TW201637835A - 工程化週期性結構內之奈米粒子與奈米線的熱輔助自組裝方法 - Google Patents

工程化週期性結構內之奈米粒子與奈米線的熱輔助自組裝方法 Download PDF

Info

Publication number
TW201637835A
TW201637835A TW104128196A TW104128196A TW201637835A TW 201637835 A TW201637835 A TW 201637835A TW 104128196 A TW104128196 A TW 104128196A TW 104128196 A TW104128196 A TW 104128196A TW 201637835 A TW201637835 A TW 201637835A
Authority
TW
Taiwan
Prior art keywords
substrate
transfer film
sacrificial
thermally stable
layer
Prior art date
Application number
TW104128196A
Other languages
English (en)
Inventor
泰瑞 歐迪爾 可立爾
麥克 賓頓 佛瑞
伊凡 勞倫斯 史瓦玆
馬丁 賓森 渥克
賈斯汀 保羅 梅爾
Original Assignee
3M新設資產公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M新設資產公司 filed Critical 3M新設資產公司
Publication of TW201637835A publication Critical patent/TW201637835A/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/90Manufacture, treatment, or detection of nanostructure having step or means utilizing mechanical or thermal property, e.g. pressure, heat

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本文揭示用於使用轉印膜將奈米粒子與奈米線轉印到永久玻璃受體的方法。該等轉印膜包括奈米粒子於一犧牲材料內,該犧牲材料具有一結構化回填層於一基材上以及一奈米線配方於犧牲基材之間。為了轉印該等奈米粒子,將該轉印膜疊層到一玻璃受體,將該基材移除,且將該犧牲材料烘乾,以留下在該玻璃受體上之該回填層之該結構化表面內經對準的該等奈米粒子。為了轉印該等奈米線,將該轉印膜疊層到一玻璃受體,且將該等犧牲基材烘乾,以留下在該玻璃受體上經對準的該等奈米線。

