TW201631628A - Method of forming semiconductor device - Google Patents

Method of forming semiconductor device Download PDF

Info

Publication number
TW201631628A
TW201631628A TW104105677A TW104105677A TW201631628A TW 201631628 A TW201631628 A TW 201631628A TW 104105677 A TW104105677 A TW 104105677A TW 104105677 A TW104105677 A TW 104105677A TW 201631628 A TW201631628 A TW 201631628A
Authority
TW
Taiwan
Prior art keywords
layer
forming
semiconductor device
mask layer
metal
Prior art date
Application number
TW104105677A
Other languages
Chinese (zh)
Other versions
TWI642087B (en
Inventor
陳國瑋
林君玲
許啟茂
許經偉
蔡惠如
李佳蓉
周尚南
李佩庭
吳柏志
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW104105677A priority Critical patent/TWI642087B/en
Publication of TW201631628A publication Critical patent/TW201631628A/en
Application granted granted Critical
Publication of TWI642087B publication Critical patent/TWI642087B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method of forming a semiconductor structure, comprise following steps. First of all, a dielectric layer is provided. Next, a bilayer mask layer is formed on the dielectric layer, wherein the bilayer mask layer comprises two metal nitride layers having different metal concentration. Finally, a first opening is formed in the dielectric layer through the bilayer mask layer. Also, another method of forming a semiconductor structure comprises forming a mask layer having a metal concentration in a gradient.

Description

形成半導體元件的方法 Method of forming a semiconductor component

本發明是關於一種形成半導體元件的方法,尤指一種利用富氮(nitrogen-rich)的遮罩層於介電層中形成開口的方法。 The present invention relates to a method of forming a semiconductor device, and more particularly to a method of forming an opening in a dielectric layer using a nitrogen-rich mask layer.

積體電路(integrated circuit,IC)是藉由形成於基底或不同膜層中的圖案化特徵構成的裝置以及內連線結構所建構。舉例來說,作為半導體積體電路中主要多重金屬內連線(multi-level interconnects)技術的鑲嵌技術,即為在介電材料層中蝕刻出電路圖案,然後將導電材料例如銅填入該電路圖案中,並加以平坦化,進而完成金屬內連線之製作。 An integrated circuit (IC) is constructed by means of patterned features formed in a substrate or different layers of film and an interconnect structure. For example, a damascene technique as a major multi-level interconnects technique in a semiconductor integrated circuit is to etch a circuit pattern in a dielectric material layer and then fill a conductive material such as copper into the circuit. The pattern is flattened to complete the fabrication of the metal interconnect.

隨著半導體元件的持續微型化及半導體製作技術的進步,目前業界常採用雙重曝光技術(double patterning lithography,DPL),或是多重曝光技術(multiple patterning lithography,MPL),以克服原有曝光技術的極限。也就是說,藉由一次以上的微影及蝕刻製程,在目標層(例如介電材料層)的特定區域中定義出較為複雜而密集的圖案。 With the continued miniaturization of semiconductor components and advances in semiconductor fabrication technology, double patterning lithography (DPL) or multiple patterning lithography (MPL) is often used in the industry to overcome the original exposure technology. limit. That is, by more than one lithography and etching process, a more complex and dense pattern is defined in a particular region of the target layer (eg, a layer of dielectric material).

然而,在每次進行微影及蝕刻製程之後,多少會造成遮罩層的損傷或是表面性質的改變,而後當該遮罩層再次接觸進行後續 微影及蝕刻製程時所使用的清洗溶液、蝕刻劑或化學溶劑,將可能造成遮罩層的遮罩圖案發生變形、變性,或者暴露並損傷目標層的表面,進而影響該遮罩圖案的精確度,其將不利於後續製程的進行或導致後續完成的半導體元件的良率下降。 However, after each lithography and etching process, some damage to the mask layer or changes in surface properties may occur, and then the mask layer is contacted again for subsequent The cleaning solution, etchant or chemical solvent used in the lithography and etching process may cause deformation or denaturation of the mask pattern of the mask layer, or expose and damage the surface of the target layer, thereby affecting the accuracy of the mask pattern. Degree, which will be detrimental to the subsequent process or lead to a decrease in the yield of subsequently completed semiconductor components.

因此,如何改善圖案化技術以獲得完整的圖案化結構,實為相關技術者所欲改進之課題。 Therefore, how to improve the patterning technology to obtain a complete patterned structure is a subject that the related art desires to improve.

本發明之一目的在於提供一種形成半導體元件的方法,可避免遮罩層的變形、變性,有利於形成具有更佳可靠度的半導體元件。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method of forming a semiconductor element which can avoid deformation and denaturation of a mask layer and facilitate formation of a semiconductor element having better reliability.

為達上述目的,本發明之一實施例提供一種形成半導體元件的方法,其包含以下步驟。首先,提供一介電層。接著,在該介電層上形成一雙層遮罩層,其中該雙層遮罩層包含金屬濃度不同的二金屬氮化物層。最後,透過該雙層遮罩層在該介電層中形成一第一開口。 To achieve the above object, an embodiment of the present invention provides a method of forming a semiconductor device, comprising the following steps. First, a dielectric layer is provided. Next, a double layer mask layer is formed on the dielectric layer, wherein the double layer mask layer comprises a two metal nitride layer having different metal concentrations. Finally, a first opening is formed in the dielectric layer through the double layer mask layer.

為達上述目的,本發明之另一實施例提供一種形成半導體元件的方法,其包含以下步驟。首先提供一介電層。接著,在該介電層上行成一遮罩層,其中該遮罩層包含金屬濃度是呈一梯度分布的一金屬氮化物。最後,透過該遮罩層在該介電層中形成一第一開口。 In order to achieve the above object, another embodiment of the present invention provides a method of forming a semiconductor device, comprising the following steps. A dielectric layer is first provided. Then, the dielectric layer is formed into a mask layer, wherein the mask layer comprises a metal nitride having a metal concentration in a gradient distribution. Finally, a first opening is formed in the dielectric layer through the mask layer.

本發明的形成半導體元件的方法,其是在介電層上形成有 富氮的金屬遮罩層,透過該金屬遮罩層可避免蝕刻製程所使用的蝕刻劑過度消耗其中的氮成分,因而可有效防止該金屬遮罩層的變形及變性。 A method of forming a semiconductor device of the present invention, which is formed on a dielectric layer The nitrogen-rich metal mask layer can prevent the etchant used in the etching process from excessively consuming the nitrogen component thereof through the metal mask layer, thereby effectively preventing deformation and denaturation of the metal mask layer.

