TWI520188B - Semiconductor structure and method of fabricating the same - Google Patents

Semiconductor structure and method of fabricating the same Download PDF

Info

Publication number
TWI520188B
TWI520188B TW101103032A TW101103032A TWI520188B TW I520188 B TWI520188 B TW I520188B TW 101103032 A TW101103032 A TW 101103032A TW 101103032 A TW101103032 A TW 101103032A TW I520188 B TWI520188 B TW I520188B
Authority
TW
Taiwan
Prior art keywords
gate
layer
forming
substrate
epitaxial
Prior art date
Application number
TW101103032A
Other languages
Chinese (zh)
Other versions
TW201331994A (en
Inventor
劉安淇
林俊賢
童宇誠
林建廷
江文泰
蔡世鴻
傅思逸
陳映璁
陳智偉
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101103032A priority Critical patent/TWI520188B/en
Publication of TW201331994A publication Critical patent/TW201331994A/en
Application granted granted Critical
Publication of TWI520188B publication Critical patent/TWI520188B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

半導體結構及其製程Semiconductor structure and its process

本發明係關於一種半導體結構及其製程,特別係關於一種閘極線寬經過減縮(pullback)的半導體結構及其製程。The present invention relates to a semiconductor structure and a process thereof, and more particularly to a semiconductor structure in which a gate line width is reduced and its process.

近年來,隨著各種消費性電子產品不斷的朝小型化發展,半導體元件設計的尺寸亦不斷縮小,以符合高積集度、高效能和低耗電之潮流以及產品需求。In recent years, as various consumer electronic products continue to be miniaturized, the size of semiconductor component designs has been shrinking to meet the trend of high integration, high efficiency, low power consumption, and product demand.

隨著場效電晶體(field effect transistors,FETs)元件尺寸持續地縮小,習知平面式(planar)場效電晶體元件之發展已面臨製程上之極限。為了克服製程限制,以非平面(non-planar)之場效電晶體元件,例如鰭狀場效電晶體(fin field effect transistor,Fin FET)元件取代平面電晶體元件已成為目前之主流發展趨趨勢。由於鰭狀場效電晶體元件的立體結構可增加閘極與鰭狀結構的接觸面積,因此,可進一步增加閘極對於載子通道區域的控制,從而降低小尺寸元件面臨的由汲極引發的能帶降低(drain induced barrier lowering,DIBL)效應,並可以抑制短通道效應(short channel effect,SCE)。且由於鰭狀場效電晶體元件在同樣的閘極長度下,具有更寬的通道寬度,因而可獲得加倍的汲極驅動電流。甚至,電晶體元件的臨界電壓(threshold voltage)也可藉由調整閘極的功函數而被加以調控。As the size of field effect transistors (FETs) components continues to shrink, the development of conventional planar field effect transistor components has faced process limitations. In order to overcome the process limitation, the replacement of planar transistor components with non-planar field effect transistor components, such as fin field effect transistor (Fin FET) components, has become the mainstream trend. . Since the three-dimensional structure of the fin field effect transistor element can increase the contact area between the gate and the fin structure, the control of the gate to the carrier channel region can be further increased, thereby reducing the bucking caused by the small-sized component. The drain induced barrier lowering (DIBL) effect can suppress the short channel effect (SCE). And because the fin field effect transistor element has a wider channel width at the same gate length, a doubled drain drive current can be obtained. Even the threshold voltage of the transistor element can be regulated by adjusting the work function of the gate.

在習知的鰭狀場效電晶體元件的製程中,閘極與鰭狀結構的側壁上會覆蓋有一層間隙壁(spacer)。在該間隙壁的形成過程中,間隙壁材質(多為SiN)容易殘留在鰭狀結構的側壁上,且其填洞率不佳,不易填入凹槽、溝渠等結構中。再者,上述間隙壁的存在會阻礙到後續以離子佈植形成輕摻雜汲極(lightly doped drain,LDD)的製程,使得摻質不易植入鰭狀結構的側壁中,如此會使所形成的閘極元件有過大的電場梯度,對其電性有不良的影響。In the fabrication of a conventional fin field effect transistor device, a sidewall of the gate and fin structure is covered with a spacer. During the formation of the spacer, the spacer material (mostly SiN) tends to remain on the sidewall of the fin structure, and the hole filling rate is not good, and it is difficult to fill the structure such as the groove or the trench. Moreover, the presence of the spacers hinders the subsequent formation of a lightly doped drain (LDD) by ion implantation, so that the dopant is not easily implanted in the sidewall of the fin structure, thus forming The gate element has an excessive electric field gradient that adversely affects its electrical properties.

是以,本發明即針對習知鰭狀場效電晶體元件之製程進行改善,以進一步提升元件之效能。Therefore, the present invention improves the process of the conventional fin field effect transistor component to further improve the performance of the component.

有鑒於前述習知技術之諸項缺失,本發明特以提出了一種新穎的半導體結構及其製程。本發明方法經由在閘極縮減製程後進行輕摻雜汲極結構之製作來解決習知作法中摻質於離子佈植製程中易為間隙壁所遮擋之問題。再者,藉由在形成輕摻雜汲極之後以低介電常數(low-k)材料來形成間隙壁結構,其可進一步改善所形成閘極元件之電性。In view of the absence of the aforementioned prior art, the present invention specifically proposes a novel semiconductor structure and process thereof. The method of the invention solves the problem that the dopant is easily blocked by the spacer in the ion implantation process by performing the fabrication of the lightly doped gate structure after the gate reduction process. Furthermore, by forming the spacer structure with a low dielectric constant (low-k) material after forming the lightly doped drain, it is possible to further improve the electrical properties of the formed gate element.

本發明的目的之一在於提供一種非平面化的半導體製程,其製程步驟包含提供一基底、形成至少一鰭狀結構於該基底上、形成一閘極覆蓋在部分該些鰭狀結構上、形成複數個磊晶結構覆蓋在該閘極兩側的該些鰭狀結構上、在該閘極兩側的該些鰭狀結構與該些磊晶結構中分別形成一源極與一汲極、進行一閘極縮減製程以縮減該閘極,使得該閘極與該閘極兩側的該些磊晶結構分隔、進行一離子佈植製程,以在位於該閘極與該閘極兩側的該些磊晶結構之間的該鰭狀結構中分別形成一輕摻雜汲極、以及在該閘極與該些磊晶結構的側壁上分別形成一間隙壁。One of the objectives of the present invention is to provide a non-planar semiconductor process, the process comprising the steps of: providing a substrate, forming at least one fin structure on the substrate, forming a gate covering a portion of the fin structures, forming a plurality of epitaxial structures covering the fin structures on both sides of the gate, and the fin structures on the two sides of the gate and the epitaxial structures respectively forming a source and a drain a gate reducing process to reduce the gate such that the gate is separated from the epitaxial structures on both sides of the gate, and an ion implantation process is performed to be located on both sides of the gate and the gate A lightly doped drain is formed in each of the fin structures between the epitaxial structures, and a spacer is formed on the sidewalls of the gate and the epitaxial structures.

本發明的另一目的在於提供一種平面化的半導體製程,其製程步驟包含提供一基底、形成一閘極在該基底上、形成磊晶結構、在該閘極兩側的該些磊晶結構中分別形成一源極與一汲極、進行一閘極縮減製程以縮減該閘極,使得該閘極與該閘極兩側的該些磊晶結構分隔、進行一離子佈植製程於該閘極縮減製程之後,以在位於該閘極與該閘極兩側的該些磊晶結構之間的該基底中形成輕摻雜汲極、以及在該閘極的側壁上形成一間隙壁。Another object of the present invention is to provide a planarized semiconductor process, the process step of providing a substrate, forming a gate on the substrate, forming an epitaxial structure, and the epitaxial structures on both sides of the gate. Forming a source and a drain, respectively, performing a gate reduction process to reduce the gate, so that the gate is separated from the epitaxial structures on both sides of the gate, and an ion implantation process is performed on the gate After the reduction process, a lightly doped drain is formed in the substrate between the gate and the epitaxial structures on either side of the gate, and a spacer is formed on the sidewall of the gate.

本發明的又一目的在於提供一種非平面化半導體結構,其結構包含一基底、至少一鰭狀結構,設於該基底上、一閘極,覆蓋在部分該鰭狀結構與部分該基底上、複數個磊晶結構,覆蓋在該閘極兩側的該些鰭狀結構上並與該閘極結構相分隔並在每一該閘極、該磊晶結構、以及該鰭狀結構之間界定出一凹槽、一源極與一汲極,分別形成在該閘極兩側的該些鰭狀結構與該些磊晶結構中、一輕摻雜汲極,分別形成在位於該閘極與該閘極兩側的該些磊晶結構之間的該鰭狀結構中;以及一間隙壁,形成在該閘極與該些磊晶結構的側壁上,其中填入該凹槽中的該間隙壁係與該些磊晶結構的頂面齊平。A further object of the present invention is to provide a non-planarized semiconductor structure, the structure comprising a substrate and at least one fin structure disposed on the substrate and having a gate covering a portion of the fin structure and a portion of the substrate. a plurality of epitaxial structures covering the fin structures on both sides of the gate and separated from the gate structure and defining between each of the gates, the epitaxial structure, and the fin structure a recess, a source and a drain, respectively formed on the fins on both sides of the gate and the light-doped drains in the epitaxial structures, respectively formed at the gate and the a fin structure between the epitaxial structures on both sides of the gate; and a spacer formed on the sidewall of the gate and the epitaxial structures, wherein the spacer is filled in the recess It is flush with the top surface of the epitaxial structures.

無疑地,本發明的這類目的與其他目的在閱者讀過下文以多種圖示與繪圖來描述的較佳實施例細節說明後將變得更為顯見。The objectives and other objects of the present invention will become more apparent from the written description of the appended claims.

在下文的細節描述中,元件符號會標示在隨附的圖示中成為其中的一部份,並且以可實行該實施例之特例描述方式來表示。這類實施例會說明足夠的細節俾使該領域之一般技藝人士得以具以實施。閱者須瞭解到本發明中亦可利用其他的實施例或是在不悖離所述實施例的前提下作出結構性、邏輯性、及電性上的改變。因此,下文之細節描述將不欲被視為是一種限定,反之,其中所包含的實施例將由隨附的申請專利範圍來加以界定。In the detailed description that follows, the component symbols are marked as part of the accompanying drawings and are described in the manner in which the particular embodiments of the embodiments can be practiced. Such embodiments will be described in sufficient detail to enable those of ordinary skill in the art to practice. The reader is aware that other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the embodiments. Therefore, the following detailed description is not to be considered as a limitation, and the embodiments included herein are defined by the scope of the accompanying claims.

本發明通篇說明書與隨附申請專利範圍中會使用某些詞彙來指稱特定的組成元件。該領域的技藝人士將理解到,半導體元件製造商可能會以不同的名稱來指稱一相同的元件,如間隙壁與側壁子(spacer)、縮減製程或拉回製程(pullback)等。再者,在下文說明與申請專利範圍中如有「第一」、「第二」...「第N」等先行詞彙係用來賦予相同或類似的元件一可彼此區別的代表指稱,其非意欲限定該些所指稱的元件或是具備任何特殊專利特徵上之意義。Certain terms are used throughout the description of the invention and the scope of the appended claims. Those skilled in the art will appreciate that semiconductor component manufacturers may refer to a different component by different names, such as spacers and spacers, reduction processes, or pullbacks. Furthermore, in the following description, the preceding vocabulary such as "first", "second", "nth", and the like are used to give the same or similar elements a representative reference. It is not intended to limit the claimed elements or have any special patent features.

