TW201709533A - Semiconductor device and method for fabricating the same - Google Patents

Semiconductor device and method for fabricating the same Download PDF

Info

Publication number
TW201709533A
TW201709533A TW105142922A TW105142922A TW201709533A TW 201709533 A TW201709533 A TW 201709533A TW 105142922 A TW105142922 A TW 105142922A TW 105142922 A TW105142922 A TW 105142922A TW 201709533 A TW201709533 A TW 201709533A
Authority
TW
Taiwan
Prior art keywords
stress
substrate
disposed
semiconductor device
gate structure
Prior art date
Application number
TW105142922A
Other languages
Chinese (zh)
Other versions
TWI662711B (en
Inventor
吳俊元
劉志建
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW105142922A priority Critical patent/TWI662711B/en
Publication of TW201709533A publication Critical patent/TW201709533A/en
Application granted granted Critical
Publication of TWI662711B publication Critical patent/TWI662711B/en

Links

Abstract

A semiconductor device is disclosed. The semiconductor device includes: a substrate; a metal-oxide semiconductor (MOS) transistor disposed in the substrate; and a shallow trench isolation (STI) disposed in the substrate and around the MOS transistor, wherein the STI comprises a stress material.

Description

半導體元件及其製作方法Semiconductor component and manufacturing method thereof

本發明是關於一種半導體元件,尤指一種具有應力淺溝隔離或應力接觸插塞的半導體元件。The present invention relates to a semiconductor component, and more particularly to a semiconductor component having a stress shallow trench isolation or a stress contact plug.

習知的金氧半導體(Metal Oxide Semiconductor, MOS)電晶體通常包含有一基底、一源極區、一汲極區、一通道位於源極區和汲極區之間、以及一閘極位於通道的上方。其中,閘極係包含一閘極介電層位於通道上、一閘極導電層位於閘極介電層上,以及一側壁子位於閘極導電層的側壁。一般而言,MOS電晶體在一固定的電場下,流經通道的驅動電流量會和通道中的載子遷移率成正比。因此,如何在現有的製程設備中,提升載子遷移率以增加MOS電晶體之開關速度已成為目前半導體技術領域中之一大課題。A conventional Metal Oxide Semiconductor (MOS) transistor generally includes a substrate, a source region, a drain region, a channel between the source region and the drain region, and a gate located in the channel. Above. Wherein, the gate electrode comprises a gate dielectric layer on the channel, a gate conductive layer on the gate dielectric layer, and a sidewall spacer on the sidewall of the gate conductive layer. In general, under a fixed electric field, the amount of drive current flowing through the channel of the MOS transistor is proportional to the carrier mobility in the channel. Therefore, how to increase the carrier mobility to increase the switching speed of the MOS transistor in the existing process equipment has become one of the major issues in the field of semiconductor technology.

磊晶成長製程,例如矽鍺源/汲極製程是利用在側壁子形成之後,於鄰接於各側壁子的半導體基底中分別磊晶生成一鍺化矽磊晶層。其係利用鍺化矽層的晶格常數與矽不同的特性,使矽磊晶在矽基底中產生結構上應變而形成應變矽。由於矽鍺層的晶格常數(lattice constant)比矽大,這使得矽的帶結構(band structure)發生改變,而造成載子移動性增加,因此可增加MOS電晶體的開關速度以提高積體電路效能與速度。The epitaxial growth process, for example, the germanium/drain process, is performed by epitaxially forming a germanium telluride epitaxial layer in a semiconductor substrate adjacent to each sidewall after the sidewall spacers are formed. It utilizes the different lattice constants of the bismuth telluride layer and the enthalpy, so that the bismuth epitaxial layer is structurally strained in the ruthenium substrate to form strain enthalpy. Since the lattice constant of the tantalum layer is larger than that of the tantalum layer, the band structure of the tantalum is changed, and the mobility of the carrier is increased, so that the switching speed of the MOS transistor can be increased to improve the integrated body. Circuit performance and speed.

除了磊晶層的應用,且隨著半導體製程進入深次微米時代,半導體製程中利用高應力薄膜來提升MOS電晶體的驅動電流(drive current)也逐漸成為一熱門課題。目前利用高應力薄膜來提升金氧半導體電晶體的驅動電流可概分為兩方面:其一係應用在鎳化矽等金屬矽化物形成前的多晶矽應力層(poly stressor);另一方面則係應用在鎳化矽等金屬矽化物形成後之接觸洞蝕刻停止層(contact etch stop layer, CESL)。In addition to the application of epitaxial layers, and as the semiconductor process enters the deep submicron era, the use of high stress films in semiconductor processes to drive the drive current of MOS transistors has become a hot topic. At present, the use of high-stress films to enhance the driving current of MOS transistors can be divided into two aspects: one is applied to the poly-stressor before the formation of metal bismuth such as nickel bismuth; on the other hand, It is applied to a contact etch stop layer (CESL) after formation of a metal halide such as nickel bismuth.

