TW201635438A - Semiconductor device and method of forming the same - Google Patents
Semiconductor device and method of forming the same Download PDFInfo
- Publication number
- TW201635438A TW201635438A TW104108980A TW104108980A TW201635438A TW 201635438 A TW201635438 A TW 201635438A TW 104108980 A TW104108980 A TW 104108980A TW 104108980 A TW104108980 A TW 104108980A TW 201635438 A TW201635438 A TW 201635438A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- magnetic
- region
- pattern
- magnetic layer
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
本發明是有關於一種積體電路及其製造方法,且特別是有關於一種半導體元件及其製造方法。 The present invention relates to an integrated circuit and a method of fabricating the same, and more particularly to a semiconductor device and a method of fabricating the same.
隨著多功能晶片的發展,將不同功能的構件(例如電感器與電容器)整合在單一晶片上為時勢所趨。然而,電感器與電容器的製作通常是分開進行的,因此需要多個光罩以及複雜的製程步驟,會增加成本及減少競爭力。 With the development of multi-function wafers, it has become a trend to integrate components of different functions, such as inductors and capacitors, on a single wafer. However, the fabrication of inductors and capacitors is usually done separately, requiring multiple masks and complex process steps, which increases cost and reduces competitiveness.
此外,現有的前段製程所製作出之電感器與電容器的面積有限,因此也不適用於現今的供電系統。因此,如何利用簡單的製程步驟製作出大面積的電感器與電容器已獲得業界的高度關注。 In addition, the existing front-end process has a limited area of inductors and capacitors, and is therefore not suitable for today's power supply systems. Therefore, how to make large-area inductors and capacitors with simple process steps has gained high attention in the industry.
有鑒於此,本發明提供一種半導體元件及其製造方法,可以利用現有的焊墊製程輕易地將電感器與電容器整合在一起。 In view of the above, the present invention provides a semiconductor device and a method of fabricating the same that can be easily integrated with a capacitor using an existing pad process.
本發明提供一種半導體元件的製造方法。提供一基底。 所述基底具有第一區,且基底上已形成有金屬層與絕緣層。於第一區的絕緣層上形成第一磁性層。於第一區的第一磁性層上形成螺旋狀圖案。形成介電層,其覆蓋螺旋狀圖案並至少裸露出螺旋狀圖案之外側的第一磁性層的第一表面。形成第二磁性層,其覆蓋介電層並與第一磁性層的第一表面接觸。 The present invention provides a method of manufacturing a semiconductor device. A substrate is provided. The substrate has a first region, and a metal layer and an insulating layer have been formed on the substrate. A first magnetic layer is formed on the insulating layer of the first region. A spiral pattern is formed on the first magnetic layer of the first region. A dielectric layer is formed that covers the spiral pattern and at least exposes the first surface of the first magnetic layer on the outer side of the spiral pattern. A second magnetic layer is formed that covers the dielectric layer and is in contact with the first surface of the first magnetic layer.
在本發明的一實施例中,上述介電層更裸露出螺旋狀圖案之中心處的第一磁性層的第二表面,且二磁性層與第一磁性層的第二表面接觸。 In an embodiment of the invention, the dielectric layer exposes a second surface of the first magnetic layer at the center of the spiral pattern, and the two magnetic layers are in contact with the second surface of the first magnetic layer.
在本發明的一實施例中,上述基底更具有第二區。第一磁性層更形成於第二區的絕緣層上。於第一區形成螺旋狀圖案的步驟中,同時於第二區的第一磁性層上形成多個塊狀圖案。介電層更覆蓋第二區的塊狀圖案。第二磁性層更覆蓋第二區的介電層。 In an embodiment of the invention, the substrate further has a second region. The first magnetic layer is further formed on the insulating layer of the second region. In the step of forming the spiral pattern in the first region, a plurality of block patterns are simultaneously formed on the first magnetic layer of the second region. The dielectric layer further covers the block pattern of the second region. The second magnetic layer further covers the dielectric layer of the second region.
在本發明的一實施例中,上述第一區為電感器區,且第二區為電容器區。 In an embodiment of the invention, the first region is an inductor region and the second region is a capacitor region.
在本發明的一實施例中,上述螺旋狀圖案包括由下而上的第一介電圖案與第一非磁性金屬圖案,且各塊狀圖案包括由下而上的第二介電圖案與第二非磁性金屬圖案。此外,第一非磁性金屬圖案以及第二非磁性金屬圖案與焊墊同時形成。 In an embodiment of the invention, the spiral pattern includes a first dielectric pattern and a first non-magnetic metal pattern from bottom to top, and each of the block patterns includes a second dielectric pattern from bottom to top. Two non-magnetic metal patterns. Further, the first non-magnetic metal pattern and the second non-magnetic metal pattern are formed simultaneously with the bonding pad.
在本發明的一實施例中,上述第一磁性層包括由下而上的第一鐵磁層與第一阻障層,且第二磁性層包括由下而上的第二阻障層與第二鐵磁層。 In an embodiment of the invention, the first magnetic layer includes a first ferromagnetic layer from the bottom to the first barrier layer, and the second magnetic layer includes a second barrier layer from the bottom to the top Two ferromagnetic layers.
本發明另提供一種半導體元件,其包括基底、磁性複合層、電感器以及電容器。基底具有第一區與第二區,且基底上已形成有金屬層與絕緣層。磁性複合層配置於第一區與第二區的絕 緣層上。電感器全面包覆於第一區的磁性複合層中。電容器配置於第二區,且第二區的磁性複合層作為電容器的電極。 The present invention further provides a semiconductor device including a substrate, a magnetic composite layer, an inductor, and a capacitor. The substrate has a first region and a second region, and a metal layer and an insulating layer have been formed on the substrate. The magnetic composite layer is disposed in the first zone and the second zone. On the edge layer. The inductor is completely covered in the magnetic composite layer of the first region. The capacitor is disposed in the second region, and the magnetic composite layer of the second region serves as an electrode of the capacitor.
