TW201116058A - Mixed format media transmission systems and methods - Google Patents

Mixed format media transmission systems and methods Download PDF

Info

Publication number
TW201116058A
TW201116058A TW099102857A TW99102857A TW201116058A TW 201116058 A TW201116058 A TW 201116058A TW 099102857 A TW099102857 A TW 099102857A TW 99102857 A TW99102857 A TW 99102857A TW 201116058 A TW201116058 A TW 201116058A
Authority
TW
Taiwan
Prior art keywords
signal
frame
cluster
camera
video signal
Prior art date
Application number
TW099102857A
Other languages
Chinese (zh)
Other versions
TWI530190B (en
Inventor
Khanh Lam
Mark Fimoff
Greg Tomezak
Dennis Mutzabaugh
Original Assignee
Techwell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/363,669 external-priority patent/US8300114B2/en
Application filed by Techwell Inc filed Critical Techwell Inc
Publication of TW201116058A publication Critical patent/TW201116058A/en
Application granted granted Critical
Publication of TWI530190B publication Critical patent/TWI530190B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • H04N7/106Adaptations for transmission by electrical cable for domestic distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/08Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division
    • H04N7/0806Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division the signals being two or more video signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/0342QAM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms
    • H04L2025/03617Time recursive algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0053Closed loops
    • H04L2027/0057Closed loops quadrature phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0067Phase error detectors

Abstract

Systems and methods for operating cameras are described. An image signal received from an image sensor can be processed as a plurality of video signals representative of the image signal. An encoder may combine baseband and digital video signals in an output signal for transmission over a cable. The video signals may include substantially isochronous baseband and digital video signals. The baseband video signal can comprise a standard definition analog video signal and the digital video signal may be modulated before combining with the baseband video signal and/or transmitting wirelessly. The digital video signal may be a compressed high definition digital video signal. A decoder demodulates an upstream signal to obtain a control signal for controlling the position and orientation of the camera and content of the baseband and digital video signals.

Description

201116058 六、發明說明: 【發明所屬之技術領域】 本發明大體上係有關多媒體傳輸系統且尤其係有關用 於透過一單一電纜上傳輸高畫質數位視訊及標準畫質類 比視訊的系統及方法。 本發明主張2009年1月30曰申請名稱為「Mixed Format Media Transmission Systems and Methods」之美國專利申請案 12/363,669號之優先權,且主張2009年6月17曰申請 名稱為「SLOC Analog Equalizer For Baseband Video Signal」之美國 臨時專利申請案61/187,970號之優先權,且主張2009 年 6 月 17 曰申請名稱為「A Method For Constellation Detection In A Multi-Mode QAM Communications System」之美國臨時專利申請 案61/187,977號之優先權,且主張2009年6月17曰申 請名稱為「Novel Carrier Phase Offset Correction For A QAM System」 之美國臨時專利申請案61/187,980號之優先權,且主張 2009 年 6 月 17 曰申請名稱為「Novel Frame Structure For A QAMSystem」之美國臨時專利申請案61/187,986號之優先 權,且主張2009年6月17日申請名稱為「SLOC SPOT Monitoring」之美國臨時專利申請案61/187,996號之優先 權,以上所有申請案係以引用方式併入本文。 【先前技術】 隨著數位廣播電視及串流視訊技術之出現,各種具有 高解析度及先進功能之視訊相機、監視器及視訊記錄έ : 201116058 變得可。現在的閉路電視(CCTV)系統可供應高畫質視訊 輸出及壓縮數位視訊信號用於例如營業場所監控、進出 控制及設施之遠端監視的應用。然而,舊有系統仍被使 用,且標準畫質類比視訊信號已被廣泛使用,且在過渡 至全數位、高晝質系統之期間繼續使用。尤其是,同軸 電鏡(coax)已佈署以自CCTV相機承載信號至監視站。一 些已佈署的CCTV相機透過區域網路(或廣域網路)傳輸 壓縮視訊信號,且此等相機可使用網際網路協定(IP)作為 一通信方法來傳輸壓縮視訊信號。 第1圖說明使用coax來承載標準晝質類比視訊的習知 系統。一基本類比相機10通常可產生一複合視訊基頻信 號(CVBS),其可使用coax n傳輸至多3〇〇米。一般提供 CVBS信號至經常包括一記錄數位格式之CVB s的數位視 訊記錄器(DVR) 12的一視訊記錄系統。可將一習知監視 器14連接至DVR12以同時顯示標準畫f類比視訊,其大 體上具有720x480像素之一解析度。 數位相機16可於—些應用中取代類比相機H)。數位相 機可支援串列數位介面(SDI),其係用以依約27觀_ 透過C°aXl7將未壓縮標準畫質數位視訊傳輸至DVR12。 第2圖說明目前發展系統中傳輸高晝質; (192〇X_像素)之習知方法。首先,-數位相機20 援一高晝質串列數位介面⑽侧),其係可用 201116058 1.5 Gbps之速率透過c〇ax 21傳輸未壓縮高晝質數位視訊 至DVRU。在此高傳輸率下支援的電纜距離係至多1〇〇 米。其次,一以IP為主、高晝質(HD)相機24可使用標 準類別5(CAT5)雙絞線電纜25透過100Mbps乙太網路產 生一壓縮數位HD視訊信號達到1 00米之距離。該信號係 藉由一 DVR 22接收及記錄用於非即時播放。現存c〇ax 26 可用來使用CAT5至coax橋接數據機27及29或其他轉換 裝置自相機24傳輸視訊至一 DVR22。使用網路以致使相 機傳輸數位視訊容許此等系統增加一些上行通信,通常 為控制及音訊信號2 8。 【發明内容】 本發明的某些具體實施例提供相機及操作相機的系 及方法。一處理器可自一影像感測器接收一影像信號 產生代表該影像信號的複數視訊信號。一解碼器係用 組合基頻視訊信號及數位才見訊信冑成為一用於透過一 纜傳輸之輸出信號,視訊信號可包括 號及一數位視訊信號且實質上等 ^ 閉路高畫質電視相機。…相機可操作為 根據本發明的某些態樣,基頻視訊信號可包括一標 :::比視訊信號且數位視訊信號可在與基頻視訊: 數位視訊信號可包括-壓縮高畫質數位; 號。數位視訊信號的訊框率可能少於影像信號的Ί 201116058 框率,尤其對—視訊記錄器提供調變數位信號時。 在某些具體實施例中,一解碼器係經組態以解調一自 用以承載下行視訊之傳輸電纜或自一無線通信網路接收 的上行信號。解調上行信號可包含控制信號,其包括用 以控制相機的位置及定向之信號,以藉由處理器控制基 頻視訊信號及數位視訊信號的產生及選擇影像信號之一 部分用於編碼作為基頻視訊信號。該等控制信號亦可包 括一信號以選擇影像信號之一部分編碼作為數位視訊信 號及用來驅動諸如一揚聲器之相機的音訊輸出的音訊信 號。 本發明之某些具體實施例提供傳輸視訊影像之方法。 該方法可包括將自一高畫質成像裝置接收之一視訊信號 分頻多工處理以獲得一調變數位信號,藉由組合該調變 數位信號與一代表視訊信號之基頻類比信號來產生一輸 出k號,及同時將輸出信號傳輸至一監視器及數位視訊 儲存裝置。在一些此等具體實施例中,監視器顯示代表 視訊號之基頻類比表示及/或數位視訊儲存器使用一 數位視訊記錄器記錄自該調變數位信號擷取的一高晝質 訊框序列。可壓縮該數位視訊信號。 在某些具體實施例中,傳輸輸出信號包括提供輸出信 號至一同轴電纜及/或至一無線傳輸器。自同轴電纜或一 無線網路接收之一輸入信號可經解調以獲得一控制信 號。可藉由將一複合視訊信號中之視訊信號的一部分編 碼來產生基頻類比信號,且待在複合視訊信號中編碼的^ 7 201116058 視訊信號之該部分可使用控制信號控制。