TW201626043A - 用於就地基因分析的光學掃描系統 - Google Patents

用於就地基因分析的光學掃描系統 Download PDF

Info

Publication number
TW201626043A
TW201626043A TW104133986A TW104133986A TW201626043A TW 201626043 A TW201626043 A TW 201626043A TW 104133986 A TW104133986 A TW 104133986A TW 104133986 A TW104133986 A TW 104133986A TW 201626043 A TW201626043 A TW 201626043A
Authority
TW
Taiwan
Prior art keywords
tdi
imaging system
line scan
substrate
scan imaging
Prior art date
Application number
TW104133986A
Other languages
English (en)
Other versions
TWI671549B (zh
Inventor
馮文毅
Original Assignee
伊路米納有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊路米納有限公司 filed Critical 伊路米納有限公司
Publication of TW201626043A publication Critical patent/TW201626043A/zh
Application granted granted Critical
Publication of TWI671549B publication Critical patent/TWI671549B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6841In situ hybridisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/362Mechanical details, e.g. mountings for the camera or image sensor, housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本發明揭示的是進行定序的系統和方法,包括螢光就地定序。於一具體態樣,共焦的時間延遲和積分(TDI)線掃描成像系統可以包括在影像感測器的前方之多樣的針孔和/或狹縫孔洞機構。系統也可以包括在基板上具有聚焦條帶的結構,其接觸要成像的組織樣品。替代而言,這些條帶可以切入組織樣品裡。系統也可以包括以下組態和方法:在流動格室的組裝期間將組織樣品放置在流動格室的反應腔室裡,然後在組織樣品上進行化學操作。流動格室可以使用開放容器以在組織樣品上進行化學操作。

