TW201624997A - Mixed format media transmission systems and methods - Google Patents

Mixed format media transmission systems and methods Download PDF

Info

Publication number
TW201624997A
TW201624997A TW105103320A TW105103320A TW201624997A TW 201624997 A TW201624997 A TW 201624997A TW 105103320 A TW105103320 A TW 105103320A TW 105103320 A TW105103320 A TW 105103320A TW 201624997 A TW201624997 A TW 201624997A
Authority
TW
Taiwan
Prior art keywords
signal
video signal
digital
video
frame
Prior art date
Application number
TW105103320A
Other languages
Chinese (zh)
Other versions
TWI580272B (en
Inventor
林可漢
菲莫夫馬克
托莫札克葛瑞格
慕札巴丹尼斯
Original Assignee
英特矽爾美國有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/363,669 external-priority patent/US8300114B2/en
Application filed by 英特矽爾美國有限公司 filed Critical 英特矽爾美國有限公司
Publication of TW201624997A publication Critical patent/TW201624997A/en
Application granted granted Critical
Publication of TWI580272B publication Critical patent/TWI580272B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • H04N7/106Adaptations for transmission by electrical cable for domestic distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/08Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division
    • H04N7/0806Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division the signals being two or more video signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/0342QAM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms
    • H04L2025/03617Time recursive algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0053Closed loops
    • H04L2027/0057Closed loops quadrature phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0067Phase error detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Studio Devices (AREA)
  • Television Systems (AREA)
  • Power Engineering (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

Systems and methods for operating cameras are described. An image signal received from an image sensor can be processed as a plurality of video signals representative of the image signal. An encoder may combine baseband and digital video signals in an output signal for transmission over a cable. The video signals may include substantially isochronous baseband and digital video signals. The baseband video signal can comprise a standard definition analog video signal and the digital video signal may be modulated before combining with the baseband video signal and/or transmitting wirelessly. The digital video signal may be a compressed high definition digital video signal. A decoder demodulates an upstream signal to obtain a control signal for controlling the position and orientation of the camera and content of the baseband and digital video signals.

Description

混合格式媒體傳輸的系統及方法 System and method for mixed format media transmission

本發明大體上係有關多媒體傳輸系統且尤其係有關用於透過一單一電纜上傳輸高畫質數位視訊及標準畫質類比視訊的系統及方法。 The present invention is generally directed to multimedia transmission systems and, more particularly, to systems and methods for transmitting high quality digital video and standard picture quality analog video over a single cable.

本發明主張2009年1月30日申請名稱為「Mixed Format Media Transmission Systems and Methods」之美國專利申請案12/363,669號之優先權,且主張2009年6月17日申請名稱為「SLOC Analog Equalizer For Baseband Video Signal」之美國臨時專利申請案61/187,970號之優先權,且主張2009年6月17日申請名稱為「A Method For Constellation Detection In A Multi-Mode QAM Communications System」之美國臨時專利申請案61/187,977號之優先權,且主張2009年6月17日申請名稱為「Novel Carrier Phase Offset Correction For A QAM System」之美國臨時專利申請案61/187,980號之優先權,且主張2009年6月17日申請名稱為「Novel Frame Structure For A QAM System」之美國臨時專利申請案61/187,986號之優 先權,且主張2009年6月17日申請名稱為「SLOC SPOT Monitoring」之美國臨時專利申請案61/187,996號之優先權,以上所有申請案係以引用方式併入本文。 The present invention claims priority from US Patent Application Serial No. 12/363,669, entitled "Mixed Format Media Transmission Systems and Methods", issued on January 30, 2009, and claims the name of "SLOC Analog Equalizer For" on June 17, 2009. Priority of US Provisional Patent Application No. 61/187,970 to Baseband Video Signal, and claiming a US Provisional Patent Application entitled "A Method For Constellation Detection In A Multi-Mode QAM Communications System" on June 17, 2009 Priority to 61/187,977, and claims priority to US Provisional Patent Application No. 61/187,980, entitled "Novel Carrier Phase Offset Correction For A QAM System", June 17, 2009, and claims June 2009 Apply for the US Provisional Patent Application No. 61/187,986 entitled "Novel Frame Structure For A QAM System" on the 17th </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

隨著數位廣播電視及串流視訊技術之出現,各種具有高解析度及先進功能之視訊相機、監視器及視訊記錄器變得可。現在的閉路電視(CCTV)系統可供應高畫質視訊輸出及壓縮數位視訊信號用於例如營業場所監控、進出控制及設施之遠端監視的應用。然而,舊有系統仍被使用,且標準畫質類比視訊信號已被廣泛使用,且在過渡至全數位、高畫質系統之期間繼續使用。尤其是,同軸電纜(coax)已佈署以自CCTV相機承載信號至監視站。一些已佈署的CCTV相機透過區域網路(或廣域網路)傳輸壓縮視訊信號,且此等相機可使用網際網路協定(IP)作為一通信方法來傳輸壓縮視訊信號。 With the advent of digital broadcast television and streaming video technology, various video cameras, monitors and video recorders with high resolution and advanced functions have become available. Today's closed circuit television (CCTV) systems can provide high quality video output and compressed digital video signals for applications such as business location monitoring, access control and remote monitoring of facilities. However, legacy systems are still in use, and standard picture quality analog video signals have been widely used and continue to be used during the transition to full digital, high quality systems. In particular, a coaxial cable (coax) has been deployed to carry signals from a CCTV camera to a monitoring station. Some deployed CCTV cameras transmit compressed video signals over a local area network (or wide area network), and such cameras can use the Internet Protocol (IP) as a communication method to transmit compressed video signals.

第1圖說明使用coax來承載標準畫質類比視訊的習知系統。一基本類比相機10通常可產生一複合視訊基頻信號(CVBS),其可使用coax 11傳輸至多300米。一般提供CVBS信號至經常包括一記錄數位格式之CVBS的數位視訊記錄器(DVR)12的一視訊記錄系統。可將一習知監視器14連接至DVR12以同時顯示標 準畫質類比視訊,其大體上具有720x480像素之一解析度。 Figure 1 illustrates a conventional system that uses coax to carry standard picture quality analog video. A basic analog camera 10 typically produces a composite video baseband signal (CVBS) that can be transmitted up to 300 meters using coax 11. A video recording system is generally provided for a CVBS signal to a digital video recorder (DVR) 12 that often includes a CVBS that records a digital format. A conventional monitor 14 can be connected to the DVR 12 to simultaneously display the standard Quasi-picture quality analog video, which has roughly one resolution of 720x480 pixels.

數位相機16可於一些應用中取代類比相機10。數位相機16可支援串列數位介面(SDI),其係用以依約270Mbps透過coax 17將未壓縮標準畫質數位視訊傳輸至DVR12。 The digital camera 16 can replace the analog camera 10 in some applications. The digital camera 16 can support a Serial Digital Interface (SDI), which is used to transmit uncompressed standard quality digital video to the DVR 12 via coax 17 at approximately 270 Mbps.

第2圖說明目前發展系統中傳輸高畫質視訊(1920x1080像素)之習知方法。首先,一數位相機20可支援一高畫質串列數位介面(HD-SDI),其係可用來以1.5Gbps之速率透過coax 21傳輸未壓縮高畫質數位視訊至DVR22。在此高傳輸率下支援的電纜距離係至多100米。其次,一以IP為主、高畫質(HD)相機24可使用標準類別5(CAT5)雙絞線電纜25透過100Mbps乙太網路產生一壓縮數位HD視訊信號達到100米之距離。該信號係藉由一DVR 22接收及記錄用於非即時播放。現存coax 26可用來使用CAT5至coax橋接數據機27及29或其他轉換裝置自相機24傳輸視訊至一DVR22。使用網路以致使相機傳輸數位視訊容許此等系統增加一些上行通信,通常為控制及音訊信號28。 Figure 2 illustrates a conventional method of transmitting high quality video (1920 x 1080 pixels) in current development systems. First, a digital camera 20 can support a high quality serial digital interface (HD-SDI) that can be used to transmit uncompressed high quality digital video to the DVR 22 over a coax 21 at a rate of 1.5 Gbps. The cable distance supported at this high transmission rate is up to 100 meters. Second, an IP-based, high-definition (HD) camera 24 can generate a compressed digital HD video signal over a 100 Mbps Ethernet network using a standard Category 5 (CAT5) twisted pair cable 25 to a distance of 100 meters. The signal is received and recorded by a DVR 22 for non-immediate playback. The existing coax 26 can be used to transmit video from camera 24 to a DVR 22 using CAT5 to coax bridging modems 27 and 29 or other switching devices. The use of the network to cause the camera to transmit digital video allows these systems to add some upstream communications, typically control and audio signals 28.

本發明的某些具體實施例提供相機及操作相機的系統及方法。一處理器可自一影像感測器接收一影像信號且產生代表該影像信號的複數視訊信號。一解碼 器係用以組合基頻視訊信號及數位視訊信號成為一用於透過一電纜傳輸之輸出信號。該等視訊信號可包括一基頻視訊信號及一數位視訊信號且實質上等時。該相機可操作為一閉路高畫質電視相機。 Certain embodiments of the present invention provide cameras and systems and methods of operating the cameras. A processor can receive an image signal from an image sensor and generate a plurality of video signals representative of the image signal. One decoding The device is configured to combine the baseband video signal and the digital video signal into an output signal for transmission through a cable. The video signals may include a baseband video signal and a digital video signal and are substantially isochronous. The camera operates as a closed-circuit high-definition TV camera.

根據本發明的某些態樣,基頻視訊信號可包括一標準畫質類比視訊信號且數位視訊信號可在與基頻視訊信號組合前調變。數位視訊信號可包括一壓縮高畫質數位視訊信號。數位視訊信號的訊框率可能少於影像信號的訊框率,尤其對一視訊記錄器提供調變數位信號時。 In accordance with certain aspects of the present invention, the baseband video signal can include a standard picture quality analog video signal and the digital video signal can be modulated prior to combining with the baseband video signal. The digital video signal can include a compressed high quality digital video signal. The frame rate of a digital video signal may be less than the frame rate of the image signal, especially when a video signal is modulated by a video recorder.

在某些具體實施例中,一解碼器係經組態以解調一自用以承載下行視訊之傳輸電纜或自一無線通信網路接收的上行信號。解調上行信號可包含控制信號,其包括用以控制相機的位置及定向之信號,以藉由處理器控制基頻視訊信號及數位視訊信號的產生及選擇影像信號之一部分用於編碼作為基頻視訊信號。該等控制信號亦可包括一信號以選擇影像信號之一部分編碼作為數位視訊信號及用來驅動諸如一揚聲器之相機的音訊輸出的音訊信號。 In some embodiments, a decoder is configured to demodulate an uplink signal from a transmission cable used to carry downlink video or received from a wireless communication network. The demodulated uplink signal may include a control signal including a signal for controlling the position and orientation of the camera to control the generation of the baseband video signal and the digital video signal by the processor and select a portion of the image signal for encoding as a fundamental frequency. Video signal. The control signals may also include a signal to select a portion of the image signal to encode as a digital video signal and an audio signal for driving the audio output of a camera such as a speaker.

本發明之某些具體實施例提供傳輸視訊影像之方法。該方法可包括將自一高畫質成像裝置接收之一視訊信號分頻多工處理以獲得一調變數位信號,藉由組合該調變數位信號與一代表視訊信號之基頻類比信號來產生一輸出信號,及同時將輸出信號傳輸至一監視器及 數位視訊儲存裝置。在一些此等具體實施例中,監視器顯示代表視訊信號之基頻類比表示及/或數位視訊儲存器使用一數位視訊記錄器記錄自該調變數位信號擷取的一高畫質訊框序列。可壓縮該數位視訊信號。 Certain embodiments of the present invention provide methods of transmitting video images. The method may include dividing a video signal from a high-definition imaging device into a frequency division multiplexing process to obtain a modulated digital signal, and combining the modulated digital signal with a fundamental frequency analog signal representing the video signal to generate An output signal and simultaneously transmitting the output signal to a monitor and Digital video storage device. In some such embodiments, the monitor displays a baseband analog representation representative of the video signal and/or the digital video memory uses a digital video recorder to record a high quality frame sequence captured from the modulated digital signal. . The digital video signal can be compressed.

在某些具體實施例中,傳輸輸出信號包括提供輸出信號至一同軸電纜及/或至一無線傳輸器。自同軸電纜或一無線網路接收之一輸入信號可經解調以獲得一控制信號。可藉由將一複合視訊信號中之視訊信號的一部分編碼來產生基頻類比信號,且待在複合視訊信號中編碼的視訊信號之該部分可使用控制信號控制。該控制信號可控制相機的位置。將輸入信號解調可自輸入信號額外地產生一音訊信號。 In some embodiments, transmitting the output signal includes providing an output signal to a coaxial cable and/or to a wireless transmitter. One of the input signals received from the coaxial cable or a wireless network can be demodulated to obtain a control signal. The baseband analog signal can be generated by encoding a portion of the video signal in a composite video signal, and the portion of the video signal to be encoded in the composite video signal can be controlled using the control signal. This control signal controls the position of the camera. Demodulating the input signal can additionally generate an audio signal from the input signal.

本發明之某些具體實施例提供用於操作相機的系統及方法。一處理器可自一影像感測器接收一影像信號且產生複數視訊信號,控制邏輯可經組態以回應於一藉由相機接收的控制信號且一調變器可經組態以調變數位視訊信號來獲得一調變信號。複數視訊信號可包括一基頻視訊信號及一數位視訊信號。該複數視訊信號之各者表示相機的視野之至少一部分且控制信號可控制基頻及數位視訊信號的內容。該調變信號及基頻視訊信號典型由相機同時傳輸。 Certain embodiments of the present invention provide systems and methods for operating a camera. A processor can receive an image signal from an image sensor and generate a plurality of video signals, the control logic can be configured to respond to a control signal received by the camera and a modulator can be configured to modulate the digits The video signal is used to obtain a modulated signal. The complex video signal can include a baseband video signal and a digital video signal. Each of the plurality of video signals represents at least a portion of the field of view of the camera and the control signal controls the content of the baseband and digital video signals. The modulated signal and the baseband video signal are typically transmitted simultaneously by the camera.

基頻及數位的視訊信號可實質上同步。一編碼器可組合基頻視訊信號及該調變信號作為用於透過一電纜傳輸的一輸出信號。控制信號例如可自一無線網路 無線地接收。經調變信號可至少部分地無線傳輸。數位視訊信號可為一高畫質數位視訊信號及可為一壓縮數位視訊信號。控制信號移動藉由視訊信號之一表示的視野的部分。 The fundamental and digital video signals can be substantially synchronized. An encoder can combine the baseband video signal and the modulated signal as an output signal for transmission over a cable. Control signals such as from a wireless network Received wirelessly. The modulated signal can be transmitted at least partially wirelessly. The digital video signal can be a high quality digital video signal and can be a compressed digital video signal. The control signal moves a portion of the field of view represented by one of the video signals.

10‧‧‧類比相機 10‧‧‧ analog camera

11‧‧‧coax/同軸電纜 11‧‧‧coax/coaxial cable

12‧‧‧數位錄影機/DVR 12‧‧‧Digital Video Recorder/DVR

14‧‧‧監視器 14‧‧‧Monitor

16‧‧‧數位相機 16‧‧‧ digital camera

17‧‧‧同軸電纜 17‧‧‧Coaxial cable

20‧‧‧數位相機 20‧‧‧ digital camera

21‧‧‧同軸電纜 21‧‧‧Coaxial cable

22‧‧‧DVR/MII協定介面 22‧‧‧DVR/MII Agreement Interface

24‧‧‧高畫質相機 24‧‧‧High quality camera

25‧‧‧雙絞線電纜 25‧‧‧Twisted pair cable

26‧‧‧同軸電纜 26‧‧‧Coaxial cable

27‧‧‧數據機 27‧‧‧Data machine

28‧‧‧控制及音訊信號 28‧‧‧Control and audio signals

29‧‧‧數據機 29‧‧‧Data machine

30‧‧‧相機 30‧‧‧ camera

31‧‧‧數據機/SLOC-T 31‧‧‧Data Machine/SLOC-T

32‧‧‧DVR/數據機 32‧‧‧DVR/Data Machine

33‧‧‧同軸電纜 33‧‧‧Coaxial cable

34‧‧‧SD顯示 34‧‧‧SD display

35‧‧‧SLOC-R數據機 35‧‧‧SLOC-R data machine

36‧‧‧資料 36‧‧‧Information

38‧‧‧監視器側主系統 38‧‧‧Monitor side main system

40‧‧‧數位相機 40‧‧‧Digital cameras

41‧‧‧IP輸出 41‧‧‧IP output

42‧‧‧控制信號 42‧‧‧Control signal

43‧‧‧顯示器/SD顯示器 43‧‧‧Display/SD display

44‧‧‧網路開關/上行通帶 44‧‧‧Network Switch/Uplink Passband

45‧‧‧監視器側SLOC數據機 45‧‧‧Monitor side SLOC data machine

49‧‧‧SLOC相機側數據機 49‧‧‧SLOC camera side data machine

50‧‧‧基頻類比信號 50‧‧‧ fundamental frequency analog signal

52‧‧‧單一頻帶 52‧‧‧Single frequency band

53‧‧‧載波 53‧‧‧ Carrier

54‧‧‧通道/上行通帶 54‧‧‧Channel/uplink

60‧‧‧相機 60‧‧‧ camera

70‧‧‧系統 70‧‧‧ system

72‧‧‧同軸電纜 72‧‧‧Coaxial cable

74‧‧‧標準畫質監視器 74‧‧‧Standard quality monitor

80‧‧‧網路化保全裝置 80‧‧‧Networking security device

82‧‧‧同軸電纜/輸入信號 82‧‧‧Coaxial cable/input signal

84‧‧‧標準畫質監視器 84‧‧‧Standard quality monitor

85‧‧‧高畫質顯示器 85‧‧‧High quality display

86‧‧‧IP視訊伺服器 86‧‧‧IP Video Server

92‧‧‧片段同步符元 92‧‧‧Segment sync symbol

94‧‧‧訊框同步片段 94‧‧‧ Frame sync segment

96‧‧‧資料片段 96‧‧‧Information fragment

98‧‧‧資料片段 98‧‧‧Information fragment

100‧‧‧片段同步 100‧‧‧Segment synchronization

101‧‧‧符元偽隨機雜訊序列 101‧‧‧ symbol pseudorandom noise sequence

102‧‧‧符元偽隨機雜訊 102‧‧‧symbol pseudorandom noise

104‧‧‧第三PN63序列 104‧‧‧ Third PN63 sequence

105‧‧‧模態符元 105‧‧‧Mode symbol

106‧‧‧保留符元 106‧‧‧Reserved symbol

107‧‧‧預編碼符元 107‧‧‧Pre-coded symbols

140‧‧‧封包 140‧‧‧Package

142‧‧‧奇偶性位元組 142‧‧‧Parity bytes

150‧‧‧輸入換向器 150‧‧‧Input commutator

151‧‧‧輸出換向器 151‧‧‧Output commutator

152‧‧‧路徑 152‧‧‧ Path

154‧‧‧路徑 154‧‧‧ Path

156‧‧‧路徑/移位暫存器 156‧‧‧Path/Shift Register

158‧‧‧路徑/移位暫存器 158‧‧‧Path/Shift Register

180‧‧‧第一部分 180‧‧‧Part 1

182‧‧‧第二部分 182‧‧‧Part II

190‧‧‧酬載 190‧‧‧ ‧

203‧‧‧第二PN63序列 203‧‧‧Second PN63 sequence

207‧‧‧訊框 207‧‧‧ frame

210‧‧‧媒體獨立介面(MII)模組 210‧‧‧Media Independent Interface (MII) Module

212‧‧‧QAM調變器 212‧‧‧QAM modulator

214‧‧‧QAM解調器 214‧‧‧QAM demodulator

216‧‧‧符元 216‧‧‧ symbol

218‧‧‧雙工器 218‧‧‧Duplexer

220‧‧‧雙工器 220‧‧‧Duplexer

222‧‧‧QAM解調器 222‧‧‧QAM demodulator

224‧‧‧QAM調變器 224‧‧‧QAM modulator

226‧‧‧MII介面模組 226‧‧‧MII interface module

248‧‧‧數位等化器及載波相位/頻率迴路 248‧‧‧Digital equalizer and carrier phase/frequency loop

250‧‧‧數位等化器 250‧‧‧Digital equalizer

252‧‧‧2D分割器 252‧‧2D splitter

254‧‧‧電壓控制振盪器/VCO 254‧‧‧Voltage Controlled Oscillator/VCO

256‧‧‧低通濾波器 256‧‧‧ low pass filter

258‧‧‧相位誤差偵測器模組 258‧‧‧ phase error detector module

302‧‧‧CVBS類比等化器 302‧‧‧CVBS analog equalizer

304‧‧‧QAM解調器 304‧‧‧QAM demodulator

305‧‧‧濾波器選擇信號 305‧‧‧Filter selection signal

330‧‧‧類比CVBS信號/輔助相機輸出 330‧‧‧ analog CVBS signal / auxiliary camera output

332‧‧‧高畫質信號/通帶下行IP信號 332‧‧‧High quality signal/passband downlink IP signal

334‧‧‧上行通信 334‧‧‧Uplink communication

340‧‧‧信號 340‧‧‧ signal

341‧‧‧等化器 341‧‧‧ Equalizer

342‧‧‧2D分割器 342‧‧2D splitter

344‧‧‧電壓控制振盪器/VCO 344‧‧‧Voltage Controlled Oscillator/VCO

345‧‧‧IP濾波器 345‧‧‧IP filter

346‧‧‧相位誤差偵測器模組 346‧‧‧ phase error detector module

400‧‧‧LUT 400‧‧‧LUT

402‧‧‧運算 402‧‧‧Operation

404‧‧‧元件 404‧‧‧ components

420‧‧‧等化器 420‧‧‧ Equalizer

422‧‧‧誤差計算器模組 422‧‧‧Error Calculator Module

423‧‧‧階段管理器 423‧‧‧ Stage Manager

424‧‧‧查找表/LUT 424‧‧‧ Lookup Table/LUT

426‧‧‧IP濾波器 426‧‧‧IP filter

427‧‧‧分割器及相位誤差偵測器模組 427‧‧‧Splitter and Phase Error Detector Module

428‧‧‧等化器及載波相位/頻率迴路 428‧‧‧ Equalizer and carrier phase/frequency loop

430‧‧‧開關 430‧‧‧ switch

432‧‧‧第二開關 432‧‧‧second switch

434‧‧‧三階段 434‧‧‧Three stages

436‧‧‧2維分割器 436‧‧2D Divider

440‧‧‧SLOC-R 440‧‧‧SLOC-R

444‧‧‧LUT 444‧‧‧LUT

445‧‧‧相位校正因子 445‧‧‧ phase correction factor

446‧‧‧輸出 446‧‧‧ Output

480‧‧‧圓 480‧‧‧ round

482‧‧‧圓 482‧‧‧ Round

510‧‧‧相機 510‧‧‧ camera

511‧‧‧SLOC相機側數據機 511‧‧‧SLOC camera side data machine

512‧‧‧電纜片段 512‧‧‧ cable segment

513‧‧‧濾波階 513‧‧‧Filter step

514‧‧‧電纜片段 514‧‧‧ cable segment

515‧‧‧數據機 515‧‧‧Data machine

516‧‧‧SD顯示器 516‧‧‧SD display

519‧‧‧濾波階 519‧‧‧Filter step

530‧‧‧相機側QAM解調器 530‧‧‧ Camera Side QAM Demodulator

531‧‧‧同軸電纜連接信號 531‧‧‧Coaxial cable connection signal

532‧‧‧相機側QAM調變器 532‧‧‧ Camera Side QAM Modulator

533‧‧‧下行通帶信號 533‧‧‧Down passband signal

534‧‧‧輸入信號 534‧‧‧Input signal

540‧‧‧AGC迴路 540‧‧‧AGC circuit

543‧‧‧預定參考位準 543‧‧‧Predetermined reference level

544‧‧‧低通濾波器/LPF 544‧‧‧Low Pass Filter/LPF

545‧‧‧加法器 545‧‧‧Adder

546‧‧‧延遲元件 546‧‧‧ Delay element

547‧‧‧增益控制信號 547‧‧‧gain control signal

548‧‧‧增益塊 548‧‧‧ Gain block

549‧‧‧系統輸入 549‧‧‧System input

600‧‧‧相機光學元件 600‧‧‧ camera optics

602‧‧‧影像感測器 602‧‧‧Image Sensor

603‧‧‧掃描信號 603‧‧‧ scan signal

604‧‧‧處理器 604‧‧‧ processor

605‧‧‧信號 605‧‧‧ signal

606‧‧‧SLOC-T 606‧‧‧SLOC-T

606‧‧‧數據機/SLOC-T 606‧‧‧Data Machine/SLOC-T

610‧‧‧儲存器 610‧‧‧Storage

612‧‧‧音訊輸出系統/揚聲器 612‧‧‧Optical output system/speaker

614‧‧‧麥克風 614‧‧‧Microphone

616‧‧‧感測器 616‧‧‧ sensor

618‧‧‧控制介面 618‧‧‧Control interface

700‧‧‧SLOC-R 700‧‧‧SLOC-R

701‧‧‧類比基頻視訊信號 701‧‧‧ analog baseband video signal

702‧‧‧DVR處理器 702‧‧‧DVR processor

703‧‧‧數位視訊信號 703‧‧‧Digital video signal

704‧‧‧類比視訊解碼器 704‧‧‧ analog video decoder

705‧‧‧數位標準畫質視訊信號 705‧‧‧Digital standard picture quality video signal

706‧‧‧HD數位顯示處理器 706‧‧‧HD digital display processor

707‧‧‧信號 707‧‧‧ signal

708‧‧‧數位視訊解碼器 708‧‧‧Digital Video Decoder

710‧‧‧周邊裝置/網路介面 710‧‧‧ Peripheral device/network interface

712‧‧‧周邊裝置/本機匯流排 712‧‧‧ Peripheral device / local bus

714‧‧‧周邊裝置/本機硬碟機 714‧‧‧ Peripheral device / local hard disk drive

800‧‧‧SLOC-R 800‧‧‧SLOC-R

801‧‧‧CVBS信號 801‧‧‧CVBS signal

802‧‧‧網路開關處理器 802‧‧‧Network Switch Processor

803‧‧‧數位視訊信號 803‧‧‧Digital video signal

804‧‧‧組件 804‧‧‧ components

806‧‧‧組件 806‧‧‧ components

1300‧‧‧RS編碼器 1300‧‧‧RS encoder

1301‧‧‧位元組資料 1301‧‧ ‧ Byte data

1302‧‧‧迴旋位元組交錯器 1302‧‧‧ gyrotron tuple interleaver

1303‧‧‧訊框同步信號 1303‧‧‧ Frame synchronization signal

1306‧‧‧隨機產生器 1306‧‧‧ Random generator

1308‧‧‧PT CM模組 1308‧‧‧PT CM Module

1312‧‧‧模組 1312‧‧‧Module

1313‧‧‧QAM映射器 1313‧‧‧QAM Mapper

1314‧‧‧通帶調變/PB Mod 1314‧‧‧Through band modulation/PB Mod

1322‧‧‧封包/向前誤差校正(FEC)資料訊框 1322‧‧‧ Packet/Forward Error Correction (FEC) Data Frame

1324‧‧‧FEC資料訊框 1324‧‧‧FEC Information Frame

1328‧‧‧輸入 1328‧‧‧Enter

1332‧‧‧輸出位元/編碼器輸出 1332‧‧‧ Output bit/encoder output

1334‧‧‧FEC資料訊框 1334‧‧‧FEC Information Frame

1336‧‧‧訊框結構 1336‧‧‧ frame structure

1500‧‧‧頂部 1500‧‧‧ top

1506‧‧‧平行路徑 1506‧‧‧ parallel path

1508‧‧‧平行路徑/底部 1508‧‧‧parallel path/bottom

2000‧‧‧模組 2000‧‧‧ module

2001‧‧‧基頻QAM符元 2001‧‧‧Base frequency QAM symbol

2002‧‧‧相位偏移校正器 2002‧‧‧ Phase Offset Corrector

2004‧‧‧模組 2004‧‧‧Module

2006‧‧‧軟解映射器 2006‧‧‧Soft Demapper

2008‧‧‧Viterbi解碼器 2008‧‧‧Viterbi decoder

2014‧‧‧位元組解交錯器 2014‧‧‧Bit deinterleaver

2016‧‧‧RS解碼器 2016‧‧‧RS decoder

2018‧‧‧二位準分割器 2018‧‧‧Two quasi-splitters

2019‧‧‧分割QAM符元 2019‧‧‧Divided QAM symbols

2020‧‧‧訊框同步模組 2020‧‧‧ Frame Synchronization Module

2021‧‧‧訊框同步信號 2021‧‧‧ Frame synchronization signal

2023‧‧‧解隨機產生器 2023‧‧‧Solution random generator

2100‧‧‧相機/基頻IP資料流 2100‧‧‧ Camera/Baseband IP Data Stream

2120‧‧‧通帶QAM符元 2120‧‧‧With QAM symbol

2160‧‧‧基頻CVBS信號 2160‧‧‧ fundamental frequency CVBS signal

2162‧‧‧通帶下行信號 2162‧‧‧passband down signal

2140‧‧‧高通帶上行信號 2140‧‧‧High pass with up signal

2200‧‧‧低通帶IP協定信號 2200‧‧‧Low pass with IP protocol signal

2201‧‧‧CVBS信號 2201‧‧‧CVBS signal

2202‧‧‧低通帶信號 2202‧‧‧low pass signal

2203‧‧‧高通帶信號 2203‧‧‧High pass signal

2300‧‧‧映射器/編碼器/流 2300‧‧‧ Mapper/Encoder/Stream

2302‧‧‧流 2302‧‧‧ flow

5000‧‧‧額外連接 5000‧‧‧Additional connection

5100‧‧‧基頻CVBS信號 5100‧‧‧ fundamental frequency CVBS signal

5102‧‧‧信號 5102‧‧‧ signal

5130‧‧‧相機側SD顯示器 5130‧‧‧ Camera side SD display

5131‧‧‧測試數據機 5131‧‧‧Test data machine

5170‧‧‧信號 5170‧‧‧ signal

第1圖說明使用同軸以承載標準畫質類比視訊的一先前技術系統。 Figure 1 illustrates a prior art system that uses coaxial to carry standard picture quality analog video.

第2圖說明傳輸高畫質數位視訊之先前技術方法。 Figure 2 illustrates the prior art method of transmitting high quality digital video.

第3圖描述根據本發明的某些態樣傳輸類比及數位視訊的一系統。 Figure 3 depicts a system for transmitting analog and digital video in accordance with certain aspects of the present invention.

第4圖描述根據本發明的某些態樣傳輸類比及數位視訊的一網路系統。 Figure 4 depicts a network system for analog analog and digital video transmission in accordance with certain aspects of the present invention.

第5圖顯示根據本發明的某些態樣透過一同軸電纜傳輸類比及數位視訊的頻寬分配。 Figure 5 shows the bandwidth allocation for analog and digital video transmission over a coaxial cable in accordance with certain aspects of the present invention.

第6圖說明根據本發明的某些態樣構造的CCTV相機設備的一實例。 Figure 6 illustrates an example of a CCTV camera device constructed in accordance with certain aspects of the present invention.

第7圖說明用於根據本發明的某些態樣構造之DVR設備的一數據機之一實例。 Figure 7 illustrates an example of a data machine for a DVR device constructed in accordance with certain aspects of the present invention.

第8圖說明用於根據本發明的某些態樣構造之網路開關設備的一數據機之一實例。 Figure 8 illustrates an example of a data machine for a network switch device constructed in accordance with certain aspects of the present invention.

第9圖係用於ATSC數位電視的一訊框結構之一實例。 Figure 9 is an example of a frame structure for ATSC digital television.

第10圖係一習知訊框同步封包的一實例。 Figure 10 is an example of a conventional frame synchronization packet.

第11圖係在一習知資料訊框中之資料片段的一實例。 Figure 11 is an example of a data fragment in a conventional data frame.

第12圖提供一訊框配置的一簡化圖。 Figure 12 provides a simplified diagram of a frame configuration.

第13圖係根據本發明的某些態樣之一調變器的一方塊圖。 Figure 13 is a block diagram of a modulator in accordance with some aspects of the present invention.

第14圖係使用於本發明的某些具體實施例的一訊框結構之方塊圖。 Figure 14 is a block diagram of a frame structure used in some embodiments of the present invention.

第15圖說明在本發明的某些具體實施例中之一迴旋位元組交錯器的操作。 Figure 15 illustrates the operation of one of the whirling byte interleavers in some embodiments of the present invention.

第16圖係使用於發明的某些具體實施例之一可選擇碼率刪餘交錯編碼調變的一方塊圖。 Figure 16 is a block diagram of a selectable rate puncturing interleaved modulation used in one of the specific embodiments of the invention.

第17圖說明QAM映射的實例。 Figure 17 illustrates an example of QAM mapping.

第18圖顯示一訊框同步/模態封包。 Figure 18 shows a frame sync/modal packet.

第19圖係使用於本發明的某些具體實施例的一簡化訊框結構。 Figure 19 is a simplified frame structure for use with certain embodiments of the present invention.

第20圖係根據本發明的某些態樣之一解調器的一方塊圖。 Figure 20 is a block diagram of a demodulator in accordance with some aspects of the present invention.

第21圖係根據本發明的某些態樣之一相機側數據機的一方塊圖。 Figure 21 is a block diagram of a camera side data machine in accordance with some aspects of the present invention.

第22圖係根據本發明的某些態樣之一監視器側的數據機之一方塊圖。 Figure 22 is a block diagram of one of the data units on the monitor side in accordance with some aspects of the present invention.

第23圖說明根據本發明的某些態樣之一相機側基頻對通帶QAM調變器。 Figure 23 illustrates a camera side fundamental to passband QAM modulator in accordance with certain aspects of the present invention.

第24A及24B圖說明根據本發明的某些態樣之監視器側通帶對基頻QAM解調器。 24A and 24B illustrate a monitor side passband pair baseband QAM demodulator in accordance with certain aspects of the present invention.

第25圖說明根據本發明的某些態樣之一監視器側數位等化器及載波相位/頻率迴路。 Figure 25 illustrates a monitor side digital equalizer and carrier phase/frequency loop in accordance with certain aspects of the present invention.

第26圖顯示描述衰減為同軸電纜中之頻率的一函數。 Figure 26 shows a function describing the attenuation as a frequency in a coaxial cable.

第27A圖描述等化器輸入之功率頻譜密度(PSD)。 Figure 27A depicts the power spectral density (PSD) of the equalizer input.

第27B圖描述收斂等化器階之振幅響應。 Figure 27B depicts the amplitude response of the convergence equalizer stage.

第28A、28B、29A及29B圖顯示在不同頻率下於一通帶數位視訊信號中之損失相對於傾斜。 Figures 28A, 28B, 29A, and 29B show the loss versus tilt in a passband digital video signal at different frequencies.

第30圖顯示根據本發明的某些態樣在QAM解調器內具有一數位等化器的一監視器側數據機。 Figure 30 shows a monitor side data machine having a digital equalizer in a QAM demodulator in accordance with certain aspects of the present invention.

第31圖描述根據本發明的某些態樣適用於等化基頻CVBS之一類比主動濾波器。 Figure 31 depicts an analogous active filter suitable for equalizing a fundamental frequency CVBS in accordance with certain aspects of the present invention.

第32圖顯示在本發明的某些具體實施例中之濾波器回應的實例。 Figure 32 shows an example of a filter response in some embodiments of the invention.

第33A及33B圖說明在複數平面中之旋轉QPSK群集。 Figures 33A and 33B illustrate a rotating QPSK cluster in a complex plane.

第34圖係說明根據本發明的某些態樣之相位校正程序之一方塊圖。 Figure 34 is a block diagram showing one of the phase correction procedures in accordance with certain aspects of the present invention.

第35圖描述根據本發明的某些態樣之積分比例(IP)濾波器。 Figure 35 depicts an integral ratio (IP) filter in accordance with certain aspects of the present invention.

第36圖說明一經傳輸符元。 Figure 36 illustrates a transmitted symbol.

第37A、37B、37C及37D圖說明為基於第36圖之傳輸符元的可能恢復符元。 The 37A, 37B, 37C, and 37D diagrams illustrate possible recovery symbols based on the transmission symbols of Figure 36.

第38圖顯示在一接收到符元中之相位偏移的一實例。 Figure 38 shows an example of the phase offset in a received symbol.

第39圖顯示基於訊框同步符元之實及虛部的一傳輸群集之一實例。 Figure 39 shows an example of a transport cluster based on the real and imaginary parts of the frame sync symbol.

第40圖係使用於本發明的某些具體實施例之一相位偏移的一方塊圖。 Figure 40 is a block diagram of phase shifting used in one of the specific embodiments of the present invention.

第41圖說明決定有關訊框同步化的可靠性之一程序。 Figure 41 illustrates one of the procedures for determining the reliability of frame synchronization.

第42圖描述使用於本發明之某些具體實施例的一等化器及載波相位/頻率迴路的某些態樣。 Figure 42 depicts certain aspects of an equalizer and carrier phase/frequency loop for use with certain embodiments of the present invention.