該控制信號可 控制相機的位置。將輸入信號解調可自輸入信號額外地 產生一音訊信號。 本發明之某些具體實施例提供用於操作相機的系統及 方法》—處理器可自一影像感測器接收一影像信號且產 生複數視訊信號’控制邏輯可經組態以回應於一藉由相 機接收的控制信號且一調變器可經組態以調變數位視訊 信號來獲得一調變信號。複數視訊信號可包括一基頻視 訊信號及一數位視訊信號。該複數視訊信號之各者表示 相機的視野之至少一部分且控制信號可控制基頻及數位 視訊信號的内容。該調變信號及基頻視訊信號典型由相 機同時傳輸。 基頻及數位的視訊信號可實質上同步。一編碼器可組 合基頻視訊信號及該調變信號作為用於透過一電纜傳輸 的一輸出信號。控制信號例如可自一無線網路無線地接 收。經調變信號可至少部分地無線傳輸。數位視訊信號 可為一高晝質數位視訊信號及可為一壓縮數位視訊信 號》控制信號移動藉由視訊信號之一表示的視野的部分。 【實施方式】BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to multimedia transmission systems and, more particularly, to systems and methods for transmitting high quality digital video and standard picture quality analog video over a single cable. The present invention claims priority from US Patent Application Serial No. 12/363,669, entitled "Mixed Format Media Transmission Systems and Methods", issued on January 30, 2009, and claims the name of the application "SLOC Analog Equalizer For" on June 17, 2009. Baseband Video Signal, US Provisional Patent Application No. 61/187,970, and claims US Provisional Patent Application entitled "A Method For Constellation Detection In A Multi-Mode QAM Communications System" on June 17, 2009 Priority to 61/187,977, and claims priority to US Provisional Patent Application No. 61/187,980, entitled "Novel Carrier Phase Offset Correction For A QAM System", June 17, 2009, and claims June 2009曰 优先权 曰 No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No Priority is made to 187,996, the entire disclosure of which is incorporated herein by reference. [Prior Art] With the advent of digital broadcast TV and streaming video technology, various video cameras, monitors, and video recordings with high resolution and advanced functions are available: 201116058 becomes available. Today's closed circuit television (CCTV) systems can provide high quality video output and compressed digital video signals for applications such as business location monitoring, access control and remote monitoring of facilities. However, legacy systems are still in use, and standard picture quality analog video signals have been widely used and continue to be used during the transition to full digital and high quality systems. In particular, a coaxial electronic mirror (coax) has been deployed to carry signals from a CCTV camera to a monitoring station. Some deployed CCTV cameras transmit compressed video signals over a regional network (or wide area network), and such cameras can use the Internet Protocol (IP) as a communication method to transmit compressed video signals. Figure 1 illustrates a conventional system that uses coax to carry standard enamel analog video. A basic analog camera 10 typically produces a composite video baseband signal (CVBS) that can be transmitted up to 3 nanometers using coax n. A CVBS signal is typically provided to a video recording system that typically includes a digital video recorder (DVR) 12 that records CVBs in digital format. A conventional monitor 14 can be coupled to the DVR 12 to simultaneously display a standard picture f-type video having a resolution of one of 720 x 480 pixels. The digital camera 16 can replace the analog camera H) in some applications. The digital camera supports the Serial Digital Interface (SDI), which is used to transmit uncompressed standard quality digital video to the DVR12 via C°aXl7. Figure 2 illustrates a conventional method of transmitting high quality in the current development system; (192 〇 X_pixels). First, the digital camera 20 supports a high-quality tandem digital interface (10) side, which can transmit uncompressed high-quality digital video to the DVRU through the c〇ax 21 at a rate of 201116058 1.5 Gbps. The cable distance supported at this high transmission rate is up to 1 。. Second, an IP-based, high-quality (HD) camera 24 can generate a compressed digital HD video signal over a 100 Mbps Ethernet network using a standard Category 5 (CAT5) twisted pair cable 25 to a distance of 100 meters. The signal is received and recorded by a DVR 22 for non-immediate playback. The existing c〇ax 26 can be used to transmit video from camera 24 to a DVR 22 using CAT5 to coax bridging modems 27 and 29 or other conversion devices. The use of the network to cause the camera to transmit digital video allows these systems to add some upstream communications, typically control and audio signals 28. SUMMARY OF THE INVENTION Certain embodiments of the present invention provide cameras and methods of operating the cameras. A processor can receive an image signal from an image sensor to generate a plurality of video signals representative of the image signal. A decoder uses a combined baseband video signal and a digital video signal to be an output signal for transmission over a cable. The video signal can include a number and a digital video signal and is substantially equal to a closed high-definition television camera. . The camera is operable to, according to some aspects of the present invention, the baseband video signal may include a standard::: than the video signal and the digital video signal may be in the baseband