Description

用於就地基因分析的光學掃描系統
本發明係有關於用於就地基因分析的光學掃描系統。
於習用的(亦即廣域)螢光顯微鏡,整個標本乃均勻浸漬於來自光源的光。標本在光學路徑中的所有部分同時被激發,並且所得的螢光是由顯微鏡的光偵測器或相機所偵測,而包括大的未聚焦的背景部分。相對而言,共焦顯微鏡在偵測器前方的光學共軛平面使用點照明和針孔以消除未聚焦的訊號。因為僅可以偵測極靠近聚焦平面之螢光所產生的光,影像的光學解析度(尤其在樣品深度方向)遠優於廣域顯微鏡。然而,因為來自樣品螢光的許多光被阻擋在針孔,這增加的解析度是以減少訊號強度為代價,所以常常需要長時間曝光。
用於目前基於螢光之合成定序(sequencing-by-synthesis,SBS)系統的一些基於光致發光之掃描儀器(或成像系統)的缺點在於它們具有不良的共焦性(亦即最佳是半共焦的)。這些半共焦的成像系統具有低的訊號對雜訊比例(signal-to-noise,S/N),因此不適合消除標本中之未聚焦的特徵。此外,目前顫動(dithering)聚焦追蹤方法無法在成像期間用來維持聚焦。因此,基於光致發光的SBS系統需要新的做法來成像(或掃描)。
所附請求項之範圍裡的系統、方法及裝置的多樣實施例皆具有幾個態樣,而其中無單一者單獨就是在此所述之想要屬性的原因。在不限制所附請求項的範圍下,在此描述一些突出的特徵。
本發明揭示的是進行螢光就地定序的系統和方法。也就是說,在此提供的一具體態樣是共焦的時間延遲和積分(time delay and integration,TDI)線掃描成像系統,其具有高S/N比例和高共焦性以產生樣品的高解析度影像。於一範例,共焦的TDI線掃描成像系統包括在影像感測器前方之多樣的針孔和/或狹縫孔洞機構,其中多樣的針孔和/或狹縫孔洞機構用於排拒未聚焦的光。於另一範例,共焦的TDI線掃描成像系統包括多樣的針孔和/或狹縫孔洞機構,其在共軛於影像感測器的中間影像平面。
本發明也在此提供包括聚焦追蹤特徵的結構,其可以用於在成像期間維持聚焦。於一範例,提供的是在基板上之聚焦條帶的多樣組態,其接觸要成像的組織樣品。於另一範例,條帶切入組織樣品裡,藉此提供基板的暴露條帶,其可以使用作為聚焦追蹤特徵。
本發明也在此提供用於處理組織樣品的流動格室以及在流動格室中處理組織樣品的方法。也就是說,在此提供的是多樣的組態和方法,其在流動格室的組裝期間將組織樣品放置在流動格室的反應腔室裡,然後在組織樣品上進行化學操作。
本發明也在此提供流動格室,其使用開放容器來在組織樣品上進行化學操作。於一範例,可以使用實質「乾的」(dry)成像過程。於另一範例,可以使用液體浸沒式成像過程。
一或更多個具體態樣的細節列於伴隨圖式和以下敘述。其他的特徵、目的和優點將從敘述、圖式和申請專利範圍而變得明顯。
100‧‧‧共焦成像系統
110‧‧‧光源孔洞
112‧‧‧分光器
114‧‧‧透鏡
120‧‧‧組織樣品
122‧‧‧條帶
124‧‧‧聚焦平面
130‧‧‧感測器孔洞機構
132‧‧‧第一孔洞板
134‧‧‧狹縫
136‧‧‧第二孔洞板
138‧‧‧狹縫
140‧‧‧空間光調變器
142‧‧‧窗口或狹縫
146‧‧‧時間延遲和積分(TDI)影像感測器
148‧‧‧像素
150‧‧‧光源
152‧‧‧聚焦的螢光
154‧‧‧未聚焦的螢光
160‧‧‧中間影像平面
162‧‧‧一對額外透鏡
600‧‧‧結構
610‧‧‧底部基板
612‧‧‧頂基板
614‧‧‧間隙
616‧‧‧聚焦條帶
618‧‧‧透鏡
620‧‧‧透鏡聚焦束
630‧‧‧聚焦誤差訊號
1000‧‧‧流動格室
1010‧‧‧底部基板
1012‧‧‧頂基板
1014‧‧‧O形環
1016、1018‧‧‧溝槽
1020‧‧‧反應腔室
1022‧‧‧入口
1024‧‧‧出口
1026‧‧‧螺釘
1100‧‧‧使用流動格室來處理組織樣品的方法
1110~1125‧‧‧使用流動格室來處理組織樣品的方法步驟
1200‧‧‧流動格室
1210‧‧‧底部基板
1212‧‧‧頂基板
1214‧‧‧黏著層
1216‧‧‧反應腔室
1218‧‧‧入口
1220‧‧‧出口
1230‧‧‧開口
1500‧‧‧使用流動格室來處理組織樣品的方法
1510~1525‧‧‧使用流動格室來處理組織樣品的方法步驟
1600‧‧‧流動格室
1610‧‧‧開放容器
1612、1614‧‧‧管子
1620‧‧‧液體
p‧‧‧間距
t‧‧‧厚度
w‧‧‧寬度
圖1示範根據一具體態樣的共焦成像系統之範例的側視圖。
圖2示範圖1所示之共焦成像系統的另一組態。
圖3示範圖1和2所示的共焦成像系統之感測器孔洞機構的範例的側視圖。
圖4A和4B示範圖1和2所示的共焦成像系統之感測器孔洞機構的另一範例的側視圖。
圖5A和5B示範圖1和2所示的共焦成像系統之感測器孔洞機構的再一範例的側視圖。
圖6A和6B分別示範包括聚焦條帶的結構之範例的平面圖和截面圖,其用於改良成像過程中的聚焦追蹤。
圖7示範圖6A和6B所示的結構當用於成像過程的側視圖。
圖8示範包括聚焦條帶的結構之另一範例的側視圖,其用於改良成像過程中的聚焦追蹤。
圖9示範在成像過程中提供改良聚焦追蹤之另一技術的側視圖。
圖10A和10B分別示範用於維持和處理組織樣品的流動格室之範例的平面圖和截面圖。
圖11示範使用圖10A和10B所示的流動格室來處理組織樣品之方法範例的流程圖。
圖12A和12B分別示範用於維持和處理組織樣品的流動格室之另一範例的平面圖和截面圖
圖13A和13B示範圖12A和12B所示之流動格室的其他側視圖,並且顯示在定序腔室之不同位置的組織樣品。
圖14A和14B分別示範圖12A和12B所示之流動格室的黏著部分之範例的平面圖和截面圖
圖15示範使用圖12A和12B所示的流動格室來處理組織樣品之方法範例的流程圖。
圖16A和16B示範使用開放容器來維持組織樣品之流動格室的範例的側視圖,並且示範當中將組織樣品加以「乾式」成像之過程的範例。
圖17A和17B示範圖16A和16B所示之流動格室的側視圖,並且示範當中將組織樣品加以成像的液體浸沒過程。
圖式所示範的多樣特徵可能未按比例繪製。據此,多樣特徵的尺寸可以為了清楚而任意放大或縮小。附帶而言,某些圖式可以不顯示給定之系統、方法或裝置的全部構件。
下面關於所附圖式而列出的實施方式打算作為本發明之範例性具體態樣的敘述,並且不打算代表當中可以實施本發明之僅有的具體態樣。本敘述全篇所用的「範例性」(exemplary)一詞意謂「作為範例、例子或示例」,並且不應必然解讀成比其他範例性具體態樣來得較佳或有利。為了提供對本發明之範例性具體態樣的徹底理解,實施方式包括特定細節。於 某些例子,某些裝置是以方塊圖的形式來顯示。
<定序>
在此所述的系統和方法可以配合各式各樣的核酸定序技術來使用。這些定序技術包括但不限於直接從細胞或組織來讀取核酸之序列資訊的就地定序技術(Lee,Je Hyuk等人的「用於在完好細胞和組織中描繪基因表現之RNA的螢光就地定序(FISSEQ)」,自然協定,第10.3號(2015年):第442~458頁;Lee,Je Hyuk等人的「高度多工的次細胞RNA就地定序」,科學,第343.6177期(2014年):第1360~1363頁;以及Mitra,Robi D.等人的「聚合酶群集上的螢光就地定序」,解析生化學,第320.1期(2003年):第55~65頁,其揭示整個併於此以為參考)。尤其可應用的技術是其中核酸出現在基板(譬如陣列或組織樣品)上的固定位置致使它們的相對位置不改變並且其中基板重複成像的技術。舉例而言,核酸可以共價的或非共價的附接到基板。尤其可以應用以下的具體態樣:影像於不同的顏色頻道中獲得,舉例而言,其與用於分辨某一種核苷酸鹼基類型和另一種的不同標記重合。於某些具體態樣,決定標靶核酸之核苷酸序列的過程可以是自動化過程。較佳具體態樣包括合成定序(SBS)技術。
SBS技術一般而言涉及透過對模板股反覆添加核苷酸而使初生的核酸股做酵素延伸。於SBS的傳統方法,在每次傳遞和存在聚合酶下,單一核苷酸單體可以提供給標靶核苷酸。然而,於在此所述的系統和方法,在傳遞和存在聚合酶下,可以提供多於一種的核苷酸單體給標靶核酸。
SBS可以利用具有終端部或缺乏任何終端部的核苷酸單 體。利用缺乏終端之核苷酸單體的方法舉例而言包括熱定序和使用γ磷酸鹽所標記之核苷酸的定序,如下面詳細所列。於使用缺乏終端之核苷酸單體的方法,每個循環所添加的核苷酸數目一般而言是可變的,並且取決於模板序列和核苷酸的傳遞模式。對於利用具有終端部之核苷酸單體的SBS技術而言,終端可以在所用的定序條件下是有效的不可逆,如利用二去氧核苷酸的傳統Sanger定序的情形;或者終端可以是可逆的,如在Illumina公司所發展之定序方法的情形。
SBS技術可以利用具有標記部或缺乏標記部的核苷酸單體。據此,可以基於以下來偵測併入事件:標記的特徵,例如標記的螢光;核苷酸單體的特徵,例如分子量或電荷;核苷酸併入時的副產物,例如釋放焦磷酸鹽;或類似者。於二或更多種不同的核苷酸出現在定序試劑中的具體態樣,不同的核苷酸彼此可以是可分辨的;或替代而言,二或更多種不同的標記可以在所使用的偵測技術下是不可分辨的。舉例而言,出現於定序試劑中的不同核苷酸可以具有不同的標記,並且它們可以使用適當的光學器材而分辨,範例如在Illumina公司所發展的定序方法。
較佳具體態樣包括熱定序技術。熱定序偵測隨著特殊核苷酸併入初生股時所釋放的無機焦磷酸鹽(PPi)(Ronaghi,M.、Karamohamed,S.、Pettersson,B.、Uhlen,M.、Nyren,P.的(1996年)「利用偵測焦磷酸鹽釋放的即時DNA定序」,解析生化學,第242(1)期,第84~89頁;Ronaghi,M.的(2001年)「熱定序在DNA定序上散發光」,基因組研究,第11(1)期,第3~11頁;Ronaghi,M.、Uhlen,M.、Nyren,P.的(1998年)「基於即時焦磷酸鹽的定序方法」,科學,第281(5375)期,第363頁;美國專利第6,210,891號;美國專利第 6,258,568號;美國專利第6,274,320號,其揭示整個併於此以為參考)。於熱定序,釋放的PPi可以藉由腺苷三磷酸鹽(ATP)硫醯酶而立即轉換成ATP來偵測,並且產生的ATP程度經由螢蟲素酶所產生的光子而偵測。要定序的核酸可以位在基板(譬如成陣列的特徵)上,並且基板可加以成像以捕捉化學發光訊號,其是由於在基板上之核酸所在的位置併入了核苷酸而產生。在基板以特殊核苷酸類型(譬如A、T、C或G)處理之後,可以獲得影像。在添加每種核苷酸之後所獲得的影像將關於基板上偵測到的何種特徵而有所差異。這些影像上的差異反映出基板上之特徵的不同序列內容。然而,每個特徵的相對位置將在影像中保持不改變。影像可以使用在此所列的方法而儲存、處理和分析。舉例而言,在基板以每種不同核苷酸類型來處理之後所獲得的影像可以採取與在此舉例用於基於可逆終端的定序方法而從不同偵測頻道所獲得之影像相同的方式來處理。
