TW201703104A - 氧化物膜的製造方法及濺射裝置 - Google Patents

氧化物膜的製造方法及濺射裝置 Download PDF

Info

Publication number
TW201703104A
TW201703104A TW105103879A TW105103879A TW201703104A TW 201703104 A TW201703104 A TW 201703104A TW 105103879 A TW105103879 A TW 105103879A TW 105103879 A TW105103879 A TW 105103879A TW 201703104 A TW201703104 A TW 201703104A
Authority
TW
Taiwan
Prior art keywords
target
insulator
substrate
conductor
transistor
Prior art date
Application number
TW105103879A
Other languages
English (en)
Inventor
山崎舜平
Original Assignee
半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源研究所股份有限公司 filed Critical 半導體能源研究所股份有限公司
Publication of TW201703104A publication Critical patent/TW201703104A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • C23C14/566Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3417Arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Thin Film Transistor (AREA)
  • Physical Vapour Deposition (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

提供一種使用濺射裝置的氧化物的製造方法,該濺射裝置包括:靶材單元;以及基板架,其中,靶材單元包括第一靶材和第二靶材,第一靶材與第二靶材隔著預定間隔正面相對地配置,基板架與靶材單元的一側隔著預定間隔配置。該氧化物的製造方法包括如下步驟:將基板設置於基板架上;藉由對第一靶材及第二靶材施加電位,使第一靶材與第二靶材之間生成含有離子的電漿;藉由離子與第一靶材及第二靶材的碰撞生成包含氧化物的濺射粒子;以及藉由在利用靶材單元在與基板的形成面平行的方向上移動的同時將濺射粒子沉積於基板上。