然而現今以磊晶層或高應力薄膜來提升金氧半導體電晶體之通道區域的載子流量已達到一瓶頸,因此如何在現今廣泛所使用的製程之上在額外提生整個半導體元件的效能即為現今一重要課題。However, the use of epitaxial layers or high-stress films to enhance the carrier flow rate in the channel region of MOS transistors has reached a bottleneck, so how to additionally enhance the performance of the entire semiconductor device over the processes widely used today. It is an important issue today.

因此本發明是提供一種半導體元件,其主要藉由具有應力的淺溝隔離或接觸插塞來提升MOS電晶體通道區域的載子遷移率。SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a semiconductor device which enhances carrier mobility of a MOS transistor channel region mainly by shallow trench isolation or contact plugs having stress.

本發明較佳實施例是揭露一種半導體元件,包含一基底、一金氧半導體電晶體設於該基底中以及一淺溝隔離設於基底中並設於金氧半導體電晶體周圍。其中該淺溝隔離係由一應力材料所構成。A preferred embodiment of the invention discloses a semiconductor device comprising a substrate, a MOS transistor disposed in the substrate, and a shallow trench isolation disposed in the substrate and disposed around the MOS transistor. The shallow trench isolation is composed of a stress material.

本發明另一實施例是揭露一種半導體元件,其包含一基底;一金氧半導體電晶體設於該基底中;一介電層設於基底上並覆蓋金氧半導體電晶體;以及至少一應力插塞設於該介電層中並設於該金氧半導體電晶體周圍。其中該接觸插塞係由一應力材料所構成。Another embodiment of the invention discloses a semiconductor device including a substrate; a MOS transistor is disposed in the substrate; a dielectric layer is disposed on the substrate and covering the MOS transistor; and at least one stress insertion The plug is disposed in the dielectric layer and disposed around the MOS transistor. Wherein the contact plug is composed of a stress material.

本發明又一實施例是揭露一種製作半導體元件的方法。首先提供一基底,然後形成一金氧半導體電晶體於該基底中、形成一介電層於基底上並覆蓋金氧半導體電晶體以及形成至少一接觸洞設於該介電層中並設於該金氧半導體電晶體周圍。最後利用一應力材料填滿該接觸洞。Yet another embodiment of the present invention is directed to a method of fabricating a semiconductor device. First providing a substrate, then forming a MOS transistor in the substrate, forming a dielectric layer on the substrate and covering the MOS transistor, and forming at least one contact hole disposed in the dielectric layer and disposed on the substrate The MOS semiconductor is surrounded by a transistor. Finally, the contact hole is filled with a stress material.

請參照第1圖,第1圖為本發明較佳實施例製作一半導體元件之示意圖。如第1圖所示,首先提供一基底10,例如一矽基底或一絕緣層上覆矽(silicon-on-insulator, SOI)基底等。然後進行一淺溝隔離(shallow trench isolation, STI)製程,例如先利用一道或一道以上的微影暨蝕刻製程於基底中形成一凹槽12分隔或環繞各主動區域,接著形成一應力材料14於基底10表面並填滿凹槽12,然後進行一平坦化製程,例如以化學機械研磨製程去除基底10表面的部分應力材料14,使凹槽12中的應力材料14與基底10表面齊平,而形成一由應力材料14所填滿的淺溝隔離16結構。Please refer to FIG. 1. FIG. 1 is a schematic view showing the fabrication of a semiconductor device according to a preferred embodiment of the present invention. As shown in FIG. 1, a substrate 10 is first provided, such as a germanium substrate or a silicon-on-insulator (SOI) substrate. Then, a shallow trench isolation (STI) process is performed. For example, one or more lithography and etching processes are used to form a recess 12 in the substrate to separate or surround each active region, and then a stress material 14 is formed. The surface of the substrate 10 is filled with the recess 12, and then a planarization process is performed, for example, a portion of the stress material 14 on the surface of the substrate 10 is removed by a chemical mechanical polishing process so that the stress material 14 in the recess 12 is flush with the surface of the substrate 10. A shallow trench isolation 16 structure filled with stress material 14 is formed.

依據本發明之較佳實施例,填滿凹槽12的應力材料14可選自由氮化矽、氮化硼、氧化矽、碳化矽以及碳氧化矽所構成的群組,而且填滿淺溝隔離16的應力材料14可為單一材料層,或者是多層相同或不相同的材料層結構,皆應屬本發明之涵蓋範圍。其中氮化矽之應力是介於-3.5 GPa至2.0GPa;而氮化硼之應力則介於-1GPa至-2GPa。由於氮化硼無論在空氣中、真空中或惰性氣體中均呈穩定狀態且是一種導熱性優良的絕緣體,因此本發明較佳採用氮化硼來作為填滿凹槽12的應力材料。In accordance with a preferred embodiment of the present invention, the stress material 14 filling the recess 12 may be selected from the group consisting of tantalum nitride, boron nitride, tantalum oxide, tantalum carbide, and tantalum carbon oxide, and filled with shallow trench isolation. The stress material 14 of 16 may be a single material layer, or a plurality of layers of the same or different material layer structures, all of which are within the scope of the present invention. The stress of tantalum nitride is between -3.5 GPa and 2.0 GPa; and the stress of boron nitride is between -1 GPa and -2 GPa. Since boron nitride is stable in air, in a vacuum or in an inert gas and is an insulator excellent in thermal conductivity, boron nitride is preferably used as the stress material for filling the groove 12 in the present invention.

