TWI658283B - Magnetic sensing circuit - Google Patents

Magnetic sensing circuit Download PDF

Info

Publication number
TWI658283B
TWI658283B TW105105594A TW105105594A TWI658283B TW I658283 B TWI658283 B TW I658283B TW 105105594 A TW105105594 A TW 105105594A TW 105105594 A TW105105594 A TW 105105594A TW I658283 B TWI658283 B TW I658283B
Authority
TW
Taiwan
Prior art keywords
circuit
period
hall elements
magnetic sensing
hall element
Prior art date
Application number
TW105105594A
Other languages
Chinese (zh)
Other versions
TW201636633A (en
Inventor
入口雅夫
Original Assignee
日商艾普凌科有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商艾普凌科有限公司 filed Critical 日商艾普凌科有限公司
Publication of TW201636633A publication Critical patent/TW201636633A/en
Application granted granted Critical
Publication of TWI658283B publication Critical patent/TWI658283B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices

Abstract

本發明提供一種不會對信號處理電路輸出尖峰狀電壓誤差的磁感測電路。磁感測電路的特徵在於構成為,經由受第一開關電路所驅動的多個霍爾元件與受第二控制電路所控制的第二開關電路,來對信號處理電路輸出輸出信號,第一開關電路進行控制,以使多個霍爾元件各自的輸出信號中產生尖峰的時刻不相同,第二開關電路選擇輸出未產生尖峰的時刻的期間的輸出信號。The invention provides a magnetic sensing circuit which does not output spike-shaped voltage errors to a signal processing circuit. The magnetic sensing circuit is characterized by being configured to output an output signal to a signal processing circuit via a plurality of Hall elements driven by a first switching circuit and a second switching circuit controlled by a second control circuit. The circuit controls such that the timings at which the spikes occur in the output signals of the plurality of Hall elements are different, and the second switch circuit selects and outputs the output signals during the time when the spikes are not generated.

Description

磁感測電路Magnetic sensing circuit

本發明是有關於一種磁感測(magnetic sensor)電路,更詳細而言,本發明是有關於一種可降低在霍爾元件(Hall element)的端子切換時發生的尖峰(spike)的磁感測電路。 The present invention relates to a magnetic sensor circuit. More specifically, the present invention relates to a magnetic sensor that can reduce spikes that occur when the terminals of a Hall element are switched. Circuit.

磁感測電路包含霍爾元件與信號處理電路,但在霍爾元件或信號處理電路中會產生偏移(offset)電壓,即使在未施加有磁場的零磁場狀態下,仍會輸出並非為零的電壓。 The magnetic sensing circuit includes a Hall element and a signal processing circuit, but an offset voltage is generated in the Hall element or the signal processing circuit, and the output is not zero even in a zero magnetic field state where no magnetic field is applied The voltage.

作為該霍爾元件的偏移電壓的原因,可列舉製造上的偏差或應力、周邊磁場的影響等。對於霍爾元件的偏移電壓的課題,一般使用被稱作旋轉電流(spinning current)法的驅動方法。 Examples of the cause of the offset voltage of the Hall element include manufacturing variations and stresses, and the influence of a peripheral magnetic field. For the problem of the offset voltage of the Hall element, a driving method called a spinning current method is generally used.

在正方形形狀的霍爾元件中將各端子置於4個角落處的情況下,在使驅動電流流經0度的對向端子的情況與使驅動電流流經90度的對向端子的情況下,在施加有磁場時,偏移電壓為逆相,與磁場相應的電壓為同相,因此將他們進行相加,並導出偏移誤差經降低的有意義的信號來進行信號處理。 When each terminal is placed at four corners in a square-shaped Hall element, when a driving current flows through a counter terminal of 0 degrees and when a driving current flows through a counter terminal of 90 degrees When a magnetic field is applied, the offset voltage is reversed and the voltage corresponding to the magnetic field is in-phase, so they are added together and a meaningful signal with reduced offset error is derived for signal processing.

圖17是表示以往的二次旋轉的磁感測電路的電路圖。 FIG. 17 is a circuit diagram showing a conventional double-rotation magnetic sensing circuit.

霍爾元件1具有4個端子(節點N1~N4),經由受第一 控制電路5控制的第一開關電路3而與電源電壓及接地電壓連接。信號處理電路2經由受第二控制電路6控制的第二開關電路4而與霍爾元件1連接。 The Hall element 1 has four terminals (nodes N1 to N4). The first switching circuit 3 controlled by the control circuit 5 is connected to a power supply voltage and a ground voltage. The signal processing circuit 2 is connected to the Hall element 1 via a second switching circuit 4 controlled by a second control circuit 6.

圖18表示以往的二次旋轉的磁感測電路的時間圖。圖中,在控制信號為高位準時接通(switch on),在控制信號為低位準時切斷(switch off)。一旋轉期間被分割為期間Φ1與期間Φ2。 FIG. 18 shows a time chart of a conventional magnetic sensor circuit with two rotations. In the figure, the control signal is switched on when the control signal is at a high level, and is switched off when the control signal is at a low level. A rotation period is divided into a period Φ1 and a period Φ2.

在期間Φ1,控制信號SS1V、SS1G、SS1P、SS1M為高位準。因而,在期間Φ1內,恆電流源15連接於節點N2,接地電壓連接於節點N4,節點N1連接於正相輸入端子INP,節點N3連接於負相輸入端子INM。 During the period Φ1, the control signals SS1V, SS1G, SS1P, and SS1M are at a high level. Therefore, during the period Φ1, the constant current source 15 is connected to the node N2, the ground voltage is connected to the node N4, the node N1 is connected to the positive-phase input terminal INP, and the node N3 is connected to the negative-phase input terminal INM.

在期間Φ2,控制信號SS2V、SS2G、SS2P、SS2M為高位準。在期間Φ2,恆電流源7連接於節點N3,接地電壓連接於節點N1,節點N2連接於正相輸入端子INP,節點N4連接於負相輸入端子INM。 During the period Φ2, the control signals SS2V, SS2G, SS2P, and SS2M are at a high level. During the period Φ2, the constant current source 7 is connected to the node N3, the ground voltage is connected to the node N1, the node N2 is connected to the positive-phase input terminal INP, and the node N4 is connected to the negative-phase input terminal INM.

藉由所述連接,差動信號(INP-INM)在Φ1、Φ2的期間,成為與磁相應的信號電壓Vsig。而且,在Φ1期間,在切換之後立即產生負的尖峰狀電壓,在Φ2期間,產生正的尖峰狀電壓。 With this connection, the differential signal (INP-INM) becomes the signal voltage Vsig corresponding to the magnetism during the periods Φ1 and Φ2. Moreover, in the period of Φ1, a negative spike-shaped voltage is generated immediately after switching, and in the period of Φ2, a positive spike-shaped voltage is generated.