現在下文中將提供多個實施例搭配圖示來說明本發明之半導體製程。其中,第1-14圖係繪示出根據本發明一實施例一非平面化半導體製程的截面示意圖,第15圖繪示出根據本發明製程所形成之閘極元件的立體示意圖;第16-21圖繪示出根據本發明另一實施例一平面化半導體製程的截面示意圖,而第22-25圖則繪示出本發明進一步實施例中一替換性金屬閘極(replacement metal gate,RMG)製程的截面示意圖。A plurality of embodiments will now be provided below in conjunction with the drawings to illustrate the semiconductor process of the present invention. 1-14 is a schematic cross-sectional view showing a non-planarized semiconductor process according to an embodiment of the present invention, and FIG. 15 is a schematic perspective view showing a gate element formed by the process according to the present invention; 21 is a cross-sectional view showing a planarization semiconductor process according to another embodiment of the present invention, and FIGS. 22-25 are diagrams showing an alternative metal gate (RMG) in a further embodiment of the present invention. A schematic cross-section of the process.

首先,請參照第1-15圖,該些圖示係依序繪示出本發明一非平面化半導體製程之步驟流程。該非平面化半導體製程包含製作一鰭狀場效電晶體(FinFET)結構或是一三閘極場效電晶體(tri-gate FET)結構。在本實施例中,以矽塊材(bulk Si)作為基底之製作流程為例,如第1圖所示,首先提供一基底100,如一矽基底,來作為整個半導體結構的基礎。基底100上可預先定義有NMOS區域與PMOS區域,並已形成對應之P井與N井結構。接著,在基底100上形成圖案化的遮罩層102,以作為後續立體鰭狀結構形成步驟中的蝕刻遮罩。其中遮罩層102可包含了單一材料層或堆疊材料層,例如一墊氧化層104(如氧化矽)以及一位於墊氧化層104上的氮化層106(如氮化矽)。遮罩層102係可經由對一所沉積的遮罩材質層進行蝕刻微影製程E1而圖案化,並裸露出部分之基底100。在形成圖案化遮罩層後,接著,如第2圖所示,以圖案化遮罩層102作為遮罩對基底100進行一蝕刻步驟,將遮罩層102所定義之圖形轉移至基底100,製作出凸起、相互平行的鰭狀結構108a及108b。在本實施例中,遮罩層102共定義出二鰭狀圖形,但並不以此數目為限。First, please refer to FIGS. 1-15, which are sequentially showing the flow of steps of a non-planar semiconductor process of the present invention. The non-planarized semiconductor process includes fabricating a fin field effect transistor (FinFET) structure or a tri-gate field-effect transistor (tri-gate FET) structure. In the present embodiment, a manufacturing process using bulk Si as a substrate is taken as an example. As shown in Fig. 1, a substrate 100 such as a substrate is first provided as a basis for the entire semiconductor structure. An NMOS region and a PMOS region may be defined in advance on the substrate 100, and corresponding P well and N well structures have been formed. Next, a patterned mask layer 102 is formed on the substrate 100 as an etch mask in the subsequent three-dimensional fin structure forming step. The mask layer 102 may comprise a single material layer or a stacked material layer, such as a pad oxide layer 104 (such as hafnium oxide) and a nitride layer 106 (such as tantalum nitride) on the pad oxide layer 104. The mask layer 102 can be patterned by performing an etch lithography process E1 on a deposited mask material layer and expose portions of the substrate 100. After forming the patterned mask layer, next, as shown in FIG. 2, the substrate 100 is subjected to an etching step using the patterned mask layer 102 as a mask, and the pattern defined by the mask layer 102 is transferred to the substrate 100. Raised, parallel fin structures 108a and 108b are formed. In the present embodiment, the mask layer 102 defines a two-fin pattern, but is not limited to this number.

在形成鰭狀結構108a及108b後,接著,如第3圖所示,利用沉積、平坦化與回蝕刻等製程在各鰭狀結構之間形成一絕緣結構110(如一氧化層)。舉例而言,絕緣結構110可以一般之淺溝隔離(STI)製程來形成,例如先全面性沉積一絕緣層(圖未示)以覆蓋鰭狀結構108a及108b,然後回蝕刻此絕緣層以形成絕緣結構110。如此,則可形成二鰭狀結構108a及108b於基底100上以及分別形成一絕緣結構110於鰭狀結構108a及108b之間。在一特定實施例中,鰭狀結構108a及108b的寬度可約為20奈米(nm),其突出於絕緣結構110外的高度可約為30奈米(nm)。之後,鰭狀結構上的遮罩層102可加以移除,以於後續製程中形成一三閘極場效電晶體。在其他實施例中,遮罩層102亦可被留下,以於後續製程中形成一鰭狀場效電晶體結構。After the fin structures 108a and 108b are formed, next, as shown in FIG. 3, an insulating structure 110 (e.g., an oxide layer) is formed between the fin structures by processes such as deposition, planarization, and etch back. For example, the insulating structure 110 can be formed by a general shallow trench isolation (STI) process, such as first depositing an insulating layer (not shown) to cover the fin structures 108a and 108b, and then etching back the insulating layer to form Insulation structure 110. As such, two fin structures 108a and 108b can be formed on the substrate 100 and an insulating structure 110 can be formed between the fin structures 108a and 108b, respectively. In a particular embodiment, the fin structures 108a and 108b may have a width of about 20 nanometers (nm), and a height protruding beyond the insulating structure 110 may be about 30 nanometers (nm). Thereafter, the mask layer 102 on the fin structure can be removed to form a three-gate field effect transistor in a subsequent process. In other embodiments, the mask layer 102 can also be left to form a fin field effect transistor structure in a subsequent process.

除了上述以矽塊材(bulk Si)作為基底的例子外,在本發明另一實施例中,亦可使用矽覆絕緣基底(silicon-on-insulator,SOI)來作為基底。如第4圖所示,首先,提供一矽覆絕緣基底200,其結構中包含了一基底202、一底氧化層204位於基底202上,以及一矽質層206位於底氧化層204上,其中矽質層206係為一單晶矽層,用以形成各半導體元件之層級。接著,如第5圖所示,形成前述之遮罩層來圖案化矽質層206以形成鰭狀結構208a及208b,並裸露出部分的底氧化層204。在此實施例中,二鰭狀結構208a及208b係形成在一絕緣結構(即底氧化層204)上,如此將可使後續製作出的閘極元件彼此間有良好的隔絕,故可省卻上述之淺溝隔離(STI)製程。圖案化矽質層206的方法於前述實施例中已有詳細說明,在此不多加贅述。 In addition to the above-described example in which bulk Si is used as a substrate, in another embodiment of the present invention, a silicon-on-insulator (SOI) may be used as the substrate. As shown in FIG. 4, first, an insulating substrate 200 is provided, which comprises a substrate 202, a bottom oxide layer 204 on the substrate 202, and a tantalum layer 206 on the bottom oxide layer 204. The tantalum layer 206 is a single crystal germanium layer for forming a level of each semiconductor element. Next, as shown in FIG. 5, the aforementioned mask layer is formed to pattern the tantalum layer 206 to form the fin structures 208a and 208b, and a portion of the bottom oxide layer 204 is exposed. In this embodiment, the second fin structures 208a and 208b are formed on an insulating structure (ie, the bottom oxide layer 204), so that the subsequently fabricated gate elements are well insulated from each other, thereby eliminating the above. Shallow trench isolation (STI) process. The method of patterning the enamel layer 206 has been described in detail in the foregoing embodiments, and will not be further described herein.

就前述分別以矽基底與矽覆絕緣基底作為基材的兩實施例而言,如第1圖所示,以矽基底所形成之絕緣結構110僅會位於各鰭狀結構(如108a與108b)之間,而以矽覆絕緣基底200所形成之底氧化層204,如第5圖所示,則會位於鰭狀結構(如208a與208b)正下方。然而,此二者不同之處並不影響本發明後續半導體製程的進行。 As for the two embodiments in which the tantalum substrate and the covered insulating substrate are respectively used as the substrate, as shown in FIG. 1, the insulating structure 110 formed by the tantalum substrate is only located in each fin structure (such as 108a and 108b). Between the bottom oxide layer 204 formed by the insulating insulating substrate 200, as shown in Fig. 5, is located directly below the fin structures (e.g., 208a and 208b). However, the difference between the two does not affect the subsequent semiconductor process of the present invention.

在接下來的製程中,仍以矽基底作為基底為例來做說明,如第6圖所示,形成一閘極結構112於部分的絕緣結構110及部分的鰭狀結構108a及108b上。閘極結構112係橫跨過多個鰭狀結構,進而構成了非平面化的閘極元件。形成上述閘極結構112之製程可包含透過沉積、化學機械研磨(CMP)與圖案化等步驟在部分的絕緣結構110及部分的鰭狀結構108a及108b上形成一閘極介電層(如SiO2和/或高介電常數high-k材料)114、形成一閘極電極116於閘極介電層114上、以及形成一蓋層118於閘極電極116上。上述該等材料 層之形成方法皆為本領域習用已久之技術,故於此不再多加贅述。 In the following process, the germanium substrate is still taken as an example for illustration. As shown in FIG. 6, a gate structure 112 is formed on a portion of the insulating structure 110 and a portion of the fin structures 108a and 108b. The gate structure 112 spans a plurality of fin structures, thereby forming a non-planarized gate element. The process of forming the gate structure 112 may include forming a gate dielectric layer (such as SiO) on portions of the insulating structure 110 and portions of the fin structures 108a and 108b through deposition, chemical mechanical polishing (CMP), and patterning. 2 and/or a high dielectric constant high-k material 114, a gate electrode 116 is formed over the gate dielectric layer 114, and a cap layer 118 is formed over the gate electrode 116. The above-mentioned methods for forming the material layers are all well-known techniques in the art, and thus will not be further described herein.

在本發明中,閘極結構112於後續製程中會進行一縮減製程(pullback)來減少其線寬(critical dimension,CD),並可能在閘極元件製作完成後還會再進行一替換性金屬閘極製程來將閘極電極116替換成至少一功函數金屬與至少一低電阻率的金屬材質。對此,在上述步驟中,以前置閘極(gate first)製程為例,閘極電極116材質可選用多晶矽(poly-Si)、金屬矽化物或金屬等導電材料,而針對後置閘極(gate last)製程而言,則可選用多晶矽(poly-Si)、氮化矽(SiN)或氮氧化矽(SiON)、碳氮化矽(SiCN)、或是美商應用材料公司所提供之進階圖案化薄膜(advanced pattern film,APF)來製備虛置閘極(dummy gate)。此外,其所對應之蓋層118則可為氮化矽(SiN)或氧化矽(SiO2)等材質。上述縮減製程以及選擇性的替換性金屬閘極製程將於後述實施例中有詳細的說明。 In the present invention, the gate structure 112 undergoes a pullback process in subsequent processes to reduce its critical dimension (CD), and may also perform a replacement metal after the gate device is fabricated. The gate process replaces the gate electrode 116 with at least one work function metal and at least one low resistivity metal material. In this case, in the above steps, a gate first process is taken as an example, and the gate electrode 116 may be made of a polysilicon (poly-Si), a metal telluride or a metal, and a rear gate ( In the case of gate last), poly-Si, SiN or SiNO, SiCN, or U.S. Applied Materials can be used. An advanced pattern film (APF) is used to prepare a dummy gate. In addition, the corresponding cap layer 118 may be made of material such as tantalum nitride (SiN) or yttrium oxide (SiO 2 ). The above-described reduction process and selective replacement metal gate process will be described in detail in the embodiments to be described later.