第43圖顯示使用於本發明的某些具體實施例之分割器及相位誤差偵測器模組。 Figure 43 shows a splitter and phase error detector module for use with certain embodiments of the present invention.

第44圖說明使用於本發明之某些具體實施例的一複數指數LUT模組。 Figure 44 illustrates a complex index LUT module for use with certain embodiments of the present invention.

第45A及45B圖繪製在一QPSK信號(第45A圖)及一16-QAM信號(第45B圖)中之等化輸出的實部。 Figures 45A and 45B plot the real part of the equalized output in a QPSK signal (Fig. 45A) and a 16-QAM signal (Fig. 45B).

第46A、46B及46C圖係當使用其中等化器在R=58收歛之一具體實施例產生的群集係QPSK(第46A圖)、16-QAM(第46B圖)及64-QAM(第46C圖)時之等化輸出之功率的直方圖。 46A, 46B, and 46C are clusters QPSK (FIG. 46A), 16-QAM (FIG. 46B), and 64-QAM (46C) generated when a uniformizer is used to converge at R=58. Figure) Histogram of the power of the equalized output.

第47圖說明等化器輸出及載波相位/頻率恢復迴路模組輸入處之群集的實例。 Figure 47 illustrates an example of a cluster of equalizer outputs and carrier phase/frequency recovery loop module inputs.

第48圖顯示具有所描述臨限值之QAM映射的實例。 Figure 48 shows an example of a QAM mapping with the described threshold.

第49圖顯示在相同圖上重疊之所有三群集的右上方象限。 Figure 49 shows the upper right quadrant of all three clusters that overlap on the same graph.

第50圖說明決定一群集之方法的操作。 Figure 50 illustrates the operation of the method of determining a cluster.

第51A及51B圖描述根據本發明之某些態樣用於同時傳輸標準畫質及高畫質視訊及具有信號之一階或中斷的系統。 Figures 51A and 51B depict systems for simultaneously transmitting standard picture quality and high picture quality video and having a signal order or interruption in accordance with certain aspects of the present invention.

第52A及52B圖說明根據本發明的某些態樣自一吵雜信號產生一訊框同步脈衝之程序。 Figures 52A and 52B illustrate a procedure for generating a frame sync pulse from a noisy signal in accordance with certain aspects of the present invention.

第53圖係根據本發明的某些態樣具有一同軸連接指示符的一相機數據機之一方塊圖。 Figure 53 is a block diagram of a camera modem having a coaxial connection indicator in accordance with certain aspects of the present invention.

第54圖說明一自動增益控制迴路的某些態樣。 Figure 54 illustrates some aspects of an automatic gain control loop.

本發明之具體實施例現將參考圖式詳盡描述,其係提供作為說明性實例以致使熟習此項技術人士能實現本發明。應注意以下圖式及實例非意於使本發明之範圍局限於一單一具體實施例,而是其他具體實施例係由交換一些或所有經描述或說明元件而可行。當合宜時,全部圖式中之相同參考數字將用來指相同或相似部 分。在此等具體實施例之某些元件可使用已知組件來部分或完全執行時,僅描述必要理解本發明之此等已知組件的部分,及將會省略此等已知組件的其他部分之詳細描述,以便不影響本發明。在本說明書中,不應該將顯示一特異組件的一具體實施例看作限制;而是,除非明確地在本文陳述,本發明意欲包括其他包括複數相同組件的具體實施例,且反之亦然。此外,除非明確地提出,本申請人非意於將說明書或申請專利範圍中之術語歸屬於非尋常或特別意思。此外,本發明包括對於藉由說明在此所指之組件的目前及未來符合的等效物。 The present invention will be described in detail with reference to the accompanying drawings, in which It should be noted that the following figures and examples are not intended to limit the scope of the invention to a single embodiment, but other embodiments are possible by exchanging some or all of the described or illustrated elements. When appropriate, the same reference numbers in all figures will be used to refer to the same or similar parts. Minute. When some of the elements of the specific embodiments can be partially or fully executed using known components, only those portions of the known components that are necessary to understand the present invention are described, and other portions of such known components will be omitted. The detailed description is made so as not to affect the invention. In the present specification, a specific embodiment showing a specific component should not be construed as limiting; rather, the invention is intended to include other specific embodiments including the plural components, and vice versa, unless explicitly stated herein. Moreover, the Applicant does not intend to attribute the terms in the specification or the claims to the unusual or special meaning unless explicitly stated. In addition, the present invention includes equivalents to the present and future aspects of the components referred to herein.

本發明的某些具體實施例提供使一相機能同時透過coax傳輸高畫質數位視訊及標準畫質類比視訊之系統及方法。一高畫質相機適於產生一壓縮數位視訊信號及一類比基頻信號。數位信號係在一自基頻視訊信號的上部頻率分離的頻帶中調變及傳輸。類比信號可根據任何所需標準編碼,包括APL、SECAM及NTSC標準及其變體。 Certain embodiments of the present invention provide systems and methods for enabling a camera to simultaneously transmit high quality digital video and standard picture quality analog video over coax. A high quality camera is adapted to generate a compressed digital video signal and a analog baseband signal. The digital signal is modulated and transmitted in a frequency band separated from the upper frequency of the fundamental video signal. Analog signals can be coded according to any desired standard, including APL, SECAM, and NTSC standards and variants thereof.

為了此描述的目的,將描述使用一透過coax之安全性連結(SLOC)的一系統的一實例。此外,SLOC大體上將被認為具有關於一相機之上行與下行信號:相機係位於上行。在描述中,一SLOC系統的一實例提供一第一通帶中之一下行高畫質(HD)視訊信號,一第二通帶中的一上行音訊及控制信號及一下行複合視訊基頻信號(CVBS)。應瞭解可使用其他通帶信號及頻寬的分 配。例如,該系統可使用標準或高畫質解析度之兩數位視訊信號。 For the purposes of this description, an example of a system that uses a secure connection (SLOC) through coax will be described. In addition, SLOC will generally be considered to have uplink and downlink signals for one camera: the camera system is on the upstream. In the description, an example of a SLOC system provides a downlink high-definition (HD) video signal in a first passband, an uplink audio and control signal in a second passband, and a downlink composite video baseband signal. (CVBS). It should be understood that other passband signals and bandwidths can be used. Match. For example, the system can use two-bit video signals of standard or high quality resolution.

第3圖描述一說明本發明之某些操作原理的本發明的一具體實施例。該實例描述在一系統中之HD相機30的佈署,其中需要檢視由相機30產生的現場視訊,同時並行地在DVR32上記錄該視訊的一高畫質複本。此一系統的一實例係一保全或監視系統。HD相機30之功能可遠端控制,於以下更詳細描述。HD相機30可調適以同時產生高畫質信號332及類比CVBS信號330。在某些具體實施例中,高畫質信號332及一類比CVBS信號330係等時,但若(例如)在處理不同信號中之延遲不相等則可為實質上等時。在一實例中,CVBS信號330可能因為數位至類比轉換負荷而延遲。在另一實例中,高畫質信號332可基於壓縮比等等壓縮且經受可變延遲。在某些具體實施例中,CVBS 330及高畫質信號332可被同步化或與由相機30產生之一共同音訊信號維持在一恆定時間關係中。 Figure 3 depicts a specific embodiment of the invention illustrating certain operational principles of the invention. This example describes the deployment of an HD camera 30 in a system in which live video generated by camera 30 needs to be viewed while simultaneously recording a high quality copy of the video on DVR 32. An example of such a system is a security or surveillance system. The functionality of HD camera 30 is remotely controllable and is described in more detail below. The HD camera 30 is adaptable to simultaneously generate a high quality signal 332 and an analog CVBS signal 330. In some embodiments, the high quality signal 332 and the analog CVBS signal 330 are equal, but may be substantially isochronous if, for example, the delays in processing different signals are not equal. In an example, the CVBS signal 330 may be delayed due to the digital to analog conversion load. In another example, the high quality signal 332 may be compressed based on a compression ratio or the like and subjected to a variable delay. In some embodiments, CVBS 330 and high quality signal 332 may be synchronized or maintained in a constant time relationship with one of the common audio signals generated by camera 30.

相機30可藉由增加外部組件或藉由將硬體及軟體整合至相機30內來調適。在實例中,一透過coax之安全性連結數據機(SLOC-T)31係提供在相機30內。SLOC-T 31可建構為一經整合作為對於相機30之一增加之數據機或使用已整合進入至相機30之組件實施。SLOC-T31致使一多媒體饋送透過一通信通道傳輸至下行:如說明,SLOC-T31係一致使一承載代表由相 機30產生之視訊的不同解析度信號之多信號能透過一同軸電纜33傳送的裝置。為了清楚描述,佈署於諸如相機30之傳輸裝置中的一SLOC將此在稱作「SLOC-T」,且在諸如一DVR、網路開關等等之一接收裝置中提供的一SLOC將稱為一「SLOC-R」。SLOC-T及SLOC-R裝置的描述將會在下文中更詳細提供。 Camera 30 can be adapted by adding external components or by integrating hardware and software into camera 30. In the example, a secure connection data machine (SLOC-T) 31 via coax is provided within the camera 30. The SLOC-T 31 can be constructed as one that is integrated as a data machine added to one of the cameras 30 or using components that have been integrated into the camera 30. SLOC-T31 causes a multimedia feed to be transmitted to the downlink through a communication channel: as illustrated, the SLOC-T31 is consistent to make a bearer representative phase The signals of the different resolution signals of the video generated by the machine 30 can be transmitted through a coaxial cable 33. For clarity of description, a SLOC deployed in a transmission device such as camera 30 will be referred to as "SLOC-T", and a SLOC provided in a receiving device such as a DVR, network switch, etc. will be called It is a "SLOC-R". A description of the SLOC-T and SLOC-R devices will be provided in more detail below.

SLOC-T31可與相機30的其他組件協作及/或可增加致使相機30以各種模態操作之增強功能性。在一實例中,相機30可產生一未壓縮HD數位視訊輸出且SLOC-T31可提供壓縮HD數位視訊信號的一能力。因此,SLOC-T 31視需要可提供調變及解調以外之能力以提升主相機30的功能性。因此,若干SLOC-T裝置可以各種模態操作,其中一些係藉由實例提供。在一模態中,SLOC-T31自相機30接收一壓縮HD視訊信號及該信號之一標準畫質類比版本及透過coax 33傳輸兩信號。在另一模態中,SLOC-T31自相機30接收一未壓縮HD視訊信號及該信號的一標準畫質類比版本且透過coax 33將該信號的一壓縮HD數位版本與標準畫質類比信號一起傳輸。SLOC-T31可傳輸一HD數位信號及自接收自相機30的一HD信號導出的一標準畫質類比信號。 The SLOC-T 31 can cooperate with other components of the camera 30 and/or can increase the enhanced functionality that causes the camera 30 to operate in various modalities. In one example, camera 30 can generate an uncompressed HD digital video output and SLOC-T 31 can provide the ability to compress HD digital video signals. Therefore, the SLOC-T 31 can provide capabilities other than modulation and demodulation as needed to enhance the functionality of the main camera 30. Thus, several SLOC-T devices can operate in a variety of modalities, some of which are provided by way of example. In one mode, the SLOC-T 31 receives a compressed HD video signal from the camera 30 and a standard picture quality analog version of the signal and transmits both signals through the coax 33. In another modality, the SLOC-T 31 receives an uncompressed HD video signal from the camera 30 and a standard picture quality analog version of the signal and transmits a compressed HD digital version of the signal through the coax 33 along with a standard picture quality analog signal. transmission. The SLOC-T31 can transmit an HD digital signal and a standard image quality analog signal derived from an HD signal received from the camera 30.

在某些具體實施例中,SLOC-T31使用分頻多工處理來產生在coax 33上傳輸之一輸出信號。在第5圖中說明的實例中,下行數位信號係在集中於頻率f cd 之 一載波53上的一單一頻帶52中提供。頻帶52在基頻類比信號50的最高頻率f 0 上開始。可將此不同頻帶52稱作一通道。通道52可基於SLOC-T31之能力、可用頻寬、信號頻寬及其他原因選擇。在一些具體實施例中,通道52可針對與接收設備之相容性選擇。在一實例中,信號可直接提供至一標準畫質電視且可選擇通道52以確保與基頻信號的適當分離。當使用信號之標準定義編碼時,通道52中之頻帶亦可基於數位視訊傳輸之標準選擇。已預想一單一數位信號可用二或以上不同通道傳輸以承載數位信號的部分。 In some embodiments, the SLOC-T 31 uses a frequency division multiplexing process to generate an output signal that is transmitted on the coax 33. In the example illustrated in Figure 5, the downstream digital signal is provided in a single frequency band 52 concentrated on one of the carriers 53 of the frequency f cd . Band 52 begins at the highest frequency f 0 of the fundamental analog signal 50. This different frequency band 52 can be referred to as a channel. Channel 52 can be selected based on the capabilities of SLOC-T31, available bandwidth, signal bandwidth, and other reasons. In some embodiments, channel 52 can be selected for compatibility with the receiving device. In one example, the signal can be provided directly to a standard picture quality television and channel 52 can be selected to ensure proper separation from the baseband signal. When encoding is defined using the standard of the signal, the frequency band in channel 52 can also be selected based on the standard of digital video transmission. It has been envisioned that a single digit signal can be transmitted on two or more different channels to carry portions of the digital signal.

可用任何適合調變方案來產生數位信號的一可傳輸版本。例如,不同類型之有線及無線連接可配合調變方案使用,諸如相移鍵控(PSK)、頻移鍵控(FSK)、正交振幅調變(QAM)、正交分頻多工處理(OFDM)等等。調變方案典型係基於包括用於傳輸之媒體的特性,所需視訊信號之訊框率及其他影響通道52中之可用頻寬的不同因素的因素來選擇。 Any translatable version of the digital signal can be generated using any suitable modulation scheme. For example, different types of wired and wireless connections can be used with modulation schemes such as phase shift keying (PSK), frequency shift keying (FSK), quadrature amplitude modulation (QAM), and quadrature frequency division multiplexing ( OFDM) and so on. Modulation schemes are typically selected based on factors including the characteristics of the medium used for transmission, the frame rate of the desired video signal, and other factors that affect the available bandwidth in channel 52.

一SLOC-R數據機35可在諸如DVR32之一視訊擷取裝置中提供。SLOC-R數據機35可接收及處理數位視訊及CVBS信號。典型地,將CVBS信號擷取及直接傳遞至一顯示系統33用於現場檢視由相機30擷取的視訊影像。顯示系統33可為一標準畫質監視器,雖然顯示系統亦可接收該接收到類比信號的一數位化版本。在一實例中,SLOC-R數據機35可產生類比信號的一數 位化版本用於與數位監視器或適當配備的電腦使用。基頻信號的擷取典型地可使用一可使用類比組件實施的一低通濾波器或透過數位信號處理技術發生作用。數位HD信號可分開地擷取及提供至DVR32的記錄區段。在某些具體實施例中,數位HD視訊信號可於記錄之前在DVR中壓縮。在許多具體實施例中,數位HD視訊信號係接收作為一壓縮數位信號。 A SLOC-R modem 35 can be provided in a video capture device such as the DVR 32. The SLOC-R modem 35 can receive and process digital video and CVBS signals. Typically, the CVBS signal is captured and passed directly to a display system 33 for field viewing of the video images captured by camera 30. Display system 33 can be a standard picture quality monitor, although the display system can also receive a digital version of the received analog signal. In one example, the SLOC-R modem 35 can generate a number of analog signals. The bit version is for use with a digital monitor or a properly equipped computer. The acquisition of the baseband signal typically can be effected using a low pass filter that can be implemented using analog components or by digital signal processing techniques. The digital HD signal can be separately captured and provided to the recording section of the DVR 32. In some embodiments, the digital HD video signal can be compressed in the DVR prior to recording. In many embodiments, the digital HD video signal is received as a compressed digital signal.

在某些具體實施例中,SLOC-T 31及SLOC-R 35經組態以支援信號的雙向傳輸。在保全安裝的實例中(且如參考第6圖詳盡描述於下),相機30可包括一麥克風614、揚聲器612、感測器616、用於控制電子機械致動器之控制介面618及其他特徵(參見第6圖)。在此實例中,SLOC-T31及SLOC-R35典型經組態以將控制、音訊及其他資料36傳送至相機30。 In some embodiments, SLOC-T 31 and SLOC-R 35 are configured to support bidirectional transmission of signals. In an example of a security installation (and as described in detail below with reference to Figure 6), camera 30 may include a microphone 614, speaker 612, sensor 616, control interface 618 for controlling the electromechanical actuator, and other features. (See Figure 6). In this example, SLOC-T31 and SLOC-R35 are typically configured to communicate control, audio, and other data 36 to camera 30.

再參考第5圖,在一具體實施例中,可將上行資料在位於可用頻寬上端的一或多數通道54中傳送至相機。用於傳送數位多媒體信號52,控制及音訊信號54及其他資料的通道之選擇可基於可用頻寬、通道52及54中偵測到之信號對雜訊比、發信號標準及/或應用特定需求。在一些具體實施例中,通道組態、頻寬及信號對雜訊比係當使用一訓練序列連接SLOC-T 31及SLOC-R35時決定。典型地,訓練序列係用來確定經預定或協調通道的發信號能力,以為數位視訊的傳輸選擇 一通道52及用於決定選定通道52中的可用頻寬。選定通道52的特性可用來為數位視訊信號設定壓縮程度。 Referring again to FIG. 5, in one embodiment, the upstream data can be transmitted to the camera in one or more of the channels 54 located at the upper end of the available bandwidth. Channels for transmitting digital multimedia signals 52, control and audio signals 54 and other data may be selected based on available bandwidth, signal detected in channels 52 and 54 for noise ratio, signaling standards, and/or application specific needs. . In some embodiments, the channel configuration, bandwidth, and signal-to-noise ratio are determined when a training sequence is used to connect the SLOC-T 31 and the SLOC-R35. Typically, the training sequence is used to determine the signaling capabilities of a predetermined or coordinated channel for digital video transmission selection. A channel 52 is used to determine the available bandwidth in the selected channel 52. The characteristics of the selected channel 52 can be used to set the degree of compression for the digital video signal.

在某些具體實施例中,上行信號54包括可控制下行52及基頻50信號之內容的信號。例如,相機光學元件600可提供由相機60監視之位置的一魚眼視野且可控制相機處理器以選擇影像之一部分傳輸作為基頻信號50。典型地,下行數位信號52可提供完全影像用於在一DVR上記錄或用於額外處理。基頻信號50可接收基頻信號50用於在監視下之區域的現場監視。基頻信號50可包括一經調整影像用於由魚眼鏡頭產生之視覺效果的校正。基頻信號50之一檢視者可藉由選擇用於檢視之經擷取影像的一新部分以造成該視野在魚眼鏡頭的視野內移動。例如,此檢視者可請求「pan-right(向右搖攝)」以將視野移動至右邊。在上行信號54中傳輸之資料接著造成相機處理器擷取及處理視野的所需部分。在某些具體實施例中,移動併入基頻信號50中之視野的請求可造成相機60的實體運動。因此,上行信號54中的控制資料可影響基頻50及下行數位52信號兩者的內容。 In some embodiments, the upstream signal 54 includes a signal that can control the content of the downstream 52 and base frequency 50 signals. For example, camera optics 600 can provide a fisheye view of the location monitored by camera 60 and can control the camera processor to select a portion of the image for transmission as baseband signal 50. Typically, the downstream digital signal 52 can provide a full image for recording on a DVR or for additional processing. The baseband signal 50 can receive the baseband signal 50 for on-site monitoring of the area under surveillance. The baseband signal 50 can include an adjusted image for correction of the visual effect produced by the fisheye lens. One of the baseband signals 50 can cause the field of view to move within the field of view of the fisheye lens by selecting a new portion of the captured image for viewing. For example, the viewer can request "pan-right" to move the field of view to the right. The data transmitted in the upstream signal 54 then causes the camera processor to capture and process the desired portion of the field of view. In some embodiments, the request to move the field of view incorporated into the baseband signal 50 can cause physical movement of the camera 60. Therefore, the control data in the upstream signal 54 can affect the content of both the fundamental frequency 50 and the downstream digital 52 signal.

在某些具體實施例中,下行音訊可作為HD數位視訊信號的一部分及/或作為CVBS信號的一部分而被傳輸。可在一分離的專用通道(未顯示)中承載某些下行信號。在某些具體實施例中,對相機30之上行通信可使用帶外通信方法處理,包括(例如)使用有線或無線網路。已預想某些具體實施例可(作為替代或作為附加選 項)無線地傳輸下行數位信號52。因此,基頻信號50可透過coax傳輸,而上行54及下行52的某些組合係無線地傳輸。典型地,上行資料54包括用於下行52及基頻50信號之控制信號而不論傳輸的方法。 In some embodiments, the downstream audio can be transmitted as part of the HD digital video signal and/or as part of the CVBS signal. Certain downstream signals can be carried in a separate dedicated channel (not shown). In some embodiments, upstream communication to camera 30 may be handled using an out-of-band communication method, including, for example, using a wired or wireless network. It has been envisioned that certain embodiments may be used as an alternative or as an alternative Item) wirelessly transmits the downstream digital signal 52. Thus, baseband signal 50 can be transmitted through coax, while certain combinations of upstream 54 and downstream 52 are transmitted wirelessly. Typically, the upstream data 54 includes control signals for the downlink 52 and baseband 50 signals regardless of the method of transmission.

在某些具體實施例中,電纜33可直接提供至顯示系統33用於類比標準畫質視訊的顯示。一標準畫質監視器或顯示器33典型地包括濾波電路,其可在基頻信號及標準調變電視通道之間選擇。因而監視器33可丟棄高頻數位編碼載波信號。若數位視訊信號在一標準畫質通道中傳輸及使用標準畫質數位編碼,DVR 32亦能接收數位視訊信號而無需額外處理。SLOC-R35解碼由SLOC-T31產生之信號及提供用於DVR32之解碼HD數位視訊及其他信號。SLOC-R 35亦可編碼控制、音訊及其他資訊用於傳輸至相機30。 In some embodiments, cable 33 can be provided directly to display system 33 for analog display of standard picture quality video. A standard picture quality monitor or display 33 typically includes a filter circuit that is selectable between a baseband signal and a standard modulated television channel. Thus monitor 33 can discard the high frequency digitally encoded carrier signal. If the digital video signal is transmitted in a standard picture quality channel and uses standard picture quality digital coding, the DVR 32 can also receive digital video signals without additional processing. The SLOC-R35 decodes the signals generated by the SLOC-T31 and provides decoded HD digital video and other signals for the DVR32. The SLOC-R 35 can also encode control, audio and other information for transmission to the camera 30.

現參考第4圖,其呈現本發明之一具體實施例以說明本發明的某些操作原理。第4圖描述基於一系統的一實例,其中需要檢視藉由相機40產生的現場視訊,同時並行地透過網路開關44在一網路上提供該視訊之一高畫質複本。在一實例中,HD視訊饋送係使用一內部或外部IP視訊伺服器擷取及串流。HD相機40典型經調適以同時產生高畫質信號及一類比基頻視訊信號。相機40可藉由增加外部組件或藉由整合硬體及軟體(如SLOC-T 400)至相機40內來調適。SLOC-T 400可用如第3圖之SLOC-T 31的特徵之相同方式操作。然而, SLOC-T 400可經組態以依一促進透過一網路轉遞數位視訊信號之方式將一數位視訊信號編碼。例如,SLOC-T 400可程式化或組態以根據由IP視訊伺服器支援的一串流格式提供數位視訊信號。 Referring now to Figure 4, there is shown a particular embodiment of the invention to illustrate certain operational principles of the invention. Figure 4 depicts an example based on a system in which live video generated by camera 40 needs to be viewed while simultaneously providing a high quality copy of the video over a network via network switch 44. In one example, the HD video feed is captured and streamed using an internal or external IP video server. HD camera 40 is typically adapted to simultaneously produce high quality signals and a class of analog video signals. Camera 40 can be adapted by adding external components or by integrating hardware and software such as SLOC-T 400 into camera 40. The SLOC-T 400 can operate in the same manner as the features of the SLOC-T 31 of Figure 3. however, The SLOC-T 400 can be configured to encode a digital video signal in a manner that facilitates the transfer of digital video signals over a network. For example, the SLOC-T 400 can be programmed or configured to provide digital video signals in accordance with a streaming format supported by an IP video server.

藉由數位相機40傳輸的多工視訊信號可藉由一網路開關44接收,視需要配有SLOC-R 440。可將基頻標準畫質類比信號擷取及提供至顯示器43。在某些具體實施例中,SLOC-R 440可擷取數位高畫質視訊信號及將其轉遞至一視訊伺服器或使用具有足夠頻寬以承載數位HD視訊信號之適合網路的其他網路裝置。數位HD視訊信號可包括一壓縮HD視訊信號。在某些具體實施例中,由SLOC-R 440擷取的數位高畫質信號係壓縮或進一步壓縮用於轉遞至一視訊伺服器或其他網路裝置。SLOC-R 440可包括用於再編碼及/或再調變數位高畫質信號用於在一網路上傳輸之硬體及軟體;例如,SLOC-R 440可產生編碼用於透過乙太網路傳輸的一H-264信號。 The multiplexed video signal transmitted by the digital camera 40 can be received by a network switch 44, optionally with a SLOC-R 440. The fundamental frequency standard image analog signal can be captured and provided to the display 43. In some embodiments, the SLOC-R 440 can capture digital high-definition video signals and forward them to a video server or other network using a suitable network with sufficient bandwidth to carry digital HD video signals. Road device. The digital HD video signal can include a compressed HD video signal. In some embodiments, the digital high quality signal captured by the SLOC-R 440 is compressed or further compressed for transmission to a video server or other network device. The SLOC-R 440 may include hardware and software for re-encoding and/or re-modulating digital high-quality signals for transmission over a network; for example, the SLOC-R 440 may generate encoding for use over an Ethernet network. An H-264 signal transmitted.

現參考第6圖,本發明的某些具體實施例提供可應用於保全系統的提升能力。在所描述實例中,相機60包括一數據機SLOC-T 606及處理器,其經組態及調適以依據本發明的某些態樣提供數位編碼的多媒體信號。影像的序列可使用光學元件600及一影像感測器602之一組合擷取,包括熟習此項技術人士已知之透鏡系統及CCD感測器的組合。處理器604典型地自提供根據一 所需或預定義訊框率擷取的影像序列的一影像感測器602接收一掃描信號603。 Referring now to Figure 6, certain embodiments of the present invention provide for lifting capabilities that can be applied to a security system. In the depicted example, camera 60 includes a data machine SLOC-T 606 and a processor that is configured and adapted to provide digitally encoded multimedia signals in accordance with certain aspects of the present invention. The sequence of images can be combined using one of optical component 600 and an image sensor 602, including combinations of lens systems and CCD sensors known to those skilled in the art. Processor 604 is typically self-provided according to one An image sensor 602 of the desired or predefined frame rate captured image sequence receives a scan signal 603.

在一些具體實施例中,影像感測器602可包括硬體及邏輯以轉換代表由一或多數感測器擷取的影像之一掃描類比信號且可產生一數位視訊信號。例如,影像感測器602可包括RGB(紅色、綠色、藍色)感測器且影像感測器602可內部處理RGB感測器輸出以產生一數位編碼彩色視訊信號作為其輸出603。在其他具體實施例中,處理器604可預處理來自影像感測器602之信號603以獲得一原始數位視訊信號。原始數位視訊(不論是內部獲得或自影像感測器602接收)可由處理器604進一步處理以獲得一初始HD數位視訊信號。一類比標準畫質信號可由處理原始數位視訊信號、感測器602的輸出603或初始HD數位視訊信號來獲得。處理器604接著可將初始HD數位視訊信號格式化以獲得符合廣播及其他標準的一或多數HD數位視訊信號。例如,處理器604可產生符合諸如ATSC及DVB標準之廣播視訊標準的一信號。處理器604可額外地壓縮該數位視訊信號。 In some embodiments, image sensor 602 can include hardware and logic to convert one of the images captured by one or more sensors to scan analog signals and to generate a digital video signal. For example, image sensor 602 can include RGB (red, green, blue) sensors and image sensor 602 can internally process the RGB sensor output to produce a digitally encoded color video signal as its output 603. In other embodiments, processor 604 can preprocess signal 603 from image sensor 602 to obtain an original digital video signal. Raw digital video (whether internally obtained or received from image sensor 602) may be further processed by processor 604 to obtain an initial HD digital video signal. A class of standard picture quality signals can be obtained by processing the raw digital video signal, the output 603 of the sensor 602, or the initial HD digital video signal. Processor 604 can then format the initial HD digital video signal to obtain one or more HD digital video signals in accordance with broadcast and other standards. For example, processor 604 can generate a signal that conforms to broadcast video standards such as the ATSC and DVB standards. Processor 604 can additionally compress the digital video signal.

相機處理器604可包括可商購組件及客製硬體及軟體的一組合。在一實例中,處理器可包括微處理器、數位信號處理器、微控制器、序列器及其他可程式裝置之一或多數,其與記憶體及支援邏輯組合以施行一序列步驟、指令及/或程式。可用儲存器610來儲存電腦可讀指令,其當執行時施行在此申請案中描述的一些或 所有功能。相機處理器604可包括一些內建或「硬編碼」程序,其可用作本發明之某些具體實施例的構造。亦可將儲存器610用作程式暫用記憶體及/或用以保持組態資訊。在某些具體實施例中,儲存器610可用來儲存由相機60擷取的視訊之記錄。因此,儲存器610可使用揮發性及非揮發性記憶體、光碟及磁碟、可移除之電可抹除記憶體、USB記憶體驅動器及其他半導體、電磁及光學儲存裝置實施。 Camera processor 604 can include a combination of commercially available components and custom hardware and software. In one example, the processor can include one or more of a microprocessor, a digital signal processor, a microcontroller, a sequencer, and other programmable devices, in combination with the memory and support logic to perform a sequence of steps, instructions, and / or program. The storage 610 can be used to store computer readable instructions that, when executed, perform some of the operations described in this application or All features. Camera processor 604 may include some built-in or "hard coded" programs that may be used in the construction of certain embodiments of the present invention. The storage 610 can also be used as a program temporary memory and/or to maintain configuration information. In some embodiments, the storage 610 can be used to store a record of the video captured by the camera 60. Thus, the storage 610 can be implemented using volatile and non-volatile memory, optical and magnetic disks, removable electrically erasable memory, USB memory drives, and other semiconductor, electromagnetic, and optical storage devices.

信號605包括由處理器604提供至SLOC-T606的視訊信號及自線62接收由SLOC-T606轉遞至處理器604之上行控制、音訊及其他上行資訊。上行音訊資訊可在音訊中繼至一揚聲器、轉換器或其他音訊輸出系統612前由處理器604解碼、處理及/或格式化。處理器可放大音訊信號或可使用一於音訊輸出組件612中之分離放大器。上行控制可包括光學元件控制601及用於外部裝置之控制信號,其典型係透過控制介面618提供。外部裝置可包括用來平移、旋轉或定向相機60之馬達或致動器。光學元件控制信號601及外部控制信號618可回應於預定義命令由一遠端控制系統產生。例如,遠端使用者可操縱一操縱桿,其產生由相機處理器604解譯以意指「在水平面中順時針方向旋轉相機90度」之一序列編碼指令,且處理器604可藉由將一序列之脈衝傳送給相對於相機60軸向安裝的一步進馬達來回應,使得該序列之脈衝造成相機60繞其垂直軸的所需 旋轉。類似命令可調整光學元件600的焦點、變焦及光圈。 Signal 605 includes video signals provided by processor 604 to SLOC-T 606 and uplink control, audio and other upstream information transmitted from line 62 to processor 604 via line 62. The upstream audio information can be decoded, processed, and/or formatted by the processor 604 before the audio is relayed to a speaker, converter, or other audio output system 612. The processor can amplify the audio signal or can use a separate amplifier in the audio output component 612. Uplink control may include optical component control 601 and control signals for external devices, typically provided through control interface 618. The external device can include a motor or actuator for translating, rotating, or orienting the camera 60. Optical component control signal 601 and external control signal 618 can be generated by a remote control system in response to a predefined command. For example, the remote user can manipulate a joystick that produces a sequence of encoded instructions that are interpreted by camera processor 604 to mean "rotate the camera 90 degrees clockwise in the horizontal plane," and processor 604 can A sequence of pulses is transmitted in response to a stepper motor mounted axially relative to camera 60 such that the sequence of pulses causes the camera 60 to be rotated about its vertical axis. Rotate. Similar commands can adjust the focus, zoom, and aperture of optical component 600.

在另一實例中,可在可用來控制處理器604及/或感測器602之功能的上行控制資訊中提供指令及資料。可用指令及資料來在相機60之視野內選擇一區域中用於在下行視訊信號之一或多數中編碼。在某些具體實施例中,處理器及感測器協作以提供可遠端操縱以指定待編碼之視野的部分之一或多數虛擬相機,藉以該等部分係由在藉相機60的光學元件決定之實際視野內操作之虛擬搖攝、變焦及傾斜功能而選定。在某些具體實施例中,處理器604可額外地造成相機之實體運動,從而延伸搖攝、傾斜及變焦功能的範圍。 In another example, instructions and materials may be provided in uplink control information that may be used to control the functionality of processor 604 and/or sensor 602. Instructions and data may be used to select an area within the field of view of camera 60 for encoding in one or more of the downstream video signals. In some embodiments, the processor and the sensor cooperate to provide one or more virtual cameras that are remotely steerable to specify a field of view to be encoded, whereby the portions are determined by the optical components of the camera 60 It is selected by the virtual pan, zoom and tilt functions of the actual field of view. In some embodiments, processor 604 can additionally cause physical movement of the camera, thereby extending the range of pan, tilt, and zoom functions.

已預想在至少一些具體實施例中,CVBS及數位信號可各承載由影像感測器602擷取的一部分影像。影像部分可重疊或可來自由透鏡600提供的視野內之不同區域。此外,在某些具體實施例中,可使用額外相機60及/或額外影像感測器602來擴展可用的視野。例如,可能需要組態複數相機以獲得一區域的全景(360°)視野。一或多數處理器604可提供代表該視野,或該視野之一部分的類比及數位信號。在一實例中,完整全景視野可在記錄於一DVR上的一數位信號中提供,而CVBS信號可提供全景內之一可選擇視野。可選擇視野可使用變焦、搖攝及其他控制來控制。在另一實例中, CVBS及數位信號可提供全景視野之一共同或不同部分且該等部分可由一遠端檢視者獨立地控制。 It is contemplated that in at least some embodiments, the CVBS and digital signals can each carry a portion of the image captured by image sensor 602. The image portions may overlap or may come from different regions within the field of view provided by lens 600. Moreover, in some embodiments, an additional camera 60 and/or additional image sensor 602 can be used to expand the available field of view. For example, it may be necessary to configure a complex camera to obtain a panoramic (360°) field of view of an area. One or more processors 604 can provide analog and digital signals representative of the field of view, or a portion of the field of view. In one example, the full panoramic field of view can be provided in a digital signal recorded on a DVR, and the CVBS signal can provide a selectable field of view within the panorama. Selectable field of view can be controlled using zoom, pan and other controls. In another example, The CVBS and digital signals can provide a common or different portion of the panoramic view and the portions can be independently controlled by a remote viewer.

第7圖描述使用在一保全數位視訊記錄系統70中之一SLOC-R 700(類似第3圖中描述之SLOC-R 35)的一實例。系統70包含SLOC-R 700,一連接至周邊裝置710、712及714之DVR處理器702,一類比視訊解碼器704,一數位視訊解碼器708及HD數位顯示處理器706。如上述,SLOC-R 700接收及解碼來自coax 72之信號,其典型包含一類比標準畫質視訊信號及一HD數位視訊信號。SLOC-R 700亦透過coax 72傳輸上行音訊及控制信號。SLOC-R典型地將輸入信號72中之類比CVBS信號與HD數位視訊信號分開,提供數位視訊信號703至處理器702且CVBS信號701至一標準畫質監視器74作為一來自第6圖所示相機60之現場饋送。SLOC-R 700可視需要提供類比基頻視訊信號701至類比視訊解碼器704,其處理該信號以產生一數位標準畫質視訊信號705。顯示處理器706在數位標準畫質信號705及自經儲存HD數位視訊之播放導出的一信號707之間多工及/或選擇。顯示處理器可依一可由HD電視或監視器76顯示的格式提供選定信號。 Figure 7 depicts an example of the use of one of the SLOC-R 700 (similar to the SLOC-R 35 described in Figure 3) in a secure digital video recording system 70. System 70 includes a SLOC-R 700, a DVR processor 702 coupled to peripheral devices 710, 712, and 714, an analog video decoder 704, a digital video decoder 708, and an HD digital display processor 706. As described above, the SLOC-R 700 receives and decodes signals from the coax 72, which typically includes an analog image quality video signal and an HD digital video signal. The SLOC-R 700 also transmits upstream audio and control signals via the coax 72. The SLOC-R typically separates the analog CVBS signal from the HD digital video signal in the input signal 72, providing the digital video signal 703 to the processor 702 and the CVBS signal 701 to a standard picture quality monitor 74 as shown in FIG. Live feed of camera 60. The SLOC-R 700 can optionally provide an analog baseband video signal 701 to an analog video decoder 704 that processes the signal to produce a digital standard picture quality video signal 705. Display processor 706 multiplexes and/or selects between digital standard picture quality signal 705 and a signal 707 derived from playback of stored HD digital video. The display processor can provide the selected signal in a format that can be displayed by the HD television or monitor 76.