100‧‧‧基底 100‧‧‧Base

101‧‧‧導電層 101‧‧‧ Conductive layer

110‧‧‧介電層 110‧‧‧ dielectric layer

111、112‧‧‧介電材料層 111, 112‧‧‧ dielectric material layer

130‧‧‧金屬氮化物層 130‧‧‧Metal Nitride Layer

131、133‧‧‧第一層 131, 133‧‧‧ first floor

132、134‧‧‧第二層 132, 134‧‧‧ second floor

140‧‧‧圖案化遮罩層 140‧‧‧ patterned mask layer

141‧‧‧開口圖案 141‧‧‧ opening pattern

150‧‧‧雙鑲嵌結構 150‧‧‧Double mosaic structure

151、152‧‧‧開口 151, 152‧‧ ‧ openings

160‧‧‧插塞結構 160‧‧‧ plug structure

170‧‧‧圖案化遮罩層 170‧‧‧ patterned mask layer

171、172‧‧‧開口圖案 171, 172‧‧‧ opening pattern

180‧‧‧開口 180‧‧‧ openings

190‧‧‧插塞結構 190‧‧‧ plug structure

200‧‧‧圖案化光阻層 200‧‧‧ patterned photoresist layer

210‧‧‧有機介電層 210‧‧‧Organic Dielectric Layer

220‧‧‧含矽硬遮層 220‧‧‧with hard cover

230‧‧‧光阻層 230‧‧‧ photoresist layer

231‧‧‧開口圖案 231‧‧‧ opening pattern

400‧‧‧圖案化犧牲遮罩層 400‧‧‧ patterned sacrificial mask

H1、H2‧‧‧厚度 H1, H2‧‧‧ thickness

h‧‧‧厚度 H‧‧‧thickness

第1圖至第5圖繪示本發明第一實施例中形成半導體元件方法的步驟示意圖。 1 to 5 are schematic views showing the steps of a method of forming a semiconductor device in a first embodiment of the present invention.

第6圖繪示本發明第二實施例中形成半導體元件方法的步驟示意圖。 Figure 6 is a schematic view showing the steps of a method of forming a semiconductor device in a second embodiment of the present invention.

第7圖至第9圖繪示本發明第三實施例中形成半導體元件方法的步驟示意圖。 7 to 9 are schematic views showing the steps of a method of forming a semiconductor device in a third embodiment of the present invention.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之數個較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those skilled in the art to which the present invention pertains. The effect.

請參考第1圖至第5圖,其繪示本發明一實施例的形成方法的步驟示意圖。首先,如第1圖所示,提供一基底100,並於基底100之上或基底100內形成至少一個導電層101。其中,基底100可以是具有半導體材料的基底,例如是矽基底(silicon substrate)、磊晶矽基底(epitaxial silicon substrate)、矽鍺半導體基底(silicon germanium substrate)、碳化矽基底(silicon carbide substrate)或矽覆絕緣(silicon-on-insulator,SOI)基底等,也可以是具有非半導體材質之基底,例如是玻璃基底(glass substrate),但不以此為限。 在一實施例中,導電層101可以是各式導電單元或金屬接點(metal contact),例如為形成在基底100上的一閘極、接觸插塞(contact plug)、介層插塞(via plug)或導線等,或者是形成在基底100內的汲極、源極等。然而,在其他實施例中,基底100中亦可選擇另包含其他的半導體元件(未繪示)。 Please refer to FIG. 1 to FIG. 5, which are schematic diagrams showing the steps of a method for forming an embodiment of the present invention. First, as shown in FIG. 1, a substrate 100 is provided, and at least one conductive layer 101 is formed on or in the substrate 100. The substrate 100 may be a substrate having a semiconductor material, such as a silicon substrate, an epitaxial silicon substrate, a silicon germanium substrate, a silicon carbide substrate, or A silicon-on-insulator (SOI) substrate or the like may also be a substrate having a non-semiconductor material, such as a glass substrate, but not limited thereto. In an embodiment, the conductive layer 101 may be various conductive elements or metal contacts, such as a gate, a contact plug, and a via plug formed on the substrate 100. A plug or a wire or the like, or a drain, a source, or the like formed in the substrate 100. However, in other embodiments, other semiconductor components (not shown) may alternatively be included in the substrate 100.

接著,再如第1圖所示,依序在基底100上形成一介電層110、一金屬遮罩層130與一圖案化遮罩層140,覆蓋基底100的導電層101。在一實施例中,介電層110可包含多層結構的介電材料層111、112,例如是氧化矽(silicon oxide,SiO)、氮氧化矽(silicon oxynitride,SiNO)、碳氮化矽(silicon carbonitride,SiCN)等低介電常數材料(介電常數值小於3.9)層,但不以此為限。在另一實施例中,可更包含在介電層110內形成一蝕刻停止層(未繪示),例如是形成在二介電材料層111、112之間,以作為後續開口形成時的停止層;或者是亦可選擇形成僅具有單層結構的介電層(未繪示)。 Then, as shown in FIG. 1 , a dielectric layer 110 , a metal mask layer 130 and a patterned mask layer 140 are sequentially formed on the substrate 100 to cover the conductive layer 101 of the substrate 100 . In an embodiment, the dielectric layer 110 may comprise a plurality of layers of dielectric material 111, 112, such as silicon oxide (SiO), silicon oxynitride (SiNO), silicon tantalum nitride (silicon). Carbonitride, SiCN) and other low dielectric constant materials (dielectric constant value less than 3.9) layer, but not limited to this. In another embodiment, an etch stop layer (not shown) may be formed in the dielectric layer 110, for example, formed between the two dielectric material layers 111, 112 to form a stop when the subsequent openings are formed. The layer may alternatively be formed to form a dielectric layer (not shown) having only a single layer structure.