承上述步驟,在完成閘極結構112之製作後,如第7圖所示,進行一磊晶製程E2以於閘極結構112的周圍被曝露的矽質材料表面形成磊晶結構120a及120b。閘極電極116的頂面高於磊晶結構120a及120b的頂面。在此階段中,未被閘極結構112所覆蓋的鰭狀結構108a及108b表面均會形成磊晶結構120a及120b。磊晶結構120a及120b的功用在於可增加作為源極/汲極區的鰭狀結構108a及108b的總體積與總表面積,並可促使後續形成之鈦(Ti)、鈷(Co)、鎳(Ni)等金 屬層更容易順應地完全覆蓋於磊晶結構120a及120b表面以進行自對準金屬矽化物(salicide)製程。而磊晶結構120a及120b之材質會視多閘極場效電晶體的電性(如PMOS或NMOS)而定,其可能為一矽鍺磊晶層(Si-Ge)或一矽碳磊晶層(SiC),或是或元素週期表中的III-V族化合物等。 Following the above steps, after the fabrication of the gate structure 112 is completed, as shown in FIG. 7, an epitaxial process E2 is performed to form epitaxial structures 120a and 120b on the surface of the enamel material exposed around the gate structure 112. The top surface of the gate electrode 116 is higher than the top surface of the epitaxial structures 120a and 120b. At this stage, the epitaxial structures 120a and 120b are formed on the surfaces of the fin structures 108a and 108b that are not covered by the gate structure 112. The function of the epitaxial structures 120a and 120b is to increase the total volume and total surface area of the fin structures 108a and 108b as source/drain regions, and to promote the subsequent formation of titanium (Ti), cobalt (Co), and nickel ( Ni) The genus layer more readily conforms completely over the surface of the epitaxial structures 120a and 120b for a self-aligned metal salicide process. The materials of the epitaxial structures 120a and 120b may depend on the electrical properties of the multi-gate field effect transistor (such as PMOS or NMOS), which may be a germanium epitaxial layer (Si-Ge) or a germanium carbon epitaxy. Layer (SiC), or a group III-V compound in the periodic table of the elements.

在本發明另一實施例中,鰭狀結構108a及108b上的磊晶結構120a及120b可作為應力源來產生應變矽通道,以增加電子團與電洞團的遷移率。在此實施例中,如第8圖所示,方法中會先進行一蝕刻製程E3來蝕刻閘極112兩側邊的部分鰭狀結構108a及108b,該蝕刻製程E3的特點在於其會因為鰭狀結構108a及108b的各結晶面具有不同蝕刻速率之特性而在該些鰭狀結構108a及108b的側壁上分別蝕刻出一凹槽R。蝕刻製程E3可包含一乾蝕刻製程及一濕蝕刻製程或者僅進行濕蝕刻製程。如在一實施例中,濕蝕刻製程包含以含氨氣、過氧化氫及水的蝕刻液蝕刻。或是,蝕刻劑可包括氨水類蝕刻劑、甲基氫氧化銨類蝕刻劑、氫氧化類蝕刻劑或者乙烯二胺鄰苯二酚類蝕刻劑等。 In another embodiment of the invention, the epitaxial structures 120a and 120b on the fin structures 108a and 108b can act as stressors to create strained helium channels to increase the mobility of electron clusters and electron bunches. In this embodiment, as shown in FIG. 8, an etching process E3 is performed to etch a portion of the fin structures 108a and 108b on both sides of the gate 112. The etching process E3 is characterized in that it is due to the fins. The crystal faces of the structures 108a and 108b have different etch rate characteristics, and a groove R is etched on the sidewalls of the fin structures 108a and 108b, respectively. The etching process E3 may include a dry etching process and a wet etching process or only a wet etching process. As in one embodiment, the wet etch process includes etching with an etchant containing ammonia, hydrogen peroxide, and water. Alternatively, the etchant may include an ammonia etchant, a methylammonium hydroxide etchant, a hydroxide etchant, or an ethylene diamine catechol etchant.

承上述實施例,在蝕刻鰭狀結構108a及108b與形成凹槽R後,如第9圖所示,一磊晶製程E4會進行來在凹槽R中順應地形成一具有六角形截面形狀的磊晶結構120a及120b。視多閘極場效電晶體的電性而定,磊晶結構120a及120b可包含一矽鍺磊晶層(Si-Ge),適用於一PMOS電晶體,或者磊晶結構120a及120b可包含一矽碳磊晶層(Si-C),適用 於一NMOS電晶體。所形成的磊晶結構120a及120b由於與鰭狀結構108a及108b(通常為矽材質)具有不同的晶格常數,故會對位於閘極結構112下方的鰭狀結構108a及108b晶格造成應力,進而產生應變矽通道,達成提昇遷移率之效果。 According to the above embodiment, after the fin structures 108a and 108b are etched and the recesses R are formed, as shown in FIG. 9, an epitaxial process E4 is performed to conformally form a hexagonal cross-sectional shape in the recess R. Epitaxial structures 120a and 120b. Depending on the electrical properties of the multi-gate field effect transistor, the epitaxial structures 120a and 120b may comprise a germanium epitaxial layer (Si-Ge) suitable for use in a PMOS transistor, or the epitaxial structures 120a and 120b may comprise One carbon epitaxial layer (Si-C), suitable for In an NMOS transistor. The formed epitaxial structures 120a and 120b have different lattice constants from the fin structures 108a and 108b (usually germanium materials), so that the lattice structures of the fin structures 108a and 108b under the gate structure 112 are stressed. In addition, a strain enthalpy channel is generated to achieve an effect of improving mobility.

須注意,在閘極電極116使用一般多晶矽材質的實施例中,為了避免前述磊晶製程E2或E4中磊晶結構120亦生長在閘極結構112上造成閘極結構112與鰭狀結構108橋接,多晶矽的閘極電極116在進行磊晶製程前會先進行一閘極預縮減(pre-pullback)製程。該製程可包含對閘極結構112進行氧化或氮化處理,以在閘極電極116的裸露側面上形成一層氧化層(圖未示)或氮化層(圖未示)。如此,在後續的磊晶製程E2或E4中,多晶矽材質的閘極電極116上將不會長出磊晶層,以避免閘極結構112與鰭狀結構108橋接。 It should be noted that in the embodiment in which the gate electrode 116 is made of a general polysilicon material, in order to prevent the epitaxial structure 120 in the epitaxial process E2 or E4 from growing on the gate structure 112, the gate structure 112 and the fin structure 108 are bridged. The gate electrode 116 of the polysilicon is first subjected to a gate pre-pullback process before performing the epitaxial process. The process can include oxidizing or nitriding the gate structure 112 to form an oxide layer (not shown) or a nitride layer (not shown) on the exposed side of the gate electrode 116. Thus, in the subsequent epitaxial process E2 or E4, the epitaxial layer will not grow on the gate electrode 116 of the polysilicon material to avoid bridging the gate structure 112 and the fin structure 108.

在完成了鰭狀結構與磊晶結構之後,接下來的實施例將以第7圖所示之實施例為基礎,以截面圖來表示其後本發明方法的各步驟,以讓閱者能容易、充分地瞭解本發明。第10圖係為以第7圖中線A-A’所作之截面圖,其繪示出本發明實施例中一非平面化半導體結構,其包含有:一鰭狀結構108、一閘極結構112,設在鰭狀結構108上,閘極結構112包含蓋層118、閘極電極116、及閘極氧化層114等部位、以及磊晶結構120,分別覆蓋在閘極結構112兩側的鰭狀結構108上。 After the fin structure and the epitaxial structure are completed, the following embodiment will be based on the embodiment shown in Fig. 7, and the steps of the method of the present invention will be shown in a sectional view to make it easier for the reader. The invention is fully understood. Figure 10 is a cross-sectional view taken along line A-A' of Figure 7, which illustrates a non-planarized semiconductor structure in accordance with an embodiment of the present invention, comprising: a fin structure 108, a gate structure 112, disposed on the fin structure 108, the gate structure 112 includes a cap layer 118, a gate electrode 116, and a gate oxide layer 114 and the like, and an epitaxial structure 120, respectively covering the fins on both sides of the gate structure 112 On the structure 108.

在本發明實施例中,如第10圖所示,一離子佈植製程E5會在磊晶結構120形成後進行,以在磊晶結構120及鰭狀 結構108中植入適當的摻質,如此,將可在鰭狀結構108中形成預定的一源/汲極區122a/122b。所植入的摻質將視半導體的類型而定,以NMOS電晶體為例,其源/汲極區122a/122b所植入之摻質為磷(P)、砷(As)等n型摻質。以PMOS電晶體為例,其源/汲極區122a/122b所植入之摻質則為硼(B)等P型的摻質。 In the embodiment of the present invention, as shown in FIG. 10, an ion implantation process E5 is performed after the epitaxial structure 120 is formed to be in the epitaxial structure 120 and the fins. Appropriate dopants are implanted in structure 108 such that a predetermined source/drain region 122a/122b can be formed in fin structure 108. The dopants implanted will depend on the type of semiconductor. Taking NMOS transistors as an example, the dopants implanted in the source/drain regions 122a/122b are n-type dopants such as phosphorus (P) and arsenic (As). quality. Taking a PMOS transistor as an example, the dopant implanted in the source/drain regions 122a/122b is a P-type dopant such as boron (B).

在源/汲極區122a/122b形成後,接著請參照第11圖,為了增進閘極元件之速度,發明中會進行一閘極縮減製程(gate pull back)E6以縮減閘極結構112的線寬。閘極縮減製程E6可為進行一濕蝕刻製程來蝕刻閘極結構112裸露之側壁,使整個閘極結構在寬度上縮減。例如,當虛置閘極(dummy gate)閘極電極材質選用多晶矽(poly-Si)、氮化矽(SiN)或氮氧化矽(SiON)、碳氮化矽(SiCN)、或是美商應用材料公司所提供之進階圖案化薄膜(advanced pattern film,APF)時,其可分別使用稀釋後的氫氧化鉀(diluted KOH)、HF/EG(乙二醇)混酸或低溫磷酸(H3PO4),或是以氧電漿(O2 plasma)的方式來蝕刻為之。由於蓋層118的保護,閘極縮減製程E6僅會蝕刻閘極結構112的側壁,而不會傷害到磊晶結構120或是縮減閘極結構112的高度。閘極縮減製程E6不僅使得閘極結構112介於兩側磊晶結構120之間的線寬變小,並會使得閘極結構112與兩側的磊晶結構120分隔,裸露出底下的鰭狀結構108,進而形成凹槽126結構。 After the source/drain regions 122a/122b are formed, and then referring to FIG. 11, in order to increase the speed of the gate elements, a gate pull back E6 is performed in the invention to reduce the line of the gate structure 112. width. The gate reduction process E6 can perform a wet etch process to etch the exposed sidewalls of the gate structure 112, reducing the overall gate structure in width. For example, when the dummy gate gate electrode is made of poly-Si, SiN or SiON, SiCN, or US applications When the material company provides an advanced pattern film (APF), it can use diluted potassium hydride, HF/EG (ethylene glycol) mixed acid or low temperature phosphoric acid (H 3 PO). 4 ), or etched by means of oxygen plasma (O 2 plasma). Due to the protection of the cap layer 118, the gate reduction process E6 only etches the sidewalls of the gate structure 112 without damaging the epitaxial structure 120 or reducing the height of the gate structure 112. The gate reduction process E6 not only makes the gate structure 112 have a smaller line width between the epitaxial structures 120 on both sides, but also separates the gate structure 112 from the epitaxial structures 120 on both sides, and exposes the bottom fins. Structure 108, in turn, forms a recess 126 structure.

在閘極縮減製程E6後,接著請參照第12圖,一離子佈 植製程E7會被施行來在裸露出的鰭狀結構108中植入摻質,以在閘極電極116兩側形成輕摻雜汲極區(lightly doped drain,LDD)128。同前述源/汲極區122a/122b之製作,所植入的摻質將視半導體的類型,其可能是以輕度摻雜方式植入磷(P)、砷(As)等n型摻質(對NMOS),或是硼(B)等P型摻質(對NMOS)。對本發明而言,由於此階段閘極結構112上尚未形成有間隙壁結構,且其為一縮減之閘極結構,更可再選擇性搭配一斜角離子佈植製程,故摻質將不會受到間隙壁的阻擋而能直接地植入下層的鰭狀結構108中,其將有助於更精準有效地控制所形成之輕摻雜汲極區128的摻雜濃度與摻雜圖形。 After the gate reduction process E6, then please refer to Figure 12, an ion cloth The implant process E7 is applied to implant dopants in the exposed fin structure 108 to form a lightly doped drain (LDD) 128 on either side of the gate electrode 116. With the fabrication of the source/drain regions 122a/122b described above, the dopants implanted will depend on the type of semiconductor, which may be implanted with n-type dopants such as phosphorus (P) and arsenic (As) in a lightly doped manner. (for NMOS), or P-type dopant (for NMOS) such as boron (B). For the present invention, since the gap structure is not formed on the gate structure 112 at this stage, and it is a reduced gate structure, it can be selectively matched with an oblique ion implantation process, so the dopant will not be Blocked by the spacers can be implanted directly into the underlying fin structure 108, which will help to more accurately and efficiently control the doping concentration and doping pattern of the formed lightly doped drain region 128.

