TW201636633A - Magnetic sensor circuit - Google Patents

Magnetic sensor circuit Download PDF

Info

Publication number
TW201636633A
TW201636633A TW105105594A TW105105594A TW201636633A TW 201636633 A TW201636633 A TW 201636633A TW 105105594 A TW105105594 A TW 105105594A TW 105105594 A TW105105594 A TW 105105594A TW 201636633 A TW201636633 A TW 201636633A
Authority
TW
Taiwan
Prior art keywords
circuit
period
hall elements
hall element
magnetic sensing
Prior art date
Application number
TW105105594A
Other languages
Chinese (zh)
Other versions
TWI658283B (en
Inventor
Masao Iriguchi
Original Assignee
Sii Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sii Semiconductor Corp filed Critical Sii Semiconductor Corp
Publication of TW201636633A publication Critical patent/TW201636633A/en
Application granted granted Critical
Publication of TWI658283B publication Critical patent/TWI658283B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices

Abstract

To provide a magnetic sensor circuit which does not output spike-like voltage errors to a signal processing circuit. A magnetic sensor circuit is provided which is configured so as to output an output signal to a signal processing circuit through a plurality of hall elements driven by a first switch circuit and a second switch circuit controlled by a second control circuit and in which the first switch circuit controls timings at which spikes occur in the output signal of each of the hall elements in such a manner that the timings are not the same, and the second switch circuit selects and outputs an output signal having a period of a timing free of the occurrence of a spike.

Description

磁感測電路Magnetic sensing circuit

本發明是有關於一種磁感測(magnetic sensor)電路,更詳細而言,本發明是有關於一種可降低在霍爾元件(Hall element)的端子切換時發生的尖峰(spike)的磁感測電路。The present invention relates to a magnetic sensor circuit, and more particularly to a magnetic sensing that can reduce spikes that occur when a Hall element is switched. Circuit.

磁感測電路包含霍爾元件與信號處理電路,但在霍爾元件或信號處理電路中會產生偏移(offset)電壓,即使在未施加有磁場的零磁場狀態下,仍會輸出並非為零的電壓。The magnetic sensing circuit includes a Hall element and a signal processing circuit, but an offset voltage is generated in the Hall element or the signal processing circuit, and the output is not zero even in a zero magnetic field state in which no magnetic field is applied. Voltage.

作為該霍爾元件的偏移電壓的原因,可列舉製造上的偏差或應力、周邊磁場的影響等。對於霍爾元件的偏移電壓的課題,一般使用被稱作旋轉電流(spinning current)法的驅動方法。The cause of the offset voltage of the Hall element is a variation in manufacturing or stress, an influence of a peripheral magnetic field, and the like. For the problem of the offset voltage of the Hall element, a driving method called a spinning current method is generally used.

在正方形形狀的霍爾元件中將各端子置於4個角落處的情況下,在使驅動電流流經0度的對向端子的情況與使驅動電流流經90度的對向端子的情況下,在施加有磁場時,偏移電壓為逆相,與磁場相應的電壓為同相,因此將他們進行相加,並導出偏移誤差經降低的有意義的信號來進行信號處理。In the case where the terminals are placed at four corners in a square-shaped Hall element, in the case where the driving current is caused to flow through the opposite terminal of 0 degree and the driving current is caused to flow through the opposite terminal of 90 degrees. When a magnetic field is applied, the offset voltage is reversed, and the voltages corresponding to the magnetic field are in phase, so they are added together, and a meaningful signal with a reduced offset error is derived for signal processing.

圖17是表示以往的二次旋轉的磁感測電路的電路圖。17 is a circuit diagram showing a conventional secondary rotation magnetic sensing circuit.

霍爾元件1具有4個端子(節點N1~N4),經由受第一控制電路5控制的第一開關電路3而與電源電壓及接地電壓連接。信號處理電路2經由受第二控制電路6控制的第二開關電路4而與霍爾元件1連接。The Hall element 1 has four terminals (nodes N1 to N4) and is connected to a power supply voltage and a ground voltage via a first switching circuit 3 controlled by the first control circuit 5. The signal processing circuit 2 is connected to the Hall element 1 via a second switching circuit 4 controlled by the second control circuit 6.

圖18表示以往的二次旋轉的磁感測電路的時間圖。圖中,在控制信號為高位準時接通(switch on),在控制信號為低位準時切斷(switch off)。一旋轉期間被分割為期間f1與期間f2。Fig. 18 is a timing chart showing a conventional secondary rotation magnetic sensing circuit. In the figure, the switch is turned on when the control signal is at a high level, and is switched off when the control signal is at a low level. A rotation period is divided into a period f1 and a period f2.

在期間f1,控制信號SS1V、SS1G、SS1P、SS1M為高位準。因而,在期間f1內,恆電流源15連接於節點N2,接地電壓連接於節點N4,節點N1連接於正輸入端子INP,節點N3連接於負輸入端子INM。In the period f1, the control signals SS1V, SS1G, SS1P, SS1M are at a high level. Therefore, in the period f1, the constant current source 15 is connected to the node N2, the ground voltage is connected to the node N4, the node N1 is connected to the positive input terminal INP, and the node N3 is connected to the negative input terminal INM.

在期間f2,控制信號SS2V、SS2G、SS2P、SS2M為高位準。在期間f2,恆電流源7連接於節點N3,接地電壓連接於節點N1,節點N2連接於正輸入端子INP,節點N4連接於負輸入端子INM。During the period f2, the control signals SS2V, SS2G, SS2P, SS2M are at a high level. In the period f2, the constant current source 7 is connected to the node N3, the ground voltage is connected to the node N1, the node N2 is connected to the positive input terminal INP, and the node N4 is connected to the negative input terminal INM.

藉由所述連接,差動信號(INP-INM)在f1、f2的期間,成為與磁相應的信號電壓Vsig。而且,在f1期間,在切換之後立即產生負的尖峰狀電壓,在f2期間,產生正的尖峰狀電壓。By the connection, the differential signal (INP-INM) becomes the signal voltage Vsig corresponding to the magnetic phase during the period of f1 and f2. Moreover, during f1, a negative spike voltage is generated immediately after switching, and during f2, a positive spike voltage is generated.

作為針對所述尖峰狀電壓誤差的對策,例如已知有專利文獻1、專利文獻2的方法。專利文獻1中,利用在順時針方向與逆時針方向的旋轉切換時產生的尖峰狀電壓誤差是以正負的反符號而產生的現象,將他們相加或平均化,從而降低誤差。另一方面,專利文獻2中,將針對一個霍爾元件而具有取樣保持電路的離散信號處理電路為前提,在旋轉切換之後,霍爾元件與信號處理電路立即分離,信號處理電路基於取樣保持電路所保持的信號來進行信號處理,因此切換之後的尖峰狀誤差期間的信號傳遞被屏蔽(mask),從而降低尖峰狀誤差對信號處理精度造成的影響。 現有技術文獻 專利文獻 專利文獻1:美國專利第6927572號說明書 專利文獻2:美國專利第5621319號說明書 [發明所欲解決之課題]As a countermeasure against the spike-shaped voltage error, for example, the methods of Patent Document 1 and Patent Document 2 are known. In Patent Document 1, a spike-shaped voltage error generated when switching between a clockwise direction and a counterclockwise direction is caused by a positive or negative inverse sign, and they are added or averaged to reduce an error. On the other hand, in Patent Document 2, a discrete signal processing circuit having a sample-and-hold circuit for a Hall element is assumed, and after the rotation switching, the Hall element is immediately separated from the signal processing circuit, and the signal processing circuit is based on the sample-and-hold circuit. The held signal is used for signal processing, so signal transmission during spike-like errors after switching is masked, thereby reducing the effect of spike-like errors on signal processing accuracy. CITATION LIST Patent Literature Patent Literature 1: U.S. Patent No. 6,297,572, Patent Document 2: U.S. Patent No. 5,621,319 [Problem to be Solved by the Invention]