DVR處理器702接收數位HD視訊信號703及視需要儲存該信號之至少一部分作為由相機60擷取的視訊之一記錄。該記錄可在一本機硬碟機714中、在透過網路介面710及/或USB/Firewire或其他本機匯 流排712連接之網路儲存器(未顯示)上或其他光學、電磁或半導體儲存器中儲存。經記錄視訊可進一步壓縮以節省儲存空間。DVR處理器可擷取經記錄視訊及使用數位視訊解碼器708提供一播放信號707。 The DVR processor 702 receives the digital HD video signal 703 and optionally stores at least a portion of the signal as one of the video captured by the camera 60. The record can be in a local hard drive 714, through the network interface 710 and/or USB/Firewire or other local sink The bank 712 is connected to a network storage (not shown) or stored in other optical, electromagnetic or semiconductor storage. Recorded video can be further compressed to save storage space. The DVR processor can capture the recorded video and provide a playback signal 707 using the digital video decoder 708.

第8圖描述使用在一網路化保全裝置80中之一SLOC-R 800(類似第3圖中描述之SLOC-R 35)的一實例。裝置80包含SLOC-R 800及一網路開關處理器802,其典型由一網路連接至IP視訊伺服器86。如上述,SLOC-R 800接收及解碼來自coax 82之信號,其典型包含一類比標準畫質視訊信號及一HD數位視訊信號。SLOC-R 800視需要透過coax 82傳輸上行音訊及控制信號。SLOC-R典型地將在輸入信號82中之類比CVBS信號與HD數位視訊信號分開,提供數位視訊信號803至處理器802且CVBS信號801至一標準畫質監視器84作為一來自第6圖所示相機60之現場饋送。在某些具體實施例中,SLOC-R 80可包括組件804、806或類似者,以數位化CVBS信號801用於配合一數位顯示器(諸如高畫質顯示器85)使用,亦作為一來自第6圖所示相機60之現場饋送。然而,應理解一適當配備之顯示裝置或計算裝置可接收CVBS信號801及施行信號的數位化。網路開關處理器802接收數位HD視訊信號803及視需要將信號傳輸給一接著可保持由相機60擷取之視訊的一記錄之網路視訊伺服器86。數位HD視訊信號803可在傳輸至視訊伺服器86前進一步壓縮。 Figure 8 depicts an example of the use of one of the SLOC-R 800 (similar to the SLOC-R 35 described in Figure 3) in a networked security device 80. The device 80 includes a SLOC-R 800 and a network switch processor 802, which is typically connected to the IP video server 86 by a network. As described above, the SLOC-R 800 receives and decodes signals from the coax 82, which typically includes an analog image quality video signal and an HD digital video signal. The SLOC-R 800 transmits upstream audio and control signals via coax 82 as needed. The SLOC-R typically separates the analog CVBS signal from the HD digital video signal in the input signal 82, providing the digital video signal 803 to the processor 802 and the CVBS signal 801 to a standard picture quality monitor 84 as a picture from Figure 6. The live feed of the camera 60 is shown. In some embodiments, the SLOC-R 80 can include components 804, 806 or the like to digitize the CVBS signal 801 for use with a digital display, such as the high quality display 85, also as a sixth The picture shows the live feed of the camera 60. However, it should be understood that a suitably equipped display device or computing device can receive the CVBS signal 801 and digitize the execution signal. The network switch processor 802 receives the digital HD video signal 803 and optionally transmits the signal to a network video server 86 that can then maintain a recorded video captured by the camera 60. The digital HD video signal 803 can be further compressed before being transmitted to the video server 86.

再次參考第5及6圖,本發明的某些具體實施例准許視需要選擇基頻類比信號50及下行信號52的內容。在一實例中,基頻信號50與下行信號52兩者含有相同影像,前者依類比形式且後者經數位編碼。數位影像可經壓縮及未壓縮、依標準畫質與高畫質及以全訊框率或減少訊框率而視需要及選擇性地傳輸。在另一實例中,基頻信號50提供由影像感測器擷取之全影像的一部分,而下行信號52承載全影像。在另一實例中,基頻信號50提供由影像感測器提供的全影像,而該下行含有全影像之一部分。因而,預想一種容許數位相機之使用者自各式各樣選項中選擇用於顯示、記錄及傳輸視訊影像之高度可組態系統。 Referring again to Figures 5 and 6, certain embodiments of the present invention permit selection of the contents of the baseband analog signal 50 and the downlink signal 52 as desired. In one example, both the baseband signal 50 and the downstream signal 52 contain the same image, the former being analogous and the latter being digitally encoded. Digital images can be compressed and uncompressed, with standard image quality and high image quality, and transmitted at full frame rate or frame rate as needed and selectively. In another example, the baseband signal 50 provides a portion of the full image captured by the image sensor and the downstream signal 52 carries the full image. In another example, the baseband signal 50 provides a full image provided by the image sensor, and the downstream contains a portion of the full image. Thus, it is envisioned that a user of a digital camera can select a highly configurable system for displaying, recording, and transmitting video images from a wide variety of options.

基頻信號之類比等化Analogous equalization of fundamental frequency signals

本發明的某些具體實施例包括用於改善電纜中之高頻斜坡衰減(roll off)之效應的系統及方法,該效應係當電纜長度增加時造成更多高頻衰減。由電纜導入之此傾斜使基頻類比視訊及通帶數位視訊信號退化,當電纜長度增加時,該退化會惡化。然而,本發明的某些具體實施例提供一等化器(典型在數位接收器中),其移除數位通帶信號上的傾斜,使被傳輸之符元(symbol)能可靠的解碼。 Certain embodiments of the present invention include systems and methods for improving the effects of high frequency ramp roll in cables that cause more high frequency attenuation as the cable length increases. This tilt introduced by the cable degrades the fundamental frequency analog video and passband digital video signals, which deteriorates as the cable length increases. However, some embodiments of the present invention provide an equalizer (typically in a digital receiver) that removes skew on the digital passband signal so that the transmitted symbol can be reliably decoded.

本發明的某些具體實施例改進系統及設備(包括上述系統)之效能,其中基頻視訊信號可與基頻視訊信號的數位表示及與控制信號組合,從而致能透過諸 如一同軸電纜(coax)的單一電纜傳輸。第3及4圖顯示提供一SLOC系統之具體實施例的實例且第5圖顯示SLOC系統之一可能調變方案。採取第3圖之實例,HD相機30提供包含壓縮數位HD視訊332之一輸出,及包含類比標準畫質(SD)CVBS之一輔助相機輸出330。壓縮HD視訊信號332係利用一SLOC相機側數據機31調變至通帶52,數據機31包含提供可與基頻類比CVBS信號330組合之一調變信號的一QAM調變器。經組合信號透過同軸電纜33傳輸下行,典型地達到可延伸至300米或更長距離。在監視器側處,一SLOC監視器側數據機35將代表基頻CVBS信號330之一信號與通帶下行視訊信號332的一信號分離。代表CVBS之信號饋送一SD顯示34用於無延遲現場檢視。高通帶下行信號係用一QAM解調器解調,其輸出饋送一主處理器及DVR32,其支援在監視器34上之現場(雖然可能稍有延遲)HD檢視及非即時HD播放用於後續檢視。 Certain embodiments of the present invention improve the performance of systems and devices, including the above-described systems, wherein the baseband video signal can be combined with a digital representation of the baseband video signal and with a control signal to enable transmission of A single cable such as a coaxial cable (coax). Figures 3 and 4 show examples of specific embodiments that provide a SLOC system and Figure 5 shows one possible modulation scheme for a SLOC system. Taking the example of FIG. 3, the HD camera 30 provides one of the outputs including the compressed digital HD video 332 and one of the analog standard image quality (SD) CVBS auxiliary camera outputs 330. The compressed HD video signal 332 is modulated to a passband 52 by a SLOC camera side modem 31. The modem 31 includes a QAM modulator that provides a modulated signal that can be combined with the baseband analog CVBS signal 330. The combined signal is transmitted downstream through coaxial cable 33, typically up to a distance of 300 meters or more. At the monitor side, a SLOC monitor side modem 35 separates a signal representative of one of the baseband CVBS signals 330 from a signal of the passband down video signal 332. A signal feed representing an CVBS, an SD display 34, is used for no-delay on-site inspection. The Qualcomm downlink signal is demodulated with a QAM demodulator, and its output is fed a main processor and DVR 32, which supports the live view on the monitor 34 (although possibly slightly delayed) HD viewing and non-instant HD playback for subsequent View.

在該實例中,上行通信當需要時係藉由(例如)IP協定提供。上行通信可額外用來自監視器側傳輸音訊及相機控制信號334至相機30。典型地,上行信號之位元率及因此所需頻寬係典型地比下行通帶信號所需者低得多。監視器側SLOC數據機35包括一QAM調變器,其調變IP信號至上行通帶54。如第5圖中所述,上行通帶54及下行通帶52位於不同頻譜位置。在相機側處, SLOC數據機31包括用於接收上行信號之一QAM解調器。此方法提供優於先前系統及方法之若干優點,包括: In this example, upstream communications are provided by, for example, an IP protocol when needed. The upstream communication can additionally transmit audio and camera control signals 334 from the monitor side to camera 30. Typically, the bit rate of the upstream signal and thus the required bandwidth is typically much lower than that required for the downlink passband signal. The monitor side SLOC modem 35 includes a QAM modulator that modulates the IP signal to the upstream passband 54. As described in FIG. 5, the uplink passband 54 and the downlink passband 52 are located at different spectral positions. At the camera side, The SLOC modem 31 includes a QAM demodulator for receiving an upstream signal. This approach provides several advantages over previous systems and methods, including:

(1)增加操作範圍-增加距離。 (1) Increase the operating range - increase the distance.

(2)系統可使用現存基礎結構並再利用同軸電纜佈署。 (2) The system can use the existing infrastructure and deploy it with coaxial cable.

(3)低延遲、即時(現場)視訊之可用性。 (3) Low latency, instant (on-site) video availability.

(4)現場CVBS視訊及HD視訊可在不同位置中檢視。 (4) On-site CVBS video and HD video can be viewed in different locations.

第21圖係顯示第4圖之SLOC相機側數據機49的額外細節之一簡化示意圖。對於HD相機2100之IP連接係透過媒體獨立介面(MII)模組210建立至QAM調變器212及QAM解調器214之介面。在一實例中,MII 210符合IEEE 802.3標準。QAM調變器212使用熟知原理操作以轉換基頻IP資料流2100成為通帶QAM符元2120。此等符元在216與基頻CVBS信號2160相加及接著饋送至雙工器218。雙工器218可為一2向類比裝置,其將經組合基頻及低通帶下行信號2162傳遞至coax及自coax接收之高通帶上行信號2140且將其饋送至QAM解調器214。QAM解調器214典型地使用熟知原理操作以將自監視器側接收的高通帶上行信號2140解調及輸出基頻資料至MII介面210。 Fig. 21 is a simplified schematic diagram showing an additional detail of the SLOC camera side data unit 49 of Fig. 4. The IP connection to the HD camera 2100 is established through the Media Independent Interface (MII) module 210 to the interface of the QAM modulator 212 and the QAM demodulator 214. In one example, the MII 210 is compliant with the IEEE 802.3 standard. The QAM modulator 212 operates using well known principles to convert the baseband IP data stream 2100 into a passband QAM symbol 2120. These symbols are added at 216 to the baseband CVBS signal 2160 and then to the duplexer 218. The duplexer 218 can be a 2-way analog device that passes the combined baseband and low passband downlink signal 2162 to the coax and high-passband uplink signal 2140 received from the coax and feeds it to the QAM demodulator 214. The QAM demodulator 214 typically operates using well known principles to demodulate and output the baseband data received from the monitor side to the MII interface 210.

第22圖係顯示第4圖之SLOC監視器側數據機45的額外細節之一簡化示意圖。雙工器220自一同軸電纜接收下行組合基頻CVBS與低通帶IP信號2200,及藉由低通(LP)及高通(HP)濾波將信號分成組成元件 (component element)2201至2203。可將CVBS信號2201直接傳輸至一標準畫質監視器或其他顯示裝置。可將低通帶信號2202饋送至QAM解調器222,其饋送MII介面模組226。雙工器亦可自QAM調變器224接受一高通帶信號2203及可將此上行信號傳遞至同軸電纜。QAM調變器222典型自可連接至一支援IP協定之主/DVR的MII介面226取得其輸入。 Figure 22 is a simplified schematic diagram showing additional details of the SLOC monitor side modem 45 of Figure 4. The duplexer 220 receives the downlink combined baseband CVBS and the low passband IP signal 2200 from a coaxial cable, and divides the signal into components by low pass (LP) and high pass (HP) filtering. (component element) 2201 to 2203. The CVBS signal 2201 can be transmitted directly to a standard picture quality monitor or other display device. The low pass band signal 2202 can be fed to a QAM demodulator 222 that feeds the MII interface module 226. The duplexer can also receive a high passband signal 2203 from the QAM modulator 224 and can pass this upstream signal to the coaxial cable. The QAM modulator 222 typically takes its input from the MII interface 226 that can be connected to a master/DVR supporting the IP protocol.

同軸電纜典型會顯現一明顯高頻斜坡衰減特性,其當電纜長度增加時造成更多高頻衰減。此「傾斜」在一通帶信號之頻帶內可能明顯且其可產生相當大間干擾(ISI)。可能需求數位等化以致使QAM解調器222能正確地恢復傳輸資料。 Coaxial cables typically exhibit a significant high frequency ramp attenuation characteristic that causes more high frequency attenuation as the cable length increases. This "tilt" may be significant in the band of the passband signal and it can cause considerable inter-interference (ISI). The digitization of the digits may be required to cause the QAM demodulator 222 to properly recover the transmitted data.

基頻至通帶調變Base frequency to passband modulation

第23圖更詳細顯示相機側基頻至通帶QAM調變器212(第21圖)。來自MII 210之資料係藉由FEC編碼器/映射器2300接收,其使用(例如)級聯之Reed-Solomon編碼、位元組交錯及/或籬柵編碼將誤差保護資料加至自MII 210接收的資料流中。映射器/編碼器2300將資料解多工成為流2300及2302,其中各資料流之位元組的一給定大小群組分別代表在實及虛方向中之一QAM振幅位準。一隔離傳輸QAM脈衝係給定為: 其中d R,m d I.m 係藉由兩獨立訊息流決定且分別代表一複數QAM之實及虛部,其中m=1…M指示基數之一2維QAM群集,其中M係調變載波頻率,且q(t)係一根昇餘弦脈衝函數。 Figure 23 shows the camera side fundamental frequency to passband QAM modulator 212 in more detail (Fig. 21). The data from the MII 210 is received by the FEC encoder/mapper 2300, which adds error protection data to the MII 210 using, for example, cascading Reed-Solomon coding, byte interleaving, and/or fence coding. In the data stream. The mapper/encoder 2300 demultiplexes the data into streams 2300 and 2302, wherein a given size group of the bytes of each data stream represents one of the QAM amplitude levels in the real and imaginary directions, respectively. An isolated transmission QAM pulse is given as: Where d R , m and d I . m are determined by two independent message flows and respectively represent the real and imaginary parts of a complex QAM, where m =1... M indicates one of the base two-dimensional QAM clusters, where M- modulation Carrier frequency, and q (t) is a raised cosine pulse function.

一連續串列之傳輸QAM脈衝s(t)以F S =1/T S 之一速率穿過一吵雜多路徑通道。因此,在至QAM接收器之輸入處接收的信號係藉由r(t)=s(t)*c(t)+v(t)給定,其中*指示迴旋,c(t)係通道脈衝響應,且v(t)係相加性白高斯雜訊。因此: 其中d[n]係複數傳輸,f 0 θ 0 分別係相關於傳輸器之接收器通帶至基頻解調器本機振盪器的相位及頻率偏移,使得f LO =f c -f 0 A continuous serial transmission of QAM pulse s (t) to F S = 1 / T through a noisy rate S one multi-path channel. Therefore, the signal received at the input to the QAM receiver is given by r ( t )= s ( t )* c ( t )+ v ( t ), where * indicates the convolution, c ( t ) is the channel pulse Response, and v ( t ) is additive white Gaussian noise. therefore: Where d [ n ] is a complex transmission, and f 0 and θ 0 are phase and frequency offsets respectively associated with the receiver passband of the transmitter to the local oscillator demodulator local oscillator such that f LO = f c -f 0 .

基頻至通帶解調器Baseband to passband demodulator

第24A圖更詳細顯示監視器側通帶至基頻QAM解調器222(第22圖)。一信號r(t)可自一同軸電纜接收,例如係以比該率更高之一速率取樣(參見240),導致取樣信號r(nT samp )。取樣後: 接著,在向下轉換後,依率1/T s 再取樣及匹配濾波獲得: 其中v’[k]係取樣複數濾波雜訊,因為脈衝成型與匹配濾波q與完美率取樣時序組合,故假設任何ISI係僅由於通道脈衝響應cFigure 24A shows the monitor side passband to the baseband QAM demodulator 222 in more detail (Fig. 22). A signal r (t) may be received from a coaxial cable, for example, one of the line rate higher than the sampling rate (see 240), resulting in sampled signal r (nT samp). After sampling: Then, after down-conversion, re-sampling and matching filtering according to rate 1/ T s is obtained: Where v' [ k ] is a sampling complex filtering noise, since the pulse shaping and matching filtering q is combined with the perfect rate sampling timing, it is assumed that any ISI is only due to the channel impulse response c .

等化器及載波相位/頻率迴路Equalizer and carrier phase/frequency loop

第24A圖之數位等化器及載波相位/頻率迴路係參考第25圖更詳細討論。一信號x[k]進入一適應性數位等化器250,其可包括用來補償起因於通道脈衝響應c之傾斜的一線性數位濾波器。階權重調整可使用一或多數已知方法達到,包括LMS演算法。等化器將其輸出y[k]與一相位旋轉版本之二維(2D)分割器決定[k],比較以產生一誤差信號,用來計算濾波器階權重的一更新組。LMS演算法可操作如下:若x[k]表示一N長等化器輸入向量,及y[k]表示等化器輸出向量g H [k]x[k],其中g H [k]係N長等化器階權重向量且H上標指示共軛移項(Hermitian)。 The digital equalizer and carrier phase/frequency loop of Figure 24A are discussed in more detail with reference to Figure 25. A signal x [ k ] enters an adaptive digital equalizer 250, which may include a linear digital filter for compensating for the tilt resulting from the channel impulse response c. The order weight adjustment can be achieved using one or more known methods, including the LMS algorithm. The equalizer determines its output y [ k ] and a phase-rotated version of the two-dimensional (2D) splitter. [ k ], compare to generate an error signal, used to calculate an updated set of filter order weights. The LMS algorithm can operate as follows: if x [ k ] represents an N long equalizer input vector, and y [ k ] represents an equalizer output vector g H [ k ] x [ k ], where g H [ k ] The N long equalizer step weight vector and the H superscript indicate a conjugate shift term (Hermitian).

g[k+1]=g[k]-2μx[k]e *[k],其中μ係一小段差大小參數且*上標指示複數共軛。為了移除通帶電纜傾斜的影響,在收斂後LMS等化器階可近似通道脈衝響應c之反轉。 g [ k +1]= g [ k ]-2 μx [ k ] e * [ k ], where μ is a small step size parameter and * superscript indicates complex conjugate. In order to remove the effects of the slope of the passband cable, the LMS equalizer order can approximate the inversion of the channel impulse response c after convergence.

一2D分割器252將z[k]及輸出[k](其係初始傳輸之d[k]的一估計)的實及虛部獨立地分割。相位誤差偵測器模組258接收z[k]及[k]且形成相位誤差信號 。低通(LP)濾波器256可為一積分比例濾波 器,其容許該迴路校正相位及頻率偏移兩者。低通濾波器256的輸出饋送一複數離散電壓控制振盪器(VCO)254,其輸出一針對及θ 0f 0兩者校正的一複雜相位/頻率校正因子e -jθ[k]。VCO 254亦提供「未校正」分割器輸出[k]之一輸出(e +jθ[k]),使得可其可用來導出一用於等化器階更新的誤差信號。此典型需要係因為等化器在x[k]上操作。亦參考第24A圖,等化器輸出z[k]係饋送至轉換偵測到實及虛位準成為位元之群組的一解映射器。FEC解碼器接著執行Viterbi解碼,位元組解交錯,及/或Reed-Solomon解碼以校正接收到位元誤差及將所得資料傳遞至MII介面。 A 2D splitter 252 will z [ k ] and output The real and imaginary parts of [ k ] (which is an estimate of the initial transmission d [ k ]) are independently partitioned. Phase error detector module 258 receives z [ k ] and [ k ] and form a phase error signal . Low pass (LP) filter 256 can be an integral proportional filter that allows the loop to correct both phase and frequency offsets. The output of low pass filter 256 feeds a complex discrete voltage controlled oscillator (VCO) 254 which outputs a complex phase/frequency correction factor e -j θ [k] corrected for both θ 0 and f 0 . VCO 254 also provides "uncorrected" splitter output One of [ k ] outputs ( e + j θ [k] ) such that it can be used to derive an error signal for the equalizer order update. This typical requirement is because the equalizer operates on x [ k ]. Referring also to Figure 24A, the equalizer output z [ k ] is fed to a demapper that detects that the real and virtual levels are a group of bits. The FEC decoder then performs Viterbi decoding, byte deinterleaving, and/or Reed-Solomon decoding to correct the received bit error and pass the resulting data to the MII interface.

電纜長度的影響Cable length

接收到視訊信號可經歷衰減成為可歸因於電纜之某些特性的頻率的一函數。為了此討論目的,係描述一同軸電纜的實例。衰減(經常將其稱作傾斜)的嚴重性典型地取決於電纜類型及長度。第26A及26B圖顯示衰減成為針對電纜類型RG6及RG59之各種長度的頻率的一函數。其可顯示該傾斜相當於多路徑失真,其中額外路徑及主路徑具有一極小延遲展開。隨著傾斜增加,非不重要多路徑組件的數目(及其各自之增益)亦增加。多路徑失真造成接收信號中的ISI且因此可能使傳輸可靠性嚴重地降級。在一數位信號中,可將一等化器用於接收器以移除此損害。第27A及27B圖分別顯示等化器 輸入之功率頻譜密度(PSD)及收歛等化器階之振幅響應。明確言之,第27A圖顯示在透過2000英尺RG-6電纜傳輸後等化器輸入的PSD,其具有15.98MHz之一載波頻率(顯示通帶及相關基頻頻率兩者)且第27B圖顯示收歛數位等化器階之振幅響應。 The received video signal can undergo attenuation as a function of the frequency attributable to certain characteristics of the cable. For the purposes of this discussion, an example of a coaxial cable is described. The severity of the attenuation, often referred to as tilt, typically depends on the cable type and length. Figures 26A and 26B show attenuation as a function of frequencies for various lengths of cable types RG6 and RG59. It can show that the tilt is equivalent to multipath distortion, where the extra path and the main path have a very small delay spread. As the tilt increases, the number of non-important multipath components (and their respective gains) also increases. Multipath distortion causes ISI in the received signal and thus can severely degrade transmission reliability. In a digital signal, an equalizer can be used for the receiver to remove this impairment. Figures 27A and 27B show equalizers, respectively The input power spectral density (PSD) and the amplitude response of the convergence equalizer stage. Specifically, Figure 27A shows the PSD input by the equalizer after transmission through a 2000 ft RG-6 cable with a carrier frequency of 15.98 MHz (both display passband and associated fundamental frequency) and Figure 27B shows Convergence amplitude response of the digitizer equalizer order.

本發明的某些具體實施例包含一數位等化器,其可取消由電纜引入的傾斜,移除通帶信號中的ISI且致能可靠解碼傳輸資料。隨著電纜長度增加,監視器側之數位通帶信號可使用用於數位資料之數位等化器及著名向前誤差保護方法(如Reed-Solomon解碼及籬柵編碼)來可靠地接收。然而,電纜傾斜亦負面地影響基頻類比CVBS信號的高頻率,其當在監視器側檢視時減少圖像鮮明度及彩度。因此,某些具體實施例提供一可調適濾波器(例如一類比等化器),其可應用於監視器側處之CVBS信號以補償在基頻處之電纜傾斜。某些具體實施例利用通帶數位等化器以估計基頻處之傾斜量為接著選擇一組基頻類比濾波器之一適當者以應用於接收到CVBS信號。 Some embodiments of the present invention include a digital equalizer that cancels the tilt introduced by the cable, removes the ISI in the passband signal and enables reliable decoding of the transmitted data. As the cable length increases, the digital passband signal on the monitor side can be reliably received using digital equalizers for digital data and well-known forward error protection methods such as Reed-Solomon decoding and fence coding. However, cable tilt also negatively affects the high frequency of the fundamental frequency analog CVBS signal, which reduces image sharpness and chroma when viewed on the monitor side. Accordingly, some embodiments provide an adaptable filter (e.g., an analog equalizer) that can be applied to the CVBS signal at the monitor side to compensate for cable tilt at the fundamental frequency. Some embodiments utilize a passband digital equalizer to estimate the amount of tilt at the fundamental frequency to then select one of a set of fundamental frequency analog filters to apply to receive the CVBS signal.

通帶傾斜之有效率估計Effective estimation of passband tilt

在估計信號帶中的傾斜時,可選擇一頻率帶,其中當以分貝量化時,輸入信號之PSD中的傾斜將大約線性。因此,基頻數位等化器輸入中-2.67MHz至2.67MHz的頻率(其將因此對應於通帶輸入信號中的13.31MHz及18.65MHz)提供一適合範圍。如第26A 圖中顯示,自13.31MHz至18.65MHz之傾斜對於2000英尺之RG-6係大約3.7分貝。為了以分貝自收歛數位等化器濾波器階估計傾斜,可施行以下計算: 其中G[k]係時域收歛等化器濾波器階之DFT,且k 1k 2對應於DFT之特定頻段。因為第25圖之數位等化可用一時域迴旋來施行,為了估計一給定k 1k 2之傾斜的目的,典型地需要一FFT(或可能用於兩點的N複數乘法及加法)。即 其中g(n)=g R (n)+ig I (n),n=0,1...N-1係N時域等化器階(省略時間索引上的相依)。應注意1/N純量在此計算中非必要。一類似計算將會針對G(k 2)施行。然而,該計算可藉由仔細選擇頻段而明顯地減少。藉由使k 1=N/4(對應於2.67MHz的一頻率),方程式(2)中的複數指數急劇簡化: 可使用加法計算濾波器頻率響應的實及虛部: In estimating the tilt in the signal band, a frequency band can be selected, wherein when quantized in decibels, the tilt in the PSD of the input signal will be approximately linear. Therefore, the frequency of the baseband digital equalizer input - 2.67 MHz to 2.67 MHz (which will therefore correspond to 13.31 MHz and 18.65 MHz in the passband input signal) provides a suitable range. As shown in Figure 26A, the tilt from 13.31 MHz to 18.65 MHz is approximately 3.7 dB for the 2000 foot RG-6 system. In order to estimate the tilt in decibel self-converging digital equalizer filter order, the following calculations can be performed: Where G [ k ] is the time domain convergence equalizer DFT of the filter stage, and k 1 and k 2 correspond to the specific frequency band of the DFT. FIG 25 because the first digit of the available time domain equalization to swirl purposes, to estimate a given object k 1 and k 2 of inclined, typically requires a FFT (or N complex multiplication and addition may be used for two points). which is Where g ( n )= g R ( n )+ ig I ( n ), n =0,1... N -1 is the N time domain equalizer order (the dependence on the time index is omitted). It should be noted that the 1/ N scalar quantity is not necessary in this calculation. A similar calculation will be performed for G ( k 2 ). However, this calculation can be significantly reduced by careful selection of the frequency band. By making k 1 = N /4 (corresponding to a frequency of 2.67 MHz), the complex exponential in equation (2) is dramatically simplified: You can use addition to calculate the real and imaginary parts of the filter's frequency response:

最後,在此頻段處之功率係: 藉由容許k 1=N/4,功率計算係明顯地簡化。同樣地,若k 1=3N/4(對應於-2.67MHz之一頻率),則複數指數將再次明顯地簡化。 Finally, the power at this band is: By allowing k 1 = N / 4, the power calculation system is significantly simplified. Similarly, if k 1 = 3 N /4 (corresponding to one of the frequencies of -2.67 MHz), the complex index will again be significantly simplified.

實及虛部係計算為: The real and imaginary departments are calculated as:

且功率|G[k 1]|2係計算如上。在第2b圖中,收斂濾波器階之振幅響應(依分貝)中的向上傾斜即使具有針對一64-QAM之適度SNR亦係大約線性。此外,當以此方式計算時,,其在3.7dB的此帶上極接近實際傾斜。 And the power | G [ k 1 ]| 2 is calculated as above. In Figure 2b, the upward tilt in the amplitude response (in decibels) of the convergence filter stage is approximately linear even with a moderate SNR for a 64-QAM. Also, when calculated in this way, It is very close to the actual tilt on this band of 3.7dB.

使用通帶傾斜估計用於基頻CVBS傾斜校正Use passband tilt estimation for fundamental frequency CVBS tilt correction

在估計數位視訊信號之通帶傾斜後,可自M不同濾波器之一選擇一適當基頻類比濾波器。其此可顯示數位視訊信號帶之估計通帶傾斜將指示基頻CVBS信號中傾斜的嚴重性,接著可用一類比濾波器大略地校正。在第28A圖中,顯示用於RG-6、RG-11、RG-59及RG-174之自13.31MHz至18.65MHz之數位視訊信號帶中的傾斜且該等電纜之可能長度。第28A圖顯示3.58MHz處的損失相對於RG-6、RG-11、RG-59及 RG-174電纜類型之通帶數位視訊信號中的傾斜。第28B圖顯示6MHz處之損失。可觀察到3.58MHz及6MHz處的損失對於一給定傾斜之所有四種電纜類型係大略相同。第29A圖顯示3.58MHz處相對於RG-6、RG-11、RG-59及RG-174電纜類型之通帶數位視訊信號中的傾斜的損失。第29B圖顯示6MHz處之損失。將會可觀察到3.58MHz及6MHz處的損失對於一給定傾斜之所有四種電纜類型係大略相同。 After estimating the passband tilt of the digital video signal, an appropriate fundamental frequency analog filter can be selected from one of the M different filters. This can indicate that the estimated passband tilt of the digital video signal band will indicate the severity of the tilt in the baseband CVBS signal, which can then be roughly corrected with a analog filter. In Figure 28A, the tilts in the digital video signal strips from 13.31 MHz to 18.65 MHz for RG-6, RG-11, RG-59, and RG-174 are shown and the possible lengths of the cables are shown. Figure 28A shows the loss at 3.58 MHz versus the tilt in the passband digital video signal for the RG-6, RG-11, RG-59, and RG-174 cable types. Figure 28B shows the loss at 6 MHz. It can be observed that the losses at 3.58 MHz and 6 MHz are roughly the same for all four cable types for a given tilt. Figure 29A shows the loss of tilt in the passband digital video signal at 3.58 MHz relative to the RG-6, RG-11, RG-59, and RG-174 cable types. Figure 29B shows the loss at 6 MHz. It will be observed that losses at 3.58 MHz and 6 MHz are roughly the same for all four cable types for a given tilt.

因為估計通帶傾斜係有關電纜頻率響應的唯一可用資訊,故理想情形係其中在基頻(CVBS信號帶)之電纜的頻率響應以已知方式與通帶數位信號的傾斜相關聯,而不論電纜類型或長度如何。第28B、29A及29B圖確認在DC、3.58MHz及6MHz處之頻率響應中的此情況。例如,分別針對所有四電纜,在通帶數位視訊信號中之1.5分貝的一傾斜處,DC處的損失、彩色載波處的損失(3.58MHz),及6MHz處的損失係約0.68分貝、4.1分貝及5.3分貝。因此,不論1.5分貝的通帶傾斜是否自275英尺之RG-174、750英尺之RG-59、825英尺之RG-6或1825英尺之RG-11所造成,相同的類比濾波器將會取消CVBS信號之基頻傾斜。 Since the estimated passband tilt is the only available information about the cable frequency response, the ideal situation is where the frequency response of the cable at the fundamental frequency (CVBS signal band) is associated with the tilt of the passband digital signal in a known manner, regardless of the cable. Type or length. Figures 28B, 29A, and 29B confirm this in the frequency response at DC, 3.58 MHz, and 6 MHz. For example, for all four cables, at a slope of 1.5 decibels in the passband digital video signal, the loss at DC, the loss at the color carrier (3.58 MHz), and the loss at 6 MHz are about 0.68 dB, 4.1 dB. And 5.3 decibels. Therefore, whether the 1.5 dB passband tilt is caused by 275-foot RG-174, 750-foot RG-59, 825-foot RG-6, or 1825-foot RG-11, the same analog filter will cancel CVBS The fundamental frequency of the signal is tilted.

用於自一組M濾波器選擇一適當類比濾波器之演算法的一實例顯示如下: An example of an algorithm for selecting an appropriate analog filter from a set of M filters is shown below:

應注意α 0=1;α n的其他值係<1及經選定以致位元偏移加法係足以計算R n。因此,第24A圖之監視器側QAM解調器係典型地修改使得通帶QAM解調器之數位等化器提供選擇M類比CVBS濾波響應之一的一信號。第24B圖顯示監視器側QAM解調器之修改部分,其中類比濾波器選擇來自根據上述演算法運算之數位等化器的輸出。第30圖顯示整個監視器側數據機,其中在QAM解調器304內之一數位等化器提供一濾波器選擇信號305至CVBS類比等化器302。 It should be noted that α 0 =1; other values of α n are <1 and are selected such that the bit offset addition is sufficient to calculate R n . Thus, the monitor side QAM demodulator of Figure 24A is typically modified such that the digital equalizer of the passband QAM demodulator provides a signal that selects one of the M-class CVBS filtered responses. Figure 24B shows a modified portion of the monitor side QAM demodulator, wherein the analog filter selects the output from the digital equalizer that operates according to the algorithm described above. Figure 30 shows the entire monitor side data machine in which a digital equalizer in QAM demodulator 304 provides a filter select signal 305 to CVBS analog equalizer 302.

第31圖顯示適用於等化基頻CVBS信號之一類比主動濾波器的一實例。在此實例中,M=3,因此有4個可能濾波選擇。所需濾波器響應係由在開關模組310中關閉M+1開關之一來選擇,其繼而將連接至其之各自RC對接地。第32圖中顯示可能濾波器響應。 Figure 31 shows an example of an analog active filter suitable for equalizing the fundamental frequency CVBS signal. In this example, M = 3, so there are 4 possible filtering choices. The desired filter response is selected by turning off one of the M +1 switches in switch module 310, which in turn connects the respective RC pair connected thereto to ground. The possible filter response is shown in Figure 32.

熟習此項技術人士將瞭解可將本發明應用於使用其他通帶調變及向前誤差校正方法的數位通信系統。熟習此項技術人士亦將認知到可使用通帶數位等化器階權重向量g[n]之FFT中多於二點來選擇一類比濾波器用於CVBS信號,及可使用其他類型之數位等化器設計用於通帶信號,包括頻域等化器,其中G 1[k]及 G 2[k]之值將已經計算作為等化程序的部分。另外,可使用除了LMS以外的習知等化器階權重計算方法,諸如RLS。 Those skilled in the art will appreciate that the present invention can be applied to digital communication systems that use other passband modulation and forward error correction methods. Those skilled in the art will also recognize that more than two points in the FFT of the passband digital equalizer order weight vector g [ n ] can be used to select an analog filter for the CVBS signal, and other types of digitization can be used. The device is designed for passband signals, including frequency domain equalizers, where the values of G 1 [ k ] and G 2 [ k ] will have been calculated as part of the equalization procedure. In addition, conventional equalizer order weight calculation methods other than LMS, such as RLS, may be used.

在某些具體實施例中,具有可選擇響應之一CVBS類比濾波器可採取上述以外的一形式。另外,CVBS信號的等化器可採取一數位濾波器的形式,在該情況下,CVBS於等化前取樣及數位化。在此情況下,數位濾波器之階權重係根據經描述以選擇M類比濾波器響應之一的相同演算法自一組預定M階權重向量中選擇。 In some embodiments, a CVBS analog filter having a selectable response can take a form other than the above. In addition, the equalizer of the CVBS signal can take the form of a digital filter, in which case the CVBS is sampled and digitized prior to equalization. In this case, the number of bits of a weight-based weighting filters according to the order described by the same algorithm to select one of the M analog filter response selected from a predetermined set of weighting vector M in the right order.

在數位通信系統中分框Partitioning in a digital communication system

數位資料流典型地具有某種框結構使得資料被組織成為位元或位元組的均一大小之群組。使用以區塊為主之向前誤差校正(FEC)的任何系統將具有組織成約誤差校正碼字元大小的訊框。另外,若系統用交錯來對抗脈衝雜訊,訊框結構將會考慮交錯器參數來配置。若系統用資料隨機化來達到一平頻譜,則所用之偽隨機序列可同步化至訊框結構,在各訊框的開始處重新開始。 Digital data streams typically have some sort of box structure such that the data is organized into groups of uniform sizes of bits or bytes. Any system that uses block-based forward error correction (FEC) will have frames organized into approximately error correction codeword sizes. In addition, if the system uses interleaving to combat pulse noise, the frame structure will be configured in consideration of interleaver parameters. If the system uses data randomization to achieve a flat spectrum, the pseudo-random sequence used can be synchronized to the frame structure and restarted at the beginning of each frame.