接著進行一金氧半導體電晶體製程,例如先於第1圖中之淺溝隔離16兩側的基底10上形成一閘極結構18。其中閘極結構18可包含一閘極介電層20與一閘極電極22。然後分別形成一偏位側壁子24與主側壁子26於各閘極結構18之側壁,並於偏位側壁子24及主側壁子26兩側的基底10中分別形成相對應導電型之輕摻雜汲極28與源極/汲極30。Next, a MOS transistor process is performed, for example, a gate structure 18 is formed on the substrate 10 on both sides of the shallow trench isolation 16 in FIG. The gate structure 18 can include a gate dielectric layer 20 and a gate electrode 22. Then, a sidewall portion 24 and a main sidewall 26 are respectively formed on the sidewalls of the gate structures 18, and light-doped corresponding conductive types are respectively formed in the substrate 10 on both sides of the bias sidewalls 24 and the main sidewalls 26, respectively. Heterogeneous pole 28 and source/drainage 30.

隨後可進行一選擇性磊晶成長製程,以於主側壁子26兩側的基底10中形成一磊晶層(圖未示)。其中,磊晶層的材料可依據電晶體的型態而不同。舉例來說,若所製備的電晶體為一NMOS電晶體,則磊晶層較佳包含碳化矽;而若所製備的電晶體為一PMOS電晶體,則磊晶層較佳包含鍺化矽。A selective epitaxial growth process can then be performed to form an epitaxial layer (not shown) in the substrate 10 on either side of the main sidewalls 26. The material of the epitaxial layer may vary depending on the type of the transistor. For example, if the prepared transistor is an NMOS transistor, the epitaxial layer preferably comprises tantalum carbide; and if the prepared transistor is a PMOS transistor, the epitaxial layer preferably comprises germanium germanium.

然後可進行一矽化金屬製程,例如先形成一由鈷、鈦、鎳、鉑、鈀、鉬或其組合等所構成的金屬層(圖未示)於基底10上並覆蓋源極/汲極30與磊晶層,接著利用至少一次的快速升溫退火(rapid thermal anneal, RTP)製程使金屬層與源極/汲極30及磊晶層反應,以於主側壁26兩側的基底10表面形成一矽化金屬層32。最後再去除未反應的金屬。Then, a metallization process can be performed. For example, a metal layer (not shown) composed of cobalt, titanium, nickel, platinum, palladium, molybdenum or a combination thereof is formed on the substrate 10 and covers the source/drain 30. And the epitaxial layer, and then using at least one rapid thermal anneal (RTP) process to react the metal layer with the source/drain 30 and the epitaxial layer to form a surface on the substrate 10 on both sides of the main sidewall 26 Deuterated metal layer 32. Finally, the unreacted metal is removed.

隨後可形成一應力層34並覆蓋基底10及閘極結構18表面。應力層34的材料可同樣依據電晶體的型態而有所不同,舉例來說,若所製備的電晶體為一NMOS電晶體,則應力層較佳為一拉伸應力層;而若所製備的電晶體為一PMOS電晶體,則應力層較佳為一壓縮應力層。應力層34亦可作為蝕刻接觸洞時的蝕刻停止層。A stressor layer 34 can then be formed and cover the surface of the substrate 10 and the gate structure 18. The material of the stress layer 34 may also vary according to the type of the transistor. For example, if the prepared transistor is an NMOS transistor, the stress layer is preferably a tensile stress layer; The transistor is a PMOS transistor, and the stressor layer is preferably a compressive stress layer. The stress layer 34 can also serve as an etch stop layer when etching contact holes.

接著可形成一層間介電層36於基底10上並覆蓋應力層34,然後於層間介電層36及應力層34中形成複數個接觸洞並填入例如鎢等金屬材料,以形成複數個連接源極/汲極30的接觸插塞38。至此即完成本發明較佳實施例之一半導體元件的製作。Then, an interlayer dielectric layer 36 is formed on the substrate 10 and covers the stress layer 34. Then, a plurality of contact holes are formed in the interlayer dielectric layer 36 and the stress layer 34, and a metal material such as tungsten is filled in to form a plurality of connections. Contact plug 38 of source/drain 30. Thus, the fabrication of a semiconductor device of a preferred embodiment of the present invention has been completed.