在專利文獻1所記載的方法中,採用了使正的尖峰狀誤差與負的尖峰狀誤差抵消的方法,但正的尖峰狀誤差與負的尖峰狀誤差是因製造偏差或元件結構等引起,並不完全一致,從而成為殘留誤差的因素。In the method described in Patent Document 1, a method of canceling a positive spike-like error and a negative spike-like error is employed, but a positive spike-like error and a negative spike-like error are caused by manufacturing variations or component configurations. Not exactly the same, which becomes a factor of residual error.

在專利文獻2的方法中,是以具備取樣保持電路的離散時間信號處理為前提,從而存在霍爾元件的輸出信號未被傳遞至信號處理電路的、被屏蔽的期間,因此不適合於連續時間信號處理。In the method of Patent Document 2, it is premised on the discrete-time signal processing including the sample-and-hold circuit, and there is a period in which the output signal of the Hall element is not transmitted to the signal processing circuit, and thus is not suitable for the continuous-time signal. deal with.

本發明是有鑒於所述課題而完成,其目的在於提供一種磁感測電路,所述磁感測電路具有降低尖峰狀電壓誤差的電路,該電路無論是對於連續時間信號處理電路,抑或是對於離散時間信號處理電路均適合。 [解決課題之手段]The present invention has been made in view of the above problems, and an object thereof is to provide a magnetic sensing circuit having a circuit for reducing a spike-like voltage error, whether for a continuous-time signal processing circuit or Discrete time signal processing circuits are suitable. [Means for solving the problem]

作為用於解決課題之技術手段,本發明所揭示的發明大致以下述方式構成。As a technical means for solving the problem, the invention disclosed in the present invention is basically configured as follows.

磁感測電路包括:多個霍爾元件,包括多個端子;第一開關電路,設置於所述多個霍爾元件的多個端子與電源端子及接地端子之間,對所述多個霍爾元件切換供給驅動電流;第二開關電路,連接於所述多個霍爾元件的多個端子,選擇輸出所述多個霍爾元件的輸出信號;第一控制電路,對所述第一開關電路輸出第一控制信號;第二控制電路,對所述第二開關電路輸出第二控制信號;以及信號處理電路,接收所述第二開關電路所輸出的輸出信號,並進行信號處理,所述第一控制電路控制所述多個霍爾元件,以使所述多個霍爾元件的輸出信號中產生尖峰的時刻不同,所述第二控制電路控制所述第二開關電路,以不選擇所述多個霍爾元件的輸出信號中產生了尖峰的固定期間的輸出信號,且選擇所述多個霍爾元件的輸出信號中的未產生尖峰的固定期間的輸出信號,對於所述第二開關電路的輸出,在所有期間選擇輸出所述多個霍爾元件中的任一個以上的輸出信號。 [發明的效果]The magnetic sensing circuit includes: a plurality of Hall elements including a plurality of terminals; a first switching circuit disposed between the plurality of terminals of the plurality of Hall elements and the power terminal and the ground terminal The element switching is supplied with a driving current; the second switching circuit is connected to the plurality of terminals of the plurality of Hall elements, and selectively outputs an output signal of the plurality of Hall elements; the first control circuit is opposite to the first switch The circuit outputs a first control signal; the second control circuit outputs a second control signal to the second switch circuit; and a signal processing circuit that receives an output signal output by the second switch circuit and performs signal processing, a first control circuit controlling the plurality of Hall elements such that a timing at which a peak occurs in an output signal of the plurality of Hall elements is different, the second control circuit controlling the second switching circuit to not select An output signal of a fixed period of a peak is generated in an output signal of the plurality of Hall elements, and an output of a fixed period in which no spike is generated in an output signal of the plurality of Hall elements is selected No., the output of the second switch circuit, the output signal during the selection of all one or more elements of any of the plurality of Hall. [Effects of the Invention]

根據本發明,不會產生在將霍爾元件的旋轉切換之後的尖峰狀電壓誤差利用正負尖峰來直接抵消的情況下所引起的殘留誤差。而且,藉由使用多個霍爾元件來選擇輸出尖峰狀電壓消失的固定時間後的電壓值,從而可大幅降低因霍爾元件電容引起的尖峰狀電壓誤差。而且,由於始終使用尖峰狀誤差消失的期間的信號,因此可實現旋轉頻率的高速化。According to the present invention, the residual error caused in the case where the spike-shaped voltage error after the switching of the rotation of the Hall element is directly canceled by the positive and negative peaks is not generated. Further, by using a plurality of Hall elements to select a voltage value after a fixed time when the output spike voltage disappears, the spike-shaped voltage error due to the capacitance of the Hall element can be greatly reduced. Further, since the signal during the period in which the spike-like error disappears is always used, the rotation frequency can be increased.

進而,根據本發明,各霍爾元件避免了尖峰狀誤差的期間,藉此可實現信號處理電路(例如類比/數位(analog digital)轉換器)的處理轉換速率(rate)的高速化。而且,可使霍爾元件的輸出信號電壓連續傳輸至信號處理電路,適合於連續信號處理。而且,在以第一相、第二相來進行多重取樣而使用信號處理電路的情況下,可不間斷地傳輸霍爾輸出信號。而且,在使用測量放大器的離散時間信號處理的情況下,不會產生無用的充放電,因此可削減測量放大器的消耗電流。Further, according to the present invention, each Hall element avoids a period of a spike-like error, whereby the processing conversion rate of the signal processing circuit (for example, an analog/digital converter) can be increased. Moreover, the output signal voltage of the Hall element can be continuously transmitted to the signal processing circuit, which is suitable for continuous signal processing. Further, when the signal processing circuit is used for multi-sampling with the first phase and the second phase, the Hall output signal can be transmitted without interruption. Moreover, in the case of discrete-time signal processing using a measurement amplifier, useless charge and discharge are not generated, so that the current consumption of the measurement amplifier can be reduced.

以下,參照電路圖來說明本發明的磁感測電路的實施形態。 <第一實施形態>Hereinafter, an embodiment of the magnetic sensing circuit of the present invention will be described with reference to a circuit diagram. <First Embodiment>

圖1是第一實施形態的磁感測電路的電路圖。Fig. 1 is a circuit diagram of a magnetic sensing circuit of a first embodiment.