在進一步的實施例中,輕摻雜汲極區128形成後可再進行一金屬矽化物(salicide)製程,以在磊晶結構120表面形成金屬矽化物124,其中上述金屬矽化物製程可包含前清洗製程、金屬沉積製程、退火製程、選擇性蝕刻製程及測試製程等,該些製程已為本領域中所習知者,故在此不多加贅述。或者,上述的金屬矽化物製程亦可能留待後續替換性金屬閘極製程完成後、挖出接觸孔之後才施行。 In a further embodiment, after the lightly doped drain region 128 is formed, a metal salicide process can be performed to form a metal telluride 124 on the surface of the epitaxial structure 120, wherein the metal germanide process can include the former Cleaning processes, metal deposition processes, annealing processes, selective etching processes, and test processes, which are well known in the art, are not described here. Alternatively, the metal germanide process described above may also be performed after the subsequent replacement metal gate process is completed and the contact holes are dug.

承前述實施例,在形成輕摻雜汲極區128後,接著,如第13圖所示,整個基底面上會毯覆一層材質層130以作為後續間隙壁形成步驟的材料來源。特別係,在本發明一較佳實施例中,材質層130係可以旋轉塗佈玻璃製程(spin on glass,SOG)或流動式化學氣相沉積(flowable CVD,FCVD)等製程方 式形成。再者,該些製程可使用低介電常數(low-K)材質來形成材質層130,如polysiloxane等材料。在本發明進一步的實施例中,形成材質層130之前可先在基底面上形成一層襯墊層(圖未示),如Si3N4,SiON,SiCN等材質,其將有助於使後續的材質層130更能有效附著在基底面上,提升閘極元件整體可靠度。 In the foregoing embodiment, after forming the lightly doped drain region 128, then, as shown in Fig. 13, a layer of material 130 is blanketed over the entire substrate surface as a source of material for the subsequent spacer forming step. In particular, in a preferred embodiment of the present invention, the material layer 130 can be spin-coated (SOG) or flowable CVD (FCVD). Formed. Furthermore, these processes can use a low dielectric constant (low-K) material to form a material layer 130, such as a polysiloxane. In a further embodiment of the present invention, a spacer layer (not shown) such as Si3N4, SiON, SiCN or the like may be formed on the surface of the substrate before forming the material layer 130, which will help to make the subsequent material layer. 130 is more effective to adhere to the base surface, improving the overall reliability of the gate components.

接著請參照第14圖,在形成材質層130後,一蝕刻製程E8會進行來蝕刻材質層130,而在閘極結構112與磊晶結構120的側壁上形成間隙壁132結構。蝕刻製程E8可能同時包含一材質層130的回蝕製程與一形成間隙壁132的乾蝕刻製程。該回蝕製程可將原先所沉積之材質層130的厚度蝕刻到一預定值,之後再進行該乾蝕刻製程來蝕刻剩餘的材質層130以形成間隙壁132結構。須注意者,在本較佳實施例中,所形成的間隙壁132將會填平閘極結構112與位於鰭狀結構上之磊晶結構120之間的凹槽126以及各鰭狀結構108之間的間隙,並且,間隙壁132會具有兩部位132a,各部位132a分別填入於各凹槽126內,且各部為132a的頂面分別與接壤的磊晶結構120的頂面齊平或略低。 Next, referring to FIG. 14, after the material layer 130 is formed, an etching process E8 is performed to etch the material layer 130, and a spacer 132 structure is formed on the sidewalls of the gate structure 112 and the epitaxial structure 120. The etching process E8 may include both an etch back process of the material layer 130 and a dry etching process for forming the spacers 132. The etchback process etches the thickness of the previously deposited material layer 130 to a predetermined value, and then performs the dry etching process to etch the remaining material layer 130 to form the spacer 132 structure. It should be noted that in the preferred embodiment, the spacers 132 formed will fill the recess 126 between the gate structure 112 and the epitaxial structure 120 on the fin structure and the fin structures 108. The gaps between the gaps 132 and the gaps 132 may have two portions 132a, and the respective portions 132a are respectively filled in the respective grooves 126, and the top surfaces of the portions 132a are respectively flush with the top surface of the bordering epitaxial structure 120 or slightly low.

接著請參照第15圖,其描繪出根據本發明製程所形成之閘極元件的立體示意圖。如圖所示,對本實施例所形成之最終結構而言,其閘極結構112之側壁可能會因為蝕刻的關係而未全部覆蓋有間隙壁132,僅會在低於磊晶結構120的頂面之高度有間隙壁132存在,且填入凹槽126內的間隙壁132 會與磊晶結構120的表面齊平。 Referring next to Figure 15, a schematic perspective view of a gate element formed in accordance with the process of the present invention is depicted. As shown in the figure, for the final structure formed in this embodiment, the sidewalls of the gate structure 112 may not be completely covered with the spacers 132 due to the etching relationship, and only below the top surface of the epitaxial structure 120. The height has a gap wall 132 present and fills the gap 132 in the recess 126 Will be flush with the surface of the epitaxial structure 120.

綜合上述間隙壁之形成步驟,對本發明而言,使用旋轉塗佈玻璃製程或流動式化學氣相沉積製程將可使用低介電常數材質來製作間隙壁之概念變為可能。以低介電常數材料來形成間隙壁結構將可有效降低寄生電容的產生,且由於上述製程具有較佳的填洞率,其對於凹陷結構會具有較好的填補效果,故之後所形成的間隙壁132能完整填入閘極結構112與磊晶結構120之間的凹槽126中,是為一具有相當優勢的製作方式。 In combination with the formation of the spacers described above, it is possible for the present invention to use a spin-on glass process or a flow chemical vapor deposition process to create a concept of spacers using a low dielectric constant material. Forming the spacer structure with a low dielectric constant material can effectively reduce the generation of parasitic capacitance, and since the above process has a better filling rate, it has a better filling effect on the recessed structure, so the gap formed later The wall 132 can be completely filled into the recess 126 between the gate structure 112 and the epitaxial structure 120, which is a relatively advantageous manufacturing method.

對本發明而言,本發明方法同樣可應用到平面化半導體的製作中。在接下來的實施例中,吾人將參照第16-21圖來說明本發明平面化半導體製程之步驟流程。首先請參照第16圖,一基底300會先被提供來作為整個半導體結構的基礎。基底300可包含但不限定於是矽基底(silicon substrate)、磊晶矽(epitaxial silicon substrate)、矽鍺半導體基底(silicon germanium substrate)、碳化矽基底(silicon carbide substrate)或矽覆絕緣(silicon-on-insulator,SOI)等基材。基底300上可以預先定義有NMOS區域與PMOS區域,並已形成對應之P井與N井結構。接著,一圖案化的閘極結構302會形成在基底300上,形成閘極結構302之製程可包含:依序在基底300上形成閘極氧化層304、閘極電極306、及蓋層308等層結構,接著圖案化蓋層308,並以圖案化後的蓋層308為遮罩來進行蝕刻,以形成圖案化的閘極電極306與閘極氧化層304。 上述閘極結構302之形成方法為本領域習用已久之技術,故於此不再多加贅述。 For the purposes of the present invention, the method of the invention is equally applicable to the fabrication of planarized semiconductors. In the following embodiments, the flow of steps of the planarization semiconductor process of the present invention will be described with reference to Figs. Referring first to Figure 16, a substrate 300 will be provided first as a basis for the overall semiconductor structure. The substrate 300 may include, but is not limited to, a silicon substrate, an epitaxial silicon substrate, a silicon germanium substrate, a silicon carbide substrate, or a silicon-on insulator. -insulator, SOI) and other substrates. An NMOS region and a PMOS region may be defined in advance on the substrate 300, and corresponding P well and N well structures have been formed. Then, a patterned gate structure 302 is formed on the substrate 300. The process of forming the gate structure 302 may include: sequentially forming a gate oxide layer 304, a gate electrode 306, and a cap layer 308 on the substrate 300. The layer structure is followed by patterning the cap layer 308 and etching with the patterned cap layer 308 as a mask to form the patterned gate electrode 306 and the gate oxide layer 304. The method for forming the gate structure 302 described above is a well-known technique in the art, and thus will not be further described herein.

在本發明中,閘極結構302於後續製程中會進行一縮減製程(pullback)來減少其線寬(critical dimension,CD),並可能在閘極元件製作完成後還會再進行一替換性金屬閘極製程來將閘極電極替換成至少一功函數與至少一低電阻率的金屬材質。對此,在上述步驟中,以前置閘極(gate first)製程為例,閘極電極306材質可選用多晶矽(poly-Si)、金屬矽化物或金屬等導電材料,而針對後置閘極(gate last)製程而言,則可選用多晶矽(poly-Si)、氮化矽(SiN)或氮氧化矽(SiON)、碳氮化矽(SiCN)、或是美商應用材料公司所提供之進階圖案化薄膜(advanced pattern film,APF)來製備虛置閘極(dummy gate)。此外,其所對應之蓋層308則可為氮化矽(SiN)或氧化矽(SiO2)等材質。上述縮減製程以及替換性金屬閘極製程將於後述實施例中有詳細的說明。 In the present invention, the gate structure 302 undergoes a pullback process in subsequent processes to reduce its critical dimension (CD), and may also perform a replacement metal after the gate device is fabricated. The gate process replaces the gate electrode with at least one work function and at least one low resistivity metal material. In this regard, in the above steps, the gate first process is taken as an example, and the gate electrode 306 may be made of a polysilicon material such as poly-Si, metal telluride or metal, and for the rear gate ( In the case of gate last), poly-Si, SiN or SiNO, SiCN, or U.S. Applied Materials can be used. An advanced pattern film (APF) is used to prepare a dummy gate. In addition, the cap layer 308 corresponding thereto may be made of material such as tantalum nitride (SiN) or yttrium oxide (SiO 2 ). The above-described reduction process and replacement metal gate process will be described in detail in the embodiments to be described later.

在定義出閘極結構302圖形後,如第17圖所示,流程中將進行一蝕刻製程E9在基底300中形成凹槽310,以供後續磊晶結構的形成之用。該蝕刻製程E9對於基底300具有選擇性,其可包含了一第一乾蝕刻製程與一第一濕蝕刻製程,其中第一乾蝕刻製程主要係向下蝕刻,其可使用以六氟化硫為主(SF6-base)的蝕刻劑或是以三氟化氮為主(NF3-base)的蝕刻劑。而該第一濕蝕刻製程則包含了向下蝕刻與側向蝕刻,故會在基底300中形成有往閘極結構302方向凹入的凹面310a 特徵。 After defining the pattern of the gate structure 302, as shown in FIG. 17, an etching process E9 is performed in the process to form a recess 310 in the substrate 300 for the formation of a subsequent epitaxial structure. The etching process E9 is selective to the substrate 300, and may include a first dry etching process and a first wet etching process, wherein the first dry etching process is mainly down etching, which may be performed using sulfur hexafluoride. The main (SF 6 -base) etchant or an etchant based on nitrogen trifluoride (NF 3 -base). The first wet etching process includes a downward etch and a side etch, so that a feature of the concave surface 310a recessed toward the gate structure 302 is formed in the substrate 300.

須注意者,上述第17圖的截面結構與先前第8圖所示結構(對鰭狀結構108進行蝕刻後再生長磊晶結構120)類似,故第16圖以降的各步驟亦可作為第8圖所示結構之後的各製程步驟。 It should be noted that the cross-sectional structure of the above-mentioned FIG. 17 is similar to the structure shown in the previous FIG. 8 (the regrowth epitaxial structure 120 after etching the fin structure 108), so that the steps of FIG. 16 can also be used as the eighth step. The various process steps following the structure shown in the figure.