Description

工程化週期性結構內之奈米粒子與奈米線的熱輔助自組裝方法
在玻璃基材上的奈米結構及微結構(可能包括奈米粒子)係用於顯示器、照明、建築及光伏裝置中的多種應用。在顯示裝置中,該等結構可使用於經強化的光萃取或光分佈。在照明裝置中,該等結構可用於經強化的光萃取、光分佈、及裝飾效果。在光伏裝置中,該等結構可用於太陽能集中及防止反射。在大型玻璃基材上圖形化或以其他方式形成奈米結構及微結構(特別是以奈米粒子)會是困難且不符合成本效益的,因此激勵了本發明。
在有機發光二極體(OLED)之發光層中所產生的大部分光線係藉由在OLED層與玻璃基材中的全內反射與波導效應(waveguiding effect)所捕捉。光線誘捕可導致OLED顯示器之效率高達~80%的減少。效率的損失接著造成較低亮度、增加的電力耗損以及較短的顯示使用期以及電池壽命。
已證實許多研究可改良光萃取效率。這些一般以繞射或光學散射機制為基礎,且包括二維或3D光子晶體(PC)結構、粗糙化 介面或紋理表面、反射表面與分配型布拉格反射器(Bragg reflectors)、奈米多孔膜、或共振微腔結構的使用。
美國專利第8,692,446號說明一新穎的光線外部耦合構造,該結構當合併於有機發光裝置(OLED)中時,提供經強化的光萃取以及改良的角與光譜均勻性。外部耦合構造可被使用當作用於OLED製造的基材,且含有光萃取特徵,該等光萃取特徵由施加到以一維或二維週期性結構預先圖形化之聚合物基材的奈米粒子(直徑0.1~0.8um)的塗層所組成。此專利亦證實奈米粒子/光柵結構會以高折射率塗層被平面化,譬如引進矽,以相配在OLED中所使用之透明導體的折射率,一般為銦錫氧化物。
這些研究可提供超越純一維光柵與二維光柵結構以及單獨奈米粒子塗層的下列優點。例如:1D或2D週期性結構的存在可改良奈米粒子塗層的均勻性;且相較於純週期性萃取特徵,有1D或2D週期性結構的奈米粒子組合可改良角與光譜均勻性。
不過,在產生OLED顯示器堆疊的製程中,使用於1D光柵的聚合物並非維度穩定,其中,使用高溫來將銦錫氧化物透明導體退火。亦有為了製造將提高產品製造成本之此結構所需要的許多塗層步驟。
奈米結構化疊層轉印膜係被說明於美國專利申請公開案第2014/0021492號中,其致使使用簡單的疊層與烘乾步驟來製造奈米結構化固體表面。本發明詳述微複製聚合物膜之使用,該膜的微腔可充填無機聚矽氧烷塗層。在將聚矽氧烷固化成生坯狀態(green state)以 後,可將該堆疊轉印到具有面向上之微複製聚合物膜的載玻片。隨後在爐子上將整個構造烘烤,以移除聚合物膜且完全凝聚無機聚矽氧烷。所得的無機塗層賦予微結構到載玻片,其以聚合物膜中所賦予之微結構之反向「產物」的形式。
我們提出一種改良的方法來產生經自行對準的氧化矽奈米粒子於一維的氧化矽光柵中,以產生具光學功能的無機塗層。為了產生該結構,經卷對卷塗布的前驅物膜可經由疊層與烘烤步驟被施加到基材。在烘烤步驟期間,近乎單分散型的奈米粒子沉降至由矽氧烷塗層所形成的微複製結構內。
符合本發明之一種用於轉印奈米粒子到一永久受體基材的方法,其包括提供一轉印膜,該轉印膜包含具有單分散型奈米粒子於一犧牲樹脂(sacrificial resin)中的一基材。將一結構賦予在與該基材對置之一側上的該犧牲樹脂上,以產生一結構化表面於該犧牲樹脂上。使該結構的節距和該等單分散型奈米粒子的直徑相配。將一回填層施加到該轉印膜,且該回填層具有實質符合該結構化表面的一第一表面以及與該第一表面對置的一第二表面。將具有該回填層的該轉印膜疊層到一永久受體,該回填層的該第二表面則施加到該受體,且將該基材移除。將該犧牲樹脂烘乾,以產生該等奈米粒子的一模板層於該回填層的該第一表面上。
符合本發明之一種用於轉印奈米線到一永久受體的方法,其包括提供一轉印膜,該轉印膜包含一第一犧牲基材、一第二犧 牲基材、以及在該第一基材與該第二基材之間的一奈米線配方。在一熱處理之下將該轉印膜單軸拉伸且然後疊層到一永久受體。將該第一與第二犧牲基材烘乾,以從該奈米線配方產生經對準的奈米線在該永久受體上。
10‧‧‧轉印膜與烘乾方法
12‧‧‧載體基材
14‧‧‧犧牲樹脂
16‧‧‧奈米粒子的模板單層
18‧‧‧步驟
20‧‧‧結構化表面
22‧‧‧步驟
23‧‧‧步驟
24‧‧‧回填層
25‧‧‧步驟
26‧‧‧熱穩定受體基材
28‧‧‧一維週期性結構
30‧‧‧轉印膜與烘乾方法
32‧‧‧載體基材
34‧‧‧犧牲樹脂
36‧‧‧單分散型奈米粒子;奈米粒子
38‧‧‧步驟
40‧‧‧結構化表面
42‧‧‧步驟
44‧‧‧回填層;熱穩定材料
46‧‧‧步驟
50‧‧‧熱穩定受體基材
52‧‧‧步驟
54‧‧‧步驟
56‧‧‧步驟
58‧‧‧一維週期性結構
60‧‧‧轉印膜與方法
62‧‧‧犧牲熱塑性基材
64‧‧‧步驟
66‧‧‧奈米線配方
68‧‧‧犧牲熱塑性基材
70‧‧‧步驟
72‧‧‧步驟
74‧‧‧步驟
76‧‧‧熱穩定受體基材
78‧‧‧步驟
80‧‧‧步驟
90‧‧‧轉印膜與方法
92‧‧‧基材;犧牲熱塑性基材
94‧‧‧步驟
96‧‧‧奈米線配方
98‧‧‧基材;犧牲熱塑性基材
100‧‧‧步驟
102‧‧‧步驟
104‧‧‧步驟
106‧‧‧結構化表面
108‧‧‧步驟
110‧‧‧回填層
110‧‧‧熱穩定材料
112‧‧‧步驟
114‧‧‧熱穩定受體基材
116‧‧‧步驟
118‧‧‧步驟
120‧‧‧步驟
122‧‧‧結構化表面
隨附圖式併入並構成本說明書之一部分,且與詳細說明一起釋明本發明之優勢與理論。在圖式中:圖1為在一維週期性結構中經對準之奈米粒子單層之生產的轉印膜與熱解(pyrolysis)方法的圖;圖2為在一維週期性結構中之光子晶體總成之轉印膜與熱解方法的圖;圖3為形成經對準的奈米線之轉印膜與方法的圖;圖4為形成經對準且模板自組裝的奈米線之轉印膜與方法的圖;圖5A與圖5B為實例1之樣品的影像;圖6A與圖6B為實例2之樣品的影像;以及圖7A與圖7B為實例3之樣品的影像。
說明疊層轉印膜與方法,其提供使用烘乾方法之單一自組裝奈米結構的產生。該方法使用混有單分散型奈米粒子的輻射可固化犧牲樹脂。該樹脂可經由習知連續澆注與固化或壓紋技術被微複製,以形成週期性結構。使該結構的節距和該等單分散型奈米粒子的直徑相配。奈米粒子的直徑可在節距尺寸的200%內、節距尺寸的 150%內、節距尺寸的100%內、節距尺寸的75%內、節距尺寸的50%內、節距尺寸的25%內、節距尺寸的10%內。隨後以熱穩定材料將該結構回填,轉印到受體基材,且然後燃燒以將犧牲模板烘乾。在烘乾期間內,奈米粒子自組裝於在微複製步驟內形成的溝槽內,以形成對強化光萃取、經由結構性顏色發出信號、或其他應用有用的結構。
亦說明疊層轉印膜與方法,其提供用於將高縱橫比無機奈米粒子、奈米晶體、及奈米管沉積且定向在玻璃、矽、或其它熱穩定受體上的製程。該方法涉及將包含奈米材料的層塗層在犧牲熱塑性膜上,將該膜拉伸以定向奈米粒子同時加熱處理該膜,將該拉伸膜疊層到熱穩定受體上,且烘烤該疊層以移除犧牲材料且將該經定向奈米材料沉積在該受體表面上。經定向奈米線對奈米電子裝置(例如,薄膜電晶體)、光學裝置(例如,線柵偏光板)、以及電性裝置(例如,異向性傳導膜)或其它應用有用。
結構化的疊層轉印膜與方法係於美國專利申請公開案第2014/0021492號中被揭示,該案以引用方式併入本文中,如同完整陳述般。標題「Lamination Transfer Films for Forming Embedded Nanostructures」且於2013年2月27日提出申請的美國專利申請案序號13/778276,該案以引用方式併入本文中,如同完整陳述般,其說明使用高折射率的奈米粒子(例如,奈米氧化鋯或奈米二氧化鈦)於微結構化的犧牲模板層內。在犧牲材料的烘乾期間內,高折射率粒子不會揮發,且反之,以隨機的順序在結構化矽氧烷塗層上方熱燒結。
在本揭露中: 「回填層(backfill layer)」或「結構化回填層(structured backfill layer)」意指在不規則或結構化表面中充填以產生新表面的熱穩定材料層,該新表面可被使用當作建立額外分層元件或模板無機奈米材料的基底;「回填材料(backfill material)」意指使用於回填層或結構化回填層的熱穩定材料;「奈米結構(nanostructure)」意指其最長尺寸範圍在從大約1nm至大約1000μm的特徵且包括微結構;「結構化表面(structured surface)」意指包括在整個表面中呈規則圖形或隨機之奈米結構的表面;「單分散型奈米粒子(monodisperse nanoparticle)」意指在標稱直徑之10%至15%內之奈米粒子的尺寸範圍;「烘乾(back-out)」意指藉由熱解、燃燒、昇華、或蒸發將存在於一層中的犧牲材料實質移除而沒有留下實質數量之殘留材料(譬如灰)的製程;「烘乾溫度(bake-out temperature)」意指在藉由熱解或燃燒、昇華、或蒸發而將在一層中之犧牲材料實質移除的製程內所達到的最大溫度;「燃燒(combust或combustion)」係指於氧化蒙氣中加熱包含有機材料之層,以使該有機材料與該氧化劑進行化學反應之過程;「熱解(pyrolyze或pyrolysis)」係指在惰性氣氛中將犧牲層加熱使得在該物體中的有機材料能夠分解的製程; 「熱穩定(thermally stable)」意指在犧牲材料移除期間內維持實質完整的材料,其可被密實化及/或化學轉換以形成無機材料的材料;「聚矽氧烷(polysiloxane)」意指高分支之寡聚或聚合有機矽化合物,且可包括碳-碳及/或碳-氫鍵,同時仍被視為無機化合物;除非另有指明,否則「折射率(index of refraction)」、「折射率(refractive index)」、「折射率(index)」、或「RI」,意指材料在材料平面中對於633nm之光、垂直或接近垂直(即8度)入射的折射率;「高折射率(high refractive index)」與「低折射率(low refractive index)」係相對用語;當兩個層在兩個所關注之面內方向中比較時,具有較大平均面內折射率的層為高折射率層,且具有較低平均面內折射率的層為低折射率層;以及「犧牲模板層(sacrificial template layer)」為將結構賦予回填層且可被烘乾的層。
圖1為在一維週期性結構中經對準之奈米粒子單層之生產的轉印膜與烘乾方法10的圖。此轉印膜包括載體基材12上之犧牲樹脂14中的單分散型奈米粒子16。轉印膜於犧牲樹脂14上經賦予有結構化表面20(步驟18),例如經由壓紋或連續澆注與固化製程。結構化表面20以回填層材料24回填(步驟22)。使回填層對著熱穩定受體基材而將具有回填層24的轉印膜疊層到熱穩定受體基材26,且將載體基材12移除(步驟23)。將犧牲樹脂14烘乾以產生奈米粒子的模板單層16,其在回填層24上的一維週期性結構28內經對準且與結構化表面20的反向對應(步驟25)。在本實施例中,奈米粒子16 的直徑大約為週期性結構28的寬度。方法10可選擇性地不利用轉印膜實施,而是首先將在犧牲樹脂14中的單分散型奈米粒子16施加到熱穩定受體基材26上的結構化回填層24且隨後在步驟25中烘乾犧牲樹脂14。
圖2為在一維週期性結構中之光子晶體總成之轉印膜與烘乾方法30的圖。此轉印膜包括載體基材32上之犧牲樹脂34中的單分散型奈米粒子36。轉印膜於犧牲樹脂34上經賦予有結構化表面40(步驟38),例如經由壓紋或連續澆注與固化製程。該結構化表面以熱穩定材料44回填(步驟42)。使回填層對著熱穩定受體基材而將具有回填層44的轉印膜疊層到熱穩定受體基材50,且將載體基材32移除(步驟46)。將犧牲樹脂34烘乾(步驟52),以從導致奈米粒子36之有序多層或光子晶體結構的一維週期性結構58來產生奈米粒子36的模板化(步驟54)以及奈米粒子層的膠態磊晶生長(步驟56)。一維週期性結構58與結構化表面40的反向對應。