Description

氧化物膜的製造方法及濺射裝置
本發明的一個實施方式係關於氧化物及其製造方法。另外,本發明的一個實施方式係關於能夠進行氧化物的成膜的濺射裝置。
另外,本發明的一個實施方式例如係關於一種氧化物、電晶體、半導體裝置及它們的製造方法。另外,本發明的一個實施方式例如係關於一種顯示裝置、發光裝置、照明設備、蓄電裝置、記憶體裝置、攝像裝置、處理器、電子裝置。另外,本發明的一個實施方式係關於一種顯示裝置、液晶顯示裝置、發光裝置、記憶體裝置、電子裝置的製造方法。此外,本發明的一個實施方式係關於一種半導體裝置、顯示裝置、液晶顯示裝置、發光裝置、記憶體裝置、電子裝置的驅動方法。
注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式的技術領域係關於一種物體、方法或製造方法。此外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。
注意,本說明書等中的半導體裝置是指能夠藉由利用半導體特性而工作的所有裝置。顯示裝置、發光裝置、照明設備、攝像裝置、電光裝置、半導體電路以及電子裝置有時包括半導體裝置。
使用在具有絕緣表面的基板上的半導體來形成電晶體的技術受到關注。該電晶體被廣泛地應用於如積體電路或顯示裝置等的半導體裝置。作為可以應用於電晶體的半導體,已知的是矽。
作為用於電晶體的半導體的矽,根據用途適當地使用非晶矽或多晶矽。例如,當應用於構成大型顯示裝置的電晶體時,較佳為使用已確立了大面積基板上的成膜技術的非晶矽。另一方面,當應用於構成在同一基板上形成有驅動電路及像素電路的高功能的顯示裝置的電晶體時,較佳為使用可以製造具有高場效移動率的電晶體的多晶矽。作為多晶矽的形成方法,已知藉由對非晶矽進行高溫的熱處理或雷射處理來形成的方法。
近年來,對使用氧化物半導體(典型的是In-Ga-Zn氧化物)的電晶體積極地進行開發。
氧化物半導體的歷史久遠,1988年,公開了將結晶In-Ga-Zn氧化物應用於半導體元件(參照專利文獻1)。此外,1995年,發明了使用氧化物半導體的電晶體,並公開了其電特性(參照專利文獻2)。
2013年,有團體報告了非晶In-Ga-Zn氧化物具有當對其照射電子線時晶化被促進的不穩定的結構(參照非專利文獻1)。此外,還報告了他們所製造的非晶In-Ga-Zn氧化物在利用高解析度穿透式電子顯微鏡觀察時沒有觀察到有序性。
此外,2014年,報告了具有比使用非晶In-Ga-Zn氧化物的電晶體更高的電特性及可靠性的使用結晶In-Ga-Zn氧化物的電晶體(參照非專利文獻2、非專利文獻3及非專利文獻4)。其中報告了在具有CAAC-OS(C-Axis Aligned Crystalline Oxide Semiconductor:c軸配向結晶氧化物半導體)的In-Ga-Zn氧化物中觀察不到明確的晶界。
結晶In-Ga-Zn氧化物可以利用濺射法進行成膜。濺射法可以對大面積基板進行成膜。由於大面積基板的膜厚度及膜質的面內不均勻會影響半導體裝置的良率,因此已公開有利用各種方法來降低膜厚度及膜質的不均勻的技術。例如,已公開有一種能夠使陰極擺動的濺射裝置(參照專利文獻3)。
[專利文獻1]日本專利申請公開第昭63-239117號公報
[專利文獻2]日本PCT國際申請翻譯第平11-505377號
[專利文獻3]日本專利申請公開第2004-346388號公報
[非專利文獻1]T. Kamiya,Koji Kimoto,Naoki Ohashi,Katsumi Abe,Yuichiro Hanyu,Hideya kumomi,Hideo Hosono:Proceedings of The 20th International Display Workshops,2013,AMD2-5L
[非專利文獻2]S. Yamazaki,H. Suzawa,K. Inoue,K. Kato,T. Hirohashi,K. Okazaki,and N. Kimizuka:Japanese Journal of Applied. Physics 2014 vol. 53 04ED18
[非專利文獻3]S. Yamazaki,T. Hirohashi,M. Takahashi,S. Adachi,M. Tsubuku;J. Koezuka,K. Okazaki,Y. Kanzaki,H. Matsukizono,S. Kaneko,S. Mori,and T. Matsuo:Journal of the Society for Information Display, Vol. 22, Issue 1, 2014, pp. 55-67
[非專利文獻4]S. Yamazaki:The Electrochemical Society Transactions,2014,vol. 64 (10),pp155-164
本發明的目的之一是提供一種能夠對大面積基板進行成膜的成膜裝置或成膜方法。或者,本發明的目的之一是提供一種能夠對大面積基板形成均勻的膜的成膜裝置或成膜方法。或者,本發明的目的之一是提供一種能夠高效地對大面積基板進行成膜的成膜裝置或成膜方法。或者,本發明的一個目的之一是提供一種能夠對大面積基板連續地形成多種膜的成膜裝置或成膜方法。或者,本發明的目的之一是提供一種具有新穎的結晶結構的氧化物。或者,本發明的目的之一是提供一種結晶性高的氧化物。或者,本發明的目的之一是提供一種雜質濃度低的氧化物。或者,本發明的目的 之一是提供一種能夠形成上述氧化物的成膜裝置。
本發明的一個實施方式的目的之一是提供一種將氧化物用於半導體的半導體裝置。此外,本發明的一個實施方式的目的之一是提供一種包括將氧化物用於半導體的半導體裝置的模組。另外,本發明的一個實施方式的目的之一是提供一種包括具有將氧化物用於半導體的半導體裝置的電子裝置或包括具有將氧化物用於半導體的半導體裝置的模組的電子裝置。
另外,本發明的一個實施方式的目的之一是提供一種電特性良好的電晶體。此外,本發明的一個實施方式的目的之一是提供一種電特性穩定的電晶體。另外,本發明的一個實施方式的目的之一是提供一種具有高頻率特性的電晶體。另外,本發明的一個實施方式的目的之一是提供一種關閉狀態下的電流小的電晶體。另外,本發明的一個實施方式的目的之一是提供一種包括該電晶體的半導體裝置。另外,本發明的一個實施方式的目的之一是提供一種包括該半導體裝置的模組。另外,本發明的一個實施方式的目的之一是提供一種包括該半導體裝置或該模組的電子裝置。
注意,這些目的的記載並不妨礙其他目的的存在。本發明的一個實施方式並不需要實現所有上述目的。另外,可以從說明書、圖式、申請專利範圍等的記載得知並衍生上述以外的目的。
(1)
本發明的一個實施方式是一種使用如下濺射裝置的氧化物(氧化物膜)的製造方法,該濺射裝置包括:靶材單元;以及基板架,其中,靶材單元包括第一靶材、第二靶材、第一磁鐵及第二磁鐵,第一靶材的背面配置有第一磁鐵,第二靶材的背面配置有第二磁鐵,第一靶材與第二靶材隔著預定間隔正面相對地配置,基板架與靶材單元的一側隔著預定間隔配置。該氧化物的製造方法包括如下步驟:將基板設置於基板架上;藉由對第一靶材及第二靶材施加電位,使第一靶材與第二靶材之間形成含有離子的電漿;藉由離子與第一靶材及第二靶材的碰撞生成包含氧化物的濺射粒子;以及藉由在利用靶材單元在與基板的形成面平行的方向上進行掃描(移動)的同時將濺射粒子沉積於基板上來形成氧化物膜。
(2)
本發明的一個實施方式是使用如下濺射裝置的氧化物的製造方法,該濺射裝置包括:第一靶材單元;第二靶材單元;以及基板架,其中,第一靶材單元包括第一靶材、第二靶材、第一磁鐵及第二磁鐵,第二靶材單元包括第三靶材、第四靶材、第三磁鐵及第四磁鐵,第一靶材與第二靶材隔著預定間隔正面相對地配置,第一靶材的背面配置有第一磁鐵,第二靶材的背面配置有第二磁鐵,第三靶材的背面配置有第三磁鐵,第四靶材的背面配置有第四磁鐵,第三靶材與第四靶材隔著預定間隔正面相對地配置,基板架、第一靶材單元的一側及第二靶材單元的一側隔著預定間隔配置。該氧化物的製造方法包括如下步驟:將基板設置於基板架上;藉由對第一靶材及第二靶材施加電位,使第一靶材與第二靶材之間形成含有離子的電 漿;藉由離子與第一靶材及第二靶材的碰撞生成含有氧化物的第一濺射粒子;藉由對第三靶材及第四靶材施加電位,使第三靶材與第四靶材之間生成含有離子的電漿;藉由離子與第三靶材及第四靶材的碰撞生成含有氧化物的第二濺射粒子;以及藉由在利用第一靶材單元及第二靶材單元在與基板的形成面平行的方向上進行掃描(移動)的同時將第一濺射粒子及第二濺射粒子沉積於基板上來形成氧化物膜。
(3)
本發明的一個實施方式是一種氧化物的製造方法,其中在(2)中,濺射裝置還包括具有狹縫的構件,該構件以狹縫位於第一靶材單元與基板之間的方式配置。
(4)
本發明的一個實施方式是一種氧化物的製造方法,其中在(1)至(3)的任一個中,形成氧化物膜時的基板的表面溫度為100℃以上且低於500℃。
(5)
本發明的一個實施方式是一種濺射裝置,包括:靶材單元;以及基板架,其中,靶材單元包括第一靶材、第二靶材、第一磁鐵及第二磁鐵,第一靶材的背面配置有第一磁鐵,第二靶材的背面配置有第二磁鐵,第一靶材與第二靶材隔著預定間隔正面相對地配置,基板架與靶材單元的一側隔著預定間隔配置,靶材單元可以在與基板架平行的方向上進行掃描(移動)。
(6)
本發明的一個實施方式是一種濺射裝置,包括:第一靶材單元;第二靶材單元;以及基板架,其中,第一靶材單元包括第一靶材、第二靶材、第一磁鐵及第二磁鐵,第二靶材單元包括第三靶材、第四靶材、第三磁鐵及第四磁鐵,第一靶材與第二靶材隔著預定間隔正面相對地配置,第一靶材的背面配置有第一磁鐵,第二靶材的背面配置有第二磁鐵,第三靶材的背面配置有第三磁鐵,第四靶材的背面配置有第四磁鐵,第三靶材與第四靶材隔著預定間隔正面相對地配置,基板架、第一靶材單元的一側及第二靶材單元的一側隔著預定間隔配置,第一靶材單元及第二靶材單元可以在與基板架平行的方向上進行掃描(移動)。
(7)
本發明的一個實施方式是一種濺射裝置,其中在(6)中,濺射裝置還包括具有狹縫的構件,該構件以狹縫位於第一靶材單元與基板之間的方式配置。
(8)
本發明的一個實施方式是一種濺射裝置,其中在(5)至(7)中的任一個中的基板架的背面上還具有加熱機構。
本發明可以提供一種能夠對大面積基板進行成膜的成膜裝置。或者, 本發明可以提供一種能夠對大面積基板形成均勻的膜的成膜裝置。或者,本發明可以提供一種能夠高效地對大面積基板進行成膜的成膜裝置。或者,本發明可以提供一種能夠對大面積基板連續地形成多種膜的成膜裝置。或者,本發明可以提供一種具有新穎的結晶結構的氧化物。或者,本發明可以提供一種結晶性高的氧化物。或者,本發明可以提供一種雜質濃度低的氧化物。或者,本發明可以提供一種能夠形成上述氧化物的成膜裝置。
本發明可以提供一種將氧化物用於半導體的半導體裝置。此外,本發明可以提供一種包括將氧化物用於半導體的半導體裝置的模組。另外,本發明可以提供一種具有將氧化物用於半導體的半導體裝置或包括將氧化物用於半導體的半導體裝置的模組的電子裝置。
本發明可以提供一種電特性良好的電晶體。此外,本發明可以提供一種電特性穩定的電晶體。另外,本發明可以提供一種具有高頻率特性的電晶體。另外,本發明可以提供一種關閉狀態下的電流小的電晶體。另外,本發明可以提供一種包括該電晶體的半導體裝置。另外,本發明可以提供一種包括該半導體裝置的模組。另外,本發明可以提供一種包括該半導體裝置或該模組的電子裝置。
注意,這些效果的記載並不妨礙其他效果的存在。此外,本發明的一個實施方式並不需要具有所有上述效果。另外,可以從說明書、圖式、申 請專利範圍等的記載得知並衍生上述以外的效果。
100‧‧‧靶材
100a‧‧‧靶材
100b‧‧‧靶材
106a‧‧‧膜
106b‧‧‧膜
106c‧‧‧膜
110a‧‧‧底板
110b‧‧‧底板
122a‧‧‧靶材屏蔽
122b‧‧‧靶材屏蔽
130a‧‧‧磁鐵單元
130b‧‧‧磁鐵單元
134a‧‧‧構件
134b‧‧‧構件
140‧‧‧電漿
150a‧‧‧靶材單元
150b‧‧‧靶材單元
150c‧‧‧靶材單元
160‧‧‧基板
160a‧‧‧基板
160b‧‧‧基板
170‧‧‧基板架
170a‧‧‧基板架
170b‧‧‧基板架
180‧‧‧加熱機構
180a‧‧‧加熱機構
180b‧‧‧加熱機構
190‧‧‧電源
200‧‧‧顆粒
201‧‧‧離子
202‧‧‧橫向生長部
203‧‧‧粒子
210‧‧‧底板
220‧‧‧基板
230‧‧‧靶材
250‧‧‧磁鐵
310‧‧‧層
400‧‧‧基板
401‧‧‧絕緣體
402‧‧‧絕緣體
404‧‧‧導電體
406a‧‧‧絕緣體
406b‧‧‧半導體
406c‧‧‧絕緣體
408‧‧‧絕緣體
409‧‧‧絕緣體
412‧‧‧絕緣體
413‧‧‧導電體
416a‧‧‧導電體
416b‧‧‧導電體
422‧‧‧絕緣體
428‧‧‧絕緣體
450‧‧‧半導體基板
452‧‧‧絕緣體
454‧‧‧導電體
456‧‧‧區域
460‧‧‧區域
462‧‧‧絕緣體
464‧‧‧絕緣體
466‧‧‧絕緣體
468‧‧‧絕緣體
472a‧‧‧區域
472b‧‧‧區域
474a‧‧‧導電體
474b‧‧‧導電體
474c‧‧‧導電體
476a‧‧‧導電體
476b‧‧‧導電體
478a‧‧‧導電體
478b‧‧‧導電體
478c‧‧‧導電體
480a‧‧‧導電體
480b‧‧‧導電體
480c‧‧‧導電體
490‧‧‧絕緣體
492‧‧‧絕緣體
494‧‧‧絕緣體
496a‧‧‧導電體
496b‧‧‧導電體
496c‧‧‧導電體
496d‧‧‧導電體
498‧‧‧導電體
498a‧‧‧導電體
498b‧‧‧導電體
498c‧‧‧導電體
498d‧‧‧導電體
500‧‧‧基板
502‧‧‧絕緣體
503‧‧‧絕緣體
504‧‧‧導電體
506a‧‧‧絕緣體
506b‧‧‧半導體
506c‧‧‧絕緣體
508‧‧‧絕緣體
512‧‧‧絕緣體
513‧‧‧導電體
514‧‧‧導電體
516a‧‧‧導電體
516b‧‧‧導電體
600‧‧‧基板
602‧‧‧絕緣體
602a‧‧‧絕緣體
602b‧‧‧絕緣體
602c‧‧‧絕緣體
603‧‧‧絕緣體
604‧‧‧導電體
606a‧‧‧絕緣體
606b‧‧‧半導體
606c‧‧‧絕緣體
607a‧‧‧區域
607b‧‧‧區域
608‧‧‧絕緣體
612‧‧‧絕緣體
613‧‧‧導電體
616a‧‧‧導電體
616b‧‧‧導電體
618‧‧‧絕緣體
620‧‧‧絕緣體
700‧‧‧基板
704a‧‧‧導電體
704b‧‧‧導電體
706‧‧‧半導體
706a‧‧‧半導體
706b‧‧‧半導體
712a‧‧‧絕緣體
712b‧‧‧絕緣體
714a‧‧‧導電體
714b‧‧‧導電體
716a‧‧‧導電體
716b‧‧‧導電體
718a‧‧‧絕緣體
718b‧‧‧絕緣體
718c‧‧‧絕緣體
719‧‧‧發光元件
720‧‧‧絕緣體
721‧‧‧絕緣體
731‧‧‧端子
732‧‧‧FPC
733a‧‧‧佈線
734‧‧‧密封材料
735‧‧‧驅動電路
736‧‧‧驅動電路
737‧‧‧像素
741‧‧‧電晶體
742‧‧‧電容元件
743‧‧‧切換元件
744‧‧‧信號線
751‧‧‧電晶體
752‧‧‧電容元件
753‧‧‧液晶元件
754‧‧‧掃描線
755‧‧‧信號線
781‧‧‧導電體
782‧‧‧發光層
783‧‧‧導電體
784‧‧‧分隔壁
791‧‧‧導電體
792‧‧‧絕緣體
793‧‧‧液晶層
794‧‧‧絕緣體
795‧‧‧隔離物
796‧‧‧導電體
801‧‧‧半導體基板
802‧‧‧基板
803‧‧‧絕緣體
804‧‧‧絕緣體
805‧‧‧絕緣體
806‧‧‧黏合層
807‧‧‧濾光片
808‧‧‧濾光片
809‧‧‧濾光片
811‧‧‧絕緣體
812‧‧‧絕緣體
813‧‧‧絕緣體
814‧‧‧絕緣體
815‧‧‧絕緣體
816‧‧‧絕緣體
817‧‧‧絕緣體
818‧‧‧絕緣體
819‧‧‧絕緣體
820‧‧‧絕緣體
821‧‧‧絕緣體
831‧‧‧導電體
832‧‧‧導電體
833‧‧‧導電體
834‧‧‧導電體
835‧‧‧導電體
836‧‧‧導電體
837‧‧‧導電體
838‧‧‧導電體
839‧‧‧導電體
840‧‧‧導電體
841‧‧‧導電體
842‧‧‧導電體
843‧‧‧導電體
844‧‧‧導電體
845‧‧‧導電體
846‧‧‧導電體
847‧‧‧導電體
848‧‧‧導電體
849‧‧‧導電體
850‧‧‧導電體
851‧‧‧導電體
852‧‧‧導電體
853‧‧‧導電體
854‧‧‧導電體
855‧‧‧導電體
856‧‧‧導電體
857‧‧‧導電體
858‧‧‧導電體
859‧‧‧導電體
860‧‧‧導電體
861‧‧‧導電體
862‧‧‧導電體
871‧‧‧絕緣體
872‧‧‧導電體
873‧‧‧絕緣體
874‧‧‧絕緣體
875‧‧‧區域
876‧‧‧區域
877‧‧‧絕緣體
878‧‧‧絕緣體
881‧‧‧絕緣體
882‧‧‧導電體
883‧‧‧絕緣體
884‧‧‧絕緣體
885‧‧‧區域
886‧‧‧區域
887‧‧‧層
888‧‧‧層
891‧‧‧電晶體
892‧‧‧電晶體
893‧‧‧發光層
901‧‧‧外殼
902‧‧‧外殼
903‧‧‧顯示部
904‧‧‧顯示部
905‧‧‧麥克風
906‧‧‧揚聲器
907‧‧‧操作鍵
908‧‧‧觸控筆
911‧‧‧外殼
912‧‧‧外殼
913‧‧‧顯示部
914‧‧‧顯示部
915‧‧‧連接部
916‧‧‧操作鍵
921‧‧‧外殼
922‧‧‧顯示部
923‧‧‧鍵盤
924‧‧‧指向裝置
931‧‧‧外殼
932‧‧‧冷藏室門
933‧‧‧冷凍室門
941‧‧‧外殼
942‧‧‧外殼
943‧‧‧顯示部
944‧‧‧操作鍵
945‧‧‧透鏡
946‧‧‧連接部
951‧‧‧車體
952‧‧‧車輪
953‧‧‧儀表板
954‧‧‧燈
1189‧‧‧ROM介面
1190‧‧‧基板
1191‧‧‧ALU
1192‧‧‧ALU控制器
1193‧‧‧指令解碼器
1194‧‧‧中斷控制器
1195‧‧‧時序控制器
1196‧‧‧暫存器
1197‧‧‧暫存器控制器
1198‧‧‧匯流排介面
1199‧‧‧ROM
1200‧‧‧記憶元件
1201‧‧‧電路
1202‧‧‧電路
1203‧‧‧開關
1204‧‧‧開關
1206‧‧‧邏輯元件
1207‧‧‧電容元件
1208‧‧‧電容元件
1209‧‧‧電晶體
1210‧‧‧電晶體
1213‧‧‧電晶體
1214‧‧‧電晶體
1220‧‧‧電路
2000‧‧‧成像裝置
2001‧‧‧開關
2002‧‧‧開關
2003‧‧‧開關
2010‧‧‧像素部
2011‧‧‧像素
2012‧‧‧子像素
2012B‧‧‧子像素
2012G‧‧‧子像素
2012R‧‧‧子像素
2020‧‧‧光電轉換元件
2030‧‧‧像素電路
2031‧‧‧佈線
2047‧‧‧佈線
2048‧‧‧佈線
2049‧‧‧佈線
2050‧‧‧佈線
2053‧‧‧佈線
2054‧‧‧濾光片
2054B‧‧‧濾光片
2054G‧‧‧濾光片
2054R‧‧‧濾光片
2055‧‧‧透鏡
2056‧‧‧光
2057‧‧‧佈線
2060‧‧‧週邊電路
2070‧‧‧週邊電路
2080‧‧‧週邊電路
2090‧‧‧週邊電路
2091‧‧‧光源
2100‧‧‧電晶體
2200‧‧‧電晶體
2300‧‧‧矽基板
2310‧‧‧層
2320‧‧‧層
2330‧‧‧層
2340‧‧‧層
2351‧‧‧電晶體
2352‧‧‧電晶體
2353‧‧‧電晶體
2354‧‧‧濾光片
2355‧‧‧透鏡
2360‧‧‧光電二極體
2361‧‧‧陽極
2363‧‧‧低電阻區域
2370‧‧‧插頭
2371‧‧‧佈線
2372‧‧‧佈線
2373‧‧‧佈線
2409‧‧‧絕緣體
2418‧‧‧絕緣體
2422‧‧‧絕緣體
2700‧‧‧成膜裝置
2701‧‧‧大氣側基板供應室
2702‧‧‧大氣側基板傳送室
2703a‧‧‧負載鎖定室
2703b‧‧‧卸載閉鎖室
2704‧‧‧傳送室
2705‧‧‧基板加熱室
2706a‧‧‧成膜室
2706b‧‧‧成膜室
2706c‧‧‧成膜室
2750‧‧‧基板
2751‧‧‧低溫冷阱
2752‧‧‧載物台
2761‧‧‧盒式介面
2762‧‧‧對準介面
2763‧‧‧傳送機器人
2764‧‧‧閘閥
2765‧‧‧加熱載物台
2766‧‧‧靶材單元
2768‧‧‧基板架
2769‧‧‧基板
2770‧‧‧真空泵
2771‧‧‧低溫泵
2772‧‧‧渦輪分子泵
2780‧‧‧質量流量控制器
2781‧‧‧精製器
2782‧‧‧氣體加熱機構
2784‧‧‧可變構件
2791‧‧‧電源
2797‧‧‧基板
3001‧‧‧佈線
3002‧‧‧佈線
3003‧‧‧佈線
3004‧‧‧佈線
3005‧‧‧佈線
3200‧‧‧電晶體
3300‧‧‧電晶體
3400‧‧‧電容元件
5100‧‧‧顆粒
5120‧‧‧基板
5161‧‧‧區域
在圖式中:圖1是說明CAAC-OS的成膜方法的圖;圖2A至圖2C是說明InMZnO4的結晶及顆粒的圖;圖3A至圖3D是說明CAAC-OS的成膜方法的圖;圖4A至圖4F是說明CAAC-OS的成膜方法的圖;圖5A至圖5G是說明粒子附著到顆粒的位置的圖;圖6A至圖6G是說明粒子附著到顆粒的位置的圖;圖7是說明In-M-Zn氧化物的組成的三角圖;圖8是說明濺射裝置的圖;圖9是說明濺射裝置的圖;圖10是說明濺射裝置的圖;圖11是說明濺射裝置的圖;圖12A和圖12B是說明濺射裝置的圖;圖13是說明濺射裝置的圖;圖14是說明濺射裝置的圖;圖15A和圖15B是說明濺射裝置的圖;圖16是示出成膜裝置的一個例子的俯視圖;圖17A至圖17C是示出成膜裝置的一個例子的剖面圖;圖18A至圖18C是根據本發明的一個實施方式的電晶體的俯視圖及剖 面圖;圖19A至圖19F是根據本發明的一個實施方式的電晶體的剖面圖;圖20A至圖20F是根據本發明的一個實施方式的電晶體的剖面圖;圖21是具有根據本發明的一個實施方式的氧化物半導體的區域的能帶圖;圖22A至圖22C是根據本發明的一個實施方式的電晶體的俯視圖及剖面圖;圖23A至圖23F是根據本發明的一個實施方式的電晶體的剖面圖;圖24A至圖24F是根據本發明的一個實施方式的電晶體的剖面圖;圖25A至圖25C是根據本發明的一個實施方式的電晶體的俯視圖及剖面圖;圖26A至圖26F是根據本發明的一個實施方式的電晶體的剖面圖;圖27A和圖27B是示出根據本發明的一個實施方式的半導體裝置的電路圖;圖28A至圖28C是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖29A至圖29C是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖30A至圖30C是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖31A和圖31B是示出根據本發明的一個實施方式的記憶體裝置的電路圖; 圖32A至圖32C是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖33A至圖33C是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖34A至圖34C是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖35A和圖35B是示出根據本發明的一個實施方式的半導體裝置的俯視圖;圖36A和圖36B是示出根據本發明的一個實施方式的半導體裝置的方塊圖;圖37A和圖37B是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖38A和圖38B是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖39A和圖39B是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖40A1、圖40A2、圖40A3、圖40B1、圖40B2及圖40B3是示出根據本發明的一個實施方式的半導體裝置的透視圖及剖面圖;圖41是示出根據本發明的一個實施方式的半導體裝置的方塊圖;圖42是示出根據本發明的一個實施方式的半導體裝置的電路圖;圖43A至圖43C是示出根據本發明的一個實施方式的半導體裝置的電路圖、俯視圖及剖面圖; 圖44是示出根據本發明的一個實施方式的半導體裝置的剖面圖;圖45A和圖45B是示出根據本發明的一個實施方式的半導體裝置的電路圖及剖面圖;圖46A至圖46F是示出根據本發明的一個實施方式的電子裝置的透視圖;圖47A至圖47D是CAAC-OS的剖面的Cs校正高解析度TEM影像及CAAC-OS的剖面示意圖;圖48A至圖48D是CAAC-OS平面的Cs校正高解析度TEM影像;圖49A至圖49C是說明CAAC-OS及單晶氧化物半導體的利用XRD得到的結構分析的圖;圖50A和圖50B是示出CAAC-OS的電子繞射圖案的圖;圖51是示出藉由電子照射的In-Ga-Zn氧化物的結晶部的變化的圖。
將參照圖式對本發明的實施方式進行詳細的說明。注意,本發明不侷限於以下說明,所屬技術領域的通常知識者可以很容易地理解一個事實就是其方式和詳細內容可以被變換為各種形式。另外,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。注意,當利用圖式說明發明結構時,表示相同物件的符號在不同的圖式中共同使用。另外,有時使用相同的陰影圖案表示相同的部分,而不特別附加符號。另外,在參照不同符號的組件的記載的情況下,可以適當地使用關於參照的組件的厚度、組成、結構或形狀等的記載。
注意,在圖式中,有時為了清楚瞭解而誇大尺寸、膜(層)的厚度或區域。
在本說明書中,可以互相調換“膜”和“層”。
另外,電壓大多指某個電位與參考電位(例如,接地電位(GND)或源極電位)之間的電位差。由此,可以將電壓換稱為電位。一般而言,電位(電壓)是相對的,根據與參考電位之差決定。因此,在記載為“接地電位”等的情況下,電位也不侷限於0V。例如,也有電路中的最低電位為“接地電位”的情況。或者,也有電路中的中間電位為“接地電位”的情況。在該情況下,以該電位為基準規定正電位及負電位。
另外,為方便起見,附加了第一、第二等序數詞,而其並不表示製程順序或疊層順序。因此,例如可以將“第一”適當地替換為“第二”或“第三”等來進行說明。另外,本說明書等中所記載的序數詞與用於特定本發明的一個實施方式的序數詞有時不一致。
注意,半導體的雜質例如是指半導體的主要成分之外的元素。例如,濃度為低於0.1atomic%的元素是雜質。有時由於包含雜質而例如導致在半導體中形成DOS(Density of State:態密度),載子移動率降低或結晶性降低等。在半導體是氧化物半導體時,作為改變半導體特性的雜質,例如 有第1族元素、第2族元素、第14族元素、第15族元素或主要成分之外的過渡金屬等,尤其是,例如有氫(包含在水中)、鋰、鈉、矽、硼、磷、碳、氮等。在氧化物半導體中,有時例如由於氫等雜質的混入導致氧缺損的產生。另外,在半導體是矽層時,作為改變半導體特性的雜質,例如有氧、除氫之外的第1族元素、第2族元素、第13族元素、第15族元素等。
注意,通道長度例如是指電晶體的俯視圖中的半導體(或在電晶體處於導通狀態時,在半導體中電流流過的部分)和閘極電極互相重疊的區域或者形成通道的區域中的源極(源極區或源極電極)和汲極(汲極區或汲極電極)之間的距離。另外,在一個電晶體中,通道長度不一定在所有區域中都為相同的值。也就是說,一個電晶體的通道長度有時不侷限於一個值。因此,在本說明書中,通道長度是形成通道的區域中的任一個值、最大值、最小值或平均值。
通道寬度例如是指半導體(或在電晶體處於導通狀態時,在半導體中流過電流的部分)和閘極電極互相重疊的區域或者形成通道的區域中的源極與汲極相對的部分的長度。另外,在一個電晶體中,通道寬度不一定在所有區域中都為相同的值。也就是說,一個電晶體的通道寬度有時不侷限於一個值。因此,在本說明書中,通道寬度是形成通道的區域中的任一個值、最大值、最小值或平均值。
另外,根據電晶體的結構,有時實際上形成通道的區域中的通道寬度 (下面稱為實效通道寬度)和電晶體的俯視圖所示的通道寬度(下面稱為外觀上的通道寬度)不同。例如,在具有立體結構的電晶體中,有時因為實效通道寬度大於電晶體的俯視圖所示的外觀上的通道寬度,所以不能忽略其影響。例如,在具有微型且立體的結構的電晶體中,有時形成在半導體的側面的通道區域的比率增大。在此情況下,實際上形成通道的實效通道寬度大於俯視圖所示的外觀上的通道寬度。
在具有立體結構的電晶體中,有時難以藉由實測估計實效通道寬度。例如,為了根據設計值估計實效通道寬度,需要假設半導體的形狀是已知的。因此,當不清楚半導體的形狀時,難以準確地測量實效通道寬度。
因此,在本說明書中,有時將在電晶體的俯視圖中半導體和閘極電極互相重疊的區域中的源極與汲極相對的部分的長度,亦即,外觀上的通道寬度稱為“圍繞通道寬度(SCW:Surrounded Channel Width)”。另外,在本說明書中,在簡單地描述為“通道寬度”時,有時是指圍繞通道寬度或外觀上的通道寬度。或者,在本說明書中,在簡單地描述為“通道寬度”時,有時是指實效通道寬度。注意,藉由對剖面TEM影像等進行分析等,可以決定通道長度、通道寬度、實效通道寬度、外觀上的通道寬度、圍繞通道寬度等的值。
另外,在藉由計算求得電晶體的場效移動率或每個通道寬度的電流值等時,有時使用圍繞通道寬度來計算。在此情況下,該值有時與使用實效 通道寬度計算的值不同。
在本說明書中,“A具有其端部比B的端部突出的形狀”有時意味著在俯視圖或剖面圖中A的至少一個端部位於B的至少一個端部的外側。因此,例如可以將“A具有其端部比B的端部突出的形狀”的記載解釋為在俯視圖中A的一個端部位於B的一個端部的外側。
在本說明書中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此,也包括該角度為-5°以上且5°以下的狀態。另外,“大致平行”是指兩條直線形成的角度為-30°以上且30°以下的狀態。另外,“垂直”是指兩條直線的角度為80°以上且100°以下的狀態。因此,也包括該角度為85°以上且95°以下的狀態。另外,“大致垂直”是指兩條直線形成的角度為60°以上且120°以下的狀態。
在本說明書中,六方晶系包括三方晶系和菱方晶系。
另外,在本說明書中,當記載為氧化物半導體時,有時可以換為其他的半導體。例如,可以換為:矽或鍺等第14族半導體;碳化矽、矽化鍺、砷化鎵、磷化銦、硒化鋅、硫化鎘、等化合物半導體;以及有機半導體。
〈成膜方法〉
以下說明利用濺射法的CAAC-OS成膜模型的一個例子。
如圖1所示,在成膜室內有靶材230。靶材230與底板210黏合。在隔著底板210與靶材230重疊的位置配置有磁鐵250。成膜室內幾乎充滿沉積氣體(例如,氧、氬或包含5vol%以上的氧的混合氣體),並且成膜室內的壓力被控制為0.01Pa以上且100Pa以下,較佳的是0.1Pa以上且10Pa以下。在此,當對靶材230施加一定值以上的電壓時,開始放電,確認到電漿。由磁鐵250的磁場在靶材230附近形成高密度電漿區域。在高密度電漿區域中,因沉積氣體的離子化而產生離子201。利用磁鐵的磁場提高沉積速度的濺射法被稱為磁控濺射法。離子201例如是氧的陽離子(O+)或氬的陽離子(Ar+)等。
靶材230具有包括多個晶粒的多晶結構,其中任一晶粒包括劈開面。作為一個例子,圖2A示出包含在靶材230中的InMZnO4(元素M例如為鋁、鎵、釔或錫)的結晶結構。注意,圖2A示出從平行於b軸的方向觀察時的InMZnO4的結晶結構。在InMZnO4結晶中,由於氧原子具有負電荷,靠近的兩個M-Zn-O層之間產生斥力。因此,InMZnO4結晶在靠近的兩個M-Zn-O層之間具有劈開面。
在高密度電漿區域產生的離子201由電場向靶材230一側被加速,然後碰撞到靶材230。此時,平板狀或顆粒狀的濺射粒子的顆粒200從劈開面剝離。另外,隨著顆粒200的剝離,粒子203也從靶材230濺出。粒子203具有一個原子或幾個原子的集合體。由此,粒子203也可以被稱為原子狀 粒子(atomic particles)。
參照圖3A至圖3D所示的剖面圖對靶材表面的劈開的狀態進行說明。圖3A是具有劈開面(虛線部)的靶材230的剖面圖。當離子201碰撞靶材230時,從劈開面的端部開始鍵合斷開(參照圖3B)。劈開的面之間由於存在相同極性的電荷而互相排斥。因此,一旦鍵合斷開就不會發生再結合。並且,由於電荷之間的互相排斥不斷進行,鍵合斷開的區域逐漸擴大(參照圖3C)。最終,顆粒200從靶材230剝離(參照圖3D)。顆粒200是被夾在圖2A所示的兩個劈開面之間的部分。因此,當只抽出顆粒200時,其剖面成為如圖2B所示那樣的,其頂面成為如圖2C所示那樣的。注意,有時因離子201碰撞時的衝擊而在顆粒200中發生結構應變。
顆粒200是具有三角形(例如正三角形)的平面的平板狀或顆粒狀的濺射粒子。或者,顆粒200是具有六角形(例如正六角形)的平面的平板狀或顆粒狀的濺射粒子。注意,顆粒200的形狀不侷限於三角形或六角形。
顆粒200的厚度取決於沉積氣體的種類等。例如,顆粒200的厚度為0.4nm以上且1nm以下,較佳的是0.6nm以上且0.8nm以下。另外,例如,可以將顆粒200的寬度設定為1nm以上且100nm以下,較佳的是1nm以上且50nm以下,更佳的是1nm以上且30nm以下,進一步較佳的是1nm以上且6nm以下。
顆粒200有時從電漿接收電荷,使得其表面帶負電或正電。例如,顆粒200有時從電漿中的O2-接收負電荷。在此情況下,有時顆粒200的表面的氧原子帶負電。另外,有時在電漿中粒子203附著到顆粒200的側面並與其鍵合而使顆粒200橫向成長。
經過電漿的顆粒200及粒子203到達基板220的表面。另外,粒子203的一部分由於質量小所以有時被真空泵等排出到外部。
接著,參照圖4A至圖4F說明在基板220的表面沉積的顆粒200及粒子203。
首先,第一個顆粒200沉積在基板220上。由於顆粒200是平板狀,所以以其平面一側朝向基板220的表面的方式沉積。此時,顆粒200的基板220一側的表面的電荷穿過基板220釋放。
接著,第二個顆粒200到達基板220。此時,由於已經沉積了的顆粒200的表面及第二個顆粒200的表面帶電荷,所以互相排斥。由此,第二個顆粒200避開已經沉積的顆粒200的上方而在與已經沉積的顆粒200錯開一點的位置上以平面一側面向基板220表面的方式沉積。藉由反復進行上述沉積,在基板220的表面沉積無數個顆粒200,該沉積的厚度相當於一層。另外,顆粒200之間形成沒有沉積有顆粒200的區域(參照圖4A)。
接著,從電漿獲得了能量的粒子203到達基板220表面。粒子203不能沉積於顆粒200的表面等活性區域上。因此,粒子203移動到沒有沉積有顆粒200的區域而附著到顆粒200的側面。粒子203因從電漿獲得的能量而變為容易形成鍵合的活性狀態,粒子203與顆粒200化學鍵合形成橫向成長部202(參照圖4B)。並且,由於橫向成長部202在橫向上成長(也稱為橫向生長:lateral growth),可以使各顆粒200連結(參照圖4C)。如此,一直形成橫向成長部202直到填滿沒有沉積有顆粒200的區域。該機制類似於原子層沉積(ALD:Atomic Layer Deposition)法的沉積機制。
因此,因為在顆粒200間粒子203在橫向生長的同時填入,所以即使在顆粒200向彼此不同的方向沉積的情況下也可以避免形成明確的晶界。另外,由於顆粒200間由粒子203平滑地連結,所以形成與單晶及多晶不同的結晶結構。換而言之,形成在微小的結晶區域(顆粒200)間具有應變的結晶結構。像這樣,由於填入結晶區域間的區域為應變的結晶區域,所以可以認為將該區域稱為非晶結構是不適當的。
接著,新的顆粒200以其平面一側面向基板220的表面的方式沉積(參照圖4D)。並且,粒子203以填埋沒有沉積有顆粒200的區域的方式進行沉積而形成橫向成長部202(參照圖4E)。由此,藉由粒子203附著到顆粒200的側面使橫向成長部202進行橫向生長,而使第二層的各顆粒200連結(參照圖4F)。繼續進行成膜直到形成第m層(m是2以上的整數),由此形成具有層疊體的薄膜結構。
另外,顆粒200的沉積機制根據基板220的表面溫度等而變化。例如,在基板220的表面溫度較高時,顆粒200在基板220的表面發生遷移。其結果是,由於在顆粒200之間直接連結而不夾著粒子203的比例增加,所以成為配向性更高的CAAC-OS。在形成CAAC-OS時的基板220的表面溫度為100℃以上且低於500℃,較佳的是140℃以上且低於450℃,更佳的是170℃以上且低於400℃。因此,即使作為基板220使用第8代以上的大面積基板,也幾乎不產生因CAAC-OS的成膜導致的翹曲等。