於另一範例性SBS類型,循環定序是藉由一步步添加舉例而言包含可分裂的或可降解的(譬如可光漂白的)染料標記的可逆終端核苷酸而完成,舉例而言如世界專利公告號第04/018497號和美國專利第7,057,026號所述,其揭示併於此以為參考。這做法正由Illumina公司所商業化,並且也描述於世界專利公告號第91/06678號和世界專利公告號第07/123,744號,其皆併於此以為參考。可獲得當中二終端化都可以逆轉並且螢光標記可以分裂之螢光標記的終端則有利於有效率的循環可逆終端化(cyclic reversible termination,CRT)定序。聚合酶也可以共同工程化以有效率的併入和延伸這些修飾過的核苷酸。
較佳而言,在基於可逆終端之定序的具體態樣,標記在SBS 反應條件下不實質抑制延伸。然而,偵測標記舉例而言可以藉由分裂或降解而是可移除的。在將標記併入在陣列或其他基板上的核酸特徵之後可以捕捉影像。於特殊具體態樣,每個循環涉及同時傳遞四種不同的核苷酸類型到基板,並且每種核苷酸類型具有光譜上區分的標記。然後可以獲得四個影像,每個影像使用四種不同標記當中一種所可選擇的偵測頻道。替代而言,不同的核苷酸類型可以依序添加,並且可以在每個添加步驟之間獲得基板的影像。於此種具體態樣,每個影像將顯示已併入特殊類型之核苷酸的核酸特徵。由於每個特徵有不同的序列內容,故不同的特徵將出現或消失在不同的影像。然而,特徵的相對位置將在影像中維持不改變。從此種可逆終端SBS方法所獲得的影像可以儲存、處理和分析,如在此所列。在影像捕捉步驟之後,可以移除標記並且可以移除可逆的終端部以用於後續的核苷酸添加和偵測循環。在標記已經於特殊循環中偵測到之後和在後續循環之前移除標記,則可以提供減少背景訊號和循環之間串訊的優點。有用的標記和移除方法之範例則列於下。
於特殊具體態樣,某些或所有的核苷酸單體可以包括可逆的終端。於此種具體態樣,可逆的終端/可分裂的螢光劑可以包括經由3級酯鏈結而連接到核糖部的螢光劑(Metzker,基因組研究,第15期:第1767~1776頁(2005年),其併於此以為參考)。其他做法已經從螢光標記分裂而分開終端化學(Ruparel等人,美國國家科學院會議錄,第102期:第5932~5937頁(2005年),其整個併於此以為參考)。Ruparel等人描述可逆終端的發展,其雖然使用小的3級烯基以阻擋延伸,但或可輕易藉由鈀觸媒做短處理而去除阻擋。螢光團經由光可分裂的鏈結者而附接到鹼基,該鏈結者或可輕易 藉由暴露於長波長紫外光(UV)30秒而斷裂。因此,二硫化物還原或光分裂可以使用作為可分裂的鏈結者。可逆終端化的另一做法是使用自然終端化,其在整塊染料放置在dNTP上之後發生。dNTP上存在帶電的整塊染料則可以經由空間的和/或靜電的障礙而作用為有效的終端。存在了一併入事件則避免進一步併入,除非移除了染料。染料的分裂則移除螢光劑並且有效的逆轉終端化。修飾的核苷酸之範例也描述於美國專利第7,427,673號和美國專利第7,057,026號,其揭示整個併於此以為參考。
可以利用在此所述之方法和系統的額外範例性SBS系統和方法描述於美國專利公開案第2007/0166705號、美國專利公開案第2006/0188901號、美國專利第7,057,026號、美國專利公開案第2006/0240439號、美國專利公開案第2006/0281109號、世界專利公告案第05/065814號、美國專利公開案第2005/0100900號、世界專利公告案第06/064199號、世界專利公告案第07/010,251號、美國專利公開案第2012/0270305號、美國專利公開案第2013/0260372號,其揭示整個併於此以為參考。
某些具體態樣可以使用少於四種不同的標記而偵測四種不同的核苷酸。舉例而言,SBS可以利用美國專利公開案第2013/0079232號之併入材料所述的方法和系統而進行。舉第一範例,一對核苷酸類型可以在相同的波長下偵測,但分辨則是基於該對當中一者相較於另一者的強度差異,或者基於該對當中一者相較於該對當中另一者之偵測訊號的改變(譬如經由化學修飾、光化學修飾或物理修飾)而造成出現或消失外觀訊號。舉第二範例,四種不同核苷酸類型中的三種可以在特殊條件下偵測到,而第四種核苷酸類型缺乏在該等條件下是可偵測的標記,或者該標記在該等條件 下是最小偵測的(例如由於背景螢光……而是最小偵測的)。首先三種核苷酸類型併入到核酸可以基於存在其個別訊號而決定,並且第四種核苷酸類型併入到核酸可以基於沒有或最小偵測到任何訊號而決定。舉第三範例,某一核苷酸類型可以包括在二個不同頻道中偵測的(多個)標記,而其他的核苷酸類型在該等頻道的不多於一個頻道中偵測。前述三個範例性組態不視為互相排斥的而可以採取多樣的組合來使用。組合所有三個範例的範例性具體態樣乃基於螢光SBS方法,其使用在第一頻道中偵測到的第一核苷酸類型(譬如dATP,其具有當由第一激發波長激發時在第一頻道被偵測到的標記)、在第二頻道中偵測到的第二核苷酸類型(譬如dCTP,其具有當由第二激發波長激發時在第二頻道被偵測到的標記)、在第一和第二頻道中都偵測到的第三核苷酸類型(譬如dTTP,其具有當由第一和/或第二激發波長激發時在二個頻道都被偵測到的至少一標記)、缺乏標記而在任一頻道中不被或最小偵測到的第四核苷酸類型(譬如沒有標記的dGTP)。
此外,如美國專利公開案第2013/0079232號的併入材料所述,定序資料可以使用單一頻道而獲得。於此種所謂的一頻道定序做法,第一核苷酸類型被標記,但在產生第一影像之後移除標記;並且第二核苷酸類型僅在產生第一影像之後才被標記。第三核苷酸類型在第一和第二影像中都維持其標記,而第四核苷酸類型在二個影像中都維持未標記的。
某些具體態樣可以藉由接合技術來定序。此種技術利用DNA接合酶以併入寡核苷酸並且識別此種寡核苷酸的併入。寡核苷酸典型而言具有不同的標記,其關聯於寡核苷酸所混入之序列中的特殊核苷酸之身分。以其他的SBS方法來說,在以標記的定序試劑來處理基板(譬如陣列 或組織)上的核酸特徵之後可以獲得影像。每個影像將顯示具有併入特殊類型標記的核酸特徵。雖然不同的特徵由於每個特徵的不同序列內容而將出現或不出現在不同的影像,但是特徵的相對位置將在影像中維持不改變。從基於接合的定序方法所獲得的影像可以儲存、處理和分析,如在此所列。可以利用在此所述之方法和系統的範例性SBS系統和方法描述於美國專利第6,969,488號、美國專利第6,172,218號、美國專利第6,306,597號,其揭示整個併於此以為參考。
某些具體態樣可以利用奈米孔洞定序(Deamer,D.W.和Akeson,M.的「奈米孔洞和核酸:超快定序的展望」,生物科技趨勢,第18期,第147~151頁(2000年);Deamer,D.和D.Branton的「以奈米孔洞分析來定出核酸的特徵」,化學研究解說,第35期:第817~825頁(2002年);Li,J.、M.Gershow、D.Stein、E.Brandin、J.A.Golovchenko的「固態奈米孔洞顯微鏡中的DNA分子和組態」,國家材料,第2期:第611~615頁(2003年),其揭示整個併於此以為參考)。於此種具體態樣,標靶核酸通過奈米孔洞。奈米孔洞可以是合成的孔洞或生物隔膜蛋白質,例如α溶血素。隨著標靶核酸通過奈米孔洞,每個鹼基對可以藉由測量孔洞導電度的起伏變化而識別。(美國專利第7,001,792號;Soni,G.V.和Meller,A.的「使用固態奈米孔洞來做超快DNA定序的進展」,臨床化學,第53期,第1996-2001頁(2007年);Healy,K.的「基於奈米孔洞的單一分子DNA分析」,奈米醫學,第2期,第459~481頁(2007年);Cockroft,S.L.、Chu,J.、Amorin M.和Ghadiri,M.R.的「單一分子奈米孔洞裝置偵測DNA聚合酶活性而有單一核苷酸解析度」,美國化學學會期刊,第130期,第818~820頁(2008年),其揭示整個併於此以為參考。) 從奈米孔洞定序所獲得的資料可以儲存、處理和分析,如在此所列。尤其,資料可以依據光學影像和在此所列的其他影像之範例性處理而處理成影像。
某些具體態樣可以利用涉及即時監視DNA聚合酶活性的方法。核苷酸的併入可以透過帶有螢光團的聚合酶和γ磷酸鹽標記的核苷酸之間的螢光共振能量轉移(fluorescence resonance energy transfer,FRET)交互作用而偵測到,舉例而言如美國專利第7,329,492號和美國專利第7,211,414號所述(其皆併於此以為參考);或者核苷酸的併入可以用零模式波導而偵測,舉例而言如美國專利第7,315,019號所述(其併於此以為參考);以及使用螢光核苷酸類似物和工程化的聚合酶而偵測,舉例而言如美國專利第7,405,281號和美國專利公開案第2008/0108082號所述(其皆併於此以為參考)。照射可以限制在10-21公升(zeptoliter)尺度的體積而在表面範圍的聚合酶周圍,使得螢光標記之核苷酸的併入可以採用低背景來觀察(Levene,M.J.等人的「用於高濃度下之單一分子分析的零模式波導」,科學,第299期,第682~686頁(2003年);Lundquist,P.M.等人的「單一分子的即時平行共焦偵測」,光學通訊,第33期,第1026~1028頁(2008年);Korlach,J.等人的「用於零模式波導奈米結構中的單一DNA聚合酶分子之標靶固定不動的選擇性鋁鈍化」,美國國家科學院會議錄,第105期,第1176~1181頁(2008年),其揭示整個併於此以為參考)。從此種方法所獲得的影像可以儲存、處理和分析,如在此所列。