磁感測電路包括第一霍爾元件1A、第二霍爾元件1B、第一開關電路13、第二開關電路14、第一控制電路11、第二控制電路12、恆電流源15以及信號處理電路16。信號處理電路16相當於斬波(chopping)的調變/解調電路或者加法或濾波(filter)處理電路、類比/數位轉換器、比較器(comparator)(磁開關電路)等。The magnetic sensing circuit includes a first Hall element 1A, a second Hall element 1B, a first switching circuit 13, a second switching circuit 14, a first control circuit 11, a second control circuit 12, a constant current source 15, and signal processing. Circuit 16. The signal processing circuit 16 corresponds to a chopping modulation/demodulation circuit or an addition or filter processing circuit, an analog/digital converter, a comparator (magnetic switching circuit), and the like.

第一霍爾元件1A具有4個端子,將各端子的節點(node)設為N1A~N4A。第二霍爾元件1B具有4個端子,將各端子的節點設為N1B~N4B。信號處理電路16具有正相輸入端子INP與負相輸入端子INM。The first Hall element 1A has four terminals, and the nodes of the respective terminals are N1A to N4A. The second Hall element 1B has four terminals, and the nodes of the respective terminals are N1B to N4B. The signal processing circuit 16 has a positive phase input terminal INP and a negative phase input terminal INM.

第一霍爾元件1A經由受第一控制電路11控制的第一開關電路13而與電源電壓及接地電壓連接,且第二霍爾元件1B經由受第二控制電路12控制的第二開關電路14而連接於信號處理電路16。The first Hall element 1A is connected to the power supply voltage and the ground voltage via the first switching circuit 13 controlled by the first control circuit 11, and the second Hall element 1B is connected to the second switching circuit 14 controlled by the second control circuit 12. It is connected to the signal processing circuit 16.

第一開關電路13的各開關分別以控制信號SS1VA、SS1VB、SS2VA、SS2VB、SS1GA、SS1GB、SS2GA、SS2GB受到控制。第二開關電路14的各開關分別以控制信號SS1PA、SS1PB、SS2PA、SS2PB、SS1MA、SS1MB、SS2MA、SS2MB受到控制。The switches of the first switching circuit 13 are controlled by control signals SS1VA, SS1VB, SS2VA, SS2VB, SS1GA, SS1GB, SS2GA, SS2GB, respectively. The switches of the second switching circuit 14 are controlled by control signals SS1PA, SS1PB, SS2PA, SS2PB, SS1MA, SS1MB, SS2MA, SS2MB, respectively.

接下來,對第一實施形態的磁感測電路的動作進行說明。圖2是表示第一實施形態的磁感測電路的電路動作的時間圖。Next, the operation of the magnetic sensing circuit of the first embodiment will be described. Fig. 2 is a timing chart showing the circuit operation of the magnetic sensing circuit of the first embodiment.

一旋轉期間被分割為期間f1與期間f2。而且,期間f1被分割為子(sub)期間f11與子期間f12,期間f2被分割為子期間f21與子期間f22。控制信號SS1VA、SS1GA在期間f1為高位準,控制信號SS2VA、SS2VG在期間f2為高位準,控制信號SS1VB、SS1GB在期間f12及期間f21為高位準,控制信號SS2VB、SS2GB在期間f22及期間f11為高位準。而且,控制信號SS1PA、SS1MA在期間f12為高位準,控制信號SS2PA、SS2MA在期間f22為高位準,控制信號SS1PB、SS1MB在期間f21為高位準,控制信號SS2PB、SS2MB在期間f11為高位準。A rotation period is divided into a period f1 and a period f2. Further, the period f1 is divided into a sub-period f11 and a sub-period f12, and the period f2 is divided into a sub-period f21 and a sub-period f22. The control signals SS1VA and SS1GA are at a high level during the period f1, the control signals SS2VA and SS2VG are at a high level during the period f2, the control signals SS1VB and SS1GB are at a high level during the period f12 and the period f21, and the control signals SS2VB and SS2GB are at the period f22 and the period f11. High level. Further, the control signals SS1PA, SS1MA are at a high level during the period f12, the control signals SS2PA, SS2MA are at a high level during the period f22, the control signals SS1PB, SS1MB are at a high level during the period f21, and the control signals SS2PB, SS2MB are at a high level during the period f11.

因而,在期間f11內,恆電流源15連接於節點N2A,接地電壓連接於節點N4A,恆電流源15連接於節點N3B,接地電壓連接於節點N1B,2個霍爾元件受到驅動。而且,霍爾元件1B的霍爾元件節點N2B連接於正相輸入端子INP,霍爾元件1B的霍爾元件節點N4B連接於負相輸入端子INM。在此期間,霍爾元件1B的旋轉切換時刻為期間f22的開始時,因此不會在差動輸出信號(INP-INM)中產生尖峰狀的電壓誤差。期間f12、期間f21、期間f22的動作原理亦同樣,霍爾元件1A、霍爾元件1B中任一者的未產生尖峰狀電壓誤差的期間內的差動信號被選擇輸出為信號處理電路16的輸入信號(INP-INM)。Therefore, in the period f11, the constant current source 15 is connected to the node N2A, the ground voltage is connected to the node N4A, the constant current source 15 is connected to the node N3B, the ground voltage is connected to the node N1B, and the two Hall elements are driven. Further, the Hall element node N2B of the Hall element 1B is connected to the normal phase input terminal INP, and the Hall element node N4B of the Hall element 1B is connected to the negative phase input terminal INM. During this period, the rotation switching timing of the Hall element 1B is at the beginning of the period f22, so that a spike-like voltage error is not generated in the differential output signal (INP-INM). The operation principle of the period f12, the period f21, and the period f22 is also the same, and the differential signal in the period in which no spike voltage error occurs in any of the Hall element 1A and the Hall element 1B is selected and output as the signal processing circuit 16. Input signal (INP-INM).

因而,在第一實施形態的磁感測電路的情況下,具有信號處理電路16的輸入不會產生尖峰狀誤差的優點。除此以外,在本實施形態中,藉由選擇尖峰狀誤差的期間受到屏蔽而穩定的期間的電壓,從而可進一步提高旋轉頻率以及信號處理電路16的信號處理轉換速率(例如類比/數位轉換器的取樣率(sampling rate))。因而,可將磁感測電路的訊號雜訊比(Signal Noise Ratio,S/N)保持固定。Therefore, in the case of the magnetic sensing circuit of the first embodiment, there is an advantage that the input of the signal processing circuit 16 does not cause a spike-like error. In addition, in the present embodiment, by selecting a voltage during which the period of the spike-like error is shielded and stabilized, the rotation frequency and the signal processing conversion rate of the signal processing circuit 16 can be further improved (for example, an analog/digital converter). Sampling rate). Therefore, the signal noise ratio (S/N) of the magnetic sensing circuit can be kept constant.

而且,可使霍爾元件的輸出信號電壓連續傳輸至信號處理電路16,適合於連續信號處理。Moreover, the output signal voltage of the Hall element can be continuously transmitted to the signal processing circuit 16, suitable for continuous signal processing.

而且,在使用測量放大器的離散時間信號處理的情況下,具有下述效果,即,不會產生無用的充放電而測量放大器的消耗電流不會增大。 <第二實施形態>Further, in the case of discrete-time signal processing using a measuring amplifier, there is an effect that the consumption current of the measuring amplifier does not increase without causing useless charging and discharging. <Second embodiment>

圖3是第二實施形態的磁感測電路的電路圖。Fig. 3 is a circuit diagram of a magnetic sensing circuit of the second embodiment.