另一方面,在基板220的表面溫度較低時,顆粒200在基板220的表面不容易發生遷移。其結果是,顆粒200堆積而形成配向性低的nc-OS(nanocrystalline Oxide Semiconductor:奈米晶氧化物半導體)等。在nc-OS中,藉由顆粒200帶負電,有可能顆粒200彼此有一定間隔沉積。因此,nc-OS的配向性較低,但稍微有規律性,由此具有與非晶氧化物半導體相比緻密的結構。
在CAAC-OS中,當顆粒彼此之間的間隙極小時,有時形成有一個大顆粒。在一個大顆粒內具有單晶結構。例如,從頂面看來顆粒的尺寸有時為10nm以上且200nm以下、15nm以上且100nm以下或20nm以上且50nm以下。
如上述成膜模型那樣,顆粒沉積於基板的表面。由於即使被形成面不具有結晶結構也能夠形成CAAC-OS,所以可知作為與磊晶生長不同的上述成 膜模型是很妥當的。另外,借助於上述成膜模型,CAAC-OS及nc-OS在大面積的玻璃基板等上也能夠均勻地進行成膜。例如,即使基板的表面(被形成面)結構為非晶結構(例如非晶氧化矽),也能夠形成CAAC-OS。
另外,可知即使在作為被形成面的基板表面為凹凸狀的情況下,顆粒也沿著其形狀排列。
另外,藉由上述成膜模型可知藉由如下方法可以形成結晶性高的CAAC-OS膜。首先,在高真空狀態下進行成膜以使其具有較長的平均自由徑。接著,減弱電漿能量以減少基板附近的損傷。接著,對形成面施加熱能量以在成膜時修復因電漿造成的損傷。
以上說明了顆粒為平板狀時的情況。例如,當顆粒為骰子狀或柱狀等寬度較小的顆粒時,到達基板表面的顆粒以不同朝向沉積在基板上。然後,粒子附著到上述以不同朝向沉積在基板上的顆粒的側面,橫向成長部進行橫向生長。因此,得到的薄膜中的晶體配向有可能不一致。
另外,上述成膜模型不侷限於靶材具有包括多個晶粒的In-M-Zn氧化物那樣的複合氧化物的多晶結構且任一晶粒具有劈開面的情況。例如,也可以適用於使用含有氧化銦、元素M的氧化物及氧化鋅的混合物的靶材的情況。
由於混合物的靶材不具有劈開面,當被濺射時原子狀粒子從靶材剝離。在成膜時,靶材附近形成有電漿的強電場區域。因此,從靶材剝離的原子狀粒子在電漿的強電場區域的作用下連結而進行橫向成長。例如,首先,為原子狀粒子的銦連結而進行橫向成長成為由In-O層構成的奈米晶體。接著,M-Zn-O層以補全In-O層的方式鍵合在In-O層的上下。如此,即使在使用混合物的靶材的情況下也有可能形成顆粒。因此,上述成膜模型也可以適用於使用混合物的靶材的情況。
但是,當靶材附近沒有形成電漿的強電場區域時,只有從靶材剝離的原子狀粒子沉積在基板表面。在該情況下,有時在基板表面上原子狀粒子進行橫向成長。但是,由於原子狀粒子的朝向不同,因此得到的薄膜中的晶體配向也不同。亦即,成為nc-OS等。
〈橫向生長〉
下面,對在顆粒200的橫向方向上粒子203附著(也稱為鍵合或吸附)而橫向生長的情況進行說明。
圖5A、圖5B、圖5C、圖5D及圖5E是示出顆粒200的結構及金屬離子附著的位置的圖。另外,作為顆粒200假設從InMZnO4的結晶結構在保持化學計量組成的情況下抽出84個原子的團簇模型(cluster model)。注意,以下說明元素M為鎵的情況。另外,圖5F示出從平行於c軸的方向看顆粒200時的結構。圖5G示出從平行於a軸的方向看顆粒200時的結構。
以位置A、位置B、位置a、位置b及位置c示出金屬離子的附著位置。另外,位置A為在顆粒200頂面由一個鎵、兩個鋅圍繞的晶格間位點(site)的上方。位置B為在顆粒200頂面由兩個鎵、一個鋅圍繞的晶格間位點的上方。位置a為顆粒200側面的銦位點。位置b為在顆粒200側面In-O層與Ga-Zn-O層之間的晶格間位點。位置c為顆粒200側面的鎵位點。
接著,利用第一原理計算對在所假設的位置A、位置B、位置a、位置b及位置c配置金屬離子的情況的相對能量進行評價。在計算中,使用第一原理計算軟體的VASP(Vienna Ab initio Simulation Package)。另外,作為交換相關勢使用PBE(Perdew-Burke-Ernzerhof)型的廣義梯度近似(GGA:Generallized Gradient Approximation),作為離子勢能使用PAW(Projector Augmented Wave:投影綴加波)法。另外,將截止能量設定為400eV,k點取樣只為Γ點。表1示出在位置A、位置B、位置a、位置b及位置c配置銦離子(In3+)、鎵離子(Ga3+)及鋅離子(Zn2+)的情況的相對能量。另外,相對能量是在計算模型中能量最低的模型的能量為0eV時的相對值。
[表1]
從上述結果可知,與顆粒200的頂面相比金屬離子更容易附著於顆粒200的側面。尤其是,位置a的銦位點不僅是銦離子最容易附著的位置也是鋅離子最容易附著的位置。
同樣地,對氧離子(O2-)的對於顆粒200的附著性進行評價。圖6A、圖6B、圖6C、圖6D及圖6E是示出顆粒200的結構及氧離子附著的位置的圖。另外,圖6F示出從平行於c軸的方向來看顆粒200的結構。圖6G示出從平行於b軸的方向來看顆粒200的結構。
以位置C、位置D、位置d、位置e及位置f示出氧離子的附著位置。另外,位置C為與顆粒200頂面的鎵鍵合的位置。位置D為與顆粒200頂面的鋅鍵合的位置。位置d為與顆粒200側面的銦鍵合的位置。位置e為與顆粒200側面的鎵鍵合的位置。位置f為與顆粒200側面的鋅鍵合的位置。
接著,利用第一原理計算對在所假定的位置C、位置D、位置d、位置e及位置f配置氧離子的情況的相對能量進行評價。表2示出在位置C、位 置D、位置d、位置e及位置f配置氧離子(O2-)的情況的相對能量。
從上述結果可知氧離子也與顆粒200頂面相比容易附著於側面。
因此可知,接近顆粒200的粒子203優先地附著到顆粒200的側面。亦即,可以說由附著於顆粒200的側面的粒子203發生顆粒200的橫向生長的上述成膜模型是很妥當的。
〈組成〉
下面,說明In-M-Zn氧化物的組成。注意,元素M表示鋁、鎵、釔或錫等。除了上述以外,元素M也可以為硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢等。
圖7是在各頂點配置有In、M或Zn的三角圖。另外,圖式中的[In]表示In的原子濃度,[M]表示元素M的原子濃度,並且[Zn]表示Zn的原子濃度。
In-M-Zn氧化物的結晶已知具有同系結構,可以由InMO3(ZnO)m(m為自然數)表示。另外,由於In和M可以互換代替使用,所以也可以由In1+αM1-αO3(ZnO)m表示。該組成為由虛線表示的組成,亦即,[In]:[M]:[Zn]=1+α:1-α:1、[In]:[M]:[Zn]=1+α:1-α:2、[In]:[M]:[Zn]=1+α:1-α:3、[In]:[M]:[Zn]=1+α:1-α:4、[In]:[M]:[Zn]=1+α:1-α:5。注意,虛線上的粗線表示例如在混合作為原料的氧化物並以1350℃焙燒時可成為固溶體的組成。
因此,藉由接近上述可成為固溶體的組成,可以提高結晶性。另外,在藉由濺射法形成In-M-Zn氧化物膜時,有時靶材的組成與膜的組成不同。例如,在作為靶材使用原子個數比為[1:1:1]、[1:1:1.2]、[3:1:2]、[4:2:4.1]、[1:3:2]、[1:3:4]、[1:4:5]的In-M-Zn氧化物的情況下,膜的原子個數比分別成為[1:1:0.7(0.5至0.9左右)]、[1:1:0.9(0.8至1.1左右)]、[3:1:1.5(1至1.8左右)]、[4:2:3(2.6至3.6左右)]、[1:3:1.5(1至1.8左右)]、[1:3:3(2.5至3.5左右)]、[1:4:4(3.4至4.4左右)]。因此,為了得到所希望的組成的膜,只要對組成的變化加以考慮而選擇靶材的組成即可。
〈濺射裝置〉
下面,對根據本發明的一個實施方式的對向靶材式濺射裝置進行說明。在後文中有如下說明:利用對向靶材式濺射裝置進行成膜,可以減少對形成面的損傷,而易於得到結晶性高的膜。也就是說,有時較佳為使用 對向靶材式濺射裝置進行CAAC-OS的成膜。另外,在下面所示的濺射裝置中,為了便於理解或者便於對成膜時的工作進行說明,示出配置有基板及靶材等的狀態的濺射裝置。但是,由於基板及靶材等是由使用者設置的物體,所以根據本發明的一個實施方式的濺射裝置有時不具有基板及靶材。
另外,也可以將利用對向靶材式濺射裝置的成膜法稱為VDSP(vapor deposition SP:氣相沉積SP)。
圖8示出對向靶材式濺射裝置的一個例子。
圖8是濺射裝置的成膜室的剖面示意圖。圖8所示的成膜室包括:靶材100a及靶材100b;保持靶材100a的底板110a及保持靶材100b的底板110b;以及隔著底板110a配置於靶材100a的背面的磁鐵單元130a及隔著底板110b配置於靶材100b的背面的磁鐵單元130b。另外,當將基板160傳送到成膜室內時,將基板160固定在基板架170上。另外,基板架170的背面配置有加熱機構180。
另外,如圖8所示,底板110a及底板110b與用來施加電位的電源190連接。作為電源190,較佳為採用AC電源,亦即,在底板110a與底板110b之間交替地施加電位的高低交換的電位。另外,雖然圖8示出電源190採用AC電源時的例子,但是不侷限於此。例如,電源190也可以採用RF電源或DC電源等。
另外,較佳的是基板架170連接到GND。另外,基板架170也可以為浮動狀態。
另外,靶材屏蔽罩122a及靶材屏蔽罩122b連接到GND。亦即,由於被施加了電源190的電位的底板110a及底板110b與被施加了GND的靶材屏蔽罩122a及靶材屏蔽罩122b之間的電位差,形成了電漿140。
另外,濺射裝置包括靶材架(未圖示)。兩個靶材架使用螺釘(螺栓等)分別固定在底板110a、110b上,並具有相同電位。另外,靶材架能夠隔著底板110a(110b)支撐靶材100a(100b)。
另外,底板110a及底板110b分別固定有靶材100a及靶材100b。例如,可以使用含有銦等低融點金屬的黏結材料固定底板110a與靶材100a以及底板110b與靶材100b。
成膜室也可以在底板110a及底板110b的內部或下部等具有水路。藉由使流體(空氣、氮、稀有氣體、水、油等)流過水路,可以抑制在進行濺射時靶材100的溫度上升所引起的放電異常或者構件的變形所引起的成膜室101的損傷等。
另外,靶材100a或靶材100b與基板160之間的垂直距離為10mm以上 且600mm以下,較佳的是20mm以上且400mm以下,更佳的是30mm以上且200mm以下,進一步較佳的是40mm以上且100mm以下。藉由使靶材100a或靶材100b與基板160之間的垂直距離近,有時可以抑制濺射粒子到達基板160之前能量降低。另外,藉由使靶材100a或靶材100b與基板160之間的垂直距離遠,可以使濺射粒子入射到基板160時的方向接近於垂直,因此有時可以減輕濺射粒子的碰撞所導致的基板160的損傷。
對向靶材式濺射裝置即使在高真空下也能夠穩定地生成電漿。例如,在0.005Pa以上且0.09Pa以下也能夠進行成膜。因此,可以降低成膜時混入的雜質的濃度。
為了進一步提高所得到的膜的結晶性,也可以提高基板160的溫度。藉由提高基板160的溫度,可以促進基板160中的濺射粒子的遷移。因此,可以獲得密度更高且結晶性更高的膜。另外,例如,基板160的溫度可以為100℃以上且450℃以下,較佳的是150℃以上且400℃以下,更佳的是170℃以上且350℃以下。
藉由利用對向靶材式濺射裝置可以在高真空下進行成膜,而且能夠形成因電漿造成的損傷較少的膜,由此即使在基板160的溫度較低的情況下也可以形成結晶性高的膜。例如,在基板160的溫度為10℃以上且低於100℃的情況下也可以形成結晶性高的膜。
當沉積氣體中的氧分壓過高時,容易形成包含多種結晶相的膜,因此較佳的是作為沉積氣體使用氬等稀有氣體(氦、氖、氪、氙等)與氧的混合氣體。例如,可以使氧在整個沉積氣體中所占的比率低於50vol%,較佳的是33vol%以下,更佳的是20vol%以下,進一步較佳的是15vol%以下。
另外,較佳的是在電漿140充分地到達基板160表面的狀態下進行成膜。
在圖8中,靶材100a及靶材100b的正面朝向橫向並且其正面彼此相對地平行地配置。在該情況下,可以將靶材100a及靶材100b稱為一對靶材。另外,磁鐵單元130a與磁鐵單元130b以不同極彼此相對的方式配置。在該情況下,磁力線從磁鐵單元130b朝向磁鐵單元130a。因此,在成膜時,磁鐵單元130a與磁鐵單元130b形成的磁場中封閉有電漿140的高密度區域。另外,基板架170配置在靶材100a及靶材100b的上側或下側。注意,雖然在圖8中基板架170及基板160以平行於靶材100a與靶材100b彼此相對的方向的方式配置,但是也可以傾斜地配置。例如,藉由將基板架170及基板160傾斜30°以上且60°以下(典型地為45°),可以提高成膜時垂直入射到基板160的濺射粒子的比例。
圖9所示的結構與圖8所示的結構的不同之處在於:靶材100a與靶材100b不是以平行的方式配置,而是以其上側之間的距離大於下側之間的距離的方式傾斜地(V字狀)配置。因此,關於靶材的配置以外的部分可以參 照圖8的說明。另外,磁鐵單元130a和130b以磁鐵的異極相對的方式配置。另外,基板架170配置在靶材100a及靶材100b的上側。另外,也可以將靶材100a與靶材100b以其下側之間的距離大於上側之間的距離的方式傾斜地(倒V字狀)配置。此時,可以將基板架170配置在靶材100a及靶材100b的下側。
另外,雖然在圖8及圖9中示出將基板架配置於靶材之間的區域的上側或下側的例子,但是也可以將基板架170a及基板架170b分別配置在下側及上側(參照圖10)。基板架170a及基板架170b上分別固定有基板160a及基板160b。另外,基板架170a及基板架170b的背面分別配置有加熱機構180a及加熱機構180b。藉由在下側及上側配置基板架,可以同時形成兩個以上的基板,由此可以提高生產率。另外,也可以將靶材100a與靶材100b彼此相對的區域的上側或/及下側稱為靶材100a與靶材100b彼此相對的區域的一側。
另外,由於可以在高真空下進行成膜,因此可以降低混入膜中的雜質的濃度。
圖11是根據本發明的一個實施方式的對向靶材式濺射裝置的透視圖。下面,為了方便起見,將包括一對靶材(這裡指靶材100a及靶材100b)及一對磁鐵(這裡指磁鐵單元130a及磁鐵單元130b)的組稱為靶材單元150a。雖然靶材單元150a還包括其他組件,但是為了便於理解進行了省略。 注意,其他的組件可以適當地參照圖8、圖9及圖10的記載。圖11所示的濺射裝置在利用靶材單元150a進行掃描的同時進行成膜。因此,即便靶材的尺寸比基板小也可以對整個基板表面進行成膜。由於靶材小,可以縮小濺射裝置的尺寸。由此,可以降低製造濺射裝置所需的費用。另外,藉由在利用靶材單元150a進行掃描的同時進行成膜,即便是大面積的基板也可以形成膜厚度及膜質均勻的膜。另外,可以根據要形成的膜的厚度適當地調整靶材單元150a的掃描速度。另外,可以反復地進行利用靶材單元150a在基板160的第一端部與與第一端部相對的第二端部之間進行掃描的成膜工作。或者,也可以利用靶材單元150a從基板160的第一端部掃描到第二端部然後再折回基板160的第一端部進行成膜。
圖12A是在圖11所示的濺射裝置中利用靶材進行掃描以形成膜106a時的狀態。圖12B是並列使用靶材單元150a、靶材單元150b及靶材單元150c進行掃描形成膜106a、膜106b及膜106c時的狀態。另外,靶材單元150b及靶材單元150c可以參照靶材單元150a的記載。但是,靶材的組成等可以彼此不同。圖12A及圖12B只是一個例子,靶材單元的個數不侷限於一組或三組。例如,也可以為兩組或四組以上。
藉由同時利用多個靶材單元進行掃描,可以一次性地形成疊層膜。由此,可以縮短形成疊層膜所需的時間。另外,由於可以縮短膜與膜之間的成膜間隔,由此可以抑制雜質混入膜與膜之間的介面。另外,藉由在剛形成完一個膜後的活性狀態下形成下一個膜,可以提高膜與膜之間的密接 性。例如,可以高良率地形成通常被認為密接性較差的膜與膜的疊層膜。
當利用一次掃描形成多個膜時,該多個膜的膜種類可以部分或完全不同,也可以都相同。另外,各個膜的厚度可以部分或完全不同,也可以都相同。另外,各靶材單元的掃描速度(移動速度)可以部分或完全不同,也可以都相同。另外,各個膜的成膜條件可以部分或完全不同,也可以都相同。
或者,也可以具有多個靶材單元而各靶材單元的配置不同。例如,如圖13所示,也可以使靶材單元150a與基板160的垂直距離與靶材單元150b與基板160的垂直距離不同。可以藉由改變靶材單元與基板的垂直距離來調整膜厚度及膜質。
或者,也可以在靶材單元與基板之間配置防止濺射粒子大範圍飛散的構件。例如,可以將具有狹縫的構件以狹縫位於靶材單元與基板之間的方式配置。例如,可以如圖14所示那樣,以包圍靶材單元150a的方式配置具有狹縫的構件134a,並以包圍靶材單元150b的方式配置具有狹縫的構件134b。利用具有狹縫的構件,可以防止濺射粒子大範圍飛散,由此可以抑制基板160中形成膜106a與膜106b的混合膜。也可以將具有狹縫的構件稱為煙囪(chimney)。
另外,根據本發明的一個實施方式的濺射裝置可以如圖15A所示地採 用使用靶材單元150a掃描基板160的上側的結構。或者,可以如圖15B所示地採用將基板160立起並使用靶材單元150a掃描其側面的結構。藉由將基板立起來,與將基板橫放的情況相比,可以縮小濺射裝置的設置面積。
儘管根據本發明的一個實施方式的濺射裝置為對向靶材式濺射裝置,但是也可以對大面積基板形成具有均勻厚度及均勻膜質的膜。另外,還可以藉由一次掃描連續地形成多個膜,從而可以縮短形成疊層膜所需的時間。
〈成膜裝置〉
下面,對具有根據本發明的一個實施方式的濺射裝置的成膜裝置進行說明。
首先,參照圖16至圖17C說明在成膜時等雜質很少混入膜中的成膜裝置的結構。
圖16示意性地示出單片式多室(single wafer multi-chamber)成膜裝置2700的俯視圖。成膜裝置2700包括:具備收納基板的盒式介面(cassette port)2761和進行基板對準的對準介面(alignment port)2762的大氣側基板供應室2701;從大氣側基板供應室2701傳送基板的大氣側基板傳送室2702;進行基板的搬入且將室內的壓力從大氣壓切換為減壓或從減壓切換為大氣壓的負載鎖定室2703a;進行基板的搬出且將室內的壓力從減壓切換為大氣壓或從大氣壓切換為減壓的卸載閉鎖室2703b;進行真空中 的基板的傳送的傳送室2704;對基板進行加熱的基板加熱室2705;以及配置有靶材且進行成膜的成膜室2706a、成膜室2706b及成膜室2706c。另外,關於成膜室2706a、成膜室2706b及成膜室2706c的結構可以參照上述成膜室的結構。
大氣側基板傳送室2702與負載鎖定室2703a以及卸載閉鎖室2703b連接,負載鎖定室2703a以及卸載閉鎖室2703b與傳送室2704連接,傳送室2704與基板加熱室2705、成膜室2706a、成膜室2706b以及成膜室2706c連接。
在各室的連接部設置有閘閥2764,可以獨立地保持除了大氣側基板供應室2701及大氣側基板傳送室2702以外的各室的真空狀態。大氣側基板傳送室2702及傳送室2704具有傳送機器人2763,可以傳送基板。
基板加熱室2705較佳的是兼作電漿處理室。成膜裝置2700可以在處理之間以不暴露於大氣的方式傳送基板,由此可以抑制雜質吸附到基板上。另外,可以自由地決定成膜、加熱處理等的順序。傳送室、成膜室、負載鎖定室、卸載閉鎖室以及基板加熱室的數量不侷限於上述數量,可以根據設置它們的空間或製程條件適當地決定。
接著,圖17A至圖17C示出沿著圖16所示的成膜裝置2700的點劃線X1-X2、點劃線Y1-Y2及點劃線Y2-Y3的剖面。
圖17A示出基板加熱室2705和傳送室2704的剖面,基板加熱室2705具有能夠收納基板的多個加熱載物台2765。基板加熱室2705藉由閥與真空泵2770連接。作為真空泵2770,例如可以使用乾燥泵、機械增壓泵等。
作為可以用於基板加熱室2705的加熱機構,例如也可以使用利用電阻發熱體等進行加熱的加熱機構。或者,也可以使用利用被加熱的氣體等的介質的熱傳導或熱輻射來進行加熱的加熱機構。例如,可以使用GRTA(Gas Rapid Thermal Anneal:氣體快速熱退火)、LRTA(Lamp Rapid Thermal Anneal:燈快速熱退火)等的RTA(Rapid Thermal Anneal:快速熱退火)。LRTA藉由鹵素燈、金屬鹵化物燈、氙弧燈、碳弧燈、高壓鈉燈、高壓汞燈等的燈發射的光(電磁波)的輻射來加熱被處理物。GRTA利用高溫氣體進行加熱處理。作為氣體使用惰性氣體。
基板加熱室2705藉由質量流量控制器2780與精製器2781連接。注意,雖然根據氣體種類的數目決定質量流量控制器2780和精製器2781的數目,但是為了便於理解只示出一個質量流量控制器2780和一個精製器。作為導入到基板加熱室2705中的氣體,可以使用露點為-80℃以下,較佳的是-100℃以下的氣體,例如可以使用氧氣體、氮氣體及稀有氣體(氬氣體等)。
傳送室2704具有傳送機器人2763。傳送機器人2763能夠將基板傳送 到各室。另外,傳送室2704藉由一個閥與真空泵2770連接,並藉由其他的閥與低溫泵2771連接。藉由採用上述結構,傳送室2704使用真空泵2770從大氣壓至低真空或中真空(0.1Pa至幾百Pa左右)進行排氣,切換閥,使用低溫泵2771從中真空至高真空或超高真空(0.1Pa至1×10-7Pa)進行排氣。
例如也可以使兩個以上的低溫泵2771與傳送室2704並聯連接。藉由採用上述結構,即使一個低溫泵在進行再生中也可以使用其他的低溫泵進行排氣。注意,上述再生是指釋放在低溫泵中積存的分子(或原子)的處理。當低溫泵積存過多分子(或原子)時其排氣能力降低,由此定期進行再生。
圖17B示出成膜室2706b、傳送室2704、負載鎖定室2703a的剖面。
在此,參照圖17B對成膜室(具有濺射裝置的成膜室)的具體情況進行說明。圖17B所示的成膜室2706b包括靶材單元2766、基板架2768及電源2791。另外,靶材單元2766與電源2791電連接。關於靶材單元2766可以參照上述靶材單元150a等的記載。基板架2768支撐基板2769。基板架2768藉由構件2784固定於成膜室2706b。可以利用構件2784改變靶材單元2766與基板架2768之間的距離。另外,雖然未圖示,但是基板架2768也可以具有保持基板2769的基板保持機構以及從背面對基板2769進行加熱的加熱器等。
成膜室2706b藉由氣體加熱機構2782與質量流量控制器2780連接,氣體加熱機構2782藉由質量流量控制器2780與精製器2781連接。利用氣體加熱機構2782可以將導入成膜室2706b的氣體加熱至40℃以上且400℃以下。注意,雖然根據氣體種類的數目決定氣體加熱機構2782、質量流量控制器2780和精製器2781的數目,但是為了便於理解只示出一個氣體加熱機構2782、一個質量流量控制器2780和一個精製器2781。作為導入到成膜室2706b的氣體,較佳為使用露點為-80℃以下,較佳的是-100℃以下的氣體,例如使用氧氣體、氮氣體及稀有氣體(氬氣體等)。
當在氣體導入口的前面設置精製器時,將從精製器到成膜室2706b的管道的長度設定為10m以下,較佳的是5m以下,更佳的是1m以下。藉由將管道的長度設定為10m以下、5m以下或1m以下,可以根據管道長度減少來自管道的釋放氣體的影響。再者,氣體的管道較佳為使用內部由氟化鐵、氧化鋁或氧化鉻等覆蓋的金屬管道。例如與SUS316L-EP管道相比,上述管道所釋放的包含雜質的氣體的量少,而可以降低雜質混入氣體。作為管道的接頭,較佳為使用高性能超小型金屬墊片接頭(UPG接頭)。藉由使用金屬構成管道的全部,與使用樹脂等的情況相比,可以降低所產生的釋放氣體及外部洩漏的影響,所以是較佳的。
另外,成膜室2706b如圖17B所示經由多個閥與渦輪分子泵2772及真空泵2770連接。
在成膜室2706b中設置有低溫冷阱2751。
低溫冷阱2751是能夠吸附水等的熔點較高的分子(或原子)的機構。渦輪分子泵2772能夠穩定地排出大分子(或原子)且維修頻率低,因此在生產率上佔有優勢,但是排氫、排水的能力較低。於是,為了提高排出水等的能力,將低溫冷阱2751設置在成膜室2706b中。低溫冷阱2751的製冷機的溫度為100K以下,較佳的是80K以下。當低溫冷阱2751具有多個製冷機時,藉由使每個製冷機的溫度為不同,可以高效率地進行排氣,所以是較佳的。例如,可以將第一步驟的製冷機的溫度設定為100K以下,將第二步驟的製冷機的溫度設定為20K以下。藉由使用鈦昇華泵代替低溫冷阱,有時可以進一步實現高真空。此外,藉由使用離子泵代替低溫冷阱及渦輪分子泵,有時可以進一步實現高真空。
成膜室2706b的排氣方法不侷限於上述方法,也可以與上述傳送室2704的排氣方法(利用低溫泵及真空泵的排氣方法)同樣。當然,傳送室2704的排氣方法也可以與成膜室2706b(利用渦輪分子泵及真空泵的排氣方法)同樣。
較佳的是將上述傳送室2704、基板加熱室2705和成膜室2706b的背壓(全壓)以及各氣體分子(原子)的分壓設定為如下。尤其是,為了防止雜質混入形成的膜,需要考慮成膜室2706b的背壓以及各氣體分子(原子)的分壓。
上述各室的背壓(全壓)為1×10-4Pa以下,較佳的是3×10-5Pa以下,更佳的是1×10-5Pa以下。上述各室的質量電荷比(m/z)是18的氣體分子(原子)的分壓為3×10-5Pa以下,較佳的是1×10-5Pa以下,更佳的是3×10-6Pa以下。此外,上述各室的m/z是28的氣體分子(原子)的分壓為3×10-5Pa以下,較佳的是1×10-5Pa以下,更佳的是3×10-6Pa以下。上述各室的m/z是44的氣體分子(原子)的分壓為3×10-5Pa以下,較佳的是1×10-5Pa以下,更佳的是3×10-6Pa以下。
真空腔室內的全壓及分壓可以使用質量分析器測量。例如,可以使用由ULVAC,Inc.製造的四極質量分析器(也稱為Q-mass)Qulee CGM-051。
較佳的是上述傳送室2704、基板加熱室2705及成膜室2706b的外部洩漏及內部洩漏少。
例如,上述傳送室2704、基板加熱室2705及成膜室2706b的洩漏率為3×10-6Pa.m3/s以下,較佳的是1×10-6Pa.m3/s以下。m/z是18的氣體分子(原子)的洩漏率為1×10-7Pa.m3/s以下,較佳的是3×10-8Pa.m3/s以下。m/z是28的氣體分子(原子)的洩漏率為1×10-5Pa.m3/s以下,較佳的是1×10-6Pa.m3/s以下。m/z是44的氣體分子(原子)的洩漏率為3×10-6Pa.m3/s以下,較佳的是1×10-6Pa.m3/s以下。
洩漏率可以根據利用上述質量分析器測量出的全壓及分壓算出。
洩漏率取決於外部洩漏及內部洩漏。外部洩漏是指由於微小的孔或密封不良等,氣體從真空系統的外部流入的現象。內部洩漏起因於來自真空系統中的閥等隔板的洩漏或來自內部構件的釋放氣體。為了將洩漏率設定為上述數值以下,需要從外部洩漏及內部洩漏的兩個方面採取措施。
例如,較佳為使用金屬墊片對成膜室2706b的開閉部分進行密封。金屬墊片較佳為使用由氟化鐵、氧化鋁或氧化鉻覆蓋的金屬。金屬墊片的緊密性比O形環高,因此可以降低外部洩漏。藉由利用鈍態的由氟化鐵、氧化鋁、氧化鉻等覆蓋的金屬,可以抑制從金屬墊片釋放的包含雜質的釋放氣體,由此可以降低內部洩漏。
作為構成成膜裝置2700的構件,使用包含雜質的釋放氣體少的鋁、鉻、鈦、鋯、鎳或釩。也可以使用上述構件覆蓋含有鐵、鉻及鎳等的合金。含有鐵、鉻及鎳等的合金具有剛性,耐熱且適於加工。在此,藉由進行拋光等減少構件表面的凹凸以縮小表面積,可以減少釋放氣體。
或者,也可以使用氟化鐵、氧化鋁、氧化鉻等覆蓋上述成膜裝置2700的構件。
較佳的是成膜裝置2700的構件儘量只由金屬構成,例如當設置由石英 等構成的觀察窗(viewing window)等時,為了抑制釋放氣體,較佳的是由較薄的氟化鐵、氧化鋁或氧化鉻等覆蓋表面。
雖然存在於成膜室內的吸附物吸附於內壁等而不影響到成膜室的壓力,但是該吸附物成為對成膜室進行排氣時產生的氣體釋放的原因。因此,雖然洩漏率與排氣速度不相關,但是使用排氣能力高的泵儘量地使存在於成膜室內的吸附物脫離預先進行排氣是十分重要的。為了促進吸附物的脫離,也可以對成膜室進行烘烤。藉由進行烘烤,可以將吸附物的脫離速度提高10倍左右。烘烤以100℃以上且450℃以下的溫度進行即可。此時,藉由一邊將惰性氣體導入成膜室一邊去除吸附物,可以進一步提高僅藉由排氣不容易脫離的水等的脫離速度。藉由將所導入的惰性氣體加熱至與烘烤溫度相同程度的溫度,可以進一步提高吸附物的脫離速度。這裡,作為惰性氣體較佳為使用稀有氣體。根據形成的膜的種類,也可以使用氧等代替惰性氣體。例如,當進行氧化物的成膜時,有時較佳為使用主要成分的氧。較佳為使用燈進行烘烤。
另外,較佳的是藉由導入被加熱的稀有氣體等惰性氣體或氧等提高成膜室內的壓力,並在經過一定時間之後再次對成膜室進行排氣處理。可以由被加熱的氣體的導入使成膜室內的吸附物脫離,由此可以減少存在於成膜室內的雜質。有效的是將該處理反復進行2次以上且30次以下,較佳的是5次以上且15次以下。具體地,可以藉由導入40℃以上且400℃以下,較佳的是50℃以上且200℃以下的惰性氣體或氧等來使成膜室內的壓力設 定為0.1Pa以上且10kPa以下,較佳的是1Pa以上且1kPa以下,更佳的是5Pa以上且100Pa以下,並將保持壓力的期間設定為1分以上且300分以下,較佳的是5分以上且120分以下。然後,對成膜室進行排氣5分以上且300分以下,較佳的是10分以上且120分以下。
另外,藉由進行偽成膜也可以進一步提高吸附物的脫離速度。偽成膜是指藉由濺射法等對偽基板進行成膜以在偽基板上及成膜室內壁沉積膜,來將成膜室內的雜質及成膜室內壁的吸附物封閉在膜中。作為偽基板較佳為使用釋放氣體少的基板。藉由進行偽成膜可以降低後面形成的膜中的雜質濃度。另外,可以與烘烤同時進行偽成膜。
接著,說明圖17B所示的傳送室2704和負載鎖定室2703a以及圖17C所示的大氣側基板傳送室2702和大氣側基板供應室2701的詳細結構。圖17C示出大氣側基板傳送室2702和大氣側基板供應室2701的剖面。
關於圖17B所示的傳送室2704,參照圖17A所示的傳送室2704的記載。
負載鎖定室2703a具有基板遞送載物台2752。負載鎖定室2703a使壓力從減壓狀態上升至大氣壓,當負載鎖定室2703a的壓力變為大氣壓時,大氣側基板傳送室2702中設置的傳送機器人2763從基板遞送載物台2752接收基板。然後,在對負載鎖定室2703a進行抽空而處於減壓狀態之後,設置在傳送室2704中的傳送機器人2763從基板遞送載物台2752接收基板。
負載鎖定室2703a藉由閥與真空泵2770以及低溫泵2771連接。關於真空泵2770、低溫泵2771的排氣系統的連接方法,可以參照傳送室2704的連接方法,所以這裡省略說明。圖16所示的卸載閉鎖室2703b可以採用與負載鎖定室2703a相同的結構。
大氣側基板傳送室2702具有傳送機器人2763。藉由傳送機器人2763可以進行盒式介面2761和負載鎖定室2703a之間的基板的遞送。也可以在大氣側基板傳送室2702、大氣側基板供應室2701的上方設置用來去除塵屑或微粒的機構如HEPA過濾器(High Efficiency Particulate Air Filter:高效率粒子空氣濾器)等。
大氣側基板供應室2701具有多個盒式介面2761。盒式介面2761可以收納多個基板。
靶材的表面溫度為100℃以下,較佳的是50℃以下,更佳的是室溫程度(典型的是25℃)。對應大面積基板的濺射裝置大多使用大面積的靶材。但是,沒有接縫地製造具有對應大面積的尺寸的靶材是困難的。在實際製造時,將多個靶材以儘量沒有間隙的方式排列成較大的形狀,但是無論怎樣總會有微小的間隙。當靶材的表面溫度升高時,有時鋅等從該微小的間隙揮發,導致間隙漸漸變大。當間隙變大時,有時用於底板及用來黏合底板與靶材的黏合構件的金屬也被濺射,這成為導致雜質濃度變高的主要原 因。因此,較佳的是充分冷卻靶材。
具體地,作為底板使用具有高導電性及高散熱性的金屬(具體的是銅)。藉由在底板內形成水路並使充分量的冷卻水流過水路,可以高效率地冷卻靶材。
當靶材含有鋅時,藉由在氧氣體氛圍下進行成膜,電漿損傷減輕,由此可以獲得不容易發生鋅揮發的氧化物半導體。
藉由使用上述成膜裝置,可以形成利用二次離子質譜分析(SIMS:Secondary Ion Mass Spectrometry)測得的氫濃度為2×1020atoms/cm3以下,較佳的是5×1019atoms/cm3以下,更佳的是1×1019atoms/cm3以下,進一步較佳的是5×1018atoms/cm3以下的氧化物半導體膜。
另外,可以形成利用SIMS測得的氮濃度低於5×1019atoms/cm3,較佳的是1×1019atoms/cm3以下,更佳的是5×1018atoms/cm3以下,進一步較佳的是1×1018atoms/cm3以下的氧化物半導體膜。
另外,可以形成利用SIMS測得的碳濃度低於5×1019atoms/cm3,較佳的是5×1018atoms/cm3以下,更佳的是1×1018atoms/cm3以下,進一步較佳的是5×1017atoms/cm3以下的氧化物半導體膜。
雜質及氧缺陷少的氧化物半導體的載子密度低。明確而言,可以使載子密度小於8×1011個/cm3,較佳的是小於1×1011個/cm3,更佳的是小於1×1010個/cm3,且是1×10-9個/cm3以上。將這樣的氧化物半導體稱為高純度本質或實質上高純度本質的氧化物半導體。CAAC-OS的雜質濃度和缺陷能階密度低。亦即,可以說CAAC-OS是具有穩定特性的氧化物半導體。
另外,可以形成利用熱脫附譜分析法(TDS:Thermal Desorption Spectroscopy)測得的m/z是2(氫分子等)的氣體分子(原子)、m/z是18的氣體分子(原子)、m/z是28的氣體分子(原子)及m/z是44的氣體分子(原子)的釋放量都為1×1019個/cm3以下,較佳的是1×1018個/cm3以下的氧化物半導體膜。
藉由使用上述成膜裝置,可以抑制雜質混入氧化物半導體。並且,藉由利用上述成膜裝置形成接觸於氧化物半導體的膜,可以抑制雜質從接觸於氧化物半導體的膜混入氧化物半導體。
〈氧化物半導體的結構〉
以下說明氧化物半導體的結構。
氧化物半導體被分為單晶氧化物半導體和非單晶氧化物半導體。作為非單晶氧化物半導體有CAAC-OS(C-Axis Aligned Crystalline Oxide Semiconductor:c軸配向結晶氧化物半導體)、多晶氧化物半導體、nc-OS (nanocrystalline Oxide Semiconductor:奈米晶氧化物半導體)、a-like OS(amorphous like Oxide Semiconductor)以及非晶氧化物半導體等。
從其他觀點看來,氧化物半導體被分為非晶氧化物半導體和結晶氧化物半導體。作為結晶氧化物半導體有單晶氧化物半導體、CAAC-OS、多晶氧化物半導體以及nc-OS等。
作為非晶結構的定義,一般而言,已知:它處於亞穩態並沒有被固定化,具有各向同性而不具有不均勻結構等。另外,也可以換句話說為非晶結構的鍵角不固定,是短程有序,而不是長程有序。
從相反的觀點來看,不能將實質上穩定的氧化物半導體稱為完全非晶(completely amorphous)氧化物半導體。另外,不能將不具有各向同性(例如,在微小區域中具有週期結構)的氧化物半導體稱為完全非晶氧化物半導體。注意,a-like OS在微小區域中具有週期結構,但是同時具有空洞(也稱為void),並具有不穩定結構。因此,a-like OS在物性上近乎於非晶氧化物半導體。
〈CAAC-OS〉
首先,對CAAC-OS進行說明。
CAAC-OS是包含多個c軸配向的結晶部(也稱為顆粒)的氧化物半導體 之一。
在利用穿透式電子顯微鏡(TEM:Transmission Electron Microscope)觀察所得到的CAAC-OS的明視野影像與繞射圖案的複合分析影像(也稱為高解析度TEM影像)中,觀察到多個顆粒。然而,在高解析度TEM影像中,觀察不到顆粒與顆粒之間的明確的邊界,亦即,晶界(grain boundary)。因此,可以說在CAAC-OS中,不容易發生起因於晶界的電子移動率的降低。
下面,對利用TEM觀察的CAAC-OS進行說明。圖47A示出從大致平行於樣本面的方向觀察所得到的CAAC-OS的剖面的高解析度TEM影像。利用球面像差校正(Spherical Aberration Corrector)功能得到高解析度TEM影像。將利用球面像差校正功能所得到的高解析度TEM影像特別稱為Cs校正高解析度TEM影像。例如可以使用日本電子株式會社製造的原子解析度分析型電子顯微鏡JEM-ARM200F等得到Cs校正高解析度TEM影像。
圖47B示出將圖47A中的區域(1)放大的Cs校正高解析度TEM影像。由圖47B可以確認到在顆粒中金屬原子排列為層狀。各金屬原子層以反映了被形成CAAC-OS膜的面(也稱為被形成面)或CAAC-OS的頂面的凸凹的方式並以平行於CAAC-OS的被形成面或頂面的方式排列。