某些SBS具體態樣包括偵測在核苷酸併入延伸產物裡時所釋放的質子。舉例而言,基於偵測釋放質子的定序可以使用電偵測器和關 聯的技術,其市售可得自Ion Torrent(康乃迪克州Guilford,生命科技公司的子公司),或是美國專利公開案第2009/0026082 A1號、美國專利公開案第2009/0127589 A1號、美國專利公開案第2010/0137143 A1號或美國專利公開案第2010/0282617 A1號所述的定序方法和系統,其皆併於此以為參考。在此所列使用動態排除而用於放大標靶核酸的方法可以輕易應用於偵測質子的基板。更特定而言,在此所列的方法可以用於產生用於偵測質子之擴增物的群集。
上面核酸定序方法可以有利而言以多工格式來進行,使得同時操控多個不同的標靶核酸。於特殊具體態樣,不同的標靶核酸可以在共同的反應容器中或在特殊基板的表面上來處理。這允許以多工方式來方便傳遞定序試劑、移除未反應的試劑及偵測併入事件。於使用表面束縛(surface-bound)之標靶核酸的具體態樣,標靶核酸可以呈陣列格式。於陣列格式,標靶核酸可以典型而言採取可空間分辨的方式而束縛於表面。標靶核酸可以藉由直接共價附接、附接到珠子或其他顆粒、或結合到聚合酶或其他附接到表面的分子而受束縛。陣列可以在每個位置(也稱為特徵)包括標靶核酸的單一複本,或者具有相同序列的多個複本可以出現在每個位置或特徵。多個複本可以藉由放大方法而產生,例如橋接放大或乳液聚合酶連鎖反應(PCR),如下面更詳細所述。
在此所列的方法可以使用具有在任何各式各樣之特徵密度的陣列,舉例而言包括至少約每平方公分10個特徵、每平方公分100個特徵、每平方公分500個特徵、每平方公分1,000個特徵、每平方公分5,000個特徵、每平方公分10,000個特徵、每平方公分50,000個特徵、每平方公 分100,000個特徵、每平方公分1,000,000個特徵、每平方公分5,000,000個特徵或更高。其他基板可以包括在類似密度範圍的核酸特徵。
在此所列的方法之優點在於它們提供快速而有效率的平行偵測多個標靶核酸。據此,本揭示提供整合系統,其能夠使用此技藝所已知的技術(例如上面所舉例)而製備和偵測核酸。因此,本揭示的整合系統可以包括能夠將放大試劑和/或定序試劑傳遞給一或更多個固定不動之DNA片段的流體構件,此系統包括例如泵、閥、儲槽、流體管線和類似的構件。流動格室可以建構和/或使用於整合系統以偵測標靶核酸。範例性流動格室舉例而言描述於美國專利公開案第2010/0111768 A1號和美國專利第8,951,781號,其皆併於此以為參考。舉流動格室的範例來說,整合系統的一或更多個流體構件可以用於放大方法和偵測方法。以核酸定序的具體態樣為例,整合系統的一或更多個流體構件可以用於在此所列的放大方法,以及可以用於在例如上面舉例的定序方法中傳遞定序試劑。替代而言,整合系統可以包括分開的流體系統以進行放大方法和進行偵測方法。能夠生成放大核酸而也決定核酸序列之整合定序系統的範例包括而不限於MiSeqTM平臺(加州聖地牙哥的lllumina公司)和美國專利第8,951,781號所述的裝置,其併於此以為參考。
<共焦成像系統>
具有高S/N比例和高共焦性以產生高解析度影像之共焦的TDI線掃描成像系統則在下文參考圖1、2、3、4A、4B、5A、5B而描述。
於特定具體態樣,共焦的TDI線掃描成像系統包括偵測器陣列,其藉由限制偵測器陣列的掃描軸維度而在掃描軸達成共焦性。舉例 而言,可以在偵測器陣列的單一軸達成共焦性,使得共焦性僅發生在該維度。因此,相對於共焦性達成於二個維度的典型共焦系統而言,共焦的TDI線掃描成像系統可以建構成使得共焦性不達成於多於一個維度。
共焦的TDI線掃描成像系統也可以建構成藉由偵測器陣列之不同次組的元件而依序偵測樣品的不同部分,其中次組元件之間的電荷轉移進行的速率同步於且方向相同於正在成像之樣品的外觀移動。舉例而言,共焦的TDI線掃描成像系統可以掃描樣品,致使藉由對齊於且同步於樣品外觀移動的線性陣列堆疊而讓訊框轉移裝置(frame transfer device)產生樣品的連續視訊影像,在此隨著影像從一條線移動到下一條線,儲存的電荷也隨之移動。電荷的累積可以在一列電荷從偵測器的一端移動到序列暫存器(或在訊框轉移電荷耦合裝置(CCD)的情況下是到裝置的儲存區域)所需的整個期間做整合。範例性的共焦TDI線掃描成像系統舉例而言描述於美國專利第7,329,860號,其併於此以為參考。圖1示範根據本發明之特定具體態樣的共焦成像系統100之範例的側視圖。共焦成像系統100舉例而言是TDI線掃描成像系統,其具有高S/N比例和高共焦性以產生高解析度影像。
目前揭示的共焦成像系統100舉例而言適合用於基於光致發光的掃描儀器(或成像系統),其乃用在基於螢光的SBS系統。
共焦成像系統100包括光源孔洞110、分光器112、透鏡114、感測器孔洞機構130及TDI影像感測器146。於共焦成像系統100,組織樣品120相對於透鏡114而安排在聚焦平面124。組織樣品120舉例而言是在SBS過程中所要成像(或掃描)的樣品組織。
感測器孔洞機構130定位在TDI影像感測器146之前方的光 學共軛平面以實質消除未聚焦的訊號和提供高共焦性。也就是說,感測器孔洞機構130之多樣的具體態樣包括針孔或狹縫以實質消除未聚焦的訊號。當用於就地定序技術時,實質消除未聚焦的訊號可以在技術上是有利的。
如上所介紹,就地定序技術涉及直接從組織而由核酸讀取序列資訊,而不從組織萃取核酸。這可以與涉及從組織萃取核酸以便從萃取的核酸來讀取序列資訊的定序技術成對比。因此,就地定序可以提供對於細胞的基因型或基因表現與其形態和當地環境之間關係的更深入了解。
藉由校正感測器孔洞機構130以實質消除未聚焦的訊號,則僅允許來自聚焦平面而恰聚焦在感測器孔洞機構130之狹縫的光抵達影像偵測器。因此,相對於未實質消除未聚焦的訊號之系統來說,可以增加在組織的特定深度裡(來自聚焦平面而恰聚焦在狹縫)之核酸的光學解析度。這種光學區劃模擬移除組織之不要的部分(而不移除任何組織)。附帶而言,狹縫的寬度(或針孔的尺寸)可以關聯於解析度,狹縫寬度愈小(或針孔愈小)則提供愈高的解析度。
操作上,光源150通過光源孔洞110,然後通過分光器112,再通過透鏡114,而打在聚焦平面124的組織樣品120上。光源150是激發光源而在成像(或掃描)過程期間照射組織樣品120。在這麼做時,組織樣品120相對於感測器孔洞機構130和TDI影像感測器146而發出聚焦的特定螢光152以及未聚焦的特定螢光154。聚焦的螢光152通過感測器孔洞機構130並且抵達TDI影像感測器146,而未聚焦的螢光154被感測器孔洞機構130的針孔或狹縫所排拒。於一範例,TDI影像感測器146是線性長感測器,例 如3200×64個像素的感測器,以捕捉組織樣品120的高解析度影像。
圖2顯示共焦成像系統100的另一組態,其中感測器孔洞機構130定位於中間影像平面160,其共軛於TDI影像感測器146。於共焦成像系統100的這組態,一對額外透鏡162安排在感測器孔洞機構130(其在中間影像平面160)和TDI影像感測器146之間。用於排拒未聚焦之光的感測器孔洞機構130之範例的更多細節則在下文參考圖3、4A、4B、5A、5B而顯示和描述。
圖3示範圖1和2所示之共焦成像系統100的感測器孔洞機構130之範例的側視圖。也就是說,圖3顯示TDI影像感測器146的範例,其包括3200×64個像素148的陣列(亦即3200行×64列,其中第一行是行#1)。於本範例,感測器孔洞機構130包括二個孔洞,其位置是可切換的:一孔洞用於TDI影像感測器146的奇數行,另一孔洞用於TDI影像感測器146的偶數行。也就是說,感測器孔洞機構130包括:第一孔洞板132,其包括狹縫134;以及第二孔洞板136,其包括狹縫138。孔洞板132和孔洞板136是由對於出現在共焦成像系統100中之波長是光學不透明的材料所形成。舉例而言,孔洞板132和孔洞板136可以由玻璃基板所形成,其披覆了圖案化的不透明層,例如鉻。此外,孔洞板132和孔洞板136的高度和長度可以取決於TDI影像感測器146的整體尺寸。
孔洞板132和孔洞板136都可以相對於TDI影像感測器146之像素148的行來定位。孔洞板132和孔洞板136的位置是可機械切換的,如此則在任何給定時刻下僅一個孔洞板是在TDI影像感測器146的前方。舉例而言,孔洞板132和孔洞板136可以在控制器(未顯示)的控制下以旋轉 或位移方式而是可切換的。孔洞板132設計成使得當在TDI影像感測器146的前方時,狹縫134的位置實質對應於TDI影像感測器146之奇數行像素的位置。也就是說,孔洞板132對於TDI影像感測器146的奇數行像素是開放的而阻擋偶數行。相對而言,孔洞板136設計成使得當在TDI影像感測器146的前方時,狹縫138的位置實質對應於TDI影像感測器146之偶數行像素的位置。也就是說,孔洞板136對於TDI影像感測器146的偶數行像素是開放的而阻擋奇數行。
於孔洞板132和孔洞板136,對應於每隔一行像素(亦即二行中跳過一行)來放置狹縫則確保未聚焦的光有適當的排拒。此外,感測器孔洞機構130不限於僅二個孔洞板。如果需要的話,多於二片的孔洞板可以用於進一步改良共焦性,但代價是降低了掃描速度。舉例而言,感測器孔洞機構130可以包括三個孔洞板。第一孔洞板在第一行像素具有狹縫,之後每三行像素中的一行就有狹縫。第二孔洞板在第二行像素具有狹縫,之後每三行像素中的一行就有狹縫。第三孔洞板在第三行像素具有狹縫,之後每三行像素中的一行就有狹縫。再次而言,三個孔洞板的位置是可機械切換的,如此則在任何給定時刻下僅一個孔洞板是在TDI影像感測器146的前方。
孔洞板132中的狹縫134和孔洞板136中的狹縫138具有寬度w。寬度w是由TDI影像感測器146之像素148的尺寸所決定。於共焦成像系統100,狹縫134和狹縫138的寬度w在一範例中可以從約1微米到約12微米,或者在另一範例中是約9微米。孔洞板132的狹縫134之間的間距和孔洞板136的狹縫138之間的間隔可以取決於TDI影像感測器146 之像素148的間距p。舉非限制性範例來說,孔洞板132的狹縫134之間的間距和孔洞板136的狹縫138之間的間距可以實質相同於TDI影像感測器146之像素148的間距p。此外,孔洞板132之狹縫134的長度和孔洞板136之狹縫138的長度可以取決於TDI影像感測器146的整體尺寸。舉非限制性範例來說,孔洞板132之狹縫134的長度和孔洞板136之狹縫138的長度可以實質相同於TDI影像感測器146沿著狹縫134和狹縫138的長度之相同維度的寬度。