圖3為形成經對準奈米線之轉印膜與方法60的圖。此轉印膜包括犧牲熱塑性基材62,其以奈米線配方66塗布(步驟64)。將另一犧牲熱塑性基材68疊層到基材62,而在該等基材之間有奈米線配方66(步驟70)。基材68為可選用的,其中奈米線配方可塗布在單一基材上而非疊層在兩基材之間。在一熱處理下,將基材62與68以及奈米線配方66的複合總成單軸拉伸(步驟72與步驟74)。將所得的組件疊層到熱穩定受體基材76(步驟78)。將犧牲熱塑性基材62 與68烘乾,以產生經對準的奈米線66於熱穩定受體基材76上(步驟80)。
圖4為形成經對準與模板化自組裝奈米線之轉印膜與方法90的圖。此轉印膜包括犧牲熱塑性基材92,其以奈米線配方96塗布(步驟94)。將另一犧牲熱塑性基材98疊層到基材92,而在該等基材之間有奈米線配方96(步驟100)。基材98為可選用的,其中奈米線配方可塗布在單一基材上而非疊層在兩基材之間。在一熱處理下,將基材92與98以及奈米線配方96的複合總成單軸拉伸(步驟102與步驟104)。將基材92與98以及奈米線配方96的拉伸複合總成壓紋以產生結構化表面106於基材92上(步驟104)。該壓紋結構可平行或垂直於拉伸方向或以平行或垂直於拉伸方向的任何角度排列。結構化表面106以熱穩定材料110來回填(步驟108)。使回填層110對著熱穩定受體基材114而將基材92與98、奈米線配方96、以及回填層110的複合總成疊層到熱穩定受體基材114(步驟112與步驟116)。將所得總成的基材92與98烘乾(步驟118與步驟120),造成在熱穩定受體基材114上之回填層110的結構化表面122上各別平行與垂直對準的模板奈米線96,其中結構化表面122與該結構化表面106的反向對應。
下列說明用於轉印膜與方法的例示性材料。
支撐基材
支撐基材或載體基材可以可撓膜實施,以提供機械化支撐給其它層。載體膜的一項實例為聚苯二甲酸乙二酯(PET)。包含多種熱固性或熱塑性聚合物的多種聚合物膜基材適合作為支撐基材使用。載體可為單一層或多層膜。
在一些實施例中,支撐基材可包括犧牲材料。犧牲材料,一般而言犧牲層,可經過加熱條件進行熱分解,其可讓存在於犧牲層中之實質上所有有機材料均蒸發。犧牲層亦可經過燃燒,以燒除存在於犧牲層中之所有有機材料。一般而言,可使用透明之高純度聚合物,如聚(甲基丙烯酸甲酯)、聚(丙烯酸乙酯-共-甲基丙烯酸甲酯),作為犧牲材料。適用之犧牲性材料在烘乾溫度下熱分解或燃燒後,殘留極少量有機殘質(灰份)。
在一些實施例中,所揭示轉印膜的犧牲支撐基材可利用可釋離材料塗布於一表面上。藉由施加一離型塗層到支撐基材,可減少支撐基材對施加至其之任何層的黏著性。離型塗層可利用例如電漿沉積或真空沉積而施加到支撐基材的表面,或者離型塗層可為具有對基材具有低黏著力的聚合物。在製造剩餘的轉印膜且將轉印膜疊層到受體以形成疊層之後,犧牲支撐基材可藉由將它剝離開表面(在該轉印膜中,它支撐該表面)而自疊層移除。在本實施例中,犧牲支撐材料不一定會被熱解或燃燒而被移除,且可包括作為支撐基材材料之上文所說明材料的任一者。犧牲模板層可經由例如壓紋、複製製程、擠壓、澆注或表面結構化而形成。
結構化表面可包括奈米結構、微結構、或階層式結構。奈米結構包含具有至少一尺寸(例如,高度、寬度或長度)小於或等於1微米之特徵。微結構包含具有至少一尺寸(例如,高度、寬度或長度)小於或等於1毫米之特徵。階層式結構為奈米結構與微結構的組合。在一些實施例中,犧性模板層可與圖形化、光化圖形化、壓紋、擠壓、以及共擠壓相容。奈米結構與微結構可為一維或二維。例如,一維奈米結構與微結構的實例包括連續或狹長之稜柱體或脊狀體、或線性光柵。二維奈米結構與微結構的實例包括微透鏡、稜錐體、梯形體、圓形或方形柱體、或光子晶體結構。
犧牲材料
犧牲材料可包括有機組分,譬如聚合物及/或黏合劑。犧牲層的有機組分能夠被熱解、燃燒、或以其他方式實質移除,同時留下實質完整的任何相鄰層(包括結構化表面)。相鄰層可包括例如具有結構化表面的回填層或者具有結構化表面於它們之間的兩層。犧牲層可具有經由例如壓紋、複製製程、擠壓、澆注或表面結構化而形成的結構化表面。
在一些實施例中,無機奈米材料可被分散在犧牲層中。這些犧牲層可包含犧性材料組分(例如,犧牲聚合物,譬如PMMA)且可進一步包含熱穩定材料組分(例如,無機奈米材料、無機黏合劑、或熱穩定聚合物)。疊層物品的烘乾涉及在犧牲膜或層中犧牲材料的分解,同時留下實質完整的熱穩定材料組分。犧牲模板的犧牲材料 組分或犧牲支撐基材組成物可從配方之所有固體的1wt%至99.9wt%,或較佳地從配方之所有固體重量的1wt%至40wt%而為不同。
可使用於犧牲材料的材料包括聚乙烯醇(PVA)、乙基纖維素、甲基纖維素、聚降莰烯、聚(甲基丙烯酸甲酯)(PMMA)、聚(乙烯醇縮丁醛)、聚(碳酸環己烯酯)、聚(環己烷丙烯)碳酸鹽、聚(碳酸伸乙酯)、聚(碳酸丙烯酯)以及其它脂族聚碳酸酯。這些材料之實例係列於表1。這些材料一般能夠經由溶解或經由熱解或燃燒的熱分解來簡單地移除。熱加熱一般為許多製造製程的一部份且因此犧牲材料的移除可在現存加熱步驟內完成。為了此因素,經由熱解或燃燒的熱分解為更佳的移除方法。犧牲材料應該能夠經由擠壓、刮刀塗布、溶劑塗布、澆注與固化、或其他一般塗布方法而塗布在載體或支撐基材上。
犧牲材料的分解溫度應該高於回填材料的固化溫度。一旦將回填材料固化,則可將該結構永久形成,且可經由以上所列方法中的任一者將犧牲模板層移除。在烘乾溫度熱分解時有低灰或低總殘留物的材料較有高殘留物的材料為較佳。在基材上所遺留的殘留物可不利地影響光學性質,譬如最終產品的透明度或顏色。因為最小化在最終產品中的這些性質的任何改變為所欲,所以在烘乾溫度下,小於1000ppm的殘留水準係較佳。在烘乾溫度下,小於500ppm的殘留水準係更佳,且在烘乾溫度下,低於50ppm的殘留量係最佳。在烘乾溫度下,犧牲層的犧牲組分可藉由熱解或燃燒被移除而沒有留下實質數量的殘留材料,譬如灰。較佳殘留水準的實例係被提供如上,雖然不 同的殘留水準可依據特定的應用來使用。亦重要的是,犧牲材料的分解應該是在不明顯改變受體基材之物理性質的烘乾溫度下發生。
犧牲層可包含任何材料,只要可得到所欲性質。較佳地,犧牲層係從可聚合組成物製成,其包含具有數量平均分子量大約1000Da或更小的聚合物(例如,單體與寡聚物)。特別適合的單體或寡聚物具有大約500Da或更小的分子量,且甚至更特別適合的可聚合分子則具有大約200Da或更小的分子量。該可聚合組成物一般使用光化輻射來固化、例如可見光、紫外線輻射、電子束輻射、熱及其組合、或許多習知陰離子、陽離子、自由基、或其他聚合技術的任一者,其可被光化學引發或熱引發。
有用的可聚合組成物包含在所屬技術領域中係習知的可固化官能基,譬如環氧基、烯丙氧基、甲基丙烯酸酯基、環氧化物、乙烯基、羥基、乙醯氧基、羧酸、氨基、酚樹脂、醛類、桂皮酸鹽、烯烴、炔烴、乙烯不飽和基、乙烯醚基、以及任何衍生物以及其任何化學相容組合。
就輻射可固化部分而言,使用來製備犧牲模板層的可聚合組成物可為單官能或多官能(例如,二-、三-、以及四-官能性)。適合單官能可聚合前驅物的實例包括苯乙烯、α-甲基苯乙烯、經取代苯乙烯、乙烯酯、乙烯醚、辛基甲基丙烯酸酯、壬基酚聚氧乙烯醚甲基丙烯酸酯、異水片基甲基丙烯酸酯、異壬基甲基丙烯酸酯、2-(2-乙氧乙氧基)乙基甲基丙烯酸酯、2-乙基己基甲基丙烯酸酯、甲基丙烯酸月桂酯、β-羧乙基甲基丙烯酸酯、異丁基甲基丙烯酸酯、環脂肪族環 氧、α-環氧化物、2-羥乙基甲基丙烯酸酯、異癸甲基丙烯酸酯、十二烷基甲基丙烯酸酯、n-丁基甲基丙烯酸酯、甲基丙烯酸甲酯、己基甲基丙烯酸酯、甲基丙烯酸、乙烯基環己醯胺、十八烷醯甲基丙烯酸酯、羥基官能己內酯甲基丙烯酸酯、異辛甲基丙烯酸酯、羥乙基甲基丙烯酸酯、羥丙基甲基丙烯酸酯、羥基異丙基甲基丙烯酸酯、羥丁基甲基丙烯酸酯、羥基異丁基甲基丙烯酸酯、四氫喃基甲基丙烯酸酯、以及其任何組合。
適合多官能可聚合前驅物的實例包括乙二醇二甲基丙烯酸酯、己二醇二甲基丙烯酸酯、三甘醇二甲基丙烯酸酯、四甘醇二甲基丙烯酸酯、三羥甲基丙烷三甲基丙烯酸酯、三羥甲基丙烷基三甲基丙烯酸酯、丙三醇三甲基丙烯酸酯、季戊四醇三甲基丙烯酸酯、季戊四醇四甲基丙烯酸酯、新戊二醇二甲基丙烯酸酯、雙酚A二甲基丙烯酸酯、聚(1,4-丁二醇)二甲基丙烯酸酯、以上所列材料的任何經取代、乙氧基化或丙氧基化版本、或其任何組合。該等聚合反應通常會導致三維「交聯型」大分子網絡的形成,且亦為本技術中已知的負型光阻,如Shaw等人在期刊IBM Journal of Research and Development(1997)41,81-94的「Negative photoresists for optical lithography」中所回顧。該網絡的形成可經由共價、離子或氫鍵結,或透過譬如鏈纏結的物理交聯機制而產生。該反應亦可經由一或多個中間物質來啟動,例如自由基產生光起始劑、光敏感劑、光酸產生劑、光鹼產生劑、或熱酸產生劑。使用的固化劑種類取決於所使用的可聚合前驅物,且取決於使用以固化可聚合前驅物的輻射波長。適合的商業上可 購得的自由基產生光起始劑的實例包括二苯基酮、安息香、以及醯基膦光起始劑,譬如來自Ciba Specialty Chemicals,Tarrytown,NY以商標名稱「IRGACURE」與「DAROCUR」販售者。其它例示性光起始劑包括2,2-二甲氧基-2-苯基苯乙酮(DMPAP)、2,2-二甲氧基苯乙酮(DMAP)、氧蔥酮(xanthone)、以及9-氧硫(thioxanthone)。
共起始劑以及胺增效劑亦可被包括以改良固化率。以可聚合前驅物的整個重量為基礎,在交聯矩陣中之固化劑的適合濃度範圍從大約1wt.%至大約10wt.%,特別適合濃度範圍從大約1wt.%至大約5wt.%。可聚合前驅物亦可包括可選用添加劑,譬如熱穩定劑、紫外光穩定劑、自由基清除劑、以及其組合。適合在商業上可購買的紫外光穩定劑實例包括二苯基酮型紫外光吸收劑,其來自BASF Corp.,Parsippany,NJ以商標名稱「UVINOL 400」販售;來自Cytec Industries,West Patterson,NJ以商標名稱「CYASORB UV-1164」販售;以及來自Ciba Specialty chemicals,Tarrytown,NY以商標名稱「TINUVIN 900」、「TINUVIN 123」、以及「TINUVIN 1130」販售。相對於可聚合前驅物的整個重量,在可聚合前驅物中紫外光穩定劑之適合濃度的實例範圍從大約0.1wt.%至大約10wt.%,特別適合的總濃度範圍從大約1wt.%至大約5wt.%。
適合的自由基清除劑的實例包括位阻胺光穩定劑(HALS)化合物、羥基胺、立體受阻酚、以及其組合。適合在商業上購買的HALS化合物實例包括來自Ciba Specialty Chemicals,Tarrytown,NY以商標名稱「TINUVIN 292」販售,以及來自Cytec Industries,West Patterson,NJ以商標名稱「CYASORB UV-24」販售。在可聚合前驅物中之自由基清除劑之適合濃度的實例範圍從大約0.05wt.%至大約0.25wt.%。