如圖47B所示,CAAC-OS具有特有的原子排列。圖47C是以輔助線示出特有的原子排列的圖。由圖47B和圖47C可知,存在尺寸為1nm以上的顆 粒及尺寸為3nm以上的顆粒,由顆粒與顆粒之間的傾斜產生的空隙的尺寸為0.8nm左右。因此,也可以將顆粒稱為奈米晶(nc:nanocrystal)。注意,也可以將CAAC-OS稱為具有CANC(C-Axis Aligned nanocrystals:c軸配向奈米晶)的氧化物半導體。
在此,根據Cs校正高解析度TEM影像,將基板5120上的CAAC-OS的顆粒5100的配置示意性地表示為推積磚塊或塊體的結構(參照圖47D)。在圖47C中觀察到的在顆粒與顆粒之間產生傾斜的部分相當於圖47D所示的區域5161。
另外,圖48A示出從大致垂直於樣本面的方向觀察所得到的CAAC-OS的平面的Cs校正高解析度TEM影像。圖48B、圖48C和圖48D分別示出將圖48A中的區域(1)、區域(2)和區域(3)放大的Cs校正高解析度TEM影像。由圖48B、圖48C和圖48D可知在顆粒中金屬原子排列為三角形狀、四角形狀或六角形狀。但是,在不同的顆粒之間金屬原子的排列沒有規律性。
接著,說明使用X射線繞射(XRD:X-Ray Diffraction)進行分析的CAAC-OS。例如,當利用out-of-plane法分析包含InGaZnO4結晶的CAAC-OS的結構時,如圖49A所示,在繞射角(2θ)為31°附近時常出現峰值。由於該峰值來源於InGaZnO4結晶的(009)面,由此可知CAAC-OS中的結晶具有c軸配向性,並且c軸朝向大致垂直於被形成面或頂面的方向。
注意,當利用out-of-plane法分析CAAC-OS的結構時,除了2θ為31°附近的峰值以外,有時在2θ為36°附近時也出現峰值。2θ為36°附近的峰值表示CAAC-OS中的一部分包含不具有c軸配向性的結晶。較佳的是,在利用out-of-plane法分析的CAAC-OS的結構中,在2θ為31°附近時出現峰值而在2θ為36°附近時不出現峰值。
另一方面,當利用從大致垂直於c軸的方向使X射線入射到樣本的in-plane法分析CAAC-OS的結構時,在2θ為56°附近時出現峰值。該峰值來源於InGaZnO4結晶的(110)面。在CAAC-OS中,即使將2θ固定為56°附近並在以樣本面的法線向量為軸(Φ軸)旋轉樣本的條件下進行分析(Φ掃描),也如圖49B所示的那樣觀察不到明確的峰值。相比之下,在InGaZnO4的單晶氧化物半導體中,在將2θ固定為56°附近來進行Φ掃描時,如圖49C所示的那樣觀察到來源於相等於(110)面的結晶面的六個峰值。因此,由使用XRD的結構分析可以確認到CAAC-OS中的a軸和b軸的配向沒有規律性。
接著,說明利用電子繞射進行分析的CAAC-OS。例如,當對包含InGaZnO4結晶的CAAC-OS在平行於樣本面的方向上入射束徑為300nm的電子線時,可能會獲得圖50A所示的繞射圖案(也稱為選區穿透式電子繞射圖案)。在該繞射圖案中包含起因於InGaZnO4結晶的(009)面的斑點。因此,由電子繞射也可知CAAC-OS所包含的顆粒具有c軸配向性,並且c軸朝向大致垂 直於被形成面或頂面的方向。另一方面,圖50B示出對相同的樣本在垂直於樣本面的方向上入射束徑為300nm的電子線時的繞射圖案。由圖50B觀察到環狀的繞射圖案。因此,由電子繞射也可知CAAC-OS所包含的顆粒的a軸和b軸不具有配向性。可以認為圖50B中的第一環起因於InGaZnO4結晶的(010)面和(100)面等。另外,可以認為圖50B中的第二環起因於(110)面等。
如上所述,CAAC-OS是結晶性高的氧化物半導體。因為氧化物半導體的結晶性有時因雜質的混入或缺陷的生成等而降低,所以從相反的觀點來看,可以說CAAC-OS是雜質或缺陷(氧缺損等)少的氧化物半導體。
另外,雜質是指氧化物半導體的主要成分以外的元素,諸如氫、碳、矽和過渡金屬元素等。例如,與氧的鍵合力比構成氧化物半導體的金屬元素強的矽等元素會奪取氧化物半導體中的氧,由此打亂氧化物半導體的原子排列,導致結晶性下降。另外,由於鐵或鎳等的重金屬、氬、二氧化碳等的原子半徑(或分子半徑)大,所以會打亂氧化物半導體的原子排列,導致結晶性下降。
當氧化物半導體包含雜質或缺陷時,其特性有時因光或熱等會發生變動。例如,包含於氧化物半導體的雜質有時會成為載子陷阱或載子發生源。另外,氧化物半導體中的氧缺損有時會成為載子陷阱或因俘獲氫而成為載子發生源。
雜質及氧缺損少的CAAC-OS是載子密度低的氧化物半導體。明確而言,可以使用載子密度小於8×1011個/cm3、較佳的是小於1×1011個/cm3、更佳的是小於1×1010個/cm3、且是1×10-9個/cm3以上的氧化物半導體。將這樣的氧化物半導體稱為高純度本質或實質上高純度本質的氧化物半導體。CAAC-OS的雜質濃度和缺陷能階密度低。亦即,可以說CAAC-OS是具有穩定特性的氧化物半導體。
〈nc-OS〉
接著說明nc-OS。
在nc-OS的高解析度TEM影像中有能夠觀察到結晶部的區域和觀察不到明確的結晶部的區域。nc-OS所包含的結晶部的尺寸大多為1nm以上且10nm以下或1nm以上且3nm以下。注意,有時將其結晶部的尺寸大於10nm且是100nm以下的氧化物半導體稱為微晶氧化物半導體。例如,在nc-OS的高解析度TEM影像中,有時無法明確地觀察到晶界。注意,奈米晶的來源有可能與CAAC-OS中的顆粒相同。因此,下面有時將nc-OS的結晶部稱為顆粒。
在nc-OS中,微小的區域(例如1nm以上且10nm以下的區域,特別是1nm以上且3nm以下的區域)中的原子排列具有週期性。另外,nc-OS在不同的顆粒之間觀察不到結晶定向的規律性。因此,在膜整體中觀察不到配 向性。所以,有時nc-OS在某些分析方法中與a-like OS或非晶氧化物半導體沒有差別。例如,當利用使用其束徑比顆粒大的X射線的out-of-plane法對nc-OS進行結構分析時,檢測不到表示結晶面的峰值。在使用其束徑比顆粒大(例如,50nm以上)的電子射線對nc-OS進行電子繞射時,觀察到類似光暈圖案的繞射圖案。另一方面,在使用其束徑近於顆粒或者比顆粒小的電子射線對nc-OS進行奈米束電子繞射時,觀察到斑點。另外,在nc-OS的奈米束電子繞射圖案中,有時觀察到如圓圈那樣的(環狀的)亮度高的區域。而且,在nc-OS的奈米束電子繞射圖案中,有時還觀察到環狀的區域內的多個斑點。
如此,由於在顆粒(奈米晶)之間結晶定向都沒有規律性,所以也可以將nc-OS稱為包含RANC(Random Aligned nanocrystals:無規配向奈米晶)的氧化物半導體或包含NANC(Non-Aligned nanocrystals:無配向奈米晶)的氧化物半導體。
nc-OS是規律性比非晶氧化物半導體高的氧化物半導體。因此,nc-OS的缺陷能階密度比a-like OS或非晶氧化物半導體低。但是,在nc-OS中的不同的顆粒之間觀察不到結晶定向的規律性。所以,nc-OS的缺陷能階密度比CAAC-OS高。
〈a-like OS〉
a-like OS是具有介於nc-OS與非晶氧化物半導體之間的結構的氧化物 半導體。
在a-like OS的高解析度TEM影像中有時觀察到空洞。另外,在高解析度TEM影像中,有能夠明確地觀察到結晶部的區域和不能觀察到結晶部的區域。
由於a-like OS包含空洞,所以其結構不穩定。為了證明與CAAC-OS及nc-OS相比a-like OS具有不穩定的結構,下面示出電子照射所導致的結構變化。
作為進行電子照射的樣本,準備a-like OS(記載為樣本A)、nc-OS(記載為樣本B)和CAAC-OS(記載為樣本C)。每個樣本都是In-Ga-Zn氧化物。
首先,取得各樣本的高解析度剖面TEM影像。由高解析度剖面TEM影像可知,每個樣本都具有結晶部。
注意,如下那樣決定將哪個部分作為一個結晶部。例如,已知InGaZnO4結晶的單位晶格具有包括三個In-O層和六個Ga-Zn-O層的九個層在c軸方向上以層狀層疊的結構。這些彼此靠近的層的間隔與(009)面的晶格間距(也稱為d值)是幾乎相等的,由結晶結構分析求出其值為0.29nm。由此,可以將晶格條紋的間隔為0.28nm以上且0.30nm以下的部分作為InGaZnO4結晶部。每個晶格條紋對應於InGaZnO4結晶的a-b面。
圖51示出調查了各樣本的結晶部(22個部分至45個部分)的平均尺寸的例子。注意,結晶部尺寸對應於上述晶格條紋的長度。由圖51可知,在a-like OS中,結晶部根據電子的累積照射量逐漸變大。明確而言,如圖51中的(1)所示,可知在利用TEM的觀察初期尺寸為1.2nm左右的結晶部(也稱為初始晶核)在累積照射量為4.2×108e-/nm2時生長到2.6nm左右。另一方面,可知nc-OS和CAAC-OS在開始電子照射時到電子的累積照射量為4.2×108e-/nm2的範圍內,結晶部的尺寸都沒有變化。明確而言,如圖51中的(2)及(3)所示,可知無論電子的累積照射量如何,nc-OS及CAAC-OS的結晶部尺寸都分別為1.4nm左右及2.1nm左右。
如此,有時電子照射引起a-like OS中的結晶部的生長。另一方面,可知在nc-OS和CAAC-OS中,幾乎沒有電子照射所引起的結晶部的生長。也就是說,a-like OS與CAAC-OS及nc-OS相比具有不穩定的結構。
另外,由於a-like OS包含空洞,所以其密度比nc-OS及CAAC-OS低。具體地,a-like OS的密度為具有相同組成的單晶氧化物半導體的78.6%以上且小於92.3%。nc-OS的密度及CAAC-OS的密度為具有相同組成的單晶氧化物半導體的92.3%以上且小於100%。注意,難以形成其密度小於單晶氧化物半導體的78%的氧化物半導體。
例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,具 有菱方晶系結構的單晶InGaZnO4的密度為6.357g/cm3。因此,例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,a-like OS的密度為5.0g/cm3以上且小於5.9g/cm3。另外,例如,在原子個數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,nc-OS的密度和CAAC-OS的密度為5.9g/cm3以上且小於6.3g/cm3
注意,有時不存在相同組成的單晶氧化物半導體。此時,藉由以任意比例組合組成不同的單晶氧化物半導體,可以估計出相當於所希望的組成的單晶氧化物半導體的密度。相當於所希望的組成的單晶氧化物半導體的密度可以根據組成不同的單晶氧化物半導體的組合比例利用加權平均算出。注意,較佳的是儘可能減少所組合的單晶氧化物半導體的種類來計算密度。
如上所述,氧化物半導體具有各種結構及各種特性。注意,氧化物半導體例如可以是包括非晶氧化物半導體、a-like OS、nc-OS和CAAC-OS中的兩種以上的疊層膜。
〈電晶體1〉
圖18A、圖18B及圖18C為本發明的一個實施方式的電晶體的俯視圖及剖面圖。圖18A為俯視圖,圖18B及圖18C為沿著圖18A所示的點劃線A1-A2以及點劃線A3-A4的剖面圖。另外,在圖18A的俯視圖中,為了明確起見,省略組件的一部分。
圖18A、圖18B及圖18C所示的電晶體包括:基板400上的導電體413;基板400及導電體413上的絕緣體402;絕緣體402上的絕緣體406a;絕緣體406a上的半導體406b;與半導體406b的頂面及側面接觸且間隔開地配置的導電體416a及導電體416b;導電體416a及導電體416b上的絕緣體410;半導體406b及絕緣體410上的絕緣體406c;絕緣體406c上的絕緣體412;絕緣體412上的導電體404;以及導電體404上的絕緣體408。注意,雖然在此導電體413為電晶體的一部分,但是不侷限於此。例如,導電體413也可以是獨立於電晶體的組件。另外,電晶體也可以不具有絕緣體408及絕緣體410中的一個以上。
另外,雖然在圖18B及圖18C所示的剖面圖中示出絕緣體410的頂面與基板400的背面平行的例子,但是也可以不平行。例如,絕緣體410的頂面也可以具有沿著導電體416a及導電體416b的凹凸的形狀。
此外,導電體404在A3-A4間的剖面中具有隔著絕緣體412面對半導體406b的頂面及側面的區域。另外,導電體413具有隔著絕緣體402面對半導體406b的底面的區域。
注意,將半導體406b用作電晶體的通道形成區域。另外,將導電體404用作電晶體的第一閘極電極(也稱為前閘極電極)。此外,將導電體413用作電晶體的第二閘極電極(也稱為背閘極電極)。另外,將導電體416a及 導電體416b用作電晶體的源極電極及汲極電極。
如圖18C所示,可以由導電體404或/及導電體413的電場電圍繞半導體406b(將由導電體的電場電圍繞半導體的電晶體結構稱為surrounded channel(s-channel)結構)。因此,通道形成在整個半導體406b中(頂面、底面及側面)。在s-channel結構中,可以使大電流流過在電晶體的源極與汲極間,由此可以提高導通時的電流(通態電流,on-state current)。
注意,當電晶體具有s-channel結構時,通道還形成在半導體406b的側面上。因此,半導體406b的厚度越大,通道形成區域越大。亦即,半導體406b越厚,越能夠提高電晶體的通態電流。另外,因為半導體406b越厚,載子的控制性高的區域的比率越增加,所以可以減小次臨界擺幅值。例如,半導體406b可以具有其厚度為10nm以上,較佳的是20nm以上,進一步較佳的是40nm以上,進一步較佳的是60nm以上,進一步較佳的是100nm以上的區域。注意,半導體裝置的生產率有時會下降,因此,例如,半導體406b可以具有其厚度為300nm以下,較佳的是200nm以下,更佳的是150nm以下的區域。
由於可以得到高通態電流,因此s-channel結構可以說是適合於微型電晶體的結構。包括微型電晶體的半導體裝置可以具有高集成度及高密度。例如,電晶體的通道長度較佳的是40nm以下,更佳的是30nm以下,進一步較佳的是20nm以下,並且,電晶體的通道寬度較佳的是40nm以下, 更佳的是30nm以下,進一步較佳的是20nm以下。
例如,作為基板400可以使用絕緣體基板、半導體基板或導電體基板。例如,作為絕緣體基板可以舉出玻璃基板、石英基板、藍寶石基板、穩定氧化鋯基板(釔安定氧化鋯基板等)、樹脂基板等。例如,作為半導體基板,可以舉出由矽或鍺等構成的單一材料的半導體基板、或者由碳化矽、矽鍺、砷化鎵、磷化銦、氧化鋅或氧化鎵等構成的化合物半導體基板等。並且,還可以舉出在上述半導體基板內部具有絕緣體區域的半導體基板,例如為SOI(Silicon On Insulator:絕緣層上覆矽)基板等。作為導電體基板,可以舉出石墨基板、金屬基板、合金基板、導電樹脂基板等。或者,可以舉出包含金屬的氮化物的基板、包含金屬的氧化物的基板等。再者,還可以舉出設置有導電體或半導體的絕緣體基板、設置有導電體或絕緣體的半導體基板、設置有半導體或絕緣體的導電體基板等。或者,也可以使用在這些基板上設置有元件的基板。作為設置在基板上的元件,可以舉出電容元件、電阻元件、切換元件、發光元件、記憶元件等。
另外,作為基板400也可以使用撓性基板。另外,作為在撓性基板上設置裝置的方法,也可以舉出如下方法:在不具有撓性的基板上形成裝置之後,剝離裝置而將該裝置轉置到撓性基板的基板400上。在此情況下,較佳的是在不具有撓性的基板與裝置之間設置剝離層。另外,作為基板400,也可以使用包含纖維的薄片、薄膜或箔等。另外,基板400也可以具有伸縮性。另外,基板400可以具有在停止彎曲或拉伸時恢復為原來的形 狀的性質。或者,也可以具有不恢復為原來的形狀的性質。基板400的厚度例如為5μm以上且700μm以下,較佳的是10μm以上且500μm以下,更佳的是15μm以上且300μm以下。藉由將基板400形成得薄,可以實現半導體裝置的輕量化。另外,藉由將基板400形成得薄,即便在使用玻璃等的情況下,基板400有時也會具有伸縮性,或者具有在停止彎曲或拉伸時恢復為原來的形狀的性質。因此,可以緩和因掉落等而基板400上的半導體裝置受到的衝擊等。也就是說,能夠提供一種耐久性高的半導體裝置。
例如,撓性基板的基板400可以使用金屬、合金、樹脂、玻璃或其纖維等。撓性基板的基板400的線膨脹係數越低,因環境而發生的變形越得到抑制,所以是較佳的。例如,撓性基板的基板400可以使用線膨脹係數為1×10-3/K以下、5×10-5/K以下或1×10-5/K以下的材料。例如,作為樹脂可以舉出聚酯、聚烯烴、聚醯胺(尼龍、芳族聚醯胺等)、聚醯亞胺、聚碳酸酯、丙烯酸樹脂等。尤其是芳族聚醯胺的線膨脹係數較低,因此撓性基板的基板400較佳為使用芳族聚醯胺。
作為導電體413,例如可以使用包含硼、氮、氧、氟、矽、磷、鋁、鈦、鉻、錳、鈷、鎳、銅、鋅、鎵、釔、鋯、鉬、釕、銀、銦、錫、鉭和鎢中的一種以上的導電體的單層或疊層。例如,也可以使用包含上述元素的合金或化合物,還可以使用包含鋁的導電體、包含銅及鈦的導電體、包含銅及錳的導電體、包含銦、錫及氧的導電體、包含鈦及氮的導電體等。
例如,作為絕緣體402可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。例如,作為絕緣體402可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭。
在半導體406b為氧化物半導體的情況下,絕緣體402較佳為具有過量氧的絕緣體。注意,過量氧是指:存在於絕緣體中等,並不與絕緣體等鍵合(亦即已游離)的氧;或者與絕緣體等的鍵合能量低的氧。
具有過量氧的絕緣體有時在熱脫附譜分析(TDS分析)中,在表面溫度為100℃以上且700℃以下或者100℃以上且500℃以下的範圍內釋放1×1018atoms/cm3以上、1×1019atoms/cm3以上或1×1020atoms/cm3以上的氧(換算為氧原子)。
下面說明利用TDS分析來測量氧釋放量的方法。
對測量樣本進行TDS分析時的氣體的總釋放量與釋放氣體的離子強度的積分值成正比。並且,藉由對該測量樣本與標準樣本進行比較,可以計算出氣體的總釋放量。
例如,根據作為標準樣本的含有指定密度的氫的矽基板的TDS分析結 果以及測量樣本的TDS分析結果,可以藉由下面所示的公式求出測量樣本中的氧分子的釋放量(NO2)。在此,假設藉由TDS分析而得到的質荷比32的氣體都來源於氧分子。雖然CH3OH的質荷比為32,但因為CH3OH存在的可能性較低,所以在這裡不考慮。另外,包含作為氧原子的同位素的質量數17的氧原子及質量數18的氧原子的氧分子也在自然界的存在比率極低,所以不考慮。
NO2=NH2/SH2×SO2×α
NH2是以密度換算從標準樣本脫離的氫分子的值。SH2是對標準樣本進行TDS分析時的離子強度的積分值。在此,將標準樣本的基準值設定為NH2/SH2。SO2是對測量樣本進行TDS分析而得到的離子強度的積分值。α是在TDS分析中影響到離子強度的係數。關於上面所示的公式的詳細內容,可以參照日本專利申請公開平6-275697公報。注意,上述氧的釋放量是使用由日本電子科學公司(ESCO Ltd.)製造的熱脫附裝置EMD-WA1000S/W,並以包含一定量的氫原子的矽基板為標準樣本而測量的。
另外,在TDS分析中,氧的一部分作為氧原子被檢測出。氧分子與氧原子的比例可以從氧分子的電離率算出。另外,因為上述α包括氧分子的電離率,所以藉由評估氧分子的釋放量,可以估算出氧原子的釋放量。
注意,NO2是氧分子的釋放量。換算為氧原子時的釋放量是氧分子的釋 放量的2倍。
或者,藉由加熱處理釋放氧的絕緣體有時包含過氧化自由基。明確而言,起因於過氧化自由基的自旋密度為5×1017spins/cm3以上。另外,包含過氧化自由基的絕緣體有時在電子自旋共振法(ESR:Electron Spin Resonance)中在g值為2.01近旁時具有非對稱的信號。
作為導電體416a及導電體416b,例如可以使用包含硼、氮、氧、氟、矽、磷、鋁、鈦、鉻、錳、鈷、鎳、銅、鋅、鎵、釔、鋯、鉬、釕、銀、銦、錫、鉭和鎢中的一種以上的導電體的單層或疊層。例如,也可以使用包含上述元素的合金或化合物,還可以使用包含鋁的導電體、包含銅及鈦的導電體、包含銅及錳的導電體、包含銦、錫及氧的導電體、包含鈦及氮的導電體等。
作為絕緣體410,例如可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。作為絕緣體410,例如可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭。
注意,絕緣體410較佳為包括相對介電常數低的絕緣體。例如,絕緣體410較佳為包含氧化矽、氧氮化矽、氮氧化矽、氮化矽或樹脂等。作為 樹脂,例如可以舉出聚酯、聚烯烴、聚醯胺(尼龍、芳族聚醯胺等)、聚醯亞胺、聚碳酸酯或丙烯酸等。
例如,作為絕緣體412可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。例如,作為絕緣體412可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭。
在半導體406b為氧化物半導體的情況下,絕緣體412較佳為具有過量氧的絕緣體。
作為導電體404,例如可以使用包含硼、氮、氧、氟、矽、磷、鋁、鈦、鉻、錳、鈷、鎳、銅、鋅、鎵、釔、鋯、鉬、釕、銀、銦、錫、鉭和鎢中的一種以上的導電體的單層或疊層。例如,也可以使用包含上述元素的合金或化合物,還可以使用包含鋁的導電體、包含銅及鈦的導電體、包含銅及錳的導電體、包含銦、錫及氧的導電體、包含鈦及氮的導電體等。
絕緣體408例如是氫透過性低(具有阻擋氫的性質)的絕緣體。
由於其原子半徑等較小,所以氫容易擴散在絕緣體中(擴散係數較大)。例如,密度低的絕緣體具有較高的氫透過性。換言之,密度高的絕緣 體具有較低的氫透過性。密度低的絕緣體不一定需要是指其整體的密度低的絕緣體,還是指其一部分的密度低的絕緣體。這是因為密度低的區域成為氫的路徑的緣故。可能使氫透過的密度不侷限於一個值,典型地可以舉出低於2.6g/cm3的值等。作為密度低的絕緣體,例如有:氧化矽和氧氮化矽等無機絕緣體;以及聚酯、聚烯烴、聚醯胺(尼龍、芳族聚醯胺等)、聚醯亞胺、聚碳酸酯和丙烯酸樹脂等有機絕緣體等。作為密度高的絕緣體,例如有氧化鎂、氧化鋁、氧化鍺、氧化鎵、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿及氧化鉭等。注意,密度低的絕緣體及密度高的絕緣體不侷限於上述絕緣體。例如,在上述絕緣體中,也可以包含選自硼、氮、氟、氖、磷、氯和氬中的一種以上的元素。
另外,具有晶界的絕緣體有時具有較高的氫透過性。換言之,不具有晶界(或者晶界少)的絕緣體不容易使氫透過。例如,非多晶絕緣體(非晶絕緣體等)的氫透過性比多晶絕緣體低。
另外,與氫的鍵合能量高的絕緣體有時具有較低的氫透過性。例如,與氫鍵合而形成氫化合物的絕緣體只要具有在裝置的製程或裝置的工作中的溫度下不使氫脫離的程度的鍵合能量,就可以包括在氫透過性低的絕緣體的範圍內。例如,在200℃以上且1000℃以下、300℃以上且1000℃以下、或者400℃以上且1000℃以下形成氫化合物的絕緣體有時具有較低的氫透過性。另外,例如,其氫脫離溫度為200℃以上且1000℃以下、300℃以上且1000℃以下、或者400℃以上且1000℃以下的形成氫化合物的絕緣體有 時具有較低的氫透過性。另一方面,其氫脫離溫度為20℃以上且400℃以下、20℃以上300℃以下、或者20℃以上且200℃以下的形成氫化合物的絕緣體有時具有較高的氫透過性。另外,有時將容易脫離的氫或已游離的氫稱為過剩氫。
另外,絕緣體408例如是氧透過性低(具有阻擋氧的性質)的絕緣體。
另外,絕緣體408例如是水透過性低(具有阻擋水的性質)的絕緣體。
注意,也可以不形成導電體413(參照圖19A和圖19B)。另外,絕緣體412及絕緣體406c也可以具有其端部從導電體404的端部突出的形狀(參照圖19C和圖19D)。另外,絕緣體412及絕緣體406c也可以具有其端部沒有從導電體404的端部突出的形狀(參照圖19E和圖19F)。另外,A1-A2剖面中的導電體413的寬度也可以大於半導體406b的寬度(參照圖20A和圖20B)。另外,導電體413也可以藉由開口與導電體404接觸(參照圖20C和圖20D)。此外,也可以不設置導電體404(參照圖20E和圖20F)。
以下,對絕緣體406a、半導體406b及絕緣體406c進行說明。
藉由在半導體406b的上下配置絕緣體406a及絕緣體406c,有時可以提高電晶體的電特性。
絕緣體406a、半導體406b及絕緣體406c較佳為包括CAAC-OS。
半導體406b例如是包含銦的氧化物。例如,在半導體406b包含銦時,其載子移動率(電子移動率)得到提高。此外,半導體406b較佳為包含元素M。元素M較佳為鋁、鎵、釔或錫等。作為可用作元素M的其他元素,有硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢等。注意,作為元素M有時也可以組合多個上述元素。元素M例如是與氧的鍵能高的元素。元素M例如是與氧的鍵能高於銦的元素。或者,元素M例如是具有增大氧化物的能隙的功能的元素。此外,半導體406b較佳為包含鋅。當氧化物包含鋅時,有時容易晶化。
注意,半導體406b不侷限於包含銦的氧化物。半導體406b例如也可以是鋅錫氧化物或鎵錫氧化物等不包含銦且包含鋅、鎵或錫的氧化物等。
作為半導體406b例如使用能隙大的氧化物。半導體406b的能隙例如是2.5eV以上且4.2eV以下,較佳的是2.8eV以上且3.8eV以下,更佳的是3eV以上且3.5eV以下。
例如,絕緣體406a及絕緣體406c是包含除了氧之外的一種以上或兩種以上的構成半導體406b的元素的氧化物。因為絕緣體406a及絕緣體406c包含除了氧之外的一種以上或兩種以上的構成半導體406b的元素,所以不容易在絕緣體406a與半導體406b的介面以及半導體406b與絕緣體406c 的介面處形成缺陷能階。
絕緣體406a、半導體406b及絕緣體406c較佳為至少包含銦。另外,在絕緣體406a是In-M-Zn氧化物的情況下,在In和M的總和為100atomic%時,較佳的是,In低於50atomic%,M高於50atomic%,更佳的是,In低於25atomic%,M高於75atomic%。此外,在半導體406b是In-M-Zn氧化物的情況下,在In和M的總和為100atomic%時,較佳的是,In高於25atomic%,M低於75atomic%,更佳的是,In高於34atomic%,M低於66atomic%。此外,在絕緣體406c是In-M-Zn氧化物的情況下,在In和M的總和為100atomic%時,較佳的是,In低於50atomic%,M高於50atomic%,更佳的是,In低於25atomic%,M高於75atomic%。另外,絕緣體406c也可以使用與絕緣體406a相同的種類的氧化物。注意,絕緣體406a及/或絕緣體406c有時也可以不包含銦。例如,絕緣體406a及/或絕緣體406c也可以包含氧化鎵。絕緣體406a、半導體406b及絕緣體406c所包含的各元素的原子數也可以不是簡單的整數比。
作為半導體406b使用其電子親和力大於絕緣體406a及絕緣體406c的氧化物。例如,作為半導體406b使用如下氧化物,該氧化物的電子親和力比絕緣體406a及絕緣體406c大0.07eV以上且1.3eV以下,較佳的是大0.1eV以上且0.7eV以下,更佳的是大0.15eV以上且0.4eV以下。注意,電子親和力是真空能階和導帶底之間的能量差。
注意,銦鎵氧化物具有較小的電子親和力及較高的氧阻擋性。因此,絕緣體406c較佳為包含銦鎵氧化物。鎵原子的比率[Ga/(In+Ga)]例如為70%以上,較佳的是80%以上,更佳的是90%以上。
此時,若施加閘極電壓,通道則形成在絕緣體406a、半導體406b和絕緣體406c中的電子親和力最大的半導體406b中。
在此,有時在絕緣體406a與半導體406b之間具有絕緣體406a和半導體406b的混合區域。另外,有時在半導體406b與絕緣體406c之間具有半導體406b和絕緣體406c的混合區域。混合區域的缺陷能階密度低。因此,在絕緣體406a、半導體406b和絕緣體406c的疊層體的能帶圖中,各層之間的介面及介面附近的能量連續地變化(也稱為連續接合)(參照圖21)。注意,有時無法明確地區分絕緣體406a、半導體406b及絕緣體406c的各邊界。
此時,電子不是在絕緣體406a及絕緣體406c中而主要在半導體406b中移動。另外,絕緣體406a及絕緣體406c在單獨存在時可以具有導體、半導體或絕緣體中的任一種性質,但在電晶體工作時其分別具有不形成通道的區域。明確而言,通道僅形成於絕緣體406a與半導體406b的介面附近以及絕緣體406c與半導體406b的介面附近,其他的區域不形成通道。因此,當電晶體工作時可以將406a及406c稱為絕緣體,因此在本說明書中不將其記作半導體及導電體而記作絕緣體。但是,絕緣體406a、半導體 406b、絕緣體406c僅是因為相對性的物性不同而將其分稱為半導體和絕緣體,因此,例如,有時也可以將能夠用於絕緣體406a或絕緣體406c的絕緣體用作半導體406b。如上所述,藉由降低絕緣體406a與半導體406b的介面處的缺陷能階密度以及半導體406b與絕緣體406c的介面處的缺陷能階密度,在半導體406b中妨礙電子移動的情況減少,從而可以提高電晶體的通態電流。
越減少妨礙電子移動的因素,越能夠提高電晶體的通態電流。例如,在沒有妨礙電子移動的因素的情況下,推測電子高效率地移動。例如,在通道形成區域中的物理性凹凸較大的情況下也會發生電子移動的妨礙。
為了提高電晶體的通態電流,例如,半導體406b的頂面或底面(被形成面,在此為絕緣體406a的頂面)的1μm×1μm的範圍內的均方根(RMS:Root Mean Square)粗糙度為低於1nm,較佳的是低於0.6nm,更佳的是低於0.5nm,進一步較佳的是低於0.4nm,即可。另外,其1μm×1μm的範圍內的平均表面粗糙度(也稱為Ra)為低於1nm,較佳的是低於0.6nm,更佳的是低於0.5nm,進一步較佳的是低於0.4nm,即可。其1μm×1μm的範圍內的最大高低差(也稱為P-V)為低於10nm,較佳的是低於9nm,更佳的是低於8nm,進一步較佳的是低於7nm。RMS粗糙度、Ra以及P-V可以藉由使用由精工電子奈米科技(SII Nano Technology)有限公司製造的掃描探針顯微鏡SPA-500等測定。
此外,為了提高電晶體的通態電流,絕緣體406c的厚度越小越好。例如,絕緣體406c具有其厚度為低於10nm,較佳的是5nm以下,更佳的是3nm以下的區域。另一方面,絕緣體406c具有阻擋構成相鄰的絕緣體的氧之外的元素(氫、矽等)侵入形成有通道的半導體406b中的功能。因此,絕緣體406c較佳為具有一定程度的厚度。例如,絕緣體406c可以具有其厚度為0.3nm以上,較佳的是1nm以上,更佳的是2nm以上的區域。另外,為了抑制從絕緣體402等釋放的氧向外擴散,絕緣體406c較佳為具有阻擋氧的性質。
此外,為了提高可靠性,絕緣體406a較佳為厚且絕緣體406c較佳為薄。例如,絕緣體406a可以具有其厚度例如為10nm以上,較佳為20nm以上,更佳的是40nm以上,進一步較佳的是60nm以上的區域。藉由將絕緣體406a形成得厚,可以拉開從相鄰的絕緣體與絕緣體406a的介面至形成有通道的半導體406b的距離。注意,因為半導體裝置的生產率可能會下降,所以絕緣體406a具有其厚度例如為200nm以下,較佳的是120nm以下,更佳的是80nm以下的區域。
例如在半導體406b與絕緣體406a之間例如具有藉由二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)得到的矽濃度為1×1016atoms/cm3以上且1×1019atoms/cm3以下,較佳的是1×1016atoms/cm3以上且5×1018atoms/cm3以下,更佳的是1×1016atoms/cm3以上且2×1018atoms/cm3以下的區域。此外,在半導體406b與絕緣體406c之間具 有藉由SIMS得到的矽濃度為1×1016atoms/cm3以上且1×1019atoms/cm3以下,較佳的是1×1016atoms/cm3以上且5×1018atoms/cm3以下,更佳的是1×1016atoms/cm3以上且2×1018atoms/cm3以下的區域。
另外,半導體406b包括藉由SIMS得到的氫濃度為1×1016atoms/cm3以上且2×1020atoms/cm3以下,較佳的是1×1016atoms/cm3以上且5×1019atoms/cm3以下,更佳的是1×1016atoms/cm3以上且1×1019atoms/cm3以下,進一步較佳的是1×1016atoms/cm3以上且5×1018atoms/cm3以下的區域。為了降低半導體406b的氫濃度,較佳的是降低絕緣體406a及絕緣體406c的氫濃度。絕緣體406a及絕緣體406c具有藉由SIMS得到的氫濃度為1×1016atoms/cm3以上且2×1020atoms/cm3以下,較佳的是1×1016atoms/cm3以上且5×1019atoms/cm3以下,更佳的是1×1016atoms/cm3以上且1×1019atoms/cm3以下,進一步較佳的是1×1016atoms/cm3以上且5×1018atoms/cm3以下的區域。此外,半導體406b具有藉由SIMS得到的氮濃度為1×1015atoms/cm3以上且5×1019atoms/cm3以下,較佳的是1×1015atoms/cm3以上且5×1018atoms/cm3以下,更佳的是1×1015atoms/cm3以上且1×1018atoms/cm3以下,進一步較佳的是1×1015atoms/cm3以上且5×1017atoms/cm3以下的區域。為了降低半導體406b的氮濃度,較佳的是降低絕緣體406a及絕緣體406c的氮濃度。絕緣體406a及絕緣體406c具有藉由SIMS得到的氮濃度為1×1015atoms/cm3以上且5×1019atoms/cm3以下,較佳的是1×1015atoms/cm3以上且5×1018atoms/cm3以下,更佳的是1×1015atoms/cm3以上且1×1018atoms/cm3以下,進一步較佳的是 1×1015atoms/cm3以上且5×1017atoms/cm3以下的區域。
上述三層結構是一個例子。例如,也可以採用沒有絕緣體406a或絕緣體406c的兩層結構。或者,也可以採用在絕緣體406a上或下、或者在絕緣體406c上或下設置作為絕緣體406a、半導體406b和絕緣體406c例示的半導體中的任何一個半導體的四層結構。或者,也可以採用在絕緣體406a上、絕緣體406a下、絕緣體406c上、絕緣體406c下中的任何兩個以上的位置設置作為絕緣體406a、半導體406b和絕緣體406c例示的半導體中的任何一個的半導體的n層結構(n為5以上的整數)。
〈電晶體2〉
圖22A至圖22C是根據本發明的一個實施方式的電晶體的俯視圖及剖面圖。圖22A是俯視圖,圖22B是沿圖22A中的點劃線F1-F2所示的部分的剖面圖,圖22C是沿圖22A中的點劃線F3-F4所示的部分的剖面圖。另外,在圖22A的俯視圖中,為了明確起見,省略組件的一部分。
圖22A至圖22C所示的電晶體包括:基板500上的導電體513;基板500上的其頂面的高度與導電體513一致的絕緣體503;導電體513及絕緣體503上的絕緣體502;絕緣體502上的絕緣體506a;絕緣體506a上的半導體506b;與半導體506b的頂面接觸且間隔開地配置的導電體516a及導電體516b;絕緣體502、半導體506b、導電體516a及導電體516b上的絕緣體506c;絕緣體506c上的絕緣體512;絕緣體512上的導電體504;以 及導電體504上的絕緣體508。注意,雖然在此將導電體513認為電晶體的一部分,但是不侷限於此。例如,可以將導電體513認為獨立於電晶體的組件。另外,電晶體也可以不包括絕緣體508。此外,電晶體還可以在導電體516a與絕緣體506c之間或/及導電體516b與絕緣體506c之間包括絕緣體。關於該絕緣體,參照絕緣體410的記載。
關於基板500,參照基板400的記載。關於導電體513,參照導電體413的記載。關於絕緣體502,參照絕緣體402的記載。關於絕緣體506a,參照絕緣體406a的記載。關於半導體506b,參照半導體406b的記載。關於導電體516a,參照導電體416a的記載。關於導電體516b,參照導電體416b的記載。關於絕緣體506c,參照絕緣體406c的記載。關於絕緣體512,參照絕緣體412的記載。關於導電體504,參照導電體404的記載。關於絕緣體508,參照絕緣體408的記載。