video: the digital video signal may include - compress the high quality digital bit ; number. The frame rate of a digital video signal may be less than the frame rate of the image signal, especially when the video recorder provides a modulated digital signal. In some embodiments, a decoder is configured to demodulate a transmission cable that is used to carry downlink video or an uplink signal that is received from a wireless communication network. The demodulated uplink signal may include a control signal including a signal for controlling the position and orientation of the camera to control the generation of the baseband video signal and the digital video signal by the processor and select a portion of the image signal for encoding as a fundamental frequency. Video signal. The control signals may also include a signal to select a portion of the image signal encoded as a digital video signal and an audio signal for driving the audio output of a camera such as a speaker. Certain embodiments of the present invention provide methods of transmitting video images. The method may include dividing a video signal from a high-definition imaging device into a frequency division multiplexing process to obtain a modulated digital signal, and combining the modulated digital signal with a fundamental frequency analog signal representing the video signal to generate An output k number is simultaneously transmitted to a monitor and a digital video storage device. In some such embodiments, the monitor displays a baseband analog representation representing the video signal and/or the digital video memory uses a digital video recorder to record a high quality frame sequence captured from the modulated digital signal. . The digital video signal can be compressed. In some embodiments, transmitting the output signal includes providing an output signal to a coaxial cable and/or to a wireless transmitter. One of the input signals received from the coaxial cable or a wireless network can be demodulated to obtain a control signal. The baseband analog signal can be generated by encoding a portion of the video signal in a composite video signal, and the portion of the video signal to be encoded in the composite video signal can be controlled using a control signal. This control signal controls the position of the camera. Demodulating the input signal can additionally generate an audio signal from the input signal. Certain embodiments of the present invention provide a system and method for operating a camera - a processor can receive an image signal from an image sensor and generate a plurality of video signals - control logic can be configured in response to A control signal received by the camera and a modulator can be configured to modulate the digital video signal to obtain a modulated signal. The complex video signal can include a baseband video signal and a digital video signal. Each of the plurality of video signals represents at least a portion of the field of view of the camera and the control signal controls the content of the baseband and digital video signals. The modulated signal and the baseband video signal are typically transmitted simultaneously by the camera. The fundamental and digital video signals can be substantially synchronized. An encoder can combine the baseband video signal and the modulated signal as an output signal for transmission over a cable. The control signals can be received, for example, wirelessly from a wireless network. The modulated signal can be transmitted at least partially wirelessly. The digital video signal can be a high quality digital video signal and can be a portion of the field of view represented by one of the video signals for a compressed digital video signal control signal. [Embodiment]

本發明之具體實施例現將參考圖式詳盡描述,其係提 供作為說明性實例以致使熟習此項技術人士能實現本發 明。應注意以下圖式及實例非意於使本發明之範圍局限 於一單一具體實施例,而是其他具體實施例係由交換T 201116058 些或所有經描述或說明元件而可行β 网口且8f,令邱固 式中之相同參考數字將用來指相同或相似部分。邵圖 具體實施例之某些元件可使用已知組件來部:或 行時,僅描述必要理解本發明之此等已知纽件^分, 及將會省略此等已知組件的其他部分之詳細插述。,以便 不影響本發明。纟本說明書巾,不應該將顯示—特異組 件的-具體實施例看作限制;而是,除非明確地在本文 陳述’本發明意欲包括其他包括複數相同組件的具體實 施例,且反之亦然。此外,除非明確地提出,本申請人 非意於將說明書或申請專利範圍中之術語歸屬於非^常 或特別意思。此外’本發明包括對於藉由說明在此所指 之組件的目前及未來符合的等效物。 本發明的某些具體實施例提供使一相機能同時透過 coax傳輸高晝質數位視訊及標準畫質類比視訊之系統及 方法 南畫質相機適於產生一壓縮數位視訊信號及 類比基頻信號。數位信號係在一自基頻視訊信號的上部 頻率分離的頻帶中調變及傳輸❶類比信號可根據任何所 需標準編碼,包括APL、SEC AM及NTSC標準及其變體。 為了此描述的目的’將描述使用一透過coax之安全性 連結(SLOC)的一系統的一實例。此外,SL〇c大體上將 被認為具有關於一相機之上行與下行信號:相機係位於 上行。在描述中,一 SLOC系統的一實例提供一第一通 帶中之一下行高晝質(HD)視訊信號,一第二通帶中的一 上行音訊及控制信號及一下行複合視訊基頻信巍 201116058 (CVBS)。應瞭解可使用其他通帶信號及頻寬的分配。例 如,該系統可使用標準或高畫質解析度之兩數位視訊信 號。 第3圖描述一說明本發明之某些操作原理的本發明的 一具體實施例。該實例描述在一系統中之HD相機30的佈 署’其中需要檢視由相機30產生的現場視訊,同時並行 地在DVR32上記錄該視訊的一高晝質複本。此一系統的 一實例係一保全或監視系統。HD相機30之功能可遠端控 制’於以下更詳細描述。HD相機30可調適以同時產生高 晝質信號332及類比CVBS信號330。在某些具體實施例 中’高畫質信號332及一類比CVBS信號330係等時,但若 (例如)在處理不同信號中之延遲不相等則可為實質上 等時。在一實例中’ CVBS信號330可能因為數位至類比 轉換負荷而延遲。在另一實例中,高晝質信號332可基於 壓縮比等等壓縮且經受可變延遲。在某些具體實施例 中,CVBS 330及高畫質信號332可被同步化或與由相機 3〇產生之一共同音訊信號維持在一恆定時間關係中。