對於一RF數位通信系統,一接收器典型地必須首先達到載波及時脈同步及等化。其可接著恢復該傳輸資料。但為了瞭解此進入資料流,接收器亦必須同步至該訊框結構。換句話說,接收器必須知道誤差校正碼字元在何處開始及結束。其亦必須能同步化諸如解交錯器之接收器模組以匹配傳輸器之交錯器操作,使得所得 之解交錯位元或及位元組正確地定序,且解隨機產生器用以匹配傳輸器中所用之偽隨機序列的起點而使頻譜平坦化。 For an RF digital communication system, a receiver typically must first achieve carrier-to-synchronization and equalization. It can then recover the transmission data. However, in order to understand this incoming data stream, the receiver must also synchronize to the frame structure. In other words, the receiver must know where the error correction code character begins and ends. It must also be able to synchronize the receiver module such as the deinterleaver to match the interleaver operation of the transmitter, resulting in The de-interleaved bits or bits are correctly sequenced, and the de-random generator is used to match the start of the pseudo-random sequence used in the transmitter to flatten the spectrum.

習知系統經常藉由在訊框之開始或結束處附加一固定長度的符元之已知模式來提供接收器訊框同步化。每一訊框重複此相同模式,且其經常由具有有利之自相關性質的一二位準(即二進位)偽隨機序列組成。此意味著儘管該序列與其本身之自相關在零偏移處獲得一大值,若偏移係非零,則相關值(旁瓣,side lobe)係極小。另外,具有隨機符元之此訊框同步序列的相關將獲得一小值。因此,若接收器執行進入符元與訊框同步模式之一儲存版本的一相關,其應該期望僅在各訊框的確切開始處獲得一大值。接著接收器可易於決定各訊框的起點。 Conventional systems often provide receiver frame synchronization by appending a known pattern of fixed length symbols at the beginning or end of the frame. Each frame repeats this same pattern, and it often consists of a two-level (ie, binary) pseudo-random sequence with advantageous autocorrelation properties. This means that although the sequence has a large value at zero offset from its own autocorrelation, if the offset is non-zero, the correlation value (side lobe) is extremely small. In addition, the correlation of this frame synchronization sequence with random symbols will result in a small value. Therefore, if the receiver performs a correlation between the entry symbol and the stored version of one of the frame sync modes, it should expect to obtain a large value only at the exact beginning of each frame. The receiver can then easily determine the starting point of each frame.

訊框結構的實例Instance of the frame structure

參考第9圖,在1996年採用的ATSC數位電視(DTV)地面傳輸標準提供資料在訊框中傳輸的一系統。各訊框90包含313片段,且各片段含有832個符元,每一訊框總共260416個符元。各片段中的首先四符元係包含序列[+5,-5,-5,+5]之片段同步符元92。各訊框中的第一片段係一具有312資料片段96、98之訊框同步片段94。現參考第10圖,訊框同步片段94具有一片段同步100,一511符元偽隨機雜訊(PN511)序列101,一63符元偽隨機雜訊(PN63)序列102,一第二PN63序 列203及一第三PN63序列104。此係由指示模態係8VSB的24模態符元105跟隨。預編碼符元107及保留符元106完成訊框同步片段94。片段同步100及PN511 101符元對於接收器係事前已知及可用來經由相關方法獲取訊框同步化。所有前述符元來自集合{+5,-5}。此片段的最後12個符元來自集合{-7-5-3-1+1+3+5+7},且係前置資料欄位之最後12個符元的複製。此等係稱為預編碼符元(在此內未討論)。 Referring to Figure 9, the ATSC Digital Television (DTV) terrestrial transmission standard adopted in 1996 provides a system for transmitting data in a frame. Each frame 90 contains 313 segments, and each segment contains 832 symbols, with a total of 260,416 symbols per frame. The first four symbols in each segment contain a segment sync symbol 92 of the sequence [+5, -5, -5, +5]. The first segment of each frame is a frame sync segment 94 having 312 data segments 96,98. Referring now to Figure 10, the frame sync segment 94 has a segment sync 100, a 511 symbol pseudo random noise (PN511) sequence 101, a 63 symbol pseudo random noise (PN63) sequence 102, and a second PN 63 sequence. Column 203 and a third PN63 sequence 104. This is followed by a 24-modal symbol 105 indicating the modal system 8VSB. The pre-encoded symbol 107 and the reserved symbol 106 complete the frame sync segment 94. The segment sync 100 and PN511 101 symbols are known to the receiver in advance and can be used to obtain frame synchronization via the associated method. All of the preceding symbols come from the set {+5,-5}. The last 12 symbols of this fragment are from the set {-7-5-3-1+1+3+5+7} and are the copy of the last 12 symbols of the pre-data field. These are referred to as pre-encoded symbols (not discussed here).

亦參考第11圖,對於該欄位之後續312片段的各者(稱作資料片段),跟隨四片段同步符元30的828符元32係藉由一次採取2位元而自一單一207位元組(1656位元)Reed-Solomon(RS)碼字元產生,將其籬柵編碼成為3位元,接著將3位元的各單元映射至來自該集合{-7-5-3-1+1+3+5+7}之一8位準符元。 Referring also to FIG. 11, for each of the subsequent 312 segments of the field (referred to as a data segment), the 828 symbol 32 following the four segment sync symbol 30 is from a single 207 bit by taking 2 bits at a time. A tuple (1656 bits) Reed-Solomon (RS) code character is generated, which encodes its fence into 3 bits, and then maps each unit of 3 bits from the set {-7-5-3-1 One of the +1+3+5+7} 8-bit quasi-symbols.

在ISDB-T的系統中見到在一數位通信系統中分框的另一實例。與單一載波ATSC系統不同,ISDB-T係利用編碼正交分頻多工處理(COFDM)的一多載波系統。例如,ISDB-T之模態1使用1404載波。一訊框由204 COFDM符元組成且可認為各COFDM符元係1404獨立QAM符元的組合,載波之各者使用一者。因此,訊框係由204x1404=286416 QAM符元的組合組成。此等中,254592係資料,且31824包含先導資訊(其可用於訊框同步化)及模態資訊,其係依一已知模式散布該訊框。 Another example of framing in a digital communication system is seen in the ISDB-T system. Unlike single-carrier ATSC systems, ISDB-T utilizes a multi-carrier system that encodes orthogonal frequency division multiplexing (COFDM). For example, Mode 1 of ISDB-T uses a 1404 carrier. The frame consists of 204 COFDM symbols and can be considered to be a combination of COFDM symbols 1404 independent QAM symbols, one for each carrier. Therefore, the frame consists of a combination of 204x1404=286416 QAM symbols. In this case, 254592 is the data, and 31824 contains the preamble information (which can be used for frame synchronization) and modal information, which spreads the frame in a known pattern.

第12圖顯示此訊框配置的一簡化圖。可見到圖及模態資訊依一已知模式散布訊框中。此系統具有利用三不同QAM群集-QPSK、16QAM及64QAM之模態。其亦支援基於一單一刪餘(punctured)母碼之五不同籬柵編碼率(1/2,2/3,3/4,5/6,7/8)。此著名技術使其極經濟地在接收器中建構一單一Viterbi解碼器,其可易於調整以解碼所有五個特定碼。 Figure 12 shows a simplified diagram of this frame configuration. It can be seen that the map and modal information are scattered in the frame according to a known pattern. This system has a modality that utilizes three different QAM clusters - QPSK, 16QAM and 64QAM. It also supports five different fence coding rates (1/2, 2/3, 3/4, 5/6, 7/8) based on a single punctured mother code. This well-known technology makes it extremely economical to construct a single Viterbi decoder in the receiver that can be easily adjusted to decode all five specific codes.

於傳輸器處籬柵編碼前,資料係形成為204位元組(1632位元)長RS區塊。當每一訊框COFDM符元的數目始終恆定時,每一訊框RS區塊的數目隨著選擇模態變化,但最重要的是,該數目始終係一整數。一旦訊框同步已經建立且籬柵碼率已知,此容許接收器中容易使RS區塊同步。為了使此為真,籬柵編碼之前的每一訊框的資料位元數目必須可針對所有模式由1632恰好整除。 Before the gate is encoded at the transmitter, the data is formed into a 204-byte (1632-bit) long RS block. When the number of COFDM symbols per frame is always constant, the number of RS blocks per frame varies with the selection modality, but most importantly, the number is always an integer. Once the frame synchronization has been established and the fence rate is known, this allows the RS block to be easily synchronized in the receiver. In order for this to be true, the number of data bits per frame before the fence encoding must be exactly divisible by 1632 for all modes.

表1顯示針對所有模態(QAM群集及籬柵碼率的組合)每一訊框之資料位元的數目。在每一情況中每一訊框之資料位元數目係由1632恰好整除(資料位元意指籬柵編碼前的位元)。 Table 1 shows the number of data bits per frame for all modalities (a combination of QAM cluster and fence rate). In each case, the number of data bits per frame is exactly divisible by 1632 (the data bit means the bit before the fence encoding).

本發明之某些具體實施例提供數位通信系統中所用之調變系統的一分框結構。尤其是,發信號系統及方法係提供可用於保全系統(包括上述者)。一迴旋位元組交錯器將資料的一訊框交錯,其中交錯器同步化至一訊框結構且一隨機產生器可組態以自交錯資料訊框產生一隨機化資料訊框。在一實例中,一刪餘籬柵碼調變器係在一可選擇碼率處操作以自隨機化資料訊框產生一籬柵編碼資料訊框。一QAM映射器將在籬柵編碼資料訊框中之成群組的位元映射至調變符元,從而提供一映射訊框且一同步器將一同步封包加至映射訊框。視需要可使刪餘籬柵碼調變器繞行以在各種白雜訊條件下獲得一最佳化淨位元率,從而允許系統的效能最佳化。 Certain embodiments of the present invention provide a sub-frame structure for a modulation system used in a digital communication system. In particular, signaling systems and methods are provided for use in security systems (including those described above). A whirling byte interleaver interleaves the frames of the data, wherein the interleaver is synchronized to a frame structure and a random generator is configurable to generate a randomized data frame from the interleaved data frame. In one example, a punctured fence code modulator operates at a selectable code rate to generate a fence-encoded data frame from the randomized data frame. A QAM mapper maps the grouped bits in the fence-encoded data frame to the modulation symbols to provide a mapping frame and a synchronizer adds a synchronization packet to the mapping frame. The punctured fence code modulator can be bypassed as needed to achieve an optimized net bit rate under various white noise conditions, thereby allowing system performance to be optimized.

在某些具體實施例中,在一單一載波通信系統中提供新穎訊框結構。在一訊框的開始或結束處之一固定長度的符元之一已知模式的自相關在零偏移處獲得一大值,若偏移係非零,則相關值(旁瓣)極小。然而,此訊框同步序列與隨機符元之相關將獲得一小值。因此,一接收器可執行進入符元與訊框同步模式之一儲存版本的相關以在各訊框的確切開始處獲得一大值致使接收器能決定各訊框的起點。通信系統可在複數模態之任何模態中操作,及可使用符元群集、籬柵編碼及交錯模式的各種組合。接收器必須辨識及理解該模態以成功恢復傳輸資料。由於此目的,可將額外模態符元加至訊框同步模式。可使用相關方法可靠地接收此等模態符元因 為其在每一訊框重複地傳送。可藉由使用一區塊碼將其編碼使其甚至更強健。 In some embodiments, a novel frame structure is provided in a single carrier communication system. The autocorrelation of one of the fixed-length symbols at the beginning or end of a frame obtains a large value at the zero offset. If the offset is non-zero, the correlation value (side lobe) is extremely small. However, the correlation of this frame synchronization sequence with random symbols will result in a small value. Thus, a receiver can perform correlation of the incoming symbols with one of the stored versions of the frame sync mode to obtain a large value at the exact beginning of each frame so that the receiver can determine the start of each frame. The communication system can operate in any mode of the complex modality and can use various combinations of symbol clustering, fence coding, and interleaved modes. The receiver must recognize and understand the modality to successfully recover the transmitted data. For this purpose, additional modal symbols can be added to the frame sync mode. Corresponding methods can be used to reliably receive such modal symbols It is transmitted repeatedly for each frame. It can be encoded even more robustly by using a block code.

根據本發明某些態樣的一訊框結構利用刪餘籬柵編碼及QAM的群集組合(類似用於ISDB-T者)。每一訊框之符元數目可根據模態為一可變整數而每一訊框之RS封包的數目係不論模態而為一恆定整數。此配置簡化處理區塊之接收器的設計(例如解隨機產生器及解交錯器),因為每一訊框的RS封包數目始終係固定。在諸如ISDB-T之習知系統中,每一訊框的符元數目係恆定而每一訊框的RS封包數目根據模態係一可變整數。訊框將會參考第13圖所述根據本發明的某些態樣建構之一傳輸器結構的一實例來描述。 A frame structure in accordance with certain aspects of the present invention utilizes a combination of punctured fence coding and QAM clustering (similar to those used for ISDB-T). The number of symbols per frame may be a variable integer according to the modality and the number of RS packets per frame is a constant integer regardless of the modality. This configuration simplifies the design of the receiver of the processing block (eg, de-randomizer and de-interleaver) because the number of RS packets per frame is always fixed. In a conventional system such as ISDB-T, the number of symbols per frame is constant and the number of RS packets per frame is a variable integer according to the modality. The frame will be described with reference to an example of a transmitter structure in accordance with certain aspects of the present invention as described in FIG.

一RS編碼器1300接受位元組資料1301及一指示315Reed-Solomon封包1322之各群組的開始之外部產生訊框同步信號。如第14圖中顯示,各封包140包含207位元組,其中20位元組係奇偶性位元組142。此315 Reed-Solomon封包形成含有65205位元組的向前誤差校正(FEC)資料訊框1322。 An RS encoder 1300 accepts the header generation data 1301 and an externally generated frame synchronization signal indicating the start of each group of the 315Reed-Solomon packet 1322. As shown in FIG. 14, each packet 140 contains 207 bytes, of which 20 bytes are parity bits 142. The 315 Reed-Solomon packet forms a forward error correction (FEC) data frame 1322 containing 65205 bytes.

一迴旋位元組交錯器1302如下。第15圖說明對抗影響傳輸信號之脈衝雜訊的交錯器1302之操作的一模態。路徑156、158中之參數B係設定成207,且路徑152、154、156及158中的參數M設定成1。訊框同步信號1303強制輸入及輸出換向器150及151至頂部位置1500,從而同步化對於訊框結構之交錯。當一位元組 進入交錯器且一不同位元組離開交錯器時輸入及輸出換向器150及151向下移一位置1502。當換向器150及151達到底部1508時,其移回至頂部1500。B平行路徑1506、1508之各者含有一移位暫存器156及158,其具有在第15圖中顯示之長度(路徑1506具有長度(B-2)M且路徑1508具有長度(B-1)M)。 A whirling byte interleaver 1302 is as follows. Figure 15 illustrates a modality of operation of the interleaver 1302 against pulse noise affecting the transmitted signal. The parameter B in the paths 156, 158 is set to 207, and the parameter M in the paths 152, 154, 156, and 158 is set to 1. The frame sync signal 1303 forces the input and output commutators 150 and 151 to the top position 1500 to synchronize the interleaving of the frame structure. The input and output commutators 150 and 151 are shifted downward by a position 1502 when a tuple enters the interleaver and a different byte leaves the interleaver. When the commutators 150 and 151 reach the bottom 1508, they move back to the top 1500. Each of the B parallel paths 1506, 1508 includes a shift register 156 and 158 having the length shown in Figure 15 (path 1506 has a length ( B-2 ) M and path 1508 has a length ( B-1) ) M ).

隨機產生器1306藉由在每一訊框同步時間處重設PN序列產生器所縮短之一長度219-1的PN(偽隨機雜訊)序列在FEC資料訊框1324之65205x8=8521640位元上運算(藉由在該等位元上執行一互斥或運算)來產生一隨機化FEC資料訊框1328。 The random generator 1306 shortens a PN (pseudo-random noise) sequence of one length 219-1 by resetting the PN sequence generator at each frame synchronization time on the 65205x8=8521640 bits of the FEC data frame 1324. An operation (by performing a mutual exclusion or operation on the bits) produces a randomized FEC data frame 1328.

一可選擇碼率刪餘籬柵編碼調變(PTCM)模組1308之一實例更詳細顯示於第16圖中。PTCM1308使用一種熟習此項技術者已知的方法。該方法以64狀態1/2率編碼器開始且執行刪餘以達到5不同碼率之任一者。在某些具體實施例中,PTCM1308亦可完全繞行(碼率=1)。此容許在系統的淨位元率及白雜訊效能之間可選擇地折衷。類似籬柵編碼技術係用於ISDB-T及DVB-T系統。PTCM對於提供至輸入1328之每一位元在輸出處產生兩位元1332。然而,一些輸出位元1332係根據選定碼率及對應刪餘模式丟棄。QAM映射器1313自編碼器輸出1332取得成2、4或6之群組的位元及將其分別映射成為QPSK、16QAM或64QAM符元。此等映射的實例係在第17圖中提供。 An example of a selectable code rate punctured fence coding modulation (PTCM) module 1308 is shown in more detail in FIG. PTCM1308 uses a method known to those skilled in the art. The method begins with a 64 state 1/2 rate encoder and performs puncturing to achieve any of 5 different code rates. In some embodiments, PTCM 1308 can also bypass completely (code rate = 1). This allows for a selective compromise between the net bit rate of the system and the white noise performance. Similar fence coding techniques are used for ISDB-T and DVB-T systems. The PTCM produces a two-bit 1332 at the output for each bit provided to input 1328. However, some output bits 1332 are discarded according to the selected code rate and the corresponding puncturing mode. The QAM mapper 1313 takes the bits of the group of 2, 4 or 6 from the encoder output 1332 and maps them to QPSK, 16QAM or 64QAM symbols, respectively. Examples of such mappings are provided in Figure 17.

模組1312將一訊框同步/模態符元封包(所有符元係QPSK)加至各FEC資料訊框1334的開始。參考第18圖,此封包的第一部分180包含127個符元及包含一相同二進位PN序列用於符元的實及虛部兩者。其他PN序列長度亦可能,且實及虛部可具有相反符號。此封包的第二部分182包含指示傳輸模態之資料-選定QAM群集及選定籬柵碼率。此模態資訊可使用一區塊誤差校正碼來編碼用於接收器處的增加可靠性。可使用的方法包括BCH編碼及其他區塊碼。在一實例中,包括繞行的6個可能籬柵碼率係可能。此外,三群集可能導致18個模態。因此,需要5位元來表示可能模態選擇之各者。5位元可使用一延伸BCH碼來編碼成為一16位元碼字元。因為各QPSK符元含有2位元,故需要8模態符元。 Module 1312 adds a frame sync/modal symbol packet (all symbology QPSK) to the beginning of each FEC data frame 1334. Referring to Figure 18, the first portion 180 of the packet contains 127 symbols and includes both the same binary PN sequence for both the real and imaginary parts of the symbol. Other PN sequence lengths are also possible, and the real and imaginary parts may have opposite signs. The second portion 182 of the packet contains information indicating the transmission modality - the selected QAM cluster and the selected fence rate. This modal information can be encoded for increased reliability at the receiver using a block error correction code. Methods that can be used include BCH coding and other block codes. In one example, it is possible to include six possible fence codes around the line. In addition, three clusters can result in 18 modalities. Therefore, 5 bits are required to represent each of the possible modal choices. A 5-bit element can be encoded into a 16-bit code character using an extended BCH code. Since each QPSK symbol contains 2 bits, an 8 modal symbol is required.

第19圖說明提供予通帶調變(PB Mod)1314的一訊框結構1336(參見第13圖)。承載190包括315RS封包(521640位元)。315RS封包所映射之QAM符元的數目隨模態選擇而變化。PB Mod模組1314接著使用熟習此項技術者已知之任何適合方法調變基頻QAM符元至通帶。 Figure 19 illustrates a frame structure 1336 provided for passband modulation (PB Mod) 1314 (see Figure 13). Bearer 190 includes a 315 RS packet (521,640 bits). The number of QAM symbols mapped by the 315RS packet varies with modal selection. The PB Mod module 1314 then modulates the baseband QAM symbols to the passband using any suitable method known to those skilled in the art.

根據本發明某些態樣的訊框結構有利地克服習知訊框之一些缺點及失效。尤其係,訊框結構對於所有模態提供:-不論模態每一訊框之一恆定整數的RS封包,及-對於所有模態,每一訊框之QAM符元數係一可變整數 -對於所有模態,每一訊框之一整數的刪餘模式循環。請注意每一訊框提供一整數的QAM符元並非無關重要之方式,因為FEC資料訊框必須確切地包含Ix207資料位元組,其中I係選定整數以便每一訊框具有一固定整數的RS封包。因此,於籬柵編碼前每一訊框之資料位元的數目不僅必須為一整數,且對於所有模態該數目必須可由207x8=1656恰好整除。此外,每一QAM符元之籬柵編碼器輸出位元的數目分別對於QPSK、16QAM及64QAM而言係2、4及6位元(參見表2,其對於籬柵碼繞行顯示一碼率=1)。此外,籬柵編碼增加位元。籬柵編碼前之每一符元的資料位元數目係顯示於表2中,其中各項目係計算為: 每一符元之資料位元數目可為分數之事實需要精確地選擇每一訊框之RS封包大小及RS封包數目。使用每一訊框207及315封包的RS封包大小可達到每一訊框之一整數符元。如表3中顯示,各項目可計算為: Frame structures in accordance with certain aspects of the present invention advantageously overcome some of the shortcomings and disadvantages of conventional frames. In particular, the frame structure provides for all modalities: - a constant integer RS packet for each frame of the modal, and - for all modalities, the QAM symbol number of each frame is a variable integer - For all modalities, the puncturing mode loop of an integer for each frame. Please note that it is not unimportant to provide an integer QAM symbol for each frame, because the FEC data frame must contain exactly the Ix207 data byte, where I selects an integer so that each frame has a fixed integer RS. Packet. Therefore, the number of data bits per frame before the fence encoding must not only be an integer, but the number must be exactly divisible by 207x8=1656 for all modalities. In addition, the number of fence encoder output bits per QAM symbol is 2, 4, and 6 bits for QPSK, 16QAM, and 64QAM, respectively (see Table 2, which shows a bit rate for the fence code bypass). =1). In addition, the fence coding adds bits. The number of data bits for each symbol before the fence encoding is shown in Table 2, where each item is calculated as: The fact that the number of data bits per symbol can be a fraction requires precise selection of the RS packet size and the number of RS packets for each frame. The RS packet size of each frame 207 and 315 packet can be used to reach one integer symbol of each frame. As shown in Table 3, each item can be calculated as:

此訊框提供額外優點係對於所有模態係有一整數的每一訊框之刪餘模式循環(pp/frame)。為了正確地解碼該刪餘籬柵編碼資料,接收器中之解碼器必須知悉刪餘模式如何與資料對準。在母碼籬柵編碼器之輸出處應用的泛位元刪餘模式係在第16圖之表的第二欄中指示。各刪餘模式中之1的數目係刪餘模式長度。在建議的系統中,刪餘模式始終與FEC資料訊框的開始一致。此容許接收器中使用訊框同步以將接收器Viterbi解碼器中之解刪餘器與位元流對準。所需對準係在表4中指示,其顯示對於所有模態之一整數的pp/frame。每一符元之刪餘模式(pp/symbol)項目可計算為: 該pp/frame項目可計算為: This frame provides the additional advantage of a puncturing mode loop (pp/frame) for each frame with an integer for all modalities. In order to correctly decode the punctured fence encoded data, the decoder in the receiver must know how the puncturing pattern is aligned with the data. The ubiquitous puncturing mode applied at the output of the mother code fence encoder is indicated in the second column of the table of Figure 16. The number of 1 in each puncturing mode is the puncturing mode length. In the proposed system, the puncturing mode is always consistent with the beginning of the FEC data frame. This allows frame synchronization in the receiver to align the de-puncturing device in the receiver Viterbi decoder with the bit stream. The required alignment is indicated in Table 4, which shows the pp/frame for one of the integers of all modalities. The puncturing mode (pp/symbol) item for each symbol can be calculated as: The pp/frame project can be calculated as:

應瞭解可使用RS封包大小及每一訊框之封包數目的其他組合以獲得同樣所需結果。在此提供的數目僅用於說明目的而描述。 It should be appreciated that other combinations of RS packet size and number of packets per frame can be used to achieve the same desired result. The numbers provided herein are for illustrative purposes only.

如第20圖顯示,本發明的某些具體實施例提供一接收器,其經建構以處置根據本發明的某些態樣構造之一訊框。模組2000接收在通帶信號中傳輸的資料及將其轉換成基頻QAM符元。由模組2000執行的操作可包括符元時脈同步化,等化(以移除符元間干擾)及載波恢復,其典型地係使用子模組。因此,模組2000可包括一等化器,其輸出恢復基頻QAM符元2001。基頻QAM信號2001被提供至二位準分割器2018用於在實及虛方向兩者中分割,從而形成序列a R [k][--1,+1]及a I [k][--1,+1]2019,其係提供至訊框同步模組2020。訊框同步模組2020用二進位訊框同步PN序列的一儲存複本,在進入之分割QAM符元2019上針對實及虛部分開地執行一連續交叉相關運算。儲存複本之各成員具有-1或+1之一值。此運算給定如下: 其中s係長127之訊框同步PN序列中之儲存複本。b R b I 之最大量值指示FEC資料訊框的開始。 As shown in Fig. 20, certain embodiments of the present invention provide a receiver constructed to handle a frame of certain aspects of construction in accordance with the present invention. Module 2000 receives the data transmitted in the passband signal and converts it into a baseband QAM symbol. The operations performed by module 2000 may include symbol clock synchronization, equalization (to remove inter-symbol interference), and carrier recovery, which typically employs sub-modules. Thus, module 2000 can include an equalizer whose output restores baseband QAM symbol 2001. The baseband QAM signal 2001 is provided to a two-bit quasi-splitter 2018 for segmentation in both real and imaginary directions to form a sequence a R [ k ] [--1, +1] and a I [ k ] [--1, +1] 2019, which is provided to the frame synchronization module 2020. The frame synchronization module 2020 synchronizes a stored copy of the PN sequence with the binary frame and performs a continuous cross-correlation operation on the divided QAM symbol 2019 for the real and imaginary parts. Each member of the stored copy has a value of -1 or +1. This operation is given as follows: Where s is a storage replica in the frame synchronization PN sequence of length 127. The maximum magnitude of b R or b I indicates the beginning of the FEC data frame.

一旦找到訊框同步開始位置,則得知含有模態位元(群集及籬柵碼率)的碼字元之位置。碼字元可由(例如)一BCH解碼器或由將接收到碼字元與所有可能碼字元相關且選擇產生最高所得值的碼字元而可靠地解碼。因為重複傳送此資訊,故可由需要在接受其前相同結果發生多次而獲得額外可靠性。 Once the frame sync start position is found, the location of the code character containing the modal bit (cluster and fence rate) is known. The codeword can be reliably decoded by, for example, a BCH decoder or by a codeword that will receive the received codeword with all possible codewords and select the highest resulting value. Because this information is transmitted repeatedly, additional reliability can be obtained by requiring the same result to occur multiple times before accepting it.

使用此導出訊框同步信號2021來指示在將符元饋送至軟解映射器2006前哪些符元係要在「移除訊框同步/模態符元」模組2004中移除。在一實例中,將127訊框同步符元及8模態符元自該流中移除以確保僅對應於RS封包之符元被傳遞至軟解映射器2006。軟解映射器2006使用此項技術中已知演算法(包括例如由Akay及Tosato描述之演算法)計算軟位元比較量。為了正確操作,軟解映射器2006必須知道將哪一刪餘模式(哪一籬柵碼率)用於傳輸器及該模式與接收到位元的對準。此資訊2021由訊框同步模組2020提供,其解碼該模態資訊及亦提供一重複訊框同步信號至刪餘模式所對準者而不論目前模態為何。此等軟位元比較量被饋送至以此項技術中已知之方式操作的Viterbi解碼器2008 以達到被輸入至傳輸器中的PTCM編碼器之位元的估計。 This derived frame sync signal 2021 is used to indicate which symbols are to be removed in the "Remove Frame Synchronization/Mode Symbol" module 2004 before the symbols are fed to the soft demapper 2006. In an example, the 127-frame sync symbol and the 8-modal symbol are removed from the stream to ensure that only symbols corresponding to the RS packet are passed to the soft demapper 2006. The soft demapper 2006 calculates the soft bit comparison amount using algorithms known in the art including, for example, algorithms described by Akay and Tosato. For proper operation, the soft demapper 2006 must know which puncturing mode (which is the gate rate) for the transmitter and the alignment of the mode with the received bit. The information 2021 is provided by the frame synchronization module 2020, which decodes the modal information and also provides a repetitive frame synchronization signal to the punctured mode aligned regardless of the current mode. These soft bit comparison quantities are fed to a Viterbi decoder 2008 operating in a manner known in the art. To arrive at an estimate of the bit of the PTCM encoder that is input into the transmitter.

均藉由訊框同步信號2021同步之解隨機產生器2013、位元組解交錯器2014及RS解碼器2016分别將位元組資料解隨機、解交錯及解碼,以獲得原始輸入傳輸器中之RS編碼器的資料。 The de-random generator 2013, the byte deinterleaver 2014, and the RS decoder 2016, which are synchronized by the frame synchronization signal 2021, respectively de-randomize, de-interleave, and decode the byte data to obtain the original input transmitter. RS encoder information.

載波相位偏移校正Carrier phase offset correction

本發明之某些具體實施例使用載波相位偏移校正系統及方法。在某些具體實施例,一接收器包含一相位偏移校正器,其接收一代表一正交振幅調變信號之等化信號,且自該等化信號導出一相位校正信號;一二位準分割器,其分割等化信號以獲得實及虛序列;一訊框同步器,其用一儲存訊框同步偽隨機序列之對應部分及由訊框同步器提供至相位偏移校正器之一相位校正符元,來執行實及虛序列的一相關。相位校正信號係基於相關之最大實及虛值。訊框同步器在進入之分割正交振幅調變符元上執行連續交叉相關。連續交叉相關用一二進位訊框同步偽隨機雜訊序列之一儲存複本分開地針對實及虛序列執行。 Certain embodiments of the present invention use a carrier phase offset correction system and method. In some embodiments, a receiver includes a phase offset corrector that receives an equalized signal representative of a quadrature amplitude modulation signal and derives a phase correction signal from the equalized signal; a splitter that splits the equalized signal to obtain a real and a virtual sequence; a frame synchronizer that uses a corresponding portion of the stored frame synchronization pseudo-random sequence and a phase provided by the frame synchronizer to the phase offset corrector Correction symbol to perform a correlation between real and imaginary sequences. The phase correction signal is based on the associated maximum real and imaginary values. The frame synchronizer performs continuous cross-correlation on the incoming split quadrature amplitude modulation symbols. The continuous cross-correlation uses one of the binary frame sync pseudo-random noise sequences to store the replicas separately for real and virtual sequences.

基頻至通帶調變Base frequency to passband modulation

某些無線數位通信系統(包括廣播、無線LAN及廣域行動系統)使用某些QAM形式。QAM亦用於北美及歐洲數位電纜電視標準兩者,其使用致使雙側帶抑制載波調變波能占用相同通道頻寬之正交載波多工,其中 各波由一獨立訊息調變。如以上討論,第23圖描述一簡單QAM調變器,其可用作第13圖的實例中之PB mod 1314。一隔離傳輸脈衝QAM係給定如下: 其中d R,m d I,m 係分別由兩獨立訊息流決定且代表一複數QAM符元之實及虛部(參見,例如第17圖),其中m R =1M指示一2維QAM群集之基數,其中M係調變載波頻率,且q(t)係一根提升餘弦脈衝函數。 Some wireless digital communication systems, including broadcast, wireless LAN, and wide area mobile systems, use certain forms of QAM. QAM is also used in both North American and European digital cable television standards. Its use causes the two-side band-suppressed carrier modulated wave to occupy the same channel bandwidth of orthogonal carrier multiplexing, where each wave is modulated by an independent message. As discussed above, Figure 23 depicts a simple QAM modulator that can be used as PB mod 1314 in the example of Figure 13. An isolated transmission pulse QAM is given as follows: Where d R , m and d I , m are respectively determined by two independent message flows and represent the real and imaginary parts of a complex QAM symbol (see, for example, Figure 17), where m R = 1 ... M indicates a 2D The cardinality of the QAM cluster, where M is the modulation carrier frequency and q ( t ) is a raised cosine pulse function.

一連續系列之傳輸QAM脈衝s(t)(以一F s =1/T s 速率)通過一吵雜多路徑通道。因此,在至QAM接收器之輸入處的接收到信號係由r(t)=s(t)*c(t)+v(t)給定,其中*指迴旋,c(t)係通道脈衝響應,且v(t)係相加白高斯雜訊。因此, 其中d[n]係複數傳輸符元,f 0 θ 0 分別係相關於傳輸器之接收器通帶至基頻解調器本機振盪器之頻率及相位偏移,因此f LO =f c -f 0 A continuous series of transmitted QAM pulses s ( t ) (at a rate of F s = 1 / T s ) through a noisy multipath channel. Therefore, the received signal at the input to the QAM receiver is given by r ( t )= s ( t )* c ( t )+ v ( t ), where * refers to convolution, c ( t ) is a channel pulse Response, and v ( t ) is added to white Gaussian noise. therefore, Where d [ n ] is a complex transmission symbol, f 0 and θ 0 are respectively related to the frequency and phase offset of the receiver passband of the transmitter to the local oscillator demodulator local oscillator, so f LO = f c -f 0 .

通帶至基頻解調器Passband to baseband demodulator

第35圖更詳細顯示第20圖的PB至BB、sym時脈同步、等化器/載波恢復模組2000的一實例。接收到信號r(t)係以高於符元率之一速率取樣350,導致取樣信號r(Nt samp )。取樣後: 接著,在解調後,依符元率1/T s 再取樣及匹配濾波獲得: 其中v’[k]係取樣複數濾波雜訊。此假設由於脈衝成型及匹配濾波q,與完美符元率取樣時序組合,任何ISI係僅由於通道脈衝響應c。在解調後,假設完美等化,在等化器輸出處之近基頻複數序列z[k]係給定如下: 因此,恢復的近基頻序列表示傳輸群集,具有依一頻率f 0 旋轉的一相位偏移θ 0 。為了使用例如一二維分割器可靠地恢復傳輸d R d I ,等化器(與一相位及頻率偏移恢復迴路組合)必須移除造成群集旋轉之頻率偏移f 0 ,且接收器必須移除否則將使群集在一靜態旋轉位置內之θ 0 剩餘靜態相位偏移。 Figure 35 shows an example of PB to BB, sym clock synchronization, equalizer/carrier recovery module 2000 of Figure 20 in more detail. Received signal r (t) based in one symbol rate higher than the sampling rate 350, leading to the sampled signal r (Nt samp). After sampling: Then, after demodulation, it is obtained by resampling and matching filtering according to the symbol rate 1/ T s : Where v '[ k ] is a sample complex filtering noise. This assumption is due to the pulse shaping and matched filtering q , combined with the perfect symbol rate sampling timing, and any ISI is only due to the channel impulse response c . After demodulation, assuming perfect equalization, the near-basic complex sequence z [ k ] at the output of the equalizer is given as follows: Thus, the recovery of nearly represents transmission baseband sequence clusters, having a rotation frequency f 0 by a phase offset θ 0. In order to reliably recover the transmissions d R and d I using, for example, a two-dimensional splitter, the equalizer (combined with a phase and frequency offset recovery loop) must remove the frequency offset f 0 that causes the cluster rotation, and the receiver must Removing the remaining static phase offset that would otherwise cause the cluster to θ 0 within a static rotational position.

為了理解相位/頻率恢復,必須理解基頻處的QAM群集。在第33A圖之一簡單實例中,4QAM調變(其亦稱為作QPSK),該群集由四符元組成。在所述實例中,d[k]之實及虛部可各採取2不同值(例如±3)。相位偏移θ 0 在已恢復d[k]上的影響顯示在第33B圖中,其顯示複數平面中之一旋轉。藉由注意在一圓中旋轉(逆時針方向或順時針方向取決於f 0 之符號)時前進來理解f 0 的影響。 In order to understand phase/frequency recovery, it is necessary to understand the QAM cluster at the fundamental frequency. In a simple example of Figure 33A, 4QAM modulation (which is also referred to as QPSK), the cluster consists of four symbols. In the example, the real and imaginary parts of d [ k ] can each take 2 different values (eg, ±3). The effect of the phase offset θ 0 on the recovered d [ k ] is shown in Figure 33B, which shows one of the rotations in the complex plane. The effect of f 0 is understood by taking note of the advancement in a circle (counterclockwise or clockwise depending on the sign of f 0 ).