作為絕緣體503,例如可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。作為絕緣體503,例如可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭。
如圖22C所示,電晶體具有s-channel結構。另外,在該結構中,來自導電體504及導電體513的電場不容易在半導體506b的側面被導電體 516a及導電體516b等阻礙。
注意,也可以不形成導電體513(參照圖23A和圖23B)。另外,絕緣體512及絕緣體506c也可以具有其端部從導電體504的端部突出的形狀(參照圖23C和圖23D)。另外,絕緣體512及絕緣體506c也可以具有其端部沒有從導電體504的端部突出的形狀(參照圖23E和圖23F)。另外,F1-F2剖面中的導電體513的寬度也可以大於半導體506b的寬度(參照圖24A和圖24B)。另外,導電體513也可以藉由開口與導電體504接觸(參照圖24C和圖24D)。此外,也可以不設置導電體504(參照圖24E和圖24F)。
〈電晶體3〉
圖25A、圖25B及圖25C為本發明的一個實施方式的電晶體的俯視圖及剖面圖。圖25A為俯視圖,圖25B及圖25C為沿著圖25A所示的點劃線G1-G2以及點劃線G3-G4的剖面圖。另外,在圖25A的俯視圖中,為了明確起見,省略組件的一部分。
圖25A、圖25B及圖25C所示的電晶體包括:基板600上的導電體613;基板600上的與導電體613的頂面高度一致的絕緣體603;導電體613上及絕緣體603上的絕緣體602;絕緣體602上的絕緣體606a;絕緣體606a上的半導體606b;半導體606b上的絕緣體606c;絕緣體606c上的絕緣體612;絕緣體612上的導電體604;具有與導電體604的側面及半導體606b的頂面接觸的區域的絕緣體620;以及絕緣體602、半導體606b、導電體604及 絕緣體620上的絕緣體608。注意,雖然在此導電體613為電晶體的一部分,但是不侷限於此。例如,導電體613也可以是獨立於電晶體的組件。電晶體也可以不具有絕緣體608。
半導體606b包括區域607a和區域607b。區域607a及區域607b以夾著半導體606b的與導電體604重疊的區域的方式配置。區域607a及區域607b具有比半導體606b的其他區域的電阻低的區域。區域607a及區域607b具有電晶體的源極區及汲極區的功能。
另外,也可以在絕緣體608上配置絕緣體618。絕緣體618及絕緣體608具有兩個開口部。兩個開口部分別到達區域607a及區域607b。兩個開口部分別被填有導電體616a及導電體616b。此時,絕緣體620具有防止導電體616a及導電體616b與導電體604導通的功能。
關於基板600,參照基板400的記載。關於導電體613,參照導電體413的記載。關於絕緣體602,參照絕緣體402的記載。關於絕緣體603,參照絕緣體503的記載。關於絕緣體606a,參照絕緣體406a的記載。關於半導體606b,參照半導體406b的記載。關於導電體616a,參照導電體416a的記載。關於導電體616b,參照導電體416b的記載。關於絕緣體606c,參照絕緣體406c的記載。關於絕緣體612,參照絕緣體412的記載。關於導電體604,參照導電體404的記載。關於絕緣體608,參照絕緣體408的記載。
作為絕緣體620,例如可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。例如,作為絕緣體620可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭。
作為絕緣體618,例如可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。例如,作為絕緣體618可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭。
如圖25C所示,電晶體具有s-channel結構。另外,在該結構中,來自導電體604及導電體613的電場不容易在半導體606b的側面被導電體616a及導電體616b等阻礙。
注意,也可以不形成導電體613(參照圖26A及圖26B)。另外,導電體613與導電體604也可以藉由開口部接觸(參照圖26C及圖26D)。另外,可以使用依次層疊了絕緣體602a、絕緣體602b及絕緣體602c的層疊膜代替絕緣體602(參照圖26E及圖26F)。
作為絕緣體602a、絕緣體602b及絕緣體602c,例如可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。例如,絕緣體602a及絕緣體602c可以使用氧化矽或氧氮化矽,絕緣體602b可以使用氧化鋁、氧化鎂、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或氧化鉭。絕緣體602b較佳為具有載子陷阱。此時,藉由對導電體613施加電位,利用絕緣體602b的載子陷阱捕獲電子等,由此電晶體的臨界電壓可以漂移。例如,藉由使電晶體的臨界電壓漂移至正方向,可以使電晶體的電特性變為常關閉。
〈電路〉
下面,說明本發明的一個實施方式的半導體裝置的電路的一個例子。
〈CMOS反相器〉
圖27A所示的電路圖示出所謂的CMOS反相器的結構,其中使p通道電晶體2200與n通道電晶體2100串聯連接,並使其閘極互相連接。
〈半導體裝置的結構1〉
圖28A至圖28C是對應於圖27A的半導體裝置的剖面圖。圖28A至圖28C所示的半導體裝置包括電晶體2200以及電晶體2100。電晶體2100配置於電晶體2200的上方。注意,雖然這裡示出作為電晶體2100使用圖22A至圖22C所示的電晶體的例子,但是本發明的一個實施方式的半導體裝置 不侷限於此。例如,也可以使用圖18A至圖18C、圖19A至圖19F、圖20A至圖20F、圖23A至圖23F或圖24A至圖24F等所示的電晶體等作為電晶體2100。因此,關於電晶體2100,適當地參照上述電晶體的記載。另外,圖28A、圖28B及圖28C分別為不同部分的剖面圖。
圖28A至圖28C所示的電晶體2200是使用半導體基板450的電晶體。電晶體2200包括半導體基板450中的區域472a、半導體基板450中的區域472b、絕緣體462以及導電體454。
在電晶體2200中,區域472a及區域472b具有源極區及汲極區的功能。另外,絕緣體462具有閘極絕緣體的功能。另外,導電體454具有閘極電極的功能。因此,能夠由施加到導電體454的電位控制通道形成區域的電阻。亦即,能夠由施加到導電體454的電位控制區域472a與區域472b之間的導通或非導通。
作為半導體基板450,例如可以使用由矽或鍺等構成的單一材料半導體基板、或者由碳化矽、矽鍺、砷化鎵、磷化銦、氧化鋅或氧化鎵構成的化合物半導體基板等。較佳的是,作為半導體基板450使用單晶矽基板。
作為半導體基板450使用包含賦予n型導電性的雜質的半導體基板。注意,作為半導體基板450,也可以使用包含賦予p型導電性的雜質的半導體基板。此時,在形成電晶體2200的區域中可以配置包含賦予n型導電性 的雜質的井。或者,半導體基板450也可以為i型。
半導體基板450的頂面較佳為具有(110)面。由此,能夠提高電晶體2200的通態特性。
區域472a及區域472b是包含賦予p型導電性的雜質的區域。由此,電晶體2200具有p通道電晶體的結構。
注意,電晶體2200與鄰接的電晶體被區域460等隔開。區域460具有絕緣性。
圖28A至圖28C所示的半導體裝置包括絕緣體464、絕緣體466、絕緣體468、絕緣體422、導電體480a、導電體480b、導電體480c、導電體478a、導電體478b、導電體478c、導電體476a、導電體476b、導電體474a、導電體474b、導電體474c、導電體496a、導電體496b、導電體496c、導電體496d、導電體498a、導電體498b、導電體498c、絕緣體490、絕緣體502、絕緣體492、絕緣體428、絕緣體409以及絕緣體494。
這裡,絕緣體422、絕緣體428及絕緣體409是具有阻擋性的絕緣體。亦即,圖28A至圖28C所示的半導體裝置具有電晶體2100被具有阻擋性的絕緣體圍繞的結構。注意,也可以不包括絕緣體422、絕緣體428和絕緣體409中的任一個以上。
絕緣體464配置於電晶體2200上。絕緣體466配置於絕緣體464上。絕緣體468配置於絕緣體466上。絕緣體490配置於絕緣體468上。電晶體2100配置於絕緣體490上。絕緣體492配置於電晶體2100上。絕緣體494配置於絕緣體492上。
絕緣體464包括到達區域472a的開口、到達區域472b的開口以及到達導電體454的開口。導電體480a、導電體480b或導電體480c分別填埋於各開口中。
絕緣體466包括到達導電體480a的開口、到達導電體480b的開口以及到達導電體480c的開口。導電體478a、導電體478b或導電體478c分別填埋於各開口中。
絕緣體468及絕緣體422包括到達導電體478b的開口以及到達導電體478c的開口。導電體476a或導電體476b分別填埋於各開口中。
絕緣體490包括與電晶體2100的通道形成區域重疊的開口、到達導電體476a的開口以及到達導電體476b的開口。導電體474a、導電體474b或導電體474c分別填埋於各開口中。
導電體474a也可以具有電晶體2100的閘極電極的功能。或者,例如, 也可以藉由對導電體474a施加預定的電位,來控制電晶體2100的臨界電壓等的電特性。或者,例如,也可以將導電體474a與具有電晶體2100的閘極電極的功能的導電體404電連接。由此,可以增加電晶體2100的通態電流。此外,由於可以抑制衝穿現象,因此可以使電晶體2100的飽和區中的電特性穩定。
絕緣體409及絕緣體492包括穿過電晶體2100的源極電極和汲極電極中的一個的導電體516b到達導電體474b的開口、到達電晶體2100的源極電極和汲極電極中的另一個的導電體516a的開口、到達電晶體2100的閘極電極的導電體504的開口以及到達導電體474c的開口。導電體496a、導電體496b、導電體496c或導電體496d分別填埋於各開口中。注意,各開口有時穿過電晶體2100等的組件。
絕緣體494包括到達導電體496a的開口、到達導電體496b及導電體496d的開口以及到達導電體496c的開口。導電體498a、導電體4986或導電體498c分別填埋於各開口中。
作為絕緣體464、絕緣體466、絕緣體468、絕緣體490、絕緣體492及絕緣體494,例如可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。作為絕緣體401,例如可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿或 氧化鉭。
絕緣體464、絕緣體466、絕緣體468、絕緣體490、絕緣體492和絕緣體494中的一個以上較佳為包括具有阻擋性的絕緣體。
作為具有阻擋氫等雜質及氧的功能的絕緣體,例如可以使用包含硼、碳、氮、氧、氟、鎂、鋁、矽、磷、氯、氬、鎵、鍺、釔、鋯、鑭、釹、鉿或鉭的絕緣體的單層或疊層。
作為導電體480a、導電體480b、導電體480c、導電體478a、導電體478b、導電體478c、導電體476a、導電體476b、導電體474a、導電體474b、導電體474c、導電體496a、導電體496b、導電體496c、導電體496d、導電體498a、導電體498b及導電體498c,例如可以使用包含硼、氮、氧、氟、矽、磷、鋁、鈦、鉻、錳、鈷、鎳、銅、鋅、鎵、釔、鋯、鉬、釕、銀、銦、錫、鉭和鎢中的一種以上的導電體的單層或疊層。例如,也可以使用合金或化合物諸如包含鋁的導電體、包含銅及鈦的導電體、包含銅及錳的導電體、包含銦、錫及氧的導電體、包含鈦及氮的導電體等。導電體480a、導電體480b、導電體480c、導電體478a、導電體478b、導電體478c、導電體476a、導電體476b、導電體474a、導電體474b、導電體474c、導電體496a、導電體496b、導電體496c、導電體496d、導電體498a、導電體498b和導電體498c中的一個以上較佳為包括具有阻擋性的導電體。
注意,圖29A至圖29C所示的半導體裝置與圖28A至圖28C所示的半導體裝置的不同之處只在於電晶體2200的結構。因此,圖29A至圖29C所示的半導體裝置參照圖28A至圖28C所示的半導體裝置的記載。明確而言,在圖29A至圖29C所示的半導體裝置中,電晶體2200為Fin(鰭)型。藉由使電晶體2200成為Fin型,實效的通道寬度得到增大,從而能夠提高電晶體2200的通態特性。另外,由於可以增大閘極電極的電場的影響,所以能夠提高電晶體2200的關態特性。注意,圖29A、圖29B及圖29C是不同部分的剖面圖。
另外,圖30A至圖30C所示的半導體裝置與圖28A至圖28C所示的半導體裝置的不同之處只在於電晶體2200的結構。因此,圖30A至圖30C所示的半導體裝置參照圖28A至圖28C所示的半導體裝置的記載。明確而言,在圖30A至圖30C所示的半導體裝置中,電晶體2200設置在作為SOI基板的半導體基板450上。圖30A至圖30C示出區域456與半導體基板450被絕緣體452隔開的結構。藉由作為半導體基板450使用SOI基板,可以抑制衝穿現象等,所以能夠提高電晶體2200的關態特性。注意,絕緣體452可以藉由使半導體基板450絕緣體化形成。例如,作為絕緣體452可以使用氧化矽。注意,圖30A、圖30B及圖30C是不同部分的剖面圖。
在圖28A至圖30C所示的半導體裝置中,使用半導體基板形成p通道電晶體並在其上方形成n通道電晶體,因此能夠減少元件所占的面積。亦即,可以提高半導體裝置的集成度。另外,與使用同一半導體基板形成n 通道電晶體及p通道電晶體的情況相比,可以簡化製程,所以能夠提高半導體裝置的生產率。另外,能夠提高半導體裝置的良率。另外,p通道電晶體有時可以省略LDD(Lightly Doped Drain:輕摻雜汲極)區域的形成、淺溝槽(Shallow Trench)結構的形成或變形設計等複雜的製程。因此,與使用半導體基板形成n通道電晶體的半導體裝置相比,圖28A至圖30C所示的半導體裝置有時能夠提高生產率和良率。
〈CMOS類比開關〉
此外,圖27B所示的電路圖示出使電晶體2100和電晶體2200的源極互相連接且汲極互相連接的結構。藉由採用這種結構,可以將該電晶體用作所謂的CMOS類比開關。
〈記憶體裝置1〉
參照圖31A和圖31B示出半導體裝置(記憶體裝置)的一個例子,該半導體裝置(記憶體裝置)使用本發明的一個實施方式的電晶體,即便在沒有電力供應的情況下也能夠保持存儲內容,並且對寫入次數也沒有限制。
圖31A所示的半導體裝置包括使用第一半導體的電晶體3200、使用第二半導體的電晶體3300以及電容元件3400。另外,作為電晶體3300可以使用上述電晶體。
電晶體3300較佳為使用關態電流(off-state current)小的電晶體。 電晶體3300例如可以使用包含氧化物半導體的電晶體。由於電晶體3300的關態電流小,所以可以長期間使半導體裝置的特定的節點保持存儲內容。亦即,因為不需要更新工作或可以使更新工作的頻率極低,所以能夠實現低功耗的半導體裝置。
在圖31A中,第一佈線3001與電晶體3200的源極電連接,第二佈線3002與電晶體3200的汲極電連接。此外,第三佈線3003與電晶體3300的源極和汲極中的一個電連接,第四佈線3004與電晶體3300的閘極電連接。再者,電晶體3200的閘極及電晶體3300的源極和汲極中的另一個與電容元件3400的一個電極電連接,第五佈線3005與電容元件3400的另一個電極電連接。
圖31A所示的半導體裝置藉由具有能夠保持電晶體3200的閘極的電位的特徵,可以如下所示進行資訊的寫入、保持以及讀出。
對資訊的寫入及保持進行說明。首先,將第四佈線3004的電位設定為使電晶體3300導通的電位,而使電晶體3300導通。由此,第三佈線3003的電位施加到與電晶體3200的閘極及電容元件3400的一個電極電連接的節點FG。換言之,對電晶體3200的閘極施加規定的電荷(寫入)。這裡,施加賦予兩種不同電位位準的電荷(以下,稱為低位準電荷、高位準電荷)中的任一個。然後,藉由將第四佈線3004的電位設定為使電晶體3300成為非導通狀態的電位而使電晶體3300處於非導通狀態,使電荷保持在節點 FG(保持)。
因為電晶體3300的關態電流較小,所以節點FG的電荷被長時間保持。
接著,對資訊的讀出進行說明。當在對第一佈線3001施加規定的電位(恆電位)的狀態下對第五佈線3005施加適當的電位(讀出電位)時,第二佈線3002具有對應於保持在節點FG中的電荷量的電位。這是因為:在電晶體3200為n通道電晶體的情況下,對電晶體3200的閘極施加高位準電荷時的外觀上的臨界電壓Vth_H低於對電晶體3200的閘極施加低位準電荷時的外觀上的臨界電壓Vth_L。在此,外觀上的臨界電壓是指為了使電晶體3200成為“導通狀態”而需要的第五佈線3005的電位。由此,藉由將第五佈線3005的電位設定為Vth_H與Vth_L之間的電位V0,可以辨別施加到節點FG的電荷。例如,在寫入時節點FG被供應高位準電荷的情況下,若第五佈線3005的電位為V0(>Vth_H),電晶體3200則成為“導通狀態”。另一方面,當節點FG被供應低位準電荷時,即便第五佈線3005的電位為V0(<Vth_L),電晶體3200也保持“非導通狀態”。因此,藉由辨別第二佈線3002的電位,可以讀出節點FG所保持的資訊。
注意,當將記憶單元設置為陣列狀時,在讀出時必須讀出所希望的記憶單元的資訊。在不讀出資訊的記憶單元中,可以藉由對第五佈線3005施加不管施加到節點FG的電荷如何都使電晶體3200成為“非導通狀態”的電位(亦即,低於Vth_H的電位),來僅讀出所希望的記憶單元的資訊。或者, 在不讀出資訊的記憶單元中,可以藉由對第五佈線3005施加不管施加到節點FG的電荷如何都使電晶體3200成為“導通狀態”的電位(亦即,高於Vth_L的電位),來僅讀出所希望的記憶單元的資訊。
〈半導體裝置的結構2〉
圖32A至圖32C是對應於圖31A的半導體裝置的剖面圖。圖32A至圖32C所示的半導體裝置包括電晶體3200、電晶體3300以及電容元件3400。電晶體3300及電容元件3400配置於電晶體3200的上方。電晶體3300參照上述電晶體2100的記載。電晶體3200參照圖28A至圖28C所示的電晶體2200的記載。在圖28A至圖28C中,對電晶體2200為p通道電晶體的情況進行說明,但是電晶體3200也可以為n通道電晶體。注意,圖32A、圖32B及圖32C是不同部分的剖面圖。
圖32A至圖32C所示的電晶體2200是使用半導體基板450的電晶體。電晶體2200包括半導體基板450中的區域472a、半導體基板450中的區域472b、絕緣體462以及導電體454。
圖32A至圖32C所示的半導體裝置包括絕緣體464、絕緣體466、絕緣體468、絕緣體422、導電體480a、導電體480b、導電體480c、導電體478a、導電體478b、導電體478c、導電體476a、導電體476b、導電體474a、導電體474b、導電體474c、導電體496a、導電體496b、導電體496c、導電體496d、導電體498a、導電體498b、導電體498c、導電體498d、絕緣體 490、絕緣體502、絕緣體492、絕緣體428、絕緣體409以及絕緣體494。
這裡,絕緣體422、絕緣體428及絕緣體409是具有阻擋性的絕緣體。亦即,圖32A至圖32C所示的半導體裝置具有電晶體3300被具有阻擋性的絕緣體圍繞的結構。注意,也可以不包括絕緣體422、絕緣體428和絕緣體409中的任一個以上。
絕緣體464配置於電晶體3200上。絕緣體466配置於絕緣體464上。絕緣體468配置於絕緣體466上。絕緣體490配置於絕緣體468上。電晶體2100配置於絕緣體490上。絕緣體492配置於電晶體2100上。絕緣體494配置於絕緣體492上。
絕緣體464包括到達區域472a的開口、到達區域472b的開口以及到達導電體454的開口。另外,導電體480a、導電體480b或導電體480c分別填埋於各開口中。
絕緣體466包括到達導電體480a的開口、到達導電體480b的開口以及到達導電體480c的開口。導電體478a、導電體478b或導電體478c分別填埋於各開口中。
絕緣體468及絕緣體422包括到達導電體478b的開口以及到達導電體478c的開口。導電體476a或導電體476b分別填埋於各開口中。
絕緣體490包括與電晶體3300的通道形成區域重疊的開口、到達導電體476a的開口以及到達導電體476b的開口。導電體474a、導電體474b或導電體474c分別填埋於各開口中。
導電體474a也可以具有電晶體3300的底閘極電極的功能。或者,例如,也可以藉由對導電體474a施加預定的電位,來控制電晶體3300的臨界電壓等的電特性。或者,例如,也可以將導電體474a與電晶體3300的頂閘極電極的導電體404電連接。由此,可以增加電晶體3300的通態電流。此外,由於可以抑制衝穿現象,因此可以使電晶體3300的飽和區中的電特性穩定。
絕緣體409及絕緣體492包括穿過電晶體3300的源極電極和汲極電極中的一個的導電體516b到達導電體474b的開口、到達與電晶體3300的源極電極和汲極電極中的另一個的導電體516a隔著絕緣體512重疊的導電體514的開口、到達電晶體3300的閘極電極的導電體504的開口以及穿過電晶體3300的源極電極和汲極電極中的另一個的導電體516a到達導電體474c的開口。導電體496a、導電體496b、導電體496c或導電體496d分別填埋於各開口中。注意,各開口有時穿過電晶體3300等的組件。
絕緣體494包括到達導電體496a的開口、到達導電體496b的開口、到達導電體496c的開口以及到達導電體496d的開口。導電體498a、導電 體498b、導電體498c或導電體498d分別填埋於各開口中。
絕緣體464、絕緣體466、絕緣體468、絕緣體490、絕緣體492和絕緣體494中的一個以上較佳為包括具有阻擋性的絕緣體。
作為導電體498d,例如可以使用包含硼、氮、氧、氟、矽、磷、鋁、鈦、鉻、錳、鈷、鎳、銅、鋅、鎵、釔、鋯、鉬、釕、銀、銦、錫、鉭和鎢中的一種以上的導電體的單層或疊層。例如,也可以使用合金或化合物,還可以使用包含鋁的導電體、包含銅及鈦的導電體、包含銅及錳的導電體、包含銦、錫及氧的導電體、包含鈦及氮的導電體等。導電體498較佳為包括具有阻擋性的導電體。
電晶體3200的源極和汲極藉由導電體480b、導電體478b、導電體476a、導電體474b以及導電體496c電連接到電晶體3300的源極電極和汲極電極中的一個的導電體516b。電晶體3200的閘極電極的導電體454藉由導電體480c、導電體478c、導電體476b、導電體474c以及導電體496d電連接到電晶體3300的源極電極和汲極電極中的另一個的導電體516a。
電容元件3400包括與電晶體3300的源極電極和汲極電極中的另一個電連接的電極、導電體514以及絕緣體512。注意,因為絕緣體512與用作電晶體3300的閘極絕緣體的絕緣體512藉由同一製程形成,可以提高生產率,所以有時是較佳的。另外,當作為導電體514藉由與用作電晶體3300 的閘極電極的導電體504同一製程形成的層,有時可以提高生產率,所以是較佳的。
其他組件的結構可以適當地參照關於圖28A至圖28C等的記載。
注意,圖33A至圖33C所示的半導體裝置與圖32A至圖32C所示的半導體裝置的不同之處只在於電晶體3200的結構。因此,圖33A至圖33C所示的半導體裝置參照圖32A至圖32C所示的半導體裝置的記載。明確而言,在圖33A至圖33C所示的半導體裝置中,電晶體3200為Fin型。Fin型電晶體3200參照圖29A至圖29C所示的電晶體2200的記載。在圖29A至圖29C中,對電晶體2200為p通道電晶體的情況進行說明,但是電晶體3200也可以為n通道電晶體。注意,圖33A、圖33B及圖33C是不同部分的剖面圖。
另外,圖34A至圖34C所示的半導體裝置與圖32A至圖32C所示的半導體裝置的不同之處只在於電晶體3200的結構。因此,圖34A至圖34C所示的半導體裝置參照圖32A至圖32C所示的半導體裝置的記載。明確而言,在圖34A至圖34C所示的半導體裝置中,電晶體3200設置在作為SOI基板的半導體基板450上。設置在作為SOI基板的半導體基板450上的電晶體3200參照圖30A至圖30C所示的電晶體2200的記載。在圖30A至圖30C中,對電晶體2200為p通道電晶體的情況進行說明,但是電晶體3200也可以為n通道電晶體。注意,圖34A、圖34B及圖34C是不同部分的剖面圖。
〈記憶體裝置2〉
圖31B所示的半導體裝置與圖31A所示的半導體裝置的不同之處在於圖31B所示的半導體裝置不包括電晶體3200。在此情況下也可以藉由與圖31A所示的半導體裝置相同的工作進行資訊的寫入及保持工作。
下面,說明圖31B所示的半導體裝置中的資訊讀出。在電晶體3300成為導通狀態時,處於浮動狀態的第三佈線3003和電容元件3400導通,且在第三佈線3003和電容元件3400之間再次分配電荷。其結果,第三佈線3003的電位產生變化。第三佈線3003的電位的變化量根據電容元件3400的一個電極的電位(或積累在電容元件3400中的電荷)而具有不同的值。
例如,在電容元件3400的一個電極的電位為V,電容元件3400的電容為C,第三佈線3003所具有的電容成分為CB,在再次分配電荷之前的第三佈線3003的電位為VB0時,再次分配電荷之後的第三佈線3003的電位為(CB×VB0+CV)/(CB+C)。因此,在假定作為記憶單元的狀態,電容元件3400的一個電極的電位成為兩種狀態,亦即,V1和V0(V1>V0)時,可以得知保持電位V1時的第三佈線3003的電位(=(CB×VB0+CV1)/(CB+C))高於保持電位V0時的第三佈線3003的電位(=(CB×VB0+CV0)/(CB+C))。
並且,藉由對第三佈線3003的電位和規定的電位進行比較可以讀出資訊。
在此情況下,可以將上述使用第一半導體的電晶體用於用來驅動記憶單元的驅動電路,且將作為電晶體3300的使用第二半導體的電晶體層疊在該驅動電路上。
上述半導體裝置可以應用使用氧化物半導體的關態電流較小的電晶體來長期間保持存儲內容。也就是說,因為不需要更新工作或可以使更新工作的頻率極低,所以能夠實現低功耗的半導體裝置。另外,在沒有電力供應時(但較佳為固定電位)也可以長期間保持存儲內容。
另外,因為該半導體裝置在寫入資訊時不需要高電壓,所以其中不容易產生元件的劣化。例如,不同於習知的非揮發性記憶體,不需要對浮動閘極注入電子或從浮動閘極抽出電子,因此不會發生絕緣體劣化等問題。換言之,在本發明的一個實施方式的半導體裝置中,在現有非揮發性記憶體中成為問題的重寫次數不受到限制,並且其可靠性得到極大提高。並且,根據電晶體的導通狀態或非導通狀態而進行資訊寫入,所以能夠高速工作。
〈成像裝置〉
以下對本發明的一個實施方式的成像裝置進行說明。
圖35A是示出本發明的一個實施方式的成像裝置2000的例子的平面圖。成像裝置2000包括像素部2010、用來驅動像素部2010的週邊電路 2060、週邊電路2070、週邊電路2080及週邊電路2090。像素部2010包括配置為p行q列(p及q為2以上的整數)的矩陣狀的多個像素2011。週邊電路2060、週邊電路2070、週邊電路2080及週邊電路2090分別與多個像素2011連接,並具有供應用來驅動多個像素2011的信號的功能。另外,在本說明書等中,有時將週邊電路2060、週邊電路2070、週邊電路2080及週邊電路2090等總稱為“週邊電路”或“驅動電路”。例如,週邊電路2060也可以說是週邊電路的一部分。
成像裝置2000較佳為包括光源2091。光源2091能夠發射檢測光P1。
週邊電路至少包括邏輯電路、開關、緩衝器、放大電路和轉換電路中的一個。另外,也可以在形成像素部2010的基板上形成週邊電路。另外,也可以將IC晶片等半導體裝置用於週邊電路的一部分或全部。注意,也可以省略週邊電路2060、週邊電路2070、週邊電路2080和週邊電路2090中的一個以上。
如圖35B所示,在成像裝置2000所包括的像素部2010中,也可以以像素2011傾斜的方式配置。藉由以像素2011傾斜的方式配置,可以縮短在行方向上及列方向上的像素間隔(間距)。由此,可以提高成像裝置2000的攝像品質。
〈像素的結構例子1〉
藉由使成像裝置2000所包括的一個像素2011由多個子像素2012構成,且使每個子像素2012與使特定的波長區域的光透過的濾光片(濾色片)組合,可以獲得用來實現彩色影像顯示的資訊。
圖36A是示出用來取得彩色影像的像素2011的一個例子的平面圖。圖36A所示的像素2011包括設置有使紅色(R)的波長區域的光透過的濾色片的子像素2012(以下也稱為“子像素2012R”)、設置有使綠色(G)的波長區域的光透過的濾色片的子像素2012(以下也稱為“子像素2012G”)及設置有使藍色(B)的波長區域的光透過的濾色片的子像素2012(以下也稱為“子像素2012B”)。子像素2012可以被用作光感測器。
子像素2012(子像素2012R、子像素2012G及子像素2012B)與佈線2031、佈線2047、佈線2048、佈線2049、佈線2050電連接。另外,子像素2012R、子像素2012G及子像素2012B分別獨立地連接於佈線2053。在本說明書等中,例如將與第n行的像素2011連接的佈線2048及佈線2049分別稱為佈線2048[n]及佈線2049[n]。另外,例如,將與第m列的像素2011連接的佈線2053稱為佈線2053[m]。另外,在圖36A中,與第m列的像素2011所包括的子像素2012R連接的佈線2053稱為佈線2053[m]R,將與子像素2012G連接的佈線2053稱為佈線2053[m]G,將與子像素2012B連接的佈線2053稱為佈線2053[m]B。子像素2012藉由上述佈線與週邊電路電連接。
成像裝置2000具有相鄰的像素2011中的設置有使相同的波長區域的光透過的濾色片的子像素2012藉由開關彼此電連接的結構。圖36B示出配置在第n行(n為1以上且p以下的整數)第m列(m為1以上且q以下的整數)的像素2011所包括的子像素2012與相鄰於該像素2011的配置在第n+1行第m列的像素2011所包括的子像素2012的連接例子。在圖36B中,配置在第n行第m列的子像素2012R與配置在第n+1行第m列的子像素2012R藉由開關2001連接。另外,配置在第n行第m列的子像素2012G與配置在第n+1行第m列的子像素2012G藉由開關2002連接。另外,配置在第n行第m列的子像素2012B與配置在第n+1行第m列的子像素2012B藉由開關2003連接。
用於子像素2012的濾色片的顏色不侷限於紅色(R)、綠色(G)、藍色(B),也可以使用使青色(C)、黃色(Y)及洋紅色(M)的光透過的濾色片。藉由在一個像素2011中設置檢測三種不同波長區域的光的子像素2012,可以獲得全彩色影像。
或者,可以使用除了包括分別設置有使紅色(R)、綠色(G)及藍色(B)的光透過的濾色片的子像素2012以外,還包括設置有使黃色(Y)的光透過的濾色片的子像素2012的像素2011。或者,可以使用除了包括分別設置有使青色(C)、黃色(Y)及洋紅色(M)的光透過的濾色片的子像素2012以外,還包括設置有使藍色(B)的光透過的濾色片的子像素2012的像素2011。藉由在一個像素2011中設置檢測四種不同波長區域的光的子像素 2012,可以進一步提高所獲得的影像的顏色再現性。
例如,在圖36A中,檢測紅色的波長區域的子像素2012、檢測綠色的波長區域的子像素2012及檢測藍色的波長區域的子像素2012的像素數比(或受光面積比)不侷限於1:1:1。例如,也可以採用像素數比(受光面積比)為紅色:綠色:藍色=1:2:1的Bayer排列。或者,像素數比(受光面積比)也可以為紅色:綠色:藍色=1:6:1。
設置在像素2011中的子像素2012的數量可以為一個,但較佳的是兩個以上。例如,藉由設置兩個以上的檢測相同的波長區域的子像素2012,可以提高冗餘性,由此可以提高成像裝置2000的可靠性。
另外,藉由使用反射或吸收可見光且使紅外光透過的IR(IR:Infrared)濾光片,可以實現檢測紅外光的成像裝置2000。
藉由使用ND(ND:Neutral Density)濾光片(減光濾光片),可以防止大光量光入射光電轉換元件(受光元件)時產生的輸出飽和。藉由組合使用減光量不同的ND濾光片,可以增大成像裝置的動態範圍。
除了上述濾光片以外,還可以在像素2011中設置透鏡。在此,參照圖37A及圖37B的剖面圖說明像素2011、濾光片2054、透鏡2055的配置例子。藉由設置透鏡2055,可以使光電轉換元件高效地受光。明確而言,如圖37A 所示,可以使光2056穿過形成在像素2011中的透鏡2055、濾光片2054(濾光片2054R、濾光片2054G及濾光片2054B)及像素電路2030等而入射到光電轉換元件2020。
注意,如由雙點劃線圍繞的區域所示,有時箭頭所示的光2056的一部分被佈線2057的一部分遮蔽。因此,如圖37B所示,較佳為採用在光電轉換元件2020一側配置透鏡2055及濾光片2054,而使光電轉換元件2020高效地接收光2056的結構。藉由從光電轉換元件2020一側將光2056入射到光電轉換元件2020,可以提供檢測靈敏度高的成像裝置2000。
作為圖37A及圖37B所示的光電轉換元件2020,也可以使用形成有pn接面或pin接面的光電轉換元件。
光電轉換元件2020也可以使用具有吸收輻射產生電荷的功能的物質形成。作為具有吸收輻射產生電荷的功能的物質,可舉出硒、碘化鉛、碘化汞、砷化鎵、碲化鎘、鎘鋅合金等。
例如,在將硒用於光電轉換元件2020時,可以實現對可見光、紫外光、紅外光、X射線、伽瑪射線等較寬的波長區域具有光吸收係數的光電轉換元件2020。
在此,成像裝置2000所包括的一個像素2011除了圖36A及圖36B所 示的子像素2012以外,還可以包括具有第一濾光片的子像素2012。
〈像素的結構例子2〉
下面,對包括使用矽的電晶體及使用氧化物半導體的電晶體的像素的一個例子進行說明。
圖38A及圖38B是構成成像裝置的元件的剖面圖。圖38A所示的成像裝置包括設置在矽基板2300上的使用矽形成的電晶體2351、在電晶體2351上層疊配置的使用氧化物半導體形成的電晶體2352及電晶體2353以及設置在矽基板2300中的光電二極體2360。各電晶體及光電二極體2360與各種插頭2370及佈線2371電連接。另外,光電二極體2360的陽極2361藉由低電阻區域2363與插頭2370電連接。
成像裝置包括:包括設置在矽基板2300上的電晶體2351及光電二極體2360的層2310、以與層2310接觸的方式設置且包括佈線2371的層2320、以與層2320接觸的方式設置且包括電晶體2352及電晶體2353的層2330、以與層2330接觸的方式設置且包括佈線2372及佈線2373的層2340。
在圖38A的剖面圖的一個例子中,在矽基板2300中,在與形成有電晶體2351的面相反一側設置有光電二極體2360的受光面。藉由採用該結構,可以確保光路而不受各種電晶體或佈線等的影響。因此,可以形成高開口率的像素。另外,光電二極體2360的受光面也可以是與形成有電晶體2351 的面相同的面。
在使用由氧化物半導體形成的電晶體構成像素時,層2310可以包括由氧化物半導體形成的電晶體。或者,也可以省略層2310而只使用由氧化物半導體形成的電晶體構成像素。
在使用由矽形成的電晶體構成像素時,也可以省略層2330。圖38B示出省略層2330的剖面圖的一個例子。
矽基板2300也可以是SOI基板。另外,也可以使用包含鍺、矽鍺、碳化矽、砷化鎵、砷化鋁鎵、磷化銦、氮化鎵、有機半導體的基板代替矽基板2300。
這裡,在包括電晶體2351及光電二極體2360的層2310與包括電晶體2352及電晶體2353的層2330之間設置有絕緣體2422。注意,絕緣體2422的位置不侷限於此。
設置在電晶體2351的通道形成區域附近的絕緣體中的氫使矽的懸空鍵終結,由此可以提高電晶體2351的可靠性。另一方面,設置在電晶體2352及電晶體2353等附近的絕緣體中的氫有可能成為在氧化物半導體中生成載子的原因之一。因此,有時引起電晶體2352及電晶體2353等的可靠性的下降。因此,當在使用矽的電晶體上層疊設置使用氧化物半導體的電晶體 時,較佳的是在它們之間設置具有阻擋性的絕緣體2422。此外,較佳的是由具有阻擋性的絕緣體2418圍繞電晶體2352及電晶體2353的四方。此外,較佳的是由具有阻擋性的絕緣體2409覆蓋電晶體2352及電晶體2353的上方。藉由將氫封閉在絕緣體2422下,可以提高電晶體2351的可靠性。再者,由於可以抑制氫從絕緣體2422下擴散至絕緣體2422上,所以可以提高電晶體2352及電晶體2353等的可靠性。
