TW201707091A - Lateral double diffused metal oxide semiconductor device and manufacturing method thereof - Google Patents

Lateral double diffused metal oxide semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
TW201707091A
TW201707091A TW104126555A TW104126555A TW201707091A TW 201707091 A TW201707091 A TW 201707091A TW 104126555 A TW104126555 A TW 104126555A TW 104126555 A TW104126555 A TW 104126555A TW 201707091 A TW201707091 A TW 201707091A
Authority
TW
Taiwan
Prior art keywords
type
region
epitaxial layer
height direction
stacked
Prior art date
Application number
TW104126555A
Other languages
Chinese (zh)
Other versions
TWI608546B (en
Inventor
黃宗義
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to TW104126555A priority Critical patent/TWI608546B/en
Publication of TW201707091A publication Critical patent/TW201707091A/en
Application granted granted Critical
Publication of TWI608546B publication Critical patent/TWI608546B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The present invention discloses a lateral double diffused metal oxide semiconductor (LDMOS) device and a manufacturing method thereof. The LDMOS device includes: a P-type substrate, a first epitaxial layer, a second epitaxial layer, a P-type buried layer (PBL), a P-type high voltage layer, a P-type body region, an N-type well, an isolation oxide region, a drift oxide region, a gate, an N-type contact region, a P-type contact region, a top source, a bottom source, and an N-type drain. The PBL stacks and connects an upper surface of the P-type substrate. The P-type high voltage well stacks and connects the PBL. The P-type body region stacks and connects the P-type high voltage well. The top source stacks and connects the N-type contact and the P-type contact. The bottom source stacks and connects a lower surface of the P-type substrate. In a normal operation, a conductive current flows from the N-type drain to the bottom source.

Description

橫向雙擴散金屬氧化物半導體元件及其製造方法Lateral double-diffused metal oxide semiconductor device and method of manufacturing same

本發明係有關一種橫向雙擴散金屬氧化物半導體(lateral doublediffused metal oxide semiconductor, LDMOS)元件及其製造方法,特別是指一種可降低導通電阻之LDMOS元件及其製造方法。The present invention relates to a lateral doubled diffusion metal oxide semiconductor (LDMOS) device and a method of fabricating the same, and more particularly to an LDMOS device capable of reducing on-resistance and a method of fabricating the same.

第1圖顯示一種習知橫向雙擴散金屬氧化物半導體(lateral doublediffused metal oxide semiconductor, LDMOS)元件100的剖視示意圖。如第1圖所示,LDMOS元件100包含:P型基板101、漂移區102、隔絕氧化區103、漂移氧化區104、本體區106、汲極110、源極108、與閘極111。其中,漂移區102的導電型為N型,形成於P型基板101上,隔絕氧化區103為區域氧化(local oxidation of silicon,LOCOS)結構,以定義操作區103a,作為LDMOS元件100操作時主要的作用區。操作區103a的範圍由第1圖中,粗黑箭頭所示意。閘極111覆蓋部分漂移氧化區104。此習知LDMOS元件100可作為功率元件使用,但因此犧牲了導通電阻,限制了操作的速度,與元件的性能。1 shows a schematic cross-sectional view of a conventional lateral doublediffused metal oxide semiconductor (LDMOS) device 100. As shown in FIG. 1, the LDMOS device 100 includes a P-type substrate 101, a drift region 102, an isolation oxide region 103, a drift oxide region 104, a body region 106, a drain 110, a source 108, and a gate 111. The conductive region of the drift region 102 is N-type, formed on the P-type substrate 101, and the isolation oxide region 103 is a local oxidation of silicon (LOCOS) structure to define the operation region 103a as the main operation of the LDMOS device 100. The scope of action. The range of the operation area 103a is indicated by a thick black arrow in Fig. 1. The gate 111 covers a portion of the drift oxidized region 104. This conventional LDMOS device 100 can be used as a power component, but thus sacrifices on-resistance, limiting the speed of operation, and the performance of the component.

有鑑於此,本發明即針對上述先前技術之改善,提出一種LDMOS元件及其製造方法,可降低導通電阻之LDMOS元件及其製造方法。In view of the above, the present invention has been directed to an improvement of the prior art described above, and provides an LDMOS device and a method of fabricating the same, an LDMOS device capable of reducing on-resistance, and a method of fabricating the same.

就其中一觀點言,本發明提供了橫向雙擴散金屬氧化物半導體(Lateral Double Diffused Metal Oxide Semiconductor, LDMOS)元件,包含:一P型基板,於一高度方向上,具有相對之一上表面與一下表面;一第一磊晶層,形成於該P型基板上,且於該高度方向上,堆疊並連接於該上表面上;一第二磊晶層,形成於該第一磊晶層上,且於該高度方向上,堆疊並連接於該第一磊晶層上;一P型埋層(P-type buried layer, PBL),形成於該第一磊晶層與該第二磊晶層中,且該PBL於該高度方向上,堆疊並連接於該上表面,並包含該第一磊晶層與該第二磊晶層間之一接面;一P型高壓井區,形成於該第二磊晶層中之該PBL上,且於該高度方向上,堆疊並連接於該PBL;一P型本體區,形成於該第二磊晶層中之該P型高壓井區上,且於該高度方向上,堆疊並連接於該P型高壓井區;一N型井區,形成於該第二磊晶層中,且於一橫向上鄰接於該P型本體區;一隔絕氧化區,形成於該第二磊晶層上,以定義一操作區;一漂移氧化區,形成於該第二磊晶層上之該操作區中,且於該高度方向上,該漂移氧化區堆疊並連接於該N型井區;一閘極,形成於該第二磊晶層上,且該閘極位於該操作區中,並覆蓋至少部分該漂移氧化區,且於該高度方向上,該閘極堆疊並連接於第二磊晶層並覆蓋部分該N型井區及部分該P型本體區;一N型接點區,形成於該P型本體區中;一P型接點區,形成於該P型本體區中,且於該橫向上與該N型接點區鄰接;一上源極,形成於該第二磊晶層上,且於該高度方向上,堆疊並連接於該N型接點區及該P型接點區;一下源極,形成於該P型基板之該下表面下,且於該高度方向上,堆疊並連接於該下表面下;以及一N型汲極,形成於該N型井區中,且該N型汲極介於該漂移氧化區與該隔絕氧化區之間;其中,於一正常操作中,一導通電流由該N型汲極流經該下源極。In one aspect, the present invention provides a Lateral Double Diffused Metal Oxide Semiconductor (LDMOS) device comprising: a P-type substrate having a relatively upper surface and a lower surface in a height direction a first epitaxial layer formed on the P-type substrate and stacked and connected to the upper surface in the height direction; a second epitaxial layer formed on the first epitaxial layer And being stacked and connected to the first epitaxial layer in the height direction; a P-type buried layer (PBL) is formed in the first epitaxial layer and the second epitaxial layer And the PBL is stacked and connected to the upper surface in the height direction, and includes a junction between the first epitaxial layer and the second epitaxial layer; a P-type high-voltage well region is formed in the second The PBL in the epitaxial layer is stacked and connected to the PBL in the height direction; a P-type body region is formed on the P-type high-voltage well region in the second epitaxial layer, and In the height direction, stacked and connected to the P-type high-pressure well region; an N-type well region is formed in the The second epitaxial layer is adjacent to the P-type body region in a lateral direction; an isolation oxide region is formed on the second epitaxial layer to define an operation region; and a drift oxidation region is formed in the second region In the operating region on the epitaxial layer, and in the height direction, the drift oxide region is stacked and connected to the N-type well region; a gate is formed on the second epitaxial layer, and the gate is located In the operation area, covering at least a portion of the drift oxidation region, and in the height direction, the gate is stacked and connected to the second epitaxial layer and covers part of the N-type well region and a portion of the P-type body region; An N-type contact region is formed in the P-type body region; a P-type contact region is formed in the P-type body region, and is adjacent to the N-type contact region in the lateral direction; an upper source, Formed on the second epitaxial layer, and stacked and connected to the N-type contact region and the P-type contact region in the height direction; a lower source is formed under the lower surface of the P-type substrate And in the height direction, stacked and connected under the lower surface; and an N-type drain formed in the N-type well region, and the N-type A drain is interposed between the drift oxide region and the isolation oxide region; wherein, in a normal operation, an on current flows from the N-type drain through the lower source.