等化器及載波相位/頻率迴路Equalizer and carrier phase/frequency loop

第34圖中,一信號x[k]340由一數位等化器及載波相位/頻率迴路248接收(參見,例如第24A圖)。 等化器341組件典型地包含一線性數位濾波器,且使用例如最小均方(LMS)演算法的一專有或眾所週知的方法,等化器341將其輸出y[k]與分割器決定[k]343的一相位旋轉版本比較,以產生用來計算濾波器階權重的一更新組之一誤差信號。此濾波器移除起因於通道脈衝響應的ISI。 In Fig. 34, a signal x [ k ] 340 is received by a digital equalizer and carrier phase/frequency loop 248 (see, for example, Fig. 24A). The equalizer 341 component typically includes a linear digital filter, and using a proprietary or well known method such as a Least Mean Square (LMS) algorithm, the equalizer 341 determines its output y [ k ] and the splitter. A phase rotated version of [ k ] 343 is compared to generate an error signal for an update set used to calculate the filter order weights. This filter removes the ISI resulting from the channel impulse response.

2D分割器342獨立地分割z[k]及輸出[k]之實和虛部,其係原始傳輸d[k]的一估計。z[k]及[k]兩者進入相位誤差偵測器模組346及形成由e θ [k]=Im{z[k]*[k]}給定的一相位誤差信號。一積分比例(IP)濾波器345可包含第35圖的濾波器或熟習此項技術者已知的任何等效物。IP濾波器345允許迴路校正相位及頻率偏移兩者。IP濾波器345的一輸出饋送一複數電壓控制振盪器(VCO)344,其輸出一校正θ 0 f 0 兩者的一複數相位/頻率校正因子e -[k]。VCO344亦輸出e +[k]以「未校正」分割輸出[k],以致其可用來導出用於等化器階更新的一誤差信號。指示此方法因為等化器在含有θ 0 f 0 兩者上操作。 2D splitter 342 separates z [ k ] and output independently [K] of the real and imaginary parts of which the original transmission lines D [k] is an estimate. z [ k ] and [ k ] Both enter phase error detector module 346 and are formed by e θ [ k ]=Im{ z [ k ] *[ k ]} A given phase error signal. An integral ratio (IP) filter 345 can include the filter of Figure 35 or any equivalent known to those skilled in the art. The IP filter 345 allows the loop to correct both phase and frequency offsets. An output of the IP filter 345 feeds a complex voltage controlled oscillator (VCO) 344 that outputs a complex phase/frequency correction factor e - [ k ] that corrects both θ 0 and f 0 . VCO344 also outputs e + [ k ] to split the output with "uncorrected" [ k ] so that it can be used to derive an error signal for the equalizer order update. This method is indicated because the equalizer operates on both θ 0 and f 0 .

在某些具體實施例中,可由依一離散形式實施VCO344作為饋送一複數指數查找表(LUT)的一積分器之延遲而獲得效率。然而,用於θ 0 之最後校正可具有π/2的一不定性(ambiguity),其意指恢復相位可被校正(offset=0)或可具有π/2的一偏移,π之一偏移,或3π/4的一偏移。此等結果係在第36及37圖中說 明:一實際傳輸符元係顯示於第36圖中且具有各自偏移之可能恢復符元在第37A至37D圖中顯示。典型地,接收器無法知道四個可能符元中哪一個係實際上傳輸,因為2D分割器342執行一最靠近相鄰者操作。第38圖示範其中一傳輸符元a係在等化器輸入處接收為具有θ 0 a’的一實例。因此,相位恢復迴路可旋轉該信號以補償θ 0 ,以致a’a對準。然而,2D分割器162之決定將會是正確符元係b,因為其較接近a’。此可使相位恢復迴路依旋轉群集以致a’b對準的方式收斂。在此種情況下,最後相位自其原有處偏移-π/2。 In some embodiments, the efficiency can be obtained by implementing the VCO 344 in a discrete form as a delay to feed an integrator of a complex index lookup table (LUT). However, the last correction for θ 0 may have an ambiguity of π/2, which means that the recovery phase can be corrected (offset=0) or can have an offset of π/2, one of π Shift, or an offset of 3π/4. These results are illustrated in Figures 36 and 37: an actual transmission symbol is shown in Figure 36 and the possible recovery symbols with respective offsets are shown in Figures 37A through 37D. Typically, the receiver cannot know which of the four possible symbols is actually transmitted because the 2D splitter 342 performs a closest neighbor operation. Figure 38 illustrates an example in which a transmission symbol a is received at the equalizer input as a' having θ 0 . Thus, the phase recovery loop can rotate the signal to compensate for θ 0 such that a' is aligned with a . However, the decision of the 2D splitter 162 would be the correct symbol b because it is closer to a' . This allows the phase recovery loop to converge in a manner that rotates the cluster so that a' is aligned with b . In this case, the final phase is offset by -π/2 from its original position.

本發明的某些具體實施例提供用於最小化及/或消除籬柵編碼系統中之此等問題的方法,包括用於某些現描述具體實施例之刪餘籬柵碼的族群。如上述,等化器的輸出由一2D位準分割器342分成實及虛方向而形成序列a R [k][-1,+1]及a I [k][-1,+1],其被饋送至一訊框同步模組2020(參見第20圖)。訊框同步模組2020用二進位訊框同步PN序列之一儲存複本,在進入之分割QAM符元上分别針對實及虛部執行一連續交叉相關運算。經儲存複本之各成員具有一值-1或+1。此運算之特徵因此為: 其中s係127長訊框同步PN序列之儲存複本。b R b I 之最大量值指示FEC資料訊框的開始。 Certain embodiments of the present invention provide methods for minimizing and/or eliminating such problems in a fence coding system, including a population of punctured fence codes for some of the presently described embodiments. As described above, the output of the equalizer is divided into real and imaginary directions by a 2D level divider 342 to form a sequence a R [ k ] [-1, +1] and a I [ k ] [-1, +1], which is fed to a frame sync module 2020 (see Figure 20). The frame synchronization module 2020 stores the replica by one of the binary frame PN sequences, and performs a continuous cross-correlation operation on the divided QAM symbols for the real and imaginary parts, respectively. Each member of the stored copy has a value of -1 or +1. The characteristics of this operation are therefore: Where s is a stored copy of the 127 long frame sync PN sequence. The maximum magnitude of b R or b I indicates the beginning of the FEC data frame.

對於訊框同步符元,實及虛部具有相同符號且第39圖顯示其群集。因此,可理解最大量值b R b I 之符號對於零旋轉兩者均為正。一-π/2旋轉獲得一負最大量值b R 及一正最大量b I 。對於π之一旋轉,b R b I 兩者為負,而對於π/2之一旋轉,最大量值b R 係正而最大量值b I 係負。此在以上表5中概述。因此,組合中的最大量值b R b I 之各自符號指示最後相位偏移已收斂之複數平面的象限。此容許應用一額外相位校正至該信號,如第20圖所示。最大b R b I 之符號自相關為主訊框同步模組傳送至相位偏移校正器。一相位偏移校正器模組之運算顯示於第40圖中,一LUT運算404在實例中圖示。給定z[k]=z R [k]+jz I [k],此運算可簡單地執行為:1.對於ψ=+θ的情況:z’[k]=-z R [k]-jz I [k]2.對於ψ=+π/2的情況:z’[k]=-z I [k]+jz R [k]3.對於ψ=-π/2的情況:z’[k]=+z I [k]-jz R [k]第40圖係代表藉由用根據本發明之某些態樣的一相關的最大真及虛值的符號索引一查找表導出一相位校正信號的一相位偏移校正器的方塊圖。 For frame sync symbols, the real and imaginary parts have the same sign and the 39th figure shows their cluster. Therefore, it can be understood that the sign of the maximum magnitude b R or b I is positive for both zero rotations. A -π/2 rotation obtains a negative maximum magnitude b R and a positive maximum amount b I . For one rotation of π, both b R and b I are negative, and for one rotation of π/2, the maximum magnitude b R is positive and the maximum magnitude b I is negative. This is summarized in Table 5 above. Thus, the respective symbols of the maximum magnitude b R and b I in the combination indicate the quadrant of the complex plane in which the last phase offset has converged. This allows an additional phase correction to be applied to the signal, as shown in Figure 20. The maximum b R and b I symbol autocorrelation is transmitted to the phase offset corrector for the main frame sync module. The operation of a phase offset corrector module is shown in Figure 40, and an LUT operation 404 is illustrated in the example. Given z [ k ]= z R [ k ]+ jz I [ k ], this operation can be simply performed as follows: 1. For the case of ψ=+ θ : z' [ k ]=- z R [ k ]- Jz I [ k ]2. For ψ=+π/2: z' [ k ]=- z I [ k ]+ jz R [ k ]3. For ψ=-π/2: z' [ k ]=+ z I [ k ]- jz R [ k ] Figure 40 represents a phase correction derived by indexing a lookup table with a correlation of maximum associated true and imaginary values according to certain aspects of the present invention. A block diagram of the phase offset corrector of the signal.

多模態QAM群集偵測Multimodal QAM cluster detection

某些具體實施例提供自一組可能接收到QAM群集決定一未知QAM群集的系統及方法。一方法利用符 元間干擾(ISI)已用一修改恆定模數演算法(CMA)等化器最小化之後,但在載波頻率及相位已完全恢復以前之信號的功率之一直方圖。未知群集接著自直方圖決定。等化程序接著基於現已知群集用標準CAM重新開始以使ISI減至最少。等化器輸出可正確地比例縮放,其後可施行減少的群集載波恢復(RCCR)之階段及決定相關載波恢復,導致藉由組合等化器載波頻率/相位迴路而恢復載波頻率及相位。在用於決定一未知QAM群集的另一方法中,等化器最初使用修改CMA操作來使ISI減至最少。雖然等化器輸出在該程序中之此點處可能無法正確地比例縮放,但等化器載波頻率/相位迴路可在不知道群集下用RCCR來恢復載波頻率及相位。經恢復相位可為吵雜。接收器可讀取嵌入信號訊框中指示哪一QAM群集被傳輸之資訊。接著基於已知群集用一標準CMA重新開始等化器操作,之後為RCCR及決定相關載波恢復。 Certain embodiments provide systems and methods for determining an unknown QAM cluster from a set of possible QAM clusters. Method of use The inter-symbol interference (ISI) has been corrected by a modified constant modulus algorithm (CMA) equalizer, but the power of the signal before the carrier frequency and phase have fully recovered. The unknown cluster is then determined from the histogram. The equalization procedure is then restarted with the standard CAM based on the currently known cluster to minimize ISI. The equalizer output can be scaled correctly, after which a reduced phase of the cluster carrier recovery (RCCR) can be implemented and the associated carrier recovery can be determined, resulting in recovery of the carrier frequency and phase by combining the equalizer carrier frequency/phase loop. In another method for deciding an unknown QAM cluster, the equalizer initially uses modified CMA operations to minimize ISI. Although the equalizer output may not be properly scaled at this point in the program, the equalizer carrier frequency/phase loop can recover the carrier frequency and phase with the RCCR without knowing the cluster. The recovered phase can be noisy. The receiver can read the information embedded in the signal frame indicating which QAM cluster is transmitted. The equalizer operation is then restarted with a standard CMA based on the known cluster, followed by RCCR and decision related carrier recovery.

本發明的某些具體實施例使用刪餘籬柵編碼及QAM群集組合,類似於用於ISDB-T及上述者。如在此使用,一群集係瞭解意指在一調變方案內之可能符元的複數平面中之一映射。每一訊框之符元數目係取決於模態之一可變整數且每一訊框的RS封包數目不論模態如何係一恆定整數。此配置係於上更詳細描述及簡化一接收器的設計。 Certain embodiments of the present invention use a combination of punctured fence coding and QAM clustering, similar to those used for ISDB-T and the above. As used herein, a cluster is understood to mean one of the complex planes of a possible symbol within a modulation scheme. The number of symbols per frame depends on one of the modal variable integers and the number of RS packets per frame is a constant integer regardless of the modality. This configuration is described in more detail above and simplifies the design of a receiver.

再次參考第20圖,訊框同步模組2020用二進位訊框同步PN序列之一儲存複本,在進入之分割QAM 符元1219上分别針對實及虛部執行一連續交叉相關運算。該儲存複本之各成員具有-1或+1之一值。此運算由方程式10(在以上)給定,且在此重複: 其中s係127長訊框同步PN序列中之儲存複本。b R b I 之最大量值指示FEC資料訊框的開始。 Referring again to FIG. 20, the frame synchronization module 2020 stores a copy using one of the binary frame sync PN sequences, and performs a continuous cross-correlation operation on the divided split QAM symbols 1219 for the real and imaginary parts, respectively. Each member of the stored copy has a value of -1 or +1. This operation is given by Equation 10 (above) and is repeated here: Where s is a storage replica in the 127 long frame sync PN sequence. The maximum magnitude of b R or b I indicates the beginning of the FEC data frame.

如將更詳細在下文中解釋,恢復載波相位中具有一π/2之不定性。此導致零、±π/2或π的一任意額外恢復相位偏移。對於訊框同步符元,實及虛部係相同符元且第39圖顯示其傳輸群集。因此,可理解對於零相位偏移,最大量值b R b I 之符號兩者均為正。如第40圖之表404所概述,一-π/2偏移將會獲得一負最大量值b R 及一正最大量值b I ;對於π之一偏移,b R b I 兩者將為負,而對於π/2之一偏移,最大量值b R 將為正而最大量值b I 將為負。因此,組合中的最大量值b R b I 之各自符號可指示最後相位偏移所收斂之複數平面的象限。此允許應用一額外相位校正至相位偏移校正器模組2002中之該信號。最大b R b I 之符號自相關為主訊框同步模組2020傳送至相位偏移校正器2002。 As will be explained in more detail below, the recovery carrier phase has an uncertainty of π/2. This results in an arbitrary additional recovery phase offset of zero, ±π/2 or π. For frame sync symbols, the real and imaginary parts are the same symbol and Figure 39 shows their transport cluster. Therefore, it can be understood that for a zero phase offset, the sign of the maximum magnitude b R or b I is both positive. As outlined in Table 404 of Figure 40, a -π/2 offset will result in a negative maximum magnitude b R and a positive maximum magnitude b I ; for a shift of π, both b R and b I It will be negative, and for a shift of π/2, the maximum magnitude b R will be positive and the maximum magnitude b I will be negative. Thus, the respective symbols of the maximum magnitudes b R and b I in the combination may indicate the quadrant of the complex plane to which the final phase offset converges. This allows an additional phase correction to be applied to the signal in phase offset corrector module 2002. The symbolic auto-correlation of the maximum b R and b I is transmitted to the phase offset corrector 2002 by the main frame synchronization module 2020.

另外參考第40圖,可更加瞭解第20圖之實例中的相位偏移校正器2002之某些態樣之操作。LUT 400基於最大量值b R b I 之符號產生一輸出(參見第40圖之 元件404)。給定z[k]=z R [k]+jz I [k],運算402可執行如下: Referring additionally to Fig. 40, the operation of certain aspects of phase offset corrector 2002 in the example of Fig. 20 can be more appreciated. LUT 400 produces an output based on the symbols of the maximum magnitudes b R and b I (see element 404 of Figure 40). Given z [ k ]= z R [ k ]+ jz I [ k ], operation 402 can be performed as follows:

1.對於ψ=+π的情況:z’[k]=-z R [k]-jz I [k] 1. For the case of ψ=+π: z' [ k ]=- z R [ k ]- jz I [ k ]

2.對於ψ=+π/2的情況:z’[k]=-z I [k]+jz R [k] 2. For the case of ψ=+π/2: z' [ k ]=- z I [ k ]+ jz R [ k ]

3.對於ψ=-π/2的情況:z’[k]=+z I [k]-jz R [k] 3. For the case of ψ = -π/2: z' [ k ]=+ z I [ k ]- jz R [ k ]

一旦找到訊框同步開始位置且校正mπ/2相位偏移,會得知含有模態位元(群集及籬柵碼率)的碼字元之位置。碼字元可藉由(例如)一BCH解碼器或藉由將接收到碼字元與所有可能碼字元相關且選擇產生最高所得值的碼字元來可靠地解碼。因為重複傳送此資訊,可由需要在接受其前發生多次相同結果而獲得額外可靠性。 Once the frame sync start position is found and the m π/2 phase offset is corrected, the location of the code character containing the modal bit (cluster and fence rate) is known. The codeword can be reliably decoded by, for example, a BCH decoder or by correlating the received codeword with all possible codewords and selecting the codeword that produces the highest resulting value. Because this information is transmitted repeatedly, additional reliability can be obtained by requiring the same result to occur multiple times before accepting it.

第41圖顯示可由訊框同步模組2020執行之此一程序的一實例。回應於訊框同步信號2021,在步驟4100處,接收到群集碼字元係與所有有效碼字元交叉相關。交叉相關產生可用來選擇最可能匹配之一值。在一實例中,在步驟4102處選擇產生最大相關值的有效碼字元。接著可用此選定碼字元來識別一目前群集。在步驟4104處,目前群集之識別係與一先前識別群集的已記錄或儲存識別比較。在步驟4104,若目前群集及先前識別群集係相同群集,則可增加一信賴計數。若在步驟4104決定先前識別群集係與目前群集不同,則目前群集在步驟4107記錄為先前識別群集且信賴計數在步驟4107減量且另一同步訊框在步驟4109處等待。步驟4106信賴 計數之增量後,在步驟4108處檢查信賴計數,且若在步驟4108處決定超過一預定或經組態臨限值,則可在步驟4110處作成信號群集的決定。可反覆執行此程序直至信賴計數超過預定或經組態臨限值。 Figure 41 shows an example of such a procedure that can be performed by the frame synchronization module 2020. In response to the frame sync signal 2021, at step 4100, the received cluster code character is cross-correlated with all valid code characters. Cross-correlation generation can be used to select one of the most likely matches. In an example, the valid codeword that produces the largest correlation value is selected at step 4102. This selected code character can then be used to identify a current cluster. At step 4104, the current cluster's identification is compared to the recorded or stored identification of a previously identified cluster. At step 4104, if the current cluster and the previously identified cluster are the same cluster, a trust count may be added. If it is determined in step 4104 that the previously identified cluster is different from the current cluster, then the current cluster is recorded as a previously identified cluster in step 4107 and the trust count is decremented in step 4107 and another synchronization frame is waiting at step 4109. Step 4106 relies on After incrementing the count, the trust count is checked at step 4108, and if it is determined at step 4108 that a predetermined or configured threshold is exceeded, a decision to signal cluster can be made at step 4110. This procedure can be repeated until the confidence count exceeds the predetermined or configured threshold.

等化器及載波相位/頻率迴路Equalizer and carrier phase/frequency loop

參考第42圖,將描述第24A圖之等化器及載波相位/頻率迴路248的某些態樣。一信號x[k]進入數位等化器及載波相位/頻率迴路248,其可包括一等化器420(其包括一線性數位濾波器)。一誤差計算器模組422計算一誤差信號e[k],其可用以使用熟習此項技術者已知之任何適合方法計算一更新組的濾波器階權重。在一實例中,可使用一LMS演算法。濾波器移除起因於通道脈衝響應c的ISI。等化器420之一輸出y[k]接著係在421處相位旋轉以減少任何剩餘載波相位及頻率偏移。相位旋轉輸出z[k]接著由分割器及相位誤差偵測器模組427處理,其計算饋送至一積分比例(IP)濾波器426的一相位誤差值e θ [k]。IP濾波器426輸出體送一積分器且複數指數查找表(LUT)424,其計算用於迴路以校正載波相位及頻率偏移的複數指數值。分割器及相位誤差偵測器模組427亦輸出一最靠近相鄰者2維分割符元決定,其相位係在425用e +[k]相乘而「未校正」且接著用於誤差計算器模組422。誤差計算器模組422使用該輸入以及x[k]以計算一誤差信號e[k]。如所述,誤差計算器模組422和分割器及相位誤差偵測器模組427的內部 操作取決於由階段管理器423決定的一目前階段操作(1、2或3)。 Referring to Figure 42, certain aspects of the equalizer and carrier phase/frequency loop 248 of Figure 24A will be described. A signal x [ k ] enters the digital equalizer and carrier phase/frequency loop 248, which may include an equalizer 420 (which includes a linear digital filter). An error calculator module 422 calculates an error signal e [ k ] that can be used to calculate an updated set of filter step weights using any suitable method known to those skilled in the art. In an example, an LMS algorithm can be used. The filter removes the ISI resulting from the channel impulse response c . One of the equalizers 420 outputs y [ k ] followed by a phase rotation at 421 to reduce any remaining carrier phase and frequency offset. The phase rotation output z [ k ] is then processed by a divider and phase error detector module 427 which computes a phase error value e θ [ k ] fed to an integral ratio (IP) filter 426. The IP filter 426 outputs an integrator and a complex index lookup table (LUT) 424 that calculates a complex index value for the loop to correct the carrier phase and frequency offset. The splitter and phase error detector module 427 also outputs a two-dimensional split symbol decision closest to the neighbor, whose phase is multiplied by e + [ k ] at 425 and is "uncorrected" and then used for error. Calculator module 422. The error calculator module 422 uses the input and x [ k ] to calculate an error signal e [ k ]. As described, the internal operations of the error calculator module 422 and the splitter and phase error detector module 427 depend on a current phase of operation (1, 2, or 3) as determined by the phase manager 423.

在某些具體實施例中,一最小均方(LMS)演算法用於計算等化器濾波器階權重及操作如下:若x[k]表示一L長等化器輸出向量,y[k]表示等化器輸出向量,其中y[k]=g H[k]x[k],其中g H [k]係L長等化器階權重向量且H上標指示共軛移項(Hermitian)。接著,使用例如以下描述之方法計算在誤差計算器模組422中的更新e[k]:g[k+1]=g[k]-2μx[k]e *[k],(方程式11)其中μ係小段差大小參數且*上標指示複數共軛。 In some embodiments, a least mean square (LMS) algorithm is used to calculate the equalizer filter order weights and operates as follows: if x [ k ] represents an L long equalizer output vector, y [ k ] An equalizer output vector is represented, where y [ k ]= g H [ k ] x [ k ], where g H [ k ] is an L long equalizer step weight vector and the H superscript indicates a conjugate shift term (Hermitian). Next, the update e [ k ] in the error calculator module 422 is calculated using, for example, the method described below: g [ k +1]= g [ k ]-2 μx [ k ] e * [ k ], (Equation 11 Where μ is a small step size parameter and * superscript indicates a complex conjugate.

在實例中,階段管理器423在整個操作的三階段中採用等化器及載波相位/頻率迴路428,藉以自階段1至階段2至階段3之切換係基於輸入資料樣本x[k]的簡單計數臨限值執行。應注意,基於等化器輸出處之誤差的估計的複雜階段切換亦可能。三階段係在表6中概述。 In an example, the stage manager 423 employs an equalizer and carrier phase/frequency loop 428 throughout the three phases of operation, whereby the switching from phase 1 to phase 2 to phase 3 is based on the simplicity of the input data sample x [ k ] Counting threshold execution. It should be noted that complex phase switching based on an estimate of the error at the output of the equalizer is also possible. The three stages are summarized in Table 6.

一分割器及相位誤差偵測器模組427在第43圖中更詳細顯示。開關430根據操作的三階段之一434設定。在階段1期間,開關430在最高位置中,以致e θ [k]=0。此有效地關閉載波迴路因此在此階段期間沒有載波相位校正。在階段2期間,開關430在中間位置中且 迴路使用一減少群集載波恢復(RCCR)演算法操作。若由|z[k]|2給定之符元z[k]的功率超過一臨限值ξ,則其假設z[k]係群集的角落符元之一及RCCR係由設定經描述之第二開關432至上方位置而賦能,產生e θ [k]=Im{z[k]α[sign(z *[k])]}。否則,若|z[k]2 ξ,則第二開關432在下方經描述位置而停用載波迴路。在階段2期間僅符元的一子集可作用於載波恢復。臨限值ξ可減少以在群集角落附近之區域中包括更多符元,但所得相位校正項e θ [k]將更吵雜。在階段3期間,開關430在最低描述位置,產生e θ [k]=Im{z[k] *[k]},其甲 *[k]係最靠近相鄰者2維分割符元決定[k]的複數共軛。在階段3期間,假設已經過足夠時間,因此等化器階已收斂且載波相位已實質上校正以致該分割符元決定係可靠。尤其,關係e θ [k]=Im{z[k]α[sign(z *[k])]}及e θ [k]=Im{z[k] *[k]}在複數平面的單一象限內有效地操作。其導致以上討論在恢復載波相位中之mπ/2之不定性。 A splitter and phase error detector module 427 is shown in more detail in FIG. Switch 430 is set according to one of the three stages of operation 434. During phase 1, switch 430 is in the highest position such that e θ [ k ] = 0. This effectively turns off the carrier loop so there is no carrier phase correction during this phase. During phase 2, switch 430 is in the intermediate position and the loop uses a reduced cluster carrier recovery (RCCR) algorithm operation. If the power of the symbol z [ k ] given by | z [ k ]| 2 exceeds a threshold value, then it is assumed that z [ k ] is one of the corner symbols of the cluster and the RCCR is set by the description. The second switch 432 is energized to the upper position, producing e θ [ k ]=Im{ z [ k ] α [ sign ( z * [ k ])]}. Otherwise, if | z [ k ] 2 That is, the second switch 432 deactivates the carrier loop by describing the position below. Only a subset of the symbols during phase 2 can act on carrier recovery. The threshold ξ can be reduced to include more symbols in the area near the corner of the cluster, but the resulting phase correction term e θ [ k ] will be more noisy. During phase 3, switch 430 is at the lowest described position, producing e θ [ k ]=Im{ z [ k ] * [ k ]}, its armor * [ k ] is the closest 2D separation symbol to the neighbor The complex conjugate of [ k ]. During phase 3, it is assumed that sufficient time has elapsed, so the equalizer order has converged and the carrier phase has been substantially corrected so that the split symbol decision is reliable. In particular, the relationship e θ [ k ]=Im{ z [ k ] α [ sign ( z * [ k ])]} and e θ [ k ]=Im{ z [ k ] * [ k ]} operates effectively in a single quadrant of the complex plane. This leads to the uncertainty discussed above in recovering the m π/2 in the carrier phase.

IP濾波器426(參見第42圖)之一實例在第35圖中更詳細顯示。IP濾波器426容許迴路校正相位及頻率偏移兩者。IP濾波器426的輸出饋送積分器及複數指數LUT模組424,第45圖更詳示。積分器/LUT424的輸入與模數2π於440相加(第44圖)至延遲一步驟442之輸入部分以形成饋送至一查找表(LUT)444的一相位誤差信號θ[k],LUT444輸出校正θ 0 f 0 兩者的相位校正因子445(e -[k])。LUT 444亦提供一輸出446(e +[k]),其「未校正」分割器輸出[k],以致其可 用來導出一用於等化器階更新的誤差信號。此因為等化器在含有θ 0 f 0 兩者之x[k]上操作而需要。 An example of an IP filter 426 (see Figure 42) is shown in more detail in Figure 35. The IP filter 426 allows the loop to correct both phase and frequency offset. The output of IP filter 426 feeds the integrator and complex exponent LUT module 424, which is shown in more detail in FIG. The input of integrator/LUT 424 is added to modulo 2π at 440 (Fig. 44) to the input portion of delay one step 442 to form a phase error signal θ [k] fed to a lookup table (LUT) 444, LUT 444 output The phase correction factor 445 ( e - [ k ] ) of both θ 0 and f 0 is corrected. LUT 444 also provides an output 446 ( e + [ k ] ) with its "uncorrected" splitter output [ k ] so that it can be used to derive an error signal for the equalizer order update. This is required because the equalizer operates on x [ k ] containing both θ 0 and f 0 .

誤差計算器模組及階段操作概述Error Calculator Module and Stage Operation Overview

誤差計算器422可根據階段使用不同方法計算e[k]。對於階段1及2,典型地使用基於一恆定模數演算法(CMA)的一程序計算:e[k]=y[k](|y[k]2-R), 其中R係一預定常數,其係由以下給定: 且其中E係預期望運算元且d[k]係一符元(參見第17圖)。注意自以上方程式11導出之階更新係獨立於符元決定及x[k]的相位而僅取決於等化器輸出、等化器輸入及群集的統計。在階段1及2期間可顯示,將CMA誤差用於驅動方程式11相當於使ISI減至最少,即使該群集由於載波頻率及相位偏移旋轉。 The error calculator 422 can calculate e [ k ] using different methods depending on the stage. For stages 1 and 2, a program calculation based on a constant modulus algorithm (CMA) is typically used: e [ k ] = y [ k ](| y [ k ] 2 - R ), where R is a predetermined constant , which is given by: And wherein E is a pre-expected operand and d [ k ] is a symbol (see Figure 17). Note that the order update derived from Equation 11 above is independent of the symbol decision and the phase of x [ k ] and depends only on the statistics of the equalizer output, the equalizer input, and the cluster. It can be shown during phases 1 and 2 that using CMA error for driving equation 11 is equivalent to minimizing ISI even if the cluster is rotated due to carrier frequency and phase offset.

因此,在階段1期間,相位/頻率恢復迴路停用,且等化器使用CMA誤差功能將ISI減至最少。在已使ISI減至最少後,階段2開始且迴路對於RCCR打開;載波相位/頻率恢復僅使用群集之角落符元開始,如先前關於第43圖解釋。在階段2結束處,已充分恢復載波相位及頻率,以致第43圖的2維分割器436開始輸出可靠之符元決定[k]。 Therefore, during Phase 1, the phase/frequency recovery loop is deactivated and the equalizer uses the CMA error function to minimize ISI. After ISI has been minimized, Phase 2 begins and the loop opens for the RCCR; carrier phase/frequency recovery begins with only the corner symbols of the cluster, as previously explained with respect to Figure 43. At the end of phase 2, the carrier phase and frequency have been fully recovered, so that the 2-dimensional splitter 436 of Fig. 43 begins to output a reliable symbol decision. [ k ].

決定相關(DD)誤差可用於階段3。DD誤差可計算為e[k]=e [k] [k]-y[k]。為了此描述目的,在此假設接收器已決定傳輸第17圖之三群集中哪一群集,因為R對於此等群集之各者係不同。此外,RCCR需要群集的知識,及尤其群集之角落符元之功率的知識。 The decision correlation (DD) error can be used in Phase 3. The DD error can be calculated as e [ k ]= e [ k ] [ k ]- y [ k ]. For the purposes of this description, it is assumed here that the receiver has decided to transmit which of the clusters in Figure 17 of the three clusters, since R is different for each of these clusters. In addition, RCCR requires knowledge of the cluster, and in particular the power of the corner symbols of the cluster.

具有一未知群集之CMACMA with an unknown cluster

在此內描述的實例中,可傳輸三不同QAM群集之一且上述等化及相位/頻率恢復需要已傳輸群集的知識。當群集選擇在模態符元中編碼,等化及相位/頻率恢復先於訊框同步(參見第20圖),其中此資訊可如上述直接解碼(如第18、20及41圖)。因而,在某些具體實施例中,群集係在等化器及載波恢復演算法本身內決定。 In the examples described herein, one of three different QAM clusters can be transmitted and the above-described equalization and phase/frequency recovery requires knowledge of the transmitted cluster. When the cluster chooses to encode in the modal symbol, the equalization and phase/frequency recovery precedes the frame synchronization (see Figure 20), where this information can be decoded directly as described above (see Figures 18, 20 and 41). Thus, in some embodiments, the cluster is determined within the equalizer and carrier recovery algorithm itself.

注意該R(如方程式12中提供)係群集相依。在某些具體實施例中及繼續參考第17圖,64-QAM之符元的實及虛部係選自集合±{1,3,5,7},16-QAM之符元的實及虛部係選自集合±{2,6},而QPSK之符元的實及虛部係選自集合±4。依據方程式12,R的值將為: 對於第17圖中之三群集的任一者,其可顯示將一比例縮放值αR用於CMA誤差計算造成等化器濾波階收斂至由比例縮放之相同組的值,其中等化器輸出同樣地比例縮放。然而其可顯示ISI最少。在群集未知之一實例中, R可設定成58,及不論傳輸的群集為何,將使ISI在階段1期間減至最少。對於所述實例,將會使用範圍於32至58之任何R值。然而,最大值(即58)的選擇防止在等化器輸出處之最密群集(在此之64-QAM)的壓縮及減少等化器效能的負擔。 Note that this R (as provided in Equation 12) is cluster dependent. In some embodiments, and with continued reference to Figure 17, the real and imaginary parts of the symbols of 64-QAM are selected from the set ±{1,3,5,7}, the real and virtual of the symbols of 16-QAM. The ministry is selected from the set ±{2,6}, and the real and imaginary parts of the symbol of QPSK are selected from the set ±4. According to Equation 12, the value of R will be: For any of the three clusters in Figure 17, it can be shown that using a scaling value αR for CMA error calculation causes the equalizer filter order to converge to Scales the same set of values, where the equalizer output is scaled as such. However, it can show the least ISI. In one instance of the cluster unknown, R can be set to 58, and the ISI will be minimized during Phase 1 regardless of the cluster being transmitted. For the example, any R value in the range of 32 to 58 will be used. However, the selection of the maximum (i.e., 58) prevents compression of the densest cluster (here 64-QAM) at the output of the equalizer and reduces the burden on the equalizer performance.

使用比例縮放參數R之結果導致由收斂濾波器階之等化輸出的比例向上,因此等化器輸出的統計將為:E{|y[k]|4}/E{|y[k]|2}=58,其假設完美ISI移除及不論群集。因此,對於QPSK,等化器輸出將在階段1期間已使ISI最小化後比例縮放。 The result of using the scaling parameter R results in an equalization of the output of the equalized output by the convergence filter stage, so the statistics of the equalizer output will be: E {| y [ k ]| 4 }/ E {| y [ k ]| 2 }=58, which assumes perfect ISI removal and regardless of clustering. Therefore, for QPSK, the equalizer output will have the ISI minimized and scaled during Phase 1.

第45A圖說明其中θ 0 =f 0 =0之情況下用於具有QPSK之一系統之等化輸出的實部。可見到輸出由於R=58的值而 藉由比例縮放,因為等化器係收斂至移除ISI之一 解答。第45B圖說明用於其中θ 0 =f 0 =0之情況下具有 16-QAM之一系統之等化輸出的實部。因為相對 較靠近1,故等化器輸出之實部看似僅輕微地比例縮放。因此實際比例縮放在等化器收斂期間係明顯。 Figure 45A illustrates the real part for an equalized output with one of the QPSK systems where θ 0 = f 0 =0. It can be seen that the output is due to the value of R = 58 Scaling because the equalizer converges to remove one of the ISI solutions. Figure 45B illustrates the real part for an equalized output with one of the 16-QAM systems where θ 0 = f 0 =0. because Relatively close to 1, the real part of the equalizer output appears to be only slightly scaled. Therefore the actual scaling is evident during the equalizer convergence.

群集偵測方法Cluster detection method

某些具體實施例中,可用一直方圖方法來決定進入階段2前之群集。即使還沒有恢復載波相位及頻率亦可決定該群集。考慮在第46A、46B及46圖中分別針對QPSK、16-QAM及64-QAM群集之等化器輸出 η[k]=y[k]y *[k]之功率的直方圖。直方圖表示在等化器已用R=58收斂後之功率。因為等化器輸出之功率獨立於相位且各群集的直方圖實質上不同,故可在接收器中自等化器輸出功率直方圖決定傳輸的群集。 In some embodiments, the histogram method can be used to determine the cluster before entering phase 2. The cluster can be determined even if the carrier phase and frequency have not been recovered. Consider a histogram of the power of η [ k ] = y [ k ] y * [ k ] for the equalizers of QPSK, 16-QAM, and 64-QAM clusters, respectively, in Figures 46A, 46B, and 46. The histogram represents the power after the equalizer has converge with R = 58. Because the power of the equalizer output is independent of the phase and the histograms of the clusters are substantially different, the cluster of transmitted power can be determined by the equalizer output power histogram in the receiver.

無相加或階雜訊下,對於QPSK群集,各等化器輸出樣本之功率係η[k]=58。對於16-QAM群集,用於等化器輸出功率之機率質量函數係: 同樣地,對於64-QAM群集,用於等化器輸出功率之機率質量函數係: Without additive or order noise, for a QPSK cluster, the power of each equalizer output sample is η [ k ]=58. For a 16-QAM cluster, the probability quality function for the equalizer output power: Similarly, for a 64-QAM cluster, the probability quality function for the equalizer output power is:

由於輸入信號上的階更新雜訊及相加雜訊v’,即使例如對於30分貝之一實質SNR在此等值周圍的直方圖中存在某些展開。模擬等化器輸出上的雜訊作為相加及獨立於該等符元,及假設該輸出無ISI,則:|y[k]|2=|d[k]+n[k]|2=|d[k]+n[k]|2=|d[k]|2+|n[k]|2+2Re{d[k]n *[k]} (方程式16在一給定符元上調節有關2Re{d[k]n*[k]}項之變化隨著增加符元功率而增加。在直方圖之圖式中,此現象呈現為展開(即變化),其圍繞隨增加符元功率而增加之一給定群集功率。在16-QAM情況中,關於符元±2.1±j2.1 之群集功率的展開少於關於符元±6.3±j6.3之群集功率的展開。 Due to the order update noise and the added noise v' on the input signal, even if for example one of the 30 decibels, the substantial SNR has some expansion in the histogram around this value. The noise on the output of the analog equalizer is added and independent of the symbols, and assuming that the output has no ISI, then: | y [ k ]| 2 =| d [ k ]+ n [ k ]| 2 = | d [ k ]+ n [ k ]| 2 =| d [ k ]| 2 +| n [ k ]| 2 +2Re{ d [ k ] n * [ k ]} (Equation 16 is in a given symbol The upper adjustment relates to the change of the 2Re{ d [ k ] n *[ k ]} term with increasing symbol power. In the histogram diagram, this phenomenon appears as expansion (ie, variation), which surrounds the increment One of the given powers is increased by the given power. In the 16-QAM case, the expansion of the cluster power for the symbol ± 2.1 ± j 2.1 is less than the expansion of the cluster power for the symbol ± 6.3 ± j 6.3.