圖形化犧牲模板層可藉由下列形成:沉積一層輻射可固化組成物至輻射透射載體之一表面上以提供具有暴露表面的一層,使一主體(master)與預成形表面接觸,該預成形表面載有一圖形,該圖形能賦予一經精確成形及定位的交互式功能性不連續性之三維微結構(包括遠端表面部分及鄰近下壓表面部分)至該載體上的輻射可固化組成物層的暴露表面,其在充足的接觸壓力下以將該圖形賦予至該層,當輻射可固化組成物層與主體的圖形化表面相接觸時,經由載體(carrier)暴露該可固化組成物至充足輻射量以固化該組成物。此澆注與固化製程以連續方式進行,其使用一卷載體、沉積一層可固化材料至該載體上、對著主體疊層該可固化材料、並使用光化輻射固化該可固化材料。所得之具有圖形化、犧牲模板設置於其上的載體卷可接著被捲起。該方法揭示於例如美國專利第6,858,253號(Williams等人)。
無機奈米材料
無機奈米材料包括零、一、二、以及三維無機材料,其包含粒子、棒、薄片、板、球、管、線、方塊、錐、四面體、或其他形狀。具有不相等長、寬、與高比的一、二、以及三維無機奈米材料為維度異向性(dimensionally anisotropic)的奈米材料。被包括在犧牲層中之奈米材料的數量可從配方之所有固體的0.1wt%至99wt%,或較佳地從配方之所有固體重量的1wt%至60wt%而為不同。
奈米線可例如包括下列:Ag、Si、Cu、塗布Ni的Cu、塗布Au的Ag、氧化鋅以及氧化錫(IV)奈米線;以及單壁碳奈米管以及多壁碳奈米管。
在本文中所說明的犧牲模板組成物較佳地包含無機粒子。這些粒子具有多種尺寸與形狀。奈米粒子可具有小於大約1000nm、小於大約100nm、小於大約50nm、小於大約10nm、至大約1nm的平均粒子直徑。該等奈米粒子之平均粒徑可為約1nm至約50nm,或約3nm至約35nm,或約5nm至約25nm。較佳地,奈米粒子直徑與光線波長在相同量級,從390nm至700nm。
奈米粒子可經表面處理劑處理。將奈米尺寸粒子表面處理可提供穩定分散液於聚合物樹脂中。較佳地,表面處理穩定奈米粒子,使得粒子將好好地分散於犧牲模板樹脂中且導致實質均勻的組成物。更者,奈米粒子以表面處理劑而在它表面的至少一部份上修改, 使得在固化期間內,穩定化粒子能夠與可聚合樹脂共聚合或反應。表面處理劑的實例包括醇、胺、羧酸、磺酸、膦酸、矽烷以及鈦酸鹽。
回填層材料
回填層為能夠至少部分填滿在其所施加到之一層中之結構化表面的材料。回填層可替代地為兩種不同材料的雙層,在此,該雙層具有分層結構。該雙層的兩種材料可選擇性地具有不同的折射率。雙層的其中一層可選擇性地包含一助黏層。
可使用於回填的材料包括聚矽氧烷樹脂、聚矽氮烷、聚醯亞胺、橋形或梯狀的矽倍半氧烷(silsesquioxane)、聚矽氧、及聚矽氧混合材料以及許多其他材料。例示性聚矽氧烷樹脂包括購自California Hardcoating Company,Chula Vista,CA的PERMANEW材料。這些材料的實例係列於表2。所能使用的其它類別材料為,例如,苯環丁烯、可溶性聚醯亞胺與聚矽氮烷樹脂。
在許多實施例中,可用在本發明中的熱穩定回填材料屬於一通式之高分支有機矽寡聚物與聚合物類別(如下列),該通式可進一步經反應,藉由Si-OH基的同性凝聚、用剩餘可水解基的異性凝聚(例如,烷氧基)、及/或藉由官能機有機基的反應(例如,乙烯系不飽和)來形成交聯型網路。此類別材料主要從一通式的有機矽烷衍生:RxSiZ4-x, 其中R係選自下列:氫、經取代或未經取代C1-C20烷基、經取代或未經取代C2-C10伸烷基、經取代或未經取代C2-C20伸烯基、C2-C20伸炔基、經取代或未經取代C3-C20環烷基、經取代或未經取代C6-C20芳基、經取代或未經取代C6-C20伸芳基、經取代或未經取代C7至C20芳基烷基、經取代或未經取代C1至C20雜烷基、經取代或未經取代C2至C20雜環烷基,及/或這些的組合。Z為可水解基,譬如鹵素(含有元素F、Br、Cl、或I)、C1-C20烷氧基、C5-C20芳氧基、及/或這些的組合。
組成物的大部分可由RSiO3/2單元組成,因此材料類別常被稱為矽倍半氧烷(或T-樹脂),不過它們亦可含有單(R3Si-O1/2)、二(R2SiO2/2)、以及四官能基(Si-O4/2)。該通式的有機改質二矽烷:Z3-n Rn Si-Y-Si Rn Z3-n係經常使用於可水解組成物,以進一步將材料的性質(以形成所謂的橋聯矽倍半氧烷)改質,R與Z基則定義在上文。材料可進一步被公式化且與烷氧基金屬(M(OR)m)反應以形成金屬矽倍半氧烷。
在許多實施例中,一通式之高分支有機矽寡聚物與聚合物: R1係選自下列:氫、經取代或未經取代C1-C20烷基、經取代或未經取代C2-C10烷基、經取代或未經取代C2-C20伸烯基、C2-C20伸炔基、經取代或未經取代C3-C20環烷基、經取代或未經取代C6-C20芳基、經取代或未經取代C6-C20伸芳基、經取代或未經取代C7至C20芳基烷基、經取代或未經取代C1至C20雜烷基、經取代或未經取代C2至C20雜環烷基,及/或這些的組合;R2係選自下列:氫、經取代或未經取代C1-C20烷基、經取代或未經取代C2-C10伸烷基、經取代或未經取代C2-C20伸烯基、C2-C20伸炔基、經取代或未經取代C3-C20環烷基、經取代或未經取代C6-C20芳基、經取代或未經取代C6-C20伸芳基、經取代或未經取代C7至C20芳基烷基、經取代或未經取代C1至C20雜烷基、經取代或未經取代C2至C20雜環烷基,及/或這些的組合;R3係選自下列:氫、經取代或未經取代C1-C20烷基、經取代或未經取代C2-C10伸烷基、經取代或未經取代C2-C20伸烯基、C2-C20伸炔基、經取代或未經取代C3-C20環烷基、經取代或未經取代C6-C20芳基、經取代或未經取代C6-C20伸芳基、經取代或未經取代C7至C20芳基烷 基、經取代或未經取代C1至C20雜烷基、經取代或未經取代C2至C20雜環烷基,及/或這些的組合;R4係選自下列:氫、經取代或未經取代C1-C20烷基、經取代或未經取代C2-C10伸烷基、經取代或未經取代C2-C20伸烯基、C2-C20伸炔基、經取代或未經取代C3-C20環烷基、經取代或未經取代C6-C20芳基、經取代或未經取代C6-C20伸芳基、經取代或未經取代C7至C20芳基烷基、經取代或未經取代C1至C20雜烷基、經取代或未經取代C2至C20雜環烷基,及/或這些的組合;R5係選自下列:氫、經取代或未經取代C1-C20烷基、經取代或未經取代C2-C10伸烷基、經取代或未經取代C2-C20伸烯基、C2-C20伸炔基、經取代或未經取代C3-C20環烷基、經取代或未經取代C-C20芳基、經取代或未經取代C6-C20伸芳基、經取代或未經取代C7至C20芳基烷基、經取代或未經取代C1至C20雜烷基、經取代或未經取代C2至C20雜環烷基,及/或這些的組合;Z為可水解基,譬如鹵素(含有元素F、Br、Cl、或I)、C1-C20烷氧基、C6-C20芳氧基、及/或這些的組合。m為從0至500的整數;n為從1至500的整數;p為從0至500的整數;q為從0至100的整數。
如本文中所使用的,用語「經取代」意指化合物之氫經至少一取代基所取代,該取代基選自由下列所組成之群組:鹵素(含 有元素F、Br、Cl、或I)、羥基、烷氧基、硝基、氰基、胺基、疊氮基、甲脒基、肼基、亞肼基、羰基、胺甲醯基、硫醇基、酯基、羧基或其鹽、磺酸基或其鹽、磷酸基或其鹽、烷基、C2至C20烯基、C2至C20炔基、C6至C30芳基、C7至C13芳基烷基、C1至C4氧烷基、C1至C20雜烷基、C3至C20雜芳烷基、C3至C30環烷基、C3至C15環烯基、C6至C15環炔基、雜環烷基、以及其組合。
所得的高分支有機矽聚合物具有在從150至300,000Da範圍中的分子量或較佳地在從150至30,000Da範圍中的分子量。
較佳地,熱穩定回填含有在極性溶劑中之甲基三乙氧基矽烷前驅物之水解與凝聚的反應產品。在合成之後,所得的聚合物較佳地具有標稱小於30,000Da的分子量。熱穩定回填溶液亦較佳地包括標稱小於五十重量百分比、尺寸在10至50奈米之間的氧化矽奈米粒子。
在本文中所說明的熱穩定組成物較佳地包含無機粒子。此等奈米粒子可呈各種不同大小與形狀。奈米粒子可具有小於大約1000nm、小於大約100nm、小於大約50nm、或從5nm至大約3nm至大約50nm的平均粒子直徑。該等奈米粒子之平均粒徑可為約3nm至約50nm,或約3nm至約35nm,或約5nm至約25nm。若該等奈米粒子凝集,該凝集物之最大截面尺寸可在任何此等範圍內,亦可超過約100nm。主要尺寸小於大約50nm的「發煙(fumed)」奈米粒子(譬如二氧化矽與氧化鋁)亦可被使用,譬如CAB-OSPERSE PG 002發煙二氧化矽、CAB-O-SPERSE 2017A發煙二氧化矽、以及 CAB-OSPERSE PG 003發煙氧化鋁,其可購自Cabot Co.Boston,MA。其可依據穿透式電子顯微鏡(TEM)測定。奈米粒子可實質上完全凝聚。完全凝聚奈米粒子(如:膠體二氧化矽)通常在其內部實質上沒有羥基。不含二氧化矽之完全凝聚奈米粒子之典型結晶度(以單離粒子測定)大於55%,較佳大於60%,及更佳大於70%。例如,結晶度的範圍可高至約86%或更大。可藉由X射線繞射技術測定結晶度。凝聚之結晶(例如,氧化鋯)奈米粒子具有高折射率,而非晶質奈米粒子一般具有較低折射率。可使用多種形狀的無機或有機奈米粒子,譬如球、棒、薄片、管、線、方塊、錐、四面體、以及類似物。
該等粒子的尺寸通常經過選擇以避免在最終物中顯著的可見光散射。所選之奈米材料可賦予各種不同光學性質(亦即折射率、雙折射率)、電性質(例如:導電性)、機械性質(例如:堅韌性、鉛筆硬度、抗刮性)或此等性質之組合。使用有機與無機氧化物粒子種類的混合物來最佳化光學或材料性質並且降低總組成物成本係所欲的。
適合無機奈米粒子的實例包括金屬奈米粒子或它們各自的氧化物,其包括元素鋯(Zr)、鈦(Ti)、鉿(Hf)、鋁(Al)、鐵(Fe)、釩(V)、銻(Sb)、錫(Sn)、金(Au)、銅(Cu)、鎵(Ga)、銦(In)、鉻(Cr)、錳(Mn)、鈷(Co)、鎳(Ni)、鋅(Zn)、釔(Y)、鈮(Nb)、鉬(Mo)、鎝(Te)、釕(Ru)、銠(Rh)、鈀(Pd)、銀(Ag)、鎘(Cd)、鑭(La)、鉭(Ta)、鎢(W)、錸(Rh)、鋨(Os)、銥(Ir)、鉑(Pt)、以及其任何組合。
離型襯墊
回填層可選擇性地以暫時的離型襯墊覆蓋。離型襯墊可於操作時保護該圖形化結構化回填,且當需要時可被輕易移除,以便 將結構化回填或部分結構化回填轉印至受體。對所揭示圖形化結構化膜有用的例示性襯墊係在PCT專利申請公開案第WO 2012/082536號中被揭示。
襯墊為可撓性或剛性。可撓性為較佳。一合適的襯墊(較佳地為可撓性襯墊)一般厚度至少為0.5密耳(12.6μm),且一般厚度不超過20密耳(508μm)。該襯墊可為在其第一表面上設置有一離型塗層的背襯。選擇性地,離型塗層可設置在其第二表面。若此背襯係用於呈卷形式的轉印物件,第二離型塗層的釋離值較第一離型塗層為低。適合作為剛性襯墊的材料包括金屬、金屬合金、金屬基質複材、金屬化塑膠、無機玻璃和玻璃化有機樹脂、成形陶瓷和聚合物基質強化複合材。
受體
熱穩定受體基材的實例包括譬如顯示母體玻璃(例如,背板母體玻璃)、發光母體玻璃、顯示覆蓋玻璃、建築玻璃、板狀玻璃、卷玻璃、以及可撓玻璃(可使用於卷對卷製程)的玻璃。可撓卷玻璃的一實例為來自Corning Incorporated(Corning,NY)的WILLOW玻璃產品。其它受體實例包括下列:金屬,譬如金屬薄片與箔;藍寶石、石英、矽、二氧化矽、以及碳化矽;以及纖維、不織布、織物、以及陶瓷。受體亦可包括汽車玻璃、薄片玻璃、撓性電子基材(譬如電路化撓性膜)、顯示器背板、太陽能玻璃、撓性玻璃、金屬、聚合物、聚合物複合材料、以及纖維玻璃。受體基材可包含集電極、透明 傳導氧化物塗層、金屬箔層或塗層、或傳導薄膜塗層(譬如金屬薄膜)、金屬奈米線塗層、傳導聚合物塗層、碳奈米管塗層、石墨烯塗層、或碳黑塗層。其它例示性受體包括在支撐晶圓上的半導體材料、以及晶狀支撐晶圓,譬如結晶矽、結晶氮化鎵、結晶磷化銦、以及結晶砷化鎵。受體基材係平坦或彎曲。
