粒。在一些實施方案中,生產細胞系源自靈長類細胞。 在一些實施方案中,生產細胞系源自HeLa、293、A549或Perc.6細胞。在一些實施方案中,生產細胞系適合於在懸浮液中生長。在一些實施方案中,AAV輔助功能由腺病毒或HSV提供。在一些實施方案中,在提供輔助功能後約48小時-約96小時收集所述rAAV顆粒。
在一些實施方案中,本發明提供了包含超大rAAV基因組的AAV顆粒,其中rAAV基因組從5’至3’包含AAV2 ITR、mTTR啟動子、合成內含子、編碼人類FVIII的轉基因、合成多聚腺苷酸化序列、和AAV2 ITR。在一些實施方案中,rAAV基因組從5’至3’包含AAV2 ITR、mTTR啟動子、合成內含子、編碼人類FVIII的轉基因、牛生長激素合成多聚腺苷酸化序列、和AAV2 ITR。在一些實施方案中,FVIII包含全部或部分的B域的缺失。在一些實施方案中,AAV顆粒包含AAVrh8R殼體。在一些實施方案中,AAV顆粒包含AAV8殼體。
在一些態樣中,本發明提供了包含rAAV基因組的rAAV載體,其中rAAV基因組從5’至3’包含AAV2 ITR、mTTR啟動子、合成內含子、編碼人類FVIII的轉基因、合成多聚腺苷酸化序列、和AAV2 ITR。在一些實施方案中,rAAV基因組從5’至3’包含AAV2 ITR、mTTR啟動子、合成內含子、編碼人類FVIII的轉基因、牛生長激素合成多聚腺苷酸化序列、和AAV2ITR。在一些實施方案中,FVIII包含全部或部分的B域的缺失。
在一些實施方案中,本發明提供了治療具有疾病或病症的個體的方法,其包括對個體投予包含超大rAAV基因組的AAV顆粒,所述超大rAAV基因組編碼治療性轉基因,其中治療性轉基因適合於治療疾病或病症。在一些實施方案中,個體是哺乳動物(例如人類)。在一些實施方案中,疾病或病症是血友病A。在一些實施方案中,治療性轉基因編碼因子VIII;例如人類因子VIII,包括B域缺失的人類因子VIII。
在一些實施方案中,本發明提供了包含如本文中描述的 AAV顆粒的套組,所述AAV顆粒包含超大rAAV基因組。
本文中引用的所有參考文獻,包括專利申請和公開文本通過提述以其整體併入。
圖1A顯示了基於小鼠轉甲狀腺素(mTTR)啟動子、範圍為5.1至5.4kb載體基因組大小(如指示)的hFVIII表現盒的圖。顯示了HNF4結合位點(空心圓圈)和HNF3結合位點(實心圓圈)中的序列修飾及其位置。圖1A、1B和1C的縮寫:ITR,rAAV反向末端重複;mTTR,小鼠轉甲狀腺素啟動子(202或482bp);HI,雜合內含子;FVIII,B域缺失的人類FVIIIcDNA;syn pA,合成的(syn pA);BGH或牛生長激素(BGH)多聚A(pA)。
圖1B顯示了本文中描述的實驗中使用的mTTR啟動子序列的比對。
圖1C:在體內來自mTTR-FVIII表現盒的FVIII水準。通過高體積注射將質粒載體靜脈內注射入C56BL/6小鼠中,並且通過ELISA測定法測量血漿中的因子VIII水準。
圖1D顯示了5.1kb FVIII表現盒的結構。此盒包含rAAV反向末端重複(ITR)、小鼠轉甲狀腺素(mTTR)啟動子、雜合內含子(HI)、B域缺失的人類FVIII cDNA、和合成的多聚A序列。
圖1E顯示了TriplePlay質粒,其含有FVIII載體基因組、AAV repcap基因、以及負責嘌呤黴素和卡那黴素藥物抗性的基因。
圖2A2B顯示了來自選定的主孔選殖(masterwell clone,MW)的基因組DNA的南方墨點法分析。(圖2A)用SpeI切割FVIII TriplePlay質粒,這產生13kb線性片段。這用作單位長度TriplePlay質粒和整合複製體數目標準品的大小對照。(圖2B)通過用BglII和HincII消化分析整合的載 體基因組的完整性。這些酶在FVIII表現盒內切割,產生1.8和2.8kb片段。在這兩幅圖中,提供了顯示載體和限制性位點的圖。
圖3A3B顯示了對AAVrh8R/5.1kb mTTR-FVIII載體生產產率和穩定性的分析。(圖3A)AAVrh8R/5.1kb載體產生的時間過程。用野生型腺病毒(wt Ad)感染搖動培養物,在第2天、第3天和第4天收集樣品,並且以每ml的載體基因組(VG/ml)通過qPCR定量載體產率。(圖3B)選定的高生產主孔的穩定性。對MW#287(AAV8/5.1kb)、MW#35(AAVrh8R/5.1kb)和MW#163(AAVrh8R/5.4kb)顯示了rAAV載體產生水平。傳代主孔直至第20代或第26代,並且通過qPCR定量rAAV生產率(productivity)(DRP/ml)。
圖4A4B顯示了對超大5.1kb rAAVrh8R/FVIII載體質量的分析。通過AUC分析比較PCL和TXN產生的5.1kb載體批次。使用MW#35將AAVrh8R/5.1kb FVIII產生三次(圖4A),並且與通過TXN方法產生的相同載體比較(圖4B)。通過測量病毒質量差異的分析超速離心分析(AUC)評估載體的質量。插頁指示具有不同沉積(S)數值的殼體%。空殼體通常具有63至66的S值,而具有野生型大小載體基因組的殼體通常為100至103的S。
圖5A5B顯示了對超大5.4kb rAAVrh8R/FVIII載體質量的分析。通過AUC分析比較PCL(圖5A)和TXN(圖5B)產生的5.4kb載體批次。插頁指示不同沉積(S)數值的殼體%。圈出空殼體(64S/63S)和具有較大基因組的顆粒(101S/99S)的百分比。
圖6A6B顯示了通過南方墨點法表徵PCL或TXN產生的rAAVrh8R/5.1kb載體中的包裝的載體基因組。從純化的病毒體中分離載體基因組,並且通過鹼性凝膠電泳,接著使用對載體特異性的探針進行南方墨點法分析大小。(圖6A)使用4.0kb FVIII探針的南方墨點法(FVIII域 A1、A2、A3和C1)。以1.1和6.0×109VG/道上樣VG,並且在1%鹼性凝膠上分開。將通過PCL(MW#35)或三重轉染產生的5.1kb FVIII載體與4.6kb大小載體(與rh8R/5.1kb載體相同,只是缺失C1域以創建正常大小的載體)比較。(圖6B)將每個獨特VG大小的信號強度定量,並且以每道中的總信號的%繪圖。
圖7A、7B7C顯示了通過DNA斑點印跡分析表徵PCL或TXN產生的rAAVrh8R/5.1kb載體中的包裝的載體基因組的5’端。通過將每種載體的2倍連續稀釋物應用到膜上(以2.4×109開始;總共8個降低的載體濃度加上作為陰性對照應用的無基因組)分析圖5中使用的載體批次。使每個印跡與對載體基因組(正或負極性)的中間或5’端末端特異性的3’端標記的寡核苷酸探針雜交。定量信號強度,並且相對於4.6kb載體(完全包裝)標準化。使用三個濃度來產生標準誤差。(圖7A)顯示了使用的寡核苷酸探針的位置的圖。數值指示相應的3’端的核苷酸距離。(圖7B)負鏈的分析。(圖7C)正鏈的分析。
圖8A、8B、8C8D顯示了PCL或TXN產生的rAAVrh8R/5.1kb載體中的包裝載體基因組的5’和3’端的表徵。(圖8A)圖顯示了針對使用的載體基因組的正和負鏈的5’和3’端的寡核苷酸探針的位置。(圖8B)每個批次中的5.1kb載體基因組的正和負鏈的定量。分析的載體包含4.6kb或5.1kb mTTR-FVIII基因組。指示載體產生方法(PCL或TXN)。以相似的方式純化所有載體。通過將每種載體的2倍連續稀釋物應用到膜上(以3.0×109開始;總共8個降低的載體濃度)進行分析,如圖5中描述。使用含有FIX(陰性對照)或FVIII(陽性對照)cDNA的質粒作為信號特異性的對照。(圖8C)使用針對5.1kb載體的3’和5’端寡核苷酸探針的南方墨點法。以1.5和7.5×109VG/道上樣VG,並且在1%鹼性凝膠上分開。將通過PCL(MW#35)或三重轉染(TXN)產生的5.1kb FVIII載體與4.6kb大小載體比較。顯示了 大小標誌物(2.7、4.7和5.1kb)。頂部小圖,正鏈分析;底部小圖,負鏈分析。顯示了用於每道的寡核苷酸。白色箭指示了丟失的信號。(圖8D)每個載體中的基因組大小的定量。通過ImageJ定量用3’端寡核苷酸探針(檢測所有包裝的基因組)探查的小圖中的信號強度。將每個獨特VG大小(>4.7kb、4.7kb和<4.7kb)的強度定量,並且以每道中的總信號的%繪圖。
圖9A、9B9C顯示了表徵PCL或TXN產生的rAAVrh8R/5.4kb載體中的包裝載體基因組的5’和3’端。(圖9A)顯示了針對使用的載體基因組的正和負鏈的5’和3’端的寡核苷酸探針的位置的圖。(圖9B)通過斑點印跡分析定量每個批次中的5.4kb載體基因組的正和負鏈。如圖8中描述進行分析。(圖9C)使用3’和5’端寡核苷酸探針的5.4kb載體的南方墨點法。如圖8中描述進行實驗。
圖10A10B顯示了PCL產生的rAAVrh8R/5.1kb載體在血友病A KO小鼠中的體內效力。通過尾靜脈以3×1011和4×1010DRP/小鼠對小鼠投予載體,並且分析血漿FVIII水準直至第56天。(圖10A)血漿FVIII蛋白活性。通過Coatest測定法在第7天、第14天、第28天、第42天和第56天血漿樣品中測量活性。(圖10B)第28天和第56天的凝固時間。通過啟動部分促凝血酶原激酶時間(aPTT)分析凝固時間。每個處理組含有n=7-10只小鼠/組。通過Student t檢驗指示統計學顯著性如下:*,p<0.05;**,p<0.01,***,p<0.001。
圖11A、11B11C顯示了使用血友病A KO小鼠在體內比較PCL和TXN產生的5.1kb AAVrh8R/FVIII載體。通過尾靜脈以4×1010DRP/小鼠對小鼠投予載體。(圖11A)血漿FVIII蛋白活性。通過Coatest測定法在第21天、第35天、第56天、第70天和第84天樣品中測量活性。(圖11B)第21天的血漿凝固時間。(圖11C)第56天的血漿凝固時間。通過aPTT測定法測量血漿凝固時間。顯示了小鼠品系(129S和BALB/c)的凝固時間以進行 比較。(圖11D)第84天的肝中的載體基因組(VG)複製體。通過qPCR定量VG複製體,並且以複製體/500ng總肝DNA顯示。每個處理組含有n=8只小鼠/組。通過Student t檢驗指示統計學顯著性如下:*,p<0.05;**,p<0.01,***,p<0.001。在每幅小圖中指示病毒產生的方法(PCL或TXN)。
圖12A、12B12C顯示了使用血友病A KO小鼠在體內比較PCL和TXN產生的5.4kb AAVrh8R/FVIII載體。通過尾靜脈以4×1010DRP/小鼠對小鼠投予載體,並且在載體投予後第24天和第43天收集血漿樣品。(圖12A)血漿FVIII活性。通過Coatest測定法在第24天和第43天血漿樣品中測量活性。(圖12B)通過aPTT測定法得到的第24天血漿凝固時間。(圖12C)第3天和第43天在肝中的載體基因組(VG)複製體。在載體投予後3和43天處死動物,並且通過qPCR定量VG複製體,並且以複製體/500ng總肝DNA顯示。每個處理組含有n=6-8只小鼠/組。通過Student t檢驗指示統計學顯著性如下:*,p<0.05;**,p<0.01,***,p<0.001。
圖13A顯示了5.1、5.9和6.7kb AAV2/SEAP載體的圖。圖13B顯示了就相對和比生產(specific production)(n=2)測定法中的載體產率而言來自各個主孔(MW)的數據。載體產率以DRP/ml指示。
如本文中詳細討論,發明人已經開發出能夠產生較高產率的較高質量的超大重組腺相關病毒(rAAV)載體的生產細胞系平臺。已經使用含有人類因子VIII cDNA的rAAV載體作為例示性構建體表徵了此平臺。與使用標準三重轉染方法的產量相比,此平臺產生具有更高量的殼體化的較大基因組的rAAV載體。使用此平臺產生的rAAV載體在體內基因轉移方面也有能力,並且導致功能性因子VIII的產生。
因而,本發明提供了用於產生含有超大重組AAV基因組的 腺相關病毒(AAV)顆粒的方法。在一些實施方案中,方法包括在產生rAAV顆粒的條件下培養AAV生產細胞系,其中所述AAV生產細胞系含有:i)編碼AAV rep和cap基因的核酸,和ii)rAAV基因組,其中所述rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb;b)提供AAV輔助功能;並c)收集含有超大rAAV基因組的rAAV顆粒。在一些實施方案中,rAAV基因組大於約5kb。在一些實施方案中,rAAV基因組的長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、8.0kb、或9.0kb中任一者或其間的任何數值。本文中進一步提供了通過本公開內容的方法產生的含有超大重組AAV基因組的rAAV顆粒。
本文中還進一步提供了包含rAAV顆粒的組合物,其中至少約15%、至少約20%、至少約25%、至少約30%、至少約35%、至少約40%、至少約45%、至少約50%、至少約55%、至少約60%或至少約70% rAAV顆粒殼體化大於約5kb的rAAV基因組。
本文中還進一步提供了用於產生含有超大重組AAV基因組的腺相關病毒(AAV)顆粒的細胞系,所述細胞系包含a)編碼AAV rep和cap基因的核酸,和b)rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb。在一些實施方案中,rAAV基因組大於約5kb。
本文中還進一步提供了含有通過AAV殼體殼體化的rAAV基因組的腺相關病毒(AAV)顆粒,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb.在一些實施方案中,rAAV基因組大於約5kb。
I. 通用技術
本領域技術人員使用常規方法,如例如下列各項中描述的廣泛利用的方法一般完全理解並且通常採用本文中描述或引用的技術和規 程:Molecular Cloning:A Laboratory Manual(Sambrook等,第4版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,2012);Current Protocols in Molecular Biology(F.M.Ausubel,等編,2003);系列Methods in Enzymology(Academic Press,Inc.);PCR 2:A Practical Approach(M.J.MacPherson,B.D.Hames和G.R.Taylor編,1995);Antibodies,A Laboratory Manual(Harlow和Lane,編,1988);Culture of Animal Cells:A Manual of Basic Technique and Specialized Applications(R.I.Freshney,第6版,J.Wiley and Sons,2010);Oligonucleotide Synthesis(M.J.Gait編,1984);Methods in Molecular Biology,Humana Press;Cell Biology:A Laboratory Notebook(J.E.Cellis編,Academic Press,1998);Introduction to Cell and Tissue Culture(J.P.Mather和P.E.Roberts,Plenum Press,1998);Cell and Tissue Culture:Laboratory Procedures(A.Doyle,J.B.Griffiths,和D.G.Newell,編,J.Wiley and Sons,1993-8);Handbook of Experimental Immunology(D.M.Weir和C.C.Blackwell,編,1996);Gene Transfer Vectors for Mammalian Cells(J.M.Miller和M.P.Calos,編,1987);PCR:The Polymerase Chain Reaction,(Mullis等編,1994);Current Protocols in Immunology(J.E.Coligan等編,1991);Short Protocols in Molecular Biology(Ausubel等編,J.Wiley and Sons,2002);Immunobiology(C.A.Janeway等,2004);Antibodies(P.Finch,1997);Antibodies:A Practical Approach(D.Catty編,IRL Press,1988-1989);Monoclonal Antibodies:A Practical Approach(P.Shepherd和C.Dean,編,Oxford University Press,2000);Using Antibodies:A Laboratory Manual(E.Harlow和D.Lane,Cold Spring Harbor Laboratory Press,1999);The Antibodies(M.Zanetti和J.D.Capra,編,Harwood Academic Publishers,1995);及Cancer:Principles and Practice of Oncology(V.T.DeVita等編,J.B.Lippincott Company,2011)。
II. 定義
如本文中使用,「載體」指包含要在體外或在體內投遞到宿主細胞中的核酸的重組質粒或病毒。
如本文中使用,術語「多核苷酸」或「核酸」指任何長度的核苷酸(核糖核苷酸或脫氧核糖核苷酸)的聚合形式。如此,此術語包括但不限於單鏈、雙鏈或多鏈DNA或RNA、基因組DNA、cDNA、DNA-RNA雜合物、或包含嘌呤和嘧啶堿基、或其它天然的、化學或生物化學修飾的、非天然的、或衍生化的核苷酸堿基的聚合物。多核苷酸的主鏈可以包含糖和磷酸基團(其通常可以在RNA或DNA中找到),或者經修飾的或取代的糖或磷酸基團。或者,多核苷酸的主鏈可以包含合成亞基如胺基磷酸酯的聚合物,並且如此可以是寡脫氧核苷胺基磷酸酯(P-NH2)或混合的胺基磷酸酯-磷酸二酯寡聚物。另外,可以通過合成互補鏈並且在合適的條件下使鏈退火,或者通過用合適的引物使用DNA聚合酶從頭合成互補鏈從化學合成的單鏈多核苷酸產物獲得雙鏈多核苷酸。
術語「多肽」和「蛋白質」可互換使用,指胺基酸殘基的聚合物,並且不限於最小長度。胺基酸殘基的此類聚合物可以含有天然的或非天然的胺基酸殘基,並且包括但不限於肽、寡肽、胺基酸殘基的二聚體、三聚體、和多聚體。該定義涵蓋全長蛋白質和其片段兩者。術語還包括多肽的表現後修飾,例如糖基化、唾液酸化、乙醯化、磷酸化等。此外,出於本發明的目的,「多肽」指包含對天然序列的修飾,如缺失、添加和取代(一般實質上保守)的蛋白質,只要蛋白質維持期望的活性。這些修飾可以是有意的,如經由定點誘變,或者可以是意外的,如經由生成蛋白質的宿主的突變或者由於PCR擴增所致的錯誤。
「重組病毒載體」指包含一種或多種異源序列(即不是病毒 起源的核酸序列)的重組多核苷酸載體。在重組AAV載體的情況下,重組核酸側翼有至少一個反向末端重複序列(ITR)。在一些實施方案中,重組核酸側翼有兩個ITR。
「重組AAV載體(rAAV載體)」指包含一種或多種異源序列(即不是AAV起源的核酸序列)的多核苷酸載體,所述異源序列側翼有至少一個或兩個AAV反向末端重複序列(ITR)。當存在於宿主細胞中時,此類rAAV載體可以被複製並包裝成感染性病毒顆粒,所述宿主細胞已經感染有合適的輔助病毒(或者在表現合適的輔助功能),並且表現AAV rep和cap基因產物(即AAV Rep和Cap蛋白)。當rAAV載體併入較大的多核苷酸中(例如在染色體中或者在另一種載體如用於選殖或轉染的質粒中)時,則rAAV載體可以稱為「原載體(pro-vector)」,其可以通過在存在AAV包裝功能和合適的輔助功能的情況下複製和殼體化來「挽救」。rAAV載體可以為許多形式之任一種,包括但不限於質粒、線性人工染色體、與脂質複合、在脂質體內包囊、和在病毒顆粒(例如AAV顆粒)中殼體化。可以將rAAV載體包裝成AAV病毒殼體以產生「重組腺相關病毒顆粒(rAAV顆粒)」。
如本文中使用,「生產細胞系」是能夠產生AAV顆粒的穩定細胞系。在一些實施方案中,AAV複製和/或殼體基因在宿主細胞系中穩定維持。在一些實施方案中,包含一種或多種AAV ITR和異源核酸(例如異源轉基因)的AAV載體基因組在宿主細胞系中穩定維持。在一些實施方案中,AAV複製和/或殼體基因和包含一種或多種AAV ITR和異源核酸(例如異源轉基因)的AAV載體基因組在宿主細胞系中穩定維持。在一些實施方案中,AAV複製基因、殼體基因或包含一種或多種AAV ITR的AAV載體基因組中的一種或多種穩定整合到宿主細胞系的基因組中。本領域技術人員會理解穩定維持的核酸在多次傳代(例如5、10、15、25或更多次傳代)後在宿主細胞系中維持。
「異源」意指源自與同它比較並且將其導入或整合的實體的剩餘部分在基因型上截然不同的實體。例如,通過遺傳工程技術導入不同細胞類型中的多核苷酸是異源多核苷酸(並且在表現時可以編碼異源多肽)。類似地,併入病毒載體中的細胞序列(例如基因或其部分)相對於載體而言是異源核苷酸序列。
術語「轉基因」指導入細胞中並且能夠被轉錄成RNA,並且任選地在合適的條件下翻譯和/或表現的多核苷酸。在各態樣中,它對接受其導入的細胞賦予期望的特性,或者在其它情況下導致期望的治療或診斷結果。在另一個態樣中,它可以被轉錄成介導RNA幹擾的分子,如miRNA、siRNA或shRNA。
術語「轉甲狀腺素(TTR)啟動子」指能夠驅動源自轉甲狀腺素基因的基因表現的多核苷酸序列。在一些實施方案中,轉甲狀腺素蛋白啟動子可以來自小鼠轉甲狀腺素(mTTR)基因(例如小家鼠(Mus musculus)轉甲狀腺素,如以GenBank Entrez Gene ID 22139表示)。圖1B中呈現了TTR啟動子的例子。
如提及病毒滴度使用,術語「基因組顆粒(gp)」、「基因組等同物」或「基因組複製體」指含有重組AAV DNA基因組的病毒體的數目,不管感染性或功能性如何。特定載體製備物中的基因組顆粒的數目可以通過方法,如記載于本文中的實施例,或者例如Clark等(1999)Hum.Gene Ther.,10:1031-1039;Veldwijk等(2002)Mol.Ther.,6:272-278中的方法測量。
如本文中使用,術語「載體基因組(vg)」可以指構成載體(例如病毒載體)的多核苷酸序列組的一種或多種多核苷酸。可以在病毒顆粒中殼體化載體基因組。取決於具體的病毒載體,載體基因組可以包含單鏈DNA、雙鏈DNA或單鏈RNA或雙鏈RNA。載體基因組可以包含與特定病毒載體有關的內源序列和/或經由重組技術插入特定病毒載體中的任何異源序 列。例如,重組AAV載體基因組可以包含至少一個在啟動子側翼的ITR序列、感興趣的序列(例如異源轉基因)、任選地內含子、和多聚腺苷酸化序列。完整的載體基因組可以包含載體的多核苷酸序列的完整套組。在一些實施方案中,病毒載體的核酸滴度可以按照vg/mL測量。適合於測量此滴度的方法是本領域中已知的(例如定量PCR)。