在本實施例中,淺溝隔離兩側的金氧半導體電晶體較佳為同一導電型式的金氧半導體電晶體,例如同為NMOS電晶體或PMOS電晶體,以使填滿淺溝隔離16的應力材料14能同時提供兩側之NMOS電晶體予一拉伸應力,或者是同時提供兩側之PMOS電晶體予一壓縮應力。In this embodiment, the MOS transistors on both sides of the shallow trench isolation are preferably MOS transistors of the same conductivity type, for example, NMOS transistors or PMOS transistors, so as to fill the shallow trench isolation 16 The stress material 14 can simultaneously provide a tensile stress to the NMOS transistors on both sides, or simultaneously provide a compressive stress to the PMOS transistors on both sides.

請接著參照第2圖及第3圖,第2圖為本發明另一實施例之一半導體元件之上視圖而第3圖則為第2圖沿著切線AA’之剖面示意圖。如圖中所示,先提供一基底60,例如一矽基底或一絕緣層上覆矽(silicon-on-insulator, SOI)基底等。基底60上具有至少一主動區域92,且其周圍係設置有隔離用的淺溝隔離94,而淺溝隔離94亦可為本發明第1圖較佳實施例所揭露之具應力的淺溝隔離結構。2 and 3, FIG. 2 is a cross-sectional view of a semiconductor device according to another embodiment of the present invention, and FIG. 3 is a cross-sectional view taken along line AA' of FIG. As shown in the figure, a substrate 60 such as a germanium substrate or a silicon-on-insulator (SOI) substrate or the like is provided first. The substrate 60 has at least one active region 92, and is provided with a shallow trench isolation 94 for isolation, and the shallow trench isolation 94 can also be a shallow shallow trench isolation disclosed in the preferred embodiment of the first embodiment of the present invention. structure.

接著於基底60上形成至少一閘極結構68,其中閘極結構68可包含一閘極介電層70與一閘極電極72。然後分別形成一偏位側壁子74與主側壁子76於各閘極結構68之側壁,並於偏位側壁子74及主側壁子76兩側的基底60中形成一輕摻雜汲極78與源極/汲極80。At least one gate structure 68 is formed on the substrate 60. The gate structure 68 can include a gate dielectric layer 70 and a gate electrode 72. Then, a bias sidewall spacer 74 and a main sidewall spacer 76 are formed on the sidewalls of each gate structure 68, and a lightly doped drain 78 is formed in the substrate 60 on both sides of the offset sidewall spacer 74 and the main sidewall spacer 76. Source / drain 80.

隨後可進行一選擇性磊晶成長製程,以於主側壁子76兩側的基底60中形成一磊晶層(圖未示)。其中,磊晶層的材料可依據電晶體的型態而不同。舉例來說,若所製備的電晶體為一NMOS電晶體,則磊晶層較佳包含碳化矽;而若所製備的電晶體為一PMOS電晶體,則磊晶層較佳包含鍺化矽。A selective epitaxial growth process can then be performed to form an epitaxial layer (not shown) in the substrate 60 on either side of the main sidewall 76. The material of the epitaxial layer may vary depending on the type of the transistor. For example, if the prepared transistor is an NMOS transistor, the epitaxial layer preferably comprises tantalum carbide; and if the prepared transistor is a PMOS transistor, the epitaxial layer preferably comprises germanium germanium.

然後可進行一矽化金屬製程,例如先形成一由鈷、鈦、鎳、鉑、鈀、鉬等所構成的金屬層(圖未示)於基底60上並覆蓋源極/汲極80與磊晶層,接著利用至少一次的快速升溫退火(rapid thermal anneal, RTP)製程使金屬層與源極/汲極80及磊晶層反應,以於主側壁76兩側的基底60表面形成一矽化金屬層82。最後再去除未反應的金屬。Then, a metallization process can be performed. For example, a metal layer (not shown) composed of cobalt, titanium, nickel, platinum, palladium, molybdenum or the like is formed on the substrate 60 and covers the source/drain 80 and the epitaxial layer. a layer, followed by at least one rapid thermal anneal (RTP) process to react the metal layer with the source/drain 80 and the epitaxial layer to form a deuterated metal layer on the surface of the substrate 60 on either side of the main sidewall 76 82. Finally, the unreacted metal is removed.

隨後可選擇性形成一應力層84並覆蓋基底60及閘極結構68表面。應力層84的材料可同樣依據電晶體的型態而有所不同,舉例來說,若所製備的電晶體為一NMOS電晶體,則應力層84較佳為一拉伸應力層;而若所製備的電晶體為一PMOS電晶體,則應力層84較佳為一壓縮應力層。應力層34亦可作為蝕刻接觸洞時的蝕刻停止層。A stressor layer 84 can then be selectively formed and overlying the surface of the substrate 60 and gate structure 68. The material of the stress layer 84 may also be different depending on the type of the transistor. For example, if the prepared transistor is an NMOS transistor, the stress layer 84 is preferably a tensile stress layer; The prepared transistor is a PMOS transistor, and the stress layer 84 is preferably a compressive stress layer. The stress layer 34 can also serve as an etch stop layer when etching contact holes.