作為針對所述尖峰狀電壓誤差的對策,例如已知有專利文獻1、專利文獻2的方法。專利文獻1中,利用在順時針方向與逆時針方向的旋轉切換時產生的尖峰狀電壓誤差是以正負的反符號而產生的現象,將他們相加或平均化,從而降低誤差。另一方面,專利文獻2中,將針對一個霍爾元件而具有取樣保持電路的 離散信號處理電路為前提,在旋轉切換之後,霍爾元件與信號處理電路立即分離,信號處理電路基於取樣保持電路所保持的信號來進行信號處理,因此切換之後的尖峰狀誤差期間的信號傳遞被屏蔽(mask),從而降低尖峰狀誤差對信號處理精度造成的影響。 As a countermeasure against the spike-shaped voltage error, for example, the methods of Patent Literature 1 and Patent Literature 2 are known. In Patent Document 1, a phenomenon in which a spike-shaped voltage error generated when the clockwise rotation and the counterclockwise rotation are switched is a positive and negative sign is added and averaged to reduce the error. On the other hand, in Patent Document 2, a device having a sample-and-hold circuit for one Hall element is provided. The discrete signal processing circuit is the premise. After the rotation switching, the Hall element and the signal processing circuit are separated immediately. The signal processing circuit performs signal processing based on the signal held by the sample-and-hold circuit. Therefore, the signal transmission during the spike-like error after switching is Masking to reduce the impact of spike-like errors on signal processing accuracy.

現有技術文獻 Prior art literature 專利文獻 Patent literature

專利文獻1:美國專利第6927572號說明書 Patent Document 1: US Patent No. 6,925,572

專利文獻2:美國專利第5621319號說明書 Patent Document 2: US Patent No. 5,621,319

在專利文獻1所記載的方法中,採用了使正的尖峰狀誤差與負的尖峰狀誤差抵消的方法,但正的尖峰狀誤差與負的尖峰狀誤差是因製造偏差或元件結構等引起,並不完全一致,從而成為殘留誤差的因素。 In the method described in Patent Document 1, a method of canceling a positive spike-like error and a negative spike-like error is used. However, the positive spike-like error and the negative spike-like error are caused by manufacturing variations or element structures. It is not completely consistent, thus becoming a factor of residual error.

在專利文獻2的方法中,是以具備取樣保持電路的離散時間信號處理為前提,從而存在霍爾元件的輸出信號未被傳遞至信號處理電路的、被屏蔽的期間,因此不適合於連續時間信號處理。 The method of Patent Document 2 is based on the premise that discrete-time signal processing is provided with a sample-and-hold circuit. Therefore, there is a masked period in which the output signal of the Hall element is not transmitted to the signal processing circuit, so it is not suitable for continuous-time signals. deal with.

本發明是有鑒於所述課題而完成,其目的在於提供一種磁感測電路,所述磁感測電路具有降低尖峰狀電壓誤差的電路,該電路無論是對於連續時間信號處理電路,抑或是對於離散時間 信號處理電路均適合。 The present invention has been made in view of the above problems, and an object thereof is to provide a magnetic sensing circuit having a circuit for reducing a spike-shaped voltage error, which is suitable for a continuous-time signal processing circuit or a Discrete time Signal processing circuits are suitable.

作為用於解決課題之技術手段,本發明所揭示的發明大致以下述方式構成。 As a technical means for solving the problem, the invention disclosed in the present invention is roughly constituted as follows.

磁感測電路包括:多個霍爾元件,包括多個端子;第一開關電路,設置於所述多個霍爾元件的多個端子與電源端子及接地端子之間,對所述多個霍爾元件切換供給驅動電流;第二開關電路,連接於所述多個霍爾元件的多個端子,選擇輸出所述多個霍爾元件的輸出信號;第一控制電路,對所述第一開關電路輸出第一控制信號;第二控制電路,對所述第二開關電路輸出第二控制信號;以及信號處理電路,接收所述第二開關電路所輸出的輸出信號,並進行信號處理,所述第一控制電路控制所述多個霍爾元件,以使所述多個霍爾元件的輸出信號中產生尖峰的時刻不同,所述第二控制電路控制所述第二開關電路,以不選擇所述多個霍爾元件的輸出信號中產生了尖峰的固定期間的輸出信號,且選擇所述多個霍爾元件的輸出信號中的未產生尖峰的固定期間的輸出信號,對於所述第二開關電路的輸出,在所有期間選擇輸出所述多個霍爾元件中的任一個以上的輸出信號。 The magnetic sensing circuit includes: a plurality of Hall elements including a plurality of terminals; a first switch circuit disposed between the plurality of terminals of the plurality of Hall elements and a power terminal and a ground terminal, The first element switches to supply a driving current; the second switching circuit is connected to a plurality of terminals of the plurality of Hall elements, and selects and outputs the output signals of the plurality of Hall elements; the first control circuit is adapted to the first switch The circuit outputs a first control signal; the second control circuit outputs a second control signal to the second switch circuit; and the signal processing circuit receives the output signal output by the second switch circuit and performs signal processing, A first control circuit controls the plurality of Hall elements so that the time when a spike occurs in the output signals of the plurality of Hall elements is different, and the second control circuit controls the second switching circuit so as not to select all The output signals of the fixed period in which the spikes are generated among the output signals of the plurality of Hall elements, and the output of the fixed periods in which the spikes are not generated among the output signals of the plurality of Hall elements are selected. No., the output of the second switch circuit, the output signal during the selection of all one or more elements of any of the plurality of Hall.

根據本發明,不會產生在將霍爾元件的旋轉切換之後的尖峰狀電壓誤差利用正負尖峰來直接抵消的情況下所引起的殘留誤差。而且,藉由使用多個霍爾元件來選擇輸出尖峰狀電壓消失 的固定時間後的電壓值,從而可大幅降低因霍爾元件電容引起的尖峰狀電壓誤差。而且,由於始終使用尖峰狀誤差消失的期間的信號,因此可實現旋轉頻率的高速化。 According to the present invention, the residual error caused when the spike-shaped voltage error after switching the rotation of the Hall element is directly canceled by using positive and negative spikes is not generated. Moreover, by using multiple Hall elements to select the output spike voltage disappears The voltage value after a fixed time can greatly reduce the spike-like voltage error caused by the Hall element capacitance. In addition, since the signal during the period when the spike-like error disappears is always used, the rotation frequency can be increased in speed.

進而,根據本發明,各霍爾元件避免了尖峰狀誤差的期間,藉此可實現信號處理電路(例如類比/數位(analog digital)轉換器)的處理轉換速率(rate)的高速化。而且,可使霍爾元件的輸出信號電壓連續傳輸至信號處理電路,適合於連續信號處理。而且,在以第一相、第二相來進行多重取樣而使用信號處理電路的情況下,可不間斷地傳輸霍爾輸出信號。而且,在使用測量放大器的離散時間信號處理的情況下,不會產生無用的充放電,因此可削減測量放大器的消耗電流。 Furthermore, according to the present invention, each Hall element avoids a spike-like error period, thereby enabling a processing speed of a signal processing circuit (for example, an analog / digital converter) to be increased. Moreover, the output signal voltage of the Hall element can be continuously transmitted to the signal processing circuit, which is suitable for continuous signal processing. In addition, when the signal processing circuit is used for multisampling in the first phase and the second phase, the Hall output signal can be transmitted without interruption. In addition, in the case of discrete-time signal processing using a measurement amplifier, unnecessary charge and discharge are not generated, so the current consumption of the measurement amplifier can be reduced.