術語「超大重組AAV基因組」可以指具有大於AAV基因組的常規包裝限度的大小(如以核苷酸堿基對測量)的重組AAV基因組,所述常規包裝限度在本領域中已經限定為4.7至4.8kb(參見例如Dong,J-Y等(1996)Human Gene Therapy 7:2101-2112)。在一些實施方案中,超大重組AAV基因組大於約4.7kb。在一些實施方案中,超大重組AAV基因組大於約5kb。在一些實施方案中,超大重組AAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb。
如提及病毒滴度使用,術語「感染單位(iu)」、「感染性顆粒」或「複製單位」指感染性並且有複製能力的重組AAV載體顆粒的數目,如通過如記載於例如McLaughlin等(1988)J.Virol.,62:1963-1973的感染性中心測定法(又稱為複製中心測定法)測量。
如提及病毒滴度使用,術語「轉導單位(tu)」指導致功能性轉基因產物的生成的感染性重組AAV載體顆粒的數目,如在功能性測定法,如記載于本文中的實施例,或例如Xiao等(1997)Exp.Neurobiol.,144:113-124;或Fisher等(1996)J.Virol.,70:520-532(LFU測定法)中的功能性測定法中測量。
「反向末端重複」或「ITR」序列是本領域中完全理解的術語,並且指以相反取向在病毒基因組的末端找到的相對較短的序列。
「AAV反向末端重複(ITR)」序列,本領域中完全理解的術語,是存在于天然的單鏈AAV基因組的兩個末端的約145個核苷酸的序列。 ITR的最外面的125個核苷酸可以以兩個備選取向之任一存在,導致不同AAV基因組之間和單一AAV基因組的兩個末端之間的異質性。最外面的125個核苷酸也含有自身互補的幾個較短的區域(稱為A、A’、B、B’、C、C’和D區),容許在ITR的此部分內發生鏈內堿基配對。
「末端解析序列(terminal resolution sequence)」或「trs」是AAV ITR的D區中在病毒DNA複製過程中被AAV rep蛋白切割的序列。突變體末端解析序列難以通過AAV rep蛋白切割。
「AAV輔助功能」指讓AAV被宿主細胞複製並包裝的功能。AAV輔助功能可以以許多形式之任一種提供,包括但不限於輔助病毒或輔助病毒基因,所述輔助病毒基因幫助AAV複製和包裝。其它AAV輔助功能是本領域中已知的,如遺傳毒性劑(genotoxic agent)。
用於AAV的「輔助病毒」指讓AAV(其是缺陷型細小病毒(parvovirus))被宿主細胞複製並包裝的病毒。已經鑒定出許多此類輔助病毒,包括腺病毒、皰疹病毒、細小病毒如痘病毒和杆狀病毒。腺病毒涵蓋許多不同亞組,儘管最常使用C亞組的腺病毒5型(Ad5)。人類、非人類哺乳動物和禽起源的許多腺病毒是已知的,並且從保藏所如ATCC可獲得。皰疹家族的病毒(其也從保藏所如ATCC可獲得)包括例如單純皰疹病毒(HSV)、埃巴病毒(EBV)、巨細胞病毒(CMV)和假性狂犬病病毒(PRV)。用於複製AAV的腺病毒輔助功能的例子包括E1A功能、E1B功能、E2A功能、VA功能和E4orf6功能。從保藏所可獲得的杆狀病毒包括苜蓿銀紋夜蛾(Autographa californica)核型多角體病毒。
若感染性AAV顆粒與感染性輔助病毒顆粒的比率是至少約102:1;至少約104:1、至少約106:1;或至少約108:1或更多,則rAAV的製備物被說成是「基本上沒有」輔助病毒。在一些實施方案中,製備物也沒有等同量的輔助病毒蛋白(即,若上文記錄的輔助病毒顆粒雜質以破壞形式存 在,則會由於輔助病毒的此類水準而存在的蛋白質)。病毒和/或細胞蛋白質污染一般可以在SDS凝膠上以考馬斯染色條帶的存在觀察到(例如出現除了與AAV殼體蛋白VP1、VP2和VP3對應的條帶外的條帶)。
「百分比(%)序列同一性」就參照多肽或核酸序列而言定義為在比對序列並且在必要時引入缺口以實現最大百分比序列同一性後,並且不將任何保守取代看作是序列同一性的一部分,與參照多肽或核酸序列中的胺基酸殘基或核苷酸相同的候選序列中的胺基酸殘基或核苷酸的百分比。為了測定百分比胺基酸或核酸序列同一性的比對可以以在本領域技術內的各種方式實現,例如使用公開可得到的計算機軟件程式,例如那些記載於Current Protocols in Molecular Biology(Ausubel等編,1987),Supp.30,第7.7.18節,表7.7.1,並且包括BLAST、BLAST-2、ALIGN或Megalign(DNASTAR)軟件。比對程式的一個例子是ALIGN Plus(Scientific and Educational Software,Pennsylvania)。本領域技術人員可以確定適合於測量比對的參數,包括為了在所比較的序列的全長裡實現最大比對需要的任何演算法。出於本文中的目的,如下計算給定胺基酸序列A對、與、或相對於給定胺基酸序列B的%胺基酸序列同一性(或者,其可以表述為對、與、或相對於給定的胺基酸序列B具有或包含一定%胺基酸序列同一性的給定胺基酸序列A):分數X/Y的100倍,其中X是通過序列比對程式在該程式的A和B的比對中評分為相同匹配的胺基酸殘基的數目,並且其中Y是B中的胺基酸殘基的總數。應當領會,在胺基酸序列A的長度不等於胺基酸序列B的長度的情況下,A對B的%胺基酸序列同一性不會等於B對A的%胺基酸序列同一性。出於本文中的目的,如下計算給定核酸序列C對、與、或相對於給定核酸序列D的%核酸序列同一性(或者,可以表述為對、與、或相對於給定的核酸序列D具有或包含某個%核酸序列同一性的給定核酸序列C):分數W/Z的100倍,其中W是通過序列比對程式在該程式的C和D的比對中評分為相同匹 配的核苷酸的數目,並且其中Z是D中的核苷酸的總數。應當領會,在核酸序列C的長度不等於核酸序列D的長度的情況下,C對D的%核酸序列同一性不會等於D對C的%核酸序列同一性。
「分離的」分子(例如核酸或蛋白質)或細胞意味著它已經得到鑒定並且從其天然環境的組分中分離和/或回收。
「有效量」指有效實現有益或期望的結果,包括臨床結果(例如改善症狀、實現臨床終點等)的量。可以在一次或多次投予中投予有效量。就疾病狀態而言,有效量是足以改善疾病、穩定疾病或延遲疾病發生/發展的量。
「個體」或「受試者」是哺乳動物。哺乳動物包括但不限於家養動物(例如牛、羊、貓、犬和馬)、靈長類(例如人類和非人類靈長類,如猴)、兔、和齧齒類(例如小鼠和大鼠)。在某些實施方案中,個體或受試者是人類。
如本文中使用,「治療/處理」是用於獲得有益或期望的臨床結果的辦法。出於本發明的目的,有益的或期望的臨床結果包括但不限於改善症狀、降低疾病程度、穩定的(例如不惡化)疾病狀態、防止疾病擴散(例如轉移)、延遲或減緩疾病進展、改善或減輕疾病狀態、和消退(無論部分還是完全),無論可檢出還是檢測不到。「治療/處理」也可以意指與若不接受治療的預期存活相比延長存活。
如本文中使用,術語「預防性治療/處理」指下述處理,其中已知或懷疑個體具有或有風險具有病症,但是尚未展現症狀或者已經展現出最小限度的疾病症狀。可以在症狀發作前治療在經歷預防性治療/處理的個體。
如本文中使用,「治療」劑(例如治療性多肽、核酸或轉基因)是提供有益或期望的臨床結果,如上文描述的例示性的臨床結果的藥 劑。因而,治療劑可以在如上文描述的治療/處理中使用。
如本文中使用,「差別係數分佈數值」或「C(S)」是為了描述沉積顆粒分佈(例如超速離心期間)的Lamm方程式解的分佈變體。
如本文中使用,「斯韋伯單位(Svedberg unit)」指沉積速率的單位元。給定大小和形狀的顆粒的沉積速率測量顆粒多麼快速地沉積。1個斯韋伯單位等同於10-13秒。例如,斯韋伯單位經常用於反映分子在離心的離心力下運動的速率。
如本文中使用,「沉積速度條件」或「邊界沉積速度條件」可以指樣品溶液進行沉積速度分析的任何實驗條件。沉積速度容許在較寬範圍的pH和離子強度條件並且在溫度4至40℃的顆粒研究。沉積邊界移動的速率是沉積種類的沉積係數的量度。沉積係數取決於分子重量(顆粒越大,沉積越快)並且也取決於分子形狀。沉積邊界的最小寬度與分子的擴散係數相關;具有相似沉積係數的多個種類的存在會使邊界寬於僅基於擴散預期的邊界。沉積速度條件可以包括但不限於與轉子速度、樣品和轉子中心之間的距離、溫度、溶劑、樣品、緩衝液、超速離心時間、用於檢測的時間間隔、扇區和光學窗口特徵、AUC儀器(包括超速離心機和檢測設備)、參照溶劑的平衡透析、和數據分析演算法相關的任何條件。
如本文中使用,術語「分析密度梯度沉積平衡」指用於測量顆粒的浮力密度,或者使用浮力密度的差異來分離不同顆粒種類的方法。這些方法可以使用例如AUC沉積平衡技術。在這些方法中,顆粒溶液(例如不限於多肽、多核苷酸、或病毒殼體的溶液)可以進行梯度溶劑合物,如氯化銫或硫酸銫梯度中的超速離心,直至達到與溶劑合物的平衡。在平衡時,顆粒溶液會在顆粒密度等於溶劑合物密度的梯度中的位置處濃縮或成帶。可以使用條帶的位置來計算顆粒密度,或者可以提取條帶以分離單一種類的顆粒。
如本文中使用,「SEDFIT演算法」是容許分析水動力學數據,如沉積速度的演算法(Schuck(2000)Biophys.J.,78:1606-19)。在SEDFIT演算法中,創建跨越預期範圍的沉積係數的柵格。假設恒定的顆粒形狀和溶劑摩擦比,使用每個沉積係數的Lamm方程的解模擬沉積邊界。
如本文中使用,術語「F統計量」或「F比率」指置信水準。此參數控制使用的正則化(regularization)的量。它對於不同範圍具有不同意義:從0至0.5,不使用正則化。從0.5至0.999的數值對應於概率P(置信水準)。從這些P值,用F統計量計算正則化的簡約性約束容許的期望的卡方(chi-square)增加。0.51的數值會引起非常少的正則化;0.68至0.90的數值會對應於通常使用的置信水準(通常,通過50次以上的掃描,與0.7的概率對應的卡方增加是0.1%量級的),而接近0.99的數值會引起非常高的正則化。可以使用F統計量計算器檢查這些數值與概率的關係。若輸入數目>1,則它們直接取為卡方比率(因為沒有概率>1)。例如,1.1的數值會導致以10%卡方增加的正則化。
在本文中提及「約」數值或參數包括(並且描述)涉及該數值或參數本身的實施方案。例如,提及「約X」的描述包括描述「X」。
如本文中使用,冠詞「一個」、「一種」和「所述/該」的單數形式包括複數提及物,除非另有指示。
應當理解,本文中描述的本發明的態樣和實施方案包括「包括」、「由...組成」和/或「基本上由...組成」的態樣和實施方案。
III. 病毒顆粒
本公開內容的某些態樣涉及含有超大重組AAV(rAAV)基因組的腺相關病毒(AAV)顆粒(例如如通過本文中公開的方法和/或細胞系生產)。本公開內容的某些態樣涉及腺相關病毒(AAV)顆粒,其含有約4.7kb- 約9.4kb,任選地約4.7kb-6.7kb的rAAV基因組。在一些實施方案中,通過AAV殼體殼體化的rAAV基因組大於約5kb。在一些實施方案中,rAAV顆粒包含rAAV載體。在一些實施方案中,rAAV載體含有約4.7kb-約9.4kb,任選地約4.7kb-6.7kb的rAAV基因組。在一些實施方案中,rAAV基因組大於約5kb。在一些實施方案中,rAAV基因組是約5kb-約7.0kb、約4.7kb-約9.4kb、或約4.7kb-約6.7kb。在一些實施方案中,rAAV基因組的長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、7.1kb、7.2kb、7.3kb、7.4kb、7.5kb、7.6kb、7.7kb、7.8kb、7.9kb、8.0kb、8.1kb、8.2kb、8.3kb、8.4kb、8.5kb、8.6kb、8.7kb、8.8kb、8.9kb、9.0kb、9.2kb、9.3kb或9.4kb中的任一者或其間的任何數值。
在一些實施方案中,病毒顆粒是包含核酸的重組AAV顆粒,所述核酸包含側翼為一個或兩個AAV反向末端重複(ITR)的異源核酸(例如異源轉基因)。在AAV顆粒中殼體化核酸。AAV顆粒也包含殼體蛋白。在一些實施方案中,核酸包含感興趣的編碼序列(例如異源轉基因)、在轉錄方向上的可操作連接的組分、控制序列,包括轉錄啟動和終止序列,由此形成表現盒。表現盒在5’和3’末端側翼有至少一個功能性AAV ITR序列。「功能性AAV ITR序列」意指ITR序列與意圖用於挽救、複製和包裝AAV病毒體一樣發揮功能。參見Davidson等,PNAS,2000,97(7)3428-32;Passini等,J.Virol.,2003,77(12):7034-40;及Pechan等,Gene Ther.,2009,16:10-16,它們全部通過提述以其整體併入本文。為了實施本發明的一些態樣,重組載體包含至少所有對於殼體化必需的AAV序列和用於rAAV感染的物理結構。本發明的載體中使用的AAV ITR不需要具有野生型核苷酸序列(例如如記載於Kotin,Hum.Gene Ther.,1994,5:793-801),並且可以通過插入、缺失或取代 核苷酸而改變或者AAV ITR可以源自幾種AAV血清型之任一者。目前已知超過40種AAV血清型,並且繼續鑒定出新的血清型和現存血清型的變體。參見Gao等,PNAS,2002,99(18):11854-6;Gao等,PNAS,2003,100(10):6081-6;及Bossis等,J.Virol.,2003,77(12):6799-810。認為任何AAV血清型的使用在本發明的範圍內。在一些實施方案中,rAAV載體是源自AAV血清型,包括但不限於AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV等的載體。例如,在一些實施方案中,AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。在一些實施方案中,AAV ITR中的核酸是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR等。在某些實施方案中,AAV中的核酸包含AAV2 ITR。
在別的實施方案中,rAAV顆粒包含AAV1殼體、AAV2殼體、AAV3殼體、AAV4殼體、AAV5殼體、AAV6殼體(例如野生型AAV6殼體或變體AAV6殼體,如ShH10,如記載於U.S.PG Pub.2012/0164106)、AAV7殼體、AAV8殼體、AAVrh8殼體、AAVrh8R殼體、AAV9殼體(例如野生型AAV9殼體,或經修飾的AAV9殼體,如記載於U.S.PG Pub.2013/0323226)、AAV10殼體、AAVrh10殼體、AAV11殼體、AAV12殼體、酪胺酸殼體突變體、肝素結合殼體突變體、AAV2R471A殼體、AAVAAV2/2-7m8殼體、AAV DJ殼體(例如AAV-DJ/8殼體、AAV-DJ/9殼體、或U.S.PG Pub.2012/0066783中描述的任何其它殼體)、AAV2 N587A殼體、AAV2 E548A殼體、AAV2 N708A殼體、AAV V708K殼體、山羊AAV殼體、AAV1/AAV2嵌合殼體、牛AAV殼體、小鼠AAV殼體、rAAV2/HBoV1殼體、 或美國專利No.8,283,151或國際公開文本No.WO/2003/042397中描述的AAV殼體。在一些實施方案中,突變體殼體蛋白維持形成AAV殼體的能力。在一些實施方案中,rAAV顆粒包含AAV5酪胺酸突變體殼體(Zhong L.等,(2008)Proc Natl Acad Sci U S A 105(22):7827-7832。在別的實施方案中,rAAV顆粒包含來自A-F進化枝的AAV血清型的殼體蛋白(Gao,等,J.Virol.2004,78(12):6381)。在一些實施方案中,rAAV顆粒包含AAV1殼體蛋白或其突變體。在其它實施方案中,rAAV顆粒包含AAV2殼體蛋白或其突變體。在一些實施方案中,AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。在一些實施方案中,rAAV顆粒包含AAV血清型1(AAV1)殼體。在一些實施方案中,rAAV顆粒包含AAV血清型2(AAV2)殼體。在一些實施方案中,rAAV顆粒包含AAVrh8R殼體或其突變體。
使用不同AAV血清型來優化特定靶細胞的轉化或者靶向特定靶組織(例如肝或CNS組織)內的特定細胞類型。rAAV顆粒可以包含源自相同血清型或不同血清型(例如混合血清型)的病毒蛋白和病毒核酸。例如,在一些實施方案中,rAAV顆粒可以包含AAV1殼體蛋白和至少一個AAV2ITR或者它可以包含AAV2殼體蛋白和至少一個AAV1 ITR。本文中提供了用於產生rAAV顆粒的AAV血清型的任何組合,就像本文中已經明確敘述每種組合一樣。在一些實施方案中,本發明提供了rAAV顆粒,其包含AAV1殼體和本公開內容的rAAV載體(例如包含異源核酸的表現盒),側翼有至少一個AAV2 ITR。在一些實施方案中,本發明提供了包含AAV2殼體的rAAV顆粒。在一些實施方案中,ITR和殼體源自AAV2。在其它實施方案中,ITR源自AAV2,並且殼體源自AAVrh8R。
本公開內容的其它態樣涉及包含rAAV顆粒的組合物,其中至少約15%、至少約20%、至少約25%、至少約30%、至少約35%、至少約 40%、至少約45%、至少約50%、至少約55%、至少約60%或至少約70%、至少約80%、至少約90%或至少約95%的rAAV顆粒殼體化約4.7kb-約9.4kb,任選地約4.7kb-6.7kb的rAAV基因組。在一些實施方案中,rAAV顆粒殼體化大於約5kb的基因組。在一些實施方案中,rAAV顆粒殼體化長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、8.0kb或9.0kb中任一者或其間的任何數值的基因組。在一些實施方案中,包裝的AAV基因組不含5’端的截短。在一些實施方案中,包裝的AAV基因組不含3’端的截短。用於測定rAAV基因組的大小的方法是本領域中已知的,並且包括但不限於南方墨點法(Southern blotting)和分析超速離心,如下文描述。
在一些實施方案中,本公開內容的組合物含有rAAV顆粒,其中至少約15%、至少約20%、至少約25%、至少約30%、至少約35%、至少約40%、至少約45%、至少約50%、至少約55%、至少約60%、至少約65%、至少約70%、至少約75%、至少約80%、至少約85%、至少約90%或至少約95%的rAAV顆粒殼體化大於約4.7kb、大於約5.0kb、大於約5.1kb、大於約5.2kb、大於約5.3kb、大於約5.4kb、大於約5.5kb、大於約5.6kb、大於約5.7kb、大於約5.8kb、大於約5.9kb、大於約6.0kb、大於約6.5kb、大於約7.0kb、大於約7.5kb、大於約8.0kb、大於約8.5kb、大於約9.0kb、或大於約9.4kb的rAAV基因組。在一些實施方案中,包裝的AAV基因組不含5’端的截短。在一些實施方案中,包裝的AAV基因組不含3’端的截短。
在本發明的一些實施方案中,組合物中的重組病毒顆粒是高度純化的,適當緩衝的,並濃縮的。在一些實施方案中,將病毒顆粒濃縮到至少約1 x 107vg/mL至約9 x 1013vg/mL或其間的任何濃度。
如本文中描述,一種用於表徵病毒顆粒的製備物(例如一種 或多種與載體基因組大小和/或完整性相關的特性)的技術是經由使用南方墨點法。例如,如下文實施例中更為詳細描述,可以用DNA酶處理rAAV顆粒的製備物(任選如本文中描述的那樣純化)以除去任何非殼體化的核酸,用停止DNA酶消化的試劑(例如EDTA)處理,用蛋白酶消化,然後進行DNA提取以除去包裝的載體基因組。然後,可以使用電泳分離載體基因組,交聯到膜上,並且用一種或多種標記的探針探查,所述探針與載體基因組特異性雜交。通過與標記的探針雜交而標記的DNA片段的大小(例如與一種或多種特定的大小標誌物比較)指示載體基因組大小。另外,可以使用一種或多種探針,其與載體基因組的已知區段(例如5’或3’端)雜交。若這些探針中的一種或多種未能與載體基因組雜交,則這指示可以截短或以其它方式缺失製備物的載體基因組,使得它們短於其預測的完整大小。由於已知AAV基因組的包裝從3’端開始發生(King,J.A.等(2001)EMBO J.20:3282-3291),當基因組大小超過4.7kb時,超大載體可以缺乏負和正鏈的5’端中的序列。在一些實施方案中,病毒顆粒包含大於約5.0kb的超大rAAV基因組,其中rAAV顆粒中殼體化的病毒基因組包含相對完整的5’和3’端;例如如通過與對5’和/或3’端特異性的探針雜交來測量。可通過本領域中已知的方法測量雜交,所述方法如但不限於Southern印跡分析或PCR。在一些實施方案中,包裝的AAV基因組不含5’端的截短。在一些實施方案中,包裝的AAV基因組不含3’端的截短。
分析超速離心
如本文中描述,一種用於表徵病毒顆粒的製備物的技術(例如一種或多種與載體基因組大小和/或完整性相關的特性)是經由使用分析超速離心(AUC)。例如,在一些實施方案中,使用AUC評估rAAV顆粒製備物中重組腺相關病毒(rAAV)顆粒的載體基因組完整性以區分具有完全、完整基因組的病毒顆粒、空病毒殼體和具有變體(例如截短、聚集體、雜質等) 病毒基因組的病毒顆粒。使用分析超速離心表徵病毒(例如AAV)顆粒的更多描述可以參見2015年1月20日提交的美國臨時專利申請系列號62/105,714,“Analytical Ultracentrifugation for Characterization of Recombinant Viral Particles”,在此通過提述以其整體併入。
分析超速離心是評估蛋白質或其它大分子的分子量和水動力學和熱力學特徵的手段。在一系列條件(包括濃度、溫度、離子強度和pH)裡,通過沉積速度得出蛋白質或大分子的異質性。例如,可以在臨床相關配製劑中分析蛋白質。分析超速離心表徵腺病毒製備物的用途由Berkowitz,SA & Philo JS,(2007)Anal.Biochem.,362:16-37提供。
AUC分析指用於表徵顆粒(例如多肽、多核苷酸和病毒殼體)的生物物理特徵的定量方法,該方法通過測量其遷移通過離心場中的溶劑進行。在幾十年裡已經完善表徵AUC分析,並且是多用途的。由於AUC分析依賴于第一原理水動力學和熱力學資訊,可以應用AUC以在顆粒濃度和大小的較寬範圍中測定許多類型的顆粒的生物物理特性。AUC分析通常涵蓋兩種基本類型的實驗:沉積速度和沉積平衡。沉積平衡分析產生顆粒的熱力學特性,其可以用於測量特徵,如化學計量學和結合常數。沉積速度產生顆粒的水動力學特性,其可以用於測量特徵,如大小、形狀和濃度。病毒製備物的AUC分析的特徵是可以使用相同測定條件來分析病毒顆粒的不同製備物,而不論病毒基因組的核苷酸序列或殼體的血清型如何。