此外,值得特別說明的是,在一實施例中,金屬遮罩層130是包含一富氮的金屬氮化物層,且較佳可具有一雙層結構,且至少該雙層結構的頂層具有富氮的金屬氮化物層。如第1圖所示,金屬遮罩層130包含一第一層131及位在第一層上的一第二層132,其中,第一層131及第二層132可選擇包含相同的金屬氮化物,例如是同時包含氮化鈦(titanium nitride,TiN),或是同時包含氮化鉭(tantalum nitride,TaN),但僅第二層132具有富氮的金屬氮化物層,但不以此為限。在另一實施例中,第一層131及第二層132皆可具有富氮的金屬氮化物層,但分別包含不同濃度的氮化鈦(或氮化鉭)。也就是說,在一實施例中,第二層132可相對於第一層 131具有較低的鈦(或鉭),或者是說,第二層132相對於第一層131具有較高濃度的氮。舉例來說,第一層131中鈦(或鉭)相對於氮的比例例如是0.8至0.9,較佳是0.87;第二層132中鈦(或鉭)相對於氮的比例則例如是0.6至0.8,較佳是0.7,但不以此為限。另外,在另一實施例中,第一層131可相對於第二層132具有較大的厚度,舉例來說,第一層131的厚度H1大體上約為30奈米至400奈米,較佳為360奈米;第二層132(富氮的金屬氮化物層)的厚度H2則大體上不大於10埃,較佳是約為1埃(angstrom)至10埃。而圖案化遮罩層140具有一開口圖案141,例如是包含與金屬遮罩層130具有蝕刻選擇比的材質,如氧化矽、氮化矽(silicon nitride)、氮氧化矽、碳氮化矽等,但不以此為限。 In addition, it is particularly noted that, in an embodiment, the metal mask layer 130 is a nitrogen-rich metal nitride layer, and preferably has a two-layer structure, and at least the top layer of the two-layer structure is rich. A metal nitride layer of nitrogen. As shown in FIG. 1, the metal mask layer 130 includes a first layer 131 and a second layer 132 on the first layer, wherein the first layer 131 and the second layer 132 may optionally contain the same metal nitrogen. The compound includes, for example, titanium nitride (TiN) or tantalum nitride (TaN), but only the second layer 132 has a nitrogen-rich metal nitride layer, but limit. In another embodiment, both the first layer 131 and the second layer 132 may have a nitrogen-rich metal nitride layer, but respectively contain different concentrations of titanium nitride (or tantalum nitride). That is, in an embodiment, the second layer 132 can be relative to the first layer 131 has a lower titanium (or yttrium) or, in other words, the second layer 132 has a higher concentration of nitrogen relative to the first layer 131. For example, the ratio of titanium (or cerium) to nitrogen in the first layer 131 is, for example, 0.8 to 0.9, preferably 0.87; and the ratio of titanium (or cerium) to nitrogen in the second layer 132 is, for example, 0.6 to 0.8, preferably 0.7, but not limited to this. In addition, in another embodiment, the first layer 131 may have a larger thickness relative to the second layer 132. For example, the thickness H1 of the first layer 131 is substantially from about 30 nm to 400 nm. Preferably, the thickness of the second layer 132 (nitrogen-rich metal nitride layer) H2 is substantially no greater than 10 angstroms, preferably about 1 angstrom to 10 angstroms. The patterned mask layer 140 has an opening pattern 141, for example, a material having an etching selectivity ratio with the metal mask layer 130, such as yttrium oxide, silicon nitride, niobium oxynitride, niobium carbonitride, etc. , but not limited to this.

接著,如第2圖所示,在基底100上形成一圖案化光阻層200,覆蓋圖案化遮罩層140,其中,圖案化光阻層200具有至少一開口圖案231。具體來說,在一實施例中,圖案化光阻層200可具有三層結構,包含一有機介電層(organic dielectric layer,ODL)210,例如是由波長365奈米(nm)的I-line光阻材料或酚醛樹脂(novolac resin)所構成;一含矽硬遮罩(silicon-containing hard mask,SHB)層220,例如是由含矽之有機高分子聚合物(organo-silicon polymer)或聚矽物(polysilane)所構成;以及一光阻層230,例如是由波長248奈米(nm)或193奈米波長的光阻材料所構成,例如KrF光阻層,如第2圖所示。然而,本發明的圖案化光阻層200並不以前述結構或材質為限,在另一實施例中,圖案化光阻層200也可選擇具有雙層結構或包含其他材質等,如額外再形成一底抗反射層(bottom anti-reflective coating,BARC,未繪示)。 Next, as shown in FIG. 2, a patterned photoresist layer 200 is formed on the substrate 100 to cover the patterned mask layer 140. The patterned photoresist layer 200 has at least one opening pattern 231. Specifically, in an embodiment, the patterned photoresist layer 200 may have a three-layer structure including an organic dielectric layer (ODL) 210, for example, I- of a wavelength of 365 nanometers (nm). A line photoresist material or a novolac resin; a silicon-containing hard mask (SHB) layer 220, for example, an organo-silicon polymer or A polysilicon layer is formed; and a photoresist layer 230 is formed, for example, of a photoresist material having a wavelength of 248 nm or 193 nm, such as a KrF photoresist layer, as shown in FIG. . However, the patterned photoresist layer 200 of the present invention is not limited to the foregoing structure or material. In another embodiment, the patterned photoresist layer 200 may alternatively have a double layer structure or include other materials, such as additional A bottom anti-reflective coating (BARC, not shown) is formed.

需進一步說明的是,本發明是以「前溝槽(trench first)」之「雙鑲嵌(dual damascene)製程」為說明態樣,例如包含先利用圖案化遮罩層140的開口圖案141定義一溝槽(trench),再利用光阻層230(圖案化光阻層200)的開口圖案231定義與該接觸溝槽部分重疊的一介質孔(via hole)或一接觸孔(contact hole),如第2圖所示。然而,本領域者應可輕易理解,在本發明的其他實施例中,亦可應用於「前介質孔/接觸孔(via first)」之「雙鑲嵌製程」,先利用圖案化遮罩層140的開口圖案定義一介質孔/接觸孔,之後再利用光阻層230的開口圖案定義一溝槽;或者是應用於其他本領域者熟知的雙鑲嵌製程,如「自對準(self-aligned)」之雙鑲嵌製程等。 It should be further noted that the present invention is described as a "dual damascene process" of "trench first", for example, including an opening pattern 141 defined by the patterned mask layer 140. a trench, and an opening pattern 231 of the photoresist layer 230 (patterned photoresist layer 200) is used to define a via hole or a contact hole partially overlapping the contact trench, such as Figure 2 shows. However, it should be readily understood by those skilled in the art that in other embodiments of the present invention, it can also be applied to a "dual damascene process" of "via first", using a patterned mask layer 140 first. The opening pattern defines a dielectric hole/contact hole, and then a trench is defined by the opening pattern of the photoresist layer 230; or is applied to other dual damascene processes well known in the art, such as "self-aligned" Double mosaic process, etc.

後續,如第3圖所示,則可直接進行一蝕刻製程,以透過圖案化光阻層200在介電層110形成至少一開口151。其中,該蝕刻製程,例如是一乾蝕刻製程、濕蝕刻製程或是依序進行乾蝕刻製程及濕蝕刻製程,以將圖案化光阻層200的圖案直接轉移至下方的金屬遮罩層130及介電層110(包含介電材料層112、111),形成穿透介電層110而直接接觸導電層101的開口151。而後,再如第4圖所示,完全移除圖案化光阻層200。此外,在一實施例中,另可選擇在該蝕刻製程後,即進行一清洗製程,例如以氬氣(Ar)對前述形成的開口151的表面進行清洗,以去除蝕刻殘留物。然而,該蝕刻製程並不以前述方式為限,在其他實施例中,也可選擇先將圖案化光阻層200的圖案轉移至下方的金屬遮罩層130,隨即移除圖案化光阻層200。後續再以圖案化的金屬遮罩層為蝕刻遮罩,蝕刻介電層110以形成開口151。 Subsequently, as shown in FIG. 3, an etching process may be directly performed to form at least one opening 151 in the dielectric layer 110 through the patterned photoresist layer 200. The etching process is, for example, a dry etching process, a wet etching process, or a dry etching process and a wet etching process to transfer the pattern of the patterned photoresist layer 200 directly to the underlying metal mask layer 130 and The electrical layer 110 (comprising dielectric material layers 112, 111) forms an opening 151 that penetrates the dielectric layer 110 and directly contacts the conductive layer 101. Then, as shown in FIG. 4, the patterned photoresist layer 200 is completely removed. In addition, in an embodiment, after the etching process, a cleaning process may be performed, for example, the surface of the previously formed opening 151 is cleaned with argon (Ar) to remove the etching residue. However, the etching process is not limited to the foregoing manner. In other embodiments, the pattern of the patterned photoresist layer 200 may be transferred to the underlying metal mask layer 130, and the patterned photoresist layer is removed. 200. Subsequent to the patterned metal mask layer as an etch mask, the dielectric layer 110 is etched to form an opening 151.