孔洞板132和孔洞板136的切換週期同步於TDI線掃描速度,特定而言於TDI掃描讀出中有一個切換週期或整數個週期。操作上,在第一成像或掃描半週期,孔洞板132切換到在TDI影像感測器146前方的位置,在此TDI影像感測器146的奇數行像素是開放的而偶數行像素被阻擋。於這半週期,捕捉了TDI影像感測器146之奇數行像素的影像資料。然後,在接下來的成像或掃描半週期,孔洞板132切換出去並且孔洞板136切換到在TDI影像感測器146前方的位置,在此TDI影像感測器146的偶數行像素是開放的而奇數行像素被阻擋。於這半週期,捕捉了TDI影像感測器146之偶數行像素的影像資料。孔洞板132和孔洞板136的移動同步於高速度TDI成像過程。於一範例,孔洞板132和孔洞板136是可切換於從約5千赫茲到約35千赫茲的速率。
圖4A和4B示範圖1和2所示之共焦成像系統100的感測器孔洞機構130之另一範例的側視圖。於本範例,在TDI影像感測器146的前方僅使用一個孔洞,其中一個孔洞可以邊對邊的位移以交替允許或阻擋奇數和偶數行像素。於一範例,如參考圖3所述的孔洞板132提供在TDI 影像感測器146的前方,並且在成像或掃描過程期間邊對邊的機械位移。圖4A顯示孔洞板132和狹縫134在相對於TDI影像感測器146的第一位置,其中奇數行像素是開放的而偶數行像素被阻擋。相對而言,圖4B顯示孔洞板132和狹縫134在相對於TDI影像感測器146的第二位置,其中偶數行像素是開放的而奇數行像素被阻擋。
操作上,在第一成像或掃描半週期,孔洞板132定位在TDI影像感測器146的前方,使得奇數行像素是開放的而偶數行像素被阻擋,如圖4A所示。於此半週期,捕捉了TDI影像感測器146之奇數行像素的影像資料。然後,在接下來的成像或掃描半週期,孔洞板132的位置在TDI影像感測器146的前方做機械位移,使得偶數行像素是開放的而奇數行像素被阻擋,如圖4B所示。在這半週期,捕捉了TDI影像感測器146之偶數行像素的影像資料。再次而言,孔洞板132的移動同步於高速度TDI成像過程,其中切換速率可以從約5千赫茲到約35千赫茲。
圖5A和5B示範圖1和2所示之共焦成像系統100的感測器孔洞機構130之又一範例的側視圖。於本範例,感測器孔洞機構130是不動的、電子控制的空間光調變器140。空間光調變器140舉例而言可以是基於液晶顯示器(liquid crystal display,LCD)的裝置或微機電系統(micro-electro-mechanical system,MEMS)鏡裝置。窗口或狹縫142可以電子提供於空間光調變器140中。空間光調變器140中之窗口或狹縫142的尺寸、數目和位置受到電子控制。
於共焦成像系統100,空間光調變器140可以用於二種狀態。舉例而言,圖5A顯示空間光調變器140的第一狀態,其中窗口或狹縫 142是電子開啟的而實質對齊於TDI影像感測器146之像素148的奇數行。相對而言,圖5B顯示空間光調變器140的第二狀態,其中窗口或狹縫142是電子開啟的而實質對齊於TDI影像感測器146之像素148的偶數行。空間光調變器140的切換頻率同步於高速度TDI成像過程。於一範例,空間光調變器140的切換頻率是從約5千赫茲到約35千赫茲。於共焦成像系統100,空間光調變器140不限於二種狀態,而可能有二或更多種狀態。
<成像過程中的聚焦追蹤機構>
本發明的特定具體態樣提供包括聚焦追蹤特徵的結構,其可以用於在成像期間維持聚焦,如下文參考圖6A、6B、7、8、9所描述。舉例而言,目前揭示的聚焦追蹤機構適合輔助基於雷射的聚焦技術。
圖6A和6B分別示範結構600之範例的平面圖和截面圖,其包括聚焦條帶以改良成像過程中的聚焦追蹤。於本範例,結構600包括底部基板610和頂基板612,其間安排有間隙614。組織樣品120可以放置在底部基板610上、頂基板612上或二者上。底部基板610和頂基板612舉例而言可以是玻璃、塑膠或矽基板。一組聚焦條帶616提供在頂基板612面對間隙614的那一側上。聚焦條帶616舉例而言可以由鉻、金或其他對半導體友善的高反射材料所形成。聚焦條帶616可以使用標準的光微影術過程而形成在頂基板612上。每條聚焦條帶616具有厚度t和寬度w。於一範例,聚焦條帶616具有約50奈米的厚度t和約50微米的寬度w。聚焦條帶616提供在間距p上。於一範例,聚焦條帶616的間距p是約1100微米。
條帶的形狀在圖6和其他地方舉例為基準或光導。然而,將了解附加或替代於條帶而還可以使用其他形狀和設計。圖7示範圖6A和6B 所示的結構600當用於成像過程時的側視圖。圖7顯示的應用是允許透過基板來成像。圖7顯示的結構600與透鏡618和透鏡聚焦束620有關,其中透鏡618和透鏡聚焦束620可以是基於雷射的聚焦機構。於本範例,成像是透過頂基板612而進行,其中聚焦條帶616沿著掃描方向來安排(見圖6A)。聚焦條帶616用於輔助聚焦追蹤,其中每條聚焦條帶616與組織樣品120具有實體關係(physical relationship)。也就是說,聚焦條帶616提供的實體特徵(physical feature)與上面可以將透鏡聚焦束620加以聚焦的組織樣品120是在實質相同的平面。
圖8示範結構600之另一範例的側視圖,其包括聚焦條帶616以改良成像過程中的聚焦追蹤。圖8顯示的應用是可以不允許透過基板來成像。於本範例,省略了頂基板612,並且組織樣品120放置在底部基板610的上表面上。聚焦條帶616提供在底部基板610的上表面上而抵靠著組織樣品120。用於螢光成像過程的透鏡114和光源150則提供在組織樣品120的暴露側。相對而言,透鏡618和基於雷射的透鏡聚焦束620(如圖7所述)提供在組織樣品120的底部基板610那一側上。
於此組態,基於雷射的聚焦機構之透鏡618和透鏡聚焦束620使用在底部基板610上的聚焦條帶616。回饋迴路從基於雷射的聚焦機構提供給螢光成像機構。也就是說,透鏡618、透鏡聚焦束620以及聚焦條帶616用於產生聚焦誤差訊號630給螢光成像機構(亦即透鏡114和光源150)。聚焦誤差訊號630則用於在成像(或掃描)過程期間維持聚焦。
圖9示範另一種提供改良成像過程的聚焦追蹤之技術的側視圖。於本範例,組織樣品120放置在底部基板610的頂部,並且條帶122 切入組織樣品120以暴露底部基板610的條帶。暴露基板的條帶舉例而言可以由基於雷射的聚焦機構(譬如透鏡618和透鏡聚焦束620)來使用作為聚焦特徵。
<用於處理組織樣品的流動格室>
目前來說,細胞培養過程在流動格室腔室中不是最佳化的。本發明的特定具體態樣提供用於處理組織樣品的流動格室和方法,如下文參考圖10A到17B所描述。
於特殊具體態樣,用於處理組織之流動格室的有利特徵包括但未必限於以下一或更多者:(1)至少暫時存取流動格室的表面,該流動格室允許組織樣品放置在上面;(2)方便組裝流動格室構件,以將組織樣品至少部分包在流體腔室中而允許流體接觸組織樣品,並且允許形成偵測區以觀察組織樣品;以及(c)方便拆卸以允許移除組織樣品而供後續分析(譬如分析完好的組織或其完好的部分)或供流動格室的再使用。於特殊具體態樣,流動格室的完整性在拆卸和再組裝之後將是實質相同的。於某些具體態樣,不需要工具來用於組裝或拆卸。然而,於某些情形,可以為了方便而提供手工具,並且不需要使用動力工具。
圖10A和10B分別示範流動格室1000之範例的平面圖和截面圖,其維持組織樣品和進行任何各式各樣類型的反應化學(例如SBS化學)。於本範例,流動格室1000包括底部基板1010和頂基板1012,其使用O形環1014而耦合在一起。O形環1014舉例而言可以由氟化橡膠(viton)、矽膠或任何其他具有過程相容性的材料所形成。也就是說,底部基板1010具有溝槽1016並且頂基板1012具有溝槽1018以接收O形環1014。當組裝 時,O形環1014裝配到底部基板1010的溝槽1016和頂基板1012的溝槽1018裡而夾在底部基板1010和頂基板1012之間。O形環1014的尺寸則使得當底部基板1010、頂基板1012及O形環1014組裝在一起時,在底部基板1010和頂基板1012之間有空間或間隙。在這空間或間隙中,O形環1014界定了流動格室1000中的反應腔室1020。此外,頂基板1012具有入口1022和出口1024以供液體(譬如試劑)流動進入和/或穿過流動格室1000的反應腔室1020。附帶而言,於一範例,底部基板1010、頂基板1012及O形環1014可以使用螺釘1026而維持在一起。圖10B也顯示在流動格室1000之反應腔室1020裡的組織樣品120。
圖11示範使用圖10A和10B所示的流動格室1000來處理組織樣品的方法1100之範例的流程圖。方法1100可以包括但不限於以下步驟。
在步驟1110,提供流動格室的第一基板。舉例而言,提供流動格室1000的底部基板1010。
在步驟1115,將樣品組織放置在第一基板上。舉例而言,組織樣品120放置在流動格室1000的底部基板1010上。
在步驟1120,提供第二基板並且組裝到第一基板,其中反應腔室形成在樣品組織周圍。舉例而言,提供頂基板1012,並且使用O形環1014和螺釘1026而組裝到底部基板1010。在這麼做時,O形環1014界定了在組織樣品120周圍的反應腔室1020。
在步驟1125,在樣品組織上進行化學操作。舉例而言,使用入口1022和出口1024,讓液體流動進入和/或穿過流動格室1000的反應腔室1020,並且在組織樣品120上進行化學操作(例如SBS化學操作)。於本 範例,組織樣品120的成像或掃描過程可以透過底部基板1010和/或頂基板1012而發生。
本方法可以包括伴隨著定序或其他例如在其他地方所列之核酸偵測技術的成像步驟。替代而言,本方法可以包括以下步驟:獲得組織樣品的物理形式或結構之圖片、影像或其他表示。這表示可以經由光場、螢光或其他顯微技術而獲得,並且可以可選用的使用染料或標記來輔助。這代表與空間解析之核酸偵測結果的比較則可以用於以組織可識別的特徵來使基因資訊局部化。可以修改而用於在此所列的設備和方法之空間偵測核酸的範例性方法描述於美國專利公開案第2014/0066318 A1號和世界專利公告案第2014/060483 A1號,其皆併於此以為參考。