實例 實例1-具有自組裝奈米粒子的疊層轉印膜 A-174改質440nm二氧化矽的製備
在裝配有凝聚劑與溫度器的500mL燒瓶中,在快速攪拌之下將200g的MP4540M膠態溶液(Nissan Chemical America,Houston,Texas)與200g的1-甲氧基-2-丙醇混合在一起。隨後加入0.6g的SILQUEST A-174(Momentive Performance Materials Inc,Friendly,West Virginia)。將混合物加熱到80℃達16小時。隨後加入額外150g的1-甲氧基-2-丙醇。使所得的溶液冷卻至室溫。使用在60℃水浴下的旋轉蒸發器,將大部分水與1-甲氧基丙醇溶劑移除,而造成按重量計49.5%的A-174改質440nm二氧化矽分散液於1-甲氧基-2-丙醇中。
樹脂配方
藉由將官能化二氧化矽奈米粒子的各別溶液(A-174改質440nm二氧化矽)以及犧牲熱塑性塑膠(QPAC100,Empower Materials,30%固體於1,3-二草酸酯中)結合,製備包含440nm二氧化矽的1:9(w:w)塗層溶液。
離型塗布結構化模板工具「工具A」
使用標準澆注與固化微複製(此稱為「工具A」)來產生600nm的結構化膜模板。基材為底層(primed)為厚度0.002英吋(0.051mm)的PET。複製樹脂為SR399及SR238(二者皆購自Sartomer USA,Exton,PA)的75/25摻合物,該摻合物具有光起始劑包裝,其包含1%的Darocur 1173、1.9%的三羥乙基胺、以及0.5%的OMAN071(可購自Gelest,Inc.Morrisville,PA)。樹脂的複製以20ft/min(6.1m/min)、137℉(58℃)的複製工具溫度來進行。來自以600W/in操作的Fusion「D」燈的輻射穿透該膜,以固化同時與工具接觸的樹脂。複製工具以600nm節距線性鋸齒溝槽結構來圖形化。固化樹脂隨後與工具分開並且捲繞成卷。
複製模板膜係於使用流速250標準cc/min(sccm)之氬氣、25毫托壓力及1000瓦特RF功率的一電漿腔室中被打底30秒。接著,使樣品經受四甲基矽烷(TMS)電漿而來製備離型塗布工具表面,該電漿的TMS流速為150SCCM,但不添加氧,其對應約為0的氧對矽原子比。電漿腔室中的壓力為25毫托,且使用1000瓦特的RF功率10秒。
微結構化犧牲模板層
2.5密耳的塗層配方膜係藉由將6密耳溶液膜刮刀塗布於0.051mm(0.002英吋)厚的T50聚矽氧離型襯墊(商業上可購自CP Films,Fieldale,VA)的背側上而製造。
使用熱化油壓,可將膜壓紋到600nm的1維週期性微型複製「工具A」膜。最佳的壓紋係以在260℃以2000psi壓縮5分鐘而得到。允許壓紋膜在移除工具A以前冷卻。
將該膜樣品(2 in×3 in-50mm×75mm)以PERMANEW材料(California Hardcoating Co.,Chula Vista,CA)塗布,其藉由旋塗布而被施加到結構化膜樣品。在旋塗布以前,PERMANEW材料藉由添加異丙醇而被稀釋到15wt%並且經由1μm PTFE過濾器而被過濾。在旋塗布製程內,使用顯微鏡載玻片來支撐膜。自旋參數為500rpm/10sec(溶液施加)、2000rpm/10sec(下旋)、以及500rpm/10sec(乾),其使用Laurell旋塗布機(機型#:WS-6505-6 npp/lite)。該樣品係從旋塗布機被移除且放置在80℃的熱板1小時,以移除溶劑且將PERMANEW材料固化到「生坯」(沒完全固化)狀態。
助黏層塗層
載玻片,50mm×75mm,以IPA與無絨布來清潔。載玻片係被手工疊層到光學清潔黏著劑(OCA 8171,3M Co,St.Paul,MN)。
疊層
使用熱膜疊層器(GBC Catena 35,GBC Document Finishing,Lincolnshire,IL),在125℉(51℃),將膜堆疊疊層到塗布黏著劑的載玻片,PERMANEW材料塗層側向下。將疊層樣品自疊層器移除且允許冷卻至室溫。
烘乾
在堆疊以後,將支撐膜堆疊的離型襯墊自膜分開,留下黏到載玻片的全部其它層。將樣品放置在箱式爐(Lindberg Blue M箱式爐模型BF51732PC-1,Asheville NC,USA),且以大約10℃/min的速率從25℃帶到300℃。使該爐維持在300℃三十分,然後以大約10℃/min的速率加熱到500℃且維持一小時。隨後允許該爐與樣品冷卻下降到周圍溫度。
圖5A與5B為實例1之樣品的影像。
實例2-在600nm週期性結構上具有經定向銀奈米線的疊層轉印膜 奈米線塗布配方
包含銀奈米線的99:1(w:w)塗布配方,其藉由混合奈米線分散液(AgNW-25,5mg/ml,Seashell Technologies,La Jolla,CA)以及無機黏合劑前驅物(Silres MK粉末,Wacker Chemie AG)來製備。
裝載膜
0.75密耳的犧牲熱塑性膜(QPAC100,Empower Materials)係藉由將聚合物溶液(QPAC100,Empower Materials,30wt%固體於1,3-二草酸酯中)刮刀塗布於0.051mm(0.002英吋)厚的T50聚矽氧離型襯墊(商業上可購自CP Films,Fieldale,VA)的背側上而製備。以在真空電漿設備(Yield Engineering Systems,Inc.YES-G1000)中被處理60秒的氧電漿來處理經塗布的犧牲熱塑性膜的表面。使用#4 Mayer棒將奈米線配方施加到經電漿處理的表面,而造成0.5微米的乾塗層厚度。
將第二相同的犧牲熱塑性膜施加到第一膜的塗布側且隨後使用熱化油壓(112℃,2000psi)來按壓以形成三層複合膜。在定向步驟以前,將離型襯墊移除。
定向
將膜拉伸於小格式的膜拉伸設備中(Karo IV拉伸機器,Brückner Maschinenbau GmbH & Co.KG)。在75℃爐子中,將膜預熱且拉伸,且隨後接著在80℃退火60秒。單軸的拉伸係以速率2℃/min來實施且該膜以50%的增量擴張250%至400%。最佳的結果係以單軸拉伸到350%獲得。
微結構化膜
使用熱化油壓,將拉伸膜以垂直於拉伸方向壓紋到垂直於拉伸方向的600nm 1D漸進式微複製膜上。最佳的壓紋係以在 260℃以2000psi壓縮5分鐘而得到。允許壓紋膜在自600nm漸進式膜移除以前冷卻。
將該壓紋膜樣品(2 in×3 in-50mm×75mm)以PERMANEW材料塗布,其藉由旋塗布而被施加到結構化膜樣品。在旋塗布以前,PERMANEW材料藉由添加異丙醇而被稀釋到15wt%並且經由1μmPTFE過濾器被過濾。在旋塗布製程內,使用顯微鏡載玻片來支撐膜。旋塗參數為500rpm/10sec(溶液施加)、2000rpm/10sec(下旋)、以及500rpm/10sec(乾),其使用Laurell(機型#:WS-6505-6npp/lite)。該樣品係從旋塗布機被移除且放置在80℃的熱板4小時,以移除溶劑且將PERMANEW材料固化到「生坯」(沒完全固化)狀態。
助黏層塗層
載玻片,50mm×75mm,以IPA與無絨布來清潔。將該載片安裝在Laurell(機型#:WS-6505-6npp/lite)旋塗布機的真空夾頭上。施加64千帕(19英吋Hg)的真空,以將玻璃固持到夾頭。將聚(碳酸丙稀酯)溶液(QPAC 40,Empower Materials Inc,Ithaca,NY)稀釋到甲基乙酮中的10wt%。在旋塗布週期的塗層施加部分內,將大概2-3mL的溶液施加到載玻片。將旋塗布機程式化為500RPM 10秒(塗布施加步驟),然後3500RPM 10秒(旋轉步驟),然後500RPM 10秒(乾燥步驟)。
然後將該載片從旋塗布機移除,且放在100℃熱板上30分鐘,且以鋁盤覆蓋。隨後使載片冷卻至室溫。
疊層
使用熱膜疊層器(GBC Catena 35,GBC Document Finishing,Lincolnshire,IL),在125℉(51℃),將膜堆疊疊層到QPAC40塗布載玻片,PERMANEW材料塗布側向下。將疊層樣品自疊層器移除且使之冷卻至室溫。
烘乾
在疊層以後,將樣品放置在充氮氣爐中(Lindberg Blue M箱式爐模型51642-HR,Asheville NC,USA)。以大約10℃/min的速率把該樣品從25℃帶到310℃且維持兩小時。隨後使該爐與樣品冷卻下降到周圍溫度。
圖6A與6B為實例2之樣品的影像。
實例3-在玻璃上具有經定向銀奈米線的疊層轉印膜 奈米線塗布形成
包含銀奈米線的99:1(w:w)塗布配方,其藉由混合奈米線分散液(AgNW-25,5mg/ml,Seashell Technologies,La Jolla,CA)以及無機黏合劑前驅物(Silres MK粉末,Wacker Chemie AG)來製備。
裝載膜
0.75密耳的犧牲熱塑性膜(QPAC100,Empower Materials)係藉由將聚合物溶液(QPAC100,Empower Materials,30wt%固體於1,3-二草酸酯中)刮刀塗布於0.051mm(0.002英吋)厚的T50聚矽氧離型襯墊(商業上可購自CP Films,Fieldale,VA)的背側上來製備。以在真空電漿設備(Yield Engineering Systems,Inc.YES-G1000)中被處理60秒的氧電漿來處理經塗布的犧牲熱塑性膜的表面。使用#4 Mayer棒將奈米線配方施加到經電漿處理的表面,而造成0.5微米的乾塗層厚度。
將第二相同的犧牲熱塑性膜施加到第一膜的塗布側且隨後使用熱化油壓(112℃,2000psi)來按壓以形成三層複合膜。將離型襯墊移除。
定向
將膜拉伸於小格式的膜拉伸設備中(Karo IV拉伸機器,Brückner Maschinenbau GmbH & Co.KG)。在75℃爐子中,將膜預熱且拉伸,且隨後接著在80℃退火60秒。單軸的拉伸係以速率2%/min來施行且該膜以50%的增量擴張250%至400%。最佳的結果係以單軸拉伸到350%獲得。
疊層
使用熱膜疊層器(GBC Catena 35,GBC Document Finishing,Lincolnshire,IL),在125℉(51℃),將膜堆疊疊層到載玻片。將疊層樣品自疊層器移除且使之冷卻至室溫。
烘乾
在疊層以後,將樣品放置在充氮氣爐中(Lindberg Blue M箱式爐模型51642-HR,Asheville NC,USA)。以大約10℃/min的速率把該樣品從25℃帶到310℃且維持兩小時。隨後使該爐與樣品冷卻下降到周圍溫度。結果為在玻璃表面上的銀奈米線薄膜。SEM影像意指沿拉伸方向之奈米線的不同定向。以相同方式(但沒有定向步驟)製備的控制樣品,其不會呈現奈米線的定向。
圖7A與圖7B為實例3之樣品的影像。圖7A為經拉伸的AgNW樣品的影像,350x,且圖7B為未經拉伸的AgNW控制樣品的影像。
10‧‧‧轉印膜與烘乾方法
12‧‧‧載體基材
14‧‧‧犧牲樹脂
16‧‧‧奈米粒子的模板單層
18‧‧‧步驟
20‧‧‧結構化表面
22‧‧‧步驟
23‧‧‧步驟
24‧‧‧回填層
25‧‧‧步驟
26‧‧‧熱穩定受體基材
28‧‧‧一維週期性結構