值得特別說明的是,因本發明的方法形成有富氮的金屬遮 罩層130(如前述的第二層132),因此,在進行該蝕刻製程移除圖案化光阻層200時,可避免該蝕刻製程所使用的蝕刻劑,例如是包含氧(O2)、臭氧(O3)、一氧化碳(CO)、二氧化碳(CO2)、碳酸氯(COCl2)或前述成分之組合等,與下方金屬遮罩層130發生反應,消耗金屬遮罩層130的氮而致變形、變性。除此之外,在另一實施例中,當透過圖案化光阻層200定義開口圖案231時,若在完成顯影後檢視(after-develop-inspection,ADI)製程,發現需移除圖案化光阻層200以重新定義新的開口圖案(未繪示)時,或者是在完成前述形成圖案化遮罩層140的開口圖案141的蝕刻後檢視(after-etch-inspection,AEI)製程後,發現需移除圖案化遮罩層140以進行重工(reworking)時,本發明即可以利用此富氮的金屬遮罩層130阻擋該移除製程所使用的蝕刻劑,避免該蝕刻劑過度反應並消耗金屬遮罩層130內的氮,進而有效防止金屬遮罩層130的變形及變性。 It should be particularly noted that since the method of the present invention forms a nitrogen-rich metal mask layer 130 (such as the second layer 132 described above), it can be avoided when the etching process is performed to remove the patterned photoresist layer 200. The etchant used in the etching process includes, for example, oxygen (O 2 ), ozone (O 3 ), carbon monoxide (CO), carbon dioxide (CO 2 ), carbonic acid chloride (COCl 2 ), or a combination thereof, and the like. The metal mask layer 130 reacts to consume nitrogen of the metal mask layer 130 to cause deformation and denaturation. In addition, in another embodiment, when the opening pattern 231 is defined by the patterned photoresist layer 200, if the after-develop-inspection (ADI) process is completed, it is found that the patterned light needs to be removed. The resist layer 200 is found after redefining a new opening pattern (not shown), or after completing the after-etch-inspection (AEI) process of forming the opening pattern 141 of the patterned mask layer 140. When the patterned mask layer 140 needs to be removed for reworking, the present invention can utilize the nitrogen-rich metal mask layer 130 to block the etchant used in the removal process, thereby avoiding excessive reaction and consumption of the etchant. The nitrogen in the metal mask layer 130 effectively prevents deformation and denaturation of the metal mask layer 130.

最後,進一步以圖案化遮罩層140為蝕刻遮罩,移除被曝露的部份金屬遮罩層130(包含第二層132及第一層131),以在介電層110內形成一開口152,如第5圖所示。具體來說,開口152例如是僅形成在介電材料層112內,並與開口151部分重疊而可共同構成位在介電層110內的一雙鑲嵌結構(開口)150,如第5圖所示。後續,則可完全移除圖案化遮罩層140,並且在雙鑲嵌結構150內形成一插塞結構160,以直接接觸並電連接基底100的導電區101。在一實施例中,插塞結構160可包含一阻障層(barrier layer,未繪示),例如是一鈦(Ti)層、氮化鈦層、鉭(Ta)層或氮化鉭層;以及一接觸金屬層(contact metal layer,未繪示),例如是鎢(W)或鋁(Al),但不以此為限。並且,在另一實施例中,插塞結構160 的形成方法,例如是在完全移除圖案化遮罩層140後,先於雙鑲嵌結構150內依序形成一阻障材料層(未繪示)以及一金屬材料層(未繪示),並透過一平坦化製程,如化學機械拋光製程、蝕刻製程或兩者之組合,移除一部分的該金屬材料層及該阻障材料層,形成包含該阻障層以及該接觸金屬層的插塞結構160,同時完全移除金屬遮罩層130。 Finally, the patterned mask layer 140 is further used as an etch mask to remove the exposed portion of the metal mask layer 130 (including the second layer 132 and the first layer 131) to form an opening in the dielectric layer 110. 152, as shown in Figure 5. Specifically, the opening 152 is formed, for example, only in the dielectric material layer 112 and partially overlaps the opening 151 to form a dual damascene structure (opening) 150 in the dielectric layer 110, as shown in FIG. Show. Subsequently, the patterned mask layer 140 can be completely removed, and a plug structure 160 is formed within the dual damascene structure 150 to directly contact and electrically connect the conductive regions 101 of the substrate 100. In an embodiment, the plug structure 160 may include a barrier layer (not shown), such as a titanium (Ti) layer, a titanium nitride layer, a tantalum (Ta) layer, or a tantalum nitride layer; And a contact metal layer (not shown), such as tungsten (W) or aluminum (Al), but not limited thereto. And, in another embodiment, the plug structure 160 The forming method is, for example, after the patterned mask layer 140 is completely removed, a barrier material layer (not shown) and a metal material layer (not shown) are sequentially formed in the dual damascene structure 150, and Removing a portion of the metal material layer and the barrier material layer through a planarization process, such as a chemical mechanical polishing process, an etching process, or a combination of the two, to form a plug structure including the barrier layer and the contact metal layer 160, while completely removing the metal mask layer 130.