本公開內容的某些態樣涉及沉積速度分析表徵病毒殼體特性的用途。在一些實施方案中,沉積速度分析使用超速離心機速度池(ultracentrifuge velocity cell),其具有透析平衡中的兩個扇區(一個用於實驗樣品和一個用於僅溶劑的參照樣品),每個含有讓光通過區室的兩個光學窗口。超速離心對細胞施加角速度,並且導致溶質顆粒向扇區底部的快速沉積。由於發生沉積,溶質在池的頂部接近彎月面(meniscus)被消減,創建消 減區域和沉積溶質之間的沉積邊界。通過採取以特定時間間隔(對於沉積速度,這些間隔通常為分鐘量級)比較樣品和參照扇區的特性的測量來測量沉積邊界的運動或遷移速率。若存在多個種類的溶質,則這可以導致多個沉積邊界的形成,每個對應於可解析的種類。
用於光學檢測沉積邊界並且測量其運動或遷移速率的幾種方法是本領域中已知的(關於參考文獻,參見Cole等(2008)Methods Cell Biol.,84:143-79)。在一些實施方案中,可以使用吸光度檢測測定參照和樣品扇區。在此檢測方法中,可以在每個扇區內的不同徑向位置處對樣品和參照扇區測量特定波長的吸光度。或者,可以測量單一徑向位置處的吸光度的時間過程。比爾定律(Beer’s Law)提供吸光度和溶質的消光係數之間的數學關係。
在一些實施方案中,可以使用干涉檢測(例如Rayleigh干涉檢測)測定參照和樣品扇區。在雷利(Rayleigh)干涉檢測法中,干涉光學系統含有兩個平行狹縫。單一相干光束被分開,使得它通過兩個窗口,然後再合併兩個束。當合併這兩個光波時,它們形成交替的亮條紋和暗條紋的干涉模式。若樣品和參照樣品要具有相同的折射率,則所得的干涉條紋會是完全直的。增加溶質濃度增加了溶液的折射率,由此延遲樣品光束,並且引起垂直條紋位移(shift)。通過測量此條紋位移,可以測量樣品中的溶質濃度。與吸光度測量(其測量樣品和參照的絕對值)不一樣,干涉檢測測量樣品和參照之間的相對差異。然而,干涉檢測產生與濃度成正比的積分峰,並且它可以用於不顯著吸收的樣品類型。關於使用具有AUC的Rayleigh干涉光學的參考文獻,參見Furst(1997)Eur.Biophys.J.35:307-10。
可以使用沉積邊界移動的速率的測量來得出溶質顆粒的許多物理特性。邊界移動的速率決定沉積係數,其基於顆粒的質量和形狀(摩擦係數)。顆粒的沉積係數指其速度與通過離心場對它施加的加速度的比 率。沉積係數以斯韋伯單位S(1個斯韋伯單位等同於10-13秒)表示。顆粒或顆粒溶液的沉積係數取決於其特性,例如分子量(針對浮力校準),和溶劑的特性。
可以使用Lamm方程式(Schuck(2000)Biophys.J.,78:1606-19)測定超速離心期間溶質的濃度邊界隨時間的變化。簡言之,考慮扇形形狀池和由轉子產生的離心場,Lamm方程式計算響應於沉積(其使溶質濃縮)和擴散(其使溶質分散)的競爭力,溶質的濃度邊界隨時間的變化。Lamm方程式可以表示為:
其中c是溶質濃度,D代表溶質擴散常數,s代表沉積係數,ω代表轉子的角速度,r是半徑,並且t是時間。
通過擬合原始AUC數據到Lamm方程式的解,有可能測定溶質特徵,如沉積係數和濃度分佈的變化。例如,可以使用Lamm方程式對沉積邊界的變化速率的實驗測定的數值建模來得出形成邊界的溶質的沉積係數、分子量、或濃度。可以使用本領域中已知的幾種程式,如SEDFIT(Schuck(2000)Biophys.J.,78:1606-19)將Lamm方程式建模到AUC數據。這些程式也能夠將Lamm方程式應用到含有多種溶質或多種沉積邊界的溶液。
適合於測定溶質特徵的程式的一個例子是SEDFIT演算法。在一些實施方案中,SEDFIT演算法可以用於計算差別係數分佈數值、或C(S),其使用來自含有顆粒種類混合物的溶液的AUC數據進行(為了參考,參見Schuck(2000)Biophys.J.,78:1606-19)。在SEDFIT演算法中,創建跨越預期範圍的沉積係數的柵格。假設恒定的顆粒形狀和溶劑摩擦比,使用每個沉積係數的Lamm方程式的解模擬沉積邊界。然後,將實際AUC數據擬合到這些Lamm解,以得出差別係數分佈數值、或C(S)。可用於分析AUC數據的許多其它程式可以參見Cole和Hansen(1999)J.Biomol.Tech.10:163-76。
在一些實施方案中,病毒顆粒在合適的宿主細胞中產生並純化。在一些實施方案中,通過親和層析純化病毒顆粒。純化AAV顆粒的方法是本領域中已知的。例如,通過使用層析介質上固定化的病毒殼體蛋白的抗體或病毒殼體蛋白的結合配體。
在一些實施方案中,使用分析超速離心來進行沉積速度分析超速離心(SV-AUC)分析,所述分析超速離心能夠在生物學相關溶液條件下表徵天然狀態的樣品(例如ProteomeLabTM XL-I(Beckman Coulter))。當使用ProteomeLabTM XL-1時,將樣品上樣到兩個扇區速度池的樣品扇區中,將媒介物對照(例如沒有重組病毒的PBS)上樣到相應的參照扇區中。在四孔轉子中放置樣品,並且容許該樣品在儀器中平衡,直至將約20℃的溫度和完全真空維持約1小時。在一個例示性的實施方案中,以約20,000RPM、約20℃和約0.003cm徑向步驟設置進行沉積速度離心,沒有延遲且沒有重複。如下文所述,不同參數可以用於離心。在一些實施方案中,使用吸光度(260nm)和/或干涉光學(例如雷利干涉光學)以同時記錄徑向濃度作為時間的函數,直至最小的沉積組分使光學窗口澄清。在一些實施方案中,記錄徑向濃度,直至具有最低密度的沉積種類使扇區澄清。在一些實施方案中,監測沉積,直至具有最低密度的重組病毒顆粒沉積到超速離心機的扇區的底部。扇區可以是超速離心機的部分;例如超速離心機速度池。在一些實施方案中,扇區可以是檢測樣品的超速離心機的部分。在一些實施方案中,超速離心利用包含超速離心機速度池的超速離心機。在一些實施方案中,進行監測,直至重組病毒顆粒沉積到超速離心機速度池的底部。在一些實施方案中,監測沉積,直至具有最低密度的重組病毒顆粒沉積,並且使光學窗口澄清。在一些實施方案中,記錄徑向濃度至少約0.5小時、0.75小時、1.0小時、1.5小時、2.0小時、3.0小時、4.0小時、或5.0小時中任一者。在一些實施方案中,記錄徑向濃度約1.2小時。優化運行條件可以包括例如繼續運行,直至 所有沉積種類以保持恒定於20℃的溫度和18,000rpm-20,000rpm的速度完全沉積到扇區的底部。如下文所述,可以使用其它溫度和速度。
通過使用SEDFIT連續大小C(S)分佈模型從每種檢測方法分析多次掃描(例如75)測定百分比完全殼體。對擬合應用二階(第2)導數正則化。在一些實施方案中,F統計量的置信水準是約0.68。在一些實施方案中,F統計量的置信水準是超過約0.68、0.70、0.75、0.80、0.85、0.90、0.95或0.99中任一者,或其間的任何數值。在一些實施方案中,將下列C(S)參數保持恒定:約200S至約5000S的解析度,S min是約1S至約100S,S max是約100S至約5000S,並且摩擦比是約1.0或保持浮動於由離心軟件確定的數值。在一些實施方案中,解析度是約200S、300S、400S、500S、600S、700S、800S、900S或1000S中任一者或其間的任何數值。在一些實施方案中,解析度是約200S。在一些實施方案中,Smax是約100S、200S、300S、400S、500S、600S、700S、800S、900S或1000S中任一者或其間的任何數值。在一些實施方案中,其中Smax是約200S。在一些實施方案中,使摩擦比浮動於由離心軟件確定的數值。在一些實施方案中,摩擦比是約1.0。在一些實施方案中,應用徑向不變量(RI)和時間不變量(TI)噪音扣除。在一些實施方案中,容許彎月面位置浮動,讓軟件選擇最佳的位置。在一些實施方案中,容許摩擦比浮動,讓軟件選擇最佳的位置。模型將數據擬合到Lamm方程式,並且所得的大小分佈是「沉積係數分佈」,其看起來像具有與以條紋(Fringes)單位或OD260單位計的濃度成比例的每個峰下的面積的層析圖。對分佈中的每個組分測定沉積係數(以斯韋伯單位計)和相對濃度(以OD單位計)。在一些實施方案中,多個AUC運行是獨立的測定法,並且每次分析監測下列屬性以確保結果的質量:擬合優度(rmsd)、每個峰的OD260nm/以條紋計的干涉信號的比率(A260/IF比率)、運行間的每個種類的沉積係數的一致性、和掃描的總體質量。
在本發明的一些實施方案中,使用消光係數從吸光度數據計算完整載體峰的實際百分比數值和摩爾濃度。可以基於發表的公式(Sommer等(2003)Mol Ther.,7:122-8)計算用於空殼體(є260/殼體=3.72e6)和完整載體(є260/載體=3.00e7)兩者的摩爾吸光度消光係數。消光係數可用於空殼體和完整載體峰。可以使用由Schuck(2000)Biophys.J.,78:1606-19描述的SEDFIT演算法確定C(S)值。可以使用比爾定律計算完整載體和空殼體兩者的摩爾濃度,並且從這些數值中計算完整殼體的百分比。在一些實施方案中,按照完整殼體的百分比報告數值。
在一些實施方案中,不可能憑經驗確定特定種類的重組病毒顆粒(例如具有未知大小和序列的片段化基因組的病毒顆粒)的消光係數。可以通過分析具有殼體化的已知核苷酸大小的病毒基因組的重組病毒載體製備物建立S值和基因組大小之間的關係,並且測定相應的S值,如本文中描述的。可以將計算的S值繪圖以產生標準曲線,可以與所述標準曲線比較未知分子量或基因組大小的重組病毒種類以測定未知種類的分子量。
在一些態樣中,如下表徵重組病毒顆粒(例如rAAV顆粒)的製備物:a)使製備物在邊界沉積速度條件下進行分析超速離心,其中以時間間隔監測重組病毒顆粒的沉積(例如一次或多次),b)將差別沉積係數分佈數值(C(s))相對於以斯韋伯單位(S)計的沉積係數繪圖,c)對C(s)分佈中的每個峰下的面積進行積分以測定每個峰的相對濃度,其中每個峰代表重組病毒顆粒的種類。在一些實施方案中,鑒定的重組病毒顆粒的種類包括但不限於:包含完整重組病毒基因組的完全重組病毒顆粒、空重組病毒殼體顆粒、和包含變體重組病毒基因組的重組病毒顆粒。在一些實施方案中,變體基因組小於完整的重組病毒基因組(例如截短的基因組)。在一些實施方案中,變體基因組大於完整的重組病毒基因組(例如聚集體、重組體等)。在一些實施方案中,如下表徵重組病毒顆粒(例如rAAV顆粒)的製備物:a)使製備物 在邊界沉積速度條件下進行分析超速離心,其中以時間間隔監測重組病毒顆粒的沉積(例如一次或多次),b)將差別沉積係數分佈數值(C(s))相對於以斯韋伯單位(S)計的沉積係數繪圖,c)通過與S值對應的圖上的峰的存在來鑒定製備物中的重組病毒顆粒種類,其中通過比較種類的S值與標準曲線來計算特定種類的重組病毒顆粒的基因組大小,所述標準曲線由包含不同已知大小的殼體化的病毒基因組的重組病毒顆粒的S值產生。在一些實施方案中,方法進一步包括對C(s)分佈中的每個峰下的面積進行積分以確定每個種類的重組病毒顆粒的相對濃度。在一些實施方案中,以一個時間間隔監測重組病毒顆粒的沉積。在一些實施方案中,以超過一個時間間隔監測重組病毒顆粒的沉積。
在一些實施方案中,通過測量在約260nm的光密度或吸光度監測重組病毒顆粒(例如rAAV顆粒)的沉積。測量吸光度的手段是本領域中已知的。在一些實施方案中,用於AUC的超速離心機裝備有用於測量吸光度的手段/裝置。在其它實施方案中,通過干涉監測重組病毒顆粒的沉積。在一些實施方案中,通過Rayleigh干涉監測重組病毒顆粒的沉積。測量干涉的手段是本領域中已知的(Furst(1997)Eur.Biophys.J.35:307-10)。在一些實施方案中,用於AUC的超速離心機裝備有用於測量干涉的手段/裝置。在一些實施方案中,通過吸光度和干涉兩者監測重組病毒顆粒的沉積。在一些實施方案中,使用參照標準品測量吸光度和/或干涉。在一些實施方案中,參照標準品匹配重組病毒製備物的溶液,只是不存在重組病毒。例如,重組病毒製備物可以包含緩衝液(如磷酸鹽緩衝鹽水)中的重組病毒。在此例子中,參照標準品可以是沒有重組病毒顆粒的磷酸鹽緩衝鹽水。
在一些實施方案中,通過在超速離心期間連續監測病毒顆粒的沉積來測定超速離心期間病毒顆粒的沉積速度。在熟練技術人員的範圍內的是對不同類型的病毒顆粒優化AUC參數。在一些實施方案中,以約 3,000-約20,000rpm的AUC速度進行用於rAAV顆粒的數據採集。在一些實施方案中,以約1S的Smin和約1000S的Smax進行用於rAAV顆粒的數據分析。在一些實施方案中,以約200S至約1,000S的解析度進行用於rAAV顆粒的數據分析。在一些實施方案中,解析度是約200S、300S、400S、500S、600S、700S、800S、900S或1000S中任一者或其間的任何數值。在一些實施方案中,解析度是約200S。在一些實施方案中,以約100S、200S、300S、400S、500S、600S、700S、800S、900S或1000S中任一者或其間的任何數值的Smax進行用於rAAV顆粒的數據分析。在一些實施方案中,Smax是約200S至約5000S。在一些實施方案中,其中Smax是約200S。在一些實施方案中,應用徑向不變量(RI)和時間不變量(TI)噪音扣除。在一些實施方案中,容許彎月面位置浮動,讓軟件選擇最佳的位置。在一些實施方案中,容許摩擦比浮動,讓軟件選擇最佳的位置。在一些實施方案中,用於rAAV顆粒的數據分析在1處保持恒定。在一些實施方案中,通過使用具有使用非線性回歸優化的數值的FIT命令容許用於rAAV顆粒的數據分析浮動。
就重組病毒顆粒(例如rAAV顆粒)而言,在一些實施方案中,通過以超過約每15秒、30秒、45秒、1分鐘(60秒)、2分鐘、3分鐘、4分鐘、5分鐘、6分鐘、7分鐘、8分鐘、9分鐘、10分鐘、15分鐘、20分鐘、25分鐘一次監測(例如掃描)重組病毒顆粒的沉積來測定超速離心期間重組病毒的沉積速度。可以在沒有延遲的情況下與光學系統容許一樣快地連續採集掃描。干涉掃描是快速的,並且單次掃描在~10-15秒中完成,而吸光度掃描需要~60秒。當使用雙重檢測時,用於這兩者的掃描採集的速度由吸光度系統決定。在本發明的一些實施方案中,在超速離心期間使用超過約5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、或100次掃描以監測重組病毒顆粒的沉積。在一些實施方案中,需要最少30次掃描進行分析,並且收集掃描,直至沉積過程是完全的。在一 些實施方案中,通常可以通過40-75次掃描描述沉積過程。在一些實施方案中,基於約75次掃描測定重組病毒顆粒的沉積速度。在一些實施方案中,基於約55次掃描至約75次掃描測定重組病毒顆粒的沉積速度。在一些實施方案中,基於約55次掃描至約60次掃描測定重組病毒顆粒的沉積速度。在一些實施方案中,基於約60次掃描至約75次掃描測定重組病毒顆粒的沉積速度。在一些實施方案中,基於約60次掃描至約70次掃描測定重組病毒顆粒的沉積速度。在一些實施方案中,基於多次超速離心(運行)測定重組病毒顆粒的沉積速度。在一些實施方案中,基於1、2、3、4、5、6、7、8、9、10或更多次中任一者的超速離心運行測定重組病毒顆粒的沉積速度。在一些實施方案中,使用SEDFIT演算法,使用沉積速度測定C(S)值。在一些實施方案中,以F統計量的約0.68的置信水準對擬合水準應用二階導數正則化。在一些實施方案中,下列C(S)參數保持恒定:解析度100S至約200S,S min是約1,S max是約200S至300S,並且摩擦比是約1.0至1.2S。在一些實施方案中,應用徑向不變量(RI)和時間不變量(TI)噪音扣除。
在一些實施方案中,通過以超過約5,000rpm;10,000rpm;15,000rpm;20,000rpm;25,000rpm;30,000rpm;35,000rpm;40,000rpm;45,000rpm;或50,000rpm中任一者或其間的任何數值超速離心重組病毒顆粒的製備物來得到重組病毒顆粒製備物中的重組病毒顆粒(例如rAAV顆粒)的邊界沉積速度。在本發明的一些實施方案中,通過以約20,000rpm超速離心重組病毒顆粒的製備物來得到重組病毒顆粒製備物中的重組病毒顆粒的邊界沉積速度。在本發明的一些實施方案中,通過以約15,000rpm至約20,000rpm超速離心重組病毒顆粒的製備物來得到重組病毒顆粒製備物中的重組病毒顆粒的邊界沉積速度。
在一些實施方案中,通過於約或超過4℃、10℃、15℃、20℃、25℃、或30℃或其間的任何溫度超速離心重組病毒顆粒製備物來得 到重組病毒顆粒(例如rAAV顆粒)製備物中的重組病毒顆粒的邊界沉積速度。在一些實施方案中,通過於約20℃超速離心重組病毒顆粒製備物來得到重組病毒顆粒製備物中的重組病毒顆粒的邊界沉積速度。在一些實施方案中,通過於約15℃至約20℃超速離心重組病毒顆粒製備物來得到重組病毒顆粒製備物中的重組病毒顆粒的邊界沉積速度。
具有增強的表現的病毒顆粒
在一些態樣中,本發明提供了具有增強的表現的包含超大載體基因組的病毒顆粒。在一些實施方案中,與通過細胞的瞬時轉染製備的AAV顆粒相比,超大rAAV基因組在使用生產細胞系在AAV顆粒中包裝時展現增強的表現。在一些實施方案中,本發明提供了用於增強超大rAAV基因組的表現的方法,所述方法包括通過對細胞系提供AAV輔助功能在生產細胞系中產生rAAV顆粒,其中生產細胞系包含a)編碼AAV rep和cap基因的核酸,和b)rAAV基因組,其中rAAV基因組大於約4.7kb。在一些實施方案中,超大rAAV基因組的表現是當通過瞬時轉染產生時超大rAAV基因組的表現的大約1.25倍、約1.5倍、約1.75倍、約2.0倍、約2.25倍、約2.5倍、約2.75倍、約3倍、約3.25倍、約3.5倍、約3.75倍、約4倍、約4.25倍、約4.5倍、約4.75倍、或約5倍。在一些實施方案中,與來自通過瞬時轉染產生的rAAV顆粒的超大rAAV基因組的表現動力學相比,超大rAAV基因組的增強的表現是更快的表現動力學。在一些實施方案中,更快的表現動力學是在對細胞投遞包含超大rAAV基因組的AAV顆粒後超大rAAV基因組的表現隨時間的更快增加。在一些實施方案中,與投遞包含來自通過瞬時轉染製備的rAAV顆粒的超大rAAV基因組的AAV顆粒後超大rAAV基因組的表現水準相比,更快的表現動力學是在對細胞投遞包含超大rAAV基因組的AAV顆粒後達到超大rAAV基因組的最大或穩定狀態表現水準的時間更快。在一些實施方案中,由生產細胞系產生的超大rAAV基因組的表現動力學比來自通過瞬時 轉染產生的rAAV顆粒的超大rAAV基因組的表現動力學快約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、或100%中任一者。在一些實施方案中,超大載體基因組的長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、7.1kb、7.2kb、7.3kb、7.4kb、7.5kb、7.6kb、7.7kb、7.8kb、7.9kb、8.0kb、8.1kb、8.2kb、8.3kb、8.4kb、8.5kb、8.6kb、8.7kb、8.8kb、8.9kb、9.0kb、9.2kb、9.3kb或9.4kb中任一者或其間的任何數值。
異源轉基因
在一些實施方案中,病毒顆粒是包含超大載體基因組的重組AAV顆粒,所述超大載體基因組包含側翼有一個或兩個AAV反向末端重複(ITR)的異源核酸(例如異源轉基因)。在AAV顆粒中殼體化核酸。在一些實施方案中,本公開內容的rAAV基因組含有一個或多個AAV反向末端重複(ITR)和異源轉基因。例如,在一些實施方案中,本公開內容的rAAV基因組含有兩個AAV反向末端重複(ITR)。在某些實施方案中,本公開內容的rAAV基因組含有兩個AAV反向末端重複(ITR)和異源轉基因。在一些實施方案中,載體基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb。在一些實施方案中,載體基因組是大於約5kb。在一些實施方案中,載體基因組是約5kb-約7kb、約4.7kb-約9.4kb或約4.7kb-6.7kb,或其間的任何數值。在一些實施方案中,載體基因組的長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、7.1kb、7.2kb、7.3kb、7.4kb、7.5kb、7.6kb、7.7kb、7.8kb、7.9kb、8.0kb、8.1kb、8.2kb、8.3kb、8.4kb、8.5kb、8.6kb、8.7kb、8.8kb、8.9kb、9.0kb、9.2kb、9.3kb 或9.4kb中任一者或其間的任何數值。
在一些實施方案中,異源轉基因編碼治療性轉基因產物。在一些實施方案中,治療性轉基因產物是治療性多肽。例如,治療性多肽可以供應細胞或生物體中缺乏或以降低的水準存在的多肽和/或酶促活性。或者,治療性多肽可以供應間接抵消細胞或生物體中的不平衡的多肽和/或酶促活性。例如,用於與由代謝酶或活性缺乏引起的代謝物積累相關的病症的治療性多肽可以供應缺少的代謝酶或活性,或者它可以供應導致代謝物減少的替換代謝酶或活性。也可以使用治療性多肽通過例如充當顯性負性多肽來降低多肽(例如過表現、通過功能獲得突變活化、或其活性以其它方式誤調節的多肽)的活性。
在一些實施方案中,異源轉基因編碼因子VIII。在一些實施方案中,因子VIII是人類因子VIII編碼序列,包括但不限於由人類因子VIII基因表現的任何編碼序列。人類因子VIII基因(例如GenBank Entrez Gene ID 2157)又稱為AHF、F8、F8B、F8C、HEMA、FVIIIDXS1253E。在一些實施方案中,因子VIII具有人類因子VIII的胺基酸序列(例如如以GenBank登錄號AAA52484代表)。可以使用編碼因子VIII的異源轉基因,例如以在患有血友病A(一種與因子VIII缺乏有關的隱性X連鎖的凝固病症)的個體中表現因子VIII。已知因子VIII作為固有血液凝固途徑的一部分參與血液凝固,並且通常由遍及整個身體的肝血竇細胞和內皮細胞表現。
在一些實施方案中,異源轉基因編碼抗肌萎縮蛋白。在一些實施方案中,抗肌萎縮蛋白是人類抗肌萎縮蛋白編碼序列,包括但不限於由人類抗肌萎縮蛋白基因表現的任何編碼序列。人類抗肌萎縮蛋白基因(例如GenBank Entrez Gene ID 1756)又稱為DMD、BMD、CMD3B、MRX85、DXS142、DXS164、DXS206、DXS230、DXS239、DXS268、DXS269、DXS270DXS272。在一些實施方案中,抗肌萎縮蛋白具有人類抗肌萎縮蛋白的胺 基酸序列(例如以GenBank登錄號AAA53189代表)。可以使用編碼抗肌萎縮蛋白的異源轉基因,例如以在患有迪謝內(Duchenne)或貝克(Becker)肌營養不良(與抗肌萎縮蛋白中的突變有關的隱性X連鎖的肌營養不良)的個體中表現抗肌萎縮蛋白。貝克肌營養不良症是一種由抗肌萎縮蛋白中的功能缺失突變引起的不太嚴重的病症,而迪謝內肌營養不良症與抗肌萎縮蛋白中的更嚴重的功能缺失或無效突變(例如無義或移碼突變)有關。已知抗肌萎縮蛋白在抗肌萎縮蛋白-糖蛋白複合物(DGC)中發揮功能,需要所述抗肌萎縮蛋白-糖蛋白複合物(DGC)以將肌細胞的F-肌動蛋白連接於胞外基質,由此在肌肉收縮和鬆弛期間穩定肌膜。