在本發明的一實施例中,上述磁性複合層包括第一磁性層與第二磁性層。第一磁性層配置於電感器的下方。第二磁性層包覆電感器的頂面和側面。 In an embodiment of the invention, the magnetic composite layer includes a first magnetic layer and a second magnetic layer. The first magnetic layer is disposed below the inductor. The second magnetic layer covers the top and sides of the inductor.
在本發明的一實施例中,上述第一磁性層包括由下而上的第一鐵磁層與第一阻障層,且第二磁性層包括由下而上的第二阻障層與第二鐵磁層。 In an embodiment of the invention, the first magnetic layer includes a first ferromagnetic layer from the bottom to the first barrier layer, and the second magnetic layer includes a second barrier layer from the bottom to the top Two ferromagnetic layers.
在本發明的一實施例中,上述半導體元件更包括第一磁性層、螺旋狀圖案、第二磁性層以及介電層。第一磁性層配置於第一區的絕緣層上。螺旋狀圖案配置於第一區的第一磁性層上。第二磁性層覆蓋螺旋狀圖案並至少與螺旋狀圖案之外側的第一磁性層的第一表面接觸。介電層配置於螺旋狀圖案與第二磁性層之間。 In an embodiment of the invention, the semiconductor device further includes a first magnetic layer, a spiral pattern, a second magnetic layer, and a dielectric layer. The first magnetic layer is disposed on the insulating layer of the first region. The spiral pattern is disposed on the first magnetic layer of the first region. The second magnetic layer covers the spiral pattern and is in contact with at least the first surface of the first magnetic layer on the outer side of the spiral pattern. The dielectric layer is disposed between the spiral pattern and the second magnetic layer.
在本發明的一實施例中,上述第二磁性層更與螺旋狀圖案之中心處的第一磁性層的第二表面接觸。 In an embodiment of the invention, the second magnetic layer is further in contact with the second surface of the first magnetic layer at the center of the spiral pattern.
在本發明的一實施例中,上述第一磁性層更配置於第二區的絕緣層上。多個塊狀圖案配置於第二區的第一磁性層上。第二磁性層更覆蓋至少部分塊狀圖案。介電層更配置於各塊狀圖案與第二磁性層之間。 In an embodiment of the invention, the first magnetic layer is disposed on the insulating layer of the second region. A plurality of block patterns are disposed on the first magnetic layer of the second region. The second magnetic layer further covers at least a portion of the block pattern. The dielectric layer is further disposed between each of the block patterns and the second magnetic layer.
在本發明的一實施例中,上述螺旋狀圖案包括由下而上的第一介電圖案與第一非磁性金屬圖案,且各塊狀圖案包括由下而上的第二介電圖案與第二非磁性金屬圖案。 In an embodiment of the invention, the spiral pattern includes a first dielectric pattern and a first non-magnetic metal pattern from bottom to top, and each of the block patterns includes a second dielectric pattern from bottom to top. Two non-magnetic metal patterns.
基於上述,在本發明中,利用形成焊墊的製程,輔以上 下兩層的磁性材料,可同步製作電感器與電容器。換言之,可利用現有的後段製程輕易地將電感器與電容器整合在一起,大幅降低成本,提升競爭力。 Based on the above, in the present invention, the process of forming the pad is used, and more The next two layers of magnetic material can be used to make inductors and capacitors simultaneously. In other words, the existing back-end process can be used to easily integrate the inductor and the capacitor, which greatly reduces the cost and enhances the competitiveness.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
100‧‧‧基底 100‧‧‧Base
100a‧‧‧第一區 100a‧‧‧First District
100b‧‧‧第二區 100b‧‧‧Second District
102‧‧‧金屬層 102‧‧‧metal layer
104‧‧‧絕緣層 104‧‧‧Insulation
105‧‧‧第一鐵磁層 105‧‧‧First ferromagnetic layer
106、106’‧‧‧第一磁性層 106, 106'‧‧‧ first magnetic layer
107‧‧‧第一阻障層 107‧‧‧First barrier layer
108‧‧‧層間介電層 108‧‧‧Interlayer dielectric layer
108a‧‧‧第一介電圖案 108a‧‧‧First dielectric pattern
108b‧‧‧第二介電圖案 108b‧‧‧Second dielectric pattern
109‧‧‧螺旋狀圖案 109‧‧‧Spiral pattern
110‧‧‧非磁性金屬層 110‧‧‧Non-magnetic metal layer
110a‧‧‧第一非磁性金屬圖案 110a‧‧‧First non-magnetic metal pattern
110b‧‧‧第二非磁性金屬圖案 110b‧‧‧Second non-magnetic metal pattern
111‧‧‧塊狀圖案 111‧‧‧block pattern
112‧‧‧介電材料層 112‧‧‧ dielectric material layer
113‧‧‧介電層 113‧‧‧ dielectric layer
114‧‧‧第一表面 114‧‧‧ first surface
116‧‧‧第二表面 116‧‧‧ second surface
118、118’‧‧‧第一磁性層 118, 118'‧‧‧ first magnetic layer
117‧‧‧第二阻障層 117‧‧‧second barrier layer
119‧‧‧第二鐵磁層 119‧‧‧Second ferromagnetic layer
120、120’‧‧‧磁性複合層 120, 120'‧‧‧ magnetic composite layer
122‧‧‧開口 122‧‧‧ openings
圖1A至圖1F為依照本發明一實施例所繪示的一種半導體元件的製造方法的剖面示意圖。 1A-1F are schematic cross-sectional views showing a method of fabricating a semiconductor device according to an embodiment of the invention.
圖2為依照本發明一實施例所繪示的一種電感器的上視示意圖。 2 is a top plan view of an inductor according to an embodiment of the invention.
圖3為依照本發明一實施例所繪示的一種電容器的上視示意圖。 3 is a top plan view of a capacitor according to an embodiment of the invention.
圖4為依照本發明另一實施例所繪示的一種半導體元件的剖面示意圖。 4 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention.
本發明的精神在於利用後段的焊墊製程同步完成兩種被動元件(例如電感器與電容器)的製作,不僅可以達到輕易整合之目的,且形成的被動元件具有足夠大的面積,符合現有供電系統的需求。 The spirit of the invention lies in the simultaneous fabrication of two passive components (such as inductors and capacitors) by means of the subsequent pad process, which can not only achieve the purpose of easy integration, but also form a passive component with a large enough area to comply with the existing power supply system. Demand.