本實施形態的磁感測電路包括第一霍爾元件1A、第二霍爾元件1B、第三霍爾元件1C、第四霍爾元件1D、第一開關電路33、第二開關電路34、第一控制電路31、第二控制電路32以及信號處理電路36。The magnetic sensing circuit of the present embodiment includes a first Hall element 1A, a second Hall element 1B, a third Hall element 1C, a fourth Hall element 1D, a first switching circuit 33, a second switching circuit 34, and a first A control circuit 31, a second control circuit 32, and a signal processing circuit 36.

第三霍爾元件1C及第四霍爾元件1D是與第一霍爾元件1A及第二霍爾元件1B同樣地具有4個端子,將各端子的節點設為N1C~N4C及N1D~N4D。信號處理電路36具有正相輸入端子INPA、INPB、INPC、INPD與負相輸入端子INMA、INMB、INMC、INMD。The third Hall element 1C and the fourth Hall element 1D have four terminals similarly to the first Hall element 1A and the second Hall element 1B, and the nodes of the respective terminals are N1C to N4C and N1D to N4D. The signal processing circuit 36 has positive phase input terminals INPA, INPB, INPC, INPD and negative phase input terminals INMA, INMB, INMC, INMD.

對於霍爾元件,是對第一實施形態的磁感測電路追加第三霍爾元件1C及第四霍爾元件1D,並同樣連接於第一開關電路33及第二開關電路34之間。In the Hall element, the third Hall element 1C and the fourth Hall element 1D are added to the magnetic sensing circuit of the first embodiment, and are similarly connected between the first switching circuit 33 and the second switching circuit 34.

第一開關電路33同樣地對應於4個霍爾元件而追加有開關。圖4是表示第一開關電路33的一例的電路圖。各輸入端子、各輸出端子及各開關以圖示般的關係進行連接並受到控制。Similarly, the first switch circuit 33 has a switch corresponding to the four Hall elements. FIG. 4 is a circuit diagram showing an example of the first switch circuit 33. Each input terminal, each output terminal, and each switch are connected and controlled in a diagram-like relationship.

第二開關電路34包括與信號處理電路36的各輸入端子對應的8個輸出端子。圖5是表示第二開關電路34的一例的電路圖。各輸入端子、各輸出端子及各開關以圖示般的關係進行連接並受到控制。The second switching circuit 34 includes eight output terminals corresponding to respective input terminals of the signal processing circuit 36. FIG. 5 is a circuit diagram showing an example of the second switch circuit 34. Each input terminal, each output terminal, and each switch are connected and controlled in a diagram-like relationship.

正相輸入端子(INPA、INPB、INPC、INPD)及負相輸入端子(INMA、INMB、INMC、INMD)分別各有4個,假定該些端子的信號由信號處理電路36內的加法電路(未圖示)轉換為電壓位準或電流位準後進行加法信號處理。There are four positive input terminals (INPA, INPB, INPC, INPD) and negative phase input terminals (INMA, INMB, INMC, INMD), respectively, assuming that the signals of the terminals are added by the signal processing circuit 36 (not The figure shows that the addition signal processing is performed after being converted to a voltage level or a current level.

接下來,對第二實施形態的磁感測電路的動作進行說明。圖6是表示第二實施形態的磁感測電路的電路動作的時間圖。Next, the operation of the magnetic sensing circuit of the second embodiment will be described. Fig. 6 is a timing chart showing the circuit operation of the magnetic sensing circuit of the second embodiment.

一旋轉期間被分割為期間f1、期間f2、期間f3與期間f4。而且,期間f1被分割為子期間f11、子期間f12、子期間f13與子期間f14,期間f2被分割為子期間f21、子期間f22、子期間f23與子期間f24,期間f3被分割為子期間f31、子期間f32、子期間f33與子期間f34,期間f4被分割為子期間f41、子期間f42、子期間f43與子期間f44。控制信號SS1VA、SS1GA在期間f1為高位準,控制信號SS2VA、SS2VG在期間f2為高位準,控制信號SS3VA、SS3VG在期間f3為高位準,控制信號SS4VA、SS4VG在期間f4為高位準,這些信號成為用於驅動霍爾元件1A的控制信號。其他霍爾元件1B、1C、1D的驅動信號亦同樣具備4個相,但如圖6所圖示,各自使時脈(clock)的相位錯開一個子期間。One rotation period is divided into period f1, period f2, period f3, and period f4. Further, the period f1 is divided into the sub-period f11, the sub-period f12, the sub-period f13, and the sub-period f14, and the period f2 is divided into the sub-period f21, the sub-period f22, the sub-period f23, and the sub-period f24, and the period f3 is divided into sub-periods. In the period f31, the sub-period f32, the sub-period f33, and the sub-period f34, the period f4 is divided into the sub-period f41, the sub-period f42, the sub-period f43, and the sub-period f44. The control signals SS1VA, SS1GA are at a high level during the period f1, the control signals SS2VA, SS2VG are at a high level during the period f2, the control signals SS3VA, SS3VG are at a high level during the period f3, and the control signals SS4VA, SS4VG are at a high level during the period f4, these signals It becomes a control signal for driving the Hall element 1A. The drive signals of the other Hall elements 1B, 1C, and 1D also have four phases. However, as shown in FIG. 6, the phases of the clocks are shifted by one sub-period.

對於與霍爾元件1A的輸出信號相關的控制信號,控制信號SS1PA、SS1MA在期間f12~期間f14為高位準,控制信號SS2PA、SS2MA在期間f22~期間f24為高位準,控制信號SS3PA、SS3MA在期間f32~期間f34為高位準,控制信號SS4PA、SS4MA在期間f42~期間f44為高位準。如圖6所示,其他霍爾元件1B、1C、1D亦具備帶有同樣的相位關係的控制信號,但在各霍爾元件中,使時脈的相位錯開一個子期間。For the control signal related to the output signal of the Hall element 1A, the control signals SS1PA, SS1MA are at a high level during the period f12 to the period f14, and the control signals SS2PA, SS2MA are at a high level during the period f22 to the period f24, and the control signals SS3PA, SS3MA are at The period f32 to the period f34 are at a high level, and the control signals SS4PA and SS4MA are at a high level in the period f42 to the period f44. As shown in FIG. 6, the other Hall elements 1B, 1C, and 1D also have control signals having the same phase relationship. However, in each of the Hall elements, the phase of the clock is shifted by one sub-period.

因而,在子期間f11內,霍爾元件1A產生了尖峰,但將霍爾元件1B、1C、1D的3個信號輸入至信號處理電路36。在其他子期間內亦同樣,將未產生尖峰的3個霍爾元件的輸出信號傳遞至信號處理電路36進行加法運算。Therefore, in the sub-period f11, the Hall element 1A generates a spike, but three signals of the Hall elements 1B, 1C, and 1D are input to the signal processing circuit 36. Similarly, in the other sub-periods, the output signals of the three Hall elements that have not generated peaks are transmitted to the signal processing circuit 36 for addition.