亦即,圖38A及圖38B所示的半導體裝置具有電晶體2352及電晶體2353被具有阻擋性的絕緣體圍繞的結構。但是,電晶體2352及電晶體2353也可以沒有被具有阻擋性的絕緣體圍繞。
在圖38A的剖面圖中,可以以設置在層2310中的光電二極體2360與設置在層2330中的電晶體重疊的方式形成。因此,可以提高像素的集成度。就是說,可以提高成像裝置的解析度。
此外,如圖39A及圖39B所示,也可以在像素的上部或下部配置濾光片2354或/及透鏡2355。濾光片2354參照濾光片2054的記載。透鏡2355參照透鏡2055的記載。
如圖40A1及圖40B1所示,可以使成像裝置的一部分或全部彎曲。圖40A1示出使成像裝置在該圖式中的點劃線X1-X2的方向上彎曲的狀態。圖40A2是沿著圖40A1中的點劃線X1-X2所示的部分的剖面圖。圖40A3是沿 著圖40A1中的點劃線Y1-Y2所示的部分的剖面圖。
圖40B1示出使成像裝置在該圖式中的點劃線X3-X4的方向上彎曲且在該圖式中的點劃線Y3-Y4的方向上彎曲的狀態。圖40B2是沿著圖40B1中的點劃線X3-X4所示的部分的剖面圖。圖40B3是沿著圖40B1中的點劃線Y3-Y4所示的部分的剖面圖。
藉由使成像裝置彎曲,可以降低像場彎曲或像散(astigmatism)。因此,可以促進與成像裝置組合使用的透鏡等的光學設計。例如,由於可以減少用於像差校正的透鏡的數量,因此可以實現使用成像裝置的電子裝置等的小型化或輕量化。另外,可以提高成像的影像品質。
〈CPU〉
下面說明包括上述電晶體或上述記憶體裝置等半導體裝置的CPU。
圖41是示出其一部分使用上述電晶體的CPU的結構例子的方塊圖。
圖41所示的CPU在基板1190上具有:ALU1191(ALU:Arithmetic logic unit:算術電路)、ALU控制器1192、指令解碼器1193、中斷控制器1194、時序控制器1195、暫存器1196、暫存器控制器1197、匯流排介面1198、能夠重寫的ROM1199以及ROM介面1189。作為基板1190使用半導體基板、SOI基板、玻璃基板等。ROM1199及ROM介面1189也可以設置在不同的晶 片上。當然,圖41所示的CPU只是簡化其結構而所示的一個例子而已,所以實際上的CPU根據其用途具有各種各樣的結構。例如,也可以以包括圖41所示的CPU或算術電路的結構為核心,設置多個該核心並使其同時工作。另外,在CPU的內部算術電路或資料匯流排中能夠處理的位元數例如可以為8位、16位、32位、64位等。
藉由匯流排介面1198輸入到CPU的指令在輸入到指令解碼器1193並被解碼後輸入到ALU控制器1192、中斷控制器1194、暫存器控制器1197、時序控制器1195。
ALU控制器1192、中斷控制器1194、暫存器控制器1197、時序控制器1195根據被解碼的指令進行各種控制。明確而言,ALU控制器1192生成用來控制ALU1191的工作的信號。另外,中斷控制器1194在執行CPU的程式時,根據其優先度或遮罩狀態來判斷來自外部的輸入/輸出裝置或週邊電路的中斷要求而對該要求進行處理。暫存器控制器1197生成暫存器1196的地址,並對應於CPU的狀態來進行暫存器1196的讀出或寫入。
另外,時序控制器1195生成用來控制ALU1191、ALU控制器1192、指令解碼器1193、中斷控制器1194以及暫存器控制器1197的工作時序的信號。例如,時序控制器1195具有根據基準時脈信號來生成內部時脈信號的內部時脈生成器,並將內部時脈信號供應到上述各種電路。
在圖41所示的CPU中,在暫存器1196中設置有記憶單元。可以將上述電晶體或記憶體裝置等用於暫存器1196的記憶單元。
在圖41所示的CPU中,暫存器控制器1197根據ALU1191的指令進行暫存器1196中的保持工作的選擇。換言之,暫存器控制器1197在暫存器1196所具有的記憶單元中選擇由正反器保持資料還是由電容元件保持資料。在選擇由正反器保持資料的情況下,對暫存器1196中的記憶單元供應電源電壓。在選擇由電容元件保持資料的情況下,對電容元件進行資料的重寫,而可以停止對暫存器1196中的記憶單元供應電源電壓。
圖42是可以用作暫存器1196的記憶元件1200的電路圖的一個例子。記憶元件1200包括在電源關閉時失去存儲資料的電路1201、在電源關閉時不失去存儲資料的電路1202、開關1203、開關1204、邏輯元件1206、電容元件1207以及具有選擇功能的電路1220。電路1202包括電容元件1208、電晶體1209及電晶體1210。另外,記憶元件1200根據需要還可以包括其他元件諸如二極體、電阻元件或電感器等。
在此,電路1202可以使用上述記憶體裝置。在停止對記憶元件1200供應電源電壓時,GND(0V)或使電晶體1209關閉的電位持續被輸入到電路1202中的電晶體1209的閘極。例如,電晶體1209的閘極藉由電阻器等負載接地。
在此示出開關1203為具有一導電型(例如,n通道型)的電晶體1213,而開關1204為具有與此相反的導電型(例如,p通道型)的電晶體1214的例子。這裡,開關1203的第一端子對應於電晶體1213的源極和汲極中的一個,開關1203的第二端子對應於電晶體1213的源極和汲極中的另一個,並且開關1203的第一端子與第二端子之間的導通或非導通(亦即,電晶體1213的導通狀態或非導通狀態)由輸入到電晶體1213的閘極中的控制信號RD選擇。開關1204的第一端子對應於電晶體1214的源極和汲極中的一個,開關1204的第二端子對應於電晶體1214的源極和汲極中的另一個,並且開關1204的第一端子與第二端子之間的導通或非導通(亦即,電晶體1214的導通狀態或非導通狀態)由輸入到電晶體1214的閘極中的控制信號RD選擇。
電晶體1209的源極和汲極中的一個電連接到電容元件1208的一對電極的一個及電晶體1210的閘極。在此,將連接部分稱為節點M2。電晶體1210的源極和汲極中的一個電連接到能夠供應低電源電位的佈線(例如,GND線),而另一個電連接到開關1203的第一端子(電晶體1213的源極和汲極中的一個)。開關1203的第二端子(電晶體1213的源極和汲極中的另一個)電連接到開關1204的第一端子(電晶體1214的源極和汲極中的一個)。開關1204的第二端子(電晶體1214的源極和汲極中的另一個)電連接到能夠供應電源電位VDD的佈線。開關1203的第二端子(電晶體1213的源極和汲極中的另一個)、開關1204的第一端子(電晶體1214的源極和汲極中的一個)、邏輯元件1206的輸入端子和電容元件1207的一對電極的 一個是電連接的。在此,將連接部分稱為節點M1。可以對電容元件1207的一對電極的另一個輸入固定電位。例如,可以對其輸入低電源電位(GND等)或高電源電位(VDD等)。電容元件1207的一對電極的另一個電連接到能夠供應低電源電位的佈線(例如,GND線)。可以對電容元件1208的一對電極的另一個輸入固定電位。例如,可以對其輸入低電源電位(GND等)或高電源電位(VDD等)。電容元件1208的一對電極的另一個電連接到能夠供應低電源電位的佈線(例如,GND線)。
另外,當積極地利用電晶體或佈線的寄生電容等時,可以不設置電容元件1207及電容元件1208。
控制信號WE輸入到電晶體1209的閘極。開關1203及開關1204的第一端子與第二端子之間的導通狀態或非導通狀態由與控制信號WE不同的控制信號RD選擇,當一個開關的第一端子與第二端子之間處於導通狀態時,另一個開關的第一端子與第二端子之間處於非導通狀態。
對應於保持在電路1201中的資料的信號被輸入到電晶體1209的源極和汲極中的另一個。圖42示出從電路1201輸出的信號輸入到電晶體1209的源極和汲極中的另一個的例子。由邏輯元件1206使從開關1203的第二端子(電晶體1213的源極和汲極中的另一個)輸出的信號的邏輯值反轉而成為反轉信號,將其經由電路1220輸入到電路1201。
另外,雖然圖42示出從開關1203的第二端子(電晶體1213的源極和汲極中的另一個)輸出的信號藉由邏輯元件1206及電路1220輸入到電路1201的例子,但是不侷限於此。也可以不使從開關1203的第二端子(電晶體1213的源極和汲極中的另一個)輸出的信號的邏輯值反轉而輸入到電路1201。例如,當電路1201包括其中保持使從輸入端子輸入的信號的邏輯值反轉的信號的節點時,可以將從開關1203的第二端子(電晶體1213的源極和汲極中的另一個)輸出的信號輸入到該節點。
在圖42所示的用於記憶元件1200的電晶體中,電晶體1209以外的電晶體也可以使用其通道形成在由氧化物半導體以外的半導體構成的膜或基板1190中的電晶體。例如,可以使用其通道形成在矽膜或矽基板中的電晶體。另外,用於記憶元件1200的電晶體可以都是其通道由氧化物半導體形成的電晶體。或者,記憶元件1200除了電晶體1209以外還可以包括其通道由氧化物半導體形成的電晶體,並且作為其餘的電晶體可以使用其通道形成在由氧化物半導體以外的半導體構成的層或基板1190中的電晶體。
圖42所示的電路1201例如可以使用正反器電路。另外,作為邏輯元件1206例如可以使用反相器或時脈反相器等。
在本發明的一個實施方式的半導體裝置中,在不向記憶元件1200供應電源電壓的期間,可以由設置在電路1202中的電容元件1208保持儲存在電路1201中的資料。
另外,其通道形成在氧化物半導體中的電晶體的關態電流極小。例如,其通道形成在氧化物半導體中的電晶體的關態電流比其通道形成在具有結晶性的矽中的電晶體的關態電流小得多。因此,藉由將該電晶體用作電晶體1209,即便在不向記憶元件1200供應電源電壓的期間也可以長期間儲存電容元件1208所保持的信號。因此,記憶元件1200在停止供應電源電壓的期間也可以保持存儲內容(資料)。
另外,由於該記憶元件藉由設置開關1203及開關1204進行預充電工作,因此可以縮短在再次開始供應電源電壓之後直到電路1201重新保持原來的資料為止所需要的時間。
另外,在電路1202中,電容元件1208所保持的信號被輸入到電晶體1210的閘極。因此,在再次開始向記憶元件1200供應電源電壓之後,將由電容元件1208所保持的信號轉換成電晶體1210的狀態(導通狀態或非導通狀態),並根據其狀態從電路1202讀出信號。因此,即便對應於保持在電容元件1208中的信號的電位稍有變動,也可以準確地讀出原來的信號。
藉由將這種記憶元件1200用於處理器所具有的暫存器或快取記憶體等記憶體裝置,可以防止記憶體裝置內的資料因停止電源電壓的供應而消失。另外,可以在再次開始供應電源電壓之後在短時間內恢復到停止供應電源之前的狀態。因此,在處理器整體或構成處理器的一個或多個邏輯電 路中在短時間內也可以停止電源,從而可以抑制功耗。
雖然說明將記憶元件1200用於CPU的例子,但也可以將記憶元件1200應用於LSI諸如DSP(Digital Signal Processor:數位信號處理器)、定製LSI、PLD(Programmable Logic Device:可程式邏輯裝置)等、RF(Radio Frequency:射頻)裝置。
〈顯示裝置〉
以下參照圖43A至圖43C以及圖45A和圖45B說明根據本發明的一個實施方式的顯示裝置。
作為用於顯示裝置的顯示元件,可以使用液晶元件(也稱為液晶顯示元件)、發光元件(也稱為發光顯示元件)等。發光元件在其範疇內包括其亮度由電流或電壓控制的元件,明確而言,包括無機EL(Electroluminescence:電致發光)元件、有機EL元件等。下面,作為顯示裝置的一個例子對使用EL元件的顯示裝置(EL顯示裝置)及使用液晶元件的顯示裝置(液晶顯示裝置)進行說明。
另外,下面示出的顯示裝置包括密封有顯示元件的面板及在該面板中安裝有包括控制器的IC等的模組。
另外,下面示出的顯示裝置是指影像顯示裝置或光源(包括照明設 備)。此外,顯示裝置還包括:安裝有連接器諸如FPC或TCP的模組;在TCP的端部設置有印刷線路板的模組;或者藉由COG方式將IC(積體電路)直接安裝到顯示元件的模組。
圖43A至圖43C是根據本發明的一個實施方式的EL顯示裝置的一個例子。圖43A示出EL顯示裝置的像素的電路圖。圖43B是示出EL顯示裝置整體的俯視圖。此外,圖43C是對應於圖43B的電劃線M-N的一部分的M-N剖面。
圖43A是用於EL顯示裝置的像素的電路圖的一個例子。
在本說明書等中,有時即使不指定主動元件(電晶體、二極體等)、被動元件(電容元件、電阻元件等)等所具有的所有端子的連接位置,所屬技術領域的通常知識者也能夠構成發明的一個實施方式。就是說,即使未指定連接位置,也可以說發明的一個實施方式是明確的,並且,當在本說明書等記載有指定連接位置的內容時,有時可以判斷為在本說明書等中記載有該方式。尤其是,在端子的連接位置有多個的情況下,不一定必須要將該端子的連接位置限於指定的部分。因此,有時藉由僅指定主動元件(電晶體、二極體等)、被動元件(電容元件、電阻元件等)等所具有的一部分的端子的連接位置,就能夠構成發明的一個實施方式。
在本說明書等中,當至少指定某個電路的連接位置時,有時所屬技術 領域的通常知識者能夠指定發明。或者,當至少指定某個電路的功能時,有時所屬技術領域的通常知識者能夠指定發明。也就是說,只要指定功能,就可以說是發明的一個實施方式是明確的,而判斷為在本說明書等中記載有該方式。因此,即使只指定某個電路的連接位置而不指定其功能時,也可以判斷為該電路作為發明的一個實施方式公開而構成發明的一個實施方式。或者,即使只指定某個電路的功能而不指定其連接位置時,也可以判斷為該電路作為發明的一個實施方式公開而構成發明的一個實施方式。
圖43A所示的EL顯示裝置包含切換元件743、電晶體741、電容元件742、發光元件719。
另外,由於圖43A等是電路結構的一個例子,所以還可以追加設置電晶體。與此相反,在圖43A的各節點中,也可以不追加電晶體、開關、被動元件等。
電晶體741的閘極與切換元件743的一個端子及電容元件742的一個電極電連接。電晶體741的源極與電容元件742的另一個電極及發光元件719的一個電極電連接。電晶體741的汲極被供應電源電位VDD。切換元件743的另一個端子與信號線744電連接。發光元件719的另一個電極被供應恆電位。另外,恆電位為等於或低於接地電位GND的電位。
作為切換元件743,較佳為使用電晶體。藉由使用電晶體,可以減小像 素的面積,由此可以提供解析度高的EL顯示裝置。作為切換元件743,使用藉由與電晶體741同一製程形成的電晶體,由此可以提高EL顯示裝置的生產率。作為電晶體741或/及切換元件743,例如可以適用上述電晶體。
圖43B是EL顯示裝置的俯視圖。EL顯示裝置包括基板700、基板2750、絕緣體422、絕緣體428、絕緣體409、密封材料734、驅動電路735、驅動電路736、像素737以及FPC732。密封材料734以包圍像素737、驅動電路735以及驅動電路736的方式配置在基板700與基板2750之間。另外,驅動電路735或/及驅動電路736也可以配置在密封材料734的外側。
圖43C是沿圖43B中的點劃線M-N所示的部分的EL顯示裝置的剖面圖。
圖43C示出電晶體741,該電晶體741包括:基板700上的導電體704a;導電體704a上的絕緣體712a;絕緣體712a上的絕緣體712b;在絕緣體712b上並與導電體704a重疊的半導體706a及半導體706b;與半導體706a及半導體706b接觸的導電體716a及導電體716b;半導體706b、導電體716a及導電體716b上的絕緣體718a;絕緣體718a上的絕緣體718b;絕緣體718b上的絕緣體718c;以及在絕緣體718c上並與半導體706b重疊的導電體714a。注意,電晶體741的結構只是一個例子,也可以採用與圖43C所示的結構不同的結構。
因此,在圖43C所示的電晶體741中,導電體704a具有閘極電極的功 能,絕緣體712a及絕緣體712b具有閘極絕緣體的功能,導電體716a具有源極電極的功能,導電體716b具有汲極電極的功能,絕緣體718a、絕緣體718b及絕緣體718c具有閘極絕緣體的功能,並且導電體714a具有閘極電極的功能。注意,半導體706有時因光照射而其電特性發生變動。因此,較佳的是導電體704a、導電體716a、導電體716b和導電體714a中的任何一個以上具有遮光性。
注意,以虛線表示絕緣體718a和絕緣體718b之間的介面,這意味著它們的邊界有時不明確。例如,當作為絕緣體718a及絕緣體718b使用同種絕緣體時,根據觀察方法有時無法區分它們。
圖43C示出電容元件742,該電容元件742包括:基板上的導電體704b;導電體704b上的絕緣體712a;絕緣體712a上的絕緣體712b;在絕緣體712b上並與導電體704b重疊的導電體716a;導電體716a上的絕緣體718a;絕緣體718a上的絕緣體718b;絕緣體718b上的絕緣體718c;以及在絕緣體718c上並與導電體716a重疊的導電體714b,並且,電容元件742具有在導電體716a與導電體714b重疊的區域中絕緣體718a的一部分及絕緣體718b的一部分被去除的結構。
在電容元件742中,將導電體704b及導電體714b用作一個電極,將導電體716a用作另一個電極。
因此,可以使用與電晶體741相同的膜製造電容元件742。導電體704a及導電體704b較佳為使用同種導電體。此時,可以藉由同一製程形成導電體704a及導電體704b。另外,導電體714a及導電體714b較佳為使用同種導電體。此時,可以藉由同一製程形成導電體714a及導電體714b。
圖43C所示的電容元件742是相對於佔有面積的電容大的電容元件。因此,圖43C是顯示品質高的EL顯示裝置。注意,雖然圖43C所示的電容元件742具有絕緣體718a的一部分及絕緣體718b的一部分被去除以便減薄導電體716a與導電體714b重疊的區域的結構,但是根據本發明的一個實施方式的電容元件的結構不侷限於此。例如,也可以具有絕緣體718c的一部分被去除以便減薄導電體716a與導電體714b重疊的區域的結構。
在電晶體741及電容元件742上配置有絕緣體720。在此,絕緣體720也可以具有到達用作電晶體741的源極電極的導電體716a的開口。在絕緣體720上配置有導電體781。導電體781也可以藉由絕緣體720中的開口與電晶體741電連接。
在導電體781上配置有到達導電體781的開口的分隔壁784。在分隔壁784上配置有在分隔壁784的開口中與導電體781接觸的發光層782。在發光層782上配置有導電體783。導電體781、發光層782和導電體783重疊的區域被用作發光元件719。
這裡,絕緣體422、絕緣體428及絕緣體409是具有阻擋性的絕緣體。亦即,圖43A至圖43C所示的顯示裝置具有電晶體741被具有阻擋性的絕緣體圍繞的結構。注意,也可以不具有絕緣體422、絕緣體428和絕緣體409中的一個以上。
此外,為了使EL顯示裝置高清晰化,也可以層疊電晶體、電容元件或/及佈線層等。
圖44是示出製造在半導體基板上的EL顯示裝置的像素的剖面圖的一個例子。
圖44所示的EL顯示裝置包括半導體基板801、基板802、絕緣體803、絕緣體804、絕緣體805、黏合層806、濾光片807、濾光片808、濾光片809、絕緣體811、絕緣體812、絕緣體813、絕緣體814、絕緣體815、絕緣體816、絕緣體817、絕緣體818、絕緣體819、絕緣體820、絕緣體821、導電體831、導電體832、導電體833、導電體834、導電體835、導電體836、導電體837、導電體838、導電體839、導電體840、導電體841、導電體842、導電體843、導電體844、導電體845、導電體846、導電體847、導電體848、導電體849、導電體850、導電體851、導電體852、導電體853、導電體854、導電體855、導電體856、導電體857、導電體858、導電體859、導電體860、導電體861、導電體862、絕緣體871、導電體872、絕緣體873、絕緣體874、區域875、區域876、絕緣體877、絕緣體878、 絕緣體881、導電體882、絕緣體883、絕緣體884、區域885、區域886、層887、層888、發光層893。
由半導體基板801、絕緣體871、導電體872、絕緣體873、絕緣體874、區域875、區域876構成電晶體891。半導體基板801具有通道形成區域的功能。絕緣體871具有閘極絕緣體的功能。導電體872具有閘極電極的功能。絕緣體873具有側壁絕緣體的功能。絕緣體874具有側壁絕緣體的功能。區域875具有源極區或/及汲極區的功能。區域876具有源極區或/及汲極區的功能。
導電體872具有隔著絕緣體871與半導體基板801的一部分重疊的區域。區域875及區域876是對半導體基板801添加雜質而成的區域。或者,當半導體基板801是矽基板時,也可以是形成有矽化物的區域。例如,也可以包含鎢矽化物、鈦矽化物、鈷矽化物或鎳矽化物等的區域。區域875及區域876可以使用導電體872、絕緣體873及絕緣體874等以自對準的方式形成。因此,區域875及區域876分別配置在夾住半導體基板801的通道形成區域的位置上。
電晶體891藉由包括絕緣體873,可以使區域875與通道形成區域隔開。因此,藉由包括絕緣體873,可以抑制因區域875所產生的電場而導致的電晶體891的損壞或劣化。此外,電晶體891藉由包括絕緣體874,可以使區域876與通道形成區域隔開。因此,藉由包括絕緣體874,可以抑制因 區域876所產生的電場而導致的電晶體891的損壞或劣化。此外,電晶體891具有區域876與通道形成區域的間隔比區域875與通道形成區域的間隔寬的結構。例如,在電晶體891工作的情況下,在很多情況下,在區域876與通道形成區域的電位差比區域875與通道形成區域的電位差大時,可以實現高通態電流及高可靠性。
由半導體基板801、絕緣體881、導電體882、絕緣體883、絕緣體884、區域885、區域886構成電晶體892。半導體基板801具有通道形成區域的功能。絕緣體881具有閘極絕緣體的功能。導電體882具有閘極電極的功能。絕緣體883具有側壁絕緣體的功能。絕緣體884具有側壁絕緣體的功能。區域885具有源極區或/及汲極區的功能。區域886具有源極區或/及汲極區的功能。
導電體882具有隔著絕緣體881與半導體基板801的一部分重疊的區域。區域885及區域886是對半導體基板801添加雜質而成的區域。或者,當半導體基板801是矽基板時,區域885及區域886是形成有矽化物的區域。區域885及區域886可以使用導電體882、絕緣體883及絕緣體884等以自對準的方式形成。因此,區域885及區域886分別配置在夾住半導體基板801的通道形成區域的位置上。
電晶體892藉由包括絕緣體883,可以使區域885與通道形成區域隔開。因此,藉由包括絕緣體883,可以抑制因區域885所產生的電場而導致 的電晶體892的損壞或劣化。此外,電晶體892藉由包括絕緣體884,可以使區域886與通道形成區域隔開。因此,藉由包括絕緣體884,可以抑制因區域886所產生的電場而導致的電晶體892的損壞或劣化。此外,電晶體892具有區域886與通道形成區域的間隔比區域885與通道形成區域的間隔寬的結構。例如,在電晶體892工作時,在很多情況下,在區域886與通道形成區域的電位差比區域885與通道形成區域的電位差大時,可以實現高通態電流及高可靠性。
絕緣體877以覆蓋電晶體891及電晶體892的方式配置。因此,絕緣體877起到電晶體891及電晶體892的保護膜的功能。絕緣體803、絕緣體804及絕緣體805具有將元件隔離的功能。例如,電晶體891與電晶體892由於其間具有絕緣體803及絕緣體804而被隔離。
導電體851、導電體852、導電體853、導電體854、導電體855、導電體856、導電體857、導電體858、導電體859、導電體860、導電體861及導電體862具有電連接元件與元件、元件與佈線、佈線與佈線等的功能。因此,也可以將這些導電體換稱為佈線或插頭。
導電體831、導電體832、導電體833、導電體834、導電體835、導電體836、導電體837、導電體838、導電體839、導電體840、導電體841、導電體842、導電體843、導電體844、導電體845、導電體846、導電體847、導電體849、導電體850具有佈線、電極或/及遮光層的功能。
例如,導電體836及導電體844具有包括絕緣體817的電容元件的電極的功能。例如,導電體838及導電體845具有包括絕緣體818的電容元件的電極的功能。例如,導電體840及導電體846具有包括絕緣體819的電容元件的電極的功能。例如,導電體842及導電體847具有包括絕緣體820的電容元件的電極的功能。此外,導電體836與導電體838也可以電連接。導電體844與導電體845也可以電連接。導電體840與導電體842也可以電連接。導電體846與導電體847也可以電連接。
絕緣體811、絕緣體812、絕緣體813、絕緣體814、絕緣體815及絕緣體816具有層間絕緣體的功能。絕緣體811、絕緣體812、絕緣體813、絕緣體814、絕緣體815及絕緣體816的表面較佳為被平坦化。
導電體831、導電體832、導電體833及導電體834配置在絕緣體811上。導電體851配置在絕緣體811的開口中。導電體851使導電體831與區域875電連接。導電體852配置在絕緣體811的開口中。導電體852使導電體833與區域885電連接。導電體853配置在絕緣體811的開口中。導電體853使導電體834與區域886電連接。
導電體835、導電體836、導電體837及導電體838配置在絕緣體812上。絕緣體817配置在導電體836上。導電體844配置在絕緣體817上。絕緣體818配置在導電體838上。導電體845配置在絕緣體818上。導電 體854配置在絕緣體812的開口中。導電體854使導電體835與導電體831電連接。導電體855配置在絕緣體812的開口中。導電體855使導電體837與導電體833電連接。
導電體839、導電體840、導電體841及導電體842配置在絕緣體813上。絕緣體819配置在導電體840上。導電體846配置在絕緣體819上。絕緣體820配置在導電體842上。導電體847配置在絕緣體820上。導電體856配置在絕緣體813的開口中。導電體856使導電體839與導電體835電連接。導電體857配置在絕緣體813的開口中。導電體857使導電體840與導電體844電連接。導電體858配置在絕緣體813的開口中。導電體858使導電體841與導電體837電連接。導電體859配置在絕緣體813的開口中。導電體859使導電體842與導電體845電連接。
導電體843配置在絕緣體814上。導電體860配置在絕緣體814的開口中。導電體860使導電體843與導電體846電連接。導電體860使導電體843與導電體847電連接。
導電體848配置在絕緣體815上。導電體848也可以處於電浮動狀態。注意,導電體848只要具有遮光層的功能,就不侷限於導電體。例如,導電體848也可以是具有遮光性的絕緣體或半導體。
導電體849配置在絕緣體816上。絕緣體821配置在絕緣體816上及 在導電體849上。絕緣體821具有使導電體849露出的開口。發光層893配置在導電體849上及在絕緣體821上。導電體850配置在發光層893上。
因此,藉由對導電體849及導電體850施加電位差,從發光層893發射光。因此,導電體849、導電體850、發光層893具有發光元件的功能。此外,絕緣體821具有分隔壁的功能。
絕緣體878配置在導電體850上。絕緣體878由於覆蓋發光元件,所以具有保護絕緣體的功能。例如,絕緣體878也可以是具有阻擋性的絕緣體。此外,也可以採用由具有阻擋性的絕緣體圍繞發光元件的結構。
作為基板802可以使用透光基板。基板802例如可參照關於基板2750的記載。在基板802上設置有層887及層888。層887及層888具有遮光層的功能。作為遮光層例如也可以使用樹脂或金屬等。藉由包括層887及層888,可以提高EL顯示裝置的對比度並可以降低EL顯示裝置的混色等。
濾光片807、濾光片808及濾光片809具有濾色片的功能。濾光片807、濾光片808及濾光片809例如可參照關於濾光片2054的記載。濾光片808具有與層888、基板802及層887重疊的區域。濾光片807在層888上具有與濾光片808重疊的區域。濾光片809在層887上具有與濾光片808重疊的區域。濾光片807、濾光片808及濾光片809也可以具有彼此不同的厚度。藉由濾光片的厚度彼此不同,有時,從發光元件提取光的效率得到提高。
在濾光片807、濾光片808及濾光片809與絕緣體878之間配置有黏合層806。
圖44所示的EL顯示裝置由於具有層疊有電晶體、電容元件或/及佈線層等的結構,所以可以縮小像素。因此,可以實現高清晰的EL顯示裝置。
至此,說明了EL顯示裝置的例子。接著,將說明液晶顯示裝置的例子。
圖45A是示出液晶顯示裝置的像素的結構例子的電路圖。圖45A和圖45B所示的像素包括電晶體751、電容元件752、在一對電極之間填充有液晶的元件(液晶元件)753。
電晶體751的源極和汲極中的一個與信號線755電連接,電晶體751的閘極與掃描線754電連接。
電容元件752的一個電極與電晶體751的源極和汲極中的另一個電連接,電容元件752的另一個電極與供應共用電位的佈線電連接。
液晶元件753的一個電極與電晶體751的源極和汲極中的另一個電連接,液晶元件753的另一個電極與供應共用電位的佈線電連接。此外,供應到與上述電容元件752的另一個電極電連接的佈線的共用電位與供應到 液晶元件753的另一個電極的共用電位可以不同。
假設液晶顯示裝置的俯視圖與EL顯示裝置相同來進行說明。圖45B示出沿圖43B中的點劃線M-N的液晶顯示裝置的剖面圖。在圖45B中,FPC732藉由端子731與佈線733a連接。佈線733a也可以使用與構成電晶體751的導電體或半導體同種的導電體或半導體。
電晶體751參照關於電晶體741的記載。電容元件752參照關於電容元件742的記載。注意,圖45B示出具有對應於圖43C所示的電容元件742之結構的電容元件752之結構,但是電容元件752之結構不侷限於此。
當將氧化物半導體用於電晶體751的半導體時,可以實現關態電流極小的電晶體。因此,保持在電容元件752中的電荷不容易洩漏,而可以長期間保持施加到液晶元件753的電壓。因此,當顯示動作少的動態影像、靜態影像時,藉由使電晶體751處於關閉狀態,不需要用來使電晶體751工作的電力,由此可以實現低功耗的液晶顯示裝置。另外,因為可以縮小電容元件752的佔有面積,所以可以提供一種開口率高的液晶顯示裝置或高解析度液晶顯示裝置。
在電晶體751及電容元件752上配置有絕緣體721。在此,絕緣體721具有到達電晶體751的開口。在絕緣體721上配置有導電體791。導電體791藉由絕緣體721中的開口與電晶體751電連接。
這裡,絕緣體422、絕緣體428及絕緣體409是具有阻擋性的絕緣體。亦即,圖45A及圖45B所示的顯示裝置具有電晶體751被具有阻擋性的絕緣體圍繞的結構。注意,也可以不包括絕緣體422、絕緣體428和絕緣體409中的任一個以上。
在導電體791上配置有用作配向膜的絕緣體792。在絕緣體792上配置有液晶層793。在液晶層793上配置有用作配向膜的絕緣體794。在絕緣體794上配置有隔離物795。在隔離物795及絕緣體794上配置有導電體796。在導電體796上配置有基板2797。
藉由採用上述結構,可以提供一種包括佔有面積小的電容元件的顯示裝置。或者,可以提供一種顯示品質高的顯示裝置。或者,可以提供一種高解析度顯示裝置。
例如,在本說明書等中,顯示元件、作為包括顯示元件的裝置的顯示裝置、發光元件以及作為包括發光元件的裝置的發光裝置可以採用各種方式或者包括各種元件。顯示元件、顯示裝置、發光元件或發光裝置例如包括EL元件、白色、紅色、綠色或藍色等的發光二極體(LED:Light Emitting Diode)、電晶體(根據電流而發光的電晶體)、電子發射元件、液晶元件、電子墨水、電泳元件、電漿顯示器(PDP)、使用微機電系統(MEMS)的顯示元件(例如,柵光閥(GLV)、數位微鏡裝置(DMD)、數位微快門(DMS)、 IMOD(干涉測量調節)元件、快門方式的MEMS顯示元件、光干涉方式的MEMS顯示元件、壓電陶瓷顯示器等)、電潤濕(electrowetting)元件、使用碳奈米管的顯示元件和量子點等中的至少一個。除此以外,還可以包括其對比度、亮度、反射率、透射率等因電或磁作用而變化的顯示媒體。
作為使用EL元件的顯示裝置的一個例子,有EL顯示器等。作為使用電子發射元件的顯示裝置的一個例子,有場致發射顯示器(FED)或SED方式平面型顯示器(SED:Surface-conduction Electron-emitter Display:表面傳導電子發射顯示器)等。作為在各像素中包括量子點的顯示裝置的一個例子,有量子點顯示器等。量子點可以配置在顯示元件的一部分中、背光源的一部分中或者背光源與顯示元件之間。藉由使用量子點,可以製造色純度高的顯示裝置。作為使用液晶元件的顯示裝置的一個例子,有液晶顯示器(透射式液晶顯示器、半透射式液晶顯示器、反射式液晶顯示器、直觀式液晶顯示器、投射式液晶顯示器)等。作為使用電子墨水或電泳元件的顯示裝置的一個例子,有電子紙等。注意,當實現半透射式液晶顯示器或反射式液晶顯示器時,可以使像素電極的一部分或全部具有作為反射電極的功能。例如,可以使像素電極的一部分或全部包含鋁、銀等。並且,此時也可以將SRAM等記憶體電路設置在反射電極下。由此,可以進一步降低功耗。
注意,當使用LED晶片時,也可以在LED晶片的電極或氮化物半導體下配置石墨烯或石墨。石墨烯或石墨也可以為層疊有多個層的多層膜。如 此,藉由設置石墨烯或石墨,可以更容易地在其上形成氮化物半導體,如具有結晶的n型GaN半導體等。並且,在其上設置具有結晶的p型GaN半導體等,能夠構成LED晶片。此外,也可以在石墨烯或石墨與具有晶體的n型GaN半導體之間設置AlN層。可以利用MOCVD形成LED晶片所包括的GaN半導體。注意,當設置石墨烯時,可以以濺射法形成LED晶片所包括的GaN半導體。
另外,在使用MEMS的顯示裝置中,可以在顯示元件被密封的空間(例如,配置有顯示元件的元件基板與與元件基板對置的相對基板之間)中配置乾燥劑。藉由利用乾燥劑去除水分,可以防止MEMS等發生故障或劣化。
〈電子裝置〉
本發明的一個實施方式的半導體裝置可以用於顯示裝置、個人電腦或具備儲存媒體的影像再現裝置(典型的是,能夠播放儲存媒體如數位影音光碟(DVD:Digital Versatile Disc)等並具有可以顯示該影像的顯示器的裝置)中。另外,作為可以使用本發明的一個實施方式的半導體裝置的電子裝置,可以舉出行動電話、包括可攜式的遊戲機、可攜式資料終端、電子書閱讀器終端、拍攝裝置諸如視頻攝影機或數位相機等、護目鏡型顯示器(頭戴式顯示器)、導航系統、音頻再生裝置(汽車音響系統、數位聲訊播放機等)、影印機、傳真機、印表機、多功能印表機、自動櫃員機(ATM)以及自動販賣機等。圖46A至圖46F示出這些電子裝置的具體例子。
圖46A是可攜式遊戲機,其包括外殼901、外殼902、顯示部903、顯示部904、麥克風905、揚聲器906、操作鍵907以及觸控筆908等。注意,雖然圖46A所示的可攜式遊戲機包括兩個顯示部903和顯示部904,但是可攜式遊戲機所包括的顯示部的個數不限於此。
圖46B是可攜式資料終端,其包括第一外殼911、第二外殼912、第一顯示部913、第二顯示部914、連接部915、操作鍵916等。第一顯示部913設置在第一外殼911中,而第二顯示部914設置在第二外殼912中。而且,第一外殼911和第二外殼912由連接部915連接,可以藉由連接部915改變第一外殼911和第二外殼912之間的角度。第一顯示部913的影像也可以根據連接部915所形成的第一外殼911和第二外殼912之間的角度切換。另外,也可以對第一顯示部913和第二顯示部914中的至少一個使用附加有位置輸入功能的顯示裝置。另外,可以藉由在顯示裝置中設置觸控面板來附加位置輸入功能。或者,也可以藉由在顯示裝置的像素部中設置還稱為光感測器的光電轉換元件來附加位置輸入功能。
圖46C是膝上型個人電腦,其包括外殼921、顯示部922、鍵盤923以及指向裝置924等。
圖46D是電冷藏冷凍箱,其包括外殼931、冷藏室門932、冷凍室門933等。
圖46E是視頻攝影機,其包括第一外殼941、第二外殼942、顯示部943、操作鍵944、透鏡945、連接部946等。操作鍵944及透鏡945設置在第一外殼941中,而顯示部943設置在第二外殼942中。並且,第一外殼941和第二外殼942由連接部946連接,可以藉由連接部946改變第一外殼941和第二外殼942之間的角度。顯示部943的影像也可以根據連接部946所形成的第一外殼941和第二外殼942之間的角度切換。
圖46F是汽車,其包括車身951、車輪952、儀表板953及燈954等。
100a‧‧‧靶材
100b‧‧‧靶材
130a‧‧‧磁鐵單元
130b‧‧‧磁鐵單元
150a‧‧‧靶材單元
160‧‧‧基板
160a‧‧‧基板
170‧‧‧基板架
180‧‧‧加熱機構