圖1A至圖1F為依照本發明的一實施例所繪示的一種半導體元件的製造方法的剖面示意圖。 1A-1F are schematic cross-sectional views showing a method of fabricating a semiconductor device in accordance with an embodiment of the invention.
首先,請參照圖1A,提供基底100。基底100可為半導體基底,例如含矽基底。在一實施例中,基底100上已形成有金屬層102與絕緣層104。金屬層102的材料包括金屬,如鋁、銅、鎢、鎳、鈷、鈦或其合金。絕緣層104的材料包括四乙氧基矽氧烷形成的二氧化矽(TEOS-SiO2)、硼磷矽玻璃(BPSG)、磷矽玻璃(PSG)、氫化矽倍半氧化物(HSQ)、氟矽玻璃(FSG)、無摻雜矽玻璃(USG)、氮化矽、氮氧化矽、介電常數小於4的低介電材料或其組合。形成金屬層102與絕緣層104的形成方法各自包括進行合適的沉積製程,如化學氣相沉積(CVD)製程、物理氣相沉積(PVD)製程或原子層沉積(ALD)製程等等。 First, referring to FIG. 1A, a substrate 100 is provided. Substrate 100 can be a semiconductor substrate, such as a germanium containing substrate. In an embodiment, the metal layer 102 and the insulating layer 104 have been formed on the substrate 100. The material of the metal layer 102 includes a metal such as aluminum, copper, tungsten, nickel, cobalt, titanium or an alloy thereof. The material of the insulating layer 104 includes cerium oxide (TEOS-SiO 2 ), borophosphoquinone glass (BPSG), phosphoric bismuth glass (PSG), hydrogenated sesquioxide (HSQ) formed by tetraethoxy siloxane. Fluorinated glass (FSG), undoped bismuth glass (USG), tantalum nitride, bismuth oxynitride, low dielectric materials having a dielectric constant of less than 4, or combinations thereof. The method of forming the metal layer 102 and the insulating layer 104 each includes performing a suitable deposition process such as a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, or an atomic layer deposition (ALD) process.
在一實施例中,基底100與金屬層102之間還可配置有閘極、接觸窗、絕緣層等本領域具有通常知識者所熟知的構件,然而為了清楚說明起見,並未繪示於圖示中。 In an embodiment, a gate, a contact window, an insulating layer, etc., which are well known to those skilled in the art, may be disposed between the substrate 100 and the metal layer 102. However, for clarity of explanation, it is not shown in FIG. In the picture.
此外,基底100可具有第一區100a以及第二區100b。在以下的實施例中,是以第一區100a為電感器區且第二區100b為電容器區為例來說明之,但本發明並不以此為限。 Further, the substrate 100 may have a first region 100a and a second region 100b. In the following embodiments, the first region 100a is an inductor region and the second region 100b is a capacitor region. However, the present invention is not limited thereto.
請繼續參照圖1A,於第一區100a以及第二區100b的絕緣層104上依序形成第一磁性層106、層間介電層108與非磁性金屬層110。第一磁性層106的材料包括含有鈷(Co)、鐵(Fe)以及鎳(Ni)中的至少一者的鐵磁材料。更具體地說,第一磁性層106的材料包括Mn-Zn、Cu-Zn、Ni-Zn、Fe-Ni-Mo、Fe-Co-Ni、Fe-Si、Al-Fe、Fe-Si-Al或其合金或其組合。第一磁性層106的材料也可包括非晶或奈米晶粒(nano-crystal)合金。層間介電層108的材料包括四乙氧基矽氧烷形成的二氧化矽(TEOS-SiO2)、硼磷矽玻璃 (BPSG)、磷矽玻璃(PSG)、氫化矽倍半氧化物(HSQ)、氟矽玻璃(FSG)、無摻雜矽玻璃(USG)、氮化矽、氮氧化矽、介電常數小於4的低介電材料或其組合。非磁性金屬層110的材料包括鋁(Al)、金(Au)、銅(Cu)、鈦(Ti)、鉭(Ta)或其合金。形成第一磁性層106、層間介電層108與非磁性金屬層110的形成方法各自包括進行合適的沉積製程,如化學氣相沉積製程、物理氣相沉積製程或原子層沉積製程等等。 Referring to FIG. 1A, the first magnetic layer 106, the interlayer dielectric layer 108 and the non-magnetic metal layer 110 are sequentially formed on the insulating layer 104 of the first region 100a and the second region 100b. The material of the first magnetic layer 106 includes a ferromagnetic material containing at least one of cobalt (Co), iron (Fe), and nickel (Ni). More specifically, the material of the first magnetic layer 106 includes Mn-Zn, Cu-Zn, Ni-Zn, Fe-Ni-Mo, Fe-Co-Ni, Fe-Si, Al-Fe, Fe-Si-Al. Or an alloy thereof or a combination thereof. The material of the first magnetic layer 106 may also include an amorphous or nano-crystal alloy. The material of the interlayer dielectric layer 108 includes cerium oxide (TEOS-SiO 2 ), borophosphoquinone glass (BPSG), phosphorous bismuth glass (PSG), and hydrogenated sesquioxide (HSQ) formed by tetraethoxy siloxane. ), fluorocarbon glass (FSG), undoped bismuth glass (USG), tantalum nitride, bismuth oxynitride, a low dielectric material having a dielectric constant of less than 4, or a combination thereof. The material of the non-magnetic metal layer 110 includes aluminum (Al), gold (Au), copper (Cu), titanium (Ti), tantalum (Ta), or an alloy thereof. The methods of forming the first magnetic layer 106, the interlayer dielectric layer 108, and the non-magnetic metal layer 110 each include performing a suitable deposition process such as a chemical vapor deposition process, a physical vapor deposition process, or an atomic layer deposition process.