因而,在本實施形態的磁感測電路的情況下,具有信號處理電路36的輸入不會產生尖峰狀誤差的優點。而且,可使霍爾元件的輸出信號電壓連續傳輸至信號處理電路36,適合於連續信號處理。 <第三實施形態>Therefore, in the case of the magnetic sensing circuit of the present embodiment, there is an advantage that the input of the signal processing circuit 36 does not cause a spike-like error. Moreover, the output signal voltage of the Hall element can be continuously transmitted to the signal processing circuit 36, suitable for continuous signal processing. <Third embodiment>

圖7是第三實施形態的磁感測電路的電路圖。Fig. 7 is a circuit diagram of a magnetic sensing circuit of a third embodiment.

本實施形態的磁感測電路包括第一霍爾元件1A、第二霍爾元件1B、第三霍爾元件1C、第四霍爾元件1D、第一開關電路33、第二開關電路74、第一控制電路31、第二控制電路72以及信號處理電路16。The magnetic sensing circuit of the present embodiment includes a first Hall element 1A, a second Hall element 1B, a third Hall element 1C, a fourth Hall element 1D, a first switching circuit 33, a second switching circuit 74, and a first A control circuit 31, a second control circuit 72, and a signal processing circuit 16.

與第二實施形態的不同之處是:第二開關電路74的結構與第二控制電路72的控制信號不同;以及將信號處理電路16設為正相輸入端子INP與負相輸入端子INM這一對。The difference from the second embodiment is that the structure of the second switch circuit 74 is different from the control signal of the second control circuit 72; and the signal processing circuit 16 is set to the positive phase input terminal INP and the negative phase input terminal INM. Correct.

圖8是表示第二開關電路74的一例的電路圖。各輸入端子、各輸出端子及各開關以圖示般的關係來進行連接並受到控制。FIG. 8 is a circuit diagram showing an example of the second switch circuit 74. Each input terminal, each output terminal, and each switch are connected and controlled in a diagram-like relationship.

接下來,對第三實施形態的磁感測電路的動作進行說明。圖9是表示第三實施形態的磁感測電路的電路動作的時間圖。Next, the operation of the magnetic sensing circuit of the third embodiment will be described. Fig. 9 is a timing chart showing the circuit operation of the magnetic sensing circuit of the third embodiment.

本實施形態的時間圖與第二實施形態的時間圖的不同之處在於第二開關電路72的控制信號。例如,對於第一霍爾元件1A,在期間f14,控制信號(SS1PA、SS1MA)為高位準,在期間f24,控制信號SS2PA、SS2MA為高位準,在期間f34,控制信號SS3PA、SS3MA為高位準,在期間f44,控制信號SS4PA、SS4MA為高位準。對於第二霍爾元件1B~第四霍爾元件1D而言,亦為同樣相位關係的控制信號,但在霍爾元件間,時脈的相位錯開1子期間。因而,對於信號處理輸入(INP-INM),在f11期間選擇第二霍爾元件1B的信號,在f12期間選擇第三霍爾元件1C的信號,在f13期間選擇第四霍爾元件1D的信號,在f14期間選擇第一霍爾元件1A的信號。在其他子期間,亦根據同樣的原理來決定對信號處理電路16的輸入信號。The time chart of this embodiment differs from the time chart of the second embodiment in the control signal of the second switch circuit 72. For example, for the first Hall element 1A, during the period f14, the control signals (SS1PA, SS1MA) are at a high level, and during the period f24, the control signals SS2PA, SS2MA are at a high level, and during the period f34, the control signals SS3PA, SS3MA are at a high level. In the period f44, the control signals SS4PA, SS4MA are at a high level. The second Hall element 1B to the fourth Hall element 1D are also control signals having the same phase relationship. However, the phase of the clock is shifted by one sub-period between the Hall elements. Thus, for the signal processing input (INP-INM), the signal of the second Hall element 1B is selected during f11, the signal of the third Hall element 1C is selected during f12, and the signal of the fourth Hall element 1D is selected during f13 The signal of the first Hall element 1A is selected during f14. During the other sub-periods, the input signal to the signal processing circuit 16 is also determined according to the same principle.

因而,本實施形態的磁感測電路具有信號處理電路16的輸入不會產生尖峰狀誤差的優點。除此以外,本實施形態中,由於使用了4個霍爾元件,因此可將尖峰狀誤差的期間受到屏蔽而穩定的期間分為3個子期間,因此因霍爾元件電容引起的尖峰狀電壓誤差如指數函數般變得無限小。因而,可實現旋轉頻率以及信號處理電路16的信號處理轉換速率(例如類比/數位轉換器的取樣率)的進一步提高。因而,作為磁感測電路的系統,可將S/N保持固定,因此藉由提高時脈率(clock rate)而可避免損失(loss)量。而且,可使霍爾元件的輸出信號電壓連續傳輸至信號處理電路16,適合於連續信號處理。 <第四實施形態>Therefore, the magnetic sensing circuit of the present embodiment has an advantage that the input of the signal processing circuit 16 does not cause a spike-like error. In addition, in the present embodiment, since four Hall elements are used, the period in which the period of the spike-like error is shielded and stabilized can be divided into three sub-periods, and therefore the peak-shaped voltage error due to the capacitance of the Hall element can be obtained. As in the exponential function, it becomes infinitely small. Thus, a further increase in the rotational frequency and the signal processing slew rate of the signal processing circuit 16, such as the sampling rate of the analog/digital converter, can be achieved. Therefore, as a system of the magnetic sensing circuit, the S/N can be kept fixed, so the amount of loss can be avoided by increasing the clock rate. Moreover, the output signal voltage of the Hall element can be continuously transmitted to the signal processing circuit 16, suitable for continuous signal processing. <Fourth embodiment>

圖10是第四實施形態的磁感測電路的電路圖。Fig. 10 is a circuit diagram of a magnetic sensing circuit of a fourth embodiment.

本實施形態的磁感測電路與第二實施形態的電路結構相同,但第一開關電路103及第二開關電路104的電路不同。The magnetic sensing circuit of the present embodiment is the same as the circuit configuration of the second embodiment, but the circuits of the first switching circuit 103 and the second switching circuit 104 are different.

圖11是表示第一開關電路103的一例的電路圖。各輸入端子、各輸出端子及各開關是以圖示般的關係進行連接並受到控制。因而,以下述方式進行連接,即:霍爾元件1A依順時針方向旋轉,霍爾元件1B依逆時針方向旋轉,霍爾元件1C依順時針方向旋轉,霍爾元件1D依逆時針方向旋轉。FIG. 11 is a circuit diagram showing an example of the first switch circuit 103. Each input terminal, each output terminal, and each switch are connected and controlled in a diagram-like relationship. Therefore, the connection is performed in such a manner that the Hall element 1A rotates in the clockwise direction, the Hall element 1B rotates in the counterclockwise direction, the Hall element 1C rotates in the clockwise direction, and the Hall element 1D rotates in the counterclockwise direction.

圖12是表示第二開關電路104的一例的電路圖。各輸入端子、各輸出端子及各開關是以圖示般的關係進行連接並受到控制。第二開關電路104亦採用與和第一開關電路103同樣的旋轉對應的連接。FIG. 12 is a circuit diagram showing an example of the second switch circuit 104. Each input terminal, each output terminal, and each switch are connected and controlled in a diagram-like relationship. The second switching circuit 104 also adopts a connection corresponding to the same rotation as the first switching circuit 103.