Claims (24)

  1. 一種用於模板化一熱穩定基材之表面上的奈米粒子之方法,其包含以下步驟:提供具有一結構化模板表面或層的一熱穩定基材;施加單分散型奈米粒子於一犧牲樹脂(sacrificial resin)中之一塗層,該塗層具有實質符合該結構化模板表面或層的一第一表面以及與該第一表面對置的一第二表面;以及將該犧牲樹脂烘乾,以產生該等奈米粒子的一模板化層於該結構化模板表面或層上。
  2. 如請求項1之方法,其中該提供步驟包含提供一玻璃、石英、或藍寶石基材以當作該熱穩定基材。
  3. 如請求項1之方法,其中該提供步驟包含提供一晶狀支撐晶圓或在一支撐晶圓上之半導體材料以當作該熱穩定基材。
  4. 一種用於轉印奈米粒子到熱穩定受體基材的方法,其包含以下步驟:提供一轉印膜,該轉印膜包含具有單分散型奈米粒子於一犧牲樹脂中的一載體基材;將一結構賦予到與該基材對置之一側上的該犧牲樹脂上,以產生一結構化表面於該犧牲樹脂上;將一回填層施加到該轉印膜,該回填層具有實質符合該結構化表面的一第一表面以及與該第一表面對置的一第二表面;將具有該回填層的該轉印膜疊層到一熱穩定受體基材,該回填層的該第二表面係施加到該熱穩定受體基材,且在該疊層後將該載體基材移除;以及將該犧牲樹脂烘乾,以產生該等奈米粒子的一模板化層於該回填層的該第一表面上。
  5. 如請求項4之方法,其中該疊層步驟包含將該轉印膜疊層到一玻璃、石英、或藍寶石基材。
  6. 如請求項4之方法,其中該疊層步驟包含將該轉印膜疊層到一晶狀支撐晶圓或到一支撐晶圓上的半導體材料。
  7. 如請求項4之方法,其中該烘乾步驟包含以一充足的速率將該犧牲樹脂烘乾以產生該等奈米粒子的膠態磊晶生長且產生一模板化奈米粒子多層於該回填層的該第一表面上。
  8. 一種用於轉印維度異向性奈米材料到熱穩定受體基材的方法,其包含以下步驟:提供一轉印膜,該轉印膜包含一第一犧牲基材、一第二犧牲基材、以及在該第一基材與該第二基材之間的一維度異向性奈米材料配方;在一熱處理之下將該轉印膜單軸拉伸;將該轉印膜疊層到一熱穩定受體基材;以及將該第一犧牲基材與該第二犧牲基材烘乾,以從該維度異向性奈米材料配方產生經對準的維度異向性奈米材料在該熱穩定受體基材上。
  9. 如請求項8之方法,其中該等維度異向性奈米材料為奈米線或奈米管。
  10. 如請求項8之方法,其中該疊層步驟包含將該轉印膜疊層到一玻璃、石英、或藍寶石基材。
  11. 如請求項8之方法,其中該疊層步驟包含將該轉印膜疊層到一晶狀支撐晶圓或到一支撐晶圓上的半導體材料。
  12. 一種用於轉印維度異向性奈米材料到熱穩定受體基材的方法,其包含以下步驟:提供一轉印膜,該轉印膜包含一犧牲材料與維度異向性奈米材料;在一熱處理之下將該轉印膜單軸拉伸;將該轉印膜疊層到一熱穩定受體基材;以及 將該犧牲材料烘乾,以產生經對準的維度異向性奈米材料在該熱穩定受體基材上。
  13. 如請求項12之方法,其中該等維度異向性奈米材料為奈米線或奈米管。
  14. 如請求項12之方法,其中該疊層步驟包含將該轉印膜疊層到一玻璃、石英、或藍寶石基材。
  15. 如請求項12之方法,其中該疊層步驟包含將該轉印膜疊層到一晶狀支撐晶圓或到一支撐晶圓上的半導體材料。
  16. 一種用於轉印奈米線到熱穩定受體基材的方法,其包含以下步驟:提供一轉印膜,該轉印膜包含一第一犧牲基材、一第二犧牲基材、以及在該第一基材與該第二基材之間的一維度異向性奈米材料配方;在一熱處理之下將該轉印膜單軸拉伸;將一結構賦予到與該維度異向性奈米材料配方對置之一側上的該第一基材上,以產生一結構化表面於該第一基材上;將一回填層施加到該轉印膜,該回填層具有實質符合該第一基材之該結構化表面的一第一表面以及與該第一表面對置的一第二表面;將具有該回填層的該轉印膜疊層到一熱穩定受體基材,該回填層的該第二表面係施加到該熱穩定受體基材;以及將該第一犧牲基材與該第二犧牲基材烘乾,以從該維度異向性奈米材料配方產生經對準且模板化的維度異向性奈米材料在該熱穩定受體基材上之該回填層的第一表面上。
  17. 如請求項16之方法,其中該等維度異向性奈米材料為奈米線或奈米管。
  18. 如請求項16之方法,其中該疊層步驟包含將該轉印膜疊層到一玻璃、石英、或藍寶石基材。
  19. 如請求項16之方法,其中該疊層步驟包含將該轉印膜疊層到一晶狀支 撐晶圓或到一支撐晶圓上的半導體材料。
  20. 一種用於轉印奈米線到熱穩定受體基材的方法,其包含以下步驟:提供一轉印膜,該轉印膜包含一犧牲材料與維度異向性奈米材料;在一熱處理之下將該轉印膜單軸拉伸;將一結構賦予在該轉印膜上,以產生具有一結構化表面以及與第一表面對置之一第二表面的一轉印膜;將一回填層施加到該轉印膜,該回填層具有實質符合該轉印膜之該結構化表面的一第一表面以及與該第一表面對置的一第二表面;將具有該回填層的該轉印膜疊層到一熱穩定受體基材,該回填層的該第二表面係施加到該熱穩定受體基材;以及將該犧牲材料烘乾,以產生經對準且模板化的維度異向性奈米材料在該熱穩定受體基材上之該回填層的第一表面上。
  21. 如請求項20之方法,其中該等維度異向性奈米材料為奈米線或奈米管。
  22. 如請求項20之方法,其中該疊層步驟包含將該轉印膜疊層到一玻璃、石英、或藍寶石基材。
  23. 如請求項20之方法,其中該疊層步驟包含將該轉印膜疊層到一晶狀支撐晶圓或到一支撐晶圓上的半導體材料。
  24. 一種使用於轉印一結構化層的疊層轉印膜,其包含:一犧牲模板層,其具有一第一表面且具有與該第一表面對置的一第二表面,其中該第二表面包含一非平面的結構化表面;以及一熱穩定回填層,其施加到該犧牲模板層的該第二表面,其中該回填層具有對應於且施加到該犧牲模板層之該非平面結構化表面的一結構化表面,其中該犧牲模板層包含經定向的維度異向性無機奈米材料,且能夠自該回填層被移除同時留下實質完整之該回填層的該結構化表面以及該等經定向的維度異向性無機奈米材料。
TW104128196A 2014-08-27 2015-08-27 工程化週期性結構內之奈米粒子與奈米線的熱輔助自組裝方法 TW201637835A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/470,324 US9472788B2 (en) 2014-08-27 2014-08-27 Thermally-assisted self-assembly method of nanoparticles and nanowires within engineered periodic structures