在一些實施方案中,異源轉基因編碼囊性纖維化跨膜傳導調節蛋白(CFTR),又稱為ATP結合盒亞家族C,成員7。在一些實施方案中,CFTR是人類CFTR編碼序列,包括但不限於由人類CFTR基因表現的任何編碼序列。人類CFTR基因(例如GenBank Entrez Gene ID 1080)又稱為CF、MRP7、ABC35、ABCC7、CFTR/MRP、TNR-CFTRdj760C5.1。在一些實施方案中,CFTR具有人類CFTR的胺基酸序列(例如如以GenBank登錄號NP_000483代表)。可以使用編碼CFTR的異源轉基因,例如以在患有囊性纖維化(一種與CFTR中的突變有關的常染色體隱性病症,其影響肺、胰腺、腸和許多其它器官)的個體中表現CFTR。已知CFTR作為參與Cl-離子轉運的ATP門控離子通道發揮功能。足夠的CFTR功能的缺乏導致多種病理學;一個例子是穿過上皮細胞的離子轉運被破壞,導致增加的細胞性水吸收和肺和其它組織中粘液的病理性增稠和積累。
在一些實施方案中,治療性轉基因產物是治療性核酸。在一些實施方案中,治療性核酸可以包括但不限於siRNA、shRNA、RNAi、miRNA、反義RNA、核酶或DNAzyme。因而,治療性核酸可以編碼RNA,其在從載體的核酸轉錄時能通過幹擾與病症有關的異常或過多蛋白質的翻 譯或轉錄來治療病症。例如,異源轉基因可以編碼RNA,其通過高度特異性消除或減少編碼異常和/或過多蛋白質的mRNA治療病症。治療性RNA序列包括RNAi、小抑制性RNA(siRNA)、微小RNA(miRNA)、和/或核酶(如錘頭和髮夾核酶),其能通過高度特異性消除或減少編碼異常和/或過多蛋白質的mRNA治療病症。
在一些實施方案中,異源轉基因是人類轉基因。在一些實施方案中,異源轉基因與啟動子連接。在一些實施方案中,轉基因(例如本文中描述的異源核酸)與啟動子可操作連接。例示性的啟動子包括但不限於巨細胞病毒(CMV)立即早期啟動子、GUSB啟動子、RSV LTR、MoMLV LTR、磷酸甘油酸激酶-1(PGK)啟動子、猿病毒40(SV40)啟動子和CK6啟動子、轉甲狀腺素啟動子(TTR)、TK啟動子、四環素響應性啟動子(TRE)、HBV啟動子、hAAT啟動子、LSP啟動子、嵌合肝特異性啟動子(LSP)、E2F啟動子、端粒酶(hTERT)啟動子;巨細胞病毒增強子/雞β-肌動蛋白/兔β-珠蛋白啟動子(CAG啟動子;Niwa等,Gene,1991,108(2):193-9)和延長因子1-α啟動子(EFl-alpha)啟動子(Kim等,Gene,1990,91(2):217-23和Guo等,Gene Ther.,1996,3(9):802-10)。在一些實施方案中,啟動子包含人類β-葡糖醛酸糖苷酶啟動子或與雞β-肌動蛋白(CBA)啟動子連接的巨細胞病毒增強子。啟動子可以是組成性、誘導型或阻遏性啟動子。在一些實施方案中,啟動子是小鼠轉甲狀腺素啟動子。
組成性啟動子的例子包括但不限於逆轉錄病毒勞斯肉瘤病毒(RSV)LTR啟動子(任選地與RSV增強子一起)、巨細胞病毒(CMV)啟動子(任選地與CMV增強子一起)[參見例如Boshart等,Cell,41:521-530(1985)]、SV40啟動子、二氫葉酸還原酶啟動子、13-肌動蛋白啟動子、磷酸甘油激酶(PGK)啟動子和EFla啟動子(Invitrogen)。
誘導型啟動子容許調節基因表現,並且可以通過外源供應的 化合物、環境因素如溫度、或特定生理狀態的存在,例如急性階段、細胞的特定分化狀態,或者僅在複製細胞中調節。誘導型啟動子和誘導型系統從多種商業來源可得到,包括但不限於Invitrogen、Clontech和Ariad。許多其它系統已經得到描述,並且可以是本領域技術人員容易選擇的。通過外源供應的啟動子調節的誘導型啟動子的例子包括鋅誘導型綿羊金屬硫蛋白(MT)啟動子、地塞米松(dexamethasone)(Dex)誘導型小鼠乳腺腫瘤病毒(MMTV)啟動子、T7聚合酶啟動子系統(WO 98/10088);蛻皮激素昆蟲啟動子(No等,Proc.Natl.Acad.Sci.USA,93:3346-3351(1996))、四環素阻遏性系統(Gossen等,Proc.Natl.Acad.Sci.USA,89:5547-5551(1992))、四環素誘導型系統(Gossen等,Science,268:1766-1769(1995),還參見Harvey等,Curr.Opin.Chem.Biol.,2:512-518(1998))、RU486誘導型系統(Wang等,Nat.Biotech.,15:239-243(1997)和Wang等,Gene Ther.,4:432-441(1997))和雷帕黴素(rapamycin)誘導型系統(Magari等,J.Clin.Invest.,100:2865-2872(1997))。在此上下文中可為有用的其它類型的誘導型啟動子是那些通過特定生理狀態(例如溫度、急性階段、細胞的特定分化狀態)或者僅在複製細胞中調節的。
在另一個實施方案中,會使用轉基因的天然啟動子或其片段。當期望轉基因的表現應當模擬天然表現時,天然啟動子可以是優選的。當轉基因的表現必須在時間上或發育上,或者以組織特異性方式,或者響應特定的轉錄刺激物而受調節時,可以使用天然啟動子。在別的實施方案中,也可以使用其它天然表現控制元件,如增強子元件、多聚腺苷酸化位點或Kozak共有序列來模擬天然表現。
在一些實施方案中,調節序列賦予組織特異性基因表現能力。在一些情況中,組織特異性調節序列結合以組織特異性方式誘導轉錄的組織特異性轉錄因子。例如,肝、肺、肌肉、腸、胰腺和/或其它組織中 的組織特異性表現可為合意的。合適的組織特異性調節序列(例如啟動子、增強子等)是本領域中公知的。例如,在一些實施方案中,啟動子是小鼠轉甲狀腺素(mTTR)啟動子,已知其驅動肝中的基因表現。
在一些實施方案中,rAAV基因組包含內含子。在一些實施方案中,內含子是雜合內含子。
在一些實施方案中,rAAV基因組包含多聚腺苷酸化信號。許多多聚腺苷酸化信號是本領域中已知的。在一些實施方案中,多聚腺苷酸化信號是合成多聚腺苷酸化信號。在其它實施方案中,多聚腺苷酸化信號是牛生長激素(BGH)多聚腺苷酸化信號。關於BGH多聚腺苷酸化信號的更為詳細的描述,參見例如Goodwin,E.C.和Rottman,F.M.(1992)J.Biol.Chem.267:16330-16334。
在一些實施方案中,本發明提供了包含超大AAV基因組的AAV顆粒,其中AAV基因組從5’至3’包含AAV2 ITR、mTTR202啟動子、雜合內含子、B域缺失的因子VIII轉基因、合成多聚腺苷酸化信號和AAV2 ITR。在一些實施方案中,超大AAV基因組從5’至3’包含AAV2 ITR、mTTR202opt啟動子、雜合內含子、B域缺失的因子VIII轉基因、合成多聚腺苷酸化信號和AAV2 ITR。在一些實施方案中,超大AAV基因組從5’至3’包含AAV2 ITR、mTTR482啟動子、雜合內含子、B域缺失的因子VIII轉基因、合成多聚腺苷酸化信號和AAV2 ITR。在一些實施方案中,超大AAV基因組從5’至3’包含AAV2 ITR、mTTR482啟動子、雜合內含子、B域缺失的因子VIII轉基因、牛生長激素多聚腺苷酸化信號和AAV2 ITR。
上文描述的rAAV基因組元件(例如啟動子、內含子和多聚腺苷酸化信號)可以單獨或在與本公開內容的異源轉基因的任何組合中存在。rAAV基因組可以包含建立異源轉基因表現的任何元件,例如啟動子、異源核酸、ITR、核糖體結合元件、終止子、增強子、選擇標誌物、內含子、多 聚腺苷酸化(polyA)信號、和/或複製起點。例如,在一些實施方案中,rAAV基因組含有異源轉基因和一個或多個選自由下列組成之群組的元件:本公開內容的啟動子、本公開內容的內含子、和本公開內容的多聚腺苷酸化信號。在一些實施方案中,rAAV基因組可以包含在異源轉基因側翼的至少一個ITR序列和一個或多個選自由下列組成之群組的元件:本公開內容的啟動子、本公開內容的內含子、和本公開內容的多聚腺苷酸化信號。
在一些實施方案中,超大rAAV載體是自身互補的rAAV載體,例如包含重組自身互補性(術語「自身互補」在本文中可互換使用)基因組的rAAV載體。具有自身互補性基因組的AAV病毒顆粒和使用自身互補性AAV基因組的方法記載於美國專利No.6,596,535;7,125,717;7,465,583;7,785,888;7,790,154;7,846,729;8,093,054;和8,361,457;及Wang Z.,等,(2003)Gene Ther 10:2105-2111,每篇通過提述以其整體併入本文。包含自身互補性基因組的rAAV會憑藉其部分互補序列(例如轉基因的互補編碼和非編碼鏈)而快速形成雙鏈DNA分子。在一些實施方案中,載體包含編碼異源核酸的第一核酸序列和編碼核酸的互補物的第二核酸序列,其中第一核酸序列可以沿著大部分或整個其長度與第二核酸序列形成鏈內堿基對。
在一些實施方案中,通過突變ITR(例如正確的ITR)連接第一異源核酸序列和第二異源核酸序列。在一些實施方案中,ITR包含多核苷酸序列5’-CACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCACGCCCGGGCTTTGCCCGGGCG-3’(SEQ ID NO:24)。突變ITR包含含有末端解析序列的D區的缺失。結果,在複製AAV病毒基因組時,rep蛋白不會在突變ITR處切割病毒基因組,並且因而,會在病毒殼體中包裝以5’至3’次序包含如下的重組病毒基因組:AAV ITR、包含調節序列的第一異源多核苷酸序列、突變AAV ITR、與第一異源多核苷酸為相反取向 的第二異源多核苷酸和第三AAV ITR。在一些實施方案中,scAAV載體基因組大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、或7.0kb中任一者或其間的任何數值。
IV. 產生病毒顆粒的方法
本公開內容的某些態樣涉及用於產生含有超大重組AAV基因組的腺相關病毒(AAV)顆粒的方法。在一些實施方案中,方法包括在產生rAAV顆粒的條件下培養AAV生產細胞系,其中AAV生產細胞系包含i)編碼AAV rep和cap基因的核酸,和ii)rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb;b)提供AAV輔助功能;並且c)收集含有超大rAAV基因組的rAAV顆粒。在一些實施方案中,AAV生產細胞系包含穩定維持的編碼AAV rep和cap基因的核酸。在一些實施方案中,AAV生產細胞系包含穩定維持的rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb。在一些實施方案中,AAV生產細胞系包含穩定維持的編碼AAV rep和cap基因的核酸和穩定維持的rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb。在一些實施方案中,AAV生產細胞系包含穩定整合到細胞系基因組中的編碼AAV rep和cap基因的核酸。在一些實施方案中,AAV生產細胞系包含穩定整合到細胞系基因組中的rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb。在一些實施方案中,AAV生產細胞系包含穩定整合到細胞系基因組中的編碼AAV rep和cap基因的核酸和rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb。在上述實施方案的一些實施方案中,rAAV基因組的長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5 kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、7.1kb、7.2kb、7.3kb、7.4kb、7.5kb、7.6kb、7.7kb、7.8kb、7.9kb、8.0kb、8.1kb、8.2kb、8.3kb、8.4kb、8.5kb、8.6kb、8.7kb、8.8kb、8.9kb、9.0kb、9.2kb、9.3kb或9.4kb中任一者或其間的任何數值。在一些實施方案中,包裝的AAV基因組不含5’端的截短。在一些實施方案中,包裝的AAV基因組不含3’端的截短。
本公開內容的其它態樣涉及用於產生包含超大重組AAV基因組的腺相關病毒(AAV)顆粒的細胞系,所述細胞系包含a)編碼AAV rep和cap基因的核酸,和b)rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb。在一些實施方案中,AAV生產細胞系包含穩定維持的編碼AAV rep和cap基因的核酸。在一些實施方案中,AAV生產細胞系包含穩定維持的rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-約6.7kb或約5.2kb-約8.7kb。在一些實施方案中,AAV生產細胞系包含穩定維持的編碼AAV rep和cap基因的核酸和穩定維持的rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-約6.7kb或約5.2kb-約8.7kb。在一些實施方案中,AAV生產細胞系包含穩定整合到細胞系基因組中的編碼AAV rep和cap基因的核酸。在一些實施方案中,AAV生產細胞系包含穩定整合到細胞系基因組中的rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-約6.7kb或約5.2kb-約8.7kb。在一些實施方案中,AAV生產細胞系包含穩定整合到細胞系基因組中的編碼AAV rep和cap基因的核酸和rAAV基因組,其中rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-約6.7kb或約5.2kb-約8.7kb。在一些實施方案中,rAAV基因組的長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、7.0kb、7.1kb、7.2kb、7.3kb、7.4kb、7.5kb、7.6kb、7.7kb、7.8kb、7.9kb、8.0kb、8.1kb、8.2kb、8.3kb、8.4kb、8.5 kb、8.6kb、8.7kb、8.8kb、8.9kb、9.0kb、9.2kb、9.3kb或9.4kb中任一者或其間的任何數值。
本領域中已知許多用於產生rAAV載體的方法,包括轉染、穩定的細胞系生產、和感染性雜合病毒生產系統,其包括腺病毒-AAV雜合物、皰疹病毒-AAV雜合物(Conway,JE等,(1997)J.Virology 71(11):8780-8789)和杆狀病毒-AAV雜合物。用於產生rAAV病毒顆粒的rAAV產生培養都需要:1)合適的宿主細胞,2)合適的輔助病毒功能,3)AAV rep和cap基因和基因產物;4)側翼有至少一個AAV ITR序列(例如超大rAAV載體基因組)的核酸(如治療性核酸);和5)合適的培養基和培養基組分以支持rAAV產生。在一些實施方案中,合適的宿主細胞是靈長類宿主細胞。在一些實施方案中,合適的宿主細胞是人類衍生細胞系,如HeLa、A549、293或Perc.6細胞。在一些實施方案中,合適的輔助病毒功能由野生型或突變體腺病毒(如溫度敏感性腺病毒)、皰疹病毒(HSV)、杆狀病毒或提供輔助功能的質粒構建體提供。在一些實施方案中,AAV rep和cap基因產物可以來自任何AAV血清型。一般地,但不強制,AAV rep基因產物與rAAV載體基因組的ITR是相同血清型的,只要rep基因產物可以發揮功能以複製並包裝rAAV基因組。本領域中已知的合適的培養基可以用於產生rAAV載體。這些培養基包括但不限於由Hyclone Laboratories和JRH生產的培養基,包括改良的伊格爾(Eagle)培養基(MEM)、Dulbecco氏改良的伊格爾培養基(DMEM)、定制配製物,如記載於美國專利No.6,566,118的那些,和如記載於美國專利No.6,723,551的Sf-900 II SFM培養基,每篇通過提述以其整體併入本文,特別就在產生重組AAV載體中使用的定制培養基配製物而言。在一些實施方案中,AAV輔助功能由腺病毒或HSV提供。在一些實施方案中,AAV輔助功能由杆狀病毒提供,並且宿主細胞是昆蟲細胞(例如草地貪夜蛾(Spodoptera frugiperda)(Sf9)細胞)。
一種用於產生rAAV顆粒的方法是三重轉染方法。簡言之,可以將含有rep基因和殼體基因的質粒以及輔助腺病毒質粒轉染(例如使用磷酸鈣方法)到細胞系(例如HEK-293細胞)中,並且可以將病毒收集,並且任選地純化。如此,在一些實施方案中,通過將編碼rAAV載體的核酸、編碼AAV rep和cap的核酸、和編碼AAV輔助病毒功能的核酸三重轉染到宿主細胞中產生rAAV顆粒,其中將核酸轉染到宿主細胞生成能夠產生rAAV顆粒的宿主細胞。
在一些實施方案中,可以通過生產細胞系方法,如下文提供的例示性生產細胞系方法(還可參見Martin等,(2013)Human Gene Therapy Methods 24:253-269;U.S.PG Pub.No.US2004/0224411;及Liu,X.L.等(1999)Gene Ther.6:293-299)產生rAAV顆粒。簡言之,可以用質粒穩定轉染細胞系(例如HeLa、293、A549或Perc.6細胞系),所述質粒含有rep基因、殼體基因、和包含啟動子-異源核酸序列的超大載體基因組。可以篩選細胞系以選擇用於rAAV產生的前導選殖(lead clone),然後可以將所述前導選殖擴充到生產生物反應器,並且用輔助病毒(例如腺病毒或HSV)感染以啟動rAAV產生。隨後,可收穫病毒,可滅活(例如通過加熱)和/或除去腺病毒,並且可純化rAAV顆粒。如此,在一些實施方案中,通過生產細胞系產生rAAV顆粒,所述生產細胞系包含下列一者或多者:編碼rAAV載體的核酸、編碼AAV rep和cap的核酸、和編碼AAV輔助病毒功能的核酸。如本文中描述,與三重轉染方法相比,生產細胞系方法對於產生具有超大基因組的rAAV顆粒可以是有利的。
在一些實施方案中,編碼AAV rep和cap基因的核酸和/或rAAV基因組在生產細胞系中穩定維持。在一些實施方案中,在一個或多個質粒上將編碼AAV rep和cap基因的核酸和/或rAAV基因組導入細胞系中以生成生產細胞系。在一些實施方案中,在同一質粒上將AAV rep、AAV cap 和rAAV基因組導入細胞中。在其它實施方案中,在不同質粒上將AAV rep、AAV cap和rAAV基因組導入細胞中。在一些實施方案中,用質粒穩定轉染的細胞系將質粒維持多次細胞系傳代(例如5、10、20、30、40、50或超過50次細胞傳代)。例如,質粒可以隨細胞複製而複製,或者質粒可以整合到細胞基因組中。已經鑒定出使質粒能夠在細胞(例如人類細胞)中自主複製的多種序列(參見例如Krysan,P.J.等(1989)Mol.Cell Biol.9:1026-1033)。在一些實施方案中,質粒可以含有選擇標誌物(例如抗生素抗性標誌物),其容許選擇維持質粒的細胞。哺乳動物細胞中通常使用的選擇標誌物包括但不限於殺稻瘟素(blasticidin)、G418、潮黴素B、zeocin、嘌呤黴素及它們的衍生物。用於將核酸導入細胞中的方法是本領域中已知的,並且包括但不限於病毒轉導、陽離子轉染(例如使用陽離子聚合物,如DEAE-右旋糖苷或陽離子脂質如lipofectamine)、磷酸鈣轉染、顯微注射、顆粒轟擊、電穿孔、和納米顆粒轉染(關於更多詳情,參見例如Kim,T.K.和Eberwine,J.H.(2010)Anal.Bioanal.Chem.397:3173-3178)。
在一些實施方案中,編碼AAV rep和cap基因的核酸和/或rAAV基因組穩定整合入生產細胞系的基因組中。在一些實施方案中,在一個或多個質粒上將編碼AAV rep和cap基因的核酸和/或rAAV基因組導入細胞系中以生成生產細胞系。在一些實施方案中,在同一質粒上將AAV rep、AAV cap和rAAV基因組導入細胞中。在其它實施方案中,在不同質粒上將AAV rep、AAV cap和rAAV基因組導入細胞中。在一些實施方案中,質粒可以含有選擇標誌物(例如抗生素抗性標誌物),其容許選擇維持質粒的細胞。用於將核酸穩定整合到多種宿主細胞系中的方法是本領域中已知的(關於通過核酸的穩定整合創建的例示性生產細胞系的更為詳細的描述,參見下文實施例)。例如,可以使用重複選擇(例如經由使用選擇性標誌物)來選擇已經整合含有選擇性標誌物(和AAV cap和rep基因和/或rAAV基因組)的 核酸的細胞。在其它實施方案中,可以以位元點特異性方式將核酸整合到細胞系中以生成生產細胞系。幾種位點特異性重組系統是本領域中已知的,如FLP/FRT(參見例如O’Gorman,S.等(1991)Science 251:1351-1355)、Cre/loxP(參見例如Sauer,B.和Henderson,N.(1988)Proc.Natl.Acad.Sci.85:5166-5170)、和phi C31-att(參見例如Groth,A.C.等(2000)Proc.Natl.Acad.Sci.97:5995-6000)。
在一些實施方案中,生產細胞系源自靈長類細胞系(例如非人類靈長類細胞系,如Vero或FRhL-2細胞系)。在一些實施方案中,細胞系源自人類細胞系。在一些實施方案中,生產細胞系源自HeLa、293、A549或PERC.6®(Crucell)細胞。例如,在將編碼AAV rep和cap基因的核酸和/或超大rAAV基因組導入和/或穩定維持/整合到細胞系中以生成生產細胞系前,細胞系是HeLa、293、A549或PERC.6®(Crucell)細胞系或其衍生物。
在一些實施方案中,生產細胞系適合於在懸浮液中生長。如本領域中已知的,錨定(anchorage)依賴性細胞通常不能在沒有基底(如微載體珠)的情況下在懸浮液中生長。使細胞系適合於懸浮生長可以包括例如在具有攪拌槳的旋動培養中培養細胞系,使用缺乏鈣和鎂離子的培養基以防止結塊(和任選地消泡劑),使用用矽化化合物包被的培養容器,並且在每次傳代時選擇培養物中(而不是大塊中或容器的側面上)的細胞。關於進一步的描述,參見例如ATCC常問問題檔(在www.atcc.org/Global/FAQs/9/1/Adapting%20a%20monolayer%20cell%20line%20to%20suspension-40.aspx可得到)及其中引用的參考文獻。