The present invention will be described in detail with reference to the accompanying drawings, in which It should be noted that the following figures and examples are not intended to limit the scope of the invention to a single embodiment, but that other embodiments are possible by exchanging T 201116058 some or all of the described or illustrated elements and that the beta port is 8f, The same reference numerals will be used to refer to the same or similar parts. Some of the elements of the specific embodiments of the drawings may be used in the description of the known components, or only those that are necessary to understand the present invention, and other parts of such known components will be omitted. Detailed description. So as not to affect the invention. In the present specification, the specific embodiment of the display-specific component should not be considered as limiting; rather, unless explicitly stated herein, the invention is intended to include other specific embodiments including the plural components and vice versa. Moreover, the Applicant does not intend to attribute the terms in the specification or the scope of the claims to the non-constant or special meanings unless explicitly stated. Further, the present invention includes equivalents to the present and future aspects of the components referred to herein. Some embodiments of the present invention provide a system and method for enabling a camera to simultaneously transmit high-quality digital video and standard picture quality analog video through coax. The south picture quality camera is adapted to generate a compressed digital video signal and an analog base frequency signal. The digital signal is modulated and transmitted in a frequency band separated from the upper frequency of the fundamental video signal. The analog signal can be encoded according to any desired standard, including APL, SEC AM, and NTSC standards and variants thereof. For the purposes of this description, an example of a system using a security link (SLOC) through Coax will be described. In addition, SL〇c will generally be considered to have uplink and downlink signals for a camera: the camera system is on the upstream. In the description, an example of a SLOC system provides a downlink high-quality (HD) video signal in a first passband, an uplink audio and control signal in a second passband, and a downlink composite video baseband signal.巍201116058 (CVBS). It should be understood that other passband signals and bandwidth assignments can be used. For example, the system can use two-bit video signals of standard or high quality resolution. Figure 3 depicts a specific embodiment of the invention illustrating certain operational principles of the invention. This example describes the deployment of HD camera 30 in a system where it is necessary to view the live video generated by camera 30 while simultaneously recording a high quality copy of the video on DVR 32. An example of such a system is a security or surveillance system. The functionality of HD camera 30 can be remotely controlled' as described in more detail below. The HD camera 30 is adaptable to simultaneously generate a high quality signal 332 and an analog CVBS signal 330. In some embodiments, the 'high quality signal 332' and the analog CVBS signal 330 are equal, but may be substantially isochronous if, for example, the delays in processing different signals are not equal. In an example, the 'CVBS signal 330 may be delayed due to the digital to analog conversion load. In another example, the high quality signal 332 can be compressed based on a compression ratio or the like and subjected to a variable delay. In some embodiments, CVBS 330 and high quality signal 332 may be synchronized or maintained in a constant time relationship with a common audio signal produced by camera 3.

相機30可藉由增加外部組件或藉由將硬體及軟體整合 至相機30内來調適。在實例中,一透過⑶⑽之安全性連 、。數據機(SLOC-T)31係提供在相機3〇内。SL〇c_T 31可 建構為一經整合作為對於相機3〇之一增加之數據機或使 用已整合進入至相機3〇之組件實施。sl〇c_t3 1致使一多S 201116058 媒體饋送透過一通信通道傳輸至下行:如說明, SLOC-T31係一致使一承載代表由相機3〇產生之視訊的 不同解析度信號之多信號能透過一同軸電纜33傳送的裝 置。為了清楚描述’佈署於諸如相機3〇之傳輸裝置中的 一SLOC將此在稱作「SLOC_T」,且在諸如一 DVR、網路 開關等等之一接收裝置中提供的一 SL〇c將稱為一 「SLOC-R」。SLOC-T及SLOC-R裝置的描述將會在下文 中更詳細提供。Camera 30 can be adapted by adding external components or by integrating hardware and software into camera 30. In the example, the security is connected through (3) (10). The data machine (SLOC-T) 31 is provided in the camera 3〇. The SL〇c_T 31 can be constructed as a component that is integrated as one of the cameras 3 or is integrated into the camera. Sl〇c_t3 1 causes a multi-S 201116058 media feed to be transmitted to the downlink through a communication channel: as illustrated, the SLOC-T31 is consistently enabled to transmit a plurality of signals representing different resolution signals of the video generated by the camera 3 through a coaxial The device that the cable 33 transmits. For the sake of clarity, a SLOC deployed in a transmission device such as a camera 3 is referred to as "SLOC_T", and a SL 〇c provided in a receiving device such as a DVR, a network switch, etc. will It is called a "SLOC-R". A description of the SLOC-T and SLOC-R devices will be provided in more detail below.