在接下來的製程中,請參照第18圖,方法中會採用一選擇性磊晶製程(Selective Epitaxy Growth,SEG)在前述形成的凹槽310中長出磊晶結構312。磊晶結構312係作為應變矽通道的應力源,在本實施例中,磊晶結構312的材質可為矽鍺(SiGe,對PMOS電晶體而言)或碳化矽(SiC,對NMOS電晶體而言),其會對鄰近的矽通道區域300a造成應力,進而達成提升載子遷移率的效果。 In the next process, please refer to FIG. 18, in which a selective epitaxial process (SEG) is used to grow the epitaxial structure 312 in the groove 310 formed. The epitaxial structure 312 serves as a stressor source for the strained helium channel. In this embodiment, the material of the epitaxial structure 312 may be germanium (SiGe for PMOS transistors) or tantalum carbide (SiC for NMOS transistors). That is, it will stress the adjacent sputum channel region 300a, thereby achieving the effect of increasing the carrier mobility.

在本發明實施例中,復參照第18圖,一離子植入製程E10會施加在前述所形成的磊晶結構312,以將N型摻質(如磷、砷或銻)、P型摻質(如硼、二氟化硼)並混合其他共同摻質(如碳、氮、氟、鍺、矽)分別植入相對應之NMOS或PMOS的磊晶結構312中,以在閘極結構302側邊的磊晶結構312中定義出源極/汲極區314a/314b,完成電晶體整體架構。 In the embodiment of the present invention, referring to FIG. 18, an ion implantation process E10 is applied to the epitaxial structure 312 formed to form an N-type dopant (such as phosphorus, arsenic or antimony) and a P-type dopant. (such as boron, boron difluoride) and mixed with other common dopants (such as carbon, nitrogen, fluorine, antimony, antimony) are respectively implanted into the corresponding NMOS or PMOS epitaxial structure 312 to be on the side of the gate structure 302 The source/drain regions 314a/314b are defined in the edge epitaxial structure 312 to complete the overall crystal structure.

接下來請參照第19圖,同樣地,在源/汲極區314a/314b形成後,為了增進閘極元件之速度,發明中會進行一閘極縮減製程E11以縮減閘極結構302的線寬。閘極縮減製程E11可為進行一濕蝕刻製程來蝕刻閘極結構302之側壁,使整個 閘極結構在寬度上縮減。視閘極電極306材質的不同,所使用的蝕刻液可包含稀釋後的氫氧化鉀(diluted KOH)、HF/EG(乙二醇)混酸、低溫磷酸(H3PO4),或是以氧電漿(O2 plasma)的方式為之。由於蓋層308的保護,閘極縮減製程E11僅會蝕刻閘極結構302的側壁,而不會傷害到磊晶結構312或是縮減閘極結構302的高度。閘極縮減製程E11會使閘極結構302介於兩側磊晶結構312之間的線寬變小,進而裸露出部分的下層基底300b。 Next, referring to FIG. 19, similarly, in order to increase the speed of the gate element after the source/drain regions 314a/314b are formed, a gate reduction process E11 is performed in the invention to reduce the line width of the gate structure 302. . The gate reduction process E11 may perform a wet etch process to etch the sidewalls of the gate structure 302 such that the entire gate structure is reduced in width. Depending on the material of the gate electrode 306, the etching solution used may include diluted potassium hydroxide (diluted KOH), HF/EG (ethylene glycol) mixed acid, low-temperature phosphoric acid (H 3 PO 4 ), or oxygen. The way of plasma (O 2 plasma) is this. Due to the protection of the cap layer 308, the gate reduction process E11 only etches the sidewalls of the gate structure 302 without damaging the epitaxial structure 312 or reducing the height of the gate structure 302. The gate reduction process E11 causes the gate structure 302 to have a smaller line width between the epitaxial structures 312 on both sides, thereby exposing a portion of the lower substrate 300b.

同樣地,須注意在閘極電極306使用一般多晶矽材質的實施例中,為了避免前述磊晶製程中磊晶結構312亦會生長在閘極結構302上造成閘極結構302與基底300橋接,多晶矽的閘極電極306在進行磊晶製程前會先進行一閘極預縮減製程。該製程可包含對閘極結構302進行氧化或氮化處理,以在閘極電極306的裸露面上形成一層氧化層或氮化層(圖未示)。如此,在後續的磊晶製程中,多晶矽材質的閘極電極306上將不會長出磊晶結構,避免閘極結構302與基底300橋接。 Similarly, in the embodiment in which the gate electrode 306 is made of a general polysilicon material, in order to prevent the epitaxial structure 312 from growing on the gate structure 302 during the epitaxial process, the gate structure 302 and the substrate 300 are bridged. The gate electrode 306 first performs a gate pre-shrinking process before performing the epitaxial process. The process can include oxidizing or nitriding the gate structure 302 to form an oxide or nitride layer (not shown) on the exposed surface of the gate electrode 306. Thus, in the subsequent epitaxial process, the epitaxial structure of the gate electrode 306 of the polysilicon material will not grow, thereby preventing the gate structure 302 from bridging with the substrate 300.

在閘極縮減製程E11後,接著請參照第20圖,一離子佈植製程E12會被施行來在裸露出的基底300b中植入摻質,以在閘極結構302兩側形成輕摻雜汲極區(LDD)318。同前述源/汲極區314a/314b之製作,所植入的摻質將視半導體的類型,其可能是以輕度摻雜方式植入磷(P)、砷(As)等n型摻質(對NMOS),或是硼(B)等P型摻質(對NMOS)。對本發明而言,由於此階段閘極結構302上尚未形成有間隙壁結構,且 其為一縮減之閘極結構,更可再選擇性搭配一斜角離子佈植製程,故摻質將不會受到間隙壁的阻擋而能直接地植入下層的基底300b中,其將有助於更精準有效地控制所形成之輕摻雜汲極區318的摻雜濃度與摻雜圖形。 After the gate reduction process E11, and then referring to FIG. 20, an ion implantation process E12 is performed to implant dopants in the exposed substrate 300b to form lightly doped germanium on both sides of the gate structure 302. Polar Region (LDD) 318. With the fabrication of the source/drain regions 314a/314b described above, the dopants implanted will depend on the type of semiconductor, which may be implanted with n-type dopants such as phosphorus (P) and arsenic (As) in a lightly doped manner. (for NMOS), or P-type dopant (for NMOS) such as boron (B). For the present invention, since the barrier structure is not formed on the gate structure 302 at this stage, and It is a reduced gate structure, and can be selectively matched with a bevel ion implantation process, so that the dopant will not be blocked by the spacer and can be directly implanted into the underlying substrate 300b, which will help The doping concentration and doping pattern of the formed lightly doped drain region 318 are controlled more accurately and efficiently.

在形成輕摻雜汲極區318後,接著,如第21圖所示,在閘極結構302的側壁上形成間隙壁320結構。間隙壁320可藉由沉積一材質層再對其進行蝕刻之方式產生,其於前述實施例中已有詳細說明,在此不再多加贅述。 After forming the lightly doped drain region 318, next, as shown in Fig. 21, a spacer 320 structure is formed on the sidewall of the gate structure 302. The spacer 320 can be formed by depositing a material layer and etching it, which has been described in detail in the foregoing embodiments, and will not be further described herein.

在進一步的實施例中,間隙壁320形成後可再進行一金屬矽化物製程,以在源極/汲極區314a/314b表面形成金屬矽化物316,或者,上述的金屬矽化物製程亦可能留待後續替換性金屬閘極製程完成後、挖出接觸孔之後才施行。其中上述金屬矽化物製程可包含前清洗製程、金屬沉積製程、退火製程、選擇性蝕刻製程及測試製程等,該些製程已為本領域中所習知者,故在此不多加贅述。如此,即完成了完整的閘極元件。 In a further embodiment, after the spacers 320 are formed, a metal germanide process can be performed to form metal germanide 316 on the surface of the source/drain regions 314a/314b, or the metal germanide process described above may be left After the subsequent replacement metal gate process is completed, the contact hole is excavated. The metal telluride process may include a pre-cleaning process, a metal deposition process, an annealing process, a selective etching process, and a test process. These processes are well known in the art, and thus are not described herein. In this way, the complete gate element is completed.

在接下來的實施例中,吾人將參照第22-25圖來說明本發明半導體製程中後續選擇性的替換性金屬閘極製程,亦即整合於後置閘極(gate last)的步驟。採用替換性金屬閘極製程將可避免源極/汲極超淺接面活化回火以及形成金屬矽化物等高熱預算製程,且具有較寬廣的材料選擇,是為一相當具有優勢之技術。須注意該替換性金屬閘極製程可以接續前述本發明非平面化與平面化半導體製程的任一者,不會有製程 相容性的問題。第22-25圖係以前述第14圖所完成之結構為基礎,其中可能有部分元件有所差異,但不影響到整體製程。 In the following embodiments, the subsequent selective metal gate process in the semiconductor process of the present invention, that is, the step of integrating into the gate last, will be described with reference to FIGS. 22-25. The use of an alternative metal gate process will avoid the source/drain ultra-shallow junction activation tempering and the formation of high-heat budget processes such as metal telluride, and has a wide selection of materials, which is a considerable advantage. It should be noted that the replacement metal gate process can continue any of the aforementioned non-planarization and planarization semiconductor processes of the present invention, and there is no process. Compatibility issues. Figures 22-25 are based on the structure completed in Figure 14 above, where some components may differ but do not affect the overall process.

請參照第22圖,其中繪示出第14圖所示實施例中所完成的半導體元件結構,其包含閘極結構112、鰭狀結構108、及磊晶結構120等主要部位。首先方法中會先進行一沉積製程在基底面上選擇性形成一接觸洞蝕刻停止層(CESL)(圖未示),再形成一層間介電層(inter-layer dielectric,ILD)134。層間介電層134會毯覆整個基底面(包含整個閘極結構112與磊晶結構120區域)並超出閘極結構112一預定厚度。 Referring to FIG. 22, a semiconductor device structure completed in the embodiment shown in FIG. 14 is illustrated, which includes a main portion such as a gate structure 112, a fin structure 108, and an epitaxial structure 120. In the first method, a deposition process is first performed to form a contact etch stop layer (CESL) (not shown) on the substrate surface, and an inter-layer dielectric (ILD) 134 is formed. The interlayer dielectric layer 134 blankets the entire substrate surface (including the entire gate structure 112 and the epitaxial structure 120 region) and extends beyond the gate structure 112 by a predetermined thickness.

接著請參閱第23圖。在形成層間介電層134後,藉由一平坦化製程E13移除部分的層間介電層134以及蓋層118,直至暴露出閘極結構112中的閘極電極116。閘極電極116在此實施例中係作為一虛置閘極(dummy gate),其於後續製程中將會被移除。 Then see Figure 23. After the interlayer dielectric layer 134 is formed, a portion of the interlayer dielectric layer 134 and the cap layer 118 are removed by a planarization process E13 until the gate electrode 116 in the gate structure 112 is exposed. Gate electrode 116 is in this embodiment a dummy gate that will be removed in subsequent processes.

在平坦化製程E13後,如第24圖所示,一蝕刻製程E14會被進行來蝕刻裸露出的閘極電極116。閘極電極116在此步驟會被移除殆盡,而裸露出其下方的閘極介電層114。此製程會形成一閘極溝渠136,以供後續替代性閘極金屬材料填入。 After the planarization process E13, as shown in FIG. 24, an etching process E14 is performed to etch the exposed gate electrode 116. The gate electrode 116 is removed at this step and the gate dielectric layer 114 underneath is exposed. This process forms a gate trench 136 for subsequent replacement of the gate metal material.