可自等化器輸出功率的直方圖觀察到某些其他關係: Some other relationships can be observed from the histogram of the output power of the equalizer:

●在QPSK直方圖中,區域T1大略落在16-QAM的直方圖中第二及第三區域(分別為R2及R3)之間。因此,對於QPSK及16-QAM群集,表示哪一符元被傳輸之區域係未重疊。 In the QPSK histogram, the region T 1 falls roughly between the second and third regions (R 2 and R 3 , respectively ) in the histogram of 16-QAM. Therefore, for QPSK and 16-QAM clusters, the areas in which symbols are transmitted are not overlapped.

●QPSK直方圖對64-QAM的直方圖之一比較顯露Pr{η[k] T 1}<Pr{η[k] T 1}用於64-QAM。因此,對於η[k]對區域T 1之一比較,η[k]更可能在該區域外。 ● QPSK histogram reveals Pr{ η [ k ] for one of the histograms of 64-QAM T 1 }<Pr{ η [ k ] T 1 } is used for 64-QAM. Therefore, for a comparison of η [ k ] to the region T 1 , η [ k ] is more likely to be outside the region.

●當64-QAM實例中不存在雜訊時,η[k]以機率9/16採取來自集合{2,18,26,34,58,98}之一值。因此,當下方群集係64-QAM時忽視雜訊: 其中U指示一OR。因此,若傳輸群集係64-QAM及η[k]與區域R1、R2及R3比較,η[k]更可能在該等區域外。 • When there is no noise in the 64-QAM instance, η [ k ] takes a value from the set {2, 18, 26, 34, 58, 98} at a probability of 9/16. Therefore, when the lower cluster is 64-QAM, the noise is ignored: Where U indicates an OR. Therefore, if the transport clusters 64-QAM and η [ k ] are compared with the regions R 1 , R 2 and R 3 , η [ k ] is more likely to be outside of these regions.

某些具體實施例使用基於此等觀察的演算法: 演算法可在等化器收斂後初始,及在第一部分中增量QPSK計數器λ 4[k],若等化器輸出功率在區域T 1中經過N等化器輸出樣本。若等化器輸出功率不在區域T 1,則計數器減量。同樣地,若η[k]在區域R1、R2及R3中,16-QAM計數器λ 16 [k]增量,否則減量。 Some specific embodiments use algorithms based on such observations: The algorithm may be initialized after the equalizer converges, and the QPSK counter λ 4 [ k ] is incremented in the first portion if the equalizer output power passes through the N equalizer output sample in region T 1 . If the equalizer output power is not in the region T 1 , the counter is decremented. Similarly, if η [ k ] is in the regions R 1 , R 2 and R 3 , the 16-QAM counter λ 16 [ k ] is incremented, otherwise it is decremented.

N等化器輸出取樣後,其可假設已正確地描述直方圖。若下方群集係64-QAM,則QPSK及16-QAM計數器將極小,因為功率估計η[k]將更可能落在QPSK及16-QAM區域外。若傳輸群集係QPSK或16-QAM,該傳輸群集的計數器將明顯較大。因此, 臨限值M可用經驗決定,但相較於N應較小。該演算法極為健全,當傳輸QPSK、16-QAM或64-QAM時,可靠地針對低信號對雜訊比(SNR)選擇正確的群集。在已可靠決定群集後,可設定R以校正方程式13值且階段1可執行至完成。等化器輸出將適當地比例縮放且階段2可用RCCR所需之臨限值ξ的知識開始。 After the N equalizer outputs a sample, it can assume that the histogram has been correctly described. If the cluster below is 64-QAM, the QPSK and 16-QAM counters will be extremely small, since the power estimate η [ k ] will be more likely to fall outside the QPSK and 16-QAM regions. If the transport cluster is QPSK or 16-QAM, the counter of the transport cluster will be significantly larger. therefore, The threshold M can be determined empirically, but should be smaller than N. The algorithm is extremely robust, and when transmitting QPSK, 16-QAM or 64-QAM, the correct cluster is reliably selected for low signal-to-noise ratio (SNR). After the cluster has been reliably determined, R can be set to correct Equation 13 values and Phase 1 can be performed to completion. The equalizer output will be scaled appropriately and Phase 2 can begin with the knowledge of the thresholds required by the RCCR.

現描述等化器進入階段3前決定群集的另一方法。在此方法中,階段1執行及容許用R=68完成。因此及如已解釋,所有三群集將已在等化器輸出處比例縮放導致y[k]如第47圖的三群集中顯示,雖然此等群集將可能旋轉。如關於第43圖討論,對於階段二RCCR之一關鍵係僅考慮其中如由|z[k]|2給定之符元z[k]的功率超過一臨限值之符元。接著其假設z[k]係群集的角落符元之一。同樣地,|z[k]|>可指示一角落符元。當群集已知時相對較容易選擇ξ的一值,如第48(A)圖針對64-QAM群集所說明。第48圖顯示在等化器輸出及載波相位/頻率恢復迴路模組輸入處之所有三群集。可見到對於角落點|z[k]|=9.90。例如,由點線圓484指示的 一臨限值確保僅選擇角落點。同樣地,一圓 482及一圓480可將較寬裕之邊際分別用於 16-QAM及QPSK。 Another method of determining the cluster before the equalizer enters phase 3 will now be described. In this method, Phase 1 is executed and allowed to be completed with R = 68. Thus, and as already explained, all three clusters will have been scaled at the equalizer output resulting in y [ k ] as shown in the three clusters of Figure 47, although such clusters will likely rotate. As discussed with respect to Figure 43, for a critical phase of the Phase II RCCR, only the symbols in which the power of the symbol z [ k ] given by | z [ k ]| 2 exceeds a threshold value are considered. It then assumes that z [ k ] is one of the corner symbols of the cluster. Similarly, | z [ k ]|> A corner symbol can be indicated. It is relatively easy to select a value of ξ when the cluster is known, as illustrated in Figure 48(A) for a 64-QAM cluster. Figure 48 shows all three clusters at the equalizer output and the carrier phase/frequency recovery loop module input. It can be seen that for the corner point | z [ k ]|= 9.90. For example, a threshold indicated by dotted circle 484 Make sure to only select corner points. Similarly, one Round 482 and one Circle 480 can use the margins of the more abundant for 16-QAM and QPSK, respectively.

第49圖顯示所有三群集之右上方象限的一重 疊圖。可見到若,僅用於QPSK及16-QAM之角 落點(落在點圓外)會由RCCR利用。然而,若接收64-QAM,五群集點(四個非角落)落在圓外及將由RCCR利用。因為恢復相位較不吵雜,故若僅使用角落群集點,RCCR典型運作較佳。然而,即使使用一些額外點,RCCR仍可成功恢復相位,雖然會產生相位雜訊 增加。因此,階段2最初可用操作,容許對於所有 三群集之適當初始載波恢復而群集對接收器來說仍保持未知。 Figure 49 shows an overlay of the upper right quadrant of all three clusters. Visible Only for the corner points of QPSK and 16-QAM (falling outside the circle) will be used by the RCCR. However, if 64-QAM is received, the five cluster points (four non-corners) fall outside the circle and will be utilized by the RCCR. Because the recovery phase is less noisy, the RCCR typically works better if only corner cluster points are used. However, even with some extra points, the RCCR can successfully recover the phase, although phase noise increases. Therefore, Phase 2 is initially available Operation, allowing proper initial carrier recovery for all three clusters while the cluster remains unknown to the receiver.

如以上關於第20圖之描述,等化器2000饋送一2位準分割器2018,其繼而饋送訊框同步2020。訊框同步模組2020可如方程式10描述用二進位訊框同步PN序列的一儲存複本在進入之分割QAM符元的符號上施行一連續交叉相關運算。連續交叉相關運算可分開地針對實及虛部施行。儲存複本之各成員具有-1或+1之一值。b R b I 之最大量值指示FEC資料訊框的開始。現唯一差別係對於64-QAM群集,2位準分割器2018在一具有某些額外相位雜訊的信號上操作。然而,此額外相位雜訊在2位準分割及其後交叉相關為主訊框同步上具有 很少負面影響,即使出現相位雜訊其亦很穩健。如先前描述,群集碼字元之解碼對於相位雜訊亦很穩健。 As described above with respect to FIG. 20, the equalizer 2000 feeds a 2-bit quasi-divider 2018 which in turn feeds the frame sync 2020. The frame synchronization module 2020 can perform a continuous cross-correlation operation on the symbols of the incoming split QAM symbols using a stored copy of the binary frame PN sequence as described in Equation 10. Continuous cross-correlation operations can be performed separately for real and imaginary parts. Each member of the stored copy has a value of -1 or +1. The maximum magnitude of b R and b I indicates the beginning of the FEC data frame. The only difference is that for a 64-QAM cluster, the 2-bit quasi-divider 2018 operates on a signal with some additional phase noise. However, this extra phase noise has little negative impact on 2-bit quasi-segmentation and subsequent cross-correlation as main frame synchronization, which is robust even with phase noise. As previously described, the decoding of cluster codewords is also robust to phase noise.

第50圖說明決定該群集之此替代方法的操作,此可概述如下: Figure 50 illustrates the operation of determining this alternative to the cluster, which can be summarized as follows:

(1)等化器及相位/頻率迴路用R=58完成階段1,接著進入階段2。 (1) The equalizer and phase/frequency loop complete phase 1 with R = 58 and then enter phase 2.

(2)不等待階段3,在階段2期間該相關為主訊框同步2020接受輸入資料,找到訊框同步,及解碼群集碼字元。 (2) Without waiting for phase 3, during phase 2, the associated master frame synchronization 2020 accepts input data, finds frame synchronization, and decodes cluster code characters.

(3)將決定群集資訊2021傳送回至等化器2000及相位/頻率迴路,其使用適當地對應該決定群集之一R值回至階段1。 (3) The decision cluster information 2021 is transmitted back to the equalizer 2000 and the phase/frequency loop, the appropriate use of which corresponds to determining one of the cluster R values back to phase 1.

(4)接著如之前完成階段1、2及3。應瞭解到,第50圖及第20圖中描述之系統之間的主要差別係自訊框同步2020至承載群集資訊的等化器/載波恢復2000之額外連接5000。 (4) Then complete stages 1, 2 and 3 as before. It will be appreciated that the primary differences between the systems depicted in Figures 50 and 20 are the additional connections 5000 from the frame synchronization 2020 to the equalizer/carrier recovery 2000 carrying the cluster information.

同軸安全連結中之SPOT監視SPOT monitoring in coaxial security links

本發明的某些具體實施例中改進系統及設備的效能,包括以上描述者且其中基頻視訊信號可與基頻視訊信號及控制信號的數位表示組合,從而達成透過例如一同軸電纜(coax)的單一電纜傳輸。再次參考第4圖,本發明的一具體實施例提供透過coax安全連結(SLOC)之一系統。第5圖顯示SLOC系統之一可能調變方案。在該實例中,HD相機30提供包含壓縮數位HD視 訊影像332之一IP輸出41,及包含類比SD CVBS 330的一輔助相機信號。壓縮HD視訊IP信號332利用一SLOC相機側數據機49調變至通帶52,SLOC相機側數據機49包含一QAM調變器(參見在第21圖之數據機32中的調變器212)。調變器212提供一可與基頻類比CVBS信號330組合的調變信號。組合信號透過同軸電纜41傳輸「下行」,典型地可延伸至300米或更長距離。在監視器側,一SLOC監視器側數據機45分離基頻CVBS信號330與通帶下行IP信號332。經分離CVBS信號330饋入一SD顯示43用於現場、無延遲檢視。通帶下行IP信號332係用一QAM解調器(參見第22圖中之解調器222)解調,其輸出一信號至主網路開關44或一處理器/DVR(未顯示於圖4)。 The performance of the improved system and apparatus in some embodiments of the present invention includes the above description and wherein the baseband video signal can be combined with the digital representation of the baseband video signal and the control signal to achieve, for example, a coaxial cable (coax). Single cable transmission. Referring again to FIG. 4, an embodiment of the present invention provides a system through a Coax Secure Link (SLOC). Figure 5 shows one of the possible modulation schemes for the SLOC system. In this example, the HD camera 30 provides a compressed digital HD view. One of the video images 332 has an IP output 41 and an auxiliary camera signal comprising an analog SD CVBS 330. The compressed HD video IP signal 332 is modulated to a passband 52 by a SLOC camera side modem 49, and the SLOC camera side modem 49 includes a QAM modulator (see the modulator 212 in the modem 32 of Fig. 21). . Modulator 212 provides a modulated signal that can be combined with a baseband analog CVBS signal 330. The combined signal is transmitted "downstream" through coaxial cable 41, typically extending to a distance of 300 meters or more. On the monitor side, a SLOC monitor side modem 45 separates the baseband CVBS signal 330 from the passband downstream IP signal 332. The separated CVBS signal 330 is fed into an SD display 43 for on-site, no-delay viewing. The passband downstream IP signal 332 is demodulated with a QAM demodulator (see demodulator 222 in FIG. 22), which outputs a signal to the main network switch 44 or a processor/DVR (not shown in FIG. 4). ).

在該實例中,上行通信依據IP需求提供。上行通信334可額外用來自監視器側傳送音訊及相機控制信號42至相機40。典型地,上行信號的位元率及對應需求頻寬將比下行通帶信號所需低得多。監視器側SLOC數據機45包括一QAM調變器(參見第22圖中之調變器224),其調變IP信號至上行通帶44。如第5圖中之描述,上行通帶54及下行通帶52位於不同頻譜位置。在相機側,SLOC數據機包括一QAM解調器49(參見第21圖之數據機中的解調器214)用於接收上行信號。此方法提供優於先前系統及方法之若干優點,包括增加操作範圍,易於使用現存coax基礎建設佈署及獲得低延遲、即 時視訊。第21及22圖之簡化示意圖顯示第4圖之SLOC相機側數據機及第4圖中之SLOC監視側數據機45的額外細節。 In this example, uplink communication is provided in accordance with IP requirements. Uplink communication 334 can additionally transmit audio and camera control signals 42 to camera 40 from the monitor side. Typically, the bit rate of the upstream signal and the corresponding required bandwidth will be much lower than required for the downlink passband signal. The monitor side SLOC modem 45 includes a QAM modulator (see modulator 224 in FIG. 22) that modulates the IP signal to the upstream passband 44. As depicted in Figure 5, the upstream passband 54 and the downstream passband 52 are located at different spectral locations. On the camera side, the SLOC modem includes a QAM demodulator 49 (see demodulator 214 in the data engine of Figure 21) for receiving the upstream signal. This approach offers several advantages over previous systems and methods, including increased operating range, ease of deployment with existing coax infrastructure, and low latency, ie Video. The simplified schematics of Figures 21 and 22 show additional details of the SLOC camera side data machine of Figure 4 and the SLOC monitoring side data machine 45 of Figure 4.

第51A圖顯示基於第4圖說明之系統的一SLOC系統,其中一濾波階519在同軸電纜片段512及514之間提供,以使階513及電纜片段512及514操作以連接相機側設備與監視側組件。經濾波之階513典型地用來擷取至少一部分基頻CVBS信號5100至相機側SD顯示器5130。可在相機510附近提供顯示器5130用於測試、設定及/或局部監視。濾波階513典型地包含一低通濾波器,其阻擋可能干擾顯示功能5130之不需要信號,例如調變數位、IP及/或控制信號。階513亦可包括在數據機511及515之間阻擋信號傳輸的濾波器或開關。例如,一測試數據機5131可透過階513連接以致能故障診斷或初始設定相機側數據機511且顯示側數據機515可斷開以避免信號的干擾及/或劣化。如第5圖中顯示,SLOC相機側數據機511典型地基於信號5102之由相機產生之部分輸出一低通帶QAM信號及基頻CVBS信號5100,且SLOC監視側數據機515基於信號5170中之控制信號輸出一高通帶QAM信號。可藉由階513提供一或多數濾波器以避免可在SD顯示器5130及/或516上見到的不合需求之干擾,且阻擋IP及控制信號。應瞭解一些顯示及監視器缺少阻擋通帶信號中較高頻信號(相對於基頻CVBS信號5100)所需之濾波。 Figure 51A shows a SLOC system based on the system illustrated in Figure 4, wherein a filter stage 519 is provided between coaxial cable segments 512 and 514 to operate the stage 513 and cable segments 512 and 514 to interface with camera side equipment and monitoring. Side component. The filtered stage 513 is typically used to capture at least a portion of the baseband CVBS signal 5100 to the camera side SD display 5130. Display 5130 can be provided near camera 510 for testing, setting, and/or local monitoring. Filter stage 513 typically includes a low pass filter that blocks unwanted signals that may interfere with display function 5130, such as modulated digital, IP, and/or control signals. Stage 513 can also include a filter or switch that blocks signal transmission between data machines 511 and 515. For example, a test data machine 5131 can be connected through the stage 513 to enable fault diagnosis or to initially set the camera side data unit 511 and the display side data machine 515 can be turned off to avoid signal interference and/or degradation. As shown in FIG. 5, the SLOC camera side data unit 511 typically outputs a low pass QAM signal and a base frequency CVBS signal 5100 based on the portion of the signal 5102 generated by the camera, and the SLOC monitoring side data machine 515 is based on the signal 5170. The control signal outputs a high pass QAM signal. One or more filters may be provided by stage 513 to avoid undesirable interferences that may be seen on SD displays 5130 and/or 516, and to block IP and control signals. It should be appreciated that some displays and monitors lack the filtering required to block higher frequency signals in the passband signal (relative to the baseband CVBS signal 5100).

第51B圖中顯示一基於第3圖中說明的系統之一SLOC系統,其中相機側及監視側之間的電纜514已在相機側暫時斷開,且已將一SD顯示裝置或監視器5130透過電纜片段519直接連接至SLOC相機側數據機511。一測試數據機5131可視需要連接用於測試/設定目的。SD顯示裝置5130顯示基頻CVBS信號及提供在相機510的實體位置附近自相機510監視視訊的一能力且可能需求連接的再組態以促進設定及故障診斷。第51B圖中,低通帶QAM信號5102可造成缺少高頻濾波的SD顯示器5130上之不合需求的可見干擾。 FIG. 51B shows a SLOC system based on the system illustrated in FIG. 3, in which the cable 514 between the camera side and the monitoring side has been temporarily disconnected on the camera side, and an SD display device or monitor 5130 has been transmitted. The cable segment 519 is directly connected to the SLOC camera side data unit 511. A test data machine 5131 can be connected for testing/setting purposes as needed. The SD display device 5130 displays the baseband CVBS signal and provides a capability to monitor video from the camera 510 near the physical location of the camera 510 and may require reconfiguration of the connection to facilitate setup and troubleshooting. In Fig. 51B, the low passband QAM signal 5102 can cause undesirable visible interference on the SD display 5130 lacking high frequency filtering.

在第51A及51B圖顯示的實例中,可能發生數據機511及515之間信號的部分或完全斷開。信號的部分斷開可使QAM信號傳輸路徑仍保持完整。然而,連接的某些再組態導致相機側數據機511及監視側SLOC數據機515之間的QAM信號傳遞斷開。本發明的某些具體實施例提供機構,當數據機511及515間的連接斷開時,相機側數據機511藉由該機構停止通帶QAM傳輸,僅輸出CVBS信號。應瞭解到,用測試數據機5131暫時替換顯示器數據機典型包括一程序,其包括數據機511及515之間斷開,在數據機511及5131之間建立連接,在數據機511及5131之間斷開及在數據機511及515之間再建立連接。QAM信號之斷開可使用數據機511的各種功能組件偵測。因此,以下詳盡描述SLOC系統的操作。 In the example shown in Figures 51A and 51B, partial or complete disconnection of the signal between the data machines 511 and 515 may occur. Partial disconnection of the signal allows the QAM signal transmission path to remain intact. However, some reconfiguration of the connection causes the QAM signal transmission between the camera side data machine 511 and the monitoring side SLOC data machine 515 to be broken. Some embodiments of the present invention provide a mechanism for the camera side data unit 511 to stop the passband QAM transmission by the mechanism when the connection between the data machines 511 and 515 is disconnected, and output only the CVBS signal. It will be appreciated that temporarily replacing the display data machine with the test data machine 5131 typically includes a program that includes disconnecting between the data machines 511 and 515, establishing a connection between the data machines 511 and 5131, and disconnecting between the data machines 511 and 5131. And establishing a connection between the data machines 511 and 515. The disconnection of the QAM signal can be detected using various functional components of the modem 511. Therefore, the operation of the SLOC system is described in detail below.

用於一SLOC系統的QAM調變器結構QAM modulator structure for a SLOC system

如上述,第19圖說明提供至通帶調變(PB)模組1314的一訊框結構1336(參見第13圖)。第16圖之籬柵編碼增加位元;籬柵編碼前每一映射QAM符元之資料位元數目(如表2中顯示)。第14圖之315RS封包(521640位元)所映射之QAM符元的數目隨模態選擇而變化。使用每一訊框207及315封包的RS封包大小,獲得每一訊框一整數個符元,如表3中顯示。PB Mod模組1314接著使用熟習此項技術者已知的任何適合方法調變基頻QAM符元至通帶。(參見,例如以上有關第24圖之描述)。 As described above, FIG. 19 illustrates a frame structure 1336 provided to the passband modulation (PB) module 1314 (see FIG. 13). The fence coding of Figure 16 adds bits; the number of data bits per mapped QAM symbol before the fence is encoded (as shown in Table 2). The number of QAM symbols mapped by the 315RS packet (521640 bits) of Figure 14 varies with modal selection. Using the RS packet size of each frame 207 and 315 packet, an integer number of symbols are obtained for each frame, as shown in Table 3. The PB Mod module 1314 then modulates the baseband QAM symbols to the passband using any suitable method known to those skilled in the art. (See, for example, the description above with respect to Figure 24).

如上述,參考第20圖,將進一步描述第21及22圖的QAM解調器。模組2000接收在一通帶信號中的傳輸資料及將其轉換成基頻QAM符元。由模組2000施行的操作可包括符元時脈同步化,等化(以移除符元間干擾)及載波恢復,其典型地係使用子模組。因此,模組2000可包含一等化器,其輸出恢復基頻QAM符元2001。基頻QAM信號2001被提供至二位準分割器2018用於為在實及虛方向兩者中分割,從而形成序列a R [k][-1,+1]及a I [k][-1,+1]2019,其被提供至訊框同步模組2020。 As described above, with reference to Fig. 20, the QAM demodulator of Figs. 21 and 22 will be further described. Module 2000 receives the transmitted data in a passband signal and converts it into a baseband QAM symbol. The operations performed by module 2000 may include symbol clock synchronization, equalization (to remove inter-symbol interference), and carrier recovery, which typically employs sub-modules. Thus, module 2000 can include an equalizer whose output restores the fundamental frequency QAM symbol 2001. The baseband QAM signal 2001 is provided to a two-bit quasi-splitter 2018 for segmentation in both real and imaginary directions to form a sequence a R [ k ] [-1, +1] and a I [ k ] [-1, +1] 2019, which is provided to the frame synchronization module 2020.

訊框同步模組2020用二進位訊框同步PN序列的一儲存複本,在進入之分割QAM符元2019上分開地針對實及虛部執行一連續交叉相關運算。經儲存複本 之各成員具有-1或+1之一值。此運算由方程式1給定,重複於下: 其中s係127長訊框同步PN序列中之儲存複本。b R b I 之最大量值指示FEC資料訊框的開始。當在該流中偵測到此FEC資料訊框起點時將一訊框同步脈衝或其他同步信號傳送至接收器模組之一或多數。 The frame synchronization module 2020 synchronizes a stored copy of the PN sequence with the binary frame and performs a continuous cross-correlation operation on the incoming split QAM symbols 2019 for the real and imaginary parts separately. Each member of the stored copy has a value of -1 or +1. This operation is given by Equation 1, repeated below: Where s is a storage replica in the 127 long frame sync PN sequence. The maximum magnitude of b R or b I indicates the beginning of the FEC data frame. A frame sync pulse or other synchronization signal is transmitted to one or more of the receiver modules when the start of the FEC data frame is detected in the stream.

第52A及52B圖顯示當接收到一雜訊信號時能可靠地產生一訊框同步脈衝的一程序的元件。第52A圖顯示決定訊框長度之程序的一部分。訊框長度可根據選定傳輸模態變化(表3)。當符元接收到時重複執行在步驟5200處開始的一程序,且一符元計數器在執行間追蹤一些符元,其導致在一預定臨限值上的一值。在步驟5201處,針對各到達符元施行交叉相關且將符元計數器增量直至在步驟5202處決定已超過預定臨限值。符元計數器針對各符元增量5203直至超過臨限值。當在步驟5202超過臨限值時,則清除符元計數器5204且重複交叉相關5205、增量符元計數器5207及接收一新符元5208的步驟,直至其決定在步驟5206處已超過臨限值。在步驟5208處記錄一中間符元計數且在步驟5209處重設符元計數器。交叉相關5210、增量符元計數器5212及接收一新符元5213之步驟被重複直至其在步驟5211處中決定超過臨限值。若在步驟5214處符元計數 器係與步驟5208處記錄的中間符元計數相同,則訊框長度在5215處返回成為符元計數器的值。應瞭解,在上述實例中,訊框長度可在兩連續一致計數後決定。然而,所需連續相同計數的數目可視需要選擇。 Figures 52A and 52B show elements of a program that can reliably generate a frame sync pulse when a noise signal is received. Figure 52A shows a portion of the procedure for determining the frame length. The frame length can vary depending on the selected transmission mode (Table 3). A program starting at step 5200 is repeatedly executed when the symbol is received, and a symbol counter tracks some symbols between executions, which results in a value at a predetermined threshold. At step 5201, cross-correlation is performed for each arriving symbol and the symbol counter is incremented until it is determined at step 5202 that the predetermined threshold has been exceeded. The symbol counter increments 5203 for each symbol until the threshold is exceeded. When the threshold is exceeded at step 5202, the symbol counter 5204 is cleared and the steps of cross-correlation 5205, increment symbol counter 5207, and receipt of a new symbol 5208 are repeated until it determines that the threshold has been exceeded at step 5206. . An intermediate symbol count is recorded at step 5208 and the symbol counter is reset at step 5209. The cross-correlation 5210, the increment symbol counter 5212, and the step of receiving a new symbol 5213 are repeated until it determines at step 5211 that the threshold is exceeded. If the symbol is counted at step 5214 The device is the same as the intermediate symbol count recorded at step 5208, and the frame length is returned to the value of the symbol counter at 5215. It should be understood that in the above example, the frame length can be determined after two consecutive consistent counts. However, the number of consecutive identical counts required may be selected as desired.

第52B圖說明即使當接收到信號極吵雜時訊框同步模組2020亦可藉由其產生正確地計時訊框同步脈衝的一程序。該程序亦提供用於當信號之一暫時性中斷發生時,或傳輸器傳輸模態改變造成frame_size改變後擷取一新訊框同步位置。一自由運行符元計數器使用模數frame_size算術計數接收到符元,其中frame_size已由關於第52A圖描述的步驟決定。已預期當方程式10交叉相關的結果超過選定臨限值時,符元計數器值將始終具有相同值。當該值係一致時,使一信賴計數器增量直至一選定最大值(例如最大值為16);否則信賴計數器其係減量至零的一最小值。 Figure 52B illustrates a procedure by which the frame sync module 2020 can generate a correct timing frame sync pulse even when the received signal is extremely noisy. The program is also provided for capturing a new frame sync position when a temporary interruption of the signal occurs, or when the transmission mode change causes the frame_size to change. A free running symbol counter receives the symbols using the modulus frame_size arithmetic count, where frame_size has been determined by the steps described with respect to Figure 52A. It has been expected that when the result of the cross-correlation of Equation 10 exceeds the selected threshold, the symbol counter value will always have the same value. When the values are consistent, a trust counter is incremented until a selected maximum value (e.g., a maximum value of 16); otherwise, the trust counter is decremented to a minimum of zero.

因此,當在5250處接收一符元時,在5251處執行交叉相關,及若在5252處的結果超過臨限值,在5253處將目前最大值設定成臨限值且將一最大點設定成符元計數器的目前值。在所述實例中,若將信賴計數器設定成至少4的(5254)且目前符元計數指示訊框同步點(5255),則一訊框同步信號係在5256處輸出。其次,符元計數器在5257處增量,在此使用模數4加法。下一符元在步驟5277處等待,除非在步驟5270處決定符元計數器係零。若符元計數器係零,則在5271處重設 目前最大值。接著,在5272處若目前最大值點等於訊框同步點,則信賴計數器在5273處增量且下一符元在步驟5277處等待;否則,信賴計數器在5274處減量。在目前說明的實例中,若在步驟5275處決定該信賴已落至2之下,則在步驟5276處將訊框同步點設定至目前最大值點。不論何情況,下一符元在步驟5277處等待。 Thus, when a symbol is received at 5250, cross-correlation is performed at 5251, and if the result at 5252 exceeds the threshold, the current maximum is set to a threshold at 5253 and a maximum point is set to The current value of the symbol counter. In the example, if the trust counter is set to at least 4 (5254) and the current symbol count indicates a frame sync point (5255), then the frame sync signal is output at 5256. Second, the symbol counter is incremented at 5257, where modulo 4 addition is used. The next symbol waits at step 5277 unless it is determined at step 5270 that the symbol counter is zero. If the symbol counter is zero, reset at 5271 The current maximum. Next, at 5272, if the current maximum point is equal to the frame sync point, the trust counter is incremented at 5273 and the next symbol is waited at step 5277; otherwise, the trust counter is decremented at 5274. In the presently illustrated example, if it is determined at step 5275 that the trust has fallen below 2, the frame sync point is set to the current maximum point at step 5276. In either case, the next symbol waits at step 5277.

總之,根據上述的程序,當信賴計數器超過一預定值(此例中為4)時決定訊框同步已可靠地獲得。該訊框同步模組接著可清除以在正確時間提供一訊框同步脈衝。若信賴計數器超過4,該訊框同步脈衝將在正確時間輸出(典型地對應於一訊框的開始),即使雜訊偶爾使方程式10產生一低值。 In summary, according to the above procedure, it is determined that frame synchronization has been reliably obtained when the trust counter exceeds a predetermined value (4 in this example). The frame sync module can then be cleared to provide a frame sync pulse at the correct time. If the trust counter exceeds 4, the frame sync pulse will be output at the correct time (typically corresponding to the beginning of a frame), even if the noise occasionally causes Equation 10 to produce a low value.

若傳輸模態改變,信賴計數器最終地將計數回至零。此可用來觸發決定新訊框長度的訊框長度之一重計算(如,使用第52A圖的程序)。如以下將關於載波恢復所述,在恢復載波相位中可能有一π/2之不定性,其可導致零、±π/2或π的一任意額外恢復相位偏移。對於訊框同步符元,實及虛部係相同符號且傳輸群集顯示於第39圖中。 If the transfer mode changes, the trust counter will eventually count back to zero. This can be used to trigger a recalculation of one of the frame lengths that determine the length of the new frame (eg, using the procedure in Figure 52A). As will be described below with respect to carrier recovery, there may be an π/2 uncertainty in the recovered carrier phase, which may result in an arbitrary additional recovered phase offset of zero, ±π/2 or π. For frame sync symbols, the real and imaginary parts are the same symbol and the transport cluster is shown in Figure 39.

因此,應瞭解對於零相位偏移,最大量值b R b I 之符號兩者均為正。如表5所概述,-π/2偏移將會獲得一負最大量值b R 及一正最大量值b I ;對於π之一偏移,b R b I 兩者將為負,而對於π/2之一偏移,最大量值b R 將為正而最大量值b I 將為負。因此,組合中的最大 量值b R b I 之各自的符號可指示最後相位偏移已收斂之複數平面的象限。此允許一額外相位校正應用至相位偏移校正器模組2002中之該信號(第20圖)。最大b R b I 之符號自相關為主訊框同步模組2020傳送至相位偏移校正器2002。 Therefore, it should be understood that for a zero phase offset, both the symbols of the maximum magnitudes b R and b I are positive. As summarized in Table 5, the -π/2 offset will result in a negative maximum magnitude b R and a positive maximum magnitude b I ; for a shift of π, both b R and b I will be negative, and For a shift of π/2, the maximum magnitude b R will be positive and the maximum magnitude b I will be negative. Thus, the respective symbols of the maximum magnitudes b R and b I in the combination may indicate the quadrant of the complex plane in which the final phase offset has converged. This allows an additional phase correction to be applied to the signal in phase offset corrector module 2002 (Fig. 20). The symbol autocorrelation of the maximum b R and b I is transmitted to the phase offset corrector 2002 by the main frame synchronization module 2020.

另外參考第40圖,可更加瞭解第20圖之實例中的相位偏移校正器2002之某些態樣。LUT 400基於最大量值b R b I 之符號產生一輸出(參見表5)。給定z[k]=z R [k]+jz I [k],運算402可執行如下: Referring additionally to Fig. 40, some aspects of the phase shift corrector 2002 in the example of Fig. 20 can be better understood. The LUT 400 produces an output based on the symbols of the maximum magnitudes b R and b I (see Table 5). Given z [ k ]= z R [ k ]+ jz I [ k ], operation 402 can be performed as follows:

(1)對於ψ=+π的情況:z’[k]=-z R [k]-jz I [k] (1) For the case of ψ=+π: z' [ k ]=- z R [ k ]- jz I [ k ]

(2)對於ψ=+π/2的情況:z’[k]=-z I [k]+jz R [k] (2) For the case of ψ=+π/2: z' [ k ]=- z I [ k ]+ jz R [ k ]

(3)對於ψ=-π/2的情況:z’[k]=+z I [k]-jz R [k] (3) For the case of ψ=-π/2: z' [ k ]= +z I [ k ]- jz R [ k ]

一旦找到訊框同步開始位置且校正mπ/2相位偏移,得知含有模態位元(群集及籬柵碼率)的碼字元之位置。碼字元可接著由(例如)一BCH解碼器或由將接收到碼字元與所有可能碼字元相關且選擇產生最高所得值的碼字元而可靠地解碼。因為重複傳送此資訊,可要求在接受前產生多次相同的結果以獲得額外可靠性。第41圖顯示可藉由訊框同步模組2020施行之一程序的一實例。 Once the frame sync start position is found and the m π/2 phase offset is corrected, the location of the code character containing the modal bit (cluster and fence rate) is known. The codewords can then be reliably decoded by, for example, a BCH decoder or by a codeword that will receive the received codewords associated with all possible codewords and select the highest resulting value. Because this information is transmitted repeatedly, it can be required to generate multiple identical results before acceptance for additional reliability. Figure 41 shows an example of a program that can be implemented by the frame synchronization module 2020.

繼續第20圖的系統,自訊框同步模組2020輸出之訊框同步信號的2021可用來指示在將符元饋送至軟解映射器前哪些符元係要在模組2004中移除。在一實例中,將127訊框同步符元及8模態符元自該流中移除確 保僅對應於RS封包之符元被傳遞至軟解映射器2006。軟解映射器2006使用此項技術演算法計算軟位元計量,例如,由Akay及Tosato描述之演算法。為了正確操作,軟解映射器2006必須知道將哪一刪餘模式(哪一籬柵碼率)用於傳輸器及該模式與接收到位元的對準。此資訊2021由訊框同步模組2020提供,其解碼該模態資訊及亦提供一重複訊框同步信號至刪餘模式所對準者,而不論目前模態為何。此等軟位元比較量被饋送至以此項技術中已知之方式操作的Viterbi解碼器2008以達到被輸入至傳輸器中的PTCM編碼器之位元的估計處。均藉由訊框同步信號2021同步之解隨機產生器2013、位元組解交錯器2014及RS解碼器2016分别將位元組資料解隨機、解交錯及解碼,以獲得原始輸入傳輸器中之RS編碼器的資料。 Continuing with the system of FIG. 20, the frame synchronization signal 2021 output by the frame synchronization module 2020 can be used to indicate which symbols are to be removed in the module 2004 before the symbols are fed to the soft demapper. In an example, the 127 frame sync symbol and the 8-modal symbol are removed from the stream. The symbols corresponding to only the RS packets are passed to the soft demapper 2006. The soft demapper 2006 uses this technique algorithm to calculate soft bit metrics, such as those described by Akay and Tosato. For proper operation, the soft demapper 2006 must know which puncturing mode (which is the gate rate) for the transmitter and the alignment of the mode with the received bit. The information 2021 is provided by the frame synchronization module 2020, which decodes the modal information and also provides a repetitive frame synchronization signal to the puncturing mode, regardless of the current mode. These soft bit comparison quantities are fed to a Viterbi decoder 2008 operating in a manner known in the art to arrive at an estimate of the bits of the PTCM encoder that are input to the transmitter. The de-random generator 2013, the byte deinterleaver 2014, and the RS decoder 2016, which are synchronized by the frame synchronization signal 2021, respectively de-randomize, de-interleave, and decode the byte data to obtain the original input transmitter. RS encoder information.