圖12A和12B分別示範流動格室1200之另一範例的平面圖和截面圖,其維持組織樣品和進行任何類型的反應化學(例如SBS化學)。於本範例,流動格室1200包括底部基板1210和頂基板1212。底部基板1210和頂基板1212使用夾在其間的黏著層1214而結合在一起。開口提供在黏著層1214中,藉此在流動格室1200中形成反應腔室1216,其更多細節顯示於圖14A和14B。此外,入口1218和出口1220提供在頂基板1212中。入口1218和出口1220用於使液體(譬如試劑)流動進入和/或穿過流動格室1200中的反應腔室1216。
黏著層1214用於將底部基板1210和頂基板1212耦合在一起。於一範例,黏著層1214是一層雙面膠條帶,例如紫外光(UV)熟化的雙面膠條帶。
在流動格室1200的反應腔室1216裡,組織樣品可以放置在 頂基板上、底部基板上或二基板上。舉例而言,圖12B顯示組織樣品120是在反應腔室1216裡而在底部基板1210上。於另一範例並且現在參見圖13A,反應腔室1216裡的組織樣品120是在頂基板1212上。於又一範例並且現在參見圖13B,在反應腔室1216裡,第一組織樣品120是在底部基板1210上,並且第二組織樣品120是在頂基板1212上。
現在參見圖14A和14B,其分別是黏著層1214之範例的平面圖和截面圖,其為圖12A和12B所示之流動格室1200的黏著部分。也就是說,圖14A和14B顯示黏著層1214中的開口1230,其用於形成流動格室1200的反應腔室1216。於一範例,黏著層1214的厚度是約100微米。
圖15示範使用圖12A和12B所示之流動格室1200來處理組織樣品的方法1500之範例的流程圖。方法1500可以包括但不限於以下步驟。
在步驟1510,提供流動格室的第一基板。舉例而言,提供流動格室1200的底部基板1210。
在步驟1515,將樣品組織放置在第一基板上。舉例而言,組織樣品120放置在流動格室1200的底部基板1210上。
在步驟1520,提供第二基板,然後使用黏著層而耦合到第一基板,其中黏著層界定在樣品組織周圍的反應腔室。舉例而言,提供頂基板1212,然後使用黏著層1214(譬如UV熟化的雙面膠條帶)而耦合到底部基板1210,其中黏著層1214中的開口1230形成在組織樣品120周圍的反應腔室1216。於UV熟化的雙面膠條帶之情形,UV熟化操作可以發生在這步驟以在黏著層1214與底部基板1210和頂基板1212之間形成鍵結。
在步驟1525,在樣品組織上進行化學操作。舉例而言,使 用入口1218和出口1220,讓液體流動進入和/或穿過流動格室1200的反應腔室1216,並且在組織樣品120上進行化學操作(例如SBS化學操作)。於本範例,組織樣品120的成像或掃描過程可以透過底部基板1210和/或頂基板1212而發生。再次而言,成像可以進行成核酸偵測技術的一部分以及/或者決定組織樣品的形狀或形式。
圖16A和16B示範使用開放容器來維持組織樣品的流動格室1600之範例的側視圖,並且示範當中將組織樣品加以「乾式」成像之過程的範例。於本範例,流動格室1600包括開放容器1610。相對於開放容器1610提供二或更多條管子,其作為(多個)入口和/或(多個)出口。舉例而言,相對於開放容器1610提供管子1612和管子1614,其中管子1612的一端和管子1614的一端是在開放容器1610裡。也就是說,管子1612和管子1614用於將液體1620(譬如試劑)流動進入和/或穿過開放容器1610。附帶而言,圖16A和16B顯示在開放容器1610裡的組織樣品120。
於將開放容器1610中的組織樣品120加以成像的過程,圖16A顯示開放容器1610填充了液體1620,並且化學操作發生在組織樣品120上。現在參見圖16B,在完成了化學操作時,使用管子1612和管子1614使開放容器1610實質排乾了液體1620,然後組織樣品120的成像或掃描過程在沒有液體1620下透過空氣間隙而發生。也就是說,圖16B顯示實質「乾的」成像過程。可以在開放容器1610中維持某種最小量的溼度,使得組織樣品120可以不完全乾燥。
現在參見圖17A和17B,可以使用液體浸沒式成像過程。舉例而言,圖17A顯示開放容器1610填充了液體1620,並且化學操作發生在 組織樣品120上。成像透鏡(譬如透鏡114)定位在開放容器1610外而不浸沒於液體1620中。在完成了化學操作時,圖17B顯示開放容器1610仍填充著液體1620,並且成像透鏡(譬如透鏡114)降低到開放容器1610裡而浸沒於液體1620中。於本範例,組織樣品120的成像或掃描過程在沒有空氣間隙下發生。沒有空氣間隙,則可以改良解析度和S/N比例,也可以比較容易聚焦。
於前面參考圖1到17B的實施方式,全篇敘述參考結構和/或流動格室之構件的相對位置(例如流動格室之頂基板和底部基板的相對位置)而使用「頂部」、「底部」、「之上」、「之下」、「在……上」等詞。將體會結構和/或流動格室是功能性的,而不管其空間的指向。
前面具體態樣的詳細敘述參照伴隨圖式,其示範本揭示的特定具體態樣。具有不同結構和操作的其他具體態樣不偏離本揭示的範圍。參考申請人列於本說明書之發明的許多替代性態樣或具體態樣之特定範例而使用「本發明」或類似詞,使用或不用這詞都不打算限制申請人發明的範圍或請求項的範圍。本說明書僅為了讀者方便而區分成幾節。各節標題不應解讀成限制本發明的範圍。定義打算作為本發明之敘述的一部分。將了解本發明的多樣細節可以有所改變,而不偏離本發明的範圍。此外,前面的敘述只是為了示範,而不是為了限制。
於本案,尤其例如「可」、「或可」、「可能」或「可以」的條件性語言,除非特定另外提及或如上下文使用上另有理解以外,一般而言打算傳遞的是特定具體態樣包括(而其他具體態樣不包括)特定的特徵、元件和/或步驟。因此,此種條件性語言一般而言不打算暗示一或更多個具體態樣 以任何方式而需要該等特徵、元件和/或步驟,或者不打算暗示一或更多個具體態樣必然包括決定(而有或沒有使用者輸入或提示)這些特徵、元件和/或步驟是否包括於或要進行於任何特殊具體態樣的邏輯。本案全篇已經參考了多樣的出版品、專利和/或專利申請案。這些出版品的揭示整個在此併入以作為本案的參考。
「包括」一詞打算在此是有開放端的,不僅包括所述元件,也進一步涵蓋任何額外的元件。
已經描述了許多具體態樣。無論如何,將了解可以做出多樣的修改。據此,其他的具體態樣是在以下請求項的範圍裡。
上述方法的多樣操作可以藉由能夠進行操作之任何適合的手段來進行,例如多樣的(多個)硬體和/或軟體構件、電路和/或(多個)模組。一般而言,圖中示範的任何操作可以藉由能夠進行操作的對應功能手段而進行。
資訊和訊號可以使用任何各式各樣的不同科技和技術來代表。舉例而言,上面全篇敘述可以參考的資料、指令、命令、資訊、訊號、位元、符號、晶片可以由電壓、電流、電磁波、磁場或磁性粒子、光場或光學粒子、或其任何組合來代表。
關於在此揭示之具體態樣所述的多樣之示範性邏輯區塊、模組、電路、演算法步驟可以實施成電子硬體、電腦軟體或此二者的組合。為了清楚示範硬體和軟體的這可互換性,多樣的示範性構件、區塊、模組、電路和步驟已經在上面一般而言就其功能性來描述。此種功能性實施成硬體還是軟體則取決於特殊應用和施加在整體系統上的設計限制。雖然所述 功能性可以為了每個特殊應用而以變化的方式來實施,但是此種實施決定不應解讀為造成偏離本發明之具體態樣的範圍。
關於在此揭示的具體態樣所述之多樣的示範性區塊、模組和電路可以用設計成進行在此所述之功能的通用處理器、數位訊號處理器(digital signal processor,DSP)、特用積體電路(application specific integrated circuit,ASIC)、可場程式化的閘陣列(field programmable gate array,FPGA)或是其他可程式化的邏輯裝置、離散閘或電晶體邏輯、離散的硬體構件、或其任何組合來實施或進行。通用處理器可以是微處理器;但於替代方案,處理器可以是任何習用的處理器、控制器、微控制器或狀態機。處理器也可以實施成計算裝置的組合,譬如DSP和微處理器的組合、多個微處理器、搭配DSP核心的一或更多個微處理器、或任何其他此種組態。
關於在此揭示的具體態樣所述之方法或演算法和功能的步驟可以直接實施於硬體、處理器所執行的軟體模組、或此二者的組合。如果實施於軟體,則功能可以儲存在或以一或更多個指令或碼傳送於實體而非暫態之電腦可讀取的媒體上。軟體模組可以駐留於隨機存取記憶體(random access memory,RAM)、快閃記憶體、唯讀記憶體(read only memory,ROM)、可電程式化的ROM(electricaly programmable ROM,EPROM)、可電抹除和程式化的ROM(electricaly erasable programmable ROM,EEPROM)、站存器、硬碟、可移除的碟片、唯讀光碟(CD ROM)、或此技藝已知的任何其他形式之儲存媒體。儲存媒體耦合於處理器,使得處理器可以對儲存媒體讀取資訊和寫入資訊。於替代方案,儲存媒體可以整合於處理器。如在此使用的磁碟或碟片包括CD(compact disc)、雷射光碟、光碟、數位多媒體光 碟(digital versatile disc,DVD)、軟碟和藍光光碟,其中磁碟經常以磁性來再生資料,而碟片則以雷射來光學再生資料。以上的組合也應包括在電腦可讀取的媒體之範圍裡。處理器和儲存媒體可以駐留於ASIC。ASIC可以駐留於使用者終端機中。於替代方案,處理器和儲存媒體可以駐留成使用者終端機中的離散構件。
為了總結本揭示,已經在此描述了本發明的特定態樣、優點和新穎特徵。要了解未必所有的此種優點都可以依據本發明的任何特殊具體態樣而達成。因此,本發明可以採取以下方式來實施或進行:達成或最佳化如在此教導的一個優點或一群優點,而未必達成可以如在此教導或建議的其他優點。
上述具體態樣將很明顯的有多樣的修改,並且在此定義的一般原理可以適用於其他具體態樣,而不偏離本發明的精神或範圍。因此,本發明不打算受限於在此顯示的具體態樣,而是要依據與在此揭示之原理和新穎特徵一致的最廣範圍。
100‧‧‧共焦成像系統
110‧‧‧光源孔洞
112‧‧‧分光器
114‧‧‧透鏡
120‧‧‧組織樣品
124‧‧‧聚焦平面
130‧‧‧感測器孔洞機構
146‧‧‧時間延遲和積分(TDI)影像感測器
150‧‧‧光源
152‧‧‧聚焦的螢光
154‧‧‧未聚焦的螢光