由前述步驟,即完成本發明第一實施例的形成方法。其中,該形成方法是在介電層上形成有富氮的金屬遮罩層,透過該金屬遮罩層可避免蝕刻製程所使用的蝕刻劑過度消耗其中的氮成分,因而可有效防止該金屬遮罩層的變形及變性。據此,本發明的方法可適用於前述之雙鑲嵌(dual damascenes)製程,避免在進行第二次圖案化/蝕刻製程或者是後續的清潔製程所使用的蝕刻劑、清洗溶液或化學溶劑等過度反應或消耗遮罩層內的氮成分。或者,亦可在顯影後檢視(after-develop-inspection,ADI)製程或蝕刻後檢視(after-etch-inspection,AEI)製程之後,發現需另進行一重工,以移除圖案化光阻層200來重新定義新的開口圖案(未繪示)時,可避免該移除製程所使用的蝕刻劑,或者是後續清潔製程所使用的清洗溶液或化學溶劑等過度反應或消耗遮罩層內的氮成分。因此,本發明的形成方法主要是利用富氮的金屬遮罩層,防止遮罩層發生變形及變性。 The formation method of the first embodiment of the present invention is completed by the foregoing steps. Wherein, the formation method is to form a nitrogen-rich metal mask layer on the dielectric layer, and the metal mask layer can prevent the etchant used in the etching process from excessively consuming the nitrogen component thereof, thereby effectively preventing the metal mask. Deformation and denaturation of the cover layer. Accordingly, the method of the present invention can be applied to the aforementioned dual damascenes process to avoid excessive etchant, cleaning solution or chemical solvent used in the second patterning/etching process or the subsequent cleaning process. The nitrogen component in the mask layer is reacted or consumed. Alternatively, after an after-develop-inspection (ADI) process or an after-etch-inspection (AEI) process, it is found that another work is required to remove the patterned photoresist layer 200. To redefine a new opening pattern (not shown), the etchant used in the removal process may be avoided, or the cleaning solution or chemical solvent used in the subsequent cleaning process may overreact or consume nitrogen in the mask layer. ingredient. Therefore, the formation method of the present invention mainly utilizes a nitrogen-rich metal mask layer to prevent deformation and denaturation of the mask layer.

然而,本領域通常知識者也應了解,本發明的形成方法並不限於前述,而可能包含其他步驟或實施樣態。下文將針對本發明形成半導體元件方法的其他實施例或變化型進行說明。且為簡化說明,以下說明主要針對各實施例不同之處進行詳述,而不再對相同 之處作重覆贅述。此外,本發明之各實施例中相同之元件係以相同之標號進行標示,以利於各實施例間互相對照。 However, those of ordinary skill in the art will also appreciate that the method of forming the present invention is not limited to the foregoing, and may include other steps or embodiments. Other embodiments or variations of the method of forming a semiconductor device of the present invention will be described below. In order to simplify the description, the following description mainly focuses on the differences of the embodiments, and is no longer the same. The details are repeated. In addition, the same elements in the embodiments of the present invention are denoted by the same reference numerals to facilitate the comparison between the embodiments.

請參照第6圖所示,其繪示本發明第二實施例中形成半導體元件方法的步驟示意圖。本實施例的形成方法大體上和前述第一實施例相同,其差異處如第6圖所示,主要在於本實施例的金屬遮罩層130雖同樣具有雙層的富氮金屬氮化物層,且包含一第一層133及一第二層134。然而,在本實施例中,第二層134所含的金屬濃度是從底部朝頂部呈梯度遞減,也就是說,第二層134所含的氮成分是從底部朝頂部呈梯度遞增,如第6圖所示。在一實施例中,第二層134中具有最高氮濃度的該頂部具有一厚度h,該厚度大體上是不大於10埃,較佳是約為1埃(angstrom)至10埃。除前述差異之外,本實施例的其他步驟皆與前述實施例相同,故不再贅述。然而,本發明並不以此為限,在另一實施例中,也可選擇僅形成單層結構的富氮金屬氮化物層(未繪示),且該富氮金屬氮化物層所含的金屬濃度是從底部朝頂部呈梯度遞減(意即,其所含的氮成分是從底部朝頂部呈梯度遞增)。其中,該富氮金屬氮化物層大體上具有一厚度,例如是介於30奈米至400奈米之間,當中具有最高氮濃度的該頂部則大體上具有不大於10埃的一厚度,較佳是約為1埃(angstrom)至10埃。 Referring to FIG. 6, there is shown a schematic diagram of the steps of a method of forming a semiconductor device in a second embodiment of the present invention. The forming method of the present embodiment is substantially the same as the first embodiment described above, and the difference is as shown in FIG. 6, mainly because the metal mask layer 130 of the present embodiment also has a double-layer nitrogen-rich metal nitride layer. And including a first layer 133 and a second layer 134. However, in the present embodiment, the concentration of the metal contained in the second layer 134 is gradually decreasing from the bottom toward the top, that is, the nitrogen content of the second layer 134 is gradually increasing from the bottom toward the top, as in the first step. Figure 6 shows. In one embodiment, the top portion of the second layer 134 having the highest nitrogen concentration has a thickness h that is substantially no greater than 10 angstroms, preferably from about 1 angstrom to 10 angstroms. The other steps of the embodiment are the same as those of the foregoing embodiment except for the foregoing differences, and therefore will not be described again. However, the present invention is not limited thereto. In another embodiment, a nitrogen-rich metal nitride layer (not shown) having a single layer structure may be selected, and the nitrogen-rich metal nitride layer is included. The metal concentration is gradually decreasing from the bottom toward the top (that is, the nitrogen content of the metal is gradually increasing from the bottom toward the top). Wherein, the nitrogen-rich metal nitride layer has a thickness substantially, for example, between 30 nm and 400 nm, wherein the top portion having the highest nitrogen concentration has a thickness of not more than 10 angstroms. Preferably, it is about 1 angstrom to 10 angstroms.

其次,請參照第7圖至第9圖所示,其繪示本發明第三實施例中形成半導體元件方法的步驟示意圖。本實施例的形成方法雖是以雙重曝光技術來定義接觸溝槽圖案,但其前段製程與前述第一實施例的第1圖大體相同。具體來說,其主要差異在於,在形成如第1圖所示的雙層金屬遮罩層130(包含第一層131及第二層132) 後,接著形成如第7圖所示的圖案化遮罩層170。在一實施例中,圖案化遮罩層170具有一開口圖案171,以定義一部份的介質孔/接觸孔圖案。此外,圖案化遮罩層170例如較佳是包含與金屬遮罩層130具有蝕刻選擇比的材質,如氧化矽、氮化矽(silicon nitride)、氮氧化矽、碳氮化矽等,但不以此為限。 Next, please refer to FIGS. 7 to 9. FIG. 9 is a schematic view showing the steps of a method of forming a semiconductor device in a third embodiment of the present invention. Although the formation method of this embodiment defines the contact groove pattern by a double exposure technique, the front stage process is substantially the same as that of the first embodiment of the first embodiment. Specifically, the main difference is that the double-layer metal mask layer 130 (including the first layer 131 and the second layer 132) as shown in FIG. 1 is formed. Thereafter, a patterned mask layer 170 as shown in FIG. 7 is formed. In one embodiment, the patterned mask layer 170 has an opening pattern 171 to define a portion of the dielectric via/contact hole pattern. In addition, the patterned mask layer 170 preferably includes a material having an etching selectivity ratio with the metal mask layer 130, such as hafnium oxide, silicon nitride, hafnium oxynitride, niobium carbonitride, etc., but not This is limited to this.