值得注意的是,本較佳實施例係可與前置高介電常數層(high-K first)製程整合。在此類製程中,閘極介電層114包含一高介電常數(high dielectric constant,high-k)之閘極介電層,其可以是一金屬氧化物層,例如一稀土金屬氧化物層。該閘 極介電層114係於閘極結構112進行圖案化之前就會先形成在鰭狀結構108,並隨著閘極結構112一起圖案化。高介電常數之閘極介電層114係可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。在此實施例中,閘極溝渠136內的閘極介電層114上還可能形成有底部阻障層(如氮化鈦材質TiN)與蝕刻停止層(如氮化鉭材質TaN)(圖未示),於此不再多加贅述。 It should be noted that the preferred embodiment can be integrated with a pre-high-k first process. In such a process, the gate dielectric layer 114 includes a high dielectric constant (high-k) gate dielectric layer, which may be a metal oxide layer, such as a rare earth metal oxide layer. . The gate dielectric layer 114 is formed in the fin structure 108 prior to patterning of the gate structure 112 and is patterned along with the gate structure 112. The high dielectric constant gate dielectric layer 114 may be selected from hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (hafnium silicon oxynitride, HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ) Zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), antimony Strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1 -xO 3 , PZT) and barium strontium titanate (Ba x ) A group consisting of Sr 1 -xTiO 3 , BST). In this embodiment, a gate barrier layer (such as TiN for titanium nitride) and an etch stop layer (such as tantalum nitride TaN) may be formed on the gate dielectric layer 114 in the gate trench 136 (not shown). Show), no more details here.

另外值得注意的是,本較佳實施例係可與後置高介電常數層(high-K last)製程整合。在此製程中,高介電常數之閘極介電層將不會在閘極結構112圖案化之前進行製作,而係在移除虛置閘極形成閘極溝渠136後才形成在整個基底面上(包括閘極溝渠136表面),如第25圖中的閘極介電層138所示。同樣地,所形成的高介電常數之閘極介電層138上還可形成有底部阻障層(如氮化鈦材質TiN,未圖示)與蝕刻停止層(如 氮化鉭材質TaN,未圖示),於此不再多加贅述。 It is also worth noting that the preferred embodiment can be integrated with a post-high-K last process. In this process, the high dielectric constant gate dielectric layer will not be formed prior to patterning of the gate structure 112, but will be formed over the entire substrate surface after the dummy gate is removed to form the gate trench 136. Upper (including the surface of gate trench 136), as shown by gate dielectric layer 138 in FIG. Similarly, the formed high dielectric constant gate dielectric layer 138 may also be formed with a bottom barrier layer (such as titanium nitride TiN, not shown) and an etch stop layer (eg, Tantalum nitride material TaN, not shown), will not be described again here.

復參照第25圖,在形成閘極介電層138後,係進行一化學氣相沈積(chemical vapor deposition,CVD)製程、一物理氣相沈積(physical vapor deposition,PVD)製程、或一原子層沉積(atomic layer deposition,ALD),以於閘極溝渠136內形成一功函數金屬層140。視閘極元件的種類而定,功函數金屬層140可為一具有p型導電型式的p型功函數金屬層,例如氮化鈦(titanium nitride,TiN)、碳化鈦(titanium carbide,TiC)、氮化鉭(tantalum nitride,TaN)、碳化鉭(tantalum carbide,TaC)、碳化鎢(tungsten carbide,WC)、或氮化鋁鈦(aluminum titanium nitride,TiAlN),但不限於此。或是具有n型導電型式之n型功函數金屬層,例如鋁化鈦(titanium aluminide,TiAl)層、鋁化鋯(zirconium aluminide,ZrAl)層、鋁化鎢(tungsten aluminide,WAl)層、鋁化鉭(tantalum aluminide,TaAl)層或鋁化鉿(hafnium aluminide,HfAl)層,但不限於此。此外,功函數金屬層140可為一單層結構或一複合層結構,如功函數金屬層140可能同時包含複數層不同的功函數金屬層,藉以對閘極元件的電性作最佳的調整。 Referring to FIG. 25, after forming the gate dielectric layer 138, a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, or an atomic layer is performed. An atomic layer deposition (ALD) is formed to form a work function metal layer 140 in the gate trench 136. Depending on the type of gate element, the work function metal layer 140 can be a p-type work function metal layer having a p-type conductivity type, such as titanium nitride (TiN), titanium carbide (TiC), Tantalum nitride (TaN), tantalum carbide (TaC), tungsten carbide (WC), or aluminum titanium nitride (TiAlN), but is not limited thereto. Or an n-type work function metal layer having an n-type conductivity type, such as a titanium aluminide (TiAl) layer, a zirconium aluminide (ZrAl) layer, a tungsten aluminide (WAl) layer, aluminum A tantalum aluminide (TaAl) layer or a hafnium aluminide (HfAl) layer, but is not limited thereto. In addition, the work function metal layer 140 may be a single layer structure or a composite layer structure. For example, the work function metal layer 140 may simultaneously include a plurality of different work function metal layers, thereby optimally adjusting the electrical properties of the gate elements. .

在形成功函數金屬層140後,接下來,係於閘極溝渠136內選擇性形成一頂部阻障層(圖未示),再形成一填充金屬層142。填充金屬層142係用以填滿閘極溝渠136以作為閘極電極之主體,其可選擇具有優良填充能力與較低阻率的金屬或金屬氧化物,例如鋁(Al)、鎢(W)、銅(Cu)、鋁化鈦(TiAl)或 氧化鋁鈦(TiAlO),但不限於此。 After forming the success function metal layer 140, a top barrier layer (not shown) is selectively formed in the gate trench 136 to form a fill metal layer 142. The filling metal layer 142 is used to fill the gate trench 136 as a main body of the gate electrode, and may select a metal or metal oxide having excellent filling ability and lower resistivity, such as aluminum (Al), tungsten (W). , copper (Cu), titanium aluminide (TiAl) or Titanium alumina oxide (TiAlO), but is not limited thereto.

在完成上述閘極電極之製作後,最後,進行一或多道平坦化製程,如一CMP製程,用以移除形成在層間介電層134表面、多餘的填充金屬層142、功函數金屬層140、以及閘極介電層138,而完成了一替代性金屬閘極結構之製作。此外,本發明之另一實施態樣亦可於完成替代性金屬閘極結構之後,將層間介電層134與接觸洞蝕刻停止層(CESL)完全去除,然後再重新形成接觸洞蝕刻停止層(CESL)(圖未示)與層間介電層(ILD)(圖未示),以確保接觸洞蝕刻停止層(CESL)能提供完整且適當的壓縮或伸張應力。須注意,上述所提供之替代性金屬閘極製程之實施例係僅供例示之用,其僅重點性地說明了製作替代性金屬閘極各部件的基本步驟,可能省略了一些繁複的步驟或是被必要之元件,但並不影響本發明半導體製程可結合替代性金屬閘極製程之概念。 After the fabrication of the gate electrode is completed, finally, one or more planarization processes, such as a CMP process, are performed to remove the surface of the interlayer dielectric layer 134, the excess filler metal layer 142, and the work function metal layer 140. And the gate dielectric layer 138, and the fabrication of an alternative metal gate structure is completed. In addition, another embodiment of the present invention may completely remove the interlayer dielectric layer 134 and the contact hole etch stop layer (CESL) after completing the replacement metal gate structure, and then re-form the contact hole etch stop layer ( CESL) (not shown) and interlayer dielectric (ILD) (not shown) to ensure that the contact hole etch stop layer (CESL) provides complete and appropriate compression or tensile stress. It should be noted that the alternative metal gate process embodiments provided above are for illustrative purposes only, which merely highlights the basic steps in making the alternative metal gate components, possibly omitting some cumbersome steps or It is a necessary component, but does not affect the concept of the semiconductor process of the present invention that can be combined with an alternative metal gate process.

綜合上述本發明各實施例所提供之製程方法及各技術特徵,本發明於此亦提供了一種新穎的非平面化半導體結構,該非平面化半導體結構係具有根據本發明上述相關實施例所提供之製程方法形成的諸多技術特徵,其特徵在於,如第9圖與第14圖所示,包含有:一基底100;至少一鰭狀結構108,設於該基底上;一閘極結構112,覆蓋在部分該鰭狀結構108與部分該基底100上;複數個磊晶結構120,覆蓋在該閘極結構112兩側的該些鰭狀結構108上並與閘極結構112相分隔,以在每一閘極結構112、磊晶結構120、以及鰭狀結構 108之間界定出一凹槽126;一源極122a與一汲極122b,分別形成在閘極結構112兩側的各鰭狀結構108與各磊晶結構120中;輕摻雜汲極區128,分別形成在位於閘極結構112與閘極兩側的各磊晶結構120之間的鰭狀結構108中;以及間隙壁132,形成在閘極結構112與各磊晶結構120的側壁上,其中填入凹槽126中的間隙壁132係與磊晶結構120的頂面齊平。 In combination with the method and various technical features provided by the embodiments of the present invention, the present invention also provides a novel non-planarized semiconductor structure having the same according to the above related embodiments of the present invention. The technical features formed by the process method are characterized in that, as shown in FIG. 9 and FIG. 14 , a substrate 100 is included: at least one fin structure 108 is disposed on the substrate; and a gate structure 112 covers the On a portion of the fin structure 108 and a portion of the substrate 100; a plurality of epitaxial structures 120 overlying the fin structures 108 on both sides of the gate structure 112 and separated from the gate structure 112 for a gate structure 112, an epitaxial structure 120, and a fin structure A recess 126 is defined between the 108; a source 122a and a drain 122b are formed in each of the fin structures 108 and the epitaxial structures 120 on both sides of the gate structure 112; the lightly doped bungee region 128 Formed in a fin structure 108 between each of the epitaxial structures 120 on both sides of the gate structure 112 and the gate; and a spacer 132 formed on the sidewalls of the gate structure 112 and each of the epitaxial structures 120, The spacer 132 filled in the recess 126 is flush with the top surface of the epitaxial structure 120.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100‧‧‧基底 100‧‧‧Base