階段切換Stage switching

某些具體實施例使用基於等化器輸出處之均方誤差的估計之階段切換。等化器輸出處之均方誤差的一精確估計可自藉由第42圖的誤差計算器模組422計算的一系列誤差e[k]得到。例如,可由使用以下獲得一估計:MSE[k]=(1-β)e 2[k]+βMSE[k-1],(方程式18)其中β<1係一遺忘因子。用於平均e[k]的其他方法係為人已知及可使用。方程式18產生可與一預定臨限值比較 之一結果及由第42圖的階段控制器模組423用以當MSE[k]降至該臨限值下時切換自階段1至階段2的操作。其可與一第二預定臨限值比較以當MSE[k]降至該第二臨限值下時切換自階段2至階段3的操作。 Some embodiments use phase switching based on an estimate of the mean square error at the output of the equalizer. An accurate estimate of the mean square error at the output of the equalizer can be obtained from a series of errors e [ k ] calculated by the error calculator module 422 of FIG. For example, an estimate can be obtained by using: MSE [ k ] = (1 - β ) e 2 [ k ] + βMSE [ k -1], (Equation 18) where β <1 is a forgetting factor. Other methods for averaging e [ k ] are known and available for use. Equation 18 produces a result that can be compared to a predetermined threshold and is used by phase controller module 423 of Figure 42 to switch from phase 1 to phase 2 when MSE [ k ] falls below the threshold. . It can be compared to a second predetermined threshold to switch from phase 2 to phase 3 operation when MSE [ k ] falls below the second threshold.

偵測斷開及再連接Detect disconnection and reconnection

某些具體實施例提供用於偵測一通信連結之相機側上的斷開及再連接事件之系統及方法。再次參考第51A及51B圖,數據機511及515之間信號的部分或完全斷開可在正常操作中發生。某些斷開影響在相機側數據機511及監視側SLOC數據機515間之QAM發信號。 尤其係,承載藉由HD相機510擷取之影像的信號係藉由數據機511編碼及/或調變用於透過電纜514傳輸至顯示側數據機515。可藉由相機側SLOC數據機511施行偵測關於同軸514之斷開及再連接事件的複數方法。回應於一斷開或再連接事件,數據機511可暫停,開始或再開始下行通帶QAM傳輸。在一些具體實施例中,自一QAM解調器至一QAM調變器傳輸的「同軸連接」信號可用以控制用於連接相關事件的傳輸。 Certain embodiments provide systems and methods for detecting disconnection and reconnection events on the camera side of a communication link. Referring again to Figures 51A and 51B, partial or complete disconnection of signals between data machines 511 and 515 can occur during normal operation. Some disconnection affects the QAM signal between the camera side modem 511 and the monitoring side SLOC modem 515. In particular, the signals carrying the images captured by the HD camera 510 are encoded and/or modulated by the data machine 511 for transmission to the display side data unit 515 via the cable 514. A plurality of methods for detecting disconnection and reconnection events with respect to the coaxial 514 can be performed by the camera side SLOC modem 511. In response to a disconnect or reconnect event, data modem 511 may suspend, start or resume downlink passband QAM transmission. In some embodiments, a "coaxial connection" signal transmitted from a QAM demodulator to a QAM modulator can be used to control the transmission for connecting related events.

參考第53圖,例如,一相機側QAM解調器530可經組態以僅當一同軸連接信號531藉由一相機側QAM調變器532確證時傳輸一下行通帶信號533。相機側QAM解調器532可使用各種方法決定藉由監視器側QAM調變器(未顯示)傳輸的輸入信號534的存在。典型地,當確認群集識別及/或在已獲得一訊框同步之驗證 時,而當輸入信號534之接收經可靠確認時,該同軸連接信號531藉由相機側QAM解調器532確證。 Referring to Figure 53, for example, a camera side QAM demodulator 530 can be configured to transmit a line passband signal 533 only when a coaxial connection signal 531 is verified by a camera side QAM modulator 532. Camera side QAM demodulator 532 can use various methods to determine the presence of input signal 534 transmitted by a monitor side QAM modulator (not shown). Typically, when verifying the cluster identification and/or verifying that a frame synchronization has been obtained At the time, when the reception of the input signal 534 is reliably confirmed, the coaxial connection signal 531 is confirmed by the camera side QAM demodulator 532.

偵測輸入信號534的存在之一方法包括一種基於一自動增益控制(AGC)迴路的方法。在通信接收器(包括QAM解調器)中一般發現AGC係用來在接收器中的各級及點處控制信號位準。第27圖中描述一實例,其顯示加至第24圖之接收器前端的AGC迴路540。在AGC迴路540中,一複數信號的量值在541決定且在542自一預定參考位準543減去。該結果由低通濾波器(LPF)544濾波以抑制雜訊及短程變動。LPF 544提供一輸出饋送至一包含加法器545及一延遲元件546的累積器。該累積器輸出係用作回饋至系統輸入549處之增益塊548的增益控制信號547。在一實例中,增益控制信號547用作一增益因子或乘法器,其決定由增益塊548提供的增益以致當增益控制547增加時,由增益塊548提供的增益在預定極限內增加。當輸入549斷開時(如該同軸斷開),量值塊541的輸出傾向於極低。典型地,該同軸連接之信號531可僅當量值塊輸出在一預定臨限值上時確證。此外,當輸入549斷開時,增益控制信號547典型極高。因此,該同軸連接信號531可僅當增益控制信號低於一預定臨限值時確證。即使在QAM解調器532中他處找到該迴路,亦可用AGC迴路540來監視輸入549的連接狀況。 One method of detecting the presence of input signal 534 includes a method based on an automatic gain control (AGC) loop. AGCs are commonly found in communication receivers (including QAM demodulators) to control signal levels at various levels and points in the receiver. An example is shown in Fig. 27, which shows an AGC loop 540 applied to the front end of the receiver of Fig. 24. In AGC loop 540, the magnitude of a complex signal is determined at 541 and subtracted from a predetermined reference level 543 at 542. The result is filtered by a low pass filter (LPF) 544 to suppress noise and short range variations. The LPF 544 provides an output feed to an accumulator including an adder 545 and a delay element 546. The accumulator output is used as a gain control signal 547 that is fed back to gain block 548 at system input 549. In one example, gain control signal 547 is used as a gain factor or multiplier that determines the gain provided by gain block 548 such that as gain control 547 increases, the gain provided by gain block 548 increases within predetermined limits. When input 549 is off (e.g., the coaxial is off), the output of magnitude block 541 tends to be extremely low. Typically, the coaxially coupled signal 531 can be asserted only when the equivalent value block output is on a predetermined threshold. Moreover, when input 549 is off, gain control signal 547 is typically extremely high. Therefore, the coaxial connection signal 531 can be verified only when the gain control signal is below a predetermined threshold. Even if the loop is found elsewhere in the QAM demodulator 532, the AGC loop 540 can be used to monitor the connection status of the input 549.

偵測輸入信號534之存在的另一方法係基於第43圖顯示的等化器及載波相位/頻率迴路級(亦參見方 程式18)。尤其係,當QAM解調器532的QAM調變器階段控制器434(最初在階段1)基於方程式18的結果切換至階段2時,可確證同軸連接信號531。僅在同軸連接時發生階段1至階段2轉變且QAM解調器532主動地自監視器側QAM調變器接收一上行信號。該同軸的任何後續斷開將造成信號的損失,由方程式18計算之MSE的一增加將導致反轉至階段1。當QAM解調器532在階段1時,可重設或解確證該同軸連接信號531。在一些具體實施例中,相機側QAM解調器532其可需求在確證同軸連接信號531前已達到階段3。 Another method of detecting the presence of input signal 534 is based on the equalizer and carrier phase/frequency loop stages shown in Figure 43 (see also Equation 18). In particular, when the QAM modulator stage controller 434 of the QAM demodulator 532 (initially at stage 1) switches to phase 2 based on the result of equation 18, the coaxial connection signal 531 can be verified. The Phase 1 to Phase 2 transition occurs only during the coaxial connection and the QAM demodulator 532 actively receives an upstream signal from the monitor side QAM modulator. Any subsequent disconnection of this coaxial will result in a loss of signal, and an increase in the MSE calculated by Equation 18 will result in a reversal to Phase 1. When the QAM demodulator 532 is in phase 1, the coaxial connection signal 531 can be reset or de-asserted. In some embodiments, camera side QAM demodulator 532 may require phase 3 to be reached prior to confirming coaxial connection signal 531.

用於偵測輸入信號534之存在的另一方法係基於有關第52B圖討論之解調器訊框同步信賴計數器。尤其係,該同軸連接信號531可僅當信賴計數器顯示大於一預定臨限值之一值時由相機側QAM解調器532確證。在一實例中,臨限值可為4。因此,僅當同軸連接且監視器側數據機對相機傳輸SLOC訊框至相機時將確證該同軸連接信號531。若即使未接收任何符元而訊框同步程序持續自由運行時,斷開將使信賴計數器向後計數及最終落至4以下且該同軸連接信號531將解確證。 Another method for detecting the presence of input signal 534 is based on the demodulator frame synchronization trust counter discussed in connection with FIG. 52B. In particular, the coaxial connection signal 531 can be verified by the camera side QAM demodulator 532 only when the trust counter displays a value greater than a predetermined threshold. In an example, the threshold can be four. Therefore, the coaxial connection signal 531 will be confirmed only when the coaxial connection and the monitor side data machine transmit the SLOC frame to the camera to the camera. If the frame synchronization procedure continues to run freely even if no symbols are received, the disconnection will cause the trust counter to count backwards and eventually fall below 4 and the coaxial connection signal 531 will resolve.

用於偵測輸入信號534的存在的另一方法係基於更高層協定。再參考第51A圖,HD相機30及監視器側主系統38可使用一網路協定通信。為了討論目的,將普遍存在之網際網路協定(IP)用作一網路協定的一實例。IP的一些模態固有係雙向且導致資料在上行及下行 兩者傳送。若電纜斷開,HD相機30及/或數據機32中的一網路控制器或處理器認知沒有返回IP封包自監視器側到達且可通知相機側SLOC數據機32停止通帶傳輸。在一實例中,此通知可包括自HD相機30透過例如用第53圖顯示之MII介面536傳輸一特別預定資料封包至數據機32。 Another method for detecting the presence of input signal 534 is based on a higher layer protocol. Referring again to Figure 51A, HD camera 30 and monitor side host system 38 can communicate using a network protocol. For purposes of discussion, the ubiquitous Internet Protocol (IP) is used as an example of a network protocol. Some modalities of IP are inherently two-way and cause data to go up and down. Both are transmitted. If the cable is disconnected, a network controller or processor in HD camera 30 and/or data machine 32 recognizes that no return IP packet arrives from the monitor side and can notify camera side SLOC modem 32 to stop the passband transmission. In an example, the notification can include transmitting a particular predetermined data packet from the HD camera 30 to the data processor 32 via, for example, the MII interface 536 shown in FIG.

本發明某些態樣的額外描述Additional description of certain aspects of the invention

本發明的先前描述意欲為說明性而非限制。例如,熟習此項技術者將瞭解本發明可用上述功能及能力的各種組合來實踐,且可包括比在上述者較少或額外組件。本發明之某些額外態樣及特性在下文中進一步提出,及可使用以上更詳細描述的功能及組件獲得,如熟習此項技術者經本揭示內容教示後將會瞭解。 The previous description of the invention is intended to be illustrative rather than limiting. For example, those skilled in the art will appreciate that the present invention may be practiced in various combinations of the functions and capabilities described above, and may include fewer or additional components than those described above. Some additional aspects and features of the present invention are further set forth below, and may be obtained using the functions and components described in more detail above, as will be appreciated by those skilled in the art.

本發明的某些具體實施例提供有關一相機的系統及方法。一些此等具體實施例包含一處理器,其自一影像感測器接收一影像信號及產生代表該影像信號之複數視訊信號;及一編碼器,其組合該基頻視訊信號及該數位視訊信號作為透過一電纜傳輸之一輸出信號。在一些此等具體實施例中,該等視訊信號包括一基頻視訊信號及一數位視訊信號。在一些此等具體實施例中,該等組合基頻及數位視訊信號係實質上同步。在一些此等具體實施例中,該相機係一閉路高畫質電視相機。在一些此等具體實施例,該基頻視訊信號包含一標準畫質類比視訊信號。在一些此等具體實施例,該數位視訊信號 在與該基頻視訊信號組合前調變。在一些此等具體實施例中,該數位視訊信號包含壓縮視訊信號。在一些此等具體實施例中,該數位視訊信號係一高畫質數位視訊信號。在一些此等具體實施例中,該數位視訊信號的訊框率小於該影像信號的訊框率。在一些此等具體實施例中,對一視訊記錄器提供該調變數位信號。 Certain embodiments of the present invention provide systems and methods related to a camera. Some of the specific embodiments include a processor that receives an image signal from an image sensor and generates a plurality of video signals representing the image signal, and an encoder that combines the baseband video signal and the digital video signal The signal is output as one of transmission through a cable. In some such embodiments, the video signals include a baseband video signal and a digital video signal. In some such embodiments, the combined baseband and digital video signals are substantially synchronized. In some such embodiments, the camera is a closed high definition television camera. In some such embodiments, the baseband video signal includes a standard picture quality analog video signal. In some such embodiments, the digital video signal Modulated before being combined with the baseband video signal. In some such embodiments, the digital video signal comprises a compressed video signal. In some such embodiments, the digital video signal is a high quality digital video signal. In some such embodiments, the frame rate of the digital video signal is less than the frame rate of the video signal. In some such embodiments, the modulated digital signal is provided to a video recorder.

一些此等具體實施例包含一解碼器,其係經組態以解調自電纜接收之一上行信號。在一些此等具體實施例中,該解調上行信號包含控制信號。在一些此等具體實施例中,該等控制信號包括用以控制相機的位置及定向之信號。在一些此等具體實施例中,該等控制信號包括用以藉由該處理器控制該基頻視訊信號及該數位視訊信號的產生之信號。在一些此等具體實施例中,該等控制信號包括用以選擇影像信號之一部分用於編碼作為該基頻視訊信號之信號。在一些此等具體實施例中,該等控制信號包括用以選擇該影像信號之一部分用於編碼作為該數位視訊信號之信號。在一些此等具體實施例中,該解調上行信號包含用來驅動該相機之一音訊輸出的一音訊信號。 Some such embodiments include a decoder configured to demodulate one of the upstream signals received from the cable. In some such embodiments, the demodulated uplink signal includes a control signal. In some such embodiments, the control signals include signals to control the position and orientation of the camera. In some such embodiments, the control signals include signals for controlling the generation of the baseband video signal and the digital video signal by the processor. In some such embodiments, the control signals include a portion for selecting a portion of the image signal for encoding as the baseband video signal. In some such embodiments, the control signals include a portion for selecting a portion of the image signal for encoding as the digital video signal. In some such embodiments, the demodulated uplink signal includes an audio signal for driving an audio output of the camera.

本發明的某些具體實施例提供用於傳輸視訊影像之方法。一些此等具體實施例包含將自一高畫質影像裝置接收之一視訊信號分頻多工處理以獲得一調變數位信號,藉由組合該調變數位信號與一代表該視訊信號之基頻類比信號來產生一輸出信號,及同時將該輸出信 號傳輸至一顯示系統及數位視訊擷取及/或儲存裝置。在一些此等具體實施例中,該顯示系統顯示自代表該視訊信號之該基頻類比表示導出之一影像。在一些此等具體實施例中,該數位視訊儲存器使用一數位視訊記錄器記錄自該調變數位信號擷取的一高畫質訊框序列。 Certain embodiments of the present invention provide methods for transmitting video images. Some such embodiments include frequency division multiplexing processing of a video signal received from a high definition image device to obtain a modulated digital signal by combining the modulated digital signal with a fundamental frequency representative of the video signal Analog signal to generate an output signal and simultaneously output the signal The number is transmitted to a display system and a digital video capture and/or storage device. In some such embodiments, the display system displays an image derived from the fundamental analog representation representing the video signal. In some such embodiments, the digital video storage uses a digital video recorder to record a sequence of high quality video frames captured from the modulated digital signal.

一些此等具體實施例包含壓縮該視訊信號。在一些此等具體實施例中,分頻多工處理該數位視訊信號之步驟包括調變之前壓縮該視訊信號。在一些此等具體實施例中,傳輸該輸出信號包括提供該輸出信號至一同軸電纜。一些此等具體實施例包含將自該同軸電纜接收之一輸入信號解調以獲得一控制信號。一些此等具體實施例包含藉由將一複合視訊信號中之視訊信號的一部分編碼來產生該基頻類比信號。一些此等具體實施例包含使用該控制信號選擇待在該複合視訊信號中編碼的視訊信號之該部分。一些此等具體實施例包含使用該控制信號控制該相機之一位置。在一些此等具體實施例中,將該輸入信號解調包括自該輸入信號擷取一音訊信號。 Some such embodiments include compressing the video signal. In some such embodiments, the step of frequency division multiplexing processing the digital video signal includes compressing the video signal prior to modulation. In some such embodiments, transmitting the output signal includes providing the output signal to a coaxial cable. Some such embodiments include demodulating an input signal received from the coaxial cable to obtain a control signal. Some such embodiments include generating the fundamental analog signal by encoding a portion of the video signal in a composite video signal. Some such embodiments include using the control signal to select the portion of the video signal to be encoded in the composite video signal. Some such embodiments include using the control signal to control a position of the camera. In some such embodiments, demodulating the input signal includes extracting an audio signal from the input signal.

本發明之某些具體實施例提供用於操作相機的系統及方法。一些此等具體實施例包含一處理器,其自一影像感測器接收一影像信號且產生複數視訊信號;控制邏輯,其經組態以回應於藉由該相機接收的一控制信號;及一調變器,其經組態以調變該數位視訊信號作為一調變信號。在一些此等具體實施例中,該複數視訊信號包括一基頻視訊信號及一數位視訊信號。在一些此 等具體實施例中,該複數視訊信號之各者表示該相機的一視野之至少一部分。在一些此等具體實施例中,該控制信號控制該等基頻及數位視訊信號的內容。在一些此等具體實施例中,該調變信號及該基頻視訊信號由該相機同時傳輸。 Certain embodiments of the present invention provide systems and methods for operating a camera. Some such embodiments include a processor that receives an image signal from an image sensor and generates a plurality of video signals; control logic configured to respond to a control signal received by the camera; and A modulator configured to modulate the digital video signal as a modulated signal. In some such embodiments, the complex video signal includes a baseband video signal and a digital video signal. In some of this In a specific embodiment, each of the plurality of video signals represents at least a portion of a field of view of the camera. In some such embodiments, the control signal controls the content of the base and digital video signals. In some such embodiments, the modulated signal and the baseband video signal are simultaneously transmitted by the camera.

在一些此等具體實施例中,該等基頻及數位視訊信號實質上同步。一些此等具體實施例包含一編碼器,其組合該基頻視訊信號及該調變信號作為用於透過一電纜傳輸的一輸出信號。在一些此等具體實施例中,該控制信號接收作為一無線信號。在一些此等具體實施例中,該調變信號係無線傳輸。在一些此等具體實施例中,該數位視訊信號為一高畫質數位視訊信號。在一些此等具體實施例中,數位視訊信號包含壓縮數位視訊。在一些此等具體實施例中,該控制信號移動藉由該等視訊信號之一表示的該視野的部分。 In some such embodiments, the fundamental and digital video signals are substantially synchronized. Some such embodiments include an encoder that combines the baseband video signal and the modulated signal as an output signal for transmission over a cable. In some such embodiments, the control signal is received as a wireless signal. In some such embodiments, the modulated signal is transmitted wirelessly. In some such embodiments, the digital video signal is a high quality digital video signal. In some such embodiments, the digital video signal includes compressed digital video. In some such embodiments, the control signal moves a portion of the field of view represented by one of the video signals.

本發明的某些具體實施例提供一等化器,其用於配合由頻率分離及由一電纜承載之一數位信號及一基頻類比信號。一些此等具體實施例包含一數位等化器,其將自在該接收器接收的數位信號移除失真。一些此等具體實施例包含一類比等化器,其補償起因於該電纜之類比信號的衰減。在一些此等具體實施例中,該類比等化器應用一組基頻類比濾波器之一來補償該衰減。在一些此等具體實施例中,基於由不同頻率之衰減中差 別的數位等化器所計算的估計選擇應用的基頻類比濾波器。 Certain embodiments of the present invention provide an equalizer for cooperating with a frequency separation and a digital signal carried by a cable and a fundamental analog signal. Some such embodiments include a digital equalizer that removes distortion from the digital signal received at the receiver. Some such embodiments include an analog equalizer that compensates for attenuation of analog signals due to the cable. In some such embodiments, the analog equalizer applies one of a set of fundamental frequency analog filters to compensate for the attenuation. In some such embodiments, based on the difference in attenuation by different frequencies The estimate calculated by the other digital equalizer selects the applied fundamental frequency analog filter.

在一些此等具體實施例中,在一相機中體現的一傳輸器及一接收器之間傳輸該數位信號及該類比信號,且其中該接收器提供代表類比信號之一等化信號至一監視器。在一些此等具體實施例中,該電纜包含一同軸電纜。在一些此等具體實施例中,該失真隨該電纜長度而增加。在一些此等具體實施例中,該失真包括多路徑失真。在一些此等具體實施例中,該衰減估計自具有其中傾斜係大約線性的一功率頻譜密度的一頻帶計算。在一些此等具體實施例中,該傾斜係針對複數濾波器階使用一快速傅立葉(Fourier)轉換來計算。在一些此等具體實施例中,該頻帶中之頻段經選定以允許使用以下加法式計算該數位等化器之一濾波器的頻率響應: In some such embodiments, the digital signal and the analog signal are transmitted between a transmitter and a receiver embodied in a camera, and wherein the receiver provides an equalization signal representative of the analog signal to a monitoring Device. In some such embodiments, the cable includes a coaxial cable. In some such embodiments, the distortion increases with the length of the cable. In some such embodiments, the distortion includes multipath distortion. In some such embodiments, the attenuation is estimated from a frequency band having a power spectral density in which the tilt system is approximately linear. In some such embodiments, the tilt is calculated for a complex filter order using a fast Fourier transform. In some such embodiments, the frequency band in the frequency band is selected to allow calculation of the frequency response of one of the digital equalizer filters using the following addition:

,其中 G[k]係時域收斂等化器濾波器階之離散傅立葉轉換,且k 1對應於該DFT之一特定頻段。在一些此等具體實施例中,該數位信號包含由一相機擷取之視訊信號的一高畫質表示,及其中該類比信號包含該等視訊信號之一標準畫質表示。 Where G [ k ] is a discrete Fourier transform of the time domain convergence equalizer filter stage, and k 1 corresponds to a particular frequency band of the DFT. In some such embodiments, the digital signal comprises a high quality representation of the video signal captured by a camera, and wherein the analog signal comprises a standard picture quality representation of the video signals.

本發明的某些具體實施例提供用於等化一類比信號的方法,該類比信號係在亦承載由頻率自該類比 信號分離之一數位信號的電纜中。在一些此等具體實施例中,該方法係由一數據機施行,其接收該等類比及數位信號及輸出一基頻視訊信號。一些此等具體實施例包括計算該數位信號中的傾斜。在一些此等具體實施例中,該傾斜將衰減描述為可歸因於該電纜之頻率的一函數。一些此等具體實施例包含基於經計算傾斜等化該數位信號。一些此等具體實施例包含藉由使用該計算傾斜以選擇一組基頻類比濾波器之一來組態一類比等化器。一些此等具體實施例包含使用該選定基頻類比濾波器等化該類比信號。 Certain embodiments of the present invention provide methods for equalizing an analog signal that is also carried by frequency from the analogy The signal is separated from the cable of one of the digital signals. In some such embodiments, the method is performed by a data machine that receives the analog and digital signals and outputs a baseband video signal. Some such embodiments include calculating the tilt in the digital signal. In some such embodiments, the tilt describes the attenuation as a function attributable to the frequency of the cable. Some such embodiments include equalizing the digital signal based on the calculated tilt. Some such embodiments include configuring an analog equalizer by using the computational tilt to select one of a set of fundamental frequency analog filters. Some such embodiments include equalizing the analog signal using the selected fundamental frequency analog filter.

在一些此等具體實施例中,該類比信號包含一基頻視訊信號且該數位信號包含該基頻視訊信號之一高畫質版本。在一些此等具體實施例中,該電纜包含一同軸電纜且其中該傾斜隨該電纜的長度變化。在一些此等具體實施例中,該傾斜自多路徑失真導出。在一些此等具體實施例中,計算傾斜包括估計在具有其中傾斜係大約線性的一功率頻譜密度的一頻帶中之衰減。在一些此等具體實施例中,估計衰減包括針對複數濾波器階使用一快速傅立葉轉換。在一些此等具體實施例中,估計衰減包括在該頻帶中選擇頻段。在一些此等具體實施例中,該選定頻段最佳化計算該傾斜之步驟的效率。 In some such embodiments, the analog signal includes a baseband video signal and the digital signal includes a high quality version of the baseband video signal. In some such embodiments, the cable includes a coaxial cable and wherein the tilt varies with the length of the cable. In some such embodiments, the tilt is derived from multipath distortion. In some such embodiments, calculating the tilt includes estimating an attenuation in a frequency band having a power spectral density in which the tilt system is approximately linear. In some such embodiments, estimating the attenuation includes using a fast Fourier transform for the complex filter stages. In some such embodiments, estimating the attenuation comprises selecting a frequency band in the frequency band. In some such embodiments, the selected frequency band optimizes the efficiency of the step of calculating the tilt.

本發明的某些具體實施例提供使用一新穎分框結構之數位通信系統。一些此等具體實施例包括交錯一資料訊框的一迴旋位元組交錯器,其中該交錯器經同 步化至一訊框結構。一些此等具體實施例包括一隨機產生器,其經組態以自該交錯資料訊框產生一隨機化的資料訊框。一些此等具體實施例包含一刪餘籬柵碼調變器,其以自該隨機化資料訊框產生一籬柵編碼資料訊框的一可選擇碼率操作。一些此等具體實施例包含一QAM映射器。其映射該籬柵編碼資料訊框中成群組的位元至調變符元,從而提供一映射訊框。一些此等具體實施例包括一同步器,其將一同步封包加至該映射訊框。 Certain embodiments of the present invention provide a digital communication system that uses a novel sub-frame structure. Some such embodiments include a whirling byte interleaver that interleaves a data frame, wherein the interleaver is identical Step to a frame structure. Some such embodiments include a random generator configured to generate a randomized data frame from the interleaved data frame. Some such embodiments include a punctured fence code modulator that operates at a selectable rate from a randomized data frame to generate a fence-encoded data frame. Some such embodiments include a QAM mapper. It maps the bits in the fence encoded data frame into groups of modulated symbols to provide a mapping frame. Some such embodiments include a synchronizer that adds a synchronization packet to the mapping frame.

在一些此等具體實施例中,該刪餘籬柵碼調變器繞行以基於該系統之一量測白雜訊效能獲得一最佳化淨位元率。在一些此等具體實施例中,該相同同步封包加至一後續映射訊框序列中之各者。在一些此等具體實施例中,相同同步封包係加至各映射訊框。在一些此等具體實施例中,該同步封包之一部分包含127個符元。在一些此等具體實施例中,該同步封包之一部分包含用於該等調變符元之實及虛部之不同二進位序列。在一些此等具體實施例中,該同步封包之一部分包含用於該等調變符元之實及虛部的一相同二進位序列。在一些此等具體實施例中,該同步封包包含指示該映射訊框之一傳輸模態的資料。在一些此等具體實施例中,傳輸模態的指示包括一選定QAM群集及一選定籬柵碼率。在一些此等具體實施例中,不論傳輸模態如何,該系統產生用於資料的各訊框的一恆定整數之Reed-Solomon封包。在一些此等具體實施例中,不論傳輸模態如何,該 系統產生用於資料的各訊框的一可變整數之調變符元。在一些此等具體實施例中,不論傳輸模態如何,該系統產生用於資料的每一訊框的一整數之刪餘模式循環。 In some such embodiments, the punctured fence code modulator bypasses to obtain an optimized net bit rate based on measuring white noise performance of one of the systems. In some such embodiments, the same synchronization packet is added to each of a subsequent sequence of mapping frames. In some such embodiments, the same synchronization packet is added to each mapping frame. In some such embodiments, one portion of the synchronization packet contains 127 symbols. In some such embodiments, one portion of the synchronization packet contains different binary sequences for the real and imaginary parts of the modulation symbols. In some such embodiments, one portion of the synchronization packet includes an identical binary sequence for the real and imaginary parts of the modulation symbols. In some such embodiments, the synchronization packet includes data indicative of a transmission modality of the mapping frame. In some such embodiments, the indication of the transmission modality includes a selected QAM cluster and a selected fence rate. In some such embodiments, the system generates a constant integer Reed-Solomon packet for each frame of data regardless of the transmission modality. In some such embodiments, regardless of the transmission modality, The system generates a variable integer modulation symbol for each frame of the data. In some such embodiments, the system generates an integer puncturing mode loop for each frame of data regardless of the transmission modality.

本發明的某些具體實施例提供用於一可變淨位元率數位通信系統之分框方法。一些此等具體實施例包含提供一組不同正交振幅調變(QAM)群集。一些此等具體實施例包含使用刪餘籬柵碼組合產生資料封包的訊框,各組合對應於一相關模態。一些此等具體實施例包括提供具有QAM符元之一可變整數的一訊框。在一些此等具體實施例中,QAM符元的數目對應於一選定模態。在一些此等具體實施例中,位元組及每一訊框Reed-Solomon封包之一相關數目係常數。在一些此等具體實施例中,不論相關模態如何,使用刪餘籬柵碼組合產生資料封包之訊框包括產生用於資料的每一訊框的一整數之刪餘模式循環。在一些此等具體實施例中,用於一或多數模態之每一QAM符元之資料位元的數目係分數。在一些此等具體實施例中,對於所有模態,每一訊框之籬柵編碼器刪餘模式循環之一數目係一整數。 Certain embodiments of the present invention provide a framing method for a variable net bit rate digital communication system. Some such embodiments include providing a set of different quadrature amplitude modulation (QAM) clusters. Some such embodiments include frames for generating data packets using a combination of punctured fence codes, each combination corresponding to a correlated modality. Some such embodiments include providing a frame with a variable integer of one of the QAM symbols. In some such embodiments, the number of QAM symbols corresponds to a selected modality. In some such embodiments, the associated number of bytes and each frame Reed-Solomon packet is constant. In some such embodiments, regardless of the associated modality, the use of a punctured fence combination to generate a data packet includes generating an integer puncturing pattern loop for each frame of data. In some such embodiments, the number of data bits for each QAM symbol of one or more modalities is a fraction. In some such embodiments, the number of one of the fence encoder puncturing mode loops for each frame is an integer for all modalities.

本發明的某些具體實施例提供校正相位偏移之系統。一些此等具體實施例包含一相位偏移校正器,其接收代表一正交振幅調變信號之等化信號及自該等化信號導出一相位校正信號。一些此等具體實施例包含一二位準分割器,其將等化信號分割以獲得實及虛序列。一些此等具體實施例包含一訊框同步器,其用一儲存訊 框同步偽隨機序列之對應部分施行該等實及虛序列的一相關。一些此等具體實施例包含由該訊框同步器提供至該相位偏移校正器的一相位校正信號。在一些此等具體實施例中,該相位校正信號基於該相關之最大實及虛值。在一些此等具體實施例中,該訊框同步器在進入之分割正交振幅調變符元上施行連續交叉相關。 Certain embodiments of the present invention provide a system for correcting phase offset. Some such embodiments include a phase offset corrector that receives an equalized signal representative of a quadrature amplitude modulation signal and derives a phase correction signal from the equalized signal. Some such embodiments include a two-bit quasi-splitter that splits the equalized signal to obtain real and imaginary sequences. Some such embodiments include a frame synchronizer that uses a stored message A corresponding portion of the block sync pseudo-random sequence performs a correlation of the real and imaginary sequences. Some such embodiments include a phase correction signal provided by the frame synchronizer to the phase offset corrector. In some such embodiments, the phase correction signal is based on the maximum real and imaginary values of the correlation. In some such embodiments, the frame synchronizer performs continuous cross-correlation on the incoming split quadrature amplitude modulation symbols.

在一些此等具體實施例中,該連續交叉相關係用二進位訊框同步偽隨機雜訊序列的經儲存複本分開地針對該等實及虛序列執行。在一些此等具體實施例中,使用刪餘籬柵碼調變該正交振幅調變信號。在一些此等具體實施例中,使用正交相移鍵控調變來調變該正交振幅調變信號。在一些此等具體實施例中,該正交振幅調變(QAM)信號使用16-QAM調變。在一些此等具體實施例中,該正交振幅調變的(QAM)信號使用64-QAM調變。在一些此等具體實施例中,正交振幅調變信號之訊框同步符元具有相同符號且該相關之最大真及虛值的符元係指示該等化信號中的相位旋轉。在一些此等具體實施例中,由該訊框同步器提供的相位校正信號包含該相關之最大實及虛值的符號。在一些此等具體實施例中,該相位偏移校正器藉由用該相關之最大實及虛值的符號索引一查找表以決定一相位校正值來導出該相位校正信號。 In some such embodiments, the continuous cross-correlation relationship is performed separately for the real and imaginary sequences using a stored copy of the binary frame sync pseudo-random noise sequence. In some such embodiments, the quadrature amplitude modulation signal is modulated using a punctured fence code. In some such embodiments, quadrature phase shift keying modulation is used to modulate the quadrature amplitude modulation signal. In some such embodiments, the quadrature amplitude modulation (QAM) signal is modulated using 16-QAM. In some such embodiments, the quadrature amplitude modulated (QAM) signal is modulated using 64-QAM. In some such embodiments, the frame sync symbols of the quadrature amplitude modulation signal have the same sign and the associated maximum true and imaginary symbols indicate the phase rotation in the equalized signal. In some such embodiments, the phase correction signal provided by the frame synchronizer includes the associated maximum real and imaginary sign. In some such embodiments, the phase offset corrector derives the phase correction signal by indexing a lookup table with the associated maximum real and imaginary symbol to determine a phase correction value.

本發明的某些具體實施例提供用於在一接收器中校正一正交振幅調變信號中之載波相位偏移的方 法。一些此等具體實施例包括等化該信號。一些此等具體實施例包含分割該等化信號,從而自該等化信號獲得實及虛序列。一些此等具體實施例包含識別該等實及虛序列中的一訊框同步序列。在一些此等具體實施例中,識別該訊框同步序列包括將一儲存偽隨機序列與該等實及虛序列相關。在一些此等具體實施例中,識別該訊框同步序列包括自關聯該等真及虛序列之最大相關值決定一訊框之一開始。一些此等具體實施例包含基於該等最大相關值校正該等化信號中之一相位誤差。 Certain embodiments of the present invention provide for correcting a carrier phase offset in a quadrature amplitude modulation signal in a receiver law. Some such embodiments include equalizing the signal. Some such embodiments include segmenting the equalized signals to obtain real and imaginary sequences from the equalized signals. Some such embodiments include identifying a frame synchronization sequence in the real and imaginary sequences. In some such embodiments, identifying the frame synchronization sequence includes correlating a stored pseudo-random sequence with the real and imaginary sequences. In some such embodiments, identifying the frame synchronization sequence includes determining from a correlation of the maximum correlation value of the true and imaginary sequences to determine one of the frames. Some such embodiments include correcting one of the phased errors in the equalized signal based on the maximum correlation values.

在一些此等具體實施例中,該相關步驟包括用一二進位訊框同步偽隨機雜訊序列的一儲存複本在一系列分割正交振幅調變符元上施行連續交叉相關。在一些此等具體實施例中,該相關步驟包括分開地用該等實及虛序列在一儲存複本的訊框同步序列上施行連續交叉相關。在一些此等具體實施例中,該訊框同步序列之訊框同步符元具有相同符元。在一些此等具體實施例中,校正一相位誤差包括基於該等最大相關值的符元在該等化信號中決定相位旋轉。在一些此等具體實施例中,校正該等化信號中的一相位誤差包括用該等實及虛最大相關值的符號來索引一查找表。 In some such embodiments, the correlating step includes performing a continuous cross-correlation on a series of split quadrature amplitude modulation symbols with a stored copy of a binary frame sync pseudo-random noise sequence. In some such embodiments, the correlating step includes separately performing a continuous cross-correlation on the frame synchronization sequence of the stored replicas using the real and imaginary sequences. In some such embodiments, the frame sync symbols of the frame synchronization sequence have the same symbols. In some such embodiments, correcting a phase error includes determining a phase rotation in the equalized signal based on the symbols of the maximum correlation values. In some such embodiments, correcting a phase error in the equalized signal includes indexing a lookup table with the symbols of the real and imaginary maximum correlation values.