接著,再如第7圖所示,於基底100上形成一圖案化犧牲遮罩層400,填滿圖案化遮罩層170的開口圖案171,以定義另一部分的該介質孔/接觸孔圖案。後續,則進行一蝕刻製程,例如是一乾蝕刻製程、濕蝕刻製程或是依序進行乾蝕刻製程及濕蝕刻製程,以將圖案化犧牲遮罩層400的圖案轉移至下方的圖案化遮罩層170,形成開口圖案172。而後,完全移除圖案化犧牲遮罩層400。 Next, as shown in FIG. 7, a patterned sacrificial mask layer 400 is formed on the substrate 100 to fill the opening pattern 171 of the patterned mask layer 170 to define another portion of the dielectric hole/contact hole pattern. Subsequently, an etching process is performed, such as a dry etching process, a wet etching process, or a dry etching process and a wet etching process to transfer the pattern of the patterned sacrificial mask layer 400 to the patterned mask layer below. 170, an opening pattern 172 is formed. The patterned sacrificial mask layer 400 is then completely removed.

請參照第8圖所示,在形成開口圖案172之後,直接進行另一蝕刻製程,例如是一乾蝕刻製程、濕蝕刻製程或是依序進行乾蝕刻製程及濕蝕刻製程,以將圖案化遮罩層170的開口圖案171、172直接轉移至下方的金屬遮罩層130(包含第二層134及第一層133),以及介電層110(包含介電材料層112、111)中,形成穿透介電層110而直接接觸導電層101的開口180。而後,可選擇性地進行一清洗製程,例如以氬氣對前述形成的開口180的表面進行清洗,以去除蝕刻殘留物。 Referring to FIG. 8 , after the opening pattern 172 is formed, another etching process is directly performed, such as a dry etching process, a wet etching process, or a sequential dry etching process and a wet etching process to pattern the mask. The opening patterns 171, 172 of the layer 170 are directly transferred to the underlying metal mask layer 130 (including the second layer 134 and the first layer 133), and the dielectric layer 110 (including the dielectric material layers 112, 111) is formed to be worn. The opening 180 of the conductive layer 101 is directly contacted through the dielectric layer 110. Thereafter, a cleaning process may be selectively performed, for example, by cleaning the surface of the opening 180 formed as described above with argon gas to remove etching residues.

其中,本實施例雖是以顯影-顯影-蝕刻(photolithography-photolithography-etch,2P1E)的操作方式為說明樣態,例如包含先在圖案化遮罩層170形成開口圖案171、172,再同時將開口圖案171、172轉移至介電層110以形成開口180,但本發明並不以此為 限。在另一實施例中,亦可選擇以顯影-蝕刻-顯影-蝕刻(photolithography-etch-photolithography-etch,2P2E)的操作方式進行,例如是在形成開口圖案171後,先操作一蝕刻製程,將開口圖案171轉移至介電層110而形成一部份的開口180,再依序形成開口圖案172及另一部份的開口180。 In this embodiment, although the operation mode of the photolithography-photolithography-etch (2P1E) is described, for example, the opening patterns 171 and 172 are formed in the patterned mask layer 170, and at the same time The opening patterns 171, 172 are transferred to the dielectric layer 110 to form the opening 180, but the present invention does not limit. In another embodiment, the operation may be performed by a photolithography-etch-photolithography-etch (2P2E) operation, for example, after forming the opening pattern 171, an etching process is performed. The opening pattern 171 is transferred to the dielectric layer 110 to form a portion of the opening 180, and the opening pattern 172 and the other portion of the opening 180 are sequentially formed.

最後,如第9圖所示,完全移除圖案化遮罩層170,並且在開口180內形成一插塞結構190,以直接接觸並電連接基底100的導電層101。其中,插塞結構190的形成方法,例如是在完全移除圖案化遮罩層170後,先於開口180內依序形成一阻障材料層(未繪示)以及一金屬材料層(未繪示),並透過一平坦化製程,如化學機械拋光製程、蝕刻製程或兩者之組合,移除一部分的該金屬材料層及該阻障材料層,形成包含一阻障層(未繪示)以及一接觸金屬層(未繪示)的插塞結構190,同時完全移除金屬遮罩層130。 Finally, as shown in FIG. 9, the patterned mask layer 170 is completely removed, and a plug structure 190 is formed in the opening 180 to directly contact and electrically connect the conductive layer 101 of the substrate 100. The method for forming the plug structure 190 is, for example, after the patterned mask layer 170 is completely removed, a barrier material layer (not shown) and a metal material layer are sequentially formed in the opening 180 (not drawn). And removing a portion of the metal material layer and the barrier material layer through a planarization process, such as a chemical mechanical polishing process, an etching process, or a combination of the two, to form a barrier layer (not shown) And a plug structure 190 contacting the metal layer (not shown) while completely removing the metal mask layer 130.

由前述步驟,即完成本發明第三實施例的形成方法,其中,該形成方法是在介電層上形成有富氮的金屬遮罩層。據此,本發明的方法可用於雙重曝光技術來定義介質孔/接觸孔圖案,避免在進行第二次圖案化/蝕刻製程或者是後續的清潔製程所使用的蝕刻劑、清洗溶液或化學溶劑等過度反應或消耗遮罩層內的氮成分,又或者是,在完成顯影後檢視(ADI)製程或蝕刻後檢視(AEI)製程之後,發現需進行一重工步驟,以移除圖案化光阻層來重新定義新的開口圖案時,進而防止遮罩層發生變形及變性。 The formation method of the third embodiment of the present invention is completed by the foregoing steps, wherein the formation method is to form a nitrogen-rich metal mask layer on the dielectric layer. Accordingly, the method of the present invention can be used in a double exposure technique to define a dielectric via/contact hole pattern to avoid etchants, cleaning solutions or chemical solvents used in the second patterning/etching process or subsequent cleaning processes. Excessive reaction or consumption of nitrogen in the mask layer, or after completion of the post-development (ADI) process or post-etch inspection (AEI) process, a rework step is required to remove the patterned photoresist layer To redefine the new opening pattern to prevent deformation and denaturation of the mask layer.