Claims (18)

  1. 一種使用濺射裝置的氧化物膜的製造方法,該濺射裝置包括:包括第一靶材、第二靶材、第一磁鐵及第二磁鐵的靶材單元;以及基板架,其中,該第一磁鐵配置於該第一靶材的背面,該第二磁鐵配置於該第二靶材的背面,該第一靶材與該第二靶材以其正面彼此相對的方式隔著預定間隔配置,並且,該基板架與該靶材單元的一側隔著預定間隔配置,包括如下步驟:對該基板架設置基板;藉由對該第一靶材及該第二靶材施加電位,使該第一靶材與該第二靶材之間生成含有離子的電漿;藉由該離子與該第一靶材及該第二靶材的碰撞生成包含氧化物的濺射粒子;以及藉由在該靶材單元在與該基板的形成面平行的方向上移動的同時將該濺射粒子沉積於該基板上來形成氧化物膜。
  2. 根據申請專利範圍第1項之氧化物膜的製造方法,其中該濺射裝置還包括具有狹縫的構件,並且具有該狹縫的該構件以該狹縫位於該靶材單元與該基板之間的方 式配置。
  3. 根據申請專利範圍第1項之氧化物膜的製造方法,其中形成該氧化物膜時的該基板的表面溫度為100℃以上且低於500℃。
  4. 一種使用濺射裝置的氧化物膜的製造方法,該濺射裝置包括:包括第一靶材、第二靶材、第一磁鐵及第二磁鐵的第一靶材單元;包括第三靶材、第四靶材、第三磁鐵及第四磁鐵的第二靶材單元;以及基板架,其中,該第一磁鐵配置於該第一靶材的背面,該第二磁鐵配置於該第二靶材的背面,該第一靶材與該第二靶材以其正面彼此相對的方式隔著預定間隔配置,該第三磁鐵配置於該第三靶材的背面,該第四磁鐵配置於該第四靶材的背面,該第三靶材與該第四靶材以其正面彼此相對的方式隔著預定間隔配置,並且,該基板架、該第一靶材單元的一側與該第二靶材單元的一側隔著預定間隔配置,包括如下步驟:對基板架設置基板;藉由對該第一靶材及該第二靶材施加電位,使該第一靶材與該第二靶 材之間生成含有離子的電漿;藉由該離子與該第一靶材及該第二靶材的碰撞生成包含氧化物的第一濺射粒子;藉由對該第三靶材及該第四靶材施加電位,使該第三靶材與該第四靶材之間生成含有離子的電漿;藉由該離子與該第三靶材及該第四靶材的碰撞生成包含氧化物的第二濺射粒子;以及藉由在該第一靶材單元和該第二靶材單元在與該基板的形成面平行的方向上移動的同時將該第一濺射粒子和該第二濺射粒子沉積於該基板上來形成氧化物膜。
  5. 根據申請專利範圍第4項之氧化物膜的製造方法,其中該氧化物膜包括第一氧化物膜和第二氧化物膜,該第一氧化物膜藉由在該基板上沉積該第一濺射粒子形成,並且該第二氧化物膜藉由在該第一氧化物膜上沉積該第二濺射粒子形成。
  6. 根據申請專利範圍第4項之氧化物膜的製造方法,其中該第一靶材單元的移動速度與該第二靶材單元的移動速度不同。
  7. 根據申請專利範圍第4項之氧化物膜的製造方法,其中該濺射裝置還包括具有狹縫的構件,並且具有該狹縫的該構件以該狹縫位於該第一靶材單元與該基板之間的方式配置。
  8. 根據申請專利範圍第4項之氧化物膜的製造方法, 其中該濺射裝置還包括具有狹縫的構件,具有該狹縫的該構件以該狹縫位於該第一靶材單元與該基板之間的方式配置,並且具有該狹縫的該構件的一部分配置於該第一靶材單元與該第二靶材單元之間。
  9. 根據申請專利範圍第4項之氧化物膜的製造方法,其中形成該氧化物膜時的該基板的表面溫度為100℃以上且低於500℃。
  10. 一種濺射裝置包括:包括第一靶材架、第二靶材架、第一磁鐵及第二磁鐵的靶材單元;以及基板架,其中,該第一磁鐵配置於該第一靶材架的背面,該第二磁鐵配置於該第二靶材架的背面,該第一靶材架與該第二靶材架以其正面彼此相對的方式隔著預定間隔配置,該基板架與該靶材單元的一側隔著預定間隔配置,並且,該靶材單元被配置為在與該基板架平行的方向上移動。
  11. 根據申請專利範圍第10項之濺射裝置,還包括第一靶材和第二靶材,其中,該第一靶材設置於該第一靶材架,並且,該第二靶材設置於該第二靶材架。
  12. 根據申請專利範圍第10項之濺射裝置,還包括具有狹縫的構件, 其中具有該狹縫的該構件以該狹縫位於該靶材單元與該基板之間的方式配置。
  13. 根據申請專利範圍第11項之濺射裝置,還包括該基板架背面的加熱機構。
  14. 一種濺射裝置包括:包括第一靶材架、第二靶材架、第一磁鐵及第二磁鐵的第一靶材單元;包括第三靶材架、第四靶材架、第三磁鐵及第四磁鐵的第二靶材單元;以及基板架,其中,該第一磁鐵配置於該第一靶材架的背面,該第二磁鐵配置於該第二靶材架的背面,該第一靶材架與該第二靶材架以其正面彼此相對的方式隔著預定間隔配置,該第三磁鐵配置於該第三靶材架的背面,該第四磁鐵配置於該第四靶材架的背面,該第三靶材架與該第四靶材架以其正面彼此相對的方式隔著預定間隔配置,該基板架、該第一靶材單元的一側與該第二靶材單元的一側隔著預定間隔配置,並且,該第一靶材單元和該第二靶材單元被配置為在與該基板架平行的方向上移動。
  15. 根據申請專利範圍第14項之濺射裝置,還包括第一靶材、第二靶 材、第三靶材和第四靶材,其中,該第一靶材設置於該第一靶材架,該第二靶材設置於該第二靶材架,該第三靶材設置於該第三靶材架,並且,該第四靶材設置於該第四靶材架。
  16. 根據申請專利範圍第14項之濺射裝置,還包括具有狹縫的構件,其中具有該狹縫的該構件以該狹縫位於該第一靶材單元與該基板架之間的方式配置。
  17. 根據申請專利範圍第14項之濺射裝置,還包括具有狹縫的構件,其中,具有該狹縫的該構件以該狹縫位於該第一靶材單元與該基板架之間的方式配置,並且,具有該狹縫的該構件的一部分配置於該第一靶材單元與該第二靶材單元之間。
  18. 根據申請專利範圍第14項之濺射裝置,還包括該基板架背面的加熱機構。
TW105103879A 2015-02-20 2016-02-04 氧化物膜的製造方法及濺射裝置 TW201703104A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015031803 2015-02-20
JP2015031795 2015-02-20