1、1a、1A、1b、1B、1C、1D‧‧‧霍爾元件 1,1a, 1A, 1b, 1B, 1C, 1D‧‧‧Hall element

2、16、36‧‧‧信號處理電路 2, 16, 36‧‧‧ signal processing circuit

3、13、33、103、163‧‧‧第一開關電路 3, 13, 33, 103, 163‧‧‧ the first switch circuit

4、14、34、74、104‧‧‧第二開關電路 4,14,34,74,104‧‧‧Second switch circuit

5、11、31‧‧‧第一控制電路 5, 11, 31‧‧‧ first control circuit

6、12、32、72‧‧‧第二控制電路 6, 12, 32, 72‧‧‧ second control circuit

7、15、15A、15B、15C、15D‧‧‧恆電流源 7, 15, 15A, 15B, 15C, 15D‧‧‧ constant current sources

INM、INMA、INMB、INMC、INMD‧‧‧負相輸入端子 INM, INMA, INMB, INMC, INMD ‧‧‧ negative phase input terminal

INP、INPA、INPB、INPC、INPD‧‧‧正相輸入端子 INP, INPA, INPB, INPC, INPD‧‧‧ Non-inverting input terminals

D1、D2、D1A、D1B、D1C、D4C、N1~N4、N1A~N4A、N1B~N4B、N1C~N4C、N1D~N4D‧‧‧節點 D1, D2, D1A, D1B, D1C, D4C, N1 ~ N4, N1A ~ N4A, N1B ~ N4B, N1C ~ N4C, N1D ~ N4D‧‧‧ nodes

SS1G、SS1M、SS1P、SS1V、SS2G、SS2M、SS2P、SS2V、 SS1GA、SS1GB、SS1MA、SS1MB、SS1PA、SS1PB、SS1VA、SS1VB、SS2GA、SS2GB、SS2MA、SS2MB、SS2PA、SS2PB、SS2VA、SS2VB、SS3MA、SS3PA、SS3VA、SS4MA、SS4PA、SS4VA‧‧‧控制信號 SS1G, SS1M, SS1P, SS1V, SS2G, SS2M, SS2P, SS2V, Control signal

Vsig‧‧‧信號電壓 Vsig‧‧‧Signal voltage

Φ1、Φ2、Φ3、Φ4‧‧‧期間 Φ1, Φ2, Φ3, Φ4‧‧‧

Φ11、Φ12、Φ13、Φ14、Φ21、Φ22、Φ23、Φ24、Φ31、Φ32、Φ33、Φ34、Φ41、Φ42、Φ43、Φ44‧‧‧子期間 Φ11, Φ12, Φ13, Φ14, Φ21, Φ22, Φ23, Φ24, Φ31, Φ32, Φ33, Φ34, Φ41, Φ42, Φ43, Φ44‧‧‧

圖1是第一實施形態的磁感測電路的電路圖。 FIG. 1 is a circuit diagram of a magnetic sensing circuit according to the first embodiment.

圖2是表示第一實施形態的磁感測電路的電路動作的時間圖。 FIG. 2 is a timing chart showing a circuit operation of the magnetic sensing circuit according to the first embodiment.

圖3是第二實施形態的磁感測電路的電路圖。 3 is a circuit diagram of a magnetic sensing circuit according to a second embodiment.

圖4是表示第二實施形態的磁感測電路的第一開關電路的一例的電路圖。 4 is a circuit diagram showing an example of a first switching circuit of a magnetic sensing circuit according to a second embodiment.

圖5是表示第二實施形態的磁感測電路的第二開關電路的一例的電路圖。 FIG. 5 is a circuit diagram showing an example of a second switching circuit of the magnetic sensing circuit according to the second embodiment.

圖6是表示第二實施形態的磁感測電路的電路動作的時間圖。 FIG. 6 is a timing chart showing a circuit operation of the magnetic sensing circuit according to the second embodiment.

圖7是第三實施形態的磁感測電路的電路圖。 FIG. 7 is a circuit diagram of a magnetic sensing circuit according to a third embodiment.

圖8是表示第三實施形態的磁感測電路的第二開關電路的一例的電路圖。 FIG. 8 is a circuit diagram showing an example of a second switching circuit of the magnetic sensing circuit according to the third embodiment.

圖9是表示第三實施形態的磁感測電路的電路動作的時間圖。 FIG. 9 is a timing chart showing a circuit operation of the magnetic sensing circuit according to the third embodiment.

圖10是第四實施形態的磁感測電路的電路圖。 FIG. 10 is a circuit diagram of a magnetic sensing circuit according to a fourth embodiment.

圖11是表示第四實施形態的磁感測電路的第一開關電路的一例的電路圖。 11 is a circuit diagram showing an example of a first switching circuit of a magnetic sensing circuit according to a fourth embodiment.

圖12是表示第四實施形態的磁感測電路的第二開關電路的一例的電路圖。 FIG. 12 is a circuit diagram showing an example of a second switching circuit of the magnetic sensing circuit according to the fourth embodiment.

圖13是表示第四實施形態的磁感測電路的電路動作的時間圖。 FIG. 13 is a timing chart showing a circuit operation of the magnetic sensing circuit according to the fourth embodiment.

圖14是表示本發明的磁感測電路的霍爾元件的結構的一例的電路圖。 FIG. 14 is a circuit diagram showing an example of a configuration of a Hall element of the magnetic sensing circuit of the present invention.

圖15是表示本發明的磁感測電路的霍爾元件的結構的一例的電路圖。 FIG. 15 is a circuit diagram showing an example of a configuration of a Hall element of the magnetic sensing circuit of the present invention.

圖16是表示本發明的磁感測電路的驅動電路的結構的一例的電路圖。 FIG. 16 is a circuit diagram showing an example of a configuration of a driving circuit of the magnetic sensing circuit of the present invention.

圖17是表示以往的二次旋轉的磁感測電路的電路圖。 FIG. 17 is a circuit diagram showing a conventional double-rotation magnetic sensing circuit.

圖18是以往的二次旋轉的磁感測電路的時間圖。 FIG. 18 is a time chart of a conventional double-rotation magnetic sensing circuit.

以下,參照電路圖來說明本發明的磁感測電路的實施形態。 Hereinafter, embodiments of the magnetic sensing circuit of the present invention will be described with reference to a circuit diagram.

<第一實施形態> <First Embodiment>

圖1是第一實施形態的磁感測電路的電路圖。 FIG. 1 is a circuit diagram of a magnetic sensing circuit according to the first embodiment.

磁感測電路包括第一霍爾元件1A、第二霍爾元件1B、第一開關電路13、第二開關電路14、第一控制電路11、第二控制電路12、恆電流源15以及信號處理電路16。信號處理電路16相當於斬波(chopping)的調變/解調電路或者加法或濾波(filter)處理電路、類比/數位轉換器、比較器(comparator)(磁開關電路)等。 The magnetic sensing circuit includes a first Hall element 1A, a second Hall element 1B, a first switching circuit 13, a second switching circuit 14, a first control circuit 11, a second control circuit 12, a constant current source 15, and signal processing. Circuit 16. The signal processing circuit 16 corresponds to a chopping modulation / demodulation circuit or an addition or filter processing circuit, an analog / digital converter, a comparator (magnetic switch circuit), and the like.

第一霍爾元件1A具有4個端子,將各端子的節點(node)設為N1A~N4A。第二霍爾元件1B具有4個端子,將各端子的節點設為N1B~N4B。信號處理電路16具有正相輸入端子INP與負相輸入端子INM。 The first Hall element 1A has four terminals, and a node of each terminal is set to N1A to N4A. The second Hall element 1B has four terminals, and the nodes of each terminal are set to N1B to N4B. The signal processing circuit 16 includes a positive-phase input terminal INP and a negative-phase input terminal INM.