Claims (35)

  1. 一種共焦的時間延遲和積分(time delay and integration,TDI)線掃描成像系統,其包括:光源孔洞;光學分光器;透鏡;TDI影像感測器;以及感測器孔洞機構。
  2. 如申請專利範圍第1項的TDI線掃描成像系統,其中該感測器孔洞機構定位在該TDI影像感測器的前方之光學共軛平面。
  3. 如申請專利範圍第1項的TDI線掃描成像系統,其中該感測器孔洞機構包括針孔。
  4. 如申請專利範圍第1項的TDI線掃描成像系統,其中該感測器孔洞機構包括狹縫。
  5. 如申請專利範圍第1項的TDI線掃描成像系統,其中該TDI影像感測器包括線性長感測器。
  6. 如申請專利範圍第1項的TDI線掃描成像系統,其中該感測器孔洞機構定位在共軛於該TDI影像感測器的中間影像平面。
  7. 如申請專利範圍第1到6項中任一項的TDI線掃描成像系統,其中該感測器孔洞機構包括具有可切換位置的第一組孔洞和第二組孔洞。
  8. 如申請專利範圍第7項的TDI線掃描成像系統,其中該第一組孔洞相對於該TDI影像感測器上之對應的第一組像素而定位,並且該第二組孔 洞相對於該TDI影像感測器上之對應的第二組像素而定位。
  9. 如申請專利範圍第1到8項中任一項的TDI線掃描成像系統,其中該孔洞機構包括至少一孔洞板,其由對於該TDI影像感測器所偵測之波長而言不是光學透明的材料所形成,該板進一步包括多條狹縫。
  10. 如申請專利範圍第9項的TDI線掃描成像系統,其中該等狹縫的位置實質對應於該TDI影像感測器之多個像素行的位置。
  11. 如申請專利範圍第9項的TDI線掃描成像系統,其中第一孔洞板和第二孔洞板以旋轉或位移方式而是可切換的。
  12. 如申請專利範圍第11項的TDI線掃描成像系統,其中第一孔洞板實質對應於偶數行像素,並且第二孔洞板實質對應於奇數行像素,使得隨著切換發生,在任何給定時刻下僅一個孔洞板是在該TDI影像感測器的前方。
  13. 如申請專利範圍第1到12項中任一項的TDI線掃描成像系統,其包括切換週期,該切換週期同步於TDI掃描讀出中之一個切換週期或整數個週期的TDI線掃描速度。
  14. 如申請專利範圍第13項的TDI線掃描成像系統,其中在第一成像半週期,第一孔洞板切換到在該TDI影像感測器之前方的位置,在此奇數行像素是開放的而偶數行像素被阻擋。
  15. 如申請專利範圍第13項的TDI線掃描成像系統,其中在第二成像半週期,第二孔洞板切換到在該TDI影像感測器之前方的位置,在此偶數行像素是開放的而奇數行像素被阻擋。
  16. 如申請專利範圍第1到15項中任一項的TDI線掃描成像系統,該 系統包括基板,其上提供有一或更多個聚焦追蹤機構。
  17. 如申請專利範圍第1到15項中任一項的TDI線掃描成像系統,該系統包括基板,其上提供有一或更多個聚焦追蹤機構。
  18. 如申請專利範圍第17項的TDI線掃描成像系統,其中該聚焦追蹤機構包括聚焦條帶。
  19. 如申請專利範圍第18項的TDI線掃描成像系統,其中該聚焦條帶包括高反射材料。
  20. 如申請專利範圍第17項的TDI線掃描成像系統,其中該聚焦追蹤機構包括切入組織樣品的溝槽。
  21. 如申請專利範圍第20項的該TDI線掃描成像系統,其中該等溝槽暴露底部基板的表面。
  22. 如申請專利範圍第17項的TDI線掃描成像系統,該基板具有暴露側,其包括在該基板的相同表面上配置成直接接觸該聚焦追蹤機構的組織樣品。
  23. 如申請專利範圍第22項的TDI線掃描成像系統,其中該基板進一步包括基於雷射的聚焦機構,其提供在該暴露側的相對側上。
  24. 如申請專利範圍第1到23項中任一項的TDI線掃描成像系統,其進一步包括流動格室,該流動格室包括第一基板,其上可以配置要成像的組織樣品。
  25. 如申請專利範圍第24項的TDI線掃描成像系統,其進一步包括第二基板,該等第一和第二基板是由間隙所分開,在此該等第一基板、第二基板和間隙界定了反應腔室。
  26. 如申請專利範圍第25項的TDI線掃描成像系統,其中該流動格室包括入口和出口以使液體流動進入和穿過該反應腔室。
  27. 一種處理組織樣品的方法,其包括:提供流動格室的第一基板;將樣品組織放置在該第一基板上;提供第二基板並且將該第二基板組裝到該第一基板,其中反應腔室形成在該樣品組織周圍;以及在該反應腔室中的該樣品組織上進行化學操作。
  28. 如申請專利範圍第27項的方法,其中該反應腔室包括間隔物,其配置在該等第一和第二基板之間。
  29. 如申請專利範圍第28項的方法,其中該間隔物包括O形環。
  30. 如申請專利範圍第28項的方法,其中該間隔物包括黏著層。
  31. 一種進行掃描的方法,其包括:提供根據申請專利範圍第1到26項中任一項之共焦的TDI線掃描系統;以及掃描樣品,其中掃描包括:從一或更多個聚焦追蹤特徵而獲得聚焦資訊。
  32. 一種掃描樣品的方法,其包括提供根據申請專利範圍第1到26項中任一項之共焦的TDI線掃描系統;以及掃描樣品,其中所述樣品配置在流動格室裡。
  33. 如申請專利範圍第32項的方法,其中該流動格室包括液體,並且該 成像透鏡定位在該流動格室外而不浸沒於該液體中。
  34. 如申請專利範圍第32項的方法,其中該流動格室包括液體,並且該成像透鏡浸沒於該液體中。
  35. 如申請專利範圍第32項的方法,其中該流動格室實質排乾了液體,並且該成像透鏡不浸沒於該液體中。
TW104133986A 2014-10-16 2015-10-16 共焦的時間延遲和積分線掃描成像系統和進行掃描的方法 TWI671549B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462064881P 2014-10-16 2014-10-16
US62/064,881 2014-10-16