此外,在其他實施例中,也可選擇形成雙層的金屬遮罩層,但僅有其底層具有富氮金屬氮化物層(未繪示),藉此,即可省略圖案 化遮罩層170而直接將開口圖案形成在金屬遮罩層,並直接以該金屬遮罩層的頂層作為形成介質孔/接觸孔的蝕刻遮罩。同時,利用該金屬遮罩層的底層(富氮金屬氮化物層)阻擋圖案化/蝕刻製程或者是後續的清潔製程所使用的蝕刻劑、清洗溶液或化學溶劑等,避免過度反應或消耗遮罩層內的氮成分。前述僅底層具有富氮金屬氮化物層的金屬遮罩層亦可進一步應用於前述的第一及第二實施例中,容不再贅述。 In addition, in other embodiments, a double-layered metal mask layer may be selected, but only the bottom layer thereof has a nitrogen-rich metal nitride layer (not shown), whereby the pattern may be omitted. The mask layer 170 is formed to directly form the opening pattern on the metal mask layer, and directly as the top layer of the metal mask layer as an etching mask for forming the dielectric hole/contact hole. At the same time, the underlying layer (nitrogen-rich metal nitride layer) of the metal mask layer is used to block the patterning/etching process or the etchant, cleaning solution or chemical solvent used in the subsequent cleaning process to avoid excessive reaction or consumption of the mask. The nitrogen content in the layer. The metal mask layer having only the bottom layer and the nitrogen-rich metal nitride layer may be further applied to the first and second embodiments described above, and details are not described herein.

綜上而言,本發明的形成半導體元件的方法主要是在介電層上形成有包含富氮的金屬遮罩層的金屬遮罩層。其中,該金屬遮罩層可具有一雙層結構的一金屬氮化物,如同時包含氮化鈦或氮化鉭;並且,該雙層結構的頂層較佳可相對於底層具有較低的金屬濃度(也就是說,其頂層可相對於底層具有較高的氮濃度)以及較薄的厚度(不大於10埃,較佳是約為1埃至10埃)。舉例來說,底層中的金屬濃度相對於氮濃度的比例例如是0.8至0.9,較佳是0.87,而頂層的金屬濃度相對於氮濃度的比例則例如是0.6至0.8。反之,亦可使底層相對於頂層具有較低的金屬濃度(即具有較高的氮濃度)。此外,該頂層所含的金屬濃度亦可選擇呈一梯度,例如是從該底層的底部朝頂部呈梯度遞減(也就是說,該頂層所含的氮濃度亦可選擇是從該底層的底部朝頂部呈梯度遞增)。或者,該金屬遮罩層也可具有一單層結構,且該單層金屬遮罩層所含的金屬濃度從該底層的底部朝頂部呈梯度遞減(意即,其所含的氮成分是從底部朝頂部呈梯度遞增);且該金屬遮罩層具有最高氮濃度的頂部大體上具有不大於10埃的一厚度,較佳是約為1埃=至10埃。透過形成前述的富氮金屬遮罩層,本發明的形成方法可防止蝕刻製程所使用的蝕刻劑過度消耗其中的氮成分,以避免該金屬遮罩層的變形及變性。 In summary, the method of forming a semiconductor device of the present invention is mainly to form a metal mask layer comprising a nitrogen-rich metal mask layer on a dielectric layer. Wherein, the metal mask layer may have a metal nitride of a two-layer structure, such as including titanium nitride or tantalum nitride; and the top layer of the double layer structure preferably has a lower metal concentration relative to the bottom layer. (That is, its top layer can have a higher nitrogen concentration relative to the bottom layer) and a thinner thickness (less than 10 angstroms, preferably about 1 angstrom to 10 angstroms). For example, the ratio of the metal concentration in the underlayer to the nitrogen concentration is, for example, 0.8 to 0.9, preferably 0.87, and the ratio of the metal concentration of the top layer to the nitrogen concentration is, for example, 0.6 to 0.8. Conversely, the bottom layer can also have a lower metal concentration relative to the top layer (i.e., have a higher nitrogen concentration). In addition, the concentration of the metal contained in the top layer may also be selected to be a gradient, for example, decreasing from the bottom of the bottom layer toward the top (that is, the concentration of nitrogen contained in the top layer may also be selected from the bottom of the bottom layer toward The top is in increasing gradient). Alternatively, the metal mask layer may have a single layer structure, and the metal concentration of the single layer metal mask layer is gradually decreased from the bottom to the top of the bottom layer (that is, the nitrogen content thereof is from The bottom portion is progressively increasing toward the top; and the top portion of the metal mask layer having the highest nitrogen concentration has a thickness of substantially no more than 10 angstroms, preferably about 1 angstrom = 10 angstroms. By forming the aforementioned nitrogen-rich metal mask layer, the formation method of the present invention can prevent the etchant used in the etching process from excessively consuming the nitrogen component therein to avoid deformation and denaturation of the metal mask layer.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100‧‧‧基底 100‧‧‧Base

101‧‧‧導電層 101‧‧‧ Conductive layer

110‧‧‧介電層 110‧‧‧ dielectric layer

111、112‧‧‧介電材料層 111, 112‧‧‧ dielectric material layer

130‧‧‧金屬氮化物層 130‧‧‧Metal Nitride Layer

133‧‧‧第一層 133‧‧‧ first floor

134‧‧‧第二層 134‧‧‧ second floor

140‧‧‧圖案化遮罩層 140‧‧‧ patterned mask layer

141‧‧‧開口圖案 141‧‧‧ opening pattern

h‧‧‧厚度 H‧‧‧thickness

Claims (16)