就另一觀點言,本發明提供了一種橫向雙擴散金屬氧化物半導體(Lateral Double Diffused Metal Oxide Semiconductor, LDMOS)元件製造方法,包含:提供一P型基板,其於一高度方向上,具有相對之一上表面與一下表面;形成一第一磊晶層於該P型基板上,且於該高度方向上,堆疊並連接於該上表面上;形成一P型埋層(P-type buried layer, PBL)離子植入層於該第一磊晶層中;形成一第二磊晶層於該第一磊晶層上,且於該高度方向上,堆疊並連接於該第一磊晶層上;以一熱製程處理該PBL離子植入層,以形成一P型埋層(P-type buried layer, PBL)於該第一磊晶層與該第二磊晶層中,且該PBL於該高度方向上,堆疊並連接於該上表面,並包含該第一磊晶層與該第二磊晶層間之一接面;形成一P型高壓井區於該第二磊晶層中之該PBL上,且於該高度方向上,堆疊並連接於該PBL;形成一P型本體區於該第二磊晶層中之該P型高壓井區上,且於該高度方向上,堆疊並連接於該P型高壓井區;形成一N型井區於該第二磊晶層中,且於一橫向上鄰接於該P型本體區;形成一隔絕氧化區於該第二磊晶層上,以定義一操作區;形成一漂移氧化區於該第二磊晶層上之該操作區中,且於該高度方向上,該漂移氧化區堆疊並連接於該N型井區;形成一閘極於該第二磊晶層上,且該閘極位於該操作區中,並覆蓋至少部分該漂移氧化區,且於該高度方向上,該閘極堆疊並連接於第二磊晶層並覆蓋部分該N型井區及部分該P型本體區;形成一N型接點區於該P型本體區中;形成一P型接點區於該P型本體區中,且於該橫向上與該N型接點區鄰接;形成一N型汲極於該N型井區中,且該N型汲極介於該漂移氧化區與該隔絕氧化區之間;形成一上源極於該第二磊晶層上,且於該高度方向上,堆疊並連接於該N型接點區及該P型接點區;以及形成一下源極於該P型基板之該下表面下,且於該高度方向上,堆疊並連接於該下表面下;其中,於一正常操作中,一導通電流由該N型汲極流經該下源極。In another aspect, the present invention provides a method for fabricating a lateral double-diffused metal oxide semiconductor (LDMOS) device, comprising: providing a P-type substrate having a relative height in a height direction An upper surface and a lower surface; forming a first epitaxial layer on the P-type substrate, and stacking and connecting on the upper surface in the height direction; forming a P-type buried layer (P-type buried layer, a PBL) ion implantation layer in the first epitaxial layer; forming a second epitaxial layer on the first epitaxial layer, and stacked and connected to the first epitaxial layer in the height direction; Processing the PBL ion implantation layer by a thermal process to form a P-type buried layer (PBL) in the first epitaxial layer and the second epitaxial layer, and the PBL is at the height Oriented, stacked and connected to the upper surface, and including a junction between the first epitaxial layer and the second epitaxial layer; forming a P-type high voltage well region on the PBL in the second epitaxial layer And in the height direction, stacked and connected to the PBL; forming a P-type body region The P-type high-pressure well region in the second epitaxial layer is stacked and connected to the P-type high-pressure well region in the height direction; an N-type well region is formed in the second epitaxial layer, and a laterally adjacent to the P-type body region; forming an isolation oxide region on the second epitaxial layer to define an operation region; forming a drift oxidation region in the operation region on the second epitaxial layer, And in the height direction, the drift oxidation region is stacked and connected to the N-type well region; a gate is formed on the second epitaxial layer, and the gate is located in the operation region, and covers at least part of the drift An oxidation region, and in the height direction, the gate is stacked and connected to the second epitaxial layer and covers part of the N-type well region and a portion of the P-type body region; forming an N-type contact region on the P-type body Forming a P-type contact region in the P-type body region and adjoining the N-type contact region in the lateral direction; forming an N-type drain in the N-type well region, and the N-type a drain is interposed between the drift oxidation region and the isolation oxide region; an upper source is formed on the second epitaxial layer, and in the height direction, the stack Stacked and connected to the N-type contact region and the P-type contact region; and formed a lower source under the lower surface of the P-type substrate, and stacked and connected under the lower surface in the height direction; Wherein, in a normal operation, an on current flows from the N-type drain through the lower source.

在其中一種較佳的實施型態中,該隔絕氧化區與該漂移氧化區為區域氧化(local oxidation of silicon, LOCOS)結構或淺溝槽絕緣(shallow trench isolation, STI)結構。In a preferred embodiment, the isolation oxide region and the drift oxidation region are a local oxidation of silicon (LOCOS) structure or a shallow trench isolation (STI) structure.