SLOC-T31可與相機30的其他組件協作及/或可增加致 使相機30以各種模態操作之增強功能性。在一實例中, 相機30可產生一未壓縮^!!)數位視訊輸出且几〇(:_了31可 知·供壓lis HD數位視訊信號的一能力。因此,sloc-T 3 1 視需要可提供調變及解調以外之能力以提升主相機3〇的 功能性《因此,若干SLOC-T裝置可以各種模態操作,其 中一些係藉由實例提供。在一模態中,Sl〇c_T3 1自相機 3 0接收一壓縮HD視訊信號及該信號之一標準晝質類比 版本及透過coax 33傳輸兩信號。在另一模態中, SL0C-T31自相機30接收一未壓縮hd視訊信號及該信號 的一標準畫質類比版本且透過coax 33將該信號的一壓縮 HD數位版本與標準畫質類比信號一起傳輸。SL〇CT3 1 可傳輸一 HD數位信號及自接收自相機3〇的一 hd信號導 出的一標準畫質類比信號。 [S 201116058 在某些具體實施例中,SLOC-T31使用分頻多工處理來 產生在coax 33上傳輸之一輸出信號。在第5圖中說明的 實例中,下行數位信號係在集中於頻率/cd之一載波53上 的一單一頻帶52中提供。頻帶52在基頻類比信號5〇的最 高頻率/〇上開始。可將此不同頻帶52稱作一通道。通道52 可基於SLOC-T3 1之能力、可用頻寬、信號頻寬及其他原 因選擇。在一些具體實施例中,通道52可針對與接收設 備之相容性選擇。在一實例中,信號可直接提供至一標 準晝質電視且可選擇通道52以確保與基頻信號的適當分 離。當使用信號之標準定義編碼時,通道52中之頻帶亦 可基於數位視訊傳輸之標準選擇》已預想一單一數位信 號可用二或以上不同通道傳輸以承載數位信號的部分。 可用任何適合調變方案來產生數位信號的一可傳輸版 本。例如,不同類型之有線及無線連接可配合調變方案 使用,諸如相移鍵控(PSK)、頻移鍵控(FSK) '正交振幅 調變(QAM)、正交分頻多工處理(OFDM)等等。調變方案 典型係基於包括用於傳輸之媒體的特性,所需視訊信號 之訊框率及其他影響通道52中之可用頻寬的不同因素的 因素來選擇。 一 SLOC-R數據機35可在諸如DVR;32之一視訊掏取裳 置中提供。SLOC-R數據機35可接收及處理數位視訊及 CVBS信號。典型地,將CVBS信號擷取及直接傳遞至丄 12 201116058 顯不系統3 3用於現場檢視由相機3 0掘取的視訊影像。顯 示系統3 3可為一標準畫質監視器,雖然顯示系統亦可接 收該接收到類比信號的一數位化版本。在一實例中, SLOC-R數據機35可產生類比信號的一數位化版本用於 與數位監視器或適當配備的電腦使用。基頻信號的擷取 典型地可使用一可使用類比組件實施的一低通濾波器或 透過數位信號處理技術發生作用❶數位HD信號可分開地 擷取及提供至DVR3 2的記錄區段。在某些具體實施例 中,數位HD視訊信號可於記錄之前在DVR中壓縮。在許 多具體實施例中,數位HD視訊信號係接收作為一壓縮數 位信號。 在某些具體實施例中’ SLOC-T 31及SLOC-R 35經組態 以支援信號的雙向傳輸。在保全安裝的實例中(且如參 考第6圖詳盡描述於下),相機3〇可包括一麥克風614、揚 聲器612、感測器6 1 6、用於控制電子機械致動器之控制 介面618及其他特徵(參見第6圖)。在此實例中,sl〇ct3i 及SLOC-R3 5典型經組態以將控制、音訊及其他資料“傳 送至相機3 0。 再參考第5圖,在一具體實施例中,可將上行資料在位 於可用頻寬上端的一或多數通道54中傳送至相機。用於 傳送數位多媒體信號52,控制及音訊信號54及其他資料 的通道之選擇可基於可用頻寬、通道52及54中偵測到^ 13 201116058 信號對雜訊比、發信號標準及/或應用特定需求。在一些 具體實施例中,通道組態、頻寬及信號對雜訊比係當使 用一訓練序列連接SLOC-T 31及SLOC-R35時決定。典型 地,訓練序列係用來確定經預定或協調通道的發信號能 力,以為數位視訊的傳輸選擇一通道52及用於決定選定 通道52中的可用頻寬。選定通道52的特性可用來為數位 視訊信號設定壓縮程度。 在某些具體實施例中,上行信號54包括可控制下行52 及基頻50信號之内容的信號。例如,相機光學元件6〇〇 可提供由相機60監視之位置的一魚眼視野且可控制相機 處理器以選擇影像之一部分傳輸作為基頻信號5〇。典型 地,下行數位信號52可提供完全影像用於在一 dvr上記 錄或用於額外處理。基頻信號5〇可接收基頻信號5〇用於 在監視下之區域的現場監視。基頻信號5〇可包括一經調 整影像用於由魚眼鏡頭產生之視覺效果的校正。基頻信 號50之一檢視者可藉由選擇用於檢視之經擷取影像的一 新部分以造成該視野在魚眼鏡頭的視野内移動。例如, 此檢視者可請求「pan-right(向右搖攝)」以將視野移動至右 邊。在上行信號54中傳輸之資料接著造成相機處理器擷 取及處理視野的所需部分。在某些具體實施例中,移動 併入基頻仏號50中之視野的請求可造成相機6〇的實體運 動。因此,上行信號54中的控制資料可影響基頻50及 201116058 行數位52信號兩者的内容。 在某些具體實施例中,下行音訊可作為HD數位視訊信 號的一部分及/或作為CVBS信號的一部分而被傳輸。可 在一分離的專用通道(未顯示)中承载某些下行信號。在 某些具體實施例中,對相機30之上行通信可使用帶外通 信方法處理’包括(例如)使用有線或無線網路。已預想 某些具體實施例可(作為替代或作為附加選項)無線地傳 輸下行數位信號52。因此,基頻信號50可透過c〇ax傳輸, 而上行54及下行52的某些組合係無線地傳輸。典型地, 上行資料54包括用於下行52及基頻50信號之控制信號而 不論傳輸的方法。 在某些具體實施例中,電纜33可直接提供至顯示系統 33用於類比標準畫質視訊的顯示。一標準晝質監視器或 顯示器33典型地包括濾波電路,其可在基頻信號及標準 調變電視通道之間選擇。因而監視器33可丟棄高頻數位 編碼载波信號《若數位視訊信號在一標準畫質通道中傳 輸及使用標準畫質數位編碼,DVR 32亦能接收數位視訊 信號而無需額外處理。SLOC-R35解碼由SLOC-T31產生 之信號及提供用於DVR32之解碼HD數位視訊及其他信 號。SLOC-R 35亦可編碼控制、音訊及其他資訊用於傳 輸至相機30。 現參考第4圖,其呈現本發明之一具體實施例以說明 15 201116058 發明的某些操作原理。第4圖描述基於一系統的—實例, 其中需要檢視藉由相機40產生的現場視訊,同時並行地 透過網路開關44在一網路上提供該視訊之一高晝質複 本在實例中’ HD視訊饋送係使用一内部或外部ip視 訊飼服器擷取及串流。HD相機40典型經調適以同時產生 间畫質信號及一類比基頻視訊信號。相機4〇可藉由增加 外部組件或藉由整合硬體及軟體(如SLOC-T 400)至相機 4〇内來調適。SLOC-T 400可用如第3圖之SLOC-T 31的特 徵之相同方式操作。然而,SLOC-T 400可經組態以依一 促進透過一網路轉遞數位視訊信號之方式將一數位視訊 信號編碼。例如’ SLOC-T 400可程式化或組態以根據由 IP視訊飼服器支援的一串流格式提供數位視訊信號。 藉由數位相機40傳輸的多工視訊信號可藉由一網路開 關44接收,視需要配有SL〇c_r 44〇。可將基頻標準畫質 類比信號擷取及提供至顯示器43。在某些具體實施例 中,SLOC-R 440可擷取數位高畫質視訊信號及將其轉遞 至一視訊伺服器或使用具有足夠頻寬以承載數位HD視 訊信號之適合網路的其他網路裝置。數位HD視訊信號可 包括一壓縮HD視訊信號。在某些具體實施例中,由 SLOC-R 440擷取的數位高畫質信號係塵縮或進一步虔縮 用於轉遞至一視訊伺服器或其他網路裝置。SLOC-R 440The SLOC-T 31 can cooperate with other components of the camera 30 and/or can increase the enhanced functionality that causes the camera 30 to operate in various modalities. In one example, camera 30 can generate an uncompressed ^!!) digital video output and a few 〇 (: _ 31 can be known to supply lis HD digital video signals. Therefore, sloc-T 3 1 can be used as needed Provides capabilities beyond modulation and demodulation to enhance the functionality of the main camera. Therefore, several SLOC-T devices can operate in various modalities, some of which are provided by examples. In a modality, Sl〇c_T3 1 Receiving a compressed HD video signal from the camera 30 and a standard enamel analog version of the signal and transmitting the two signals through the coax 33. In another mode, the SL0C-T31 receives an uncompressed hd video signal from the camera 30 and the A standard image quality analog version of the signal and a compressed HD digital version of the signal transmitted by coax 33 along with a standard image quality analog signal. SL〇CT3 1 can transmit an HD digital signal and a hd received from the camera 3〇 A standard picture quality analog signal derived from the signal. [S 201116058 In some embodiments, the SLOC-T31 uses frequency division multiplexing processing to generate one of the output signals transmitted on the coax 33. The example illustrated in Figure 5 Medium and downlink digital signals The frequency band 52 is provided in a single frequency band 52 concentrated on one of the frequency/cd carriers 53. The