本發明的某些具體實施例提供用於在一正交振幅調變信號中校正載波相位偏移的方法。在一些此等具體實施例中,該方法可在包含經組態以執行指令的一或多數處理器之一系統中實施。一些此等具體實施例包 含在一或多數處理器上執行經組態以等化該信號的指令。一些此等具體實施例包括在一或多數處理器上執行經組態以分割該等化信號從而自該等化信號獲得實及虛序列的指令。一些此等具體實施例包括在一或多數處理器上執行經組態以識別該等實及虛序列中之一訊框同步序列的指令。在一些此等具體實施例中,識別該訊框同步序列包括分開地用該等實及虛序列在一儲存複本的訊框同步序列上施行連續交叉相關。在一些此等具體實施例中,識別該訊框同步序列包自關聯該等實及虛序列之最大相關值決定一訊框之一開始。一些此等具體實施例包含在一或多數處理器上執行經組態以基於該等最大相關值校正該等化信號中一相位誤差的指令。在一些此等具體實施例中,該訊框同步序列的訊框同步符元具有相同符元。一些此等具體實施例中,校正一相位誤差包括基於該等最大相關值的符號決定該等化信號中之相位旋轉。 Certain embodiments of the present invention provide methods for correcting carrier phase offset in a quadrature amplitude modulated signal. In some such embodiments, the method can be implemented in a system including one or more processors configured to execute instructions. Some of these specific embodiment packages An instruction configured to equalize the signal is executed on one or more processors. Some such embodiments include instructions executed on one or more processors configured to split the equalized signal to obtain a real and a virtual sequence from the equalized signal. Some such embodiments include instructions executed on one or more processors to configure a frame synchronization sequence in the real and imaginary sequences. In some such embodiments, identifying the frame synchronization sequence includes separately performing a continuous cross-correlation on the frame synchronization sequence of the stored replicas using the real and imaginary sequences. In some such embodiments, identifying the frame synchronization sequence packet begins with associating one of the maximum correlation values of the real and imaginary sequences. Some such embodiments include instructions executed on one or more processors to configure a phase error in the equalized signal based on the maximum correlation values. In some such embodiments, the frame sync symbols of the frame sync sequence have the same symbols. In some such embodiments, correcting a phase error includes determining a phase rotation in the equalized signal based on a sign of the maximum correlation values.

本發明的某些具體實施例提供用於識別符元之一群集的方法。在一些此等具體實施例中,由一多模態正交振幅調變通信系統之一或多數處理器執行該方法。一些此等具體實施例包含執行造成一或多數處理器在一信號中描述功率分佈的指令。在一些此等具體實施例中,該功率分佈統計上追蹤該信號中偵測到功率位準的發生。一些此等具體實施例包含執行造成一或多數處理器決定功率分佈內功率位準之一或多數尖峰發生的指 令。一些此等具體實施例包含執行造成一或多數處理器基於該等尖峰發生的分佈決定該群集的指令。 Certain embodiments of the present invention provide methods for identifying a cluster of one of the symbols. In some such embodiments, the method is performed by one or a plurality of processors of a multi-modal quadrature amplitude modulation communication system. Some such embodiments include instructions that cause one or more processors to describe a power distribution in a signal. In some such embodiments, the power distribution statistically tracks the occurrence of detected power levels in the signal. Some such embodiments include performing instructions that cause one or more processors to determine one of the power levels or a majority of peaks within the power distribution. make. Some such embodiments include executing instructions that cause one or more processors to determine the cluster based on the distribution of the spikes.

在一些此等具體實施例中,一或多數處理器亦基於一或多數尖峰發生之展開決定該群集。在一些此等具體實施例中,該信號係一等化信號且其中一或多數處理器藉由在該功率分佈的直方圖中檢查複數區段來決定該群集。在一些此等具體實施例中,該等區段之各者對應於功率位準之一範圍,該等功率位準關聯複數群集候選者之一但非所有。在一些此等具體實施例中,該複數群集候選者包括一正交相移鍵控群集及一正交振幅調變(QAM)群集。在一些此等具體實施例中,該複數群集候選者包括16-QAM及64-QAM群集。在一些此等具體實施例中,該複數群集候選者包括一256-QAM群集。 In some such embodiments, one or more processors also determine the cluster based on the expansion of one or more spikes. In some such embodiments, the signal is equalized signal and one or more of the processors determine the cluster by examining the complex segments in a histogram of the power distribution. In some such embodiments, each of the segments corresponds to a range of power levels that are associated with one but not all of the complex cluster candidates. In some such embodiments, the complex cluster candidate includes a quadrature phase shift keying cluster and a quadrature amplitude modulation (QAM) cluster. In some such embodiments, the complex cluster candidate includes a 16-QAM and a 64-QAM cluster. In some such embodiments, the complex cluster candidate includes a 256-QAM cluster.

一些此等具體實施例包括執行造成一或多數處理器藉由施行針對一系列群集決定之各者的步驟來建立一識別群集的可靠性之指令。在一些此等具體實施例中,當一後續決定確認該群集之識別時,該等步驟包含增量一計數器。在一些此等具體實施例中,當一後續決定識別一不同群集時,該等步驟包含減量一計數器。在一些此等具體實施例中,該等步驟包括基於該計數器的值提供可靠性之一測量。在一些此等具體實施例中,該群集係當該計數器超過一臨限值時被識別。在一些此等具體實施例中,一計數器提供用於複數群集候選者的各者且其中該群集當其對應計數器超過一臨限值時被識 別。在一些此等具體實施例中,功率位準之尖峰發生對應於該群集的角落符元。在一些此等具體實施例中,在該信號等化前識別出該群集。 Some such embodiments include executing instructions that cause one or more processors to establish a cluster identification reliability by performing steps for each of a series of cluster decisions. In some such embodiments, when a subsequent decision confirms the identification of the cluster, the steps include incrementing a counter. In some such embodiments, when a subsequent decision identifies a different cluster, the steps include decrementing a counter. In some such embodiments, the steps include providing one of the reliability measurements based on the value of the counter. In some such embodiments, the cluster is identified when the counter exceeds a threshold. In some such embodiments, a counter provides for each of the plurality of cluster candidates and wherein the cluster is recognized when its corresponding counter exceeds a threshold do not. In some such embodiments, a spike in power level occurs corresponding to a corner symbol of the cluster. In some such embodiments, the cluster is identified prior to the signal being equalized.

本發明的某些具體實施例提供在一多模態正交振幅調變通信系統中識別符元之一群集的方法。在一些此等具體實施例中,該等方法由該通信系統之一數據機中的一處理器執行。一些此等具體實施例包含執行造成該處理器回應於在數據機接收之一資料之訊框的一開始之偵測而自該資料的訊框擷取模態資訊的指令。一些此等具體實施例包含執行造成該處理器藉由自複數可能群集中選擇一最緊密匹配該等模態位元之一對應碼來決定一目前群集的指令。一些此等具體實施例包含執行若該目前群集匹配一先前決定群集則造成該處理器增加關聯該先前識別群集之一信賴計量的指令。一些此等具體實施例包含執行若該目前群集不同於該先前識別群集,則造成處理器減少信賴計量,且記錄該目前群集作為該先前識別群集的指令。一些此等具體實施例包含重複造成該處理器擷取模態資訊,選擇一目前群集及調整信賴計量用於資料的後續訊框直至該信賴計量超過一預定臨限值的該等步驟。在一些此等具體實施例中,當該信賴計量超過該預定臨限值時該群集被識別出。 Certain embodiments of the present invention provide a method of identifying a cluster of one of the symbols in a multi-modal quadrature amplitude modulation communication system. In some such embodiments, the methods are performed by a processor in one of the data systems of the communication system. Some such embodiments include instructions for causing the processor to retrieve modal information from the frame of the data in response to the detection of the beginning of the frame of data received by the data machine. Some such embodiments include executing instructions that cause the processor to determine a current cluster by selecting a code from one of the possible possible clusters that most closely matches one of the modal bits. Some such embodiments include executing an instruction to cause the processor to add a trust metric to one of the previously identified clusters if the current cluster matches a previously determined cluster. Some such embodiments include performing an instruction to cause the processor to reduce the trust meter if the current cluster is different from the previously identified cluster and to record the current cluster as the previously identified cluster. Some such embodiments include the steps of repeatedly causing the processor to retrieve modal information, selecting a current cluster and adjusting the trusted metering for subsequent frames of the data until the trusted metering exceeds a predetermined threshold. In some such embodiments, the cluster is identified when the confidence measure exceeds the predetermined threshold.

在一些此等具體實施例中,選擇一群集碼包含造成該處理器對於具有對應碼位元之複數可能群集碼的各者施行交叉相關。在一些此等具體實施例中,該群 集係在一承載資料的訊框及資料的後續訊框之未等化信號中識別出。在一些此等具體實施例中,該群集被識別出而該處理器係自該信號恢復一載波。一些此等具體實施例包含執行造成該處理器使用一恆定模數演算法(CMA)來計算一誤差信號以收斂等化器濾波器階來允許該信號的等化的指令。在一些此等具體實施例中,該誤差信號係使用一比例縮放CMA參數以改進等化效能來計算。在一些此等具體實施例中,執行該信號的等化包括分析該等化信號之功率的該等直方圖。在一些此等具體實施例中,分析該等直方圖包括使用一機率質量函數。在一些此等具體實施例中,施行該信號的等化包含執行造成該處理器計算關聯該等化信號中之複數符元之功率的指令。在一些此等具體實施例中,施行該信號的等化包含執行造成該處理器藉由使用一臨限值功率位準識別該群集的角落符元之指令。在一些此等具體實施例中,該臨限值功率位準指示該群集的識別。 In some such embodiments, selecting a cluster code includes causing the processor to perform cross-correlation for each of the plurality of possible cluster codes having corresponding code bits. In some such embodiments, the group The collection is identified in an unequalized signal of the frame carrying the data and the subsequent frame of the data. In some such embodiments, the cluster is identified and the processor recovers a carrier from the signal. Some such embodiments include executing instructions that cause the processor to use a constant modulus algorithm (CMA) to calculate an error signal to converge the equalizer filter stage to allow for equalization of the signal. In some such embodiments, the error signal is calculated using a scaled CMA parameter to improve equalization performance. In some such embodiments, performing equalization of the signal includes analyzing the histograms of the power of the equalized signal. In some such embodiments, analyzing the histograms includes using a probability mass function. In some such embodiments, performing equalization of the signal includes executing an instruction that causes the processor to calculate the power associated with the complex symbols in the equalized signal. In some such embodiments, performing equalization of the signal includes executing instructions that cause the processor to identify the corner symbols of the cluster by using a threshold power level. In some such embodiments, the threshold power level indicates the identification of the cluster.

本發明的某些具體實施例提供用於傳輸視訊信號之系統,該系統包含一相機側數據機,其經組態以自一視訊相機接收兩信號,各信號係代表由該相機擷取之影像的序列,且進一步經組態以傳輸兩信號之一作為一複合基頻視訊信號及調變與傳輸另一信號作為一通帶視訊信號,其不重疊基頻信號。在一些此等具體實施例中,該相機側數據機包括一混合器,其組合該等基頻及通帶視訊信號以提供一傳輸信號。在一些此等具體實施 例中,該相機側數據機包括一雙工器,其經組態以透過一傳輸線傳輸該傳輸信號及自該傳輸線擷取一接收到通帶信號。在一些此等具體實施例中,該相機側數據機包括一偵測器,其監視該相機側數據機及當識別出該接收到通帶信號時產生一致能信號。在一些此等具體實施例,該致能信號控制該基頻視訊信號及該通帶視訊信號之至少一者的傳輸。 Certain embodiments of the present invention provide a system for transmitting a video signal, the system including a camera side data machine configured to receive two signals from a video camera, each signal representing an image captured by the camera The sequence is further configured to transmit one of the two signals as a composite baseband video signal and to modulate and transmit the other signal as a passband video signal that does not overlap the baseband signal. In some such embodiments, the camera-side data unit includes a mixer that combines the baseband and passband video signals to provide a transmission signal. In some of these specific implementations In one example, the camera side data machine includes a duplexer configured to transmit the transmission signal through a transmission line and to receive a passband signal from the transmission line. In some such embodiments, the camera-side data machine includes a detector that monitors the camera-side data machine and generates a consistent energy signal when the received passband signal is recognized. In some such embodiments, the enable signal controls transmission of at least one of the baseband video signal and the passband video signal.

在一些此等具體實施例中,僅當產生該致能信號時傳輸該通帶視訊信號。在一些此等具體實施例中,該接收到通帶信號係正交振幅調變。在一些此等具體實施例中,該偵測器監視在一正交調幅解調器中之均方誤差的估計,且其中當該估計超過一臨限值時產生該致能信號。在一些此等具體實施例中,該偵測器監視一群集偵測器。在一些此等具體實施例中,基於由該群集偵測器提供之可靠性的一測量產生該致能信號。在一些此等具體實施例中,該可靠性測量基於一訊框同步序列。在一些此等具體實施例中,該偵測器監視一等化器中之均方誤差的一估計。在一些此等具體實施例中,當該估計超過一臨限值時產生該致能信號。在一些此等具體實施例中,該偵測器監視該相機側數據機的一自動增益控制模組中之一增益因子。在一些此等具體實施例中,當增益因子具有小於一臨限值之一值時產生該致能信號。在一些此等具體實施例中,該偵測器監視該接收到通帶信號之一量值。在一些此等具體實施例中,當該 量值具有超過一臨限值之一值時產生該致能信號。在一些此等具體實施例中,該接收到通帶信號包含根據網際網路協定編碼的資料。 In some such embodiments, the passband video signal is transmitted only when the enable signal is generated. In some such embodiments, the received passband signal is quadrature amplitude modulated. In some such embodiments, the detector monitors an estimate of the mean square error in a quadrature amplitude modulation demodulator, and wherein the enable signal is generated when the estimate exceeds a threshold. In some such embodiments, the detector monitors a cluster detector. In some such embodiments, the enable signal is generated based on a measurement of the reliability provided by the cluster detector. In some such embodiments, the reliability measure is based on a frame synchronization sequence. In some such embodiments, the detector monitors an estimate of the mean square error in the equalizer. In some such embodiments, the enable signal is generated when the estimate exceeds a threshold. In some such embodiments, the detector monitors one of the gain factors of an automatic gain control module of the camera-side data processor. In some such embodiments, the enable signal is generated when the gain factor has a value less than a threshold. In some such embodiments, the detector monitors a magnitude of the received passband signal. In some such embodiments, when The enable signal is generated when the magnitude has a value above one threshold. In some such embodiments, the received passband signal includes data encoded in accordance with an internet protocol.

本發明的某些具體實施例提供用於控制在一保全系統中發信號的方法。一些此等具體實施例包含在一上行數據機處決定在一同軸電纜上傳輸之一複合信號中的一上行QAM信號的存在。一些此等具體實施例包含當決定存在該上行QAM信號時,造成該上行數據機在同軸電纜上傳輸一複合基頻視訊信號及一通帶視訊信號。在一些此等具體實施例中,該複合基頻視訊信號及通帶視訊信號係由一視訊相機擷取的一影像序列的並行表示。一些此等具體實施例包含當決定不存在該上行QAM信號時,造成上行數據機在同軸電纜上傳輸該複合基頻視訊信號及防止該通帶視訊信號的傳輸。 Certain embodiments of the present invention provide methods for controlling signaling in a security system. Some such embodiments include the determination of the presence of an uplink QAM signal in a composite signal transmitted on a coaxial cable at an upstream modem. Some such embodiments include causing the uplink data unit to transmit a composite baseband video signal and a passband video signal on the coaxial cable when it is determined that the uplink QAM signal is present. In some such embodiments, the composite baseband video signal and the passband video signal are represented in parallel by an image sequence captured by a video camera. Some such embodiments include causing the uplink data unit to transmit the composite baseband video signal on the coaxial cable and prevent transmission of the passband video signal when it is determined that the uplink QAM signal is not present.

在一些此等具體實施例中,當一自動增益控制信號中的一增益值超過一臨限值時,決定該上行QAM信號存在。在一些此等具體實施例中,當該上行QAM信號量值之一測量小於一臨限值時,決定該上行QAM信號存在。在一些此等具體實施例中,當一等化器中之均方誤差的一估計超過一臨限值時,決定該上行QAM信號不存在。在一些此等具體實施例中,當在該上行QAM信號中識別出一網際網路協定資料封包時,決定該上行QAM信號不存在。 In some such embodiments, when a gain value in an automatic gain control signal exceeds a threshold, the uplink QAM signal is determined to be present. In some such embodiments, when one of the uplink QAM signal magnitudes is less than a threshold, the uplink QAM signal is determined to be present. In some such embodiments, when an estimate of the mean square error in the equalizer exceeds a threshold, the uplink QAM signal is determined to be absent. In some such embodiments, when an internet protocol data packet is identified in the uplink QAM signal, it is determined that the uplink QAM signal does not exist.

本發明的某些具體實施例提供自動再組態系統用於傳輸視訊信號。一些此等具體實施例包含一上行數據機,其經組態以自一視訊相機接收兩信號。在一些此等具體實施例中,各信號係代表由該相機擷取之影像的序列。在一些此等具體實施例中,該上行數據機經組態以傳輸兩信號之一作為一複合基頻視訊信號及調變與傳輸該另一信號作為一通帶視訊信號,其不重疊該基頻信號。一些此等具體實施例包含一下行數據機,其經組態以自該上行數據機接收複合基頻視訊信號及通帶視訊信號,且進一步經組態以傳輸一上行通帶信號至該上行數據機。在一些此等具體實施例中,當偵測該上行通帶信號中之一劣化時,該上行數據機停止兩信號之至少一信號的傳輸。 Certain embodiments of the present invention provide an automatic reconfiguration system for transmitting video signals. Some such embodiments include an upstream data machine configured to receive two signals from a video camera. In some such embodiments, each signal represents a sequence of images captured by the camera. In some such embodiments, the uplink data machine is configured to transmit one of the two signals as a composite baseband video signal and to modulate and transmit the other signal as a passband video signal that does not overlap the baseband. signal. Some such embodiments include a downlink data machine configured to receive a composite baseband video signal and a passband video signal from the uplink data machine, and further configured to transmit an uplink passband signal to the uplink data machine. In some such embodiments, the uplink data machine stops transmission of at least one of the two signals when one of the uplink passband signals is detected to be degraded.

雖然本發明已參考特定範例性具體實施例描述,但熟習此項技術者將會明瞭可在不脫離本發明的更廣泛精神及範圍下進行對此等具體實施例的各種修正及改變。例如,已描述系統並行地提供壓縮數位HD視訊與一基頻類比視訊信號。本發明之其他具體實施例同時提供標準畫質數位及類比體送。其他具體實施例連同基頻類比視訊提供全訊框率數位HD視訊。因此,說明書及圖式應視為說明性而非一限制性意義。 While the invention has been described with respect to the specific embodiments of the present invention, it will be understood that various modifications and changes of the embodiments may be made without departing from the scope of the invention. For example, the system has been described to provide compressed digital HD video and a baseband analog video signal in parallel. Other embodiments of the present invention provide both standard image quality and analog delivery. Other embodiments provide full frame rate digital HD video along with the baseband analog video. Accordingly, the specification and drawings are to be regarded as illustrative rather

30‧‧‧相機 30‧‧‧ camera

31‧‧‧數據機/SLOC-T 31‧‧‧Data Machine/SLOC-T

32‧‧‧DVR/數據機 32‧‧‧DVR/Data Machine

33‧‧‧同軸電纜 33‧‧‧Coaxial cable

34‧‧‧SD顯示 34‧‧‧SD display

35‧‧‧SLOC-R數據機 35‧‧‧SLOC-R data machine

36‧‧‧資料 36‧‧‧Information

330‧‧‧類比CVBS信號/輔助相機輸出 330‧‧‧ analog CVBS signal / auxiliary camera output

332‧‧‧高畫質信號/通帶下行IP信號 332‧‧‧High quality signal/passband downlink IP signal

Claims (19)

一種方法,包括以下步驟:在一第一數據機處,接收從一成像裝置導出之一或更多視訊信號;調變該一或更多視訊信號中的至少一者以獲得一調變數位信號,該調變數位信號代表由該成像裝置產生的一視訊影像;在一同軸電纜的基頻中傳輸一類比視訊信號,該類比視訊信號代表該視訊影像;及與該傳輸該類比視訊信號同時,在自該同軸電纜的該基頻分離的一頻帶中傳輸該調變數位信號。 A method comprising the steps of: receiving, at a first data machine, one or more video signals derived from an imaging device; modulating at least one of the one or more video signals to obtain a modulated digital signal The modulated digital signal represents a video image generated by the imaging device; an analog video signal is transmitted in a fundamental frequency of a coaxial cable, the analog video signal representing the video image; and the video signal is transmitted simultaneously with the analog video signal The modulated digital signal is transmitted in a frequency band separated from the fundamental frequency of the coaxial cable. 如請求項1所述之方法,其中該類比視訊信號與該調變數位信號是等時(isochronous)。 The method of claim 1, wherein the analog video signal and the modulated digital signal are isochronous. 如請求項1所述之方法,進一步包括以下步驟:壓縮從該成像裝置接收的一數位信號以獲得一壓縮數位信號,其中該調變該一或更多視訊信號中的該至少一者之步驟包括:調變該壓縮數位信號。 The method of claim 1, further comprising the step of compressing a digital signal received from the imaging device to obtain a compressed digital signal, wherein the step of modulating the at least one of the one or more video signals Including: modulating the compressed digital signal. 如請求項3所述之方法,進一步包括以下步 驟:格式化從該成像裝置接收的該數位信號以獲得一或更多高畫質數位視訊信號,至少一個高畫質數位視訊信號符合廣播標準。 The method of claim 3, further comprising the following steps Step: Formatting the digital signal received from the imaging device to obtain one or more high quality digital video signals, at least one high quality digital video signal conforming to a broadcast standard. 如請求項4所述之方法,進一步包括以下步驟:從該一或更多高畫質數位視訊信號導出該類比視訊信號。 The method of claim 4, further comprising the step of deriving the analog video signal from the one or more high quality digital video signals. 如請求項3所述之方法,進一步包括以下步驟:從接收自該成像裝置的該數位信號導出該類比視訊信號。 The method of claim 3, further comprising the step of deriving the analog video signal from the digital signal received from the imaging device. 如請求項3所述之方法,其中該數位信號及該壓縮數位信號具有不同的訊框率(frame rate)。 The method of claim 3, wherein the digital signal and the compressed digital signal have different frame rates. 一種設備,包括:一數據機,該數據機配置以將該設備耦接至一同軸電纜;及一處理系統,該處理系統耦接至該數據機,且該處 理系統配置以:接收從一成像裝置導出之一或更多視訊信號;使得該數據機在該同軸電纜的基頻中傳輸一類比視訊信號;及使得該數據機在該同軸電纜中於自該同軸電纜的該基頻分離的一頻帶內傳輸一調變數位視訊信號,其中該類比視訊信號與該調變數位視訊信號是同時地傳輸的,且是代表由該成像裝置產生的視訊影像,且其中該調變數位視訊信號被傳輸至一數位視訊記錄器、一視訊伺服器、及一數位顯示器中之一或更多者。 An apparatus comprising: a data machine configured to couple the device to a coaxial cable; and a processing system coupled to the data machine, and the The system is configured to: receive one or more video signals from an imaging device; cause the data machine to transmit an analog video signal in a fundamental frequency of the coaxial cable; and cause the data machine to be in the coaxial cable Transmitting, by a frequency band of the coaxial cable, a modulated digital video signal, wherein the analog video signal is transmitted simultaneously with the modulated digital video signal, and represents a video image generated by the imaging device, and The modulated digital video signal is transmitted to one or more of a digital video recorder, a video server, and a digital display. 一種系統,包括:一第一數據機,該第一數據機配置以接收從一成像裝置導出的一或更多視訊信號,該第一數據機被進一步配置以在一同軸電纜的基頻中傳輸一類比視訊信號及在該同軸電纜中於自該同軸電纜的該基頻分離的一頻帶內傳輸一調變數位視訊信號,其中該類比視訊信號及該調變數位視訊信號代表由該成像裝置產生之視訊影像;及一第二數據機,該第二數據機配置以從該同軸電纜接收該調變數位視訊信號且該第二數據機解調該調變數位視訊信號以獲得一高畫質視訊信號,其中該高畫質視 訊信號是由該第二數據機傳輸至一數位視訊記錄器、一視訊伺服器、及一數位顯示器中之一或更多者。 A system comprising: a first data machine configured to receive one or more video signals derived from an imaging device, the first data machine being further configured to transmit in a fundamental frequency of a coaxial cable a class of modulated video signals transmitted in a frequency band separated from the fundamental frequency of the coaxial cable in the coaxial cable, wherein the analog video signal and the modulated digital video signal are generated by the imaging device And a second data machine configured to receive the modulated digital video signal from the coaxial cable and the second data machine demodulates the modulated digital video signal to obtain a high quality video signal Signal, where the high quality view The signal is transmitted by the second data machine to one or more of a digital video recorder, a video server, and a digital display. 如請求項9所述之系統,進一步包括:一濾波器,該濾波器將該類比視訊信號從該調變數位視訊信號分離,其中該類比視訊信號被提供至一標準畫質監視器。 The system of claim 9, further comprising: a filter that separates the analog video signal from the modulated digital video signal, wherein the analog video signal is provided to a standard picture quality monitor. 如請求項9所述之系統,其中該第一數據機調變一壓縮視訊信號以獲得該調變數位視訊信號,該壓縮視訊信號是自該成像裝置導出。 The system of claim 9, wherein the first data machine modulates a compressed video signal to obtain the modulated digital video signal, the compressed video signal being derived from the imaging device. 如請求項9所述之系統,其中從該成像裝置導出的該一或更多視訊信號中之至少一者是由該第一數據機壓縮的。 The system of claim 9, wherein at least one of the one or more video signals derived from the imaging device is compressed by the first data machine. 如請求項9所述之系統,其中該第二數據機調變一上行(upstream)控制信號並傳輸該調變控制信號於該同軸電纜的一頻道(channel)中,其中該調變控制信號由該第一數據機接收與解調,且其中該上行控制信號控制該類比視訊信號及該調變數位視訊信號中之一或更多者的內容。 The system of claim 9, wherein the second data machine modulates an upstream control signal and transmits the modulation control signal to a channel of the coaxial cable, wherein the modulation control signal is The first data machine receives and demodulates, and wherein the uplink control signal controls content of one or more of the analog video signal and the modulated digital video signal. 如請求項13所述之系統,其中該上行控制信號決定由該成像裝置捕捉由該類比視訊信號及該調變數位視訊信號中之一或更多者承載的一視訊影像的一部分。 The system of claim 13, wherein the uplink control signal determines that a portion of a video image carried by the one or more of the analog video signal and the modulated digital video signal is captured by the imaging device. 如請求項14所述之系統,其中該調變數位視訊信號承載一區域的一全景視野,且其中該類比視訊信號承載該全景視野的一部分。 The system of claim 14, wherein the modulated digital video signal carries a panoramic field of view of an area, and wherein the analog video signal carries a portion of the panoramic view. 如請求項15所述之系統,其中該上行控制信號藉由控制一變焦(zoom)及一搖攝(pan)中之一或更多者來決定由該類比視訊信號承載之該全景視野的該部分。 The system of claim 15, wherein the uplink control signal determines the panoramic view of the panoramic video signal carried by the analog video signal by controlling one or more of a zoom and a pan section. 如請求項14所述之系統,其中該調變數位視訊信號承載由一攝影機監控的一位置的一魚眼視野,且其中該類比視訊信號承載該魚眼視野的一部分。 The system of claim 14, wherein the modulated digital video signal carries a fisheye field of view at a location monitored by a camera, and wherein the analog video signal carries a portion of the fisheye field of view. 如請求項17所述之系統,其中該上行控制信號使得該魚眼視野的該部分虛擬地(virtually)移動。 The system of claim 17, wherein the uplink control signal causes the portion of the fisheye field of view to move virtually. 如請求項17所述之系統,其中該上行控制信號藉由發起該攝影機的實體運動(physical movement)來使得該魚眼視野改變。 The system of claim 17, wherein the uplink control signal causes the fisheye field of view to change by initiating a physical movement of the camera.
TW105103320A 2009-01-30 2010-02-01 Mixed format media transmission systems and methods TWI580272B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US12/363,669 US8300114B2 (en) 2009-01-30 2009-01-30 Mixed format media transmission systems and methods
US18798609P 2009-06-17 2009-06-17
US18798009P 2009-06-17 2009-06-17
US18799609P 2009-06-17 2009-06-17
US18797709P 2009-06-17 2009-06-17
US18797009P 2009-06-17 2009-06-17

Publications (2)

Publication Number Publication Date
TW201624997A true TW201624997A (en) 2016-07-01
TWI580272B TWI580272B (en) 2017-04-21

Family

ID=42396071

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105103320A TWI580272B (en) 2009-01-30 2010-02-01 Mixed format media transmission systems and methods
TW099102857A TWI530190B (en) 2009-01-30 2010-02-01 Mixed format media transmission systems and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW099102857A TWI530190B (en) 2009-01-30 2010-02-01 Mixed format media transmission systems and methods

Country Status (4)

Country Link
KR (3) KR101674524B1 (en)
CN (2) CN102365832B (en)
TW (2) TWI580272B (en)
WO (1) WO2010088625A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105188A (en) * 2010-11-12 2012-05-31 Sony Corp Image output device, image output method, image processing system, image processing method, program, and imaging apparatus
TWI450589B (en) * 2011-08-05 2014-08-21 Acer Inc Method and apparatus for high definition video wireless transmission
US9252842B2 (en) 2012-01-20 2016-02-02 Intersil Americas LLC Power over coaxial cable
JP2013187606A (en) * 2012-03-06 2013-09-19 Sony Corp Imaging apparatus and image transmission method
CN102724459B (en) * 2012-05-16 2014-04-09 浙江大华技术股份有限公司 Analog video signal format determination system and method and related devices
KR101271480B1 (en) * 2012-10-30 2013-06-05 주식회사 삼알글로벌 Digital video recorder having appartus for receiving automatic switched image by recognizing source and method thereof
CN103873820B (en) * 2012-12-17 2017-12-01 杭州海康威视数字技术股份有限公司 The method and system being controlled to video camera menu
KR101336636B1 (en) * 2013-10-08 2013-12-04 파인트론 주식회사 Network video recorder connected through analog coaxial cable with ip camera and method automatically assigning an ip address
KR101456251B1 (en) * 2014-06-02 2014-10-31 주식회사 아이덴코아 Camera, dvr and video monitoring system comprising thereof
CN111031277B (en) * 2014-11-19 2022-02-22 无锡中感微电子股份有限公司 Digital data transmitting and receiving method and device based on composite video signal
TWI601421B (en) * 2016-07-01 2017-10-01 物聯智慧科技(深圳)有限公司 Cloud recording system, cloud recording server and cloud recording method
US10395165B2 (en) * 2016-12-01 2019-08-27 Via Alliance Semiconductor Co., Ltd Neural network unit with neural memory and array of neural processing units that collectively perform multi-word distance rotates of row of data received from neural memory
CN108270446B (en) * 2016-12-30 2021-10-08 上海诺基亚贝尔股份有限公司 Signal processing device and method and electronic equipment comprising device
CN108536612B (en) * 2017-03-03 2021-12-21 西部数据技术公司 Determining control states for address mapping in non-volatile memory
CN107580251B (en) * 2017-09-15 2018-09-21 南京陶特思软件科技有限公司 The adaptively selected system of information input mode
CN109218563A (en) * 2018-08-06 2019-01-15 杭州雄迈集成电路技术有限公司 A kind of non real-time simulation HD video of 1080P coaxially sends system
WO2020164751A1 (en) 2019-02-13 2020-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Decoder and decoding method for lc3 concealment including full frame loss concealment and partial frame loss concealment
US10645337B1 (en) * 2019-04-30 2020-05-05 Analong Devices International Unlimited Company Video line inversion for reducing impact of periodic interference signals on analog video transmission
CN116488978B (en) * 2023-06-21 2023-08-18 江苏联康信息股份有限公司 Frame synchronization method suitable for BR Bluetooth in test environment

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701581A (en) * 1993-12-28 1997-12-23 Hitachi Denshi Kabushiki Kaisha Method for bidirectionally transmitting digital video signal and digital video signal bidirectional transmission system
US5651010A (en) * 1995-03-16 1997-07-22 Bell Atlantic Network Services, Inc. Simultaneous overlapping broadcasting of digital programs
US5877821A (en) * 1997-01-30 1999-03-02 Motorola, Inc. Multimedia input and control apparatus and method for multimedia communications
US5986691A (en) * 1997-12-15 1999-11-16 Rockwell Semiconductor Systems, Inc. Cable modem optimized for high-speed data transmission from the home to the cable head
US6377314B1 (en) * 1998-07-31 2002-04-23 Rf Technology, Inc. Methods and apparatus for transmitting analog and digital information signals
US7003030B2 (en) * 1999-03-08 2006-02-21 Lenovo (Singapore) Pte. Ltd. Receivers, methods, and computer program products for an analog modem that receives data signals from a digital modem
US7089577B1 (en) * 2000-01-14 2006-08-08 Terayon Communication Systems, Inc. Process for supplying video-on-demand and other requested programs and services from a headend
US6888844B2 (en) * 2000-04-07 2005-05-03 Broadcom Corporation Method for selecting an operating mode for a frame-based communications network
US7248841B2 (en) * 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
EP1303985A4 (en) * 2000-06-19 2009-03-04 Sms Property Group Llc Secure multimedia communications system
KR100774452B1 (en) * 2001-03-08 2007-11-08 엘지전자 주식회사 Digital broadcasting receiving apparatus for multiplex broadcasting
JP2004533161A (en) * 2001-05-03 2004-10-28 エイチアールエル ラボラトリーズ,エルエルシー Method and apparatus for analog-to-digital conversion
CN1445995A (en) * 2002-03-18 2003-10-01 丁兆明 Voice, data, video frequency transmission system based on cable TV network
KR100519333B1 (en) * 2002-12-30 2005-10-07 엘지전자 주식회사 Apparatus for recovering carrier
CN1759608A (en) * 2003-03-11 2006-04-12 汤姆森许可贸易公司 Apparatus and method for distributing signals
CN1479462A (en) * 2003-06-04 2004-03-03 威海克劳斯数码通迅有限公司 Full view remote network safety monitoring system
CN1957598A (en) * 2004-05-20 2007-05-02 汤姆森特许公司 Apparatus and method for canceling distortion
CN100515036C (en) * 2004-10-10 2009-07-15 倚强科技股份有限公司 Intelligent image process closed circuit TV camera device and its operation method
US7525600B2 (en) * 2005-01-14 2009-04-28 Broadcom Corporation Single integrated high definition television (HDTV) chip for analog and digital reception
US20070103543A1 (en) * 2005-08-08 2007-05-10 Polar Industries, Inc. Network panoramic camera system
KR100745701B1 (en) * 2005-10-25 2007-08-02 주식회사 서화정보통신 A radio transceiver for measuring environments of wireless communication equipments
JP4899534B2 (en) * 2006-02-28 2012-03-21 ソニー株式会社 Surveillance camera
CN101030903A (en) * 2006-03-03 2007-09-05 南京艾迪恩斯数字技术有限公司 System for accessing, monitoring and exchanging network video
KR101299732B1 (en) * 2006-07-14 2013-09-16 삼성전자주식회사 Method and apparatus for wireless communication in high frequency bandwidth
WO2008056686A1 (en) * 2006-11-07 2008-05-15 Sony Corporation Communication system, transmitting device, receiving device, communication method, program and communication cable
KR101336636B1 (en) * 2013-10-08 2013-12-04 파인트론 주식회사 Network video recorder connected through analog coaxial cable with ip camera and method automatically assigning an ip address

Also Published As

Publication number Publication date
TW201116058A (en) 2011-05-01
TWI580272B (en) 2017-04-21
KR101708386B1 (en) 2017-02-20
KR20110118150A (en) 2011-10-28
KR20160070170A (en) 2016-06-17
CN105704366A (en) 2016-06-22
KR101674524B1 (en) 2016-11-09
CN102365832A (en) 2012-02-29
TWI530190B (en) 2016-04-11
CN102365832B (en) 2016-01-20
CN105704366B (en) 2019-01-08
WO2010088625A1 (en) 2010-08-05
KR20150018904A (en) 2015-02-24

Similar Documents

Publication Publication Date Title
TWI580272B (en) Mixed format media transmission systems and methods
US8576898B2 (en) SLOC spot monitoring
US10841144B1 (en) Systems and methods for data transfer using self-synchronizing quadrature amplitude modulation (QAM)
US11088890B1 (en) Video inspection systems and methods using self-synchronizing QAM
US9660764B2 (en) Broadcast transmitter and method of processing broadcast service data for transmission
US8175041B2 (en) System and method for wireless communication of audiovisual data having data size adaptation
CA2394280C (en) Truncated metric for ntsc interference rejection in the atsc-hdtv trellis decoder
WO2002049348A1 (en) Recursive metric for ntsc interference rejection in the atsc-hdtv trellis decoder
US8576966B2 (en) Systems and methods for detecting tampering with video transmission systems
KR100917202B1 (en) Digital broadcasting system and method of processing data in digital broadcasting system
KR101221660B1 (en) Digital multimedia receiver for processing single-carrier modulated signal, demodulating apparatus and multi-carrier modulated signal and receiving method thereof
KR20060070387A (en) Digital multimedia receiver for processing single-carrier modulated signal and multi-carrier modulated signal and receiving method thereof