在其中一種較佳的實施型態中,該導通電流由該N型汲極依序流經該N型井區、該P型本體區、該N型接點區、該上源極、該P型接點區、該P型本體區、該P型高壓井區、該PBL、該P型基板、及該下源極。In a preferred embodiment, the conduction current flows through the N-type well region, the P-type body region, the N-type contact region, the upper source, and the P through the N-type drain. a contact region, the P-type body region, the P-type high voltage well region, the PBL, the P-type substrate, and the lower source.

在其中一種較佳的實施型態中,該上源極包括一金屬層或一矽化金屬層。In a preferred embodiment, the upper source includes a metal layer or a deuterated metal layer.

在其中一種較佳的實施型態中,該下源極包括一金屬層或一矽化金屬層。In a preferred embodiment, the lower source comprises a metal layer or a deuterated metal layer.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。The purpose, technical content, features and effects achieved by the present invention will be more readily understood by the detailed description of the embodiments.

本發明中的圖式均屬示意,主要意在表示製程步驟以及各層之間之上下次序關係,至於形狀、厚度與寬度則並未依照比例繪製。The drawings in the present invention are schematic and are mainly intended to represent the process steps and the relationship between the layers, and the shapes, thicknesses, and widths are not drawn to scale.

第2圖顯示本發明的第一個實施例,顯示根據本發明之橫向雙擴散金屬氧化物半導體(Lateral Double Diffused Metal Oxide Semiconductor, LDMOS)元件200的剖視示意圖。如第2圖所示,LDMOS)元件,包含:P型基板201、第一磊晶層202a、第二磊晶層202b、隔絕氧化區203、漂移氧化區204、P型高壓井區205、P型本體區206、N型井區207、N型接點區208、P型接點區209、N型汲極210、閘極211、P型埋層(P-type buried layer, PBL)212、下源極213、以及上源極214。Fig. 2 is a cross-sectional view showing a first embodiment of the present invention showing a Lateral Double Diffused Metal Oxide Semiconductor (LDMOS) device 200 in accordance with the present invention. As shown in FIG. 2, the LDMOS device includes: a P-type substrate 201, a first epitaxial layer 202a, a second epitaxial layer 202b, an isolation oxide region 203, a drift oxide region 204, a P-type high voltage well region 205, and P. The body body region 206, the N-type well region 207, the N-type contact region 208, the P-type contact region 209, the N-type drain 210, the gate 211, and the P-type buried layer (PBL) 212, The lower source 213 and the upper source 214.

其中,P型基板201於高度方向上(如圖中粗黑虛線箭號所示的方向),具有相對之上表面201a與下表面201b。第一磊晶層202a形成於P型基板201上,且於高度方向上,堆疊並連接於上表面201a上。第二磊晶層202b形成於第一磊晶層202a上,且於高度方向上,堆疊並連接於第一磊晶層202a上。PBL 212形成於第一磊晶層202a與第二磊晶層202b中,且PBL 212於高度方向上,堆疊並連接於上表面201a,並包含第一磊晶層202a與第二磊晶層202b間之接面212a。P型高壓井區205形成於第二磊晶層202b中之PBL 212上,且於高度方向上,堆疊並連接於PBL 212。Among them, the P-type substrate 201 has a relatively upper surface 201a and a lower surface 201b in the height direction (the direction indicated by the thick black dotted arrow in the figure). The first epitaxial layer 202a is formed on the P-type substrate 201, and is stacked and connected to the upper surface 201a in the height direction. The second epitaxial layer 202b is formed on the first epitaxial layer 202a, and is stacked and connected to the first epitaxial layer 202a in the height direction. The PBL 212 is formed in the first epitaxial layer 202a and the second epitaxial layer 202b, and the PBL 212 is stacked and connected to the upper surface 201a in the height direction, and includes the first epitaxial layer 202a and the second epitaxial layer 202b. The junction 212a. A P-type high voltage well region 205 is formed on the PBL 212 in the second epitaxial layer 202b, and is stacked and connected to the PBL 212 in the height direction.

P型本體區206形成於第二磊晶層202b中之P型高壓井區205上,且於高度方向上,堆疊並連接於P型高壓井區205。N型井區207形成於第二磊晶層202b中,且於橫向上(如圖中粗黑實線箭號所示的方向)鄰接於P型本體區206。隔絕氧化區203形成於第二磊晶層202b上,以定義操作區203a。漂移氧化區204形成於第二磊晶層202b上之操作區203a中,且於高度方向上,漂移氧化區204堆疊並連接於N型井區207。閘極211形成於第二磊晶層202b上,且閘極211位於操作區203a中,並覆蓋至少部分漂移氧化區204,且於高度方向上,閘極211堆疊並連接於第二磊晶層202b並覆蓋部分N型井區207及部分P型本體區206。The P-type body region 206 is formed on the P-type high voltage well region 205 in the second epitaxial layer 202b, and is stacked and connected to the P-type high voltage well region 205 in the height direction. The N-type well region 207 is formed in the second epitaxial layer 202b and is adjacent to the P-type body region 206 in the lateral direction (the direction indicated by the thick black solid arrow in the figure). An isolation oxide region 203 is formed on the second epitaxial layer 202b to define an operation region 203a. The drift oxide region 204 is formed in the operation region 203a on the second epitaxial layer 202b, and in the height direction, the drift oxide region 204 is stacked and connected to the N-type well region 207. The gate 211 is formed on the second epitaxial layer 202b, and the gate 211 is located in the operation region 203a and covers at least a portion of the drift oxide region 204. In the height direction, the gate electrode 211 is stacked and connected to the second epitaxial layer. 202b and covers a portion of the N-type well region 207 and a portion of the P-type body region 206.

N型接點區208形成於P型本體區206中。P型接點區209形成於P型本體區206中,且於橫向上與N型接點區208鄰接。上源極214形成於第二磊晶層202b上,且於高度方向上,堆疊並連接於N型接點區208及P型接點區209。下源極213形成於P型基板201之下表面201b下,且於高度方向上,堆疊並連接於下表面201b下。N型汲極210形成於N型井區207中,且N型汲極210介於漂移氧化區204與隔絕氧化區203之間。其中,於正常操作中,導通電流由N型汲極210流經下源極213,如第3M圖中粗黑實線箭號所示意。An N-type contact region 208 is formed in the P-type body region 206. A P-type contact region 209 is formed in the P-type body region 206 and is adjacent to the N-type contact region 208 in the lateral direction. The upper source 214 is formed on the second epitaxial layer 202b, and is stacked and connected to the N-type contact region 208 and the P-type contact region 209 in the height direction. The lower source electrode 213 is formed under the lower surface 201b of the P-type substrate 201, and is stacked and connected under the lower surface 201b in the height direction. The N-type drain 210 is formed in the N-type well region 207, and the N-type drain 210 is interposed between the drift oxide region 204 and the isolation oxide region 203. Wherein, in normal operation, the on current flows from the N-type drain 210 through the lower source 213, as indicated by the thick black solid arrow in FIG. 3M.