第一霍爾元件1A經由受第一控制電路11控制的第一開關電路13而與電源電壓及接地電壓連接,且第二霍爾元件1B經由受第二控制電路12控制的第二開關電路14而連接於信號處理電路16。 The first Hall element 1A is connected to the power supply voltage and the ground voltage via a first switching circuit 13 controlled by a first control circuit 11, and the second Hall element 1B is connected to a power supply voltage and a ground voltage via a second switching circuit 14 controlled by a second control circuit 12. It is connected to the signal processing circuit 16.

第一開關電路13的各開關分別以控制信號SS1VA、SS1VB、SS2VA、SS2VB、SS1GA、SS1GB、SS2GA、SS2GB受 到控制。第二開關電路14的各開關分別以控制信號SS1PA、SS1PB、SS2PA、SS2PB、SS1MA、SS1MB、SS2MA、SS2MB受到控制。 Each switch of the first switch circuit 13 receives the control signals SS1VA, SS1VB, SS2VA, SS2VB, SS1GA, SS1GB, SS2GA, and SS2GB, respectively. To control. Each switch of the second switch circuit 14 is controlled by control signals SS1PA, SS1PB, SS2PA, SS2PB, SS1MA, SS1MB, SS2MA, and SS2MB.

接下來,對第一實施形態的磁感測電路的動作進行說明。圖2是表示第一實施形態的磁感測電路的電路動作的時間圖。 Next, an operation of the magnetic sensing circuit according to the first embodiment will be described. FIG. 2 is a timing chart showing a circuit operation of the magnetic sensing circuit according to the first embodiment.

一旋轉期間被分割為期間Φ1與期間Φ2。而且,期間Φ1被分割為子(sub)期間Φ11與子期間Φ12,期間Φ2被分割為子期間Φ21與子期間Φ22。控制信號SS1VA、SS1GA在期間Φ1為高位準,控制信號SS2VA、SS2GA在期間Φ2為高位準,控制信號SS1VB、SS1GB在期間Φ12及期間Φ21為高位準,控制信號SS2VB、SS2GB在期間Φ22及期間Φ11為高位準。而且,控制信號SS1PA、SS1MA在期間Φ12為高位準,控制信號SS2PA、SS2MA在期間Φ22為高位準,控制信號SS1PB、SS1MB在期間Φ21為高位準,控制信號SS2PB、SS2MB在期間Φ11為高位準。 A rotation period is divided into a period Φ1 and a period Φ2. Furthermore, the period Φ1 is divided into a sub period Φ11 and a sub period Φ12, and the period Φ2 is divided into a sub period Φ21 and a sub period Φ22. Control signals SS1VA and SS1GA are at high level during period Φ1, control signals SS2VA and SS2GA are at high level during period Φ2, control signals SS1VB and SS1GB are at high level during period Φ12 and period Φ21, and control signals SS2VB and SS2GB are during period Φ22 and period Φ11 High level. In addition, the control signals SS1PA and SS1MA are at a high level during period Φ12, the control signals SS2PA and SS2MA are at a high level during period Φ22, the control signals SS1PB and SS1MB are at a high level during period Φ21, and the control signals SS2PB and SS2MB are at a high level during period Φ11.

因而,在期間Φ11內,恆電流源15連接於節點N2A,接地電壓連接於節點N4A,恆電流源15連接於節點N3B,接地電壓連接於節點N1B,2個霍爾元件受到驅動。而且,霍爾元件1B的霍爾元件節點N2B連接於正相輸入端子INP,霍爾元件1B的霍爾元件節點N4B連接於負相輸入端子INM。在此期間,霍爾元件1B的旋轉切換時刻為期間Φ22的開始時,因此不會在差動輸出信號(INP-INM)中產生尖峰狀的電壓誤差。期間Φ12、期間Φ21、期間Φ22的動作原理亦同樣,霍爾元件1A、霍爾元件1B中任一 者的未產生尖峰狀電壓誤差的期間內的差動信號被選擇輸出為信號處理電路16的輸入信號(INP-INM)。 Therefore, during the period Φ11, the constant current source 15 is connected to the node N2A, the ground voltage is connected to the node N4A, the constant current source 15 is connected to the node N3B, and the ground voltage is connected to the node N1B. The two Hall elements are driven. The Hall element node N2B of the Hall element 1B is connected to the non-inverted input terminal INP, and the Hall element node N4B of the Hall element 1B is connected to the negative-phase input terminal INM. During this period, the rotation switching timing of the Hall element 1B is at the beginning of the period Φ22, so no spike-shaped voltage error is generated in the differential output signal (INP-INM). The operation principle of the period Φ12, the period Φ21, and the period Φ22 is the same. Any one of the Hall element 1A and the Hall element 1B A differential signal in a period in which no spike-like voltage error occurs is selected and output as an input signal (INP-INM) of the signal processing circuit 16.

因而,在第一實施形態的磁感測電路的情況下,具有信號處理電路16的輸入不會產生尖峰狀誤差的優點。除此以外,在本實施形態中,藉由選擇尖峰狀誤差的期間受到屏蔽而穩定的期間的電壓,從而可進一步提高旋轉頻率以及信號處理電路16的信號處理轉換速率(例如類比/數位轉換器的取樣率(sampling rate))。因而,可將磁感測電路的訊號雜訊比(Signal Noise Ratio,S/N)保持固定。 Therefore, in the case of the magnetic sensing circuit of the first embodiment, there is an advantage that a spike-like error does not occur at the input of the signal processing circuit 16. In addition, in this embodiment, by selecting the voltage during the period in which the spike-shaped error is shielded and stabilized, the rotation frequency and the signal processing conversion rate of the signal processing circuit 16 (for example, analog / digital converter) can be further improved. Sampling rate). Therefore, the Signal Noise Ratio (S / N) of the magnetic sensing circuit can be kept fixed.

而且,可使霍爾元件的輸出信號電壓連續傳輸至信號處理電路16,適合於連續信號處理。 Moreover, the output signal voltage of the Hall element can be continuously transmitted to the signal processing circuit 16, which is suitable for continuous signal processing.

而且,在使用測量放大器的離散時間信號處理的情況下,具有下述效果,即,不會產生無用的充放電而測量放大器的消耗電流不會增大。 Further, in the case of discrete-time signal processing using a measurement amplifier, there is an effect that an unnecessary charge and discharge does not occur and the consumption current of the measurement amplifier does not increase.

<第二實施形態> <Second Embodiment>

圖3是第二實施形態的磁感測電路的電路圖。 3 is a circuit diagram of a magnetic sensing circuit according to a second embodiment.

本實施形態的磁感測電路包括第一霍爾元件1A、第二霍爾元件1B、第三霍爾元件1C、第四霍爾元件1D、第一開關電路33、第二開關電路34、第一控制電路31、第二控制電路32以及信號處理電路36。節點D1連接於恆電流源15,節點D2連接於接地端子。 The magnetic sensing circuit of this embodiment includes a first Hall element 1A, a second Hall element 1B, a third Hall element 1C, a fourth Hall element 1D, a first switching circuit 33, a second switching circuit 34, a first A control circuit 31, a second control circuit 32, and a signal processing circuit 36. The node D1 is connected to the constant current source 15, and the node D2 is connected to a ground terminal.