在一些態樣中,提供了用於產生如本文中公開的任何rAAV顆粒的方法,其包括(a)在產生rAAV顆粒的條件下培養宿主細胞,其中宿主細胞包含(i)一種或多種AAV包裝基因,其中每種所述AAV包裝基因編碼AAV複製和/或殼體化蛋白;(ii)rAAV原載體,其包含編碼側翼有至少一個 AAV ITR的如本文中描述的異源核酸的核酸,和(iii)AAV輔助功能;和(b)回收由宿主細胞產生的rAAV顆粒。在一些實施方案中,所述至少一種AAV ITR選自由下列組成之群組:AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR等。例如,在一些實施方案中,AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。在某些實施方案中,AAV中的核酸包含AAV2 ITR。在一些實施方案中,所述殼體化蛋白選自由下列組成之群組:AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體蛋白或其突變體。在一些實施方案中,殼體化蛋白是AAV5殼體蛋白,包括具有酪胺酸殼體突變的AAV5殼體蛋白。在一些實施方案中,殼體化蛋白是AAV5殼體蛋白,包括具有酪胺酸殼體突變的AAV5殼體蛋白,並且ITR是AAV2 ITR。在別的實施方案中,rAAV顆粒包含來自A-F進化枝的AAV血清型的殼體蛋白。在一些實施方案中,AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。在一些實施方案中,rAAV顆粒包含AAV血清型1(AAV1)殼體。在一些實施方案中,rAAV顆粒包含AAV血清型2(AAV2)殼體。在一些實施方案中,rAAV顆粒包含AAVrh8R殼體或其突變體。在一些實施方案中,rAAV顆粒包含AAV1殼體和重組基因組,其包含AAV2 ITR、突變體AAV2 ITR和編碼治療性轉基因/核酸的核酸。在一些實施方案中,AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、 AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。在某些實施方案中,AAV ITR是AAV2 ITR。在一些實施方案中,ITR源自AAV2,並且殼體源自AAV2。在一些實施方案中,ITR源自AAV2,並且殼體源自AAVrh8R。
本發明的合適的rAAV生產培養基可以補充有0.5%-20%(v/v或w/v)水準的血清或血清衍生的重組蛋白。或者,如本領域中已知的,可在無血清的條件中產生rAAV載體,所述無血清的條件也可以稱為沒有動物衍生產物的培養基。本領域普通技術人員可以理解,設計為支持rAAV載體產生的商業或定制培養基也可以補充有本領域中已知的一種或多種細胞培養組分,包括但不限於葡萄糖、維生素、胺基酸和或生長因子,以增加生產培養物中的rAAV滴度。
可以在多種適合於利用的特定宿主細胞的條件(在較寬的溫度範圍裡,持續可變的時間長度,等等)下培養rAAV生產培養物。如本領域中已知的,rAAV生產培養物包括附著依賴性培養物,其可以在合適的附著依賴性容器(如例如滾瓶、中空纖維濾器、微載體、和填充床或流化床生物反應器)中培養。rAAV載體生產培養物也可以包括懸浮適應性宿主細胞,如HeLa、293和SF-9細胞,所述宿主細胞可以以多種方式培養,包括例如旋轉瓶、攪拌釜生物反應器、和一次性系統,如Wave袋系統。
本公開內容的某些態樣涉及收集含有超大rAAV基因組的rAAV顆粒。可以如下從rAAV生產培養物中收穫本發明的rAAV載體顆粒,即裂解生產培養物的宿主細胞或者從生產培養物中回收用完的培養基,只要在本領域中已知的條件下培養細胞以引起rAAV顆粒從完整細胞中釋放到培養基中,如更完整記載於美國專利No.6,566,118)。裂解細胞的合適方法也是本領域中已知的,並且包括例如多個冷凍/融化循環、聲處理、微流化和用化學品如去汙劑和/或蛋白酶處理。
在一些實施方案中,收集的AAV顆粒含有大於約5.0kb的rAAV基因組。在一些實施方案中,收集的rAAV顆粒含有長度大於約5.0kb、5.1kb、5.2kb、5.3kb、5.4kb、5.5kb、5.6kb、5.7kb、5.8kb、5.9kb、6.0kb、6.1kb、6.2kb、6.3kb、6.4kb、6.5kb、6.6kb、6.7kb、6.8kb、6.9kb、或7.0kb、8.0kb或9.0kb中任一者或長度為其間的任何數值的rAAV基因組。在一些實施方案中,收集的rAAV顆粒含有約5.0kb-約9.0kb、約5.0kb-約8.5kb、約5.0kb-約8.0kb、約5.0kb-約7.5kb、約5.0kb-約7.0kb、約5.0kb-約6.5kb、約5.0kb-約6.0kb、約5.0kb-約5.5kb、約5.2kb-約9.0kb、約5.2kb-約8.5kb、約5.2kb-約8.0kb、約5.2kb-約7.5kb、約5.2kb-約7.0kb、約5.2kb-約6.5kb、約5.2kb-約6.0kb、約5.2kb-約5.5kb、約5.5kb-約9.0kb、約5.5kb-約8.5kb、約5.5kb-約8.0kb、約5.5kb-約7.5kb、約5.5kb-約7.0kb、約5.5kb-約6.5kb、約5.5kb-約6.0kb、約6.0kb-約9.0kb、約6.0kb-約8.5kb、約6.0kb-約8.0kb、約6.0kb-約7.5kb、約6.0kb-約7.0kb、約6.0kb-約6.5kb、約6.5kb-約9.0kb、約6.5kb-約8.5kb、約6.5kb-約7.5kb、約6.5kb-約7.0kb、約7.0kb-約9.0kb、約7.0kb-約8.5kb、約7.0kb-約8.0kb、約7.0kb-約7.5kb、約7.5kb-約9.0kb、約7.5kb-約8.5kb、約7.5kb-約8.0kb、約8.0kb-約9.0kb、約8.0kb-約8.5kb、或約8.5kb-約9.0kb中任一項的rAAV基因組。在一些實施方案中,收集的rAAV顆粒含有約4.7kb-約9.4kb,任選地約4.7kb-約6.7kb或約5.2kb-約8.7kb的rAAV基因組。
在一些實施方案中,在提供輔助功能後約48小時-約96小時收集rAAV顆粒。例如,在一些實施方案中,在提供輔助功能後約48小時、約60小時、約72小時、約84小時、或約96小時收集rAAV顆粒。在一些實施方案中,在提供輔助功能後約48小時-約96小時、約48小時-約84小時、約48小時-約72小時、約48小時-約60小時、約60小時-約96小時、約60小時-約84小時、約60小時-約72小時、約72小時-約96小時、約72小時-約84小時、或 約84小時-約96小時收集rAAV顆粒。
在別的實施方案中,純化rAAV顆粒。如本文中使用,術語「純化的」包括缺乏至少一些其它組分的rAAV顆粒的製備物,所述其它組分在天然存在或最初製備rAAV顆粒的地方也可以存在。因此,例如,分離的rAAV顆粒可以使用純化技術從來源混合物,如培養物裂解物或生產培養物上清液中富集它來製備。可以以多種方式,如例如通過DNA酶抗性顆粒(DRP)的比例或溶液中存在的基因組複製體(gc),或者通過感染性來測量富集,或者它可以相對於來源混合物中存在的第二潛在幹擾性物質,如污染物,包括生產培養物污染物或過程中污染物,包括輔助病毒、培養基組分等來測量。
在一些實施方案中,使rAAV生產培養收穫物澄清以除去宿主細胞碎片。在一些實施方案中,通過過濾通過一系列深度濾器,包括例如DOHC Millipore Millistak+HC Pod級濾器、AlHC Millipore Millistak+HC Pod級濾器、和0.2μm Filter Opticap XL1O Millipore Express SHC Hydrophilic Membrane濾器使生產培養收穫物澄清。也可以通過本領域中已知的多種其它標準技術,如離心或過濾通過本領域中已知的0.2μm以上孔徑的任何乙酸纖維素濾器實現澄清。
在一些實施方案中,用Benzonase®進一步處理rAAV生產培養收穫物以消化生產培養物中存在的任何高分子量DNA。在一些實施方案中,在本領域中已知的標準條件下進行Benzonase®消化,所述標準條件包括例如於範圍為環境溫度至37℃的溫度,終濃度1-2.5個單位/ml Benzonase®進行30分鐘至幾小時的時間。
可以使用一個或多個下述純化步驟分離或純化rAAV顆粒:平衡離心;流過陰離子交換過濾(flow-through anionic exchange filtration);用於濃縮rAAV顆粒的切向流過濾(TFF);通過磷灰石層析的rAAV捕捉;輔 助病毒的熱滅活;通過疏水性相互作用層析的rAAV捕捉;通過大小排阻層析(SEC)的緩衝液交換;納米過濾;和通過陰離子交換層析、陽離子交換層析、或親和層析的rAAV捕捉。在一些實施方案中,純化包括一個或多個層析步驟(例如上文描述的一個或多個層析步驟)。可以單獨、以各種組合、或以不同次序使用這些步驟。在一些實施方案中,方法包括以如下文描述的次序的所有步驟。純化rAAV顆粒的方法參見例如Xiao等,(1998)Journal of Virology 72:2224-2232;美國專利號6,989,264和8,137,948;及WO 2010/148143。
在一些實施方案中,rAAV顆粒在醫藥組合物中。在一些實施方案中,rAAV顆粒在包含醫藥上可接受之賦形劑的醫藥組合物中。如本領域中公知的,醫藥上可接受之賦形劑是相對惰性的物質,其促進藥理學有效物質的投予,並且可以作為液體溶液或懸浮液,作為乳劑,或者作為適合於在使用前在液體中溶解或懸浮的固體形式供應。例如,賦形劑可以給出形式或一致性,或者充當稀釋劑。合適的賦形劑包括但不限於穩定劑、潤濕和乳化劑、用於改變滲量(osmolarity)的鹽、成膠囊劑(encapsulating agent)、pH緩衝物質、和緩沖劑。此類賦形劑包括可以在沒有過度毒性的情況下投予的適合於對靶組織投遞的任何藥用劑。醫藥上可接受之賦形劑包括但不限於山梨糖醇、各種TWEEN化合物之任一者、和液體,如水、鹽水、甘油和乙醇。醫藥上可接受之鹽可以包含於其中,例如礦物酸鹽,如氫氯酸鹽、氫溴酸鹽、磷酸鹽、硫酸鹽等;和有機酸鹽,如乙酸鹽、丙酸鹽、丙二酸鹽、苯甲酸鹽等。醫藥上可接受之賦形劑的徹底討論在REMINGTON’S PHARMACEUTICAL SCIENCES(Mack Pub.Co.,N.J.1991)中可得到。
此類醫藥上可接受之載體可以是無菌液體,如水和油,包括石油、動物、植物或合成起源的那些油,如花生油、大豆油、礦物油等。 也可以採用鹽水溶液和水性右旋糖、聚乙二醇(PEG)和甘油溶液作為液體載體,特別用於可注射溶液。醫藥組合物可以進一步包含其它成分,例如防腐劑、緩衝劑、張度劑、抗氧化劑和穩定劑、非離子型濕潤或澄清劑、增粘劑等。本文中描述的醫藥組合物可以以單一單位劑量或以多劑量形式包裝。組合物一般配製為無菌且基本上等張的溶液。
V. 治療方法
在一些態樣中,本發明提供了治療有此需要的個體中的疾病或病症的治療方法,其包括對個體投予AAV顆粒。可以對感興趣的特定組織投予AAV顆粒,或者它可以系統性投予。在一些實施方案中,可以胃腸外投予有效量的AAV顆粒。胃腸外投予路徑可以包括但不限於靜脈內、骨內、動脈內、腦內、肌肉內、鞘內、皮下、腦室內等。在一些實施方案中,可以經由一種投予路徑投予有效量的AAV顆粒。在一些實施方案中,可以經由超過一種投予路徑的組合投予有效量的AAV顆粒。在一些實施方案中,個體是哺乳動物。在一些實施方案中,個體是人類。
根據治療的目的,投予有效量的包含超大AAV基因組的AAV顆粒。例如,在低百分比的轉導可以實現期望的治療效果的情況下,則治療的目的一般滿足或超過此轉導水準。在一些情況中,可以通過轉導期望組織類型的僅約1至5%靶細胞,在一些實施方案中期望組織類型的至少約20%細胞,在一些實施方案中期望組織類型的至少約50%,在一些實施方案中至少約80%,在一些實施方案中至少約95%,在一些實施方案中至少約99%細胞來實現此轉導水準。作為指導,每次注射投予的顆粒的數目一般是約1×106-約1×1014個顆粒、約1×107-1×1013個顆粒、約1×109-1×1012個顆粒或約1×109個顆粒、約1×1010個顆粒或約1×1011個顆粒。可以在相同的方法期間或者間隔幾天、幾周、幾個月或幾年通過一次或多次投予來投予rAAV組 合物。可以使用本文中描述的任何一種或多種投予路徑。在一些實施方案中,可以使用多種載體來治療人類。
鑒定通過AAV病毒顆粒轉導的細胞的方法是本領域中已知的;例如免疫組織化學或使用標誌物如增強型綠色熒光蛋白可以用於檢測病毒顆粒的轉導;例如,包含具有一個或多個胺基酸取代的rAAV殼體的病毒顆粒。
在一些實施方案中,同時或序貫對超過一個位置投予包含超大AAV基因組的AAV病毒顆粒。在一些實施方案中,rAAV病毒顆粒的多次注射相隔不超過1小時、2小時、3小時、4小時、5小時、6小時、9小時、12小時或24小時。
在一些實施方案中,本發明提供了治療個體中的疾病或病症的方法,其包括投予包含超大AAV基因組的AAV顆粒,其中超大AAV基因組包含適合於治療疾病或病症的轉基因。在一些實施方案中,本發明提供了用包含超大AAV基因組的AAV顆粒治療血友病A的方法,所述超大AAV基因組編碼因子VIII轉基因(例如人類因子VIII轉基因)。在一些實施方案中,本發明提供了用於用包含超大AAV基因組的AAV顆粒治療肌營養不良症的方法,所述超大AAV基因組編碼抗肌萎縮蛋白轉基因(例如人類抗肌萎縮蛋白轉基因)。在一些實施方案中,本發明提供了用於用包含超大AAV基因組的AAV顆粒治療神經肌肉病(dysferlinopathy)的方法,所述超大AAV基因組編碼dysferlin轉基因(例如人類dysferlin轉基因)。在一些實施方案中,本發明提供了用於用包含超大AAV基因組的AAV顆粒治療囊性纖維化的方法,所述超大AAV基因組編碼CFTR轉基因(例如人類CFTR轉基因)。然而,本發明不限於需要表現比4.8kb AAV載體基因組中所適合的更大的轉基因的疾病或病症。例如,在一些實施方案中,本發明提供了包含AAV基因組的AAV顆粒,所述AAV基因組包含一種或多種異源轉基因,其中異源轉基 因和調節因子(啟動子、增強子、內含子等)的組合導致大於約5.0kb的AAV基因組。
VI. 套組
在一些實施方案中,本發明包括包含AAV顆粒的套組,所述AAV顆粒包含本發明的超大基因組。在一些實施方案中,套組進一步包括用於投遞(例如胃腸外投予)rAAV顆粒組合物的裝置。在一些實施方案中,使用說明書包括根據本文中描述的方法之一的說明書。在一些實施方案中,在給容器提供(例如附於容器)的標簽上印刷說明書。在一些實施方案中,使用說明書包括用於治療疾病或病症的說明書。
在一些實施方案中,套組包含單一流體(例如包含有效量的載體的醫藥上可接受之流體)。在一些實施方案中,套組包含2種以上流體。流體可以包括稀釋劑、緩衝劑、賦形劑或本文中描述或本領域中已知的任何其它液體,其適合於投遞、稀釋、穩定、緩衝或以其它方式轉運本公開內容的AAV顆粒。在一些實施方案中,系統包含一種或多種緩衝劑,例如水性pH緩衝溶液。緩衝劑的例子可以包括但不限於磷酸鹽、檸檬酸鹽、Tris、HEPES、和其它有機酸緩衝劑。
在一些實施方案中,套組包含容器。合適的容器可以包括例如小瓶、袋、注射器和瓶。容器可以由一種或多種材料,如玻璃、金屬或塑膠製成。在一些實施方案中,容器用於容納本公開內容的rAAV組合物。在一些實施方案中,容器也可以容納流體和/或其它治療劑。
實施例
通過參考以下實施例會更充分理解本發明。然而,它們不應解釋為限制本發明的範圍。應當理解,本文中描述的實施例和實施方案是 僅為了說明目的,並且鑒於其的各種修改或變化會對本領域技術人員有提示,並且應當包括在本申請的精神和範圍及所附請求項的範圍內。
實施例1:具有超大5.1kb和5.4kb FVIII載體的生產細胞系的生成
如上文討論,需要能夠以高產率、一致產物、和高質量基因組產生具有超大基因組的rAAV載體的平臺。本實施例描述了生成生產細胞系(PCL)平臺,其對於產生具有含有大構建體(例如超過5kb)的基因組的rAAV載體是特別有利的。
方法
用於超大5.1和5.4kb FVIII載體的pTP質粒的構建
在基於pUC57的質粒中生成FVIII表現盒,並且該FVIII表現盒由小鼠轉甲狀腺素(mTTR)啟動子(Costa,RH等,Mol Cell Biol 1986,6:4697-4708.)(具有和沒有100bp增強子序列的202bp核心序列)、雜合內含子(Jiang,H.等,Blood 2006 108:107-115)、經密碼子優化的人類B域缺失的FVIII cDNA、合成或BGH多聚A和rAAV2反向末端重複序列組成。這些生成具有範圍為5.1和5.4kb的載體基因組大小的rAAV載體(圖1A)。
通過對正常C57BL/6小鼠的高體積注射在體內對具有FVIII表現盒的質粒載體測試FVIII產生。為了生成用於AAVrh8R/5.1kb FVIII載體的生產細胞系(PCL),用BglII消化TriplePlay質粒pAFTGEN-SEAP-caprh8R,並且進行平端處理。使用PvuI和SapI位點從pUC57-mTTR-hFVIIIco(pITR-mTTR-hFVIIISQco-SpA)中切出具有側翼5’和3’AAV2 ITR的FVIII載體基因組。將5.5kb PvuI/SapI平端化片段連接到TriplePlay質粒以生成具有5.1kb FVIII載體和AAVrh8R cap基因的質粒。生成含有AAV8 cap基因的相似構建體。通過用牛生長激素(BGH)多聚A替換合成的多聚A區而生成具有AAVrh8R cap基因和5.4kb載體的TriplePlay質粒。將所得的卡那黴素抗性選殖轉染到Huh7細胞中以測試FVIII蛋白產生。
通過標準ELISA測定法定量培養基中的FVIII水準確認來自選定的TriplePlay質粒的FVIII產生。通過將pAdhelper共轉染到293細胞中測試來自選定的TriplePlay質粒(pTGEN/AAVrh8R/mTTRhFVIII或pTGEN/AAV8/mTTRhFVIII)的rAAV載體生成。收穫細胞裂解物,並且進行用FVIII引物/探針的qPCR以量化包裝基因組的量。
本文中呈現的實施例中使用的引物和探針見於表1。
用於5.1kb和5.4kb FVIII載體的生產細胞系的生成
用Lipofectamine和Plus試劑將質粒pTGEN/AAVrh8R/mTTR-hFVIII(具有5.1或5.4kb載體)或質粒pTGEN/AAV8/mTTR-hFVIII轉染到HeLaS3細胞中。將細胞分配到60×96孔板上,並且將板清洗並且每週補料。在選擇後,就集落生長對板評分。收穫主孔(MW)並轉移到24孔皿,並基於大小收穫到24孔皿中。
接著,將主孔分配到96孔板上以進行相對生產(RP)篩選,然後對來自RP篩選的用於載體產生的陽性MW測試比生產(SP)水準;例如通過qPCR經由載體產生(Martin,J.等,2013 Hum.Gene Ther.Meth.24:253-269)。
具有5.1kb和5.4kb FVIII載體的生產細胞系的基因組DNA的表徵
通過使用對每種序列特異性的引物和探針的qPCR對基因組DNA分析載體、rep和嘌呤黴素序列的複製體數。或者,通過Southern印跡分析整合的「TriplePlay」質粒的大小和完整性。對此,用SpeI(Tripleplay質粒中的單一切割劑)消化基因組DNA以確定整合的TriplePlay質粒的大小,並且用BglII/HincII消化基因組DNA以查看載體表現盒的完整性。在mTTR啟動子、FVIII cDNA和合成多聚A內的BglII/HincII消化切割產生1.8和2.8kb片段。在0.8%瓊脂糖凝膠上運行經消化的基因組DNA和TriplePlay 質粒(摻入基因組DNA中並且用作複製體數和大小標誌物)。將DNA轉移到尼龍膜上,並且用經DIG標記的FVIII NcoI片段探查。
從生產細胞系中的AAV/mTTR-hFVIII載體產生的表徵
對選定的MW分析rAAV載體產生。為了比較,通過三重轉染產生方法通過將質粒pUC57-mTTR-hFVIIIco轉染到293細胞中生成5.1和5.4kb FVIII載體。與生產細胞系方法相當,將細胞收穫,裂解,並進行純化。通過qPCR對來自兩種方法的樣品定量載體基因組複製體,並且計算病毒回收率和產率。通過殼體的SDS-PAGE分析、AUC分析、及對於包裝的基因組大小表徵載體批次(參見下文)。
從生產細胞系中生成的rAAV/mTTR-hFVIII載體基因組的表徵
如下從純化的殼體中提取包裝的載體基因組(VG)。在37℃將病毒與110U DNA酶(Promega)一起溫育1小時。添加EDTA以停止消化,接著在存在N-月桂醯十二烷基肌胺酸鈉(N-lauryl sarcosyl)的情況下於50℃用蛋白酶K消化溫育45分鐘。用酚:氯仿:異戊醇(25:24:1)提取DNA兩次,並且以14,000rpm於4℃離心10分鐘。T-80℃,用100%乙醇和3M乙酸鈉沉澱DNA達1小時,離心1小時。在TE中重懸DNA和糰粒。
對於Southern分析,通過在由30mM NaOH和1mM EDTA組成的運行緩衝液中的1%鹼性凝膠電泳分離基因組。將樣品轉移並交聯到Hybond膜(Amersham)上,用對FVIII表現盒特異性的各種片段探查。這些包括含有除了C2外的所有FVIII域的4.0kb NheI-XcmI片段。另外,使用多個25至30聚體鏈特異性寡核苷酸探針。用AlkPhos直接標記系統(Amersham)標記較大的探針。使用DIG Oligo 3’端標記套組(Roche)根據製造商的說明書對寡核苷酸探針進行3’端標記。
對於DNA斑點印跡分析,通過於100℃加熱5分鐘在TE緩衝液pH 7.0中變性VG,接著在冰上冷卻5分鐘,並且使用多通道移液管手動施加於尼龍膜。通過UV交聯將DNA固定於膜。對於每種經DIG標記的寡核苷酸探針於50℃在Easy Hyb緩衝液中實施雜交6小時,接著進行高嚴格性清洗,封閉步驟(30分鐘),用綴合有鹼性磷酸酶的抗DIG Fab片段檢測(30分鐘),進一步清洗,與CDP-Star底物反應(5分鐘),並且根據3’-端標記套組說明書(Roche)暴露於X-射線膠片。使用ImageJ軟件(在rsb.info.nih.gov/ij可得到)定量Southern和斑點印跡中信號的密度(density)。
在體內評估從生產細胞系生成的AAV/mTTR-hFVIII載體
在8-12周齡的雄性血友病A KO小鼠(C56BL/6,129S-F8tm1Kaz[外顯子16中的neo基因])(Jackson Laboratories)中評估rAAV載體。經由尾靜脈通過靜脈內路徑投予載體(4、10和30×1010DRP/小鼠)。經由眶後竇將血液收集到檸檬酸鈉管中,並且血漿冷凍貯存直至分析。使用Coatest測定法(Diapharma)根據製造商的方案(針對96孔形式修改)對血漿樣品分析FVIII活性水準。數值以正常血漿中存在的% FVIII活性測量,並且轉化成ng/ml(100% FVIII=150ng FVIII/ml)。還對一些樣品測試部分促凝血酶原激酶時間(PTT,IDEXX)。通過標準ELISA(Enzyme Research Laboratories)使用彙集的正常人類血漿(Innovative Research)作為標準品定量FVIII蛋白水準。