Publications (1)

Publication Number Publication Date
TW201637835A true TW201637835A (zh) 2016-11-01

Family

ID=54197040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104128196A TW201637835A (zh) 2014-08-27 2015-08-27 工程化週期性結構內之奈米粒子與奈米線的熱輔助自組裝方法

Country Status (7)

Country Link
US (2) US9472788B2 (zh)
EP (1) EP3186208A2 (zh)
JP (1) JP2017529302A (zh)
KR (1) KR20170048419A (zh)
CN (1) CN106794659A (zh)
TW (1) TW201637835A (zh)
WO (1) WO2016033189A2 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112253A1 (de) * 2013-11-07 2015-05-07 Osram Oled Gmbh Optoelektronisches Bauelement, Verfahren zum Betreiben eines optoelektronischen Bauelementes und Verfahren zum Herstellen eines optoelektronischen Bauelementes
US20150202834A1 (en) * 2014-01-20 2015-07-23 3M Innovative Properties Company Lamination transfer films for forming antireflective structures
KR102456918B1 (ko) 2014-01-22 2022-10-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 글레이징을 위한 미세광학체
KR102220405B1 (ko) * 2014-07-25 2021-02-25 삼성전자주식회사 광학소자 및 이를 포함한 전자 장치
US10008396B2 (en) * 2014-10-06 2018-06-26 Lam Research Corporation Method for collapse-free drying of high aspect ratio structures
EP3209841B1 (en) 2014-10-20 2021-04-07 3M Innovative Properties Company Insulated glazing units and microoptical layer comprising microstructured diffuser and methods
US9942979B2 (en) * 2014-11-03 2018-04-10 Samsung Electronics Co., Ltd. Flexible printed circuit board
US10518512B2 (en) 2015-03-31 2019-12-31 3M Innovative Properties Company Method of forming dual-cure nanostructure transfer film
US10106643B2 (en) 2015-03-31 2018-10-23 3M Innovative Properties Company Dual-cure nanostructure transfer film
CN104966789A (zh) * 2015-06-30 2015-10-07 深圳市华星光电技术有限公司 一种电荷连接层及其制造方法、叠层oled器件
KR20170018718A (ko) * 2015-08-10 2017-02-20 삼성전자주식회사 비정질 합금을 이용한 투명 전극 및 그 제조 방법
CN105226198A (zh) * 2015-10-13 2016-01-06 京东方科技集团股份有限公司 一种防水增透型柔性oled器件装置及其制备方法
CN105742327B (zh) * 2016-02-15 2018-12-07 京东方科技集团股份有限公司 一种oled显示装置及其制备方法
US11211305B2 (en) 2016-04-01 2021-12-28 Texas Instruments Incorporated Apparatus and method to support thermal management of semiconductor-based components
US10861796B2 (en) 2016-05-10 2020-12-08 Texas Instruments Incorporated Floating die package
KR20190005242A (ko) * 2016-06-02 2019-01-15 더 리전츠 오브 더 유니버시티 오브 캘리포니아 유기 프리 라디컬들을 사용한 초박형 금속 나노와이어들의 합성
CN109071856A (zh) * 2016-12-29 2018-12-21 苏州中科纳福材料科技有限公司 具有光子晶体结构的转印膜及其制备方法
US10074639B2 (en) 2016-12-30 2018-09-11 Texas Instruments Incorporated Isolator integrated circuits with package structure cavity and fabrication methods
US9929110B1 (en) 2016-12-30 2018-03-27 Texas Instruments Incorporated Integrated circuit wave device and method
US10411150B2 (en) 2016-12-30 2019-09-10 Texas Instruments Incorporated Optical isolation systems and circuits and photon detectors with extended lateral P-N junctions
US10121847B2 (en) 2017-03-17 2018-11-06 Texas Instruments Incorporated Galvanic isolation device
TWI766106B (zh) 2017-09-29 2022-06-01 荷蘭商耐克創新有限合夥公司 具有結構性色彩的物件
CN109301073B (zh) * 2018-10-23 2022-02-01 中国科学院重庆绿色智能技术研究院 氧化锌纳米线/二茂铁基聚噻吩复合材料、金电极及其制备方法
WO2020129134A1 (ja) * 2018-12-17 2020-06-25 シャープ株式会社 電界発光素子および表示デバイス
US10600980B1 (en) * 2018-12-18 2020-03-24 Sharp Kabushiki Kaisha Quantum dot light-emitting diode (LED) with roughened electrode
EP3969947A1 (en) 2019-06-26 2022-03-23 Nike Innovate C.V. Structurally-colored articles and methods for making and using structurally-colored articles
WO2021021562A1 (en) 2019-07-26 2021-02-04 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11986042B2 (en) 2019-10-21 2024-05-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
EP4107007B1 (en) 2020-05-29 2023-08-30 Nike Innovate C.V. Structurally-colored articles and methods for making and using structurally-colored articles
US11889894B2 (en) 2020-08-07 2024-02-06 Nike, Inc. Footwear article having concealing layer
US11129444B1 (en) 2020-08-07 2021-09-28 Nike, Inc. Footwear article having repurposed material with concealing layer
US11241062B1 (en) 2020-08-07 2022-02-08 Nike, Inc. Footwear article having repurposed material with structural-color concealing layer
CN112086584B (zh) * 2020-09-14 2022-05-24 南京贝迪新材料科技股份有限公司 一种复合光学膜及其制备方法