132‧‧‧間隙壁 132‧‧‧ spacers

102‧‧‧遮罩層 102‧‧‧mask layer

132a‧‧‧部位 132a‧‧‧ parts

104‧‧‧墊氧化層 104‧‧‧Mat oxide layer

134‧‧‧層間介電層 134‧‧‧Interlayer dielectric layer

106‧‧‧氮化層 106‧‧‧ nitride layer

136‧‧‧閘極溝渠 136‧‧ ‧ gate ditches

108/108a/108b‧‧‧鰭狀結構 108/108a/108b‧‧‧Fin structure

138‧‧‧閘極介電層 138‧‧‧ gate dielectric layer

110‧‧‧絕緣結構 110‧‧‧Insulation structure

140‧‧‧功函數金屬層 140‧‧‧Work function metal layer

112‧‧‧閘極結構 112‧‧‧ gate structure

142‧‧‧填充金屬層 142‧‧‧Filled metal layer

114‧‧‧閘極介電層 114‧‧‧ gate dielectric layer

200‧‧‧矽覆絕緣基底 200‧‧‧矽Insulation base

116‧‧‧閘極電極 116‧‧‧gate electrode

202‧‧‧基底 202‧‧‧Base

118‧‧‧蓋層 118‧‧‧ cover

204‧‧‧底氧化層 204‧‧‧ bottom oxide layer

120/120a/120b‧‧‧磊晶結構 120/120a/120b‧‧‧ epitaxial structure

206‧‧‧矽質層 206‧‧‧The enamel layer

122a/122b‧‧‧源極/汲極區 122a/122b‧‧‧Source/Bungee Zone

208a/208b‧‧‧鰭狀結構 208a/208b‧‧‧Fin structure

124‧‧‧金屬矽化物 124‧‧‧Metal Telluride

300/300b‧‧‧基底 300/300b‧‧‧Base

126‧‧‧凹槽 126‧‧‧ Groove

300a‧‧‧矽通道區域 300a‧‧‧矽Channel area

128‧‧‧輕摻雜汲極區 128‧‧‧Lightly doped bungee zone

302‧‧‧閘極結構 302‧‧‧ gate structure

130‧‧‧材質層 130‧‧‧Material layer

304‧‧‧閘極介電層 304‧‧‧ gate dielectric layer

306‧‧‧閘極電極 306‧‧‧gate electrode

310‧‧‧凹槽 310‧‧‧ Groove

308‧‧‧蓋層 308‧‧‧ cover

310a‧‧‧凹面 310a‧‧‧ concave

312‧‧‧磊晶結構 312‧‧‧ epitaxial structure

314a/314b‧‧‧源極/汲極區 314a/314b‧‧‧ source/bungee area

316‧‧‧金屬矽化物 316‧‧‧Metal Telluride

318‧‧‧輕摻雜汲極區 318‧‧‧Lightly doped bungee zone

320‧‧‧間隙壁 320‧‧‧ spacer

E1‧‧‧蝕刻微影製程 E1‧‧‧ etching lithography process

E2‧‧‧磊晶製程 E2‧‧‧Ethylene Process

E3‧‧‧蝕刻製程 E3‧‧‧ etching process

E4‧‧‧磊晶製程 E4‧‧‧Ethylene Process

E5‧‧‧離子佈植製程 E5‧‧‧Ion implantation process

E6‧‧‧閘極縮減製程 E6‧‧‧gate reduction process

E7‧‧‧離子佈植製程 E7‧‧‧Ion implantation process

E8‧‧‧蝕刻製程 E8‧‧‧ etching process

E9‧‧‧蝕刻製程 E9‧‧‧ etching process

E10‧‧‧離子佈植製程 E10‧‧‧Ion implantation process

E11‧‧‧閘極縮減製程 E11‧‧‧ gate reduction process

E12‧‧‧離子佈植製程 E12‧‧‧Ion implantation process

E13‧‧‧平坦化製程 E13‧‧‧ Flattening process

E14‧‧‧蝕刻製程 E14‧‧‧ etching process

本說明書含有附圖併於文中構成了本說明書之一部分,俾使閱者對本發明實施例有進一步的瞭解。該些圖示係描繪了本發明一些實施例並連同本文描述一起說明了其原理。在該些圖示中:第1-14圖繪示出根據本發明一實施例一非平面化半導體製程的截面示意圖;第15圖繪示出根據本發明製程所形成之閘極元件的立體示意圖;第16-21圖繪示出根據本發明另一實施例一平面化半導體製程的截面示意圖;以及第22-25圖繪示出本發明進一步實施例中一替換性金屬 閘極製程的截面示意圖。 The present specification contains the drawings and constitutes a part of the specification in the specification, and the reader will further understand the embodiments of the invention. The drawings depict some embodiments of the invention and, together with the description herein. In the drawings: FIGS. 1-14 are schematic cross-sectional views showing a non-planarized semiconductor process according to an embodiment of the present invention; and FIG. 15 is a perspective view showing a gate element formed by the process according to the present invention. 16-21 are schematic cross-sectional views showing a planarization semiconductor process in accordance with another embodiment of the present invention; and FIGS. 22-25 illustrate an alternative metal in a further embodiment of the present invention; Schematic diagram of the gate process.

須注意本說明書中的所有圖示皆為圖例性質。為了清楚與方便圖示說明之故,圖示中的各部件在尺寸與比例上可能會被誇大或縮小地呈現。圖中相同的參考符號一般而言會用來標示修改後或不同實施例中對應或類似的特徵。 It should be noted that all the illustrations in this specification are of the nature of the legend. For the sake of clarity and convenience of illustration, the various components in the drawings may be exaggerated or reduced in size and proportion. The same reference numbers are used in the drawings to refer to the corresponding or similar features in the modified or different embodiments.

108...鰭狀結構108. . . Fin structure

112...閘極結構112. . . Gate structure

114...閘極介電層114. . . Gate dielectric layer

116...閘極電極116. . . Gate electrode

118...蓋層118. . . Cover

120...磊晶結構120. . . Epitaxial structure

122a/122b...源極/汲極區122a/122b. . . Source/bungee area

124...金屬矽化物124. . . Metal telluride

128...輕摻雜汲極區128. . . Lightly doped bungee zone

132...間隙壁132. . . Clearance wall

132a...部位132a. . . Part

E8...蝕刻製程E8. . . Etching process

Claims (35)