接下來,對第四實施形態的磁感測電路的動作進行說明。圖13是表示第四實施形態的磁感測電路的電路動作的時間圖。Next, the operation of the magnetic sensing circuit of the fourth embodiment will be described. Fig. 13 is a timing chart showing the circuit operation of the magnetic sensing circuit of the fourth embodiment.

本實施形態的時間圖的控制信號與第二實施形態的時間圖相同,但霍爾元件1B與霍爾元件1D的差動信號的尖峰狀電壓誤差的符號為負。這是因為霍爾元件的旋轉的方式不同。The control signal of the time chart of the present embodiment is the same as the timing chart of the second embodiment, but the sign of the spike voltage error of the differential signal between the Hall element 1B and the Hall element 1D is negative. This is because the manner in which the Hall elements rotate is different.

本實施形態的磁感測電路中,選擇無尖峰的期間來作為輸出,但在實際的電路中,包含相對於時間常數τ(A×exp(-T/τ),此處T為進行屏蔽的穩定時間)的有限誤差。因而,對於霍爾元件1A、1C,實際會產生微小的誤差(A×exp(-T/τ)),對於霍爾元件1B、1D,實際會產生微小的誤差((-1)×A×exp(-T/τ))。因而,對於信號穩定的殘留誤差量,藉由使影響抵消,從而可進一步減小信號的誤差成分。In the magnetic sensing circuit of the present embodiment, the period without the peak is selected as the output, but the actual circuit includes the time constant τ (A × exp (-T / τ), where T is shielded. Limited time for stabilization time). Therefore, for the Hall elements 1A, 1C, a slight error (A × exp (-T / τ)) is actually generated, and for the Hall elements 1B, 1D, a slight error actually occurs ((-1) × A × Exp(-T/τ)). Therefore, the error component of the signal can be further reduced by offsetting the influence of the residual error amount of the signal stabilization.

本實施形態的磁感測電路中,由於選擇輸出尖峰消失後的穩定後電壓,因此由正/負尖峰電壓的波形形狀差造成的影響幾乎不起作用。In the magnetic sensing circuit of the present embodiment, since the post-stabilization voltage after the output spike disappears is selected, the influence of the waveform shape difference of the positive/negative spike voltage hardly acts.

圖14及圖15是表示本發明的磁感測電路的霍爾元件的結構的一例的電路圖。14 and 15 are circuit diagrams showing an example of a configuration of a Hall element of the magnetic sensing circuit of the present invention.

圖14將2個霍爾元件1a、1b如圖所示般連接於端子N1~N4,以成為一個霍爾元件1。霍爾元件1a、1b是將各端子相差0度、90度者連接成一個霍爾元件1。藉由如此般構成霍爾元件1,從而可抑制因布局引起的製造上的偏差或應力的影響。In Fig. 14, the two Hall elements 1a and 1b are connected to the terminals N1 to N4 as shown in the figure to form one Hall element 1. The Hall elements 1a and 1b are connected to each of the Hall elements 1 by a difference of 0 degrees and 90 degrees. By configuring the Hall element 1 in this manner, it is possible to suppress variations in manufacturing or stress due to layout.

圖15的霍爾元件1的結構亦同樣。The structure of the Hall element 1 of Fig. 15 is also the same.

圖16是表示對本發明的磁感測電路的霍爾元件進行驅動的驅動電路的結構的一例的電路圖。FIG. 16 is a circuit diagram showing an example of a configuration of a drive circuit that drives a Hall element of the magnetic sensing circuit of the present invention.

圖16的驅動電路設置有對4個霍爾元件1A、1B、1C、1D進行驅動的4個恆電流源15A、15B、15C、15D。並且,第一開關電路163以下述方式進行控制,即,在每次旋轉時,對驅動霍爾元件的恆電流源進行切換。藉由如此般構成驅動電路,可進一步抑制在旋轉切換時於驅動端產生的微弱的信號變動。The drive circuit of Fig. 16 is provided with four constant current sources 15A, 15B, 15C, and 15D that drive the four Hall elements 1A, 1B, 1C, and 1D. Further, the first switching circuit 163 is controlled to switch the constant current source that drives the Hall element every time it is rotated. By configuring the drive circuit in this manner, it is possible to further suppress weak signal fluctuations generated at the drive end during the rotation switching.

並且,在如圖16般包括4個霍爾元件的磁感測電路的情況下,將4次旋轉作為一週期,對驅動霍爾元件的恆電流源進行切換。藉由進行此種旋轉的控制,從而可抑制各恆電流源15A、15B、15C、15D的電流值偏差的影響。Further, in the case of a magnetic sensing circuit including four Hall elements as shown in FIG. 16, the constant current source for driving the Hall element is switched by using four rotations as one cycle. By performing such rotation control, it is possible to suppress the influence of variations in current values of the constant current sources 15A, 15B, 15C, and 15D.

根據圖16的驅動電路,本發明的磁感測電路可抑制在旋轉切換時於驅動端產生的微弱的信號變動。而且,根據如上所述的驅動方法,可抑制各恆電流源的電流偏差。According to the driving circuit of Fig. 16, the magnetic sensing circuit of the present invention can suppress weak signal fluctuations generated at the driving end during the switching of the rotation. Moreover, according to the driving method as described above, the current deviation of each constant current source can be suppressed.

以上,在本發明的實施形態的說明中,霍爾元件的形狀、端子及位置關係(0度、90度、180度、270度)等並不限定於圖式所示者,其他形狀或端子數的霍爾元件亦包含於發明的範圍中。As described above, in the description of the embodiment of the present invention, the shape, the terminal, and the positional relationship (0 degrees, 90 degrees, 180 degrees, and 270 degrees) of the Hall element are not limited to those shown in the drawings, and other shapes or terminals are provided. A number of Hall elements are also included in the scope of the invention.

而且,本發明並不限定於所述的實施形態,當然包含本領域技術人員可在本發明的範圍內所作的各種變形或修正。Further, the present invention is not limited to the embodiments described above, and various modifications and changes can be made by those skilled in the art within the scope of the invention.