frequency band 52 starts at the highest frequency / 〇 of the fundamental frequency analog signal 5 。. This different frequency band 52 can be referred to as a channel. Based on the capabilities of SLOC-T3 1, available bandwidth, signal bandwidth, and other reasons, in some embodiments, channel 52 can be selected for compatibility with the receiving device. In one example, the signal can be provided directly to A standard enamel television and channel 52 can be selected to ensure proper separation from the baseband signal. When using the standard definition of the signal, the frequency band in channel 52 can also be based on a standard selection of digital video transmissions. A single digital signal is envisioned. A portion of the digital signal that can be transmitted by two or more different channels. A transmittable version of the digital signal can be generated using any suitable modulation scheme. For example, different types of wired and wireless connections can be used in conjunction with a modulation scheme, such as a phase shift key. Control (PSK), Frequency Shift Keying (FSK) 'Quadrature Amplitude Modulation (QAM), Orthogonal Frequency Division Multiplexing (OFDM), etc. Modulation schemes are typically based on The characteristics of the transmitted media, the frame rate of the desired video signal, and other factors affecting the different factors of the available bandwidth in channel 52. A SLOC-R modem 35 can be in a video such as a DVR; The SLOC-R data machine 35 can receive and process digital video and CVBS signals. Typically, the CVBS signal is captured and directly transmitted to the 丄12 201116058 Display System 3 3 for on-site inspection by the camera 3 0 The captured video image. Display system 33 can be a standard quality monitor, although the display system can also receive a digital version of the received analog signal. In one example, the SLOC-R modem 35 can generate a digital version of the analog signal for use with a digital monitor or a suitably equipped computer. The capture of the baseband signal can typically be performed separately using a low pass filter implemented using analog components or by digital signal processing techniques. The digital HD signal can be separately captured and provided to the recording section of the DVR3 2. In some embodiments, the digital HD video signal can be compressed in the DVR prior to recording. In many embodiments, the digital HD video signal is received as a compressed digital signal. In some embodiments, the 'SLOC-T 31 and SLOC-R 35 are configured to support bidirectional transmission of signals. In an example of a security installation (and as described in detail below with reference to Figure 6), the camera 3A can include a microphone 614, a speaker 612, a sensor 616, and a control interface 618 for controlling the electromechanical actuator. And other features (see Figure 6). In this example, sl〇ct3i and SLOC-R3 5 are typically configured to "transfer control, audio, and other data to camera 30. Referring again to Figure 5, in one embodiment, the upstream data may be The one or more channels 54 located at the upper end of the available bandwidth are transmitted to the camera. The selection of channels for transmitting the digital multimedia signal 52, control and audio signals 54 and other data may be detected based on the available bandwidth, channels 52 and 54. ^ 13 201116058 Signal-to-noise ratio, signalling standard and/or application specific requirements. In some embodiments, the channel configuration, bandwidth and signal-to-noise ratio are connected to SLOC-T 31 using a training sequence and The SLOC-R35 is determined. Typically, the training sequence is used to determine the signaling capability of the predetermined or coordinated channel to select a channel 52 for the transmission of the digital video and to determine the available bandwidth in the selected channel 52. The selected channel 52 The characteristics can be used to set the degree of compression for the digital video signal. In some embodiments, the upstream signal 54 includes signals that control the content of the downstream 52 and base frequency 50 signals. For example, camera optics Element 6A can provide a fisheye view of the location monitored by camera 60 and can control the camera processor to select a portion of the image for transmission as a baseband signal 5. Typically, downlink digital signal 52 provides a full image for use in Recorded on a dvr or used for additional processing. The baseband signal 5〇 can receive the baseband signal 5〇 for on-site monitoring of the area under surveillance. The baseband signal 5〇 can include an adjusted image for generation by the fisheye lens Correction of the visual effect. One of the baseband signals 50 can cause the field of view to move within the