第三霍爾元件1C及第四霍爾元件1D是與第一霍爾元件 1A及第二霍爾元件1B同樣地具有4個端子,將各端子的節點設為N1C~N4C及N1D~N4D。信號處理電路36具有正相輸入端子INPA、INPB、INPC、INPD與負相輸入端子INMA、INMB、INMC、INMD。 The third Hall element 1C and the fourth Hall element 1D are the same as the first Hall element 1A and the second Hall element 1B similarly have four terminals, and the nodes of each terminal are set to N1C to N4C and N1D to N4D. The signal processing circuit 36 includes positive-phase input terminals INPA, INPB, INPC, and INPD and negative-phase input terminals INMA, INMB, INMC, and INMD.

對於霍爾元件,是對第一實施形態的磁感測電路追加第三霍爾元件1C及第四霍爾元件1D,並同樣連接於第一開關電路33及第二開關電路34之間。 For the Hall element, a third Hall element 1C and a fourth Hall element 1D are added to the magnetic sensing circuit of the first embodiment, and are also connected between the first switch circuit 33 and the second switch circuit 34.

第一開關電路33同樣地對應於4個霍爾元件而追加有開關。圖4是表示第一開關電路33的一例的電路圖。各輸入端子、各輸出端子及各開關以圖示般的關係進行連接並受到控制。 The first switch circuit 33 is similarly provided with switches corresponding to the four Hall elements. FIG. 4 is a circuit diagram showing an example of the first switching circuit 33. The input terminals, output terminals, and switches are connected and controlled in a relationship as shown in the figure.

第二開關電路34包括與信號處理電路36的各輸入端子對應的8個輸出端子。圖5是表示第二開關電路34的一例的電路圖。各輸入端子、各輸出端子及各開關以圖示般的關係進行連接並受到控制。 The second switching circuit 34 includes eight output terminals corresponding to the respective input terminals of the signal processing circuit 36. FIG. 5 is a circuit diagram showing an example of the second switching circuit 34. The input terminals, output terminals, and switches are connected and controlled in a relationship as shown in the figure.

正相輸入端子(INPA、INPB、INPC、INPD)及負相輸入端子(INMA、INMB、INMC、INMD)分別各有4個,假定該些端子的信號由信號處理電路36內的加法電路(未圖示)轉換為電壓位準或電流位準後進行加法信號處理。 There are 4 positive-phase input terminals (INPA, INPB, INPC, INPD) and negative-phase input terminals (INMA, INMB, INMC, INMD) respectively. It is assumed that the signals of these terminals are added by the addition circuit (not (Shown) after conversion to voltage level or current level, add signal processing.

接下來,對第二實施形態的磁感測電路的動作進行說明。圖6是表示第二實施形態的磁感測電路的電路動作的時間圖。 Next, an operation of the magnetic sensing circuit according to the second embodiment will be described. FIG. 6 is a timing chart showing a circuit operation of the magnetic sensing circuit according to the second embodiment.

一旋轉期間被分割為期間Φ1、期間Φ2、期間Φ3與期間Φ4。而且,期間Φ1被分割為子期間Φ11、子期間Φ12、子期間Φ13 與子期間Φ14,期間Φ2被分割為子期間Φ21、子期間Φ22、子期間Φ23與子期間Φ24,期間Φ3被分割為子期間Φ31、子期間Φ32、子期間Φ33與子期間Φ34,期間Φ4被分割為子期間Φ41、子期間Φ42、子期間Φ43與子期間Φ44。控制信號SS1VA、SS1GA在期間Φ1為高位準,控制信號SS2VA、SS2GA在期間Φ2為高位準,控制信號SS3VA、SS3GA在期間Φ3為高位準,控制信號SS4VA、SS4GA在期間Φ4為高位準,這些信號成為用於驅動霍爾元件1A的控制信號。其他霍爾元件1B、1C、1D的驅動信號亦同樣具備4個相,但如圖6所圖示,各自使時脈(clock)的相位錯開一個子期間。 A rotation period is divided into a period Φ1, a period Φ2, a period Φ3, and a period Φ4. Moreover, the period Φ1 is divided into a sub period Φ11, a sub period Φ12, and a sub period Φ13. And sub-period Φ14, period Φ2 is divided into sub-period Φ21, sub-period Φ22, sub-period Φ23 and sub-period Φ24, and period Φ3 is divided into sub-period Φ31, sub-period Φ32, sub-period Φ33 and sub-period Φ34, and period Φ4 is It is divided into sub-period Φ41, sub-period Φ42, sub-period Φ43, and sub-period Φ44. The control signals SS1VA and SS1GA are at the high level during the period Φ1, the control signals SS2VA and SS2GA are at the high level during the period Φ2, the control signals SS3VA and SS3GA are at the high level during the period Φ3, and the control signals SS4VA and SS4GA are at the high level during the period Φ4. These signals It becomes a control signal for driving the Hall element 1A. The driving signals of the other Hall elements 1B, 1C, and 1D also have four phases. However, as shown in FIG. 6, the phases of the clocks are shifted by one sub-period.

對於與霍爾元件1A的輸出信號相關的控制信號,控制信號SS1PA、SS1MA在期間Φ12~期間Φ14為高位準,控制信號SS2PA、SS2MA在期間Φ22~期間Φ24為高位準,控制信號SS3PA、SS3MA在期間Φ32~期間Φ34為高位準,控制信號SS4PA、SS4MA在期間Φ42~期間Φ44為高位準。如圖6所示,其他霍爾元件1B、1C、1D亦具備帶有同樣的相位關係的控制信號,但在各霍爾元件中,使時脈的相位錯開一個子期間。 For the control signal related to the output signal of the Hall element 1A, the control signals SS1PA and SS1MA are at a high level during the period Φ12 to Φ14, and the control signals SS2PA and SS2MA are at the high level during the period Φ22 to Φ24. The control signals SS3PA and SS3MA are at a high level. The period Φ32 ~ period Φ34 is the high level, and the control signals SS4PA and SS4MA are the high level during the period Φ42 ~ period Φ44. As shown in FIG. 6, the other Hall elements 1B, 1C, and 1D also have control signals with the same phase relationship. However, in each Hall element, the phase of the clock is shifted by one sub-period.

因而,在子期間Φ11內,霍爾元件1A產生了尖峰,但將霍爾元件1B、1C、1D的3個信號輸入至信號處理電路36。在其他子期間內亦同樣,將未產生尖峰的3個霍爾元件的輸出信號傳遞至信號處理電路36進行加法運算。 Therefore, in the sub-period Φ11, a spike is generated in the Hall element 1A, but three signals of the Hall elements 1B, 1C, and 1D are input to the signal processing circuit 36. In the other sub-periods, the output signals of the three Hall elements that do not generate spikes are transferred to the signal processing circuit 36 for addition.

因而,在本實施形態的磁感測電路的情況下,具有信號處理電路36的輸入不會產生尖峰狀誤差的優點。而且,可使霍爾 元件的輸出信號電壓連續傳輸至信號處理電路36,適合於連續信號處理。 Therefore, in the case of the magnetic sensing circuit of the present embodiment, there is an advantage that a spike-like error does not occur at the input of the signal processing circuit 36. Moreover, The output signal voltage of the element is continuously transmitted to the signal processing circuit 36, which is suitable for continuous signal processing.

<第三實施形態> <Third Embodiment>

圖7是第三實施形態的磁感測電路的電路圖。 FIG. 7 is a circuit diagram of a magnetic sensing circuit according to a third embodiment.