接著形成一層間介電層86於基底60上並覆蓋應力層84,然後進行一次或一次以上的蝕刻製程以於層間介電層86及應力層84中形成複數個接觸洞88。接著將一應力材料填滿接觸洞88,以於接觸洞88中形成複數個具有應力的應力插塞90。需注意的是,有別於一般連接基底中源極/汲極80的接觸插塞,本實施例具有應力之應力插塞90主要設置在整個MOS電晶體的周圍且不電連接源極/汲極80,其主要用途是對整個MOS電晶體的通道區域施加所需的應力,而非用來電性連接,因此本發明之應力插塞90的設置位置較佳為平行閘極結構68之延伸方向,亦即平行通道寬度。而且應力插塞90兩側的金氧半導體電晶體較佳為同一導電型式的金氧半導體電晶體,例如同為NMOS電晶體或PMOS電晶體,以使應力插塞90能同時提供兩側之NMOS電晶體予一拉伸應力,或者是同時提供兩側之PMOS電晶體予一壓縮應力。An interlayer dielectric layer 86 is then formed over the substrate 60 and overlying the stressor layer 84, and then one or more etching processes are performed to form a plurality of contact holes 88 in the interlayer dielectric layer 86 and the stress layer 84. A stressor material is then filled into the contact holes 88 to form a plurality of stressed stress plugs 90 in the contact holes 88. It should be noted that, unlike the contact plug generally connected to the source/drain 80 in the substrate, the stress plug 90 having stress in the embodiment is mainly disposed around the entire MOS transistor and is not electrically connected to the source/汲. The main purpose of the pole 80 is to apply the required stress to the channel region of the entire MOS transistor, rather than for electrical connection. Therefore, the position of the stress plug 90 of the present invention is preferably the extending direction of the parallel gate structure 68. , that is, the parallel channel width. Moreover, the MOS transistors on both sides of the stress plug 90 are preferably MOS transistors of the same conductivity type, for example, NMOS transistors or PMOS transistors, so that the stress plugs 90 can simultaneously provide NMOS on both sides. The transistor is subjected to a tensile stress, or a PMOS transistor on both sides is simultaneously supplied with a compressive stress.

依據本發明之較佳實施例,填滿接觸洞88的應力材料可選自由氮化矽、氮化硼、氧化矽、碳化矽以及碳氧化矽所構成的群組。其中氮化矽的應力是介於-3.5 GPa至2.0GPa;而氮化硼的應力則介於-1GPa至-2GPa。由於氮化硼無論在空氣中、真空中或惰性氣體中均呈穩定狀態且是一種導熱性優良的絕緣體,因此本發明較佳採用氮化硼來作為填滿接觸洞88的應力材料。至此即完成本發明較佳實施例之一半導體元件的製作。In accordance with a preferred embodiment of the present invention, the stressor material filling the contact holes 88 may be selected from the group consisting of tantalum nitride, boron nitride, tantalum oxide, tantalum carbide, and tantalum carbonium oxide. The stress of tantalum nitride is between -3.5 GPa and 2.0 GPa; and the stress of boron nitride is between -1 GPa and -2 GPa. Since boron nitride is stable in air, in a vacuum or in an inert gas and is an insulator excellent in thermal conductivity, the present invention preferably uses boron nitride as a stress material for filling the contact hole 88. Thus, the fabrication of a semiconductor device of a preferred embodiment of the present invention has been completed.

然後再進行一次或一次以上的蝕刻製程以於層間介電層86及應力層84中形成複數個接觸洞(未顯示)。接著將一導電材料填滿接觸洞,以於接觸洞中形成複數個具有導電能力的接觸插塞(未顯示)。值得注意的是,該等用來電性連接的接觸插塞,可位於主動區域92內的任意位置,用以電連源極/汲極80,例如設置於閘極結構68與應力插塞90之間,或者是應力插塞90位於閘極結構68與接觸插塞之間,甚或是接觸插塞設置於應力插塞90之中並穿過應力插塞90以電連源極/汲極80。請同時參照第4圖,其為應力插塞與接觸插塞同時並存之上視圖。如圖中所示,本發明可將複數個接觸插塞96設置在應力插塞90與閘極結構68之間,而得到應力插塞90與導電插塞96並存的情形。需注意的是,導電插塞96所配置的位置不侷限於圖中所示,又可選擇設置在主動區域92的任何位置,例如可設在鄰近應力插塞90尾端的位置,此實施例也屬本發明所涵蓋的範圍。Then, one or more etching processes are performed to form a plurality of contact holes (not shown) in the interlayer dielectric layer 86 and the stress layer 84. A conductive material is then filled into the contact holes to form a plurality of conductive plugs (not shown) in the contact holes. It should be noted that the contact plugs for electrical connection may be located at any position within the active region 92 for electrically connecting the source/drain 80, for example, to the gate structure 68 and the stress plug 90. The stress plug 90 is located between the gate structure 68 and the contact plug, or even the contact plug is disposed in the stress plug 90 and passes through the stress plug 90 to electrically connect the source/drain 80. Please also refer to Fig. 4, which is a view of the stress plug and the contact plug coexisting. As shown in the figure, the present invention can provide a plurality of contact plugs 96 between the stress plugs 90 and the gate structures 68 to obtain a situation in which the stress plugs 90 and the conductive plugs 96 coexist. It should be noted that the position where the conductive plug 96 is disposed is not limited to the one shown in the figure, and may be disposed at any position of the active region 92, for example, at a position adjacent to the end of the stress plug 90. It is within the scope of the invention.