在每項研究結束時收集肝樣品。用珠磨器(bead beater)-16勻漿化具有10μl β-巰基乙醇和¼英寸氧化鋯1mm珠的1mL RLTplus中的肝(50-400mg)。將勻漿的一部分放入Trizol(對於RNA)或DNA Stat-60(對於DNA)中。使用Trimega方案純化RNA,接著用旋轉柱(Promega Z3100)根據製造商純化。用無核酸酶的水洗脫RNA,並且以15,000 x g離心1分鐘。使用RNA生成cDNA(Invitrogen)。通過DNA提取Purelink柱(Invitrogen)根據製造商的說明書純化DNA。隨後,通過使用對FVIII A2區特異性的引物和探針(表1)的qPCR,分別使用cDNA和DNA兩者定量FVIII mRNA和載體基因組複製體。
結果
為了生成用於超大rAAV載體產生的PCL平臺,構建用於表現FVIII的新型盒。這些盒側翼有AAV ITR,並且範圍為5.1至5.4kb載體基因組(圖1A)。每個盒包含源自mTTR啟動子的啟動子,並且構建不同mTTR變體以檢查其對表現的影響(參見圖1B中提供的變體的比對和解釋)。
質粒語境中的所有這些表現盒在小鼠中體內測試時生成FVIII(圖1C)。圖1A和1B中顯示的HNF3和HNF4結合位點中的修飾相對於核心mTTR啟動子(「202」)增加FVIII生成,但是其它修飾,如mTTR增強子和BGH多聚A則不然(圖1C)。圖1D顯示FVIII表現盒的圖。圖1E顯示TriplePlay質粒的設計。
使用具有核心mTTR(5.1kb)的表現盒和具有增強子、mTTR和BGH多聚A(5.4kb)的表現盒,以在生成對於每種的TriplePlay質粒後隨後測試對於超大FVIII載體的PCL生產。FVIII ELISA結果確認了當轉染到Huh7細胞中時,經轉染的TriplePlay/FVIII質粒在體外生成FVIII。FVIII質粒也能夠在小規模包裝實驗中生成rAAV。
總之,生成mTTR啟動子修飾,其在體內增加自核心mTTR啟動子的表現。所有TriplePlay質粒在體外表現FVIII,並且能夠在小規模包裝實驗中生成病毒。
為了生成具有超大5.1kb mTTR-FVIII載體的生產細胞系,對MW分析rAAVrh8R/FVIII產生水平。這些之中,鑒定出高生產者、中等生產者和低生產者。如此,顯示可生成PCL用於超大rAAV/mTTR-FVIII載體。
實施例2:對具有mTTR-FVIII載體的生產細胞系表徵基因組DNA
為了評估實施例1中描述的FVIII表現盒的完整性和TriplePlay質粒的整合複製體,選擇含有AAVrh8R/5.1kb、AAVrh8R/5.4kb 或AAV8/5.1kb FVIII載體的MW以分析基因組DNA。
在高生產性MW(MW#35)中,Southern分析揭示了細胞系基因組中約50個複製的載體,而根據Southern,中等生產性MW#272具有每種的小於10個複製體(圖2A)。
還通過qPCR分析用於產生具有mTTR-FVIII的AAVrh8R/5.1kb、AAVrh8R/5.4kb或AAV8/5.1kb的高和中等生產性MW(表2)。FVIII、rep和puroR基因的複製數使用針對每種的特異性引物/探針測定,並將複製數相對於HeLaS3細胞中存在的E6基因(每個HeLaS3基因組為11個複製)標準化。在高生產性MW(MW#35)中,qPCR分析揭示了約59-67個複製的載體、rep和嘌呤黴素(表2),而根據qPCR,中等生產性MW#272具有每種的15至18個複製(表2)。這些數值與通過Southern獲得的結果相比是略高的,但是具有相似的排序次序(圖2A)。為了比較,將表現SEAP的正常大小載體(4.3kb)包裝到AAV2或AAV8殼體中,並分析。
用限制酶(SpeI)消化的基因組DNA的南方墨點法分析顯示了與摻入基因組DNA中的線性化Tripleplay/FVIII質粒相似遷移的~13kb條帶的產生,預測所述限制酶僅在Tripleplay/FVIII質粒中切割一次。因此,所有殖株含有整合到HeLaS3基因組中的整個質粒。
圖2A中顯示,所有MW還具有不同大小的低複製(1個複製)條帶,其代表在整合位點側翼的基因組DNA。雖然272(中等生產者)和35(高生產者)具有指示單一整合位點(僅觀察到兩個側翼片段)的模式,但是MW418具有多個側翼片段及較大的(2 x 14=24kb左右)片段,其潛在代表整合質粒的正向和反向取向的串聯。此事實連同多個整合模式,提示MW418是殖株的混合物。
圖2B中顯示,通過用在FVIII表現盒內切割的酶(HincII,BglII)消化來分析FVIII載體基因組完整性。與對照相比,基於通過消化初始TriplePlay質粒獲得的相似結果,觀察到正確的大小片段。這些結果證明瞭整合後不發生載體的重排。對具有5.4kb載體的生產細胞系及對具有AAV8殼體的5.1kb載體完成相似的分析,並且獲得了相當的結果。總之,在從生產細胞系分離的基因組DNA中沒有觀察到整合的5.1或5.4kb載體序列中的重排或缺失,這指示含有超大AAV載體基因組的生產細胞系的生成是可行的。
實施例3:使用生產細胞系的超大載體產生和載體分析
接著,檢查使用上文描述的MW35細胞系的rAAV載體產生。在小規模培養物中對AAVrh8R/5.1kb FVIII載體的高生產性殖株(MW35)測試rAAV載體產生。在第3天和第4天看到峰rAAV產生,並在培養放大期間維持高生產水準(圖3A)。
這通過下文表3中顯示的結果進一步證明。放大通過MW#35 的生產以比較載體產生水平。另外,定量細胞糰粒(細胞)和培養基(CM)中的載體水準。顯示了正常大小AAV2/SEAP載體用於比較。
對於使用的載體血清型,在細胞糰粒和培養基中等同地檢測到載體。MW 35和418兩者在幾次傳代裡都是穩定的。從第5次傳代到第20次傳代,MW35維持高水準產生(1×1010DRP/ml)(圖3B)。類似地,從第5次傳代到第21次傳代,MW418(分類為中等生產者)維持穩定的中等水準產生(1×109drp/ml)。還對MW287證明瞭穩定的載體產生,所述MW287生成具有不同殼體血清型(AAV8)的5.1kb載體(圖3B)。
這些數據證明瞭與先前已經對正常大小載體所顯示的(Martin,J.等(2013)Molecular Therapy 21:2205-2216)相似,可獨立於殼體血清型從超大載體獲得高且穩定的產生。用具有5.4kb mTTR-FVIII載體的PCL以及對具有含AAV8殼體的5.1kb載體的PCL也獲得穩固的載體產生,產生相當的結果。
接著,放大使用高生產性主孔(對於AAVrh8R/5.1kb FVIII為MW#35,對於AAV8/5.1kb FVIII為MW#287,以及對於AAVrh8R/5.4kb FVIII為MW#163)的載體產生以評估載體產率和質量(表4圖4A)。與通過三重轉染方法生成的載體比較載體產生(表4圖4B)。在AAVrh8R/5.1kb FVIII載體的比較中包括3個PCL和2個TXN批次。例如,顯示了用具有5.1kb基因組的AAVrh8R殼體得到的數據。
表4:通過PCL或三重轉染方法產生的AAVrh8R/5.1kb FVIII載體的
用MW35的PCL生產運行導致一致的產物概況,如通過AUC分析評估(圖4A)。如上文表4中匯總,對於通過PCL生成的病毒,通過此分析測定的含有載體基因組的殼體的百分比是44-50%,而三重轉染材料具有更低的水準(30%;對於HLP19,即大主鏈載體質粒僅為1-5%)。此外,PCL生成的材料中存在較高部分的具有較大基因組(4.7kb)的病毒。載體產率/細胞是1×105DRP/細胞(通過高生產性PCL)和1-3×104DRP/細胞(通過TXN)(用HLP19和大載體主鏈更低,1×103DRP/細胞)。
使用MW163對5.4kb載體的類似分析顯示了與三重轉染相比通過PCL得到的略低的DRP/細胞水準(上文表5)。雖然含有VG的殼體的總百分比是相當的,但是PCL生成的病毒具有較高水準的具有較大基因組的病毒(圖5B)。
當通過AUC分析表徵PCL材料和三重轉染材料時,與三重轉 染材料(圖5B)相比,較大基因組的比例在PCL材料(圖5A)中為2倍高。
如通過包裝病毒中質粒衍生抗生素抗性基因(用於PCL的嘌呤黴素,用於TXN的氨苄青黴素)的存在測量的異常的、不想要的DNA包裝的水準在通過PCL生成的病毒中較低(<1%)(表6)。比較而言,TXN生成的病毒具有約10倍高的異常包裝水準。
總之,數據顯示了選定的生產細胞系能夠生成高水準的超大載體(>100,000DRP/細胞)。此外,這些細胞系在幾次傳代(>20)裡維持載體產生能力,所述幾次傳代會是用於製造的大型放大需要的。PCL生成的載體與通過標準三重轉染方法生成的載體的比較顯示了PCL材料含有更多的含有載體基因組的病毒和更高比例的野生型大小或較大載體基因組以及含有更少的不想要的非載體相關DNA。
實施例4:PCL產生的超大載體中的包裝的載體基因組的表徵
接著,分析由PCL平臺產生的超大rAAV載體中的殼體化的載體基因組。從純化的病毒體中分離載體基因組,並且通過鹼性凝膠電泳,接著使用對載體特異性的探針的Southern印跡分析來分析單鏈基因組大小 (圖6A)。通過FVIII表現盒的4.0kb片段探查的Southern印跡顯示了大多數VG大小在通過任一種方法生成的載體中大約為4.6kb或更大(圖6B)。使用ImageJ軟件(http://rsb.info.nih.gov/ij)定量Southern印跡中的信號密度。
還使用鏈特異性寡核苷酸探針分析VG以定量缺失的5’端末端的比例。由於已知AAV基因組的包裝從3’端開始發生(King,J.A.等(2001)EMBO J.20:3282-3291),當基因組大小超過4.7kb時,超大載體可以缺乏負和正鏈的5’端中的序列。通過將每種載體的2倍連續稀釋物施加於膜上(以2.4×109開始;總共8個降低的載體濃度加上作為陰性對照的無施加基因組)分析圖4A和4B中使用的載體批次。使每個印跡與對載體基因組(正或負極性)的3’或5’末端特異性的3’端標記的寡核苷酸探針雜交。通過將每種載體的2倍連續稀釋物施加於膜上(以2.4×109開始;總共8個降低的載體濃度加上作為陰性對照的無施加基因組)分析圖5中使用的載體批次。使每個印跡與對載體基因組(正或負極性)的中間或5’端末端特異性的3’端標記的寡核苷酸探針雜交。定量信號強度,並且相對於4.6kb載體(完全包夠標準化。使用三個濃度來產生標準誤差。
數據顯示了相比于完全包裝的4.6kb載體(除了編碼FVIII的C1域的區域外具有與5.1kb載體相當的序列),當對單鏈基因組兩種極性使用與超出4.7kb的區域互補的寡核苷酸時,5.1kb載體具有更低的信號強度(圖7A和7B和7C)。在使用的大多數5’探針的情況下,與PCL載體相比,此差異在三重轉染的材料中更高。
當用與+或-鏈互補的寡核苷酸探針探查南方墨點法時也觀察到PCL和三重轉染生成的載體中的5’端中的差異。顯示了每種寡核苷酸探針與相應的3’端的距離(圖8A)。PCL和三重轉染(TXN)生成的病毒的相等檢測首先通過用鏈特異性寡核苷酸探針的DNA斑點印跡分析比較,並顯示了每條鏈的每種病毒的相當量(使用4.6kb病毒作為完全包裝病毒的對照;使用 含有FIX和FVIII的質粒作為檢測特異性的陰性和陽性對照)(圖8B)。當用針對3’端的寡核苷酸探針探查南方墨點法時,PCL和TXN生成的病毒兩者證明瞭+和-鏈的存在(圖8C,左小圖)。與圖6A中顯示的觀察結果相似,在PCL病毒中檢出更高水準的大於4.6kb的載體基因組。當用對5’端特異性的寡核苷酸探查南方墨點法時,PCL載體顯示了大於4.6kb的包裝的基因組的存在,而三重轉染生成的病毒顯示了這些較大基因組的信號的明確缺乏(使用的探針檢測距3’端為4.9kb的區域)(圖8C)。還通過定量南方墨點法中的各種大小的包裝的基因組的信號強度(使用針對3’端的探針)來確認較高部分的大於4.7kb的基因組(圖8D)。定量還顯示了與TXN載體相比PCL載體中更少的片段化/較小基因組(<4.7kb)。
接著,我們通過相似的方法評估了由PCL和TXN生成的5.4kb FVIII載體的載體基因組包裝。顯示了每個寡核苷酸探針的互補序列在5.4kb基因組中距其相應的3’端的位置(圖9A)。與5.1kb載體的結果相似,用針對基因組的3’端的寡核苷酸探針以相當的水準檢出5.4kb載體的+和-鏈(圖9B)。然而,對距3’端遠於4.7kb定位的區域特異性的探針未能檢測通過TXN方法生成的載體中的基因組(圖9C)。比較而言,通過PCL方法生成的載體顯示了大於4.7kb(儘管不與5.4kb一樣大)的基因組的存在。
總之,數據證明瞭與TXN方法相比通過PCL方法生成的載體中更高水準的較大載體基因組包裝。
實施例5:超大rAAV/mTTR-FVIII載體的體內效力
接著,對由PCL平臺產生的超大rAAV載體檢查體內效力。通過尾靜脈以3×1011和4×1010DRP/小鼠對小鼠投予載體,並且分析直至第56天。PCL產生的AAVrh8R/5.1kb mTTR-FVIII載體以劑量響應性方式產生在經處理的血友病A KO小鼠的血漿中可檢出的活性FVIII蛋白(圖10A)。除 Coatest活性測定法外,還使用啟動部分促凝血酶原激酶時間(aPTT)測定法通過凝固時間對FVIII活性評估功能性。此測定法對測試的低劑量和高劑量顯示了相當的凝固時間,因此指示臨床相關的低劑量足以使血友病A KO小鼠中的凝固時間正常化(圖10B)。
然後,使用臨床相關的載體劑量(2×1012DRP/kg,4×1010DRP/小鼠)比較PCL生成的載體與三重轉染產生的載體。通過尾靜脈對血友病A KO小鼠投予載體。PCL生成的病毒比TXN產生的病毒生成更有活性的FVIII蛋白,如通過Coatest活性測定法測定的(圖11A)。這也與由PCL生成的載體通過aPTT測定法在第21天得到的顯著更短的凝固時間相關聯(圖11B)。在第56天在PCL和TXN材料之間觀察到很小的差異,這提示了PCL材料產生較快表現動力學(圖11C)。肝載體基因組複製體的定量顯示了通過PCL生成的載體處理的動物中比用TXN材料觀察到的情況更持久的載體基因組(圖11D)。
還對血友病A敲除小鼠測試PCL和TXN生成的較大的5.4kb FVIII載體。與5.1kb載體類似,由PCL生成的5.4kb載體顯示通過Coatest測定法得到的更高的FVIII活性和第24天時更短的凝固時間(圖12A,B)。為了分析肝中的載體基因組水準的動力學,在載體投予後3天和43天定量載體基因組複製體。數據證明瞭在這兩天,通過PCL生成的載體處理的動物中比用TXN材料的情況存在約2倍多的載體基因組(圖12C)。
總之,當在血友病A KO疾病模型中體內測試時,通過PCL方法生成的超大rAAV/mTTR-FVIII載體比TXN方法的情況產生2倍高的FVIII活性和更短的凝固時間。這些結果與經處理的動物的肝中存在的2倍高水準的持久載體基因組相關聯。因此,這些結果證明瞭用於超大rAAV載體的兩種載體產生方法間包裝的基因組的質量中觀察到的差異轉化為通過PCL生成的載體得到的更高的體內效力,並且基於靶器官中轉錄活性載體基 因組的增加的生成效率。
實施例6:具有超大5.1、5.9和6.7kb SEAP載體的生產細胞系的生成
方法:通過範圍為5.1kb至5.9和6.7kb的載體大小逐步增加生成超大AAV2-SEAP載體基因組(參見圖13A)。使用AAVsp70質粒作為範本經由PCR擴增3種長度(0.8、1.6和2.4kb)的AAT填充DNA片段,並且將每種填充片段選殖到具有AAV2 cap和rep基因和每種SEAP載體基因組的TriplePlay質粒中以生成一系列pAF-SEAP質粒。
為了生成用於超大SEAP載體的細胞系,對含有載體基因組和AAV2 rep和cap基因的相應質粒並行比較在24孔高通量分析轉染中生成高生產性細胞系的能力。按照標準方案,用每種構建體轉染HeLaS3細胞的一式兩份T75燒瓶。轉染後1天,用75,000個細胞/孔接種每次轉染8塊×24孔板,並且啟動藥物選擇。培養樣品,並且評估集落大小和匯合,準備好用於相對生產率篩選。
結果:首先確認5.1、5.9和6.7kb超大載體質粒經由瞬時轉染包裝到HeLaS3細胞(+wtAd5)中(圖13A)。結果顯示了每種質粒促進載體包裝(數據未顯示)。
在相對生產篩選中為每個構建體篩選大致~100-170個主孔。在相對生產篩選中的百分比陽性主孔(產生大於1×107DRP/ml的那些)全體都較高(>80%),其中僅6.7kb構建體顯示減少的量(65.7%)。此外,雖然僅5.1kb構建體產生在高(>1×1010DRP/ml)範圍中生產的主孔(總共三個),但是在所有情況中鑒定出在中等-高範圍(>1×109DRP/ml)中生產的主孔。百分比中等-高遵循預期的模式,5.1kb為20%,5.9kb為15.4%並且6.7kb為10.7%。
隨後,所有較高生產性主孔進行比生產率分析。兩個比生產 率篩選的結果顯示於圖13B(灰色和白色柱形),並且與每個主孔的相對生產率值(黑色柱形)比較。結果顯示在許多情況中,載體產率在比生產率篩選中保持穩定。
總之,數據證明瞭可以對大小至少6.7kb的載體產生生產細胞系。
<110> 健臻公司 GENZYME CORPORATION
<120> 過大腺相關載體之製造 PRODUCTION OF OVERSIZED ADENO-ASSOCIATED VECTORS
<130> 159792013240
<140> 105110751
<141>
<150> US 62/144,862
<151> 2015-04-08
<150> US 62/220,067
<151> 2015-09-17
<160> 24
<170> 用於Windows 4.0版的FastSEQ
<210> 1
<211> 5097
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 1
<210> 2
<211> 229
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 2
<210> 3
<211> 341
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 3
<210> 4
<211> 13524
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 4
<210> 5
<211> 17
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 5
<210> 6
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 6
<210> 7
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 7
<210> 8
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 8
<210> 9
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 9
<210> 10
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 10
<210> 11
<211> 17
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 11
<210> 12
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 12
<210> 13
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 13
<210> 14
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 14
<210> 15
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 15
<210> 16
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 16
<210> 17
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 17
<210> 18
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 18
<210> 19
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 19
<210> 20
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 20
<210> 21
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 21
<210> 22
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 22
<210> 23
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 23
<210> 24
<211> 78
<212> DNA
<213> 人工序列
<220>
<223> 合成的構建體
<400> 24

Claims (174)

  1. 一種用於產生包含超大重組AAV基因組的腺相關病毒(AAV)顆粒的方法,該方法包括:a)在產生rAAV顆粒的條件下培養AAV生產細胞系,其中該AAV生產細胞系包含:i)編碼AAV rep和cap基因的核酸,和ii)rAAV基因組,其中該rAAV基因組大於約4.7kb;b)提供AAV輔助功能;並c)收集包含超大rAAV基因組的rAAV顆粒。
  2. 如請求項1的方法,其中該編碼AAV rep和cap基因的核酸和/或該rAAV基因組在該生產細胞系中穩定維持。
  3. 如請求項1或2的方法,其中該編碼AAV rep和cap基因的核酸和/或該rAAV基因組穩定整合入該生產細胞系的基因組中。
  4. 如請求項1-3中任一項的方法,其中該rAAV基因組包含一個或多個AAV反向末端重複(ITR)和異源轉基因。
  5. 如請求項1-4中任一項的方法,其中該rAAV基因組包含兩個AAV ITR。
  6. 如請求項1-5中任一項的方法,其中該rAAV基因組是約4.7kb-約9.4kb,任選地約4.7kb-6.7kb。
  7. 如請求項1-6中任一項的方法,其中步驟c)中收集的該AAV顆粒包含大於約4.7kb的rAAV基因組。
  8. 如請求項1-7中任一項的方法,其中步驟c)中收集的該AAV顆粒包含約4.7kb-約9.4kb的rAAV基因組。
  9. 如請求項1-8中任一項的方法,其中該rAAV基因組是約4.7kb-約5kb、 約4.7kb-約6kb、約4.7kb-約7kb、約4.7kb-約8kb或約4.7kb-約9kb。
  10. 如請求項1-8中任一項的方法,其中該rAAV基因組是約4.7kb-6.7kb或約5.2kb-約8.7kb。
  11. 如請求項1-10中任一項的方法,其中該異源轉基因編碼治療性轉基因產物。