本實施形態的磁感測電路包括第一霍爾元件1A、第二霍爾元件1B、第三霍爾元件1C、第四霍爾元件1D、第一開關電路33、第二開關電路74、第一控制電路31、第二控制電路72以及信號處理電路16。 The magnetic sensing circuit of this embodiment includes a first Hall element 1A, a second Hall element 1B, a third Hall element 1C, a fourth Hall element 1D, a first switching circuit 33, a second switching circuit 74, a first A control circuit 31, a second control circuit 72, and a signal processing circuit 16.

與第二實施形態的不同之處是:第二開關電路74的結構與第二控制電路72的控制信號不同;以及將信號處理電路16設為正相輸入端子INP與負相輸入端子INM這一對。 The difference from the second embodiment is that the structure of the second switch circuit 74 is different from the control signal of the second control circuit 72, and the signal processing circuit 16 is set as a positive phase input terminal INP and a negative phase input terminal INM. Correct.

圖8是表示第二開關電路74的一例的電路圖。各輸入端子、各輸出端子及各開關以圖示般的關係來進行連接並受到控制。 FIG. 8 is a circuit diagram showing an example of the second switching circuit 74. Each input terminal, each output terminal, and each switch are connected and controlled in the relationship shown in the figure.

接下來,對第三實施形態的磁感測電路的動作進行說明。圖9是表示第三實施形態的磁感測電路的電路動作的時間圖。 Next, an operation of the magnetic sensing circuit according to the third embodiment will be described. FIG. 9 is a timing chart showing a circuit operation of the magnetic sensing circuit according to the third embodiment.

本實施形態的時間圖與第二實施形態的時間圖的不同之處在於第二控制電路72的控制信號。例如,對於第一霍爾元件1A,在期間Φ14,控制信號(SS1PA、SS1MA)為高位準,在期間Φ24,控制信號SS2PA、SS2MA為高位準,在期間Φ34,控制信號SS3PA、SS3MA為高位準,在期間Φ44,控制信號SS4PA、SS4MA為高位準。對於第二霍爾元件1B~第四霍爾元件1D而言,亦為 同樣相位關係的控制信號,但在霍爾元件間,時脈的相位錯開1子期間。因而,對於信號處理輸入(INP-INM),在Φ11期間選擇第二霍爾元件1B的信號,在Φ12期間選擇第三霍爾元件1C的信號,在Φ13期間選擇第四霍爾元件1D的信號,在Φ14期間選擇第一霍爾元件1A的信號。在其他子期間,亦根據同樣的原理來決定對信號處理電路16的輸入信號。 The timing chart of this embodiment differs from the timing chart of the second embodiment in the control signal of the second control circuit 72. For example, for the first Hall element 1A, the control signal (SS1PA, SS1MA) is at the high level during the period Φ14, the control signal SS2PA, SS2MA is at the high level during the period Φ24, and the control signal SS3PA, SS3MA is at the high level during the period Φ24. In the period Φ44, the control signals SS4PA and SS4MA are at a high level. For the second Hall element 1B to the fourth Hall element 1D, it is also Control signals with the same phase relationship, but the phase of the clock is shifted by one sub-period between the Hall elements. Therefore, for the signal processing input (INP-INM), the signal of the second Hall element 1B is selected during Φ11, the signal of the third Hall element 1C is selected during Φ12, and the signal of the fourth Hall element 1D is selected during Φ13. The signal of the first Hall element 1A is selected during Φ14. In other sub-periods, the input signal to the signal processing circuit 16 is also determined based on the same principle.

因而,本實施形態的磁感測電路具有信號處理電路16的輸入不會產生尖峰狀誤差的優點。除此以外,本實施形態中,由於使用了4個霍爾元件,因此可將尖峰狀誤差的期間受到屏蔽而穩定的期間分為3個子期間,因此因霍爾元件電容引起的尖峰狀電壓誤差如指數函數般變得無限小。因而,可實現旋轉頻率以及信號處理電路16的信號處理轉換速率(例如類比/數位轉換器的取樣率)的進一步提高。因而,作為磁感測電路的系統,可將S/N保持固定,因此藉由提高時脈率(clock rate)而可避免損失(loss)量。而且,可使霍爾元件的輸出信號電壓連續傳輸至信號處理電路16,適合於連續信號處理。 Therefore, the magnetic sensing circuit of this embodiment has an advantage that no spike-like error is generated at the input of the signal processing circuit 16. In addition, in this embodiment, since four Hall elements are used, the period in which the spike-like error is shielded and stabilized can be divided into three sub-periods, so the spike-like voltage error due to the Hall element capacitance Becomes infinitely small like an exponential function. Therefore, the rotation frequency and the signal processing conversion rate of the signal processing circuit 16 (for example, the sampling rate of the analog / digital converter) can be further improved. Therefore, as the system of the magnetic sensing circuit, the S / N can be kept fixed, and thus the amount of loss can be avoided by increasing the clock rate. Moreover, the output signal voltage of the Hall element can be continuously transmitted to the signal processing circuit 16, which is suitable for continuous signal processing.

<第四實施形態> <Fourth Embodiment>

圖10是第四實施形態的磁感測電路的電路圖。 FIG. 10 is a circuit diagram of a magnetic sensing circuit according to a fourth embodiment.

本實施形態的磁感測電路與第二實施形態的電路結構相同,但第一開關電路103及第二開關電路104的電路不同。 The magnetic sensing circuit of this embodiment has the same circuit configuration as that of the second embodiment, but the circuits of the first switch circuit 103 and the second switch circuit 104 are different.

圖11是表示第一開關電路103的一例的電路圖。各輸入端子、各輸出端子及各開關是以圖示般的關係進行連接並受到 控制。因而,以下述方式進行連接,即:霍爾元件1A依順時針方向旋轉,霍爾元件1B依逆時針方向旋轉,霍爾元件1C依順時針方向旋轉,霍爾元件1D依逆時針方向旋轉。 FIG. 11 is a circuit diagram showing an example of the first switching circuit 103. The input terminals, output terminals, and switches are connected in a relationship as shown in the figure and received. control. Therefore, the connection is performed in such a manner that the Hall element 1A rotates in a clockwise direction, the Hall element 1B rotates in a counterclockwise direction, the Hall element 1C rotates in a clockwise direction, and the Hall element 1D rotates in a counterclockwise direction.

圖12是表示第二開關電路104的一例的電路圖。各輸入端子、各輸出端子及各開關是以圖示般的關係進行連接並受到控制。第二開關電路104亦採用與和第一開關電路103同樣的旋轉對應的連接。 FIG. 12 is a circuit diagram showing an example of the second switching circuit 104. Each input terminal, each output terminal, and each switch are connected and controlled in the relationship shown in the figure. The second switch circuit 104 also adopts a connection corresponding to the same rotation as the first switch circuit 103.

接下來,對第四實施形態的磁感測電路的動作進行說明。圖13是表示第四實施形態的磁感測電路的電路動作的時間圖。 Next, an operation of the magnetic sensing circuit according to the fourth embodiment will be described. FIG. 13 is a timing chart showing a circuit operation of the magnetic sensing circuit according to the fourth embodiment.

本實施形態的時間圖的控制信號與第二實施形態的時間圖相同,但霍爾元件1B與霍爾元件1D的差動信號的尖峰狀電壓誤差的符號為負。這是因為霍爾元件的旋轉的方式不同。 The control signal of the timing chart of this embodiment is the same as the timing chart of the second embodiment, but the sign of the spike-shaped voltage error of the differential signal of the Hall element 1B and the Hall element 1D is negative. This is because the Hall element rotates differently.