綜上所述,本發明較佳於基底中形成淺溝隔離或於層間介電層中形成接觸洞時填充應力材料,以製作出具有應力的淺溝隔離結構或接觸插塞,如此便可在磊晶層及應力層等應力結構之外更佳提升整個MOS電晶體於通道區的載子遷移率。另外,上述用來形成具有應力的淺溝隔離或接觸插塞的方法均可任意搭配各種不同製程並應用至不同元件,例如記憶體元件或高壓元件等。其次,本發明所揭露的電晶體可包含多晶矽閘極或金屬閘極所構成之電晶體,而金屬閘極又可依據製程需求選自前閘極(gate first)製程、後閘極(gate last)製程、前高介電常數介電層(high-k first)製程以及後高介電常數介電層(high-k last)等製程。   以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。In summary, the present invention preferably forms shallow trench isolation in the substrate or fills the stress material when forming contact holes in the interlayer dielectric layer to form a shallow trench isolation structure or contact plug with stress, so that In addition to the stress structures such as the epitaxial layer and the stress layer, the carrier mobility of the entire MOS transistor in the channel region is better improved. In addition, the above methods for forming shallow trench isolation or contact plugs with stress can be arbitrarily matched with various processes and applied to different components, such as memory components or high voltage components. Secondly, the transistor disclosed in the present invention may comprise a transistor formed by a polysilicon gate or a metal gate, and the metal gate may be selected from a gate first process and a gate gate according to process requirements. Process, pre-high dielectric constant (high-k first) process and post-high dielectric constant (high-k last) process. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧基底
12‧‧‧凹槽
14‧‧‧應力材料
16‧‧‧淺溝隔離
18‧‧‧閘極結構
20‧‧‧閘極介電層
22‧‧‧閘極電極
24‧‧‧偏位側壁子
26‧‧‧主側壁子
28‧‧‧輕摻雜汲極
30‧‧‧源極/汲極
32‧‧‧矽化金屬層
34‧‧‧應力層
36‧‧‧層間介電層
38‧‧‧接觸插塞
60‧‧‧基底
68‧‧‧閘極結構
70‧‧‧閘極介電層
72‧‧‧閘極電極
74‧‧‧偏位側壁子
76‧‧‧主側壁子
78‧‧‧輕摻雜汲極
80‧‧‧源極/汲極
82‧‧‧矽化金屬層
84‧‧‧應力層
86‧‧‧層間介電層
88‧‧‧接觸洞
90‧‧‧應力插塞
92‧‧‧主動區域
94‧‧‧淺溝隔離
96‧‧‧接觸插塞
10‧‧‧Base
12‧‧‧ Groove
14‧‧‧stress materials
16‧‧‧Shallow trench isolation
18‧‧‧ gate structure
20‧‧‧ gate dielectric layer
22‧‧‧gate electrode
24‧‧‧ biased side wall
26‧‧‧Main side wall
28‧‧‧Lightly doped bungee
30‧‧‧Source/Bungee
32‧‧‧Deuterated metal layer
34‧‧‧stress layer
36‧‧‧Interlayer dielectric layer
38‧‧‧Contact plug
60‧‧‧Base
68‧‧‧ gate structure
70‧‧‧ gate dielectric layer
72‧‧‧ gate electrode
74‧‧‧ biased side wall
76‧‧‧Main side wall
78‧‧‧Lightly doped bungee
80‧‧‧Source/Bungee
82‧‧‧Deuterated metal layer
84‧‧‧stress layer
86‧‧‧Interlayer dielectric layer
88‧‧‧Contact hole
90‧‧‧stress plug
92‧‧‧active area
94‧‧‧Shallow trench isolation
96‧‧‧Contact plug

第1圖為本發明較佳實施例製作一半導體元件之示意圖。 第2圖為本發明另一實施例之一半導體元件之上示圖。 第3圖為第2圖沿著切線AA’之剖面示意圖。 第4圖為本發明另一實施例應力插塞與接觸插塞同時並存之上視圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view showing the fabrication of a semiconductor device in accordance with a preferred embodiment of the present invention. Fig. 2 is a view showing a semiconductor element according to another embodiment of the present invention. Fig. 3 is a schematic cross-sectional view taken along line AA' of Fig. 2. Fig. 4 is a top view showing the stress plug and the contact plug coexisting at the same time according to another embodiment of the present invention.