一種非平面化半導體製程,其步驟包含:提供一基底;形成至少一鰭狀結構於該基底上;形成一閘極覆蓋在部分該些鰭狀結構上;形成複數個磊晶結構覆蓋在該閘極兩側的該些鰭狀結構上;在該閘極兩側的該些鰭狀結構與該些磊晶結構中分別形成一源極與一汲極;進行一閘極縮減製程以縮減該閘極,使得該閘極與該閘極兩側的該些磊晶結構分隔;進行一離子佈植製程,以在位於該閘極與該閘極兩側的該些磊晶結構之間的該鰭狀結構中分別形成一輕摻雜汲極;以及在該閘極與該些磊晶結構的側壁上分別形成一間隙壁。 A non-planarized semiconductor process, the method comprising: providing a substrate; forming at least one fin structure on the substrate; forming a gate covering a portion of the fin structures; forming a plurality of epitaxial structures covering the gate The fin structures on the two sides of the pole; the fin structures on both sides of the gate and the epitaxial structures respectively form a source and a drain; performing a gate reduction process to reduce the gate a pole such that the gate is separated from the epitaxial structures on both sides of the gate; an ion implantation process is performed to the fin between the gate and the epitaxial structures on both sides of the gate Forming a lightly doped drain in each of the structures; and forming a spacer on the sidewall of the gate and the epitaxial structures. 如申請專利範圍第1項所述之非平面化半導體製程,其中該形成間隙壁之步驟包含:以旋轉塗佈玻璃製程(spin on glass,SOG)或流動式化學氣相沉積(flowable CVD,FCVD)形成一間隙壁材質層;以及蝕刻該間隙壁材質層以形成該些間隙壁。 The non-planarized semiconductor process of claim 1, wherein the step of forming the spacer comprises: spin on glass (SOG) or flowable CVD (FCVD) Forming a spacer material layer; and etching the spacer material layer to form the spacers. 如申請專利範圍第2項所述之非平面化半導體製程,其中該間隙壁材質層包含polysiloxane低介電常數(low-K)材質。 The non-planarized semiconductor process of claim 2, wherein the spacer material layer comprises a polysiloxane low dielectric constant (low-K) material. 如申請專利範圍第2項所述之非平面化半導體製程,更包含在形成該些間隙壁前先在該基底上形成一襯墊層,該襯墊層之材質為Si3N4、SiON或SiCN。 The non-planarized semiconductor process of claim 2, further comprising forming a liner layer on the substrate before forming the spacers, the spacer layer being made of Si 3 N 4 , SiON or SiCN. 如申請專利範圍第1項所述之非平面化半導體製程,其中該基底包含一塊矽基底(bulk silicon)或一矽覆絕緣基底(silicon-on-insulator,SOI)。 The non-planarized semiconductor process of claim 1, wherein the substrate comprises a bulk silicon or a silicon-on-insulator (SOI). 如申請專利範圍第5項所述之非平面化半導體製程,其中形成至少一鰭狀結構於該基底上之步驟包含:形成一遮罩層於該基底上;以及圖案化該遮罩層並以圖案化後的該遮罩層為遮罩對該基底進行蝕刻,以形成該些鰭狀結構。 The non-planarized semiconductor process of claim 5, wherein the step of forming at least one fin structure on the substrate comprises: forming a mask layer on the substrate; and patterning the mask layer and The patterned mask layer is etched by the mask to form the fin structures. 如申請專利範圍第6項所述之非平面化半導體製程,其中該遮罩層包含一墊氧化層以及一氮化層。 The non-planarized semiconductor process of claim 6, wherein the mask layer comprises a pad oxide layer and a nitride layer. 如申請專利範圍第5項所述之非平面化半導體製程,其中該矽覆絕緣基底,包含:一基底;一底氧化層位於該基底上;以及一矽層位於該底氧化層上。 The non-planarized semiconductor process of claim 5, wherein the overlying insulating substrate comprises: a substrate; a bottom oxide layer on the substrate; and a germanium layer on the bottom oxide layer. 如申請專利範圍第8項所述之非平面化半導體製程,其中形成至少一鰭狀結構於該基底上之步驟包含: 圖案化該矽層以形成該些鰭狀結構,並暴露出部分該底氧化層於該些鰭狀結構之間。 The non-planarized semiconductor process of claim 8, wherein the step of forming at least one fin structure on the substrate comprises: The tantalum layer is patterned to form the fin structures and expose a portion of the bottom oxide layer between the fin structures. 如申請專利範圍第1項所述之非平面化半導體製程,其中形成複數個磊晶結構覆蓋在該閘極兩側的該些鰭狀結構上之步驟包含:進行一蝕刻製程,蝕刻該閘極兩側的部分該些鰭狀結構以於該些鰭狀結構中形成至少一凹槽;以及進行一磊晶製程,以於該些凹槽中形成該些磊晶結構。 The non-planarized semiconductor process of claim 1, wherein the step of forming a plurality of epitaxial structures over the fin structures on both sides of the gate comprises: performing an etching process, etching the gate The fin structures on both sides form at least one recess in the fin structures; and an epitaxial process is performed to form the epitaxial structures in the recesses. 如申請專利範圍第1項所述之非平面化半導體製程,其中該閘極的材質包含多晶矽(poly-Si)。 The non-planarized semiconductor process of claim 1, wherein the gate material comprises poly-Si. 如申請專利範圍第11項所述之非平面化半導體製程,更包含在形成該複數個磊晶結構之步驟前先進行一閘極預縮減(pre-pullback)製程,以氧化或氮化該閘極的裸露側面。 The non-planarized semiconductor process of claim 11, further comprising performing a gate pre-pullback process to oxidize or nitride the gate before the step of forming the plurality of epitaxial structures. Extremely exposed side. 如申請專利範圍第11項所述之非平面化半導體製程,其中進行一閘極縮減製程以縮減該閘極之步驟包含以稀釋的氫氧化鉀(diluted KOH)蝕刻該閘極。 The non-planarized semiconductor process of claim 11, wherein the step of performing a gate reduction process to reduce the gate comprises etching the gate with diluted potassium hydroxide (diluted KOH). 如申請專利範圍第1項所述之非平面化半導體製程,其中該閘極的材質包含氮化矽(SiN)、氮氧化矽(SiON)、碳氮化矽(SiCN)、或進階圖案化薄膜(advanced pattern film,APF)。 The non-planarized semiconductor process of claim 1, wherein the gate material comprises tantalum nitride (SiN), bismuth oxynitride (SiON), tantalum carbonitride (SiCN), or advanced patterning. Advanced pattern film (APF). 如申請專利範圍第14項所述之非平面化半導體製程,其中進行一閘極縮減製程以縮減該閘極之步驟包含以下列 群組中選出之材料蝕刻該閘極:HF/EG(乙二醇)混酸、低溫磷酸(H3PO4)與氧電漿(O2 plasma)。 The non-planarized semiconductor process of claim 14, wherein the step of performing a gate reduction process to reduce the gate comprises etching the gate with a material selected from the group consisting of: HF/EG (E.g. Alcohol) mixed acid, low temperature phosphoric acid (H 3 PO 4 ) and oxygen plasma (O 2 plasma). 如申請專利範圍第1項所述之非平面化半導體製程,其中該閘極為一虛置閘極,且在形成該些間隙壁後更包含進行一替換性金屬閘極製程,以金屬電極層取代該閘極。 The non-planarized semiconductor process of claim 1, wherein the gate is a dummy gate, and after forming the spacers, further comprising performing a replacement metal gate process, replacing the metal electrode layer The gate. 如申請專利範圍第16項所述之非平面化半導體製程,其中該替換性金屬閘極製程包含下列步驟:在整個該基底面上覆蓋一層間介電層;進行一平坦化製程移除該層間介電層直至裸露出該虛置閘極;進行一蝕刻製程移除裸露之該虛置閘極而形成一閘極溝渠;於該閘極溝渠內形成一功函數金屬層;以及於該閘極溝渠內形成一填充金屬層。 The non-planarized semiconductor process of claim 16, wherein the replacement metal gate process comprises the steps of: covering an entire dielectric layer over the entire substrate surface; performing a planarization process to remove the interlayer a dielectric layer until the dummy gate is exposed; an etching process is performed to remove the exposed dummy gate to form a gate trench; a work function metal layer is formed in the gate trench; and the gate is formed A filler metal layer is formed in the trench. 如申請專利範圍第17項所述之非平面化半導體製程,其中該替換性金屬閘極製程為一前置高介電常數層(high-K first)製程,其步驟更包含在形成該閘極之前先在該基底上形成一高介電常數層。 The non-planarized semiconductor process of claim 17, wherein the replacement metal gate process is a high-k first process, and the step further comprises forming the gate A high dielectric constant layer is previously formed on the substrate. 如申請專利範圍第17項所述之非平面化半導體製程,其中該替換性金屬閘極製程為一後置高介電常數層(high-K last)製程,其步驟更包含在形成該功函數金屬層之前先在該閘極溝渠內形成一高介電常數層。 The non-planarized semiconductor process of claim 17, wherein the replacement metal gate process is a post-high-k last process, and the step further comprises forming the work function. A high dielectric constant layer is formed in the gate trench before the metal layer. 如申請專利範圍第1項所述之非平面化半導體製程,其中 該磊晶結構包含一矽鍺磊晶層(Si-Ge)或一矽碳磊晶層(Si-C)。 For example, the non-planarized semiconductor process described in claim 1 of the patent scope, wherein The epitaxial structure comprises a tantalum epitaxial layer (Si-Ge) or a tantalum carbon epitaxial layer (Si-C). 一種平面化半導體製程,其步驟包含:提供一基底;形成一閘極在該基底上;形成磊晶結構;在該閘極兩側的該些磊晶結構中分別形成一源極與一汲極;進行一閘極縮減製程以縮減該閘極,使得該閘極與該閘極兩側的該些磊晶結構分隔;進行一離子佈植製程於該閘極縮減製程之後,以在位於該閘極與該閘極兩側的該些磊晶結構之間的該基底中形成輕摻雜汲極;以及在該閘極的側壁上形成一間隙壁。 A planarization semiconductor process, the method comprising: providing a substrate; forming a gate on the substrate; forming an epitaxial structure; forming a source and a drain in the epitaxial structures on both sides of the gate Performing a gate reduction process to reduce the gate so that the gate is separated from the epitaxial structures on both sides of the gate; performing an ion implantation process after the gate reduction process to be located at the gate Forming a lightly doped drain in the substrate between the poles and the epitaxial structures on both sides of the gate; and forming a spacer on the sidewall of the gate. 如申請專利範圍第21項所述之平面化半導體製程,其中該基底包含一塊矽基底(bulk silicon)或一矽覆絕緣基底(silicon-on-insulator,SOI)。 The planarization semiconductor process of claim 21, wherein the substrate comprises a bulk silicon or a silicon-on-insulator (SOI). 如申請專利範圍第21項所述之平面化半導體製程,其中該閘極的材質包含多晶矽(poly-Si)。 The planarization semiconductor process of claim 21, wherein the material of the gate comprises poly-Si. 如申請專利範圍第23項所述之平面化半導體製程,更包含在形成該複數個磊晶結構之步驟前先進行一閘極預縮減(pre-pullback)製程,以氧化或氮化該閘極的裸露側面。 The planarization semiconductor process of claim 23, further comprising performing a gate pre-pullback process to oxidize or nitride the gate before the step of forming the plurality of epitaxial structures. Exposed side. 如申請專利範圍第23項所述之平面化半導體製程,其中 進行一閘極縮減製程以縮減該閘極之步驟包含以稀釋的氫氧化鉀(diluted KOH)蝕刻該閘極。 For example, the planarization semiconductor process described in claim 23, wherein The step of performing a gate reduction process to reduce the gate includes etching the gate with diluted potassium hydroxide (diluted KOH). 如申請專利範圍第21項所述之平面化半導體製程,其中該閘極的材質包含氮化矽(SiN)、氮氧化矽(SiON)、碳氮化矽(SiCN)、或進階圖案化薄膜(advanced pattern film,APF)。 The planarization semiconductor process of claim 21, wherein the gate material comprises tantalum nitride (SiN), bismuth oxynitride (SiON), tantalum carbonitride (SiCN), or an advanced patterned film. (advanced pattern film, APF). 如申請專利範圍第26項所述之平面化半導體製程,其中進行一閘極縮減製程以縮減該閘極之步驟包含以下列群組中選出之材料蝕刻該閘極:HF/EG(乙二醇)混酸、低溫磷酸(H3PO4)與氧電漿(O2 plasma)。 The planarizing semiconductor process of claim 26, wherein the step of reducing the gate by a gate reduction process comprises etching the gate with a material selected from the group consisting of: HF/EG (ethylene glycol) Mixed acid, low temperature phosphoric acid (H 3 PO 4 ) and oxygen plasma (O 2 plasma). 如申請專利範圍第21項所述之平面化半導體製程,其中該閘極為一虛置閘極,且在形成該間隙壁後更包含進行一替換性金屬閘極製程,以金屬電極層取代該閘極。 The planarization semiconductor process of claim 21, wherein the gate is a dummy gate, and after forming the spacer, further comprising performing an alternative metal gate process, replacing the gate with a metal electrode layer pole. 如申請專利範圍第28項所述之平面化半導體製程,其中該替換性金屬閘極製程包含下列步驟:在整個該基底上覆蓋一層間介電層;進行一平坦化製程移除該層間介電層直至裸露出該虛置閘極;進行一蝕刻製程移除裸露之該虛置閘極而形成一閘極溝渠;於該閘極溝渠內形成一功函數金屬層;以及於該閘極溝渠內形成一填充金屬層。 The planarization semiconductor process of claim 28, wherein the replacement metal gate process comprises the steps of: covering an entire dielectric layer over the substrate; performing a planarization process to remove the interlayer dielectric Layering until the dummy gate is exposed; performing an etching process to remove the exposed dummy gate to form a gate trench; forming a work function metal layer in the gate trench; and in the gate trench A fill metal layer is formed. 如申請專利範圍第29項所述之平面化半導體製程,其中該替換性金屬閘極製程為一前置高介電常數層(high-K first)製程,其步驟更包含在形成該閘極之前先在該基底上形成一高介電常數層。 The planarization semiconductor process of claim 29, wherein the replacement metal gate process is a pre-high dielectric constant layer (high-K) First) the process, the step further comprising forming a high dielectric constant layer on the substrate before forming the gate. 如申請專利範圍第29項所述之平面化半導體製程,其中該替換性金屬閘極製程為一後置高介電常數層(high-K last)製程,其步驟更包含在形成該功函數金屬層之前先在該閘極溝渠內形成一高介電常數層。 The planarization semiconductor process of claim 29, wherein the replacement metal gate process is a post-high-k last process, and the step further comprises forming the work function metal A high dielectric constant layer is formed in the gate trench before the layer. 如申請專利範圍第21項所述之平面化半導體製程,其中該磊晶結構包含一矽鍺磊晶層(Si-Ge)或一矽碳磊晶層(Si-C)。 The planarization semiconductor process of claim 21, wherein the epitaxial structure comprises a germanium epitaxial layer (Si-Ge) or a germanium carbon epitaxial layer (Si-C). 一種非平面化半導體結構,包含有:一基底;至少一鰭狀結構,設於該基底上;一閘極,覆蓋在部分該鰭狀結構與部分該基底上,如此該鰭狀結構會被定義為一與該閘極交疊的通道區以及分別位於該閘極兩側的源極區與汲極區;複數個磊晶結構,覆蓋在該些鰭狀結構的源極區與汲極區上,位於該鰭狀結構上之各該磊晶結構與該閘極之間分別具有一凹槽,且該閘極的頂面高於各該磊晶結構的頂面;以及一間隙壁,形成在該閘極與該些磊晶結構的側壁上,其中該間隙壁具有兩部位,各該部位分別填入於各該凹槽內,且各該部位的頂面分別與各該磊晶結構的頂面齊平或略低。 A non-planarized semiconductor structure includes: a substrate; at least one fin structure disposed on the substrate; a gate covering a portion of the fin structure and a portion of the substrate, such that the fin structure is defined a channel region overlapping the gate electrode and a source region and a drain region respectively located on opposite sides of the gate; a plurality of epitaxial structures covering the source region and the drain region of the fin structures Each of the epitaxial structures on the fin structure and the gate respectively have a recess, and a top surface of the gate is higher than a top surface of each of the epitaxial structures; and a spacer is formed at The gate electrode and the sidewalls of the epitaxial structures, wherein the spacer has two portions, each of which is filled in each of the grooves, and the top surface of each portion is respectively opposite to the top of each of the epitaxial structures The face is flush or slightly lower. 如申請專利範圍第33項所述之非平面化半導體結構,其中該鰭狀結構更包含輕摻雜汲極,分別形成在該通道區與該源極區/汲極區之間。 The non-planarized semiconductor structure of claim 33, wherein the fin structure further comprises a lightly doped drain, formed between the channel region and the source/drain region, respectively. 如申請專利範圍第33項所述之非平面化半導體結構,其中該間隙壁之材質為polysiloxane低介電常數(low-K)材質。The non-planarized semiconductor structure according to claim 33, wherein the spacer is made of a polysiloxane low dielectric constant (low-K) material.
TW101103032A 2012-01-31 2012-01-31 Semiconductor structure and method of fabricating the same TWI520188B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101103032A TWI520188B (en) 2012-01-31 2012-01-31 Semiconductor structure and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101103032A TWI520188B (en) 2012-01-31 2012-01-31 Semiconductor structure and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201331994A TW201331994A (en) 2013-08-01
TWI520188B true TWI520188B (en) 2016-02-01

Family

ID=49479089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101103032A TWI520188B (en) 2012-01-31 2012-01-31 Semiconductor structure and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI520188B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748974B (en) * 2016-03-07 2021-12-11 台灣積體電路製造股份有限公司 Semicondcutor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847329B2 (en) * 2014-09-04 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Structure of fin feature and method of making same
CN109524302B (en) 2017-09-20 2020-12-15 华邦电子股份有限公司 Semiconductor assembly and its manufacturing method
TWI630647B (en) * 2017-09-20 2018-07-21 華邦電子股份有限公司 Semiconductor device and manufacturing method thereof
US10374038B2 (en) * 2017-11-24 2019-08-06 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device source/drain region with arsenic-containing barrier region
US10847633B2 (en) * 2017-11-28 2020-11-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming semiconductor device
TWI835915B (en) 2019-11-05 2024-03-21 聯華電子股份有限公司 Method of fabricating metal gate transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748974B (en) * 2016-03-07 2021-12-11 台灣積體電路製造股份有限公司 Semicondcutor device

Also Published As

Publication number Publication date
TW201331994A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
US8664060B2 (en) Semiconductor structure and method of fabricating the same
US10014227B2 (en) Semiconductor device having strained fin structure and method of making the same
US10090300B2 (en) Fin-like field effect transistor (FinFET) device and method of manufacturing same
US9142649B2 (en) Semiconductor structure with metal gate and method of fabricating the same
USRE45944E1 (en) Structure for a multiple-gate FET device and a method for its fabrication
US8114746B2 (en) Method for forming double gate and tri-gate transistors on a bulk substrate
US11721760B2 (en) Dopant concentration boost in epitaxially formed material
US20170025537A1 (en) Method of Forming a FinFET Having an Oxide Region in the Source/Drain Region
TWI641135B (en) Finfet transistor with epitaxial structures
TWI520188B (en) Semiconductor structure and method of fabricating the same
WO2006006438A1 (en) Semiconductor device and manufacturing method thereof
CN104518026A (en) Finfets with gradient germanium-containing channels
JP2012038979A (en) Semiconductor device and method of manufacturing the same
US11038039B2 (en) Method of forming a semiconductor device
US11676869B2 (en) Semiconductor device and manufacturing method thereof
US11854688B2 (en) Semiconductor device and method
TWI518790B (en) Semiconductor device and method of making the same
KR102631115B1 (en) Semiconductor device and methods of forming
US20230420544A1 (en) Method of forming a semiconductor device
US20240145566A1 (en) Structure and Method for Gate-All-Around Devices with Dielectric Interposer
TWI529804B (en) Semiconductor structure with metal gate and method of fabricating the same
TWI517303B (en) Semiconductor device and method for fabricating the same
TWI508293B (en) Semiconductor device having metal gate and manufacturing method thereof