第3A-3M圖顯示本發明的第二個實施例。第3A-3M圖顯示根據本發明之橫向雙擴散金屬氧化物半導體(Lateral Double Diffused Metal Oxide Semiconductor, LDMOS)元件200製造方法的剖視示意圖。首先,如第3A圖所示,提供P型基板201,其中,P型基板201例如但不限於為P型矽基板,亦可以為其他半導體基板。P型基板201於高度方向上(如圖中粗黑虛線箭號所示的方向),具有相對之上表面201a與下表面201b。接著如第3B圖所示,形成第一磊晶層202a於P型基板201上,且於高度方向上,堆疊並連接於上表面201a上。第一磊晶層202a例如但不限於為P型磊晶層,形成於P型基板201上。The 3A-3M diagram shows a second embodiment of the present invention. 3A-3M is a cross-sectional view showing a method of fabricating a Lateral Double Diffused Metal Oxide Semiconductor (LDMOS) device 200 in accordance with the present invention. First, as shown in FIG. 3A, a P-type substrate 201 is provided. The P-type substrate 201 is, for example but not limited to, a P-type germanium substrate, and may be another semiconductor substrate. The P-type substrate 201 has a relatively upper surface 201a and a lower surface 201b in the height direction (the direction indicated by the thick black dotted arrow in the figure). Next, as shown in FIG. 3B, the first epitaxial layer 202a is formed on the P-type substrate 201, and is stacked and connected to the upper surface 201a in the height direction. The first epitaxial layer 202a is formed, for example but not limited to, a P-type epitaxial layer on the P-type substrate 201.

接下來,如第3C與3D圖所示,形成P型埋層(P-type buried layer, PBL)離子植入層212b於第一磊晶層202a中。例如但不限於以微影製程形成光阻層212c為遮罩,以定義PBL 212,並以離子植入製程,將P型雜質,以加速離子的形式,如第3C圖中細虛線箭號所示意,植入定義的區域內,而形成PBL離子植入層212b於第一磊晶層202a中,接著再將光阻層212c去除,如第3D圖所示。Next, as shown in FIGS. 3C and 3D, a P-type buried layer (PBL) ion implantation layer 212b is formed in the first epitaxial layer 202a. For example, but not limited to, forming a photoresist layer 212c as a mask by a lithography process to define the PBL 212, and using an ion implantation process, the P-type impurity is in the form of an accelerated ion, such as the thin dotted arrow in FIG. 3C. It is shown that the implanted defined regions are formed, and the PBL ion implantation layer 212b is formed in the first epitaxial layer 202a, and then the photoresist layer 212c is removed, as shown in FIG. 3D.

接下來,如第3E圖所示,形成第二磊晶層202b於第一磊晶層202a上,且於高度方向上,堆疊並連接於第一磊晶層202a上。接下來,如第3F圖所示,以熱製程處理該PBL離子植入層212b,以形成P型埋層(P-type buried layer, PBL) 212於第一磊晶層202a與第二磊晶層202b中,且PBL 212於高度方向上,堆疊並連接於上表面201a,並包含第一磊晶層202a與第二磊晶層202b間之接面212a。其中,熱製程與形成第二磊晶層202b之磊晶製程不必須為分開的兩個製程步驟,亦可以結合於該磊晶製程中。Next, as shown in FIG. 3E, a second epitaxial layer 202b is formed on the first epitaxial layer 202a, and is stacked and connected to the first epitaxial layer 202a in the height direction. Next, as shown in FIG. 3F, the PBL ion implantation layer 212b is processed by a thermal process to form a P-type buried layer (PBL) 212 on the first epitaxial layer 202a and the second epitaxial layer. In the layer 202b, the PBL 212 is stacked and connected to the upper surface 201a in the height direction, and includes a junction 212a between the first epitaxial layer 202a and the second epitaxial layer 202b. The epitaxial process of forming the second epitaxial layer 202b does not have to be a separate process step, and may also be combined in the epitaxial process.

接下來,如第3G圖所示,形成P型高壓井區205於第二磊晶層202b中之PBL 212上,且於高度方向上,堆疊並連接於PBL 212。形成P型高壓井區205的方法,例如但不限於以微影製程、離子植入製程、與熱製程形成。接下來,如第3H圖所示,形成P型本體區206於第二磊晶層202b中之P型高壓井區205上,且於高度方向上,堆疊並連接於P型高壓井區205。Next, as shown in FIG. 3G, a P-type high voltage well region 205 is formed on the PBL 212 in the second epitaxial layer 202b, and is stacked and connected to the PBL 212 in the height direction. The method of forming the P-type high voltage well region 205 is, for example, but not limited to, formed by a lithography process, an ion implantation process, and a thermal process. Next, as shown in FIG. 3H, a P-type body region 206 is formed on the P-type high-voltage well region 205 in the second epitaxial layer 202b, and is stacked and connected to the P-type high-voltage well region 205 in the height direction.

接下來,如第3I圖所示,形成N型井區207於第二磊晶層202b中,且於橫向上(如圖中粗黑實線箭號所示的方向)鄰接於P型本體區206。接下來,如第3J圖所示,形成隔絕氧化區203於第二磊晶層202b上,以定義操作區203a;同時或接著形成漂移氧化區204於第二磊晶層202b上之操作區203a中,且於高度方向上,漂移氧化區203堆疊並連接於N型井區204。其中,隔絕氧化區203與漂移氧化區204為如圖所示之區域氧化(local oxidation of silicon, LOCOS)結構或淺溝槽絕緣(shallow trench isolation, STI)結構。Next, as shown in FIG. 3I, an N-type well region 207 is formed in the second epitaxial layer 202b, and is adjacent to the P-type body region in the lateral direction (the direction indicated by the thick black solid arrow in the figure). 206. Next, as shown in FIG. 3J, an isolation oxide region 203 is formed on the second epitaxial layer 202b to define the operation region 203a; and at the same time or subsequently, the operation region 203a of the drift oxidation region 204 on the second epitaxial layer 202b is formed. The drift oxidation zone 203 is stacked and connected to the N-type well region 204 in the height direction. The isolation oxide region 203 and the drift oxide region 204 are a local oxidation of silicon (LOCOS) structure or a shallow trench isolation (STI) structure as shown.