1、1a、1A、1b、1B、1C、1D‧‧‧霍爾元件
2、16、36‧‧‧信號處理電路
3、13、33、103、163‧‧‧第一開關電路
4、14、34、74、104‧‧‧第二開關電路
5、11、31‧‧‧第一控制電路
6、12、32、72‧‧‧第二控制電路
7、15、15A、15B、15C、15D‧‧‧恆電流源
INM、INMA、INMB、INMC、INMD‧‧‧負相輸入端子
INP、INPA、INPB、INPC、INPD‧‧‧正相輸入端子
D1、D2、D1A、D1B、D1C、D4C、N1~N4、N1A~N4A、N1B~N4B、N1C~N4C、N1D~N4D‧‧‧節點
SS1G、SS1M、SS1P、SS1V、SS2G、SS2M、SS2P、SS2V、SS1GA、SS1GB、SS1MA、SS1MB、SS1PA、SS1PB、SS1VA、SS1VB、SS2GA、SS2GB、SS2MA、SS2MB、SS2PA、SS2PB、SS2VA、SS2VB、SS3MA、SS3PA、SS3VA、SS4MA、SS4PA、SS4VA‧‧‧控制信號
Vsig‧‧‧信號電壓
f1、f2、f3、f4‧‧‧期間
f11、f12、f13、f14、f21、f22、f23、f24、f31、f32、f33、f34、f41、f42、f43、f44‧‧‧子期間
1, 1a, 1A, 1b, 1B, 1C, 1D‧‧‧ Hall elements
2, 16, 36‧‧‧ signal processing circuit
3, 13, 33, 103, 163‧‧‧ first switch circuit
4, 14, 34, 74, 104‧‧‧ second switch circuit
5, 11, 31‧‧‧ first control circuit
6, 12, 32, 72‧‧‧ second control circuit
7, 15, 15A, 15B, 15C, 15D‧‧‧ constant current source
INM, INMA, INMB, INMC, INMD‧‧‧ negative phase input terminals
INP, INPA, INPB, INPC, INPD‧‧‧ positive phase input terminals
D1, D2, D1A, D1B, D1C, D4C, N1 to N4, N1A to N4A, N1B to N4B, N1C to N4C, N1D to N4D‧‧‧ nodes
SS1G, SS1M, SS1P, SS1V, SS2G, SS2M, SS2P, SS2V, SS1GA, SS1GB, SS1MA, SS1MB, SS1PA, SS1PB, SS1VA, SS1VB, SS2GA, SS2GB, SS2MA, SS2MB, SS2PA, SS2PB, SS2VA, SS2VB, SS3MA, SS3PA, SS3VA, SS4MA, SS4PA, SS4VA‧‧‧ control signals
Vsig‧‧‧Signal voltage
During f1, f2, f3, f4‧‧
F11, f12, f13, f14, f21, f22, f23, f24, f31, f32, f33, f34, f41, f42, f43, f44‧‧

圖1是第一實施形態的磁感測電路的電路圖。 圖2是表示第一實施形態的磁感測電路的電路動作的時間圖。 圖3是第二實施形態的磁感測電路的電路圖。 圖4是表示第二實施形態的磁感測電路的第一開關電路的一例的電路圖。 圖5是表示第二實施形態的磁感測電路的第二開關電路的一例的電路圖。 圖6是表示第二實施形態的磁感測電路的電路動作的時間圖。 圖7是第三實施形態的磁感測電路的電路圖。 圖8是表示第三實施形態的磁感測電路的第二開關電路的一例的電路圖。 圖9是表示第三實施形態的磁感測電路的電路動作的時間圖。 圖10是第四實施形態的磁感測電路的電路圖。 圖11是表示第四實施形態的磁感測電路的第一開關電路的一例的電路圖。 圖12是表示第四實施形態的磁感測電路的第二開關電路的一例的電路圖。 圖13是表示第四實施形態的磁感測電路的電路動作的時間圖。 圖14是表示本發明的磁感測電路的霍爾元件的結構的一例的電路圖。 圖15是表示本發明的磁感測電路的霍爾元件的結構的一例的電路圖。 圖16是表示本發明的磁感測電路的驅動電路的結構的一例的電路圖。 圖17是表示以往的二次旋轉的磁感測電路的電路圖。 圖18是以往的二次旋轉的磁感測電路的時間圖。Fig. 1 is a circuit diagram of a magnetic sensing circuit of a first embodiment. Fig. 2 is a timing chart showing the circuit operation of the magnetic sensing circuit of the first embodiment. Fig. 3 is a circuit diagram of a magnetic sensing circuit of the second embodiment. 4 is a circuit diagram showing an example of a first switching circuit of the magnetic sensing circuit of the second embodiment. Fig. 5 is a circuit diagram showing an example of a second switching circuit of the magnetic sensing circuit of the second embodiment. Fig. 6 is a timing chart showing the circuit operation of the magnetic sensing circuit of the second embodiment. Fig. 7 is a circuit diagram of a magnetic sensing circuit of a third embodiment. 8 is a circuit diagram showing an example of a second switching circuit of the magnetic sensing circuit of the third embodiment. Fig. 9 is a timing chart showing the circuit operation of the magnetic sensing circuit of the third embodiment. Fig. 10 is a circuit diagram of a magnetic sensing circuit of a fourth embodiment. Fig. 11 is a circuit diagram showing an example of a first switching circuit of the magnetic sensing circuit of the fourth embodiment. Fig. 12 is a circuit diagram showing an example of a second switching circuit of the magnetic sensing circuit of the fourth embodiment. Fig. 13 is a timing chart showing the circuit operation of the magnetic sensing circuit of the fourth embodiment. Fig. 14 is a circuit diagram showing an example of a configuration of a Hall element of the magnetic sensing circuit of the present invention. Fig. 15 is a circuit diagram showing an example of a configuration of a Hall element of the magnetic sensing circuit of the present invention. Fig. 16 is a circuit diagram showing an example of a configuration of a drive circuit of the magnetic sensing circuit of the present invention. 17 is a circuit diagram showing a conventional secondary rotation magnetic sensing circuit. Fig. 18 is a timing chart of a conventional secondary rotation magnetic sensing circuit.

1A、1B‧‧‧霍爾元件 1A, 1B‧‧‧ Hall element

11‧‧‧第一控制電路 11‧‧‧First control circuit

12‧‧‧第二控制電路 12‧‧‧Second control circuit

13‧‧‧第一開關電路 13‧‧‧First switch circuit

14‧‧‧第二開關電路 14‧‧‧Second switch circuit

15‧‧‧恆電流源 15‧‧‧ Constant current source

16‧‧‧信號處理電路 16‧‧‧Signal Processing Circuit

INM‧‧‧負相輸入端子 INM‧‧‧negative input terminal

INP‧‧‧正相輸入端子 INP‧‧‧Phase input terminal

D1、D2、N1A~N4A、N1B~N4B‧‧‧節點 D1, D2, N1A~N4A, N1B~N4B‧‧‧ nodes

SS1GA、SS1GB、SS1MA、SS1MB、SS1PA、SS1PB、SS1VA、SS1VB、SS2GA、SS2GB、SS2MA、SS2MB、SS2PA、SS2PB、SS2VA、SS2VB‧‧‧控制信號 SS1GA, SS1GB, SS1MA, SS1MB, SS1PA, SS1PB, SS1VA, SS1VB, SS2GA, SS2GB, SS2MA, SS2MB, SS2PA, SS2PB, SS2VA, SS2VB‧‧‧ Control signals

Claims (4)