本實施形態的磁感測電路中,選擇無尖峰的期間來作為輸出,但在實際的電路中,包含相對於時間常數τ(A×exp(-T/τ),此處T為進行屏蔽的穩定時間)的有限誤差。因而,對於霍爾元件1A、1C,實際會產生微小的誤差(A×exp(-T/τ)),對於霍爾元件1B、1D,實際會產生微小的誤差((-1)×A×exp(-T/τ))。因而,對於信號穩定的殘留誤差量,藉由使影響抵消,從而可進一步減小信號的誤差成分。 In the magnetic sensing circuit of this embodiment, a period without a spike is selected as an output, but in an actual circuit, the time constant τ (A × exp (-T / τ) is included, where T is shielded Settling time). Therefore, for the Hall elements 1A and 1C, a slight error (A × exp (-T / τ)) actually occurs, and for the Hall elements 1B and 1D, a small error ((-1) × A × exp (-T / τ)). Therefore, the residual error amount of the signal can be further reduced by canceling the influence, thereby further reducing the error component of the signal.

本實施形態的磁感測電路中,由於選擇輸出尖峰消失後的穩定後電壓,因此由正/負尖峰電壓的波形形狀差造成的影響幾乎不起作用。 In the magnetic sensing circuit of the present embodiment, since the stabilized voltage after the output spike disappears is selected, the influence caused by the difference in the waveform shape of the positive / negative spike voltage has little effect.

圖14及圖15是表示本發明的磁感測電路的霍爾元件的結構的一例的電路圖。 14 and 15 are circuit diagrams showing an example of a configuration of a Hall element of the magnetic sensing circuit of the present invention.

圖14將2個霍爾元件1a、1b如圖所示般連接於端子N1~N4,以成為一個霍爾元件1。霍爾元件1a、1b是將各端子相差0度、90度者連接成一個霍爾元件1。藉由如此般構成霍爾元件1,從而可抑制因布局引起的製造上的偏差或應力的影響。 FIG. 14 connects the two Hall elements 1a and 1b to the terminals N1 to N4 as shown in the figure to form one Hall element 1. The Hall elements 1a and 1b are connected to one Hall element 1 when the terminals differ by 0 degrees or 90 degrees. By configuring the Hall element 1 in this manner, it is possible to suppress the influence of manufacturing variations and stress caused by the layout.

圖15的霍爾元件1的結構亦同樣。 The structure of the Hall element 1 in FIG. 15 is the same.

圖16是表示對本發明的磁感測電路的霍爾元件進行驅動的驅動電路的結構的一例的電路圖。 16 is a circuit diagram showing an example of a configuration of a driving circuit that drives a Hall element of the magnetic sensing circuit of the present invention.

圖16的驅動電路設置有對4個霍爾元件1A、1B、1C、1D進行驅動的4個恆電流源15A、15B、15C、15D。節點D1A、D1B、D1C、D1D分別連接於恆電流源15A、15B、15C、15D,節點D2連接於接地端子。並且,第一開關電路163以下述方式進行控制,即,在每次旋轉時,對驅動霍爾元件的恆電流源進行切換。藉由如此般構成驅動電路,可進一步抑制在旋轉切換時於驅動端產生的微弱的信號變動。 The driving circuit of FIG. 16 is provided with four constant current sources 15A, 15B, 15C, and 15D that drive four Hall elements 1A, 1B, 1C, and 1D. Nodes D1A, D1B, D1C, and D1D are connected to the constant current sources 15A, 15B, 15C, and 15D, respectively, and node D2 is connected to the ground terminal. In addition, the first switch circuit 163 is controlled in such a manner that the constant current source that drives the Hall element is switched at each rotation. By constituting the driving circuit in this way, it is possible to further suppress a weak signal variation generated at the driving end when the rotation is switched.

並且,在如圖16般包括4個霍爾元件的磁感測電路的情況下,將4次旋轉作為一週期,對驅動霍爾元件的恆電流源進行切換。藉由進行此種旋轉的控制,從而可抑制各恆電流源15A、15B、15C、15D的電流值偏差的影響。 Furthermore, in the case of a magnetic sensing circuit including four Hall elements as shown in FIG. 16, four rotations are used as one cycle to switch the constant current source driving the Hall elements. By performing such rotation control, it is possible to suppress the influence of the current value deviation of each of the constant current sources 15A, 15B, 15C, and 15D.

根據圖16的驅動電路,本發明的磁感測電路可抑制在旋轉切換時於驅動端產生的微弱的信號變動。而且,根據如上所 述的驅動方法,可抑制各恆電流源的電流偏差。 According to the driving circuit of FIG. 16, the magnetic sensing circuit of the present invention can suppress the weak signal variation generated at the driving end when the rotation is switched. Moreover, according to the above The driving method described above can suppress the current deviation of each constant current source.

以上,在本發明的實施形態的說明中,霍爾元件的形狀、端子及位置關係(0度、90度、180度、270度)等並不限定於圖式所示者,其他形狀或端子數的霍爾元件亦包含於發明的範圍中。 As described above, in the description of the embodiment of the present invention, the shape, terminals, and positional relationship (0 degrees, 90 degrees, 180 degrees, 270 degrees) of the Hall element are not limited to those shown in the drawings, and other shapes or terminals The number of Hall elements is also included in the scope of the invention.

而且,本發明並不限定於所述的實施形態,當然包含本領域技術人員可在本發明的範圍內所作的各種變形或修正。 In addition, the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications or corrections that can be made by those skilled in the art within the scope of the present invention are included.

Claims (4)

一種磁感測電路,其特徵在於包括: 多個霍爾元件,包括多個端子; 第一開關電路,設置於所述多個霍爾元件的所述多個端子與電源端子及接地端子之間,對所述多個霍爾元件切換供給驅動電流; 第二開關電路,連接於所述多個霍爾元件的所述多個端子,選擇輸出所述多個霍爾元件的輸出信號; 第一控制電路,對所述第一開關電路輸出第一控制信號; 第二控制電路,對所述第二開關電路輸出第二控制信號;以及 信號處理電路,接收所述第二開關電路所輸出的輸出信號,並進行信號處理, 所述第一控制電路控制所述多個霍爾元件,以使所述多個霍爾元件的輸出信號中產生尖峰的時刻不同, 所述第二控制電路控制所述第二開關電路,以不選擇所述多個霍爾元件的輸出信號中產生了所述尖峰的固定期間的輸出信號,且選擇所述多個霍爾元件的輸出信號中的未產生所述尖峰的固定期間的輸出信號, 對於所述第二開關電路的輸出,在所有期間選擇輸出所述多個霍爾元件中的任一個以上的輸出信號。A magnetic sensing circuit, comprising: a plurality of Hall elements including a plurality of terminals; a first switching circuit provided between the plurality of terminals of the plurality of Hall elements and a power terminal and a ground terminal To switch and supply a driving current to the plurality of Hall elements; a second switching circuit connected to the plurality of terminals of the plurality of Hall elements to select and output the output signals of the plurality of Hall elements; the first A control circuit that outputs a first control signal to the first switch circuit; a second control circuit that outputs a second control signal to the second switch circuit; and a signal processing circuit that receives an output from the second switch circuit Signals and perform signal processing, the first control circuit controls the plurality of Hall elements, so that the time when a spike occurs in the output signals of the plurality of Hall elements is different, and the second control circuit controls the A second switching circuit that does not select output signals of a fixed period in which the spikes are generated in the output signals of the plurality of Hall elements, and selects outputs of the plurality of Hall elements An output signal is not generated during the fixed number of spikes, the output of the second switch circuit, the output signal at all during one or more of the plurality of Hall elements in any selected output. 如申請專利範圍第1項所述的磁感測電路,其中 在所述第一開關電路與所述電源端子之間設置有恆電流源。The magnetic sensing circuit according to item 1 of the scope of patent application, wherein a constant current source is provided between the first switching circuit and the power terminal. 如申請專利範圍第2項所述的磁感測電路,其中 所述恆電流源是與所述多個霍爾元件對應地設置, 在每次旋轉時,藉由所述第一開關電路來切換連接至所述多個霍爾元件。The magnetic sensing circuit according to item 2 of the scope of patent application, wherein the constant current source is provided corresponding to the plurality of Hall elements, and is switched by the first switching circuit at each rotation. Connected to the plurality of Hall elements. 如申請專利範圍第1項至第3項中任一項所述的磁感測電路,其中 所述霍爾元件是將多個霍爾元件連接於所述霍爾元件的端子以成為一個霍爾元件。The magnetic sensing circuit according to any one of claims 1 to 3, wherein the Hall element is a terminal that connects a plurality of Hall elements to terminals of the Hall element to become one Hall. element.
TW105105594A 2015-03-05 2016-02-25 Magnetic sensing circuit TWI658283B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015043913 2015-03-05
JP2015-043913 2015-03-05
JP2016-010006 2016-01-21
JP2016010006A JP6618370B2 (en) 2015-03-05 2016-01-21 Magnetic sensor circuit