接下來,如第3K圖所示,形成閘極211於第二磊晶層202b上,且閘極211位於操作區203a中,並覆蓋至少部分漂移氧化區204,且於高度方向上,閘極211堆疊並連接於第二磊晶層202b並覆蓋部分N型井區207及部分P型本體區206。接下來,如第3L圖所示,形成N型接點區208於P型本體區206中;形成P型接點區209於P型本體區206中,且於橫向上與N型接點區208鄰接;形成N型汲極210於N型井區207中,且N型汲極210介於漂移氧化區204與隔絕氧化區203之間。其中,N型接點區208與N型汲極210例如可以利用相同微影製程與離子植入製程形成。Next, as shown in FIG. 3K, a gate 211 is formed on the second epitaxial layer 202b, and the gate 211 is located in the operation region 203a and covers at least a portion of the drift oxide region 204, and in the height direction, the gate The 211 is stacked and connected to the second epitaxial layer 202b and covers a portion of the N-type well region 207 and a portion of the P-type body region 206. Next, as shown in FIG. 3L, an N-type contact region 208 is formed in the P-type body region 206; a P-type contact region 209 is formed in the P-type body region 206, and is laterally connected to the N-type contact region. 208 abuts; an N-type drain 210 is formed in the N-well region 207, and an N-type drain 210 is interposed between the drift oxide region 204 and the isolation oxide region 203. The N-type contact region 208 and the N-type drain electrode 210 can be formed, for example, by the same lithography process and ion implantation process.

接下來,如第3M圖所示,形成上源極214於第二磊晶層202b上,且於高度方向上,堆疊並連接於N型接點區208及P型接點區209;以及形成下源極213於P型基板201之下表面201a下,且於高度方向上,堆疊並連接於下表面201a下。須說明的是,於LDMOS元件200正常操作中,導通電流例如由N型汲極210依序流經N型井區207、P型本體區206、N型接點區208、上源極214、P型接點區209、P型本體區206、P型高壓井區205、PBL 212、P型基板201、及下源極213。其中,上源極214與下源極213例如包括金屬層或矽化金屬層。其中,導通電流由N型井區207流至P型本體區206,是指因施加正電壓於閘極211,而於P型本體區206與閘極211接面處形成通道(channel),因此導通操作時,導通電流由N型井區207流至P型本體區206,此為本領域中具有通常知識者所熟知,在此不予贅述。Next, as shown in FIG. 3M, the upper source 214 is formed on the second epitaxial layer 202b, and is stacked and connected in the height direction to the N-type contact region 208 and the P-type contact region 209; The lower source 213 is under the lower surface 201a of the P-type substrate 201, and is stacked and connected under the lower surface 201a in the height direction. It should be noted that in the normal operation of the LDMOS device 200, the on-current flows through the N-type well region 207, the P-type body region 206, the N-type contact region 208, and the upper source 214, for example, by the N-type drain 210. P-type contact region 209, P-type body region 206, P-type high voltage well region 205, PBL 212, P-type substrate 201, and lower source electrode 213. The upper source 214 and the lower source 213 include, for example, a metal layer or a deuterated metal layer. Wherein, the conduction current flows from the N-type well region 207 to the P-type body region 206, which means that a positive voltage is applied to the gate electrode 211, and a channel is formed at the junction between the P-type body region 206 and the gate electrode 211. During the conducting operation, the on current flows from the N-well region 207 to the P-type body region 206, which is well known to those of ordinary skill in the art and will not be described herein.

第4圖顯示本發明的第三個實施例。本實施例顯示根據本發明之LDMOS元件300的剖視示意圖。本實施例旨在說明根據本發明,形成隔絕氧化區303的方式,並不限於如第一個實施例所示。本實施例與第一個實施例不同之處在於,如第4圖所示,隔絕氧化區303為淺溝槽絕緣(shallow trench isolation, STI)結構而非如第一個實施例中,隔絕氧化區203為區域氧化(local oxidation of silicon, LOCOS)結構。其他的製程與第一個實施例相同,形成如第4圖所示的LDMOS元件300。當然,根據本發明,漂移氧化區204亦不限於為LOCOS結構,而可以為STI結構。Fig. 4 shows a third embodiment of the present invention. This embodiment shows a schematic cross-sectional view of an LDMOS device 300 in accordance with the present invention. This embodiment is intended to explain the manner in which the isolation oxide region 303 is formed in accordance with the present invention, and is not limited to that shown in the first embodiment. This embodiment differs from the first embodiment in that, as shown in FIG. 4, the isolation oxide region 303 is a shallow trench isolation (STI) structure instead of being isolated and oxidized as in the first embodiment. The region 203 is a local oxidation of silicon (LOCOS) structure. The other processes are the same as in the first embodiment, and the LDMOS device 300 as shown in Fig. 4 is formed. Of course, according to the present invention, the drift oxidized region 204 is also not limited to a LOCOS structure, but may be an STI structure.

需說明的是,本發明在許多特徵上,與先前技術不同,包括正常操作中,根據本發明之LDMOS元件200,在導通操作時,其串聯的阻值包括從上源極214電連接至下源極213的串接路徑,可以相對較低。其中,其高壓P型井區205的P型雜質濃度的峰值,分布於不在第二磊晶層202b的上方表面。此外,藉由兩層的磊晶層,即第一磊晶層202a與第二磊晶層202b,可以將PBL 212,形成於第一磊晶層202a與第二磊晶層202b中,且PBL 212於高度方向上,包含第一磊晶層212a與第二磊晶層202b間之接面212a。此外,根據本發明之LDMOS元件200,其下源極213位於下表面201b下,可使本發明之LDMOS元件200位於下表面201b下再串接另一個功率元件,比如另一功率元件的汲極,可以改善散熱的效率。It should be noted that the present invention differs from the prior art in many features, including the normal operation, in the LDMOS device 200 according to the present invention, the resistance of the series in the conduction operation includes electrically connecting from the upper source 214 to the lower The serial path of the source 213 can be relatively low. The peak of the P-type impurity concentration of the high-pressure P-type well region 205 is not distributed on the upper surface of the second epitaxial layer 202b. In addition, the PBL 212 can be formed in the first epitaxial layer 202a and the second epitaxial layer 202b by the two epitaxial layers, that is, the first epitaxial layer 202a and the second epitaxial layer 202b, and the PBL 212 includes a junction 212a between the first epitaxial layer 212a and the second epitaxial layer 202b in the height direction. In addition, according to the LDMOS device 200 of the present invention, the lower source 213 is located under the lower surface 201b, so that the LDMOS device 200 of the present invention can be placed under the lower surface 201b and connected in series with another power device, such as the drain of another power device. Can improve the efficiency of heat dissipation.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。在本發明之相同精神下,熟悉本技術者可以思及各種等效變化。例如,在不影響元件主要的特性下,可加入其他製程步驟或結構,如臨界電壓調整區等;再如,微影技術並不限於光罩技術,亦可包含電子束微影技術;再如,導電型P型與N型可以互換,只需要其他區域亦作相應的互換極可。本發明的範圍應涵蓋上述及其他所有等效變化。The present invention has been described with reference to the preferred embodiments thereof, and the present invention is not intended to limit the scope of the present invention. In the same spirit of the invention, various equivalent changes can be conceived by those skilled in the art. For example, other process steps or structures, such as a threshold voltage adjustment region, may be added without affecting the main characteristics of the component; for example, the lithography technique is not limited to the reticle technology, and may also include electron beam lithography; The conductive type P type and the N type can be interchanged, and only other areas need to be interchanged. The above and other equivalent variations are intended to be covered by the scope of the invention.