在一實施例中,於形成層間介電層108的步驟之後以及形成非磁性金屬層110的步驟之前,更包括形成多個導電插塞(未繪示),所述導電插塞貫穿層間介電層108、第一磁性層106以及絕緣層104,並與金屬層102電性連接。 In an embodiment, after the step of forming the interlayer dielectric layer 108 and before the step of forming the non-magnetic metal layer 110, further comprising forming a plurality of conductive plugs (not shown), the conductive plugs inter-layer dielectric The layer 108, the first magnetic layer 106, and the insulating layer 104 are electrically connected to the metal layer 102.
然後,請參照圖1B,將層間介電層108與非磁性金屬層110圖案化,以於第一區100a的第一磁性層106上形成螺旋狀圖案109,同時於第二區100b的第一磁性層106上形成多個塊狀圖案111。更具體地說,所述圖案化步驟包括微影蝕刻製程,其將層間介電層108圖案化為第一介電圖案108a、第二介電圖案108b,且將非磁性金屬層110圖案化為第一非磁性金屬圖案110a、第二非磁性金屬圖案110b。在此實施例中,螺旋狀圖案107包括由下而上的第一介電圖案108a與第一非磁性金屬圖案110a,且各塊狀圖案111包括由下而上的第二介電圖案108b與第二非磁性金屬圖案110b。 Then, referring to FIG. 1B, the interlayer dielectric layer 108 and the non-magnetic metal layer 110 are patterned to form a spiral pattern 109 on the first magnetic layer 106 of the first region 100a, while being the first in the second region 100b. A plurality of block patterns 111 are formed on the magnetic layer 106. More specifically, the patterning step includes a lithography process that patterns the interlayer dielectric layer 108 into a first dielectric pattern 108a, a second dielectric pattern 108b, and patterns the non-magnetic metal layer 110 into The first non-magnetic metal pattern 110a and the second non-magnetic metal pattern 110b. In this embodiment, the spiral pattern 107 includes a first dielectric pattern 108a and a first non-magnetic metal pattern 110a from bottom to top, and each of the block patterns 111 includes a second dielectric pattern 108b from bottom to top. The second non-magnetic metal pattern 110b.
特別要注意的是,在第一區100a中,螺旋狀圖案109中的第一非磁性金屬圖案110a是作為電感器,故螺旋狀圖案109的間距(pitch)較大,可使得電感器的阻值降低。作為電感器之第 一非磁性金屬圖案110a的上視圖如圖2所示。此外,雖然在圖2中,電感器的形狀是以矩形螺旋狀(rectangular spiral)為例來說明之,但並不用以限定本發明。在另一實施例中,電感器的形狀亦可為圓形螺旋狀(circular spiral)或八角形螺旋狀(octagonal spiral)等等。 It is to be noted that, in the first region 100a, the first non-magnetic metal pattern 110a in the spiral pattern 109 functions as an inductor, so that the pitch of the spiral pattern 109 is large, and the resistance of the inductor can be made. The value is reduced. As the inductor A top view of a non-magnetic metal pattern 110a is shown in FIG. Further, although the shape of the inductor is illustrated by a rectangular spiral in FIG. 2, it is not intended to limit the present invention. In another embodiment, the shape of the inductor may also be a circular spiral or an octagonal spiral or the like.
另外,在第二區100b中,塊狀圖案111中的第二非磁性金屬圖案110b是作為金屬-絕緣層-金屬(metal-insulator-metal;MIM)電容器的電極,故塊狀圖案111的間距較小,可使得電容器的密度提高。作為電容器電極的第一非磁性金屬圖案110b的上視圖如圖3所示。此外,雖然在圖3中,電容器電極的形狀是以格子狀(grid)為例來說明之,但並不用以限定本發明。在另一實施例中,電容器電極的形狀亦可為線狀、柱狀、陣列狀等等。 In addition, in the second region 100b, the second non-magnetic metal pattern 110b in the block pattern 111 is an electrode of a metal-insulator-metal (MIM) capacitor, so the pitch of the block pattern 111 Smaller, the density of the capacitor can be increased. A top view of the first non-magnetic metal pattern 110b as a capacitor electrode is shown in FIG. Further, although the shape of the capacitor electrode is illustrated in FIG. 3 as a grid, it is not intended to limit the present invention. In another embodiment, the shape of the capacitor electrode may also be linear, columnar, array, or the like.
特別要說明的是,非磁性金屬層110可為焊墊金屬層,在此情況下,第一非磁性金屬圖案110a以及第二非磁性金屬圖案110b可與焊墊同時形成。換言之,並不需要額外的製程步驟,利用原本的焊墊製程,即可同時完成第一區100a之電感器(例如第一非磁性金屬圖案110a)以及第二區100b之電容器電極(例如第二非磁性金屬圖案110b)的製作。 In particular, the non-magnetic metal layer 110 may be a pad metal layer. In this case, the first non-magnetic metal pattern 110a and the second non-magnetic metal pattern 110b may be formed simultaneously with the pad. In other words, an additional process step is not required, and the inductor of the first region 100a (for example, the first non-magnetic metal pattern 110a) and the capacitor electrode of the second region 100b (for example, the second) can be simultaneously completed by using the original pad process. Fabrication of the non-magnetic metal pattern 110b).