Publications (2)

Publication Number Publication Date
TW201626043A true TW201626043A (zh) 2016-07-16
TWI671549B TWI671549B (zh) 2019-09-11

Family

ID=54365403

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104133986A TWI671549B (zh) 2014-10-16 2015-10-16 共焦的時間延遲和積分線掃描成像系統和進行掃描的方法

Country Status (5)

Country Link
US (1) US9897791B2 (zh)
EP (1) EP3207419B1 (zh)
CN (2) CN112099214B (zh)
TW (1) TWI671549B (zh)
WO (1) WO2016061484A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10909666B2 (en) 2017-03-07 2021-02-02 Illumina, Inc. Optical distortion correction for imaged samples

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107991769B (zh) * 2018-01-12 2020-07-10 凝辉(天津)科技有限责任公司 二维扫描器件
WO2019222650A1 (en) 2018-05-17 2019-11-21 The Charles Stark Draper Laboratory, Inc. Apparatus for high density information storage in molecular chains
CA3158318A1 (en) * 2019-10-19 2021-04-20 SequLITE Genomics US, Inc. Virtual fiducials
BR112021026660A2 (pt) * 2019-12-31 2022-07-12 Illumina Inc Funcionalidade de foco automático em análise de amostra óptica
US20230152234A1 (en) * 2020-03-27 2023-05-18 Otsuka Pharmaceutical Co., Ltd. Detection device
WO2024006267A1 (en) * 2022-06-27 2024-01-04 Illumina, Inc. Substrates for performing quantification processes and related systems and methods
US20240044863A1 (en) * 2022-08-04 2024-02-08 Applied Materials, Inc. Multi-focal-plane scanning using time delay integration imaging

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2044616A1 (en) 1989-10-26 1991-04-27 Roger Y. Tsien Dna sequencing
US5846719A (en) 1994-10-13 1998-12-08 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US5750341A (en) 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
GB9620209D0 (en) 1996-09-27 1996-11-13 Cemu Bioteknik Ab Method of sequencing DNA
GB9626815D0 (en) 1996-12-23 1997-02-12 Cemu Bioteknik Ab Method of sequencing DNA
AU6846698A (en) 1997-04-01 1998-10-22 Glaxo Group Limited Method of nucleic acid amplification
DE19714221A1 (de) 1997-04-07 1998-10-08 Zeiss Carl Fa Konfokales Mikroskop mit einem motorischen Scanningtisch
US6969488B2 (en) 1998-05-22 2005-11-29 Solexa, Inc. System and apparatus for sequential processing of analytes
JP4534177B2 (ja) * 1999-07-02 2010-09-01 株式会社ニコン 正立顕微鏡
US6274320B1 (en) 1999-09-16 2001-08-14 Curagen Corporation Method of sequencing a nucleic acid
US7001792B2 (en) 2000-04-24 2006-02-21 Eagle Research & Development, Llc Ultra-fast nucleic acid sequencing device and a method for making and using the same
EP1368460B1 (en) 2000-07-07 2007-10-31 Visigen Biotechnologies, Inc. Real-time sequence determination
EP1354064A2 (en) 2000-12-01 2003-10-22 Visigen Biotechnologies, Inc. Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity
US6591003B2 (en) * 2001-03-28 2003-07-08 Visiongate, Inc. Optical tomography of small moving objects using time delay and integration imaging
US6944322B2 (en) * 2001-03-28 2005-09-13 Visiongate, Inc. Optical tomography of small objects using parallel ray illumination and post-specimen optical magnification
US7057026B2 (en) 2001-12-04 2006-06-06 Solexa Limited Labelled nucleotides
SI3002289T1 (en) 2002-08-23 2018-07-31 Illumina Cambridge Limited MODIFIED NUCLEOTES FOR POLYUCULOTIDE SEQUENCING
JP2004233163A (ja) * 2003-01-29 2004-08-19 Hitachi High-Technologies Corp パターン欠陥検査方法およびその装置
GB0321306D0 (en) 2003-09-11 2003-10-15 Solexa Ltd Modified polymerases for improved incorporation of nucleotide analogues
JP2007525571A (ja) 2004-01-07 2007-09-06 ソレクサ リミテッド 修飾分子アレイ
EP3415641B1 (en) 2004-09-17 2023-11-01 Pacific Biosciences Of California, Inc. Method for analysis of molecules
WO2006064199A1 (en) 2004-12-13 2006-06-22 Solexa Limited Improved method of nucleotide detection
EP1888743B1 (en) 2005-05-10 2011-08-03 Illumina Cambridge Limited Improved polymerases
GB0514936D0 (en) 2005-07-20 2005-08-24 Solexa Ltd Preparation of templates for nucleic acid sequencing
JP5308156B2 (ja) * 2005-09-06 2013-10-09 レイカ バイオシステムズ メルボルン ピーティーワイ リミテッド 組織標本の処理方法及び処理装置
US7405281B2 (en) 2005-09-29 2008-07-29 Pacific Biosciences Of California, Inc. Fluorescent nucleotide analogs and uses therefor
US7329860B2 (en) 2005-11-23 2008-02-12 Illumina, Inc. Confocal imaging methods and apparatus
US8777413B2 (en) * 2006-01-20 2014-07-15 Clarity Medical Systems, Inc. Ophthalmic wavefront sensor operating in parallel sampling and lock-in detection mode
SG170802A1 (en) 2006-03-31 2011-05-30 Solexa Inc Systems and devices for sequence by synthesis analysis
US8343746B2 (en) 2006-10-23 2013-01-01 Pacific Biosciences Of California, Inc. Polymerase enzymes and reagents for enhanced nucleic acid sequencing
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
ES2923759T3 (es) 2006-12-14 2022-09-30 Life Technologies Corp Aparato para medir analitos utilizando matrices de FET
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US8951781B2 (en) 2011-01-10 2015-02-10 Illumina, Inc. Systems, methods, and apparatuses to image a sample for biological or chemical analysis
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
DK3623481T3 (da) 2011-09-23 2021-11-15 Illumina Inc Sammensætninger til nukleinsyresekventering
US9193996B2 (en) 2012-04-03 2015-11-24 Illumina, Inc. Integrated optoelectronic read head and fluidic cartridge useful for nucleic acid sequencing
CA2886974C (en) 2012-10-17 2021-06-29 Spatial Transcriptomics Ab Methods and product for optimising localised or spatial detection of gene expression in a tissue sample
US9255891B2 (en) * 2012-11-20 2016-02-09 Kla-Tencor Corporation Inspection beam shaping for improved detection sensitivity
US20140152797A1 (en) * 2012-12-04 2014-06-05 Samsung Electronics Co., Ltd. Confocal optical inspection apparatus and confocal optical inspection method
JP5999121B2 (ja) * 2014-02-17 2016-09-28 横河電機株式会社 共焦点光スキャナ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10909666B2 (en) 2017-03-07 2021-02-02 Illumina, Inc. Optical distortion correction for imaged samples
TWI728645B (zh) * 2017-03-07 2021-05-21 美商伊路米納有限公司 用於定序的方法以及用於定序的系統
US11568522B2 (en) 2017-03-07 2023-01-31 Illumina, Inc. Optical distortion correction for imaged samples
US11816816B2 (en) 2017-03-07 2023-11-14 Illumina, Inc. Optical distortion correction for imaged samples

Also Published As

Publication number Publication date
US20160109693A1 (en) 2016-04-21
CN107076975B (zh) 2020-09-11
US9897791B2 (en) 2018-02-20
EP3207419A2 (en) 2017-08-23
WO2016061484A2 (en) 2016-04-21
TWI671549B (zh) 2019-09-11
CN112099214B (zh) 2022-01-11
CN107076975A (zh) 2017-08-18
EP3207419B1 (en) 2022-06-08
CN112099214A (zh) 2020-12-18
WO2016061484A3 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
TWI671549B (zh) 共焦的時間延遲和積分線掃描成像系統和進行掃描的方法
US11118220B2 (en) Method and apparatus for volumetric imaging of a three-dimensional nucleic acid containing matrix
Enger et al. Optical tweezers applied to a microfluidic system
US20120135410A1 (en) Method for imaging on thin solid-state interface between two fluids
JP2016512427A (ja) 全ゲノムの高速マッピング用ナノ流体デバイス、並びに関連する分析システム及び分析方法
US11415515B2 (en) Systems and methods for multicolor imaging
JP2023532183A (ja) 細胞遺伝学的解析のためのデバイス及び方法
JPWO2020129462A1 (ja) 粒子確認方法、粒子捕捉用チップ、及び粒子分析システム
JP2011153938A (ja) 核酸分析装置,核酸分析反応デバイス、および核酸分析用反応デバイス用基板
Busk Fabrication and utilisation of solid-phase microdroplet arrays for nucleic acid detection and other applications
Chen et al. Fabrication of Zero Mode Waveguides for High Concentration Single Molecule Microscopy
Hebert et al. Single-molecule fluorescence microscopy and its applications to single-molecule sequencing by cyclic synthesis
Keyser et al. Inserting and manipulating DNA in a nanopore with optical tweezers
Yang et al. When Super‐Resolution Microscopy Meets Microfluidics: Enhanced Biological Imaging and Analysis with Unprecedented Resolution
Carlson Biological Applications of Plasmon-Resonant Particles
Mappes et al. Biophotonic fluorescence excitation with integrated polymer waveguides
Henkin A nanofluidic device for visualizing dynamic biopolymer interactions in vitro