100, 200, 300...LDMOS元件
101, 201...P型基板
102...漂移區
103, 203, 303...隔絕氧化區
103a, 203a...操作區
104, 204...漂移氧化區
106, 206...P型本體區
108...源極
110, 210...汲極
111, 211...閘極
201a...上表面
201b...下表面
202a...第一磊晶層
202b...第二磊晶層
205...P型高壓井區
207...N型井區
208...N型接點區
209...P型接點區
212...P型埋層(P-type buried layer, PBL)
212a...接面
212b...PBL離子植入層
212c...光阻層
213...下源極
214...上源極
100, 200, 300. . . LDMOS component
101, 201. . . P-type substrate
102. . . Drift zone
103, 203, 303. . . Isolated oxidation zone
103a, 203a. . . Operating area
104, 204. . . Drift oxidation zone
106, 206. . . P-type body area
108. . . Source
110, 210. . . Bungee
111, 211. . . Gate
201a. . . Upper surface
201b. . . lower surface
202a. . . First epitaxial layer
202b. . . Second epitaxial layer
205. . . P type high pressure well area
207. . . N type well area
208. . . N-type contact area
209. . . P-type contact area
212. . . P-type buried layer (PBL)
212a. . . Junction
212b. . . PBL ion implantation layer
212c. . . Photoresist layer
213. . . Lower source
214. . . Upper source

第1圖顯示一種習知LDMOS元件100。 第2圖顯示本發明的第一個實施例。 第3A-3M圖顯示本發明的第二個實施例。 第4圖顯示本發明的第三個實施例Figure 1 shows a conventional LDMOS device 100. Fig. 2 shows a first embodiment of the present invention. The 3A-3M diagram shows a second embodiment of the present invention. Figure 4 shows a third embodiment of the present invention

200‧‧‧LDMOS元件 200‧‧‧LDMOS components

201‧‧‧P型基板 201‧‧‧P type substrate

201a‧‧‧上表面 201a‧‧‧ upper surface

201b‧‧‧下表面 201b‧‧‧ lower surface

202a‧‧‧第一磊晶層 202a‧‧‧First epitaxial layer

202b‧‧‧第二磊晶層 202b‧‧‧Second epilayer

203‧‧‧隔絕氧化區 203‧‧‧Isolated Oxidation Zone

203a‧‧‧操作區 203a‧‧‧Operating area

204‧‧‧漂移氧化區 204‧‧‧ Drift oxidation zone

205‧‧‧P型高壓井區 205‧‧‧P type high pressure well area

206‧‧‧P型本體區 206‧‧‧P type body area

207‧‧‧N型井區 207‧‧‧N type well area

208‧‧‧N型接點區 208‧‧‧N type contact area

209‧‧‧P型接點區 209‧‧‧P type contact area

210‧‧‧汲極 210‧‧‧汲polar

211‧‧‧閘極 211‧‧‧ gate

212‧‧‧P型埋層(P-type buried layer,PBL) 212‧‧‧P-type buried layer (PBL)

212a‧‧‧接面 212a‧‧‧Connected

213‧‧‧下源極 213‧‧‧Lower source

214‧‧‧上源極 214‧‧‧Upper source

Claims (10)