field of view of the fisheye lens by selecting a new portion of the captured image for viewing. For example, the viewer can request Pan-right (to pan right) to move the field of view to the right. The data transmitted in the upstream signal 54 then causes the camera processor to capture and process the desired portion of the field of view. In some embodiments, the request to move into the field of view in the fundamental frequency code 50 can cause physical motion of the camera 6〇. Therefore, the control data in the upstream signal 54 can affect the content of both the fundamental frequency 50 and the 201116058 line digit 52 signal. In some embodiments, the downstream audio can be transmitted as part of the HD digital video signal and/or as part of the CVBS signal. Certain downstream signals can be carried in a separate dedicated channel (not shown). In some embodiments, upstream communication to camera 30 may be processed using an out-of-band communication method, including, for example, using a wired or wireless network. It is envisioned that certain embodiments may (as an alternative or as an additional option) wirelessly transmit the downstream digital signal 52. Thus, baseband signal 50 can be transmitted through c〇ax, while certain combinations of upstream 54 and downstream 52 are transmitted wirelessly. Typically, the upstream data 54 includes control signals for the downlink 52 and baseband 50 signals regardless of the method of transmission. In some embodiments, cable 33 can be provided directly to display system 33 for analog display of standard picture quality video. A standard enamel monitor or display 33 typically includes a filter circuit that is selectable between a baseband signal and a standard tuned television channel. Thus, the monitor 33 can discard the high frequency digitally encoded carrier signal. "If the digital video signal is transmitted in a standard picture quality channel and encoded using standard picture quality, the DVR 32 can also receive digital video signals without additional processing. The SLOC-R35 decodes the signals generated by the SLOC-T31 and provides decoded HD digital video and other signals for the DVR32. The SLOC-R 35 can also encode control, audio and other information for transmission to the camera 30. Referring now to Figure 4, there is shown a particular embodiment of the present invention to illustrate certain operational principles of the invention of 15 201116058. Figure 4 depicts an example based on a system in which live video generated by camera 40 needs to be viewed while simultaneously providing a high quality copy of the video over a network via network switch 44 in the example 'HD video The feed is captured and streamed using an internal or external ip video feeder. The HD camera 40 is typically adapted to simultaneously generate an inter-picture quality signal and a analog-like baseband video signal. The camera 4 can be adapted by adding external components or by integrating hardware and software (such as the SLOC-T 400) into the camera. The SLOC-T 400 can be operated in the same manner as the features of the SLOC-T 31 of Figure 3. However, the SLOC-T 400 can be configured to encode a digital video signal in a manner that facilitates the transfer of digital video signals over a network. For example, the 'SLOC-T 400 can be programmed or configured to provide digital video signals in accordance with a streaming format supported by an IP video feeder. The multiplexed video signal transmitted by the digital camera 40 can be received by a network switch 44, optionally with SL〇c_r 44〇. The fundamental frequency standard image analog signal can be captured and provided to the display 43. In some embodiments, the SLOC-R 440 can capture digital high-definition video signals and forward them to a video server or other network using a suitable network with sufficient bandwidth to carry digital HD video signals. Road device. The digital HD video signal can include a compressed HD video signal. In some embodiments, the digital high quality signal captured by the SLOC-R 440 is dusted or further collapsed for transmission to a video server or other network device. SLOC-R 440