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT610737A (zh) 1955-11-18 1900-01-01
US5693446A (en) 1996-04-17 1997-12-02 Minnesota Mining And Manufacturing Company Polarizing mass transfer donor element and method of transferring a polarizing mass transfer layer
US6015719A (en) 1997-10-24 2000-01-18 Hewlett-Packard Company Transparent substrate light emitting diodes with directed light output
US6329058B1 (en) 1998-07-30 2001-12-11 3M Innovative Properties Company Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers
US6521324B1 (en) 1999-11-30 2003-02-18 3M Innovative Properties Company Thermal transfer of microstructured layers
US7045195B2 (en) 2000-10-16 2006-05-16 Governing Council Of The University Of Toronto Composite materials having substrates with self-assembled colloidal crystalline patterns thereon
US6485884B2 (en) 2001-04-27 2002-11-26 3M Innovative Properties Company Method for patterning oriented materials for organic electronic displays and devices
US6858253B2 (en) 2001-05-31 2005-02-22 3M Innovative Properties Company Method of making dimensionally stable composite article
US6849558B2 (en) 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
US20040194505A1 (en) 2003-04-01 2004-10-07 Ji Wang Method of making a photonic crystal preform
EP1678075A4 (en) * 2003-09-24 2008-09-24 Nano Cluster Devices Ltd ENGRAVING MASKS BASED ON NANOAGREGATES ASSEMBLED IN TEMPLATE ETCH MASKS BASED ON TEMPLATE-ASSEMBLED NANOCLUSTERS
KR100563059B1 (ko) 2003-11-28 2006-03-24 삼성에스디아이 주식회사 유기 전계 발광 디스플레이 장치 및 이의 제조에 사용되는레이저 열전사용 도너 필름
US7419912B2 (en) 2004-04-01 2008-09-02 Cree, Inc. Laser patterning of light emitting devices
DE102005017170B4 (de) 2005-04-13 2010-07-01 Ovd Kinegram Ag Transferfolie, Verfahren zu deren Herstellung sowie Mehrschichtkörper und dessen Verwendung
US20060270806A1 (en) 2005-05-26 2006-11-30 Hale Wesley R Miscible high Tg polyester/polymer blend compositions and films formed therefrom
US20110182805A1 (en) 2005-06-17 2011-07-28 Desimone Joseph M Nanoparticle fabrication methods, systems, and materials
US7569254B2 (en) 2005-08-22 2009-08-04 Eastman Kodak Company Nanocomposite materials comprising high loadings of filler materials and an in-situ method of making such materials
JP2007335253A (ja) 2006-06-15 2007-12-27 Toshiba Matsushita Display Technology Co Ltd 有機el表示装置
US7842153B2 (en) * 2006-06-23 2010-11-30 Atomic Energy Council-Institute Of Nuclear Energy Research Decal method for transferring platinum-and platinum alloy-based catalysts with nanonetwork structures
US8216636B2 (en) * 2006-07-28 2012-07-10 Nanyang Technological University Method of aligning nanotubes
WO2008130375A2 (en) 2006-10-10 2008-10-30 President And Fellows Of Harvard College Liquid films containing nanostructured materials
US7604916B2 (en) 2006-11-06 2009-10-20 3M Innovative Properties Company Donor films with pattern-directing layers
KR101321909B1 (ko) 2006-12-12 2013-10-25 삼성디스플레이 주식회사 프리즘 시트 및 이의 제조 방법
US20080233404A1 (en) 2007-03-22 2008-09-25 3M Innovative Properties Company Microreplication tools and patterns using laser induced thermal embossing
US20090015142A1 (en) 2007-07-13 2009-01-15 3M Innovative Properties Company Light extraction film for organic light emitting diode display devices
US8293354B2 (en) 2008-04-09 2012-10-23 The Regents Of The University Of Michigan UV curable silsesquioxane resins for nanoprint lithography
WO2010032721A1 (ja) * 2008-09-19 2010-03-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
TWI365812B (en) 2008-10-23 2012-06-11 Compal Electronics Inc Transfer film, method of manufacturing the same, transfer method and object surface structure
US8354291B2 (en) * 2008-11-24 2013-01-15 University Of Southern California Integrated circuits based on aligned nanotubes
US7957621B2 (en) 2008-12-17 2011-06-07 3M Innovative Properties Company Light extraction film with nanoparticle coatings
US8222352B2 (en) 2008-12-24 2012-07-17 Nitto Denko Corporation Silicone resin composition
JP5052534B2 (ja) 2009-01-08 2012-10-17 株式会社ブリヂストン 光硬化性転写シート、及びこれを用いた凹凸パターンの形成方法
US20130011608A1 (en) 2010-01-13 2013-01-10 Wolk Martin B Optical films with microstructured low refractive index nanovoided layers and methods therefor
WO2011155582A1 (ja) 2010-06-11 2011-12-15 株式会社日立ハイテクノロジーズ 微細構造転写用スタンパ及び微細構造転写装置
US8469551B2 (en) 2010-10-20 2013-06-25 3M Innovative Properties Company Light extraction films for increasing pixelated OLED output with reduced blur
US9513409B2 (en) 2010-12-09 2016-12-06 Asahi Kasei Kabushiki Kaisha Fine-structure layered product, preparation method of the fine-structure layered product and manufacturing method of a fine-structure product
US20130295328A1 (en) 2010-12-17 2013-11-07 3M Innovative Properties Company Transfer article having multi-sized particles and methods
US8692446B2 (en) 2011-03-17 2014-04-08 3M Innovative Properties Company OLED light extraction films having nanoparticles and periodic structures
US8659221B2 (en) 2011-08-26 2014-02-25 3M Innovative Properties Company OLED light extraction film with multi-periodic zones of nanostructures
US9780335B2 (en) 2012-07-20 2017-10-03 3M Innovative Properties Company Structured lamination transfer films and methods
US20140175707A1 (en) 2012-12-21 2014-06-26 3M Innovative Properties Company Methods of using nanostructured transfer tape and articles made therefrom
US9711744B2 (en) 2012-12-21 2017-07-18 3M Innovative Properties Company Patterned structured transfer tape
US20140242343A1 (en) 2013-02-27 2014-08-28 3M Innovative Properties Company Lamination transfer films for forming embedded nanostructures
KR101402989B1 (ko) * 2013-06-12 2014-06-11 한국과학기술연구원 기판과의 결합력이 향상된 탄소나노튜브 기반 전계효과트랜지스터 소자의 제조방법 및 이에 의하여 제조된 탄소나노튜브 기반 전계효과트랜지스터 소자
US9246134B2 (en) 2014-01-20 2016-01-26 3M Innovative Properties Company Lamination transfer films for forming articles with engineered voids
US20150202834A1 (en) 2014-01-20 2015-07-23 3M Innovative Properties Company Lamination transfer films for forming antireflective structures
EP3096945B1 (en) 2014-01-20 2019-08-14 3M Innovative Properties Company Lamination transfer films for forming reentrant structures
KR102456918B1 (ko) 2014-01-22 2022-10-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 글레이징을 위한 미세광학체

Also Published As

Publication number Publication date
KR20170048419A (ko) 2017-05-08
US20160064696A1 (en) 2016-03-03
US20170012247A1 (en) 2017-01-12
WO2016033189A3 (en) 2016-05-06
CN106794659A (zh) 2017-05-31
US9761844B2 (en) 2017-09-12
JP2017529302A (ja) 2017-10-05
EP3186208A2 (en) 2017-07-05
US9472788B2 (en) 2016-10-18
WO2016033189A2 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
TW201637835A (zh) 工程化週期性結構內之奈米粒子與奈米線的熱輔助自組裝方法
KR102352466B1 (ko) 반사방지 구조체를 형성하기 위한 라미네이션 전사 필름
US9731473B2 (en) Articles with lamination transfer films having engineered voids
EP3332964B1 (en) Lamination transfer films for forming embedded nanostructures
US10590697B2 (en) Microoptics for glazing
US10220600B2 (en) Lamination transfer films for forming reentrant structures
CN106796985B (zh) 无机多层层压转印膜
Jun et al. Fabrication of SnO2 nano-to-microscale structures from SnO2-nanoparticle-dispersed resin via thermal nanoimprint lithography