Publications (1)

Publication Number Publication Date
TW201703104A true TW201703104A (zh) 2017-01-16

Family

ID=56688728

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105103879A TW201703104A (zh) 2015-02-20 2016-02-04 氧化物膜的製造方法及濺射裝置

Country Status (4)

Country Link
US (1) US20160247902A1 (zh)
JP (1) JP2016164308A (zh)
TW (1) TW201703104A (zh)
WO (1) WO2016132240A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI835033B (zh) * 2020-12-18 2024-03-11 日商日新電機股份有限公司 氧化物半導體的成膜方法及薄膜電晶體的製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125049A1 (en) 2015-02-02 2016-08-11 Semiconductor Energy Laboratory Co., Ltd. Oxide and manufacturing method thereof
WO2017149413A1 (en) 2016-03-04 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10942408B2 (en) 2016-04-01 2021-03-09 Semiconductor Energy Laboratory Co., Ltd. Composite oxide semiconductor, semiconductor device using the composite oxide semiconductor, and display device including the semiconductor device
KR20230019215A (ko) 2016-05-19 2023-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 복합 산화물 반도체 및 트랜지스터
CN114864381A (zh) 2016-05-20 2022-08-05 株式会社半导体能源研究所 半导体装置或包括该半导体装置的显示装置
KR102608086B1 (ko) * 2017-03-29 2023-11-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 반도체 장치의 제작 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183823A (ja) * 2001-12-17 2003-07-03 Sharp Corp スパッタ装置
JP4136531B2 (ja) * 2002-08-19 2008-08-20 大倉工業株式会社 透明導電膜、及びその製造方法
WO2007010798A1 (ja) * 2005-07-19 2007-01-25 Ulvac, Inc. スパッタリング装置、透明導電膜の製造方法
JP5059429B2 (ja) * 2007-01-26 2012-10-24 株式会社大阪真空機器製作所 スパッタ方法及びスパッタ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI835033B (zh) * 2020-12-18 2024-03-11 日商日新電機股份有限公司 氧化物半導體的成膜方法及薄膜電晶體的製造方法

Also Published As

Publication number Publication date
WO2016132240A1 (en) 2016-08-25
US20160247902A1 (en) 2016-08-25
JP2016164308A (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
JP7048789B2 (ja) 半導体装置
US9653613B2 (en) Semiconductor device and manufacturing method thereof
TWI652362B (zh) 氧化物及其製造方法
US10157738B2 (en) Method for manufacturing oxide
TW201703104A (zh) 氧化物膜的製造方法及濺射裝置
US10316404B2 (en) Method for manufacturing sputtering target
US20160268127A1 (en) Oxide and Manufacturing Method Thereof
JP2020107902A (ja) 半導体装置
JP6705810B2 (ja) 半導体装置
US20150287793A1 (en) Semiconductor device, module, and electronic device