Publications (2)

Publication Number Publication Date
TW201636633A TW201636633A (en) 2016-10-16
TWI658283B true TWI658283B (en) 2019-05-01

Family

ID=56898566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105105594A TWI658283B (en) 2015-03-05 2016-02-25 Magnetic sensing circuit

Country Status (4)

Country Link
JP (1) JP6618370B2 (en)
KR (1) KR102522223B1 (en)
CN (1) CN105938184B (en)
TW (1) TWI658283B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188575A (en) * 2019-05-14 2020-11-19 日本電産株式会社 motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516070A (en) * 1982-07-16 1985-05-07 At&T Bell Laboratories Magnetic current sensor with offset and load correction
US20020140433A1 (en) * 2000-11-08 2002-10-03 Lawson Rodney Allen Apparatus and method for detecting and calculating ground fault resistance
EP1155332B1 (en) * 1998-12-01 2008-10-29 Itron, Inc. Modular meter configuration and methodology
CN101611316A (en) * 2007-02-01 2009-12-23 皇家飞利浦电子股份有限公司 The magnetic sensor device of sensing magnetic particles and method
US20120249133A1 (en) * 2011-04-01 2012-10-04 Allegro Microsystems, Inc. Differential magnetic field sensor structure for orientation independent measurement
CN203217067U (en) * 2013-04-16 2013-09-25 中南林业科技大学 Three-dimensional magnetic field detection device based on thermally induced magnetic effects of sheet material stretching
US20130265041A1 (en) * 2012-04-04 2013-10-10 Allegro Microsystems, Inc. High accuracy differential current sensor for applications like ground fault interrupters

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411997A1 (en) * 1984-03-31 1985-10-17 Boehringer Mannheim Gmbh, 6800 Mannheim NEW REDOX INDICATORS
US5621319A (en) 1995-12-08 1997-04-15 Allegro Microsystems, Inc. Chopped hall sensor with synchronously chopped sample-and-hold circuit
DE10204427B4 (en) 2002-02-04 2007-02-22 Infineon Technologies Ag Method and apparatus for compensating dynamic error signals of a Chopped Hall sensor
JP5343691B2 (en) 2009-05-11 2013-11-13 株式会社ニコン Magnetic rotation angle detector and encoder
JP5736288B2 (en) * 2011-09-27 2015-06-17 セイコーインスツル株式会社 Magnetic sensor device
JP5802187B2 (en) 2012-01-30 2015-10-28 旭化成エレクトロニクス株式会社 Hall electromotive force signal detection circuit and current sensor thereof
JP6043424B2 (en) * 2013-03-28 2016-12-14 旭化成エレクトロニクス株式会社 Hall electromotive force signal detection circuit, current sensor thereof, and hall element driving method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516070A (en) * 1982-07-16 1985-05-07 At&T Bell Laboratories Magnetic current sensor with offset and load correction
EP1155332B1 (en) * 1998-12-01 2008-10-29 Itron, Inc. Modular meter configuration and methodology
US20020140433A1 (en) * 2000-11-08 2002-10-03 Lawson Rodney Allen Apparatus and method for detecting and calculating ground fault resistance
CN101611316A (en) * 2007-02-01 2009-12-23 皇家飞利浦电子股份有限公司 The magnetic sensor device of sensing magnetic particles and method
US20120249133A1 (en) * 2011-04-01 2012-10-04 Allegro Microsystems, Inc. Differential magnetic field sensor structure for orientation independent measurement
US20130265041A1 (en) * 2012-04-04 2013-10-10 Allegro Microsystems, Inc. High accuracy differential current sensor for applications like ground fault interrupters
CN203217067U (en) * 2013-04-16 2013-09-25 中南林业科技大学 Three-dimensional magnetic field detection device based on thermally induced magnetic effects of sheet material stretching

Also Published As

Publication number Publication date
TW201636633A (en) 2016-10-16
JP6618370B2 (en) 2019-12-11
CN105938184A (en) 2016-09-14
KR20160108169A (en) 2016-09-19
CN105938184B (en) 2020-05-12
KR102522223B1 (en) 2023-04-14
JP2016166862A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
US8716947B2 (en) LED current source digital to analog convertor
US9350380B2 (en) Sigma-delta modulator and analog-to-digital converter
US8411804B2 (en) Digital demodulation of pulse-width modulated signals
US9124290B2 (en) Method and apparatus for separating the reference current from the input signal in sigma-delta converter
US6977602B1 (en) Wide band digital to analog converters and methods, including converters with selectable impulse response
US20220216860A1 (en) Circuit system
US20130285705A1 (en) Sample and hold circuit
US7564273B2 (en) Low-voltage comparator-based switched-capacitor networks
EP3064953B1 (en) Magnetic sensor circuit
TWI658283B (en) Magnetic sensing circuit
JP4008200B2 (en) Method and apparatus for detecting signal level having filter function
US10461763B2 (en) Double data rate time interpolating quantizer with reduced kickback noise
EP3300251B1 (en) Integration circuit and method for providing an output signal
CN112325910B (en) Method and device for realizing driving signal of rotary transformer sensor and storage medium
WO2015115264A1 (en) Capacitance-to-voltage conversion circuit
JP2014107651A (en) Ring amplifier
JP2011223532A (en) Multichannel sample holding circuit and ad converter using the same
US10476449B2 (en) Switched capacitor circuit to make amount of change in reference voltage even regardless of input level
US11146281B2 (en) Multi-stage switched capacitor circuit and operation method thereof
JP2010226356A (en) A/d converter and control method thereof
JP3821143B2 (en) Method and apparatus for detecting signal level having filter function
US20200186158A1 (en) Method and Circuit for Compensating for the Offset Voltage of Electronic Circuits
WO2022191984A3 (en) Analog-to-digital converter, phase sampler, time-to-digital converter, and flip-flop
RU2488959C1 (en) Converter of input voltage to pulse duration
JP2001165783A (en) Temperature detection circuit