繼之,請參照圖1C,於第一區100a以及第二區100b的第一磁性層106上形成介電材料層112。更具體地說,於第一區100a中,介電材料層112覆蓋螺旋狀圖案109以及螺旋狀圖案109之間裸露出的部分第一磁性層106。類似地,於第二區100b中,介電材料層112覆蓋塊狀圖案111以及塊狀圖案111之間裸露出的部分第一磁性層106。在一實施例中,介電材料層112的材料包括 氮化矽、氧化物/氮化物/氧化物(Oxide-Nitride-Oxide,ONO)複合層或是介電常數高於4的介電材料,例如HfO2、TiO2、ZrO2、Ta2O5或Al2O3等,且其形成方法包括進行化學氣相沉積製程、熱氧化法或原子層沉積製程等。在另一實施例中,介電材料層112的材料包括四乙氧基矽氧烷形成的二氧化矽(TEOS-SiO2)、硼磷矽玻璃(BPSG)、磷矽玻璃(PSG)、氫化矽倍半氧化物(HSQ)、氟矽玻璃(FSG)、無摻雜矽玻璃(USG)、氮化矽、氮氧化矽、介電常數小於4的低介電材料或其組合,且其形成方法包括進行合適的沉積製程,如化學氣相沉積製程、物理氣相沉積製程或原子層沉積製程等等。 Next, referring to FIG. 1C, a dielectric material layer 112 is formed on the first magnetic layer 106 of the first region 100a and the second region 100b. More specifically, in the first region 100a, the dielectric material layer 112 covers the spiral pattern 109 and a portion of the first magnetic layer 106 exposed between the spiral patterns 109. Similarly, in the second region 100b, the dielectric material layer 112 covers the portion of the first magnetic layer 106 exposed between the bulk pattern 111 and the bulk pattern 111. In one embodiment, the material of the dielectric material layer 112 includes a tantalum nitride, an oxide/nitride/oxide (ONO) composite layer, or a dielectric material having a dielectric constant higher than 4. For example, HfO 2 , TiO 2 , ZrO 2 , Ta 2 O 5 or Al 2 O 3 , etc., and the formation method thereof includes performing a chemical vapor deposition process, a thermal oxidation process, or an atomic layer deposition process. In another embodiment, the material of the dielectric material layer 112 comprises ruthenium dioxide (TEOS-SiO 2 ), bisphosphonium bismuth glass (BPSG), phosphorous bismuth glass (PSG), hydrogenation formed by tetraethoxy siloxane. Bismuth sesquioxide (HSQ), fluorocarbon glass (FSG), undoped bismuth glass (USG), tantalum nitride, bismuth oxynitride, low dielectric materials having a dielectric constant of less than 4, or combinations thereof, and their formation The method includes performing a suitable deposition process such as a chemical vapor deposition process, a physical vapor deposition process, or an atomic layer deposition process.
接下來,請參照圖1D,進行微影蝕刻製程,移除第一區100a的部分介電材料層112,以形成介電層113。介電層113至少裸露出螺旋狀圖案109之外側的第一磁性層106的第一表面114。在一實施例中,介電層113更裸露出螺旋狀圖案109之中心處的第一磁性層106的第二表面116,如圖1D所示。在另一實施例中(未繪示),視客戶需要,介電層113亦可裸露出螺旋狀圖案109之任意兩相鄰螺線之間的部分第一磁性層106。 Next, referring to FIG. 1D, a photolithography process is performed to remove a portion of the dielectric material layer 112 of the first region 100a to form a dielectric layer 113. The dielectric layer 113 exposes at least the first surface 114 of the first magnetic layer 106 on the outer side of the spiral pattern 109. In an embodiment, the dielectric layer 113 exposes the second surface 116 of the first magnetic layer 106 at the center of the spiral pattern 109, as shown in FIG. 1D. In another embodiment (not shown), the dielectric layer 113 may also expose a portion of the first magnetic layer 106 between any two adjacent spirals of the spiral pattern 109, depending on customer needs.
然後,請參照圖1E,形成第二磁性層118,其覆蓋介電層113並與第一磁性層106的第一表面114與第二表面116接觸。第二磁性層118的材料包括含有鈷、鐵以及鎳中的至少一者的鐵磁材料。更具體地說,第二磁性層118的材料包括Mn-Zn、Cu-Zn、Ni-Zn、Fe-Ni-Mo、Fe-Co-Ni、Fe-Si、Al-Fe、Fe-Si-Al或其合金或其組合。第二磁性層118的材料也可包括非晶或奈米晶粒(nano-crystal)合金。形成第二磁性層118的形成方法包括進行 合適的沉積製程,如化學氣相沉積製程、物理氣相沉積製程或原子層沉積製程等等。第二磁性層118與第一磁性層106的材料可相同或不同。在此實施例中,第二磁性層118與第一磁性層106構成磁性複合層120。 Then, referring to FIG. 1E, a second magnetic layer 118 is formed that covers the dielectric layer 113 and is in contact with the first surface 114 of the first magnetic layer 106 and the second surface 116. The material of the second magnetic layer 118 includes a ferromagnetic material containing at least one of cobalt, iron, and nickel. More specifically, the material of the second magnetic layer 118 includes Mn-Zn, Cu-Zn, Ni-Zn, Fe-Ni-Mo, Fe-Co-Ni, Fe-Si, Al-Fe, Fe-Si-Al. Or an alloy thereof or a combination thereof. The material of the second magnetic layer 118 may also include an amorphous or nano-crystal alloy. A method of forming the second magnetic layer 118 includes performing Suitable deposition processes, such as chemical vapor deposition processes, physical vapor deposition processes or atomic layer deposition processes, and the like. The material of the second magnetic layer 118 and the first magnetic layer 106 may be the same or different. In this embodiment, the second magnetic layer 118 and the first magnetic layer 106 constitute the magnetic composite layer 120.
特別要注意的是,由於第二磁性層118與第一磁性層106至少於螺旋狀圖案109之外側彼此接觸,故電感器(例如第一非磁性金屬圖案110a)可全面包覆於磁性複合層120中,進而增加電感器的電感值。在一實施例中,第二磁性層118與第一磁性層106不僅於螺旋狀圖案109之外側彼此接觸,更於螺旋狀圖案109之中心處互相連接,以此方式,電感器(例如第一非磁性金屬圖案110a)不僅可全面包覆於磁性複合層120中,更可形成兩個磁力迴路以增加磁通量(magnetic flux),進一步提高電感器的電感值。 It is to be noted that, since the second magnetic layer 118 and the first magnetic layer 106 are in contact with each other at least on the outer side of the spiral pattern 109, the inductor (for example, the first non-magnetic metal pattern 110a) may be completely covered on the magnetic composite layer. In 120, the inductance value of the inductor is further increased. In one embodiment, the second magnetic layer 118 and the first magnetic layer 106 are not only in contact with each other on the outer side of the spiral pattern 109 but also connected to each other at the center of the spiral pattern 109. In this way, the inductor (for example, the first The non-magnetic metal pattern 110a) can not only be completely covered in the magnetic composite layer 120, but also can form two magnetic circuits to increase the magnetic flux and further increase the inductance value of the inductor.