  12. 如請求項1-11中任一項的方法,其中該異源轉基因編碼因子VIII、抗肌萎縮蛋白、dysferlin或囊性纖維化跨膜傳導調節蛋白(CFTR)。
  13. 如請求項1-12中任一項的方法,其中該異源轉基因是人類轉基因。
  14. 如請求項1-13中任一項的方法,其中該異源轉基因與啟動子可操作連接。
  15. 如請求項14的方法,其中該啟動子是小鼠轉甲狀腺素(mTTR)啟動子。
  16. 如請求項1-15中任一項的方法,其中該rAAV基因組包含內含子。
  17. 如請求項16的方法,其中該內含子是合成內含子。
  18. 如請求項1-17中任一項的方法,其中該rAAV基因組包含多聚腺苷酸化信號。
  19. 如請求項18的方法,其中該多聚腺苷酸化信號是合成多聚腺苷酸化信號或牛生長激素多聚腺苷酸化信號。
  20. 如請求項1-19中任一項的方法,其中該rAAV顆粒包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體。
  21. 如請求項20的方法,其中該AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。
  22. 如請求項4-21中任一項的方法,其中該AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。
  23. 如請求項4-20中任一項的方法,其中該AAV ITR是AAV2 ITR。
  24. 如請求項20-23中任一項的方法,其中該rAAV顆粒的ITR和殼體源自相同AAV血清型。
  25. 如請求項24的方法,其中該ITR和該殼體源自AAV2。
  26. 如請求項20-23中任一項的方法,其中該rAAV顆粒的ITR和殼體源自不同AAV血清型。
  27. 如請求項26的方法,其中該AAV顆粒包含AAV2 ITR和AAVrh8R殼體。
  28. 如請求項26的方法,其中該AAV顆粒包含AAV2 ITR和AAV8殼體。
  29. 如請求項1-28中任一項的方法,其中該生產細胞系源自靈長類細胞。
  30. 如請求項1-28中任一項的方法,其中該生產細胞系源自HeLa、293、A549或Perc.6細胞。
  31. 如請求項1-30中任一項的方法,其中該生產細胞系適合於在懸浮液中生長。
  32. 如請求項1-31中任一項的方法,其中該AAV輔助功能由腺病毒、HSV或杆狀病毒提供。
  33. 如請求項32的方法,其中在提供輔助功能後約48小時-約96小時收集該rAAV顆粒。
  34. 如請求項1-33中任一項的方法,其進一步包括純化該rAAV顆粒。
  35. 如請求項34的方法,其中該純化包括一個或多個層析步驟。
  36. 一種通過請求項1-35中任一項的方法產生的包含超大rAAV基因組的rAAV顆粒。
  37. 一種包含rAAV顆粒的組合物,其中至少約15%、至少約20%、至少約25%、至少約30%、至少約35%、至少約40%、至少約45%、至少約50%、至少約55%、至少約60%或至少約70%的該rAAV顆粒殼體化大於約4.7kb的rAAV基因組。
  38. 如請求項37的組合物,其中該rAAV基因組包含一個或多個AAV反向末端重複(ITR)和異源轉基因。
  39. 如請求項37或38的組合物,其中該rAAV基因組包含兩個AAV ITR。
  40. 如請求項37-39中任一項的組合物,其中該rAAV基因組是約4.7kb-約9.4kb。
  41. 如請求項37-40中任一項的組合物,其中該rAAV基因組是約4.7kb-約5kb、約4.7kb-約6kb、約4.7kb-約7kb、約4.7kb-約8kb或約4.7kb-約9kb。
  42. 如請求項37-40中任一項的組合物,其中該rAAV基因組是約4.7kb-6.7kb或約5.2kb-約8.7kb。
  43. 如請求項37-42中任一項的組合物,其中該異源轉基因編碼治療性轉基因產物。
  44. 如請求項37-43中任一項的組合物,其中該異源轉基因編碼因子VIII、抗肌萎縮蛋白、dysferlin或囊性纖維化跨膜傳導調節蛋白(CFTR)。
  45. 如請求項37-44中任一項的組合物,其中該異源轉基因是人類轉基因。
  46. 如請求項37-45中任一項的組合物,其中該異源轉基因與啟動子可操作連接。
  47. 如請求項46的組合物,其中該啟動子是小鼠轉甲狀腺素(mTTR)啟動子。
  48. 如請求項37-47中任一項的組合物,其中該rAAV基因組包含內含子。
  49. 如請求項48的組合物,其中該內含子是合成內含子。
  50. 如請求項37-49中任一項的組合物,其中該rAAV基因組包含多聚腺苷酸化信號。
  51. 如請求項50的組合物,其中該多聚腺苷酸化信號是合成多聚腺苷酸化信號或牛生長激素多聚腺苷酸化信號。
  52. 如請求項37-51中任一項的組合物,其中該rAAV顆粒包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體。
  53. 如請求項52的組合物,其中該AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。
  54. 如請求項38-51中任一項的組合物,其中該AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。
  55. 如請求項38-54中任一項的組合物,其中該AAV ITR是AAV2 ITR。
  56. 如請求項52-55中任一項的組合物,其中該rAAV顆粒的ITR和殼體源自相同AAV血清型。
  57. 如請求項56的組合物,其中該ITR和該殼體源自AAV2。
  58. 如請求項52-55中任一項的組合物,其中該rAAV顆粒的ITR和殼體源自不同AAV血清型。
  59. 如請求項58的組合物,其中該AAV顆粒包含AAV2 ITR和AAVrh8R殼體。
  60. 如請求項58的組合物,其中該AAV顆粒包含AAV2 ITR和AAV8殼體。
  61. 如請求項37-60中任一項的組合物,其中在生產細胞系中產生該rAAV顆粒。
  62. 如請求項61的組合物,其中編碼AAV rep和cap基因的核酸和/或該rAAV基因組在該生產細胞系中穩定維持。
  63. 如請求項61或62的組合物,其中該編碼AAV rep和cap基因的核酸和/或該rAAV基因組穩定整合入該生產細胞系的基因組中。
  64. 如請求項61-63中任一項的組合物,其中該生產細胞系源自靈長類細胞。
  65. 如請求項61-64中任一項的組合物,其中該生產細胞系源自HeLa、293、A549或Perc.6細胞。
  66. 如請求項61-65中任一項的組合物,其中該生產細胞系適合於在懸浮液中生長。
  67. 如請求項61-66中任一項的組合物,其中通過對該生產細胞系提供AAV輔助功能而產生該rAAV顆粒。
  68. 如請求項67的組合物,其中該AAV輔助功能由腺病毒、HSV或杆狀病毒提供。
  69. 如請求項68的組合物,其中在提供輔助功能後約48小時-約96小時收集該rAAV顆粒。
  70. 一種用於增強超大rAAV基因組的表現的方法,該方法包括通過對 生產細胞系提供AAV輔助功能而在該細胞系中生產rAAV顆粒,其中該生產細胞系包含:a)編碼AAV rep和cap基因的核酸,和b)rAAV基因組,其中該rAAV基因組大於約4.7kb。
  71. 如請求項70的方法,其中該超大rAAV基因組的表現是來自通過瞬時轉染產生的rAAV顆粒的該超大rAAV基因組的表現的大約1.25倍、約1.5倍、約1.75倍、約2.0倍、約2.5倍、約2.75倍、約3倍、或約5倍。
  72. 如請求項70或71的方法,其中與來自通過瞬時轉染產生的rAAV顆粒的超大rAAV基因組的表現動力學相比,來自由生產細胞系產生的rAAV顆粒的該超大rAAV基因組的表現動力學是更快的表現動力學。
  73. 如請求項72的方法,其中來自由生產細胞系產生的rAAV顆粒的該超大rAAV基因組的表現動力學比來自通過瞬時轉染產生的rAAV顆粒的超大rAAV基因組的表現動力學快約5%、快約10%、快約25%、快約50%、快約75%、或快約90%。
  74. 如請求項70-73中任一項的方法,其中該編碼AAV rep和cap基因的核酸和/或該rAAV基因組在該生產細胞系中穩定維持。
  75. 如請求項70-74中任一項的方法,其中該編碼AAV rep和cap基因的核酸和/或該rAAV基因組穩定整合入該生產細胞系的基因組中。
  76. 如請求項70-75中任一項的方法,其中該rAAV基因組包含一個或多個AAV反向末端重複(ITR)和異源轉基因。
  77. 如請求項70-76中任一項的方法,其中該rAAV基因組包含兩個AAV ITR。
  78. 如請求項70-77中任一項的方法,其中該rAAV基因組是約4.7kb-約9.4kb。
  79. 如請求項70-78中任一項的組合物,其中該rAAV基因組是約4.7kb- 約5kb、約4.7kb-約6kb、約4.7kb-約7kb、約4.7kb-約8kb或約4.7kb-約9kb。
  80. 如請求項70-78中任一項的組合物,其中該rAAV基因組是約4.7kb-6.7kb或約5.2kb-約8.7kb。
  81. 如請求項70-78中任一項的方法,其中該異源轉基因編碼治療性轉基因產物。
  82. 如請求項70-81中任一項的方法,其中該異源轉基因編碼因子VIII、抗肌萎縮蛋白、dysferlin或囊性纖維化跨膜傳導調節蛋白(CFTR)。
  83. 如請求項70-82中任一項的方法,其中該異源轉基因是人類轉基因。
  84. 如請求項70-83中任一項的方法,其中該異源轉基因與啟動子可操作連接。
  85. 如請求項84的方法,其中該啟動子是小鼠轉甲狀腺素(mTTR)啟動子。
  86. 如請求項70-85中任一項的方法,其中該rAAV基因組包含內含子。
  87. 如請求項86的方法,其中該內含子是合成內含子。
  88. 如請求項70-87中任一項的方法,其中該rAAV基因組包含多聚腺苷酸化信號。
  89. 如請求項88的方法,其中該多聚腺苷酸化信號是合成多聚腺苷酸化信號或牛生長激素多聚腺苷酸化信號。
  90. 如請求項70-89中任一項的方法,其中該rAAV顆粒包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體。
  91. 如請求項90的方法,其中該AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。
  92. 如請求項76-91中任一項的方法,其中該AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。
  93. 如請求項76-92中任一項的方法,其中該AAV ITR是AAV2 ITR。
  94. 如請求項90-93中任一項的方法,其中該rAAV顆粒的ITR和殼體源自相同AAV血清型。
  95. 如請求項94的方法,其中該ITR和該殼體源自AAV2。
  96. 如請求項90-93中任一項的方法,其中該rAAV顆粒的ITR和殼體源自不同AAV血清型。
  97. 如請求項96的方法,其中該AAV顆粒包含AAV2 ITR和AAVrh8R殼體。
  98. 如請求項96的方法,其中該AAV顆粒包含AAV2 ITR和AAV8殼體。
  99. 如請求項70-98中任一項的方法,其中該生產細胞系源自靈長類細胞。
  100. 如請求項70-99中任一項的方法,其中該生產細胞系源自HeLa、293、A549或Perc.6細胞。
  101. 如請求項70-100中任一項的方法,其中該生產細胞系適合於在懸浮液中生長。
  102. 如請求項70-101中任一項的方法,其中該AAV輔助功能由腺病毒、HSV或杆狀病毒提供。
  103. 如請求項102的方法,其中在提供輔助功能後約48小時-約96小時收集該rAAV顆粒。
  104. 如請求項70-103中任一項的方法,其進一步包括純化該rAAV顆粒。
  105. 如請求項104的方法,其中該純化包括一個或多個層析步驟。
  106. 一種用於產生包含超大重組AAV基因組的腺相關病毒(AAV)顆粒的細胞系,該細胞系包含:a)編碼AAV rep和cap基因的核酸,和b)rAAV基因組,其中該rAAV基因組大於約4.7kb。
  107. 如請求項106的細胞系,其中該編碼AAV rep和cap基因的核酸和/或該rAAV基因組在該生產細胞系中穩定維持。
  108. 如請求項106或107的細胞系,其中該編碼AAV rep和cap基因的核酸和/或該rAAV基因組穩定整合入該生產細胞系的基因組中。
  109. 如請求項106-108中任一項的細胞系,其中該rAAV基因組包含一個或多個AAV反向末端重複(ITR)和異源轉基因。
  110. 如請求項106-109中任一項的細胞系,其中該rAAV基因組包含兩個AAV ITR。
  111. 如請求項106-110中任一項的細胞系,其中該rAAV基因組是約4.7kb-約9.4kb。
  112. 如請求項106-111中任一項的方法,其中該rAAV基因組是約4.7kb-約5kb、約4.7kb-約6kb、約4.7kb-約7kb、約4.7kb-約8kb或約4.7kb-約9kb。
  113. 如請求項106-111中任一項的方法,其中該rAAV基因組是約4.7kb-6.7kb或約5.2kb-約8.7kb。
  114. 如請求項106-113中任一項的細胞系,其中該異源轉基因編碼治療性轉基因產物。
  115. 如請求項106-114中任一項的細胞系,其中該異源轉基因編碼因 子VIII、抗肌萎縮蛋白、dysferlin或囊性纖維化跨膜傳導調節蛋白(CFTR)。
  116. 如請求項106-115中任一項的細胞系,其中該異源轉基因是人類轉基因。
  117. 如請求項106-116中任一項的細胞系,其中該異源轉基因與啟動子可操作連接。
  118. 如請求項117的細胞系,其中該啟動子是小鼠轉甲狀腺素(mTTR)啟動子。
  119. 如請求項106-118中任一項的細胞系,其中該rAAV基因組包含內含子。
  120. 如請求項119的細胞系,其中該內含子是合成內含子。
  121. 如請求項106-120中任一項的細胞系,其中該rAAV基因組包含多聚腺苷酸化信號。
  122. 如請求項121的細胞系,其中該多聚腺苷酸化信號是合成多聚腺苷酸化信號或牛生長激素多聚腺苷酸化信號。
  123. 如請求項106-122中任一項的細胞系,其中該rAAV顆粒包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體。
  124. 如請求項123的細胞系,其中該AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。
  125. 如請求項109-124中任一項的細胞系、其中該AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、 AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。
  126. 如請求項109-125中任一項的細胞系,其中該AAV ITR是AAV2 ITR。
  127. 如請求項123-126中任一項的細胞系,其中該rAAV顆粒的ITR和殼體源自相同AAV血清型。
  128. 如請求項127的細胞系,其中該ITR和該殼體源自AAV2。
  129. 如請求項123-126中任一項的細胞系,其中該rAAV顆粒的ITR和殼體源自不同AAV血清型。
  130. 如請求項129的細胞系,其中該AAV顆粒包含AAV2 ITR和AAVrh8R殼體。
  131. 如請求項129的細胞系,其中該AAV顆粒包含AAV2 ITR和AA8殼體。
  132. 如請求項106-131中任一項的細胞系,其中該生產細胞系源自靈長類細胞。
  133. 如請求項106-132中任一項的細胞系,其中該生產細胞系源自HeLa、293、A549或Perc.6細胞。
  134. 如請求項106-133中任一項的細胞系,其中該生產細胞系適合於在懸浮液中生長。
  135. 如請求項106-134中任一項的細胞系,其中該AAV輔助功能由腺病毒、HSV或杆狀病毒提供。
  136. 一種腺相關病毒(AAV)顆粒,其包含由AAV殼體殼體化的rAAV基因組,其中該rAAV基因組大於約4.7kb。
  137. 如請求項136的AAV顆粒,其中該rAAV基因組包含一個或多個AAV反向末端重複(ITR)和異源轉基因。
  138. 如請求項136或137的AAV顆粒,其中該rAAV基因組包含兩個AAV ITR。
  139. 如請求項136-138中任一項的AAV顆粒,其中該rAAV基因組是約4.7kb-約9.4kb。
  140. 如請求項136-139中任一項的AAV顆粒,其中該rAAV基因組是約4.7kb-約5kb、約4.7kb-約6kb、約4.7kb-約7kb、約4.7kb-約8kb或約4.7kb-約9kb。
  141. 如請求項136-139中任一項的AAV顆粒,其中該rAAV基因組是約4.7kb-6.7kb或約5.2kb-約8.7kb。
  142. 如請求項136-141中任一項的AAV顆粒,其中該異源轉基因編碼治療性轉基因產物。
  143. 如請求項136-142中任一項的AAV顆粒,其中該異源轉基因編碼因子VIII、抗肌萎縮蛋白、dysferlin或囊性纖維化跨膜傳導調節蛋白(CFTR)。
  144. 如請求項136-143中任一項的AAV顆粒,其中該異源轉基因是人類轉基因。
  145. 如請求項136-144中任一項的AAV顆粒,其中該異源轉基因與啟動子可操作連接。
  146. 如請求項145的AAV顆粒,其中該啟動子是小鼠轉甲狀腺素(mTTR)啟動子。
  147. 如請求項136-146中任一項的AAV顆粒,其中該rAAV基因組包含內含子。
  148. 如請求項147的AAV顆粒,其中該內含子是合成內含子。
  149. 如請求項136-148中任一項的AAV顆粒,其中該rAAV基因組包含多聚腺苷酸化信號。
  150. 如請求項149的AAV顆粒,其中該多聚腺苷酸化信號是合成多聚腺苷酸化信號或牛生長激素多聚腺苷酸化信號。
  151. 如請求項136-150中任一項的AAV顆粒,其中該rAAV顆粒包含AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV2/2-7m8、AAV DJ、AAV2 N587A、AAV2 E548A、AAV2 N708A、AAV V708K、山羊AAV、AAV1/AAV2嵌合、牛AAV、或小鼠AAV殼體rAAV2/HBoV1血清型殼體。
  152. 如請求項151的AAV顆粒,其中該AAV血清型是AAV1、AAV2、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、或AAVrh10。
  153. 如請求項137-152中任一項的AAV顆粒,其中該AAV ITR是AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAVrh8、AAVrh8R、AAV9、AAV10、AAVrh10、AAV11、AAV12、AAV2R471A、AAV DJ、山羊AAV、牛AAV、或小鼠AAV血清型ITR。
  154. 如請求項151-153中任一項的AAV顆粒,其中該AAV ITR是AAV2 ITR。
  155. 如請求項137-154中任一項的AAV顆粒,其中該rAAV顆粒的ITR和殼體源自相同AAV血清型。
  156. 如請求項155的AAV顆粒,其中該ITR和該殼體源自AAV2。
  157. 如請求項151-154中任一項的AAV顆粒,其中該rAAV顆粒的ITR和殼體源自不同AAV血清型。
  158. 如請求項157的AAV顆粒,其中該AAV顆粒包含AAV2 ITR和AAVrh8R殼體。
  159. 如請求項158的AAV顆粒,其中該AAV顆粒包含AAV2 ITR和 AAV8殼體。
  160. 如請求項136-142中任一項的AAV顆粒,其中該rAAV基因組從5’至3’包含AAV2 ITR、mTTR啟動子、合成內含子、編碼人類FVIII的轉基因、合成多聚腺苷酸化序列、和AAV2 ITR。
  161. 如請求項136-142中任一項的AAV顆粒,其中該rAAV基因組從5’至3’包含AAV2 ITR、mTTR啟動子、合成內含子、編碼人類FVIII的轉基因、牛生長激素合成多聚腺苷酸化序列、和AAV2 ITR。
  162. 如請求項160或161的AAV顆粒,其中該FVIII包含全部或部分的B域的缺失。
  163. 如請求項160-162中任一項的AAV顆粒,其中該AAV顆粒包含AAVrh8R殼體。
  164. 如請求項160-162中任一項的AAV顆粒,其中該AAV顆粒包含AAV8殼體。
  165. 一種包含rAAV基因組的rAAV載體,其中該rAAV基因組從5’至3’包含AAV2 ITR、mTTR啟動子、合成內含子、編碼人類FVIII的轉基因、牛生長激素合成多聚腺苷酸化序列、和AAV2 ITR。
  166. 一種包含rAAV基因組的rAAV載體,其中該rAAV基因組從5’至3’包含AAV2 ITR、mTTR啟動子、合成內含子、編碼人類FVIII的轉基因、牛生長激素合成多聚腺苷酸化序列、和AAV2 ITR。
  167. 如請求項165或166的AAV載體,其中該FVIII包含全部或部分的B域的缺失。
  168. 一種用於治療個體中的疾病或病症的方法,其包括投予包含超大AAV基因組的AAV顆粒,其中該超大AAV基因組包含適合於治療該疾病或病症的轉基因。
  169. 如請求項168的方法,其中該疾病或病症是血友病A,並且該包 含超大AAV基因組的AAV顆粒編碼因子VIII轉基因。
  170. 如請求項169的方法,其中該AAV顆粒是請求項160-164中任一項的AAV顆粒。
  171. 如請求項168的方法,其中該疾病或病症是肌營養不良症,並且該包含超大AAV基因組的AAV顆粒編碼抗肌萎縮蛋白轉基因。
  172. 如請求項168的方法,其中該疾病或病症是神經肌肉病(dysferlinopathy),並且該包含超大AAV基因組的AAV顆粒編碼dysferlin轉基因。
  173. 如請求項168的方法,其中該疾病或病症是囊性纖維化,並且該包含超大AAV基因組的AAV顆粒編碼CFTR轉基因。
  174. 如請求項168-173中任一項的方法,其中該個體是人類。
TW105110751A 2015-04-08 2016-04-06 過大腺相關載體之製造 TWI707951B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562144862P 2015-04-08 2015-04-08