10‧‧‧基底 10‧‧‧Base

12‧‧‧凹槽 12‧‧‧ Groove

14‧‧‧應力材料 14‧‧‧stress materials

16‧‧‧淺溝隔離 16‧‧‧Shallow trench isolation

18‧‧‧閘極結構 18‧‧‧ gate structure

20‧‧‧閘極介電層 20‧‧‧ gate dielectric layer

22‧‧‧閘極電極 22‧‧‧gate electrode

24‧‧‧偏位側壁子 24‧‧‧ biased side wall

26‧‧‧主側壁子 26‧‧‧Main side wall

28‧‧‧輕摻雜汲極 28‧‧‧Lightly doped bungee

30‧‧‧源極/汲極 30‧‧‧Source/Bungee

32‧‧‧矽化金屬層 32‧‧‧Deuterated metal layer

34‧‧‧應力層 34‧‧‧stress layer

36‧‧‧層間介電層 36‧‧‧Interlayer dielectric layer

38‧‧‧接觸插塞 38‧‧‧Contact plug

Claims (16)

一種半導體元件,包含:      一基底;      一電晶體設於該基底中; 一介電層設於該基底上並覆蓋該電晶體;以及      至少一應力插塞設於該介電層中並設於該電晶體周圍,該應力插塞係由一應力材料所構成。A semiconductor device comprising: a substrate; a transistor disposed in the substrate; a dielectric layer disposed on the substrate and covering the transistor; and at least one stress plug disposed in the dielectric layer and disposed on the substrate Around the transistor, the stress plug is composed of a stress material. 如申請專利範圍第1項所述之半導體元件,其中該應力材料係選自由氮化矽、氮化硼、氧化矽、碳化矽以及碳氧化矽所構成的群組。The semiconductor device according to claim 1, wherein the stress material is selected from the group consisting of tantalum nitride, boron nitride, tantalum oxide, tantalum carbide, and tantalum carbonitride. 如申請專利範圍第2項所述之半導體元件,其中該氮化矽之應力是介於-3.5 GPa至2.0GPa。The semiconductor device of claim 2, wherein the stress of the tantalum nitride is between -3.5 GPa and 2.0 GPa. 如申請專利範圍第2項所述之半導體元件,其中該氮化硼之應力是介於-1GPa至-2GPa。The semiconductor device of claim 2, wherein the boron nitride stress is between -1 GPa and -2 GPa. 如申請專利範圍第1項所述之半導體元件,其中該電晶體包含:      一閘極結構; 一側壁子設於該閘極結構之側壁;以及      一源極/汲極設於該閘極結構兩側之該基底中。The semiconductor device of claim 1, wherein the transistor comprises: a gate structure; a sidewall disposed on a sidewall of the gate structure; and a source/drain disposed in the gate structure Side of the substrate. 如申請專利範圍第5項所述之半導體元件,另包含一應力層設於該基底及該閘極結構表面。The semiconductor device of claim 5, further comprising a stress layer disposed on the substrate and the surface of the gate structure. 如申請專利範圍第5項所述之半導體元件,其中該閘極結構係為一金屬閘極或一多晶矽閘極。The semiconductor device of claim 5, wherein the gate structure is a metal gate or a polysilicon gate. 如申請專利範圍第5項所述之半導體元件,另包含至少一導電插塞設於該基底上並連接該源極/汲極,該應力插塞係環繞該閘極結構,且該導電插塞係設於該閘極結構與該應力插塞之間。The semiconductor device of claim 5, further comprising at least one conductive plug disposed on the substrate and connecting the source/drain, the stress plug surrounding the gate structure, and the conductive plug The device is disposed between the gate structure and the stress plug. 一種製作半導體元件的方法,包含:      提供一基底;      形成一電晶體設於該基底中; 形成一介電層於該基底上並覆蓋該電晶體;以及      形成至少一接觸洞設於該介電層中並設於該電晶體周圍;以及 利用一應力材料填滿該接觸洞。A method of fabricating a semiconductor device, comprising: providing a substrate; forming a transistor disposed in the substrate; forming a dielectric layer on the substrate and covering the transistor; and forming at least one contact hole disposed on the dielectric layer The middle portion is disposed around the transistor; and the contact hole is filled with a stress material. 如申請專利範圍第9項所述之方法,其中該應力材料係選自由氮化矽、氮化硼、氧化矽、碳化矽以及碳氧化矽所構成的群組。The method of claim 9, wherein the stress material is selected from the group consisting of tantalum nitride, boron nitride, tantalum oxide, tantalum carbide, and tantalum carbonitride. 如申請專利範圍第10項所述之方法,其中該氮化矽之應力是介於-3.5 GPa至2.0GPa。The method of claim 10, wherein the stress of the tantalum nitride is between -3.5 GPa and 2.0 GPa. 如申請專利範圍第10項所述之方法,其中該氮化硼之應力是介於-1GPa至-2GPa。The method of claim 10, wherein the boron nitride stress is between -1 GPa and -2 GPa. 如申請專利範圍第9項所述之方法,其中該金氧半導體電晶體包含:      一閘極結構; 一側壁子設於該閘極結構之側壁;以及      一源極/汲極設於該閘極結構兩側之該基底中。The method of claim 9, wherein the MOS transistor comprises: a gate structure; a sidewall disposed on a sidewall of the gate structure; and a source/drain provided at the gate In the substrate on both sides of the structure. 如申請專利範圍第13項所述之方法,另包含形成一應力層於該基底及該閘極結構表面。The method of claim 13, further comprising forming a stressor layer on the substrate and the surface of the gate structure. 如申請專利範圍第13項所述之方法,其中該閘極結構係為一金屬閘極或一多晶矽閘極。The method of claim 13, wherein the gate structure is a metal gate or a polysilicon gate. 如申請專利範圍第13項所述之半導體元件,另包含形成至少一導電插塞設於該基底上並連接該源極/汲極,該應力插塞係環繞該閘極結構,且該導電插塞係設於該閘極結構與該應力插塞之間。The semiconductor device of claim 13, further comprising forming at least one conductive plug on the substrate and connecting the source/drain, the stress plug surrounding the gate structure, and the conductive plug A plug is disposed between the gate structure and the stress plug.
TW105142922A 2011-07-19 2011-07-19 Semiconductor device and method for fabricating the same TWI662711B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105142922A TWI662711B (en) 2011-07-19 2011-07-19 Semiconductor device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105142922A TWI662711B (en) 2011-07-19 2011-07-19 Semiconductor device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201709533A true TW201709533A (en) 2017-03-01
TWI662711B TWI662711B (en) 2019-06-11