接著,請參照圖1F,進行微影蝕刻製程,移除部分磁性複合層120,以於磁性複合層120中形成開口122。具體而言,開口122貫穿第二磁性層118與第一磁性層106,並裸露出部分絕緣層104。 Next, referring to FIG. 1F, a lithography process is performed to remove a portion of the magnetic composite layer 120 to form an opening 122 in the magnetic composite layer 120. Specifically, the opening 122 penetrates the second magnetic layer 118 and the first magnetic layer 106, and a portion of the insulating layer 104 is exposed.
繼之,形成鈍化層(未繪示)以填入開口122,使第一區100a的電感器與第二區100b的電容器彼此隔離。鈍化層的材料包括氮化矽、氧化矽、碳化矽及氧化鋁,且其形成方法包括進行合適的沉積製程,如化學氣相沉積製程、物理氣相沉積製程或原子層沉積製程等等。至此,完成本發明之半導體元件的製作。 Next, a passivation layer (not shown) is formed to fill the opening 122 to isolate the inductor of the first region 100a from the capacitor of the second region 100b. The material of the passivation layer includes tantalum nitride, tantalum oxide, tantalum carbide and aluminum oxide, and the formation method thereof includes performing a suitable deposition process such as a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process. Thus far, the fabrication of the semiconductor device of the present invention has been completed.
以下,將參照圖1F說明本發明之半導體元件的結構。如圖1F所示,本發明的半導體元件包括基底100、第一磁性層 106、螺旋狀圖案109、多個塊狀圖案111、第二磁性層118以及介電層113。基底100具有第一區100a與第二區100b,且基底100上已形成有金屬層102與絕緣層104。第一磁性層106與第二磁性層118構成磁性複合層120。 Hereinafter, the structure of the semiconductor element of the present invention will be described with reference to FIG. 1F. As shown in FIG. 1F, the semiconductor device of the present invention includes a substrate 100 and a first magnetic layer. 106. A spiral pattern 109, a plurality of block patterns 111, a second magnetic layer 118, and a dielectric layer 113. The substrate 100 has a first region 100a and a second region 100b, and a metal layer 102 and an insulating layer 104 have been formed on the substrate 100. The first magnetic layer 106 and the second magnetic layer 118 constitute the magnetic composite layer 120.
在第一區100a中,第一磁性層106配置於絕緣層104上,且螺旋狀圖案109配置於第一磁性層106上。螺旋狀圖案109包括由下而上的第一介電圖案108a與第一非磁性金屬圖案110a。在一實施例中,螺旋狀的第一非磁性金屬圖案110a可作為電感器。第二磁性層118覆蓋螺旋狀圖案109並至少與螺旋狀圖案109之外側的第一磁性層106的第一表面114接觸。在一實施例中,第二磁性層118更與螺旋狀圖案109之中心處的第一磁性層106的第二表面116接觸。介電層113配置於螺旋狀圖案109與第二磁性層118之間。 In the first region 100a, the first magnetic layer 106 is disposed on the insulating layer 104, and the spiral pattern 109 is disposed on the first magnetic layer 106. The spiral pattern 109 includes a first dielectric pattern 108a and a first non-magnetic metal pattern 110a from bottom to top. In an embodiment, the spiral first non-magnetic metal pattern 110a can function as an inductor. The second magnetic layer 118 covers the spiral pattern 109 and is in contact with at least the first surface 114 of the first magnetic layer 106 on the outer side of the spiral pattern 109. In an embodiment, the second magnetic layer 118 is further in contact with the second surface 116 of the first magnetic layer 106 at the center of the spiral pattern 109. The dielectric layer 113 is disposed between the spiral pattern 109 and the second magnetic layer 118.
特別要說明的是,電感器(例如第一非磁性金屬圖案110a)全面包覆於第一區100a的磁性複合層120中。更具體地說,磁性複合層120包括第一磁性層106與第二磁性層118,第一磁性層106配置於電感器(例如第一非磁性金屬圖案110a)的下方,且第二磁性層118包覆電感器(例如第一非磁性金屬圖案110a)的頂面和側面。在本發明的半導體元件中,由於第一區100a之電感器(例如第一非磁性金屬圖案110a)全面包覆於磁性複合層120中,故可避免漏磁或電磁干擾現象,進而增加電感器的電感值。 In particular, the inductor (eg, the first non-magnetic metal pattern 110a) is entirely encapsulated in the magnetic composite layer 120 of the first region 100a. More specifically, the magnetic composite layer 120 includes a first magnetic layer 106 and a second magnetic layer 118. The first magnetic layer 106 is disposed under the inductor (eg, the first non-magnetic metal pattern 110a), and the second magnetic layer 118 A top surface and a side surface of the inductor (for example, the first non-magnetic metal pattern 110a) are covered. In the semiconductor device of the present invention, since the inductor of the first region 100a (for example, the first non-magnetic metal pattern 110a) is entirely covered in the magnetic composite layer 120, magnetic leakage or electromagnetic interference can be avoided, thereby increasing the inductor. Inductance value.
此外,第一磁性層106更配置於第二區100b的絕緣層104上,且塊狀圖案111配置於第二區100b的第一磁性層106上。各塊狀圖案111包括由下而上的第二介電圖案108b與第二非磁性 金屬圖案110b。第二磁性層118更覆蓋至少部分塊狀圖案111。在一實施例中,未被第二磁性層118所覆蓋的塊狀圖案111例如是用於與導線或導電插塞電性連接。介電層113更配置於各塊狀圖案111與第二磁性層118之間。 In addition, the first magnetic layer 106 is disposed on the insulating layer 104 of the second region 100b, and the block pattern 111 is disposed on the first magnetic layer 106 of the second region 100b. Each block pattern 111 includes a second dielectric pattern 108b and a second non-magnetic layer from bottom to top. Metal pattern 110b. The second magnetic layer 118 more covers at least a portion of the block pattern 111. In an embodiment, the block pattern 111 not covered by the second magnetic layer 118 is used, for example, for electrical connection with a wire or a conductive plug. The dielectric layer 113 is further disposed between each of the block patterns 111 and the second magnetic layer 118.