一種橫向雙擴散金屬氧化物半導體(Lateral Double Diffused Metal Oxide Semiconductor, LDMOS)元件,包含: 一P型基板,於一高度方向上,具有相對之一上表面與一下表面; 一第一磊晶層,形成於該P型基板上,且於該高度方向上,堆疊並連接於該上表面上; 一第二磊晶層,形成於該第一磊晶層上,且於該高度方向上,堆疊並連接於該第一磊晶層上; 一P型埋層(P-type buried layer, PBL),形成於該第一磊晶層與該第二磊晶層中,且該PBL於該高度方向上,堆疊並連接於該上表面,並包含該第一磊晶層與該第二磊晶層間之一接面; 一P型高壓井區,形成於該第二磊晶層中之該PBL上,且於該高度方向上,堆疊並連接於該PBL; 一P型本體區,形成於該第二磊晶層中之該P型高壓井區上,且於該高度方向上,堆疊並連接於該P型高壓井區; 一N型井區,形成於該第二磊晶層中,且於一橫向上鄰接於該P型本體區; 一隔絕氧化區,形成於該第二磊晶層上,以定義一操作區; 一漂移氧化區,形成於該第二磊晶層上之該操作區中,且於該高度方向上,該漂移氧化區堆疊並連接於該N型井區; 一閘極,形成於該第二磊晶層上,且該閘極位於該操作區中,並覆蓋至少部分該漂移氧化區,且於該高度方向上,該閘極堆疊並連接於第二磊晶層並覆蓋部分該N型井區及部分該P型本體區; 一N型接點區,形成於該P型本體區中; 一P型接點區,形成於該P型本體區中,且於該橫向上與該N型接點區鄰接; 一上源極,形成於該第二磊晶層上,且於該高度方向上,堆疊並連接於該N型接點區及該P型接點區; 一下源極,形成於該P型基板之該下表面下,且於該高度方向上,堆疊並連接於該下表面下;以及 一N型汲極,形成於該N型井區中,且該N型汲極介於該漂移氧化區與該隔絕氧化區之間; 其中,於一正常操作中,一導通電流由該N型汲極流經該下源極。A Lateral Double Diffused Metal Oxide Semiconductor (LDMOS) device, comprising: a P-type substrate having a relatively upper surface and a lower surface in a height direction; a first epitaxial layer, Formed on the P-type substrate, and stacked and connected to the upper surface in the height direction; a second epitaxial layer formed on the first epitaxial layer, and stacked in the height direction Connected to the first epitaxial layer; a P-type buried layer (PBL) formed in the first epitaxial layer and the second epitaxial layer, and the PBL is in the height direction And stacked on the upper surface and including a junction between the first epitaxial layer and the second epitaxial layer; a P-type high-voltage well region formed on the PBL in the second epitaxial layer, And stacked in the height direction, connected to the PBL; a P-type body region formed on the P-type high-voltage well region in the second epitaxial layer, and stacked and connected to the P-type high-voltage well region in the height direction a P-type high-pressure well region; an N-type well region formed in the second epitaxial layer, and Adjacent to the P-type body region; an isolation oxide region formed on the second epitaxial layer to define an operation region; a drift oxidation region formed in the operation region on the second epitaxial layer, And in the height direction, the drift oxidation region is stacked and connected to the N-type well region; a gate is formed on the second epitaxial layer, and the gate is located in the operation region, and covers at least part of the a drift oxidation region, and in the height direction, the gate is stacked and connected to the second epitaxial layer and covers part of the N-type well region and a portion of the P-type body region; an N-type contact region is formed in the P a P-type contact region formed in the P-type body region and adjacent to the N-type contact region in the lateral direction; an upper source formed on the second epitaxial layer And in the height direction, stacked and connected to the N-type contact region and the P-type contact region; a lower source is formed under the lower surface of the P-type substrate, and stacked in the height direction Connected to the lower surface; and an N-type drain formed in the N-well region, and the N-type drain is interposed between the drift Between the oxidized region and the isolated oxidized region; wherein, in a normal operation, an on-current flows from the N-type drain through the lower source. 如申請專利範圍第1項所述之橫向雙擴散金屬氧化物半導體元件,其中該隔絕氧化區與該漂移氧化區為區域氧化(local oxidation of silicon, LOCOS)結構或淺溝槽絕緣(shallow trench isolation, STI)結構。The lateral double-diffused metal oxide semiconductor device according to claim 1, wherein the isolation oxide region and the drift oxidation region are local oxidation of silicon (LOCOS) structures or shallow trench isolation. , STI) structure. 如申請專利範圍第1項所述之橫向雙擴散金屬氧化物半導體元件,其中該導通電流由該N型汲極依序流經該N型井區、該P型本體區、該N型接點區、該上源極、該P型接點區、該P型本體區、該P型高壓井區、該PBL、該P型基板、及該下源極。The lateral double-diffused metal oxide semiconductor device according to claim 1, wherein the conduction current flows through the N-type well region, the P-type body region, and the N-type contact sequentially by the N-type drain a region, the upper source, the P-type contact region, the P-type body region, the P-type high voltage well region, the PBL, the P-type substrate, and the lower source. 如申請專利範圍第1項所述之橫向雙擴散金屬氧化物半導體元件,其中該上源極包括一金屬層或一矽化金屬層。The lateral double-diffused metal oxide semiconductor device of claim 1, wherein the upper source comprises a metal layer or a deuterated metal layer. 如申請專利範圍第1項所述之橫向雙擴散金屬氧化物半導體元件,其中該下源極包括一金屬層或一矽化金屬層。The lateral double-diffused metal oxide semiconductor device of claim 1, wherein the lower source comprises a metal layer or a deuterated metal layer. 一種橫向雙擴散金屬氧化物半導體(Lateral Double Diffused Metal Oxide Semiconductor, LDMOS)元件製造方法,包含: 提供一P型基板,其於一高度方向上,具有相對之一上表面與一下表面; 形成一第一磊晶層於該P型基板上,且於該高度方向上,堆疊並連接於該上表面上; 形成一P型埋層(P-type buried layer, PBL)離子植入層於該第一磊晶層中; 形成一第二磊晶層於該第一磊晶層上,且於該高度方向上,堆疊並連接於該第一磊晶層上; 以一熱製程處理該PBL離子植入層,以形成一P型埋層(P-type buried layer, PBL)於該第一磊晶層與該第二磊晶層中,且該PBL於該高度方向上,堆疊並連接於該上表面,並包含該第一磊晶層與該第二磊晶層間之一接面; 形成一P型高壓井區於該第二磊晶層中之該PBL上,且於該高度方向上,堆疊並連接於該PBL; 形成一P型本體區於該第二磊晶層中之該P型高壓井區上,且於該高度方向上,堆疊並連接於該P型高壓井區; 形成一N型井區於該第二磊晶層中,且於一橫向上鄰接於該P型本體區; 形成一隔絕氧化區於該第二磊晶層上,以定義一操作區; 形成一漂移氧化區於該第二磊晶層上之該操作區中,且於該高度方向上,該漂移氧化區堆疊並連接於該N型井區; 形成一閘極於該第二磊晶層上,且該閘極位於該操作區中,並覆蓋至少部分該漂移氧化區,且於該高度方向上,該閘極堆疊並連接於第二磊晶層並覆蓋部分該N型井區及部分該P型本體區; 形成一N型接點區於該P型本體區中; 形成一P型接點區於該P型本體區中,且於該橫向上與該N型接點區鄰接; 形成一N型汲極於該N型井區中,且該N型汲極介於該漂移氧化區與該隔絕氧化區之間; 形成一上源極於該第二磊晶層上,且於該高度方向上,堆疊並連接於該N型接點區及該P型接點區;以及 形成一下源極於該P型基板之該下表面下,且於該高度方向上,堆疊並連接於該下表面下; 其中,於一正常操作中,一導通電流由該N型汲極流經該下源極。A method for manufacturing a lateral double-diffused metal oxide semiconductor (LDMOS) device, comprising: providing a P-type substrate having a relative upper surface and a lower surface in a height direction; forming a first An epitaxial layer is deposited on the P-type substrate and stacked on the upper surface in the height direction; forming a P-type buried layer (PBL) ion implantation layer on the first surface Forming a second epitaxial layer on the first epitaxial layer, and stacking and connecting to the first epitaxial layer in the height direction; processing the PBL ion implantation by a thermal process a layer to form a P-type buried layer (PBL) in the first epitaxial layer and the second epitaxial layer, and the PBL is stacked and connected to the upper surface in the height direction And including a junction between the first epitaxial layer and the second epitaxial layer; forming a P-type high voltage well region on the PBL in the second epitaxial layer, and stacking in the height direction Connected to the PBL; forming a P-type body region in the second epitaxial layer of the P-type high And in the height direction, stacked and connected to the P-type high-pressure well region; forming an N-type well region in the second epitaxial layer and adjacent to the P-type body region in a lateral direction Forming an isolation oxide region on the second epitaxial layer to define an operation region; forming a drift oxidation region in the operation region on the second epitaxial layer, and in the height direction, the drift oxidation a region is stacked and connected to the N-type well region; a gate is formed on the second epitaxial layer, and the gate is located in the operation region and covers at least a part of the drift oxidation region, and in the height direction, The gate is stacked and connected to the second epitaxial layer and covers part of the N-type well region and a portion of the P-type body region; forming an N-type contact region in the P-type body region; forming a P-type contact region In the P-type body region, adjacent to the N-type contact region in the lateral direction; forming an N-type drain in the N-type well region, and the N-type drain is interposed between the drift oxidation region and the Separating the oxidation regions; forming an upper source on the second epitaxial layer, and stacking and connecting to the N-type in the height direction a dot region and the P-type contact region; and a lower source is formed under the lower surface of the P-type substrate, and is stacked and connected to the lower surface in the height direction; wherein, in a normal operation, An on current flows from the N-type drain through the lower source. 如申請專利範圍第6項所述之橫向雙擴散金屬氧化物半導體元件製造方法,其中該隔絕氧化區與該漂移氧化區為區域氧化(local oxidation of silicon, LOCOS)結構或淺溝槽絕緣(shallow trench isolation, STI)結構。The method of manufacturing a lateral double-diffused metal oxide semiconductor device according to claim 6, wherein the isolation oxide region and the drift oxidation region are local oxidation of silicon (LOCOS) structures or shallow trench insulation (shallow Trench isolation, STI) structure. 如申請專利範圍第6項所述之橫向雙擴散金屬氧化物半導體元件製造方法,其中該導通電流由該N型汲極依序流經該N型井區、該P型本體區、該N型接點區、該上源極、該P型接點區、該P型本體區、該P型高壓井區、該PBL、該P型基板、及該下源極。The method of manufacturing a lateral double-diffused metal oxide semiconductor device according to claim 6, wherein the on-current flows from the N-type drain to the N-type well region, the P-type body region, and the N-type. a contact region, the upper source, the P-type contact region, the P-type body region, the P-type high voltage well region, the PBL, the P-type substrate, and the lower source. 如申請專利範圍第6項所述之橫向雙擴散金屬氧化物半導體元件製造方法,其中該上源極包括一金屬層或一矽化金屬層。The method of manufacturing a lateral double-diffused metal oxide semiconductor device according to claim 6, wherein the upper source comprises a metal layer or a deuterated metal layer. 如申請專利範圍第6項所述之橫向雙擴散金屬氧化物半導體元件製造方法,其中該下源極包括一金屬層或一矽化金屬層。The method of manufacturing a lateral double-diffused metal oxide semiconductor device according to claim 6, wherein the lower source comprises a metal layer or a deuterated metal layer.
TW104126555A 2015-08-14 2015-08-14 Lateral double diffused metal oxide semiconductor device and manufacturing method thereof TWI608546B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104126555A TWI608546B (en) 2015-08-14 2015-08-14 Lateral double diffused metal oxide semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104126555A TWI608546B (en) 2015-08-14 2015-08-14 Lateral double diffused metal oxide semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201707091A true TW201707091A (en) 2017-02-16
TWI608546B TWI608546B (en) 2017-12-11