US62/144,862 2015-04-08
US201562220067P 2015-09-17 2015-09-17
US62/220,067 2015-09-17

Publications (2)

Publication Number Publication Date
TW201710498A true TW201710498A (zh) 2017-03-16
TWI707951B TWI707951B (zh) 2020-10-21

Family

ID=56943906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105110751A TWI707951B (zh) 2015-04-08 2016-04-06 過大腺相關載體之製造

Country Status (25)

Country Link
US (1) US10815497B2 (zh)
EP (1) EP3280799A2 (zh)
JP (3) JP6878299B2 (zh)
KR (1) KR20170133500A (zh)
CN (1) CN107864657A (zh)
AU (3) AU2016245806A1 (zh)
BR (1) BR112017021505A2 (zh)
CA (1) CA2982123A1 (zh)
CL (1) CL2017002537A1 (zh)
CO (1) CO2017011344A2 (zh)
CR (1) CR20170505A (zh)
EA (1) EA201792236A1 (zh)
EC (1) ECSP17074016A (zh)
GT (1) GT201700214A (zh)
HK (1) HK1246339A1 (zh)
IL (3) IL283291B (zh)
MX (1) MX2017012935A (zh)
NZ (1) NZ737009A (zh)
PE (1) PE20171800A1 (zh)
PH (1) PH12017501836A1 (zh)
SG (3) SG11201708203UA (zh)
TN (1) TN2017000431A1 (zh)
TW (1) TWI707951B (zh)
UY (1) UY36611A (zh)
WO (1) WO2016164609A2 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS64664B1 (sr) 2013-02-15 2023-11-30 Bioverativ Therapeutics Inc Gen optimizovanog faktora viii
US10577627B2 (en) 2014-06-09 2020-03-03 Voyager Therapeutics, Inc. Chimeric capsids
WO2016073693A2 (en) 2014-11-05 2016-05-12 Voyager Therapeutics, Inc. Aadc polynucleotides for the treatment of parkinson's disease
JP6863891B2 (ja) 2014-11-14 2021-04-21 ボイジャー セラピューティクス インコーポレイテッドVoyager Therapeutics,Inc. 調節性ポリヌクレオチド
AU2015346162B2 (en) 2014-11-14 2022-02-10 Voyager Therapeutics, Inc. Compositions and methods of treating amyotrophic lateral sclerosis (ALS)
WO2016094783A1 (en) 2014-12-12 2016-06-16 Voyager Therapeutics, Inc. Compositions and methods for the production of scaav
NZ740521A (en) 2015-09-24 2023-11-24 Biomarin Pharm Inc Adeno-associated virus factor viii vectors, associated viral particles and therapeutic formulations comprising the same
JP7217630B2 (ja) 2016-02-01 2023-02-03 バイオベラティブ セラピューティクス インコーポレイテッド 最適化第viii因子遺伝子
WO2017189964A2 (en) 2016-04-29 2017-11-02 Voyager Therapeutics, Inc. Compositions for the treatment of disease
WO2017189959A1 (en) 2016-04-29 2017-11-02 Voyager Therapeutics, Inc. Compositions for the treatment of disease
EP3458589A4 (en) 2016-05-18 2020-01-01 Voyager Therapeutics, Inc. COMPOSITIONS AND METHODS FOR TREATING HUNTINGTON'S DISEASE
IL302748A (en) 2016-05-18 2023-07-01 Voyager Therapeutics Inc modulatory polynucleotides
CN110650673B (zh) 2016-08-30 2024-04-09 加利福尼亚大学董事会 用于生物医学靶向和递送的方法以及用于实践该方法的装置和系统
EP3655533A1 (en) 2017-02-24 2020-05-27 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin Method for re-expression of different hypermethylated genes involved in fibrosis, like hypermethylated rasal,1 and use thereof in treatment of fibrosis as well as kit of parts for re-expression of hypermethylated genes including rasal1 in a subject
WO2018204786A1 (en) 2017-05-05 2018-11-08 Voyager Therapeutics, Inc. Compositions and methods of treating amyotrophic lateral sclerosis (als)
MX2019013172A (es) 2017-05-05 2020-09-07 Voyager Therapeutics Inc Composiciones y metodos para tratar la enfermedad de huntington.
CN110944674A (zh) * 2017-05-19 2020-03-31 编码治疗公司 高活性调控元件
JOP20190269A1 (ar) 2017-06-15 2019-11-20 Voyager Therapeutics Inc بولي نوكليوتيدات aadc لعلاج مرض باركنسون
WO2019018342A1 (en) 2017-07-17 2019-01-24 Voyager Therapeutics, Inc. NETWORK EQUIPMENT TRACK GUIDE SYSTEM
JP7221275B2 (ja) 2017-08-03 2023-02-13 ボイジャー セラピューティクス インコーポレイテッド Aavを送達するための組成物および方法
WO2019079242A1 (en) 2017-10-16 2019-04-25 Voyager Therapeutics, Inc. TREATMENT OF AMYOTROPHIC LATERAL SCLEROSIS (ALS)
CA3077426A1 (en) 2017-10-16 2019-04-25 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
WO2020019002A1 (en) * 2018-07-20 2020-01-23 University Of Utah Research Foundation Gene therapy for macular degeneration
JP2022504740A (ja) * 2018-10-12 2022-01-13 ジェンザイム・コーポレーション 肝臓に向けられた遺伝子補充療法によって重度のpkuを処置するための改善されたヒトpahの生成
EP4022097A4 (en) * 2019-08-29 2022-12-14 Siemens Healthcare Diagnostics Inc. REAGENTS AND METHODS FOR DETECTING ADENO-ASSOCIATED VIRUS SHEDDING
CA3152600A1 (en) 2019-09-30 2021-04-08 Andrew KROETSCH Lentiviral vector formulations
CN111218446B (zh) * 2019-12-25 2023-03-28 劲帆生物医药科技(武汉)有限公司 一种肝脏特异性启动子及其应用
JP2023518032A (ja) * 2020-03-16 2023-04-27 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル 腫瘍誘導性ウイルスdnaの選択的検出のための組成物及び方法
CN116033927A (zh) 2020-06-24 2023-04-28 比奥维拉迪维治疗股份有限公司 从经修饰以表达因子viii的慢病毒载体的制剂中去除游离因子viii的方法
AU2021330936A1 (en) 2020-08-23 2023-05-04 Bioverativ Therapeutics Inc. MODIFIED BACULOVIRUS SYSTEM FOR IMPROVED PRODUCTION OF CLOSED-ENDED DNA (ceDNA)
AR126846A1 (es) 2021-08-23 2023-11-22 Bioverativ Therapeutics Inc Genes del factor viii optimizados
AU2022334711A1 (en) 2021-08-23 2024-04-04 Bioverativ Therapeutics Inc. Baculovirus expression system
WO2023028455A1 (en) 2021-08-23 2023-03-02 Bioverativ Therapeutics Inc. Closed-end dna production with inverted terminal repeat sequences
TW202346327A (zh) 2021-09-30 2023-12-01 美商百歐維拉提夫治療公司 編碼具有降低免疫原性的因子viii多肽之核酸

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0931158A1 (en) 1996-09-06 1999-07-28 The Trustees Of The University Of Pennsylvania An inducible method for production of recombinant adeno-associated viruses utilizing t7 polymerase
US6566118B1 (en) 1997-09-05 2003-05-20 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US6989264B2 (en) 1997-09-05 2006-01-24 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
EP2369002A1 (en) 1999-08-09 2011-09-28 Targeted Genetics Corporation Enhancement of expression of a single-stranded, heterologous nucleotide sequence from recombinant viral vectors by designing the sequence such that it forms intrastrand base pairs
CA2387484A1 (en) 1999-10-12 2001-04-19 Haim Burstein Adeno-associated virus vectors encoding factor viii and methods of using the same
AU2001269723B9 (en) 2000-06-01 2006-11-16 University Of North Carolina At Chapel Hill Duplexed parvovirus vectors
US6723551B2 (en) 2001-11-09 2004-04-20 The United States Of America As Represented By The Department Of Health And Human Services Production of adeno-associated virus in insect cells
NZ532635A (en) 2001-11-13 2007-05-31 Univ Pennsylvania A method of identifying unknown adeno-associated virus (AAV) sequences and a kit for the method
US20040092008A1 (en) 2002-11-12 2004-05-13 Snyder Richard O. Recombinant AAV vectors for gene therapy of hemophilia A
US7510872B2 (en) 2003-02-26 2009-03-31 Nationwide Children's Hospital Recombinant adeno-associated virus production
ATE490307T1 (de) 2003-05-21 2010-12-15 Genzyme Corp Verfahren zur herstellung von präparationen rekombinanter aav-virionen, die weitgehend frei von leeren capsiden sind
US8283151B2 (en) 2005-04-29 2012-10-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Isolation, cloning and characterization of new adeno-associated virus (AAV) serotypes
US7943374B2 (en) 2005-08-21 2011-05-17 Markus Hildinger Super-size adeno-associated viral vector harboring a recombinant genome larger than 5.7 kb
WO2007120542A2 (en) 2006-03-30 2007-10-25 The Board Of Trustees Of The Leland Stanford Junior University Aav capsid library and aav capsid proteins
KR101812813B1 (ko) 2009-06-16 2017-12-27 젠자임 코포레이션 재조합 aav 벡터에 대한 개선된 정제 방법
US8663624B2 (en) 2010-10-06 2014-03-04 The Regents Of The University Of California Adeno-associated virus virions with variant capsid and methods of use thereof
BR112013020734A2 (pt) 2011-02-17 2017-06-13 Univ Pennsylvania composições e métodos para alterar a especificidade do tecido e aprimorar a transferência gênica mediada por aav9
DK2911687T3 (da) 2012-10-26 2019-05-13 Univ Brussel Vrije Vektor til levermålrettet genterapi af hæmofili og fremgangsmåder og anvendelse deraf
CN105636981B (zh) * 2013-09-12 2020-11-06 生物马林药物股份有限公司 腺相关病毒因子viii载体
PT3137497T (pt) 2014-05-02 2021-07-12 Genzyme Corp Vetores de aav para terapia genética na retina e snc
JP6928558B2 (ja) 2015-02-10 2021-09-01 ジェンザイム・コーポレーション 線条体および皮質へのウイルス粒子の強化された送達

Also Published As

Publication number Publication date
WO2016164609A2 (en) 2016-10-13
JP2021118724A (ja) 2021-08-12
AU2024201619A1 (en) 2024-03-28
HK1246339A1 (zh) 2018-09-07
CR20170505A (es) 2018-01-26
AU2022203942A1 (en) 2022-06-23
IL294965A (en) 2022-09-01
NZ737009A (en) 2024-01-26
SG10201909381WA (en) 2019-11-28
JP2018510648A (ja) 2018-04-19
AU2016245806A1 (en) 2017-11-30
IL254933A0 (en) 2017-12-31
US20190048362A1 (en) 2019-02-14
IL283291B (en) 2022-08-01
SG10201912912QA (en) 2020-02-27
IL254933B (en) 2021-06-30
EA201792236A1 (ru) 2018-03-30
JP2023116678A (ja) 2023-08-22
CA2982123A1 (en) 2016-10-13
TN2017000431A1 (en) 2019-04-12
GT201700214A (es) 2018-10-24
EP3280799A2 (en) 2018-02-14
CN107864657A (zh) 2018-03-30
JP6878299B2 (ja) 2021-05-26
IL283291A (en) 2021-07-29
US10815497B2 (en) 2020-10-27
CL2017002537A1 (es) 2018-05-11
PH12017501836A1 (en) 2018-04-23
BR112017021505A2 (pt) 2018-07-03
ECSP17074016A (es) 2018-02-28
KR20170133500A (ko) 2017-12-05
WO2016164609A3 (en) 2016-12-15
PE20171800A1 (es) 2017-12-28
MX2017012935A (es) 2018-02-12
TWI707951B (zh) 2020-10-21
AU2022203942B2 (en) 2023-12-14
SG11201708203UA (en) 2017-11-29
CO2017011344A2 (es) 2018-03-28
UY36611A (es) 2016-11-30

Similar Documents

Publication Publication Date Title
AU2022203942B2 (en) Production of oversized adeno-associated vectors
US11639887B2 (en) Analytical ultracentrifugation for characterization of recombinant viral particles
EP4037771A1 (en) Adeno-associated virus (aav) systems for treatment of genetic hearing loss
AU2016372035B2 (en) Adeno-associated viral vectors for treating mucolipidosis type ii
US20220112520A1 (en) Human pah expression cassette for treatment of pku by liver-directed gene replacement therapy
WO2022204670A2 (en) Size exclusion chromatography analysis of empty and full aav capsids
WO2022269466A1 (en) Production of adeno-associated virus vector in insect cells