特別要說明的是,電容器配置於第二區100b,且第二區100b的磁性複合層120可作為電容器的電極。更具體地說,磁性複合層120包括第一磁性層106與第二磁性層118,且電容器為雙(dual)金屬-絕緣層-金屬(MIM)電容器,其中第二磁性層118(作為頂電極)、介電層113與第一非磁性金屬圖案110b(作為底電極)構成第一電容器,而第一非磁性金屬圖案110b(作為頂電極)、第二介電圖案108b與第一磁性層106(作為底電極)構成第二電容器。此處,雖然未繪示出,但本領域具有通常知識者可依電路佈局需要,形成多個導電插塞與所需的電容器電極電性連接,以將上述第一電容器與第二電容器設計為並聯或串聯使用。 In particular, the capacitor is disposed in the second region 100b, and the magnetic composite layer 120 of the second region 100b can serve as an electrode of the capacitor. More specifically, the magnetic composite layer 120 includes a first magnetic layer 106 and a second magnetic layer 118, and the capacitor is a dual metal-insulator-metal (MIM) capacitor, wherein the second magnetic layer 118 (as a top electrode) The dielectric layer 113 and the first non-magnetic metal pattern 110b (as a bottom electrode) constitute a first capacitor, and the first non-magnetic metal pattern 110b (as a top electrode), the second dielectric pattern 108b and the first magnetic layer 106 (as a bottom electrode) constitutes a second capacitor. Here, although not shown, those skilled in the art can form a plurality of conductive plugs electrically connected to the required capacitor electrodes according to the circuit layout requirements, so as to design the first capacitor and the second capacitor as Used in parallel or in series.
在此實施例中,是以平面電感器與雙MIM電容器為例來說明之,然而本發明並不以此為限。本領域具有通常知識者應了解,只要是以磁性材料全面包覆電感器且此磁性材料是作為電容器的至少一電極的半導體元件,均落入本發明欲保護的範圍內。以此類似的方式,可視製程需要,利用後段製程輕易製作出三維電感器與三維電容器,以增加電感值與電容密度。 In this embodiment, a planar inductor and a dual MIM capacitor are taken as an example, but the invention is not limited thereto. Those of ordinary skill in the art will appreciate that any semiconductor component that is integrally covered with a magnetic material and that is a magnetic component that is at least one electrode of the capacitor falls within the scope of the present invention. In a similar manner, the three-dimensional inductor and the three-dimensional capacitor can be easily fabricated by using the back-end process to increase the inductance value and the capacitance density.
此外,在上述的實施例中,是以單層第一磁性層106與單層第二磁性層118為例來說明之,但並不用以限定本發明。在另一實施例中,第一磁性層106與第二磁性層118亦可為雙層或多層結構。 Further, in the above embodiments, the single-layer first magnetic layer 106 and the single-layer second magnetic layer 118 are exemplified, but are not intended to limit the present invention. In another embodiment, the first magnetic layer 106 and the second magnetic layer 118 may also be a double layer or a multilayer structure.
圖4為依照本發明另一實施例所繪示的一種半導體元件的剖面示意圖。圖4與圖1F的結構類似,其差異僅在於磁性複合層的組成不同,以下將詳細說明不同之處,相同處則不再贅述。 4 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention. 4 is similar to the structure of FIG. 1F, and the difference is only in the composition of the magnetic composite layer, and the differences will be described in detail below, and the same portions will not be described again.
更具體地說,如圖4所示,磁性複合層120’包括第一磁性層106’與第二磁性層118’。第一磁性層106’包括由下而上的第一鐵磁層105與第一阻障層107,且第二磁性層118’包括由下而上的第二阻障層117與第二鐵磁層119。 More specifically, as shown in Fig. 4, the magnetic composite layer 120' includes a first magnetic layer 106' and a second magnetic layer 118'. The first magnetic layer 106' includes a first ferromagnetic layer 105 and a first barrier layer 107 from bottom to top, and the second magnetic layer 118' includes a second barrier layer 117 and a second ferromagnetic layer from bottom to top. Layer 119.
第一鐵磁層105與第一磁性層106的材料類似,第二鐵磁層119與第二磁性層118的材料類似,且其均包括高電阻的鐵磁材料。第一鐵磁層105與第二鐵磁層119的材料可相同或不同。 The first ferromagnetic layer 105 is similar in material to the first magnetic layer 106, the second ferromagnetic layer 119 is similar in material to the second magnetic layer 118, and each of which includes a high resistance ferromagnetic material. The materials of the first ferromagnetic layer 105 and the second ferromagnetic layer 119 may be the same or different.
第一阻障層107與第二阻障層117各自包括低電阻材料,如Ti、TiN、Ta、TiN或其組合,且其形成方法各自包括進行合適的沉積製程,如化學氣相沉積製程、物理氣相沉積製程或原子層沉積製程等等。第一阻障層107與第二阻障層117的材料可相同或不同。 The first barrier layer 107 and the second barrier layer 117 each comprise a low resistance material such as Ti, TiN, Ta, TiN or a combination thereof, and the method of forming each comprises performing a suitable deposition process, such as a chemical vapor deposition process, Physical vapor deposition process or atomic layer deposition process, and the like. The material of the first barrier layer 107 and the second barrier layer 117 may be the same or different.
特別要說明的是,在此實施例中,高電阻的第一鐵磁層105/第二鐵磁層119與電感器(例如第一非磁性金屬圖案110a)之間分別配置有低電阻的第一阻障層107/第二阻障層117,以此配置方式,不僅可使電感器的電感值增加,且可降低趨膚效應(skin effect)。 In particular, in this embodiment, a low-resistance first is disposed between the high-resistance first ferromagnetic layer 105/second ferromagnetic layer 119 and the inductor (eg, the first non-magnetic metal pattern 110a) A barrier layer 107 / second barrier layer 117, in this arrangement, not only increases the inductance of the inductor, but also reduces the skin effect.