Family

ID=58609260

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104126555A TWI608546B (en) 2015-08-14 2015-08-14 Lateral double diffused metal oxide semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI608546B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682691A (en) * 2018-05-25 2018-10-19 矽力杰半导体技术(杭州)有限公司 The manufacturing method and semiconductor devices of transverse diffusion metal oxide semiconductor device
CN110556290A (en) * 2018-06-01 2019-12-10 辛纳普蒂克斯公司 Stacked wafer integrated circuit
CN110838512A (en) * 2018-08-16 2020-02-25 立锜科技股份有限公司 High voltage device and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508032B2 (en) * 2007-02-20 2009-03-24 Taiwan Semiconductor Manufacturing Co., Ltd. High voltage device with low on-resistance
CN102610641B (en) * 2011-01-20 2014-05-21 上海华虹宏力半导体制造有限公司 High-voltage LDMOS (laterally diffused metal oxide semiconductor) device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682691A (en) * 2018-05-25 2018-10-19 矽力杰半导体技术(杭州)有限公司 The manufacturing method and semiconductor devices of transverse diffusion metal oxide semiconductor device
CN110556290A (en) * 2018-06-01 2019-12-10 辛纳普蒂克斯公司 Stacked wafer integrated circuit
CN110838512A (en) * 2018-08-16 2020-02-25 立锜科技股份有限公司 High voltage device and method for manufacturing the same
CN110838512B (en) * 2018-08-16 2023-02-28 立锜科技股份有限公司 High voltage device and method for manufacturing the same

Also Published As

Publication number Publication date
TWI608546B (en) 2017-12-11

Similar Documents

Publication Publication Date Title
JP6055498B2 (en) Semiconductor device
US9853099B1 (en) Double diffused metal oxide semiconductor device and manufacturing method thereof
JP2011159828A (en) Semiconductor device and method of manufacturing the same
TWI608546B (en) Lateral double diffused metal oxide semiconductor device and manufacturing method thereof
JP2011159829A (en) Semiconductor device and method of manufacturing the semiconductor device
TW201519446A (en) Lateral double diffused metal oxide semiconductor device and manufacturing method thereof
TWI605586B (en) Lateral double diffused metal oxide semiconductor device and manufacturing method thereof
TWI624065B (en) Double diffused metal oxide semiconductor device and manufacturing method thereof
CN106469755A (en) Lateral double diffusion metal oxide semiconductor element and its manufacture method
JP5542623B2 (en) Semiconductor device and manufacturing method thereof
CN106486546B (en) Lateral double diffusion metal oxide semiconductor element and its manufacturing method
US20170263770A1 (en) Semiconductor device and manufacturing method of the same
TWI595570B (en) Metal oxide semiconductor device with dual-well and manufacturing method thereof
JP2011124325A (en) Semiconductor device and method for manufacturing the same
JP2005044948A (en) Semiconductor device and manufacturing method thereof
US9070766B1 (en) Semiconductor device and method of forming the same
KR20110078531A (en) High voltage semiconductor device and manufacturing method of high voltage semiconductor device
JP5784269B2 (en) Semiconductor device and manufacturing method thereof
JP6368105B2 (en) Trench MOSFET semiconductor device
JP7443853B2 (en) silicon carbide semiconductor device
US20240178277A1 (en) Semiconductor device and method of manufacturing the same
CN108074928B (en) Metal oxide semiconductor element with double wells and manufacturing method thereof
JP2012243784A (en) Semiconductor device and manufacturing method of the same
JP7055087B2 (en) Semiconductor devices and their manufacturing methods
JP2009088449A (en) Semiconductor device and method of manufacturing the same