一種形成半導體元件的方法,包含以下步驟:提供一介電層;在該介電層上形成一雙層遮罩層,其中該雙層遮罩層包含金屬濃度不同的二金屬氮化物層;以及透過該雙層遮罩層在該介電層中形成一第一開口。 A method of forming a semiconductor device, comprising the steps of: providing a dielectric layer; forming a double layer mask layer on the dielectric layer, wherein the double layer mask layer comprises a dimetal nitride layer having a different metal concentration; A first opening is formed in the dielectric layer through the double layer mask layer. 如申請專利範圍第1項所述之形成半導體元件的方法,其中,該二金屬氮化物層包含一第一層以及設置在該第一層上的一第二層,且該第二層的金屬濃度小於該第一層的金屬濃度。 The method of forming a semiconductor device according to claim 1, wherein the two metal nitride layer comprises a first layer and a second layer disposed on the first layer, and the metal of the second layer The concentration is less than the metal concentration of the first layer. 如申請專利範圍第2項所述之形成半導體元件的方法,其中,該第二層的金屬濃度是呈梯度分布。 The method of forming a semiconductor device according to claim 2, wherein the metal concentration of the second layer is a gradient distribution. 如申請專利範圍第3項所述之形成半導體元件的方法,其中,該第二層的金屬濃度是從底部朝頂部呈梯度遞減。 The method of forming a semiconductor device according to claim 3, wherein the metal concentration of the second layer is gradually decreasing from the bottom toward the top. 如申請專利範圍第2項所述之形成半導體元件的方法,其中,該第二層的金屬濃度相對於氮濃度的比例大體上介於0.6至0.8。 The method of forming a semiconductor device according to claim 2, wherein a ratio of a metal concentration of the second layer to a nitrogen concentration is substantially between 0.6 and 0.8. 如申請專利範圍第2項所述之形成半導體元件的方法,其中,該第一層及該第二層皆包含氮化鈦或氮化鉭。 The method of forming a semiconductor device according to claim 2, wherein the first layer and the second layer each comprise titanium nitride or tantalum nitride. 如申請專利範圍第2項所述之形成半導體元件的方法,其中,該第二層具有一厚度,該厚度介於1埃至10埃。 The method of forming a semiconductor device according to claim 2, wherein the second layer has a thickness of from 1 angstrom to 10 angstroms. 如申請專利範圍第1項所述之形成半導體元件的方法,其中,該第一開口包含一雙鑲嵌結構。 The method of forming a semiconductor device according to claim 1, wherein the first opening comprises a dual damascene structure. 如申請專利範圍第8項所述之形成半導體元件的方法,其中,該第一開口的形成步驟包含:在該介電層中形成一溝槽;以及在該介電層中形成一介質孔或一接觸孔。 The method of forming a semiconductor device according to claim 8, wherein the forming step of the first opening comprises: forming a trench in the dielectric layer; and forming a dielectric hole in the dielectric layer or A contact hole. 如申請專利範圍第1項所述之形成半導體元件的方法,更包含:透過該雙層遮罩層在該介電層中形成一第二開口,其中該第一開口及該第二開口是利用一雙重曝光技術形成。 The method of forming a semiconductor device according to claim 1, further comprising: forming a second opening in the dielectric layer through the double-layer mask layer, wherein the first opening and the second opening are utilized A double exposure technique is formed. 一種形成半導體元件的方法,包含以下步驟:提供一介電層;在該介電層上形成一遮罩層,其中該遮罩層包含金屬濃度是呈一梯度分布的一金屬氮化物層;以及透過該遮罩層在該介電層中形成一第一開口。 A method of forming a semiconductor device, comprising the steps of: providing a dielectric layer; forming a mask layer on the dielectric layer, wherein the mask layer comprises a metal nitride layer having a metal concentration in a gradient distribution; A first opening is formed in the dielectric layer through the mask layer. 如申請專利範圍第11項所述之形成半導體元件的方法,其中,該遮罩層的頂部具有最小的金屬濃度。 The method of forming a semiconductor device according to claim 11, wherein the top of the mask layer has a minimum metal concentration. 如申請專利範圍第12項所述之形成半導體元件的方法,其中,該金屬濃度相對於氮濃度的比例大體上介於0.6至0.8。 The method of forming a semiconductor device according to claim 12, wherein the ratio of the metal concentration to the nitrogen concentration is substantially between 0.6 and 0.8. 如申請專利範圍第12項所述之形成半導體元件的方法,其中,該頂部具有一厚度,該厚度介於1埃至10埃。 The method of forming a semiconductor device according to claim 12, wherein the top portion has a thickness ranging from 1 angstrom to 10 angstroms. 如申請專利範圍第11項所述之形成半導體元件的方法,其中,該遮罩層包含氮化鈦或氮化鉭。 The method of forming a semiconductor device according to claim 11, wherein the mask layer comprises titanium nitride or tantalum nitride. 如申請專利範圍第11項所述之形成半導體元件的方法,其中,該遮罩層具有一厚度,該厚度介於30奈米至400奈米。 The method of forming a semiconductor device according to claim 11, wherein the mask layer has a thickness ranging from 30 nm to 400 nm.
TW104105677A 2015-02-17 2015-02-17 Method of forming semiconductor device TWI642087B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104105677A TWI642087B (en) 2015-02-17 2015-02-17 Method of forming semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104105677A TWI642087B (en) 2015-02-17 2015-02-17 Method of forming semiconductor device

Publications (2)

Publication Number Publication Date
TW201631628A true TW201631628A (en) 2016-09-01
TWI642087B TWI642087B (en) 2018-11-21

Family

ID=57443020

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104105677A TWI642087B (en) 2015-02-17 2015-02-17 Method of forming semiconductor device

Country Status (1)

Country Link
TW (1) TWI642087B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771021B (en) * 2021-05-26 2022-07-11 南亞科技股份有限公司 Method of forming a semiconductor structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401537B1 (en) * 1999-11-04 2003-10-11 주식회사 하이닉스반도체 Method for forming gate electrode in semiconductor device
KR20060003261A (en) * 2004-07-05 2006-01-10 삼성전자주식회사 Methods of forming semiconductor device having a metal-insulator-metal capacitor
KR100608387B1 (en) * 2005-08-18 2006-08-08 주식회사 하이닉스반도체 Method of manufacturing semiconductor device
KR100639220B1 (en) * 2005-12-01 2006-11-01 주식회사 하이닉스반도체 Semiconductor device and method of manufacturing the same
KR20100025715A (en) * 2008-08-28 2010-03-10 주식회사 하이닉스반도체 Manufacturing method of gate pattern for semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771021B (en) * 2021-05-26 2022-07-11 南亞科技股份有限公司 Method of forming a semiconductor structure

Also Published As

Publication number Publication date
TWI642087B (en) 2018-11-21

Similar Documents

Publication Publication Date Title
TWI544517B (en) Method of fabricating semiconductor device
US6291137B1 (en) Sidewall formation for sidewall patterning of sub 100 nm structures
US9508560B1 (en) SiARC removal with plasma etch and fluorinated wet chemical solution combination
US7939446B1 (en) Process for reversing tone of patterns on integerated circuit and structural process for nanoscale fabrication
US20050214694A1 (en) Pattern formation method
US7611994B2 (en) Fine patterning method for semiconductor device
JP3757213B2 (en) Manufacturing method of semiconductor device
JP2003045964A (en) Semiconductor device and method of manufacturing same
TW201801181A (en) Method of forming semiconductor device
TW202145392A (en) Semiconductor structure
US20070238306A1 (en) Method of forming dual damascene semiconductor device
JP2004214663A (en) Method of manufacturing capacitor with metallic electrode
TWI744897B (en) Method of forming semiconductor device structure
TWI642087B (en) Method of forming semiconductor device
US20060292775A1 (en) Method of manufacturing DRAM capable of avoiding bit line leakage
JP3000935B2 (en) Method for manufacturing semiconductor device
US9018097B2 (en) Semiconductor device processing with reduced wiring puddle formation
JP3704030B2 (en) Manufacturing method of semiconductor device
US6815337B1 (en) Method to improve borderless metal line process window for sub-micron designs
JP2006344815A (en) Method of manufacturing semiconductor device
KR100912958B1 (en) Method for fabricating fine pattern in semiconductor device
KR100737701B1 (en) Method of manufacturing wire in a semiconductor device
TWI489550B (en) Patterning method and method for fabricating dual damascene opening
JP4379245B2 (en) Manufacturing method of semiconductor device
CN111128865A (en) Damascus interconnection process