綜上所述,在本發明中,利用現有的焊墊製程,輔以上下兩層的磁性材料,可同步完成電感器與電容器的製作,不僅可以達到輕易整合之目的,且形成的電感器與電容器具有足夠大的面積,符合現有供電系統的需求。此外,本發明所製作出的電感 器為一種被鐵磁材料全面遮蔽(fully shielded)或包覆之電感器,其具有高電感值與低電磁干擾(electromagnetic interference,EMI)。另外,本發明所製作出的電容器為一種具有高電容密度的雙MIM電容器。因此,本發明的方法可利用現有的後段製程同步製作高Q電感器與高Q電容器,大幅降低成本,提升競爭力。 In summary, in the present invention, by using the existing pad process, the magnetic materials of the upper and lower layers can be used to simultaneously complete the fabrication of the inductor and the capacitor, which can not only achieve the purpose of easy integration, but also form an inductor and Capacitors have a large enough area to meet the needs of existing power supply systems. In addition, the inductor produced by the invention The inductor is a fully shielded or coated inductor with high inductance and low electromagnetic interference (EMI). Further, the capacitor fabricated by the present invention is a double MIM capacitor having a high capacitance density. Therefore, the method of the present invention can utilize the existing back-end process to simultaneously produce high-Q inductors and high-Q capacitors, thereby greatly reducing costs and improving competitiveness.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧基底 100‧‧‧Base
100a‧‧‧第一區 100a‧‧‧First District
100b‧‧‧第二區 100b‧‧‧Second District
102‧‧‧金屬層 102‧‧‧metal layer
104‧‧‧絕緣層 104‧‧‧Insulation
106‧‧‧第一磁性層 106‧‧‧First magnetic layer
108a‧‧‧第一介電圖案 108a‧‧‧First dielectric pattern
108b‧‧‧第二介電圖案 108b‧‧‧Second dielectric pattern
109‧‧‧螺旋狀圖案 109‧‧‧Spiral pattern
110a‧‧‧第一非磁性金屬圖案 110a‧‧‧First non-magnetic metal pattern
110b‧‧‧第二非磁性金屬圖案 110b‧‧‧Second non-magnetic metal pattern
111‧‧‧塊狀圖案 111‧‧‧block pattern
113‧‧‧介電層 113‧‧‧ dielectric layer
114‧‧‧第一表面 114‧‧‧ first surface
116‧‧‧第二表面 116‧‧‧ second surface
118‧‧‧第一磁性層 118‧‧‧First magnetic layer
120‧‧‧磁性複合層 120‧‧‧Magnetic composite layer
122‧‧‧開口 122‧‧‧ openings
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104108980A TWI640062B (en) | 2015-03-20 | 2015-03-20 | Semiconductor device and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104108980A TWI640062B (en) | 2015-03-20 | 2015-03-20 | Semiconductor device and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201635438A true TW201635438A (en) | 2016-10-01 |
TWI640062B TWI640062B (en) | 2018-11-01 |
Family
ID=57847392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104108980A TWI640062B (en) | 2015-03-20 | 2015-03-20 | Semiconductor device and method of forming the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI640062B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113506669A (en) * | 2021-06-07 | 2021-10-15 | 日月光半导体制造股份有限公司 | Semiconductor package device and method of manufacturing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW493187B (en) * | 2000-12-08 | 2002-07-01 | Taiwan Semiconductor Mfg | Spiral inductor containing erect capacitor structures inside |
US7230316B2 (en) * | 2002-12-27 | 2007-06-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having transferred integrated circuit |
US20130057557A1 (en) * | 2011-09-07 | 2013-03-07 | Qualcomm Mems Technologies, Inc. | High area stacked layered metallic structures and related methods |
US20140217547A1 (en) * | 2012-03-29 | 2014-08-07 | Adel A. Elsherbini | Semiconductor package with air core inductor (aci) and magnetic core inductor (mci) |
US9627929B2 (en) * | 2012-11-02 | 2017-04-18 | Panasonic Intellectual Property Management Co., Ltd. | Wireless power transfer system for wirelessly transferring electric power in noncontact manner by utilizing resonant magnetic field coupling |
-
2015
- 2015-03-20 TW TW104108980A patent/TWI640062B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113506669A (en) * | 2021-06-07 | 2021-10-15 | 日月光半导体制造股份有限公司 | Semiconductor package device and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TWI640062B (en) | 2018-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI292204B (en) | Semiconductor device and method for manufacturing the same | |
JP4772495B2 (en) | Inductor and method of forming inductor | |
CN102593096B (en) | Metal layer at top forms MIM capacitor | |
TWI296845B (en) | Multilayer winding inductor | |
US7202567B2 (en) | Semiconductor device and manufacturing method for the same | |
CN102956439B (en) | Metal-insulator-metal capacitor and manufacture method | |
JP2007110129A (en) | Integrated inductor | |
US8546233B2 (en) | Method for producing an integrated circuit arrangement with capacitor in an interconnect layer | |
JP2004165559A (en) | Semiconductor device | |
TW201330228A (en) | Method for forming an inductor | |
JP3745316B2 (en) | Semiconductor integrated circuit and manufacturing method thereof | |
TW200826278A (en) | Capacitor structure for integrated circuit | |
CN110060982A (en) | Capacitor and its manufacturing method for mediplate | |
US10475878B2 (en) | BEOL capacitor through airgap metallization | |
US8760843B2 (en) | Capacitive device and method for fabricating the same | |
US20050269670A1 (en) | Semiconductor device and fabrication method thereof | |
TW201241959A (en) | Method for fabricating metal redistribution layer | |
TWI640062B (en) | Semiconductor device and method of forming the same | |
TWI721771B (en) | Integrated circuit and method of forming the same | |
JP5090688B2 (en) | Semiconductor device | |
US20230274883A1 (en) | Vertically-stacked interdigitated metal-insulator-metal capacitor for sub-20 nm pitch | |
KR101146225B1 (en) | Method for manufacturing a semiconductor device | |
TW200910576A (en) | Metal-insulator-metal capacitor and method for manufacturing the same | |
US20100052095A1 (en) | Inductor for semiconductor device and method of fabricating the same | |
KR20010014957A (en) | Semiconductor device and manufacturing method thereof |