Family

ID=58774204

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105142922A TWI662711B (en) 2011-07-19 2011-07-19 Semiconductor device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI662711B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779583B (en) * 2020-07-17 2022-10-01 南亞科技股份有限公司 Semiconductor device with multi-layer connecting structure and method for fabricating the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467021B1 (en) * 2002-08-20 2005-01-24 삼성전자주식회사 Contact structure of semiconductro device and method for fabricating the same
US6940705B2 (en) * 2003-07-25 2005-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitor with enhanced performance and method of manufacture
US7678662B2 (en) * 2005-12-13 2010-03-16 Applied Materials, Inc. Memory cell having stressed layers
KR100772901B1 (en) * 2006-09-28 2007-11-05 삼성전자주식회사 Semiconductor device and method of fabricating the same
KR100871692B1 (en) * 2006-11-07 2008-12-08 삼성전자주식회사 Metal precursor for low temperature deposition, method of forming metal layer using the precursor and method of fabricating phase-change memory device using the precursor
US7719062B2 (en) * 2006-12-29 2010-05-18 Intel Corporation Tuned tensile stress low resistivity slot contact structure for n-type transistor performance enhancement
US8159038B2 (en) * 2008-02-29 2012-04-17 Infineon Technologies Ag Self aligned silicided contacts
DE102008030852A1 (en) * 2008-06-30 2010-01-07 Advanced Micro Devices, Inc., Sunnyvale Contact trenches for better stress transmission in transistors with a small distance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779583B (en) * 2020-07-17 2022-10-01 南亞科技股份有限公司 Semiconductor device with multi-layer connecting structure and method for fabricating the same

Also Published As

Publication number Publication date
TWI662711B (en) 2019-06-11

Similar Documents

Publication Publication Date Title
US10418488B2 (en) Method to form strained channel in thin box SOI structures by elastic strain relaxation of the substrate
US11411090B2 (en) Contact structures for gate-all-around devices and methods of forming the same
KR101758996B1 (en) Multi-threshold voltage field effect transistor and manufacturing method thereof
US9842897B2 (en) Bulk finFET with partial dielectric isolation featuring a punch-through stopping layer under the oxide
US11133306B2 (en) Semiconductor device including fin structures and manufacturing method thereof
US10741639B2 (en) Formation of dielectric layer as etch-stop for source and drain epitaxy disconnection
KR101023208B1 (en) Mosfet device with tensile strained substrate and method of making the same
US7545001B2 (en) Semiconductor device having high drive current and method of manufacture therefor
US8927373B2 (en) Methods of fabricating non-planar transistors including current enhancing structures
TW201010059A (en) Integrated circuits
TWI520188B (en) Semiconductor structure and method of fabricating the same
US8921944B2 (en) Semiconductor device
US20150021702A1 (en) Shallow trench isolation
KR102526325B1 (en) Gate-all-around devices with optimized gate spacers and gate end dielectric
TW202316531A (en) Methods of forming bottom dielectric isolation layers
US11257933B2 (en) Semiconductor device and method for manufacturing the same
TW201709533A (en) Semiconductor device and method for fabricating the same
TW201306259A (en) Semiconductor device and method for fabricating the same
TW201225216A (en) Multi-gate transistor devices and manufacturing method thereof
JP6125802B2 (en) Semiconductor device
JP5185061B2 (en) MIS field effect transistor and method of manufacturing semiconductor substrate
JP2018107230A (en) Semiconductor device and manufacturing method of the same
US20230361114A1 (en) Semiconductor structure and methods of forming the same
JP2016225353A (en) Semiconductor device and manufacturing method of the same
US20140170826A1 (en) Biaxial strained field effect transistor devices