一種磁感測電路,其特徵在於包括: 多個霍爾元件,包括多個端子; 第一開關電路,設置於所述多個霍爾元件的所述多個端子與電源端子及接地端子之間,對所述多個霍爾元件切換供給驅動電流; 第二開關電路,連接於所述多個霍爾元件的所述多個端子,選擇輸出所述多個霍爾元件的輸出信號; 第一控制電路,對所述第一開關電路輸出第一控制信號; 第二控制電路,對所述第二開關電路輸出第二控制信號;以及 信號處理電路,接收所述第二開關電路所輸出的輸出信號,並進行信號處理, 所述第一控制電路控制所述多個霍爾元件,以使所述多個霍爾元件的輸出信號中產生尖峰的時刻不同, 所述第二控制電路控制所述第二開關電路,以不選擇所述多個霍爾元件的輸出信號中產生了所述尖峰的固定期間的輸出信號,且選擇所述多個霍爾元件的輸出信號中的未產生所述尖峰的固定期間的輸出信號, 對於所述第二開關電路的輸出,在所有期間選擇輸出所述多個霍爾元件中的任一個以上的輸出信號。A magnetic sensing circuit, comprising: a plurality of Hall elements including a plurality of terminals; a first switching circuit disposed between the plurality of terminals of the plurality of Hall elements and a power terminal and a ground terminal And supplying a driving current to the plurality of Hall elements; the second switching circuit is connected to the plurality of terminals of the plurality of Hall elements, and selectively outputting an output signal of the plurality of Hall elements; a control circuit that outputs a first control signal to the first switching circuit; a second control circuit that outputs a second control signal to the second switching circuit; and a signal processing circuit that receives an output output by the second switching circuit Signaling and performing signal processing, the first control circuit controlling the plurality of Hall elements such that timings at which peaks are generated in output signals of the plurality of Hall elements are different, the second control circuit controlling the a second switching circuit that selects an output signal of the fixed period of the spike in an output signal of the plurality of Hall elements, and selects an output of the plurality of Hall elements An output signal is not generated during the fixed number of spikes, the output of the second switch circuit, the output signal at all during one or more of the plurality of Hall elements in any selected output. 如申請專利範圍第1項所述的磁感測電路,其中 在所述第一開關電路與所述電源端子之間設置有恆電流源。The magnetic sensing circuit of claim 1, wherein a constant current source is provided between the first switching circuit and the power supply terminal. 如申請專利範圍第2項所述的磁感測電路,其中 所述恆電流源是與所述多個霍爾元件對應地設置, 在每次旋轉時,藉由所述第一開關電路來切換連接至所述多個霍爾元件。The magnetic sensing circuit of claim 2, wherein the constant current source is disposed corresponding to the plurality of Hall elements, and is switched by the first switching circuit every time of rotation Connected to the plurality of Hall elements. 如申請專利範圍第1項至第3項中任一項所述的磁感測電路,其中 所述霍爾元件是將多個霍爾元件連接於所述霍爾元件的端子以成為一個霍爾元件。The magnetic sensing circuit according to any one of claims 1 to 3, wherein the Hall element is a terminal that connects a plurality of Hall elements to the Hall element to become a Hall element.
TW105105594A 2015-03-05 2016-02-25 Magnetic sensing circuit TWI658283B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-043913 2015-03-05
JP2015043913 2015-03-05
JP2016-010006 2016-01-21
JP2016010006A JP6618370B2 (en) 2015-03-05 2016-01-21 Magnetic sensor circuit

Publications (2)

Publication Number Publication Date
TW201636633A true TW201636633A (en) 2016-10-16
TWI658283B TWI658283B (en) 2019-05-01

Family

ID=56898566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105105594A TWI658283B (en) 2015-03-05 2016-02-25 Magnetic sensing circuit

Country Status (4)

Country Link
JP (1) JP6618370B2 (en)
KR (1) KR102522223B1 (en)
CN (1) CN105938184B (en)
TW (1) TWI658283B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239308B2 (en) 2018-03-14 2023-03-14 エイブリック株式会社 Semiconductor device and adjustment method thereof
JP2020188575A (en) * 2019-05-14 2020-11-19 日本電産株式会社 motor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516070A (en) * 1982-07-16 1985-05-07 At&T Bell Laboratories Magnetic current sensor with offset and load correction
DE3411997A1 (en) * 1984-03-31 1985-10-17 Boehringer Mannheim Gmbh, 6800 Mannheim NEW REDOX INDICATORS
US5621319A (en) 1995-12-08 1997-04-15 Allegro Microsystems, Inc. Chopped hall sensor with synchronously chopped sample-and-hold circuit
US6885185B1 (en) * 1998-12-01 2005-04-26 Itron Electricity Metering, Inc. Modular meter configuration and methodology
KR20040029306A (en) * 2000-11-08 2004-04-06 제너럴 일렉트릭 캄파니 Apparatus and method for detecting and calculating ground fault resistance
DE10204427B4 (en) 2002-02-04 2007-02-22 Infineon Technologies Ag Method and apparatus for compensating dynamic error signals of a Chopped Hall sensor
CN101611316A (en) * 2007-02-01 2009-12-23 皇家飞利浦电子股份有限公司 The magnetic sensor device of sensing magnetic particles and method
JP5343691B2 (en) 2009-05-11 2013-11-13 株式会社ニコン Magnetic rotation angle detector and encoder
US8729892B2 (en) * 2011-04-01 2014-05-20 Allegro Microsystems, Llc Differential magnetic field sensor structure for orientation independent measurement
JP5736288B2 (en) * 2011-09-27 2015-06-17 セイコーインスツル株式会社 Magnetic sensor device
JP5802187B2 (en) 2012-01-30 2015-10-28 旭化成エレクトロニクス株式会社 Hall electromotive force signal detection circuit and current sensor thereof
US9081041B2 (en) * 2012-04-04 2015-07-14 Allegro Microsystems, Llc High accuracy differential current sensor for applications like ground fault interrupters
WO2014155908A1 (en) * 2013-03-28 2014-10-02 旭化成エレクトロニクス株式会社 Hall electromotive force signal detection circuit, current sensor thereof, and hall element driving method
CN203217067U (en) * 2013-04-16 2013-09-25 中南林业科技大学 Three-dimensional magnetic field detection device based on thermally induced magnetic effects of sheet material stretching

Also Published As

Publication number Publication date
JP6618370B2 (en) 2019-12-11
KR20160108169A (en) 2016-09-19
TWI658283B (en) 2019-05-01
CN105938184A (en) 2016-09-14
KR102522223B1 (en) 2023-04-14
JP2016166862A (en) 2016-09-15
CN105938184B (en) 2020-05-12

Similar Documents

Publication Publication Date Title
US8716947B2 (en) LED current source digital to analog convertor
JP5634391B2 (en) Improved pulse width modulation scheme
US7683597B2 (en) PWM signal generating circuit and power supply apparatus comprising such PWM signal generating circuit
JP2017517974A (en) RC oscillator based on comparator without delay
US11671086B2 (en) Circuit system
US8030976B2 (en) Triangle wave generating circuit
JP6449167B2 (en) Complementary output generator module
JP2010056926A (en) D/a conversion circuit and digital input class-d amplifier
WO2023048978A2 (en) Adaptive clock duty-cycle controller
US8350741B2 (en) Device and method for driving digital-to-analog converter
ITMI20101163A1 (en) ELECTRONIC CIRCUIT FOR PILOTING A SWITCHING AMPLIFIER
TW201636633A (en) Magnetic sensor circuit
JP2009253522A (en) Semiconductor integrated circuit
WO2015043020A1 (en) High-precision voltage detection circuit and method
EP3064953B1 (en) Magnetic sensor circuit
JP5882539B2 (en) D / A converter and control method of D / A converter
TWI473432B (en) Multiphase clock divider
US9705480B2 (en) Circuit and method for generating an output signal having a variable pulse duty factor
JP2009124447A (en) Sampling device and analog/digital conversion device
JP4582053B2 (en) Pulse width modulation circuit and switching amplifier using the same
JP6418965B2 (en) Hall element drive circuit and sensor circuit
JP7444244B2 (en) track and hold circuit
JP4825738B2 (en) Pulse width modulation circuit
JP2021092394A (en) A/d conversion circuit
JP2010157941A (en) Pwm processing method and processing circuit