Γ C 可包括用於再編碼及/或再調變數位高畫質信號用於 16 201116058 —網路上傳輸之硬體及軟體;例如,SLOC-R 440可產生 編碼用於透過乙太網路傳輸的一 H-2 64信號。 現參考第6圖,本發明的某些具體實施例提供可應用於 保全系統的提升能力。在所描述實例中,相機60包括一 數據機SLOC-T 606及處理器’其經組態及調適以依據本 發明的某些態樣提供數位編碼的多媒體信號。影像的序 列可使用光學元件600及一影像感測器602之一組合掏 取’包括熟習此項技術人士已知之透鏡系統及CCD感測 器的組合。處理器604典型地自提供根據一所需或預定義 訊框率擷取的影像序列的一影像感測器602接收一掃描 信號603。 在一些具體實施例中’影像感測器602可包括硬體及邏 輯以轉換代表由一或多數感測器擷取的影像之一掃描類 比k號且可產生一數位視訊信號。例如,影像感測器6 〇 2 可包括RGB(紅色、綠色、藍色)感測器且影像感測器6〇2 可内部處理RGB感測器輸出以產生一數位編碼彩色視訊 信號作為其輸出603。在其他具體實施例中,處理器6〇4 可預處理來自影像感測器602之信號603以獲得一原始數 位視訊信號。原始數位視訊(不論是内部獲得或自影像 感測器6〇2接收)可由處理器6〇4進一步處理以獲得一初 始HD數位視訊信號。一類比標準畫質信號可由處理原始 數位視訊信號、感測器602的輸出603或初始HD數位視lit 17 201116058 信號來獲得。處理器604接著可將初始HD數位視訊信號 格式化以獲得符合廣播及其他標準的一或多數數位 視訊信號。例如’處理器604可產生符合諸如ATSC及DVB 標準之廣播視訊標準的一信號。處理器604可額外地壓縮 該數位視訊信號。 相機處理器604可包括可商購組件及客製硬體及軟體 的一組合。在一實例中,處理器可包括微處理器、數位 仏號處理器、微控制器、序列器及其他可程式裝置之一 或夕數其與記憶體及支援邏輯組合以施行一序列步 驟、指令及/或程式。可用儲存器61〇來儲存電腦可讀指 令,其當執行時施行在此申請案中描述的一些或所有功 能。相機處理器6〇4可包括一些内建或「硬編碼」程序, 其可用作本發明之某些具體實施例的構造。亦可將儲存 器610用作程式暫用記憶體及/或用以保持組態資訊。在 某二^、體貫施例中,儲存器61〇可用來儲存由相機6〇擷取 的視訊之記錄。因此,儲存器61〇可使用揮發性及非揮發 性A憶體、光碟及磁碟、可移除之電可抹除記憶體、usb »己隐體驅動器及其他半導體、電磁及光學儲存裝置實施。Γ C may include hardware and software for re-encoding and/or re-modulating digital high-quality signals for transmission on the Internet; for example, SLOC-R 440 may generate codes for transmission over Ethernet. An H-2 64 signal. Referring now to Figure 6, certain embodiments of the present invention provide for lifting capabilities that can be applied to a security system. In the depicted example, camera 60 includes a modem SLOC-T 606 and a processor' configured and adapted to provide digitally encoded multimedia signals in accordance with certain aspects of the present invention. The sequence of images can be combined using one of optical element 600 and an image sensor 602' including a combination of lens systems and CCD sensors known to those skilled in the art. Processor 604 typically receives a scan signal 603 from an image sensor 602 that provides a sequence of images captured at a desired or predefined frame rate. In some embodiments, image sensor 602 can include hardware and logic to convert one of the images captured by one or more sensors to scan the analog k number and to generate a digital video signal. For example, image sensor 6 〇 2 may include RGB (red, green, blue) sensors and image sensor 〇 2 may internally process RGB sensor output to generate a digitally encoded color video signal as its output 603. In other embodiments, processor 〇4 may preprocess signal 603 from image sensor 602 to obtain an original digital video signal. The raw digital video (whether internally received or received from image sensor 〇2) can be further processed by processor 〇4 to obtain an initial HD digital video signal. A class of standard picture quality signals can be obtained by processing the raw digital video signal, the output 603 of the sensor 602, or the initial HD number depending on the lit 17 201116058 signal. Processor 604 can then format the initial HD digital video signal to obtain one or more digital video signals that conform to broadcast and other standards. For example, processor 604 can generate a signal that conforms to broadcast video standards such as the ATSC and DVB standards. Processor 604 can additionally compress the digital video signal. Camera processor 604 can include a combination of commercially available components and custom hardware and software. In one example, the processor can include one of a microprocessor, a digital nickname processor, a microcontroller, a sequencer, and other programmable devices or a combination of the memory and the support logic to perform a sequence of steps, instructions And / or program. The memory 61 可用 can be used to store computer readable instructions that, when executed, perform some or all of the functions described in this application. Camera processor 6.04 may include some built-in or "hard-coded" programs that may be used in the construction of certain embodiments of the present invention. The memory 610 can also be used as a program temporary memory and/or to maintain configuration information. In a certain embodiment, the memory 61 can be used to store a record of the video captured by the camera 6. Therefore, the memory 61 can be implemented using volatile and non-volatile A memory, optical discs and disks, removable erasable memory, usb » crypto-driver and other semiconductor, electromagnetic and optical storage devices. .

仏號605包括由處理器604提供至SLOC-T606的視訊信 號及自線62接收由SL〇C_T6〇6轉遞至處理器6〇4之上行 控制、音訊及其他上行資訊。上行音訊資訊可在音訊中 繼至一揚聲器、轉換器或其他音訊輸出系統612前由處iS 18 201116058 器604解碼、處理及/或格式化。處理器可放大音訊信號 或可使用一於音訊輸出組件612中之分離放大器。上行控 制可包括光學元件控制601及用於外部裝置之控制信 號’其典型係透過控制介面618提供。外部裝置可包括用 來平移、旋轉或定向相機60之馬達或致動器。光學元件 控制信號601及外部控制信號618可回應於預定義命令由 一遠端控制系統產生。例如,遠端使用者可操縱一操縱 桿,其產生由相機處理器604解譯以意指「在水平面中順 時針方向旋轉相機90度」之一序列編碼指令,且處理器 6〇4可藉由將—序列之脈衝傳送給相對於相機60轴向安 裝的-步進馬達來回應’使得該序列之脈衝造成相機6〇 繞其垂直軸的所需旋轉。類似命令可調整光學元件_ 的焦點、變焦及光圈。 在另-實例中’可在可用來控制處理器6〇4及/或感调 器602之功能的上行控制資訊中提供指令及資料。可用^ 令及資料來在相機60之視野内選擇—區域中用於在下名 視訊信號之-或多數中編碼。在某些具體實施例中,處 理器及感測ϋ協作以提供可相操縱則旨定待編碼之损 野的部分之-或多數虛擬相冑,藉以該等部分係由在袭 相機60的光學元件決定之實際視野内操作之虛擬搖攝、 變焦及傾斜功能而選I在某些具體實施例中,處㈣ 604可額外地造成相機之實體運動,從而延伸搖攝、“ 201116058 及變焦功能的範圍。 已預想在至少一些具體實施例中,CVBS及數位信號可 各承載由影像感測器602擷取的一部分影像。影像部分可 重疊或可來自由透鏡600提供的視野内之不同區域。此 外,在某些具體實施例中,可使用額外相機60及/或額外 影像感測器602來擴展可用的視野。例如,可能需要組態 複數相機以獲得一區域的全景(3 60°)視野。一或多數處理 器604可提供代表該視野,或該視野之一部分的類比及數 位信號。在一實例中,完整全景視野可在記錄於一 DVR 上的一數位信號中提供,而CVBS信號可提供全景内之一 可選擇視野。可選擇視野可使用變焦、搖攝及其他控制 來控制。在另一實例中,CVBS及數位信號可提供全景視 野之一共同或不同部分且該等部分可由一遠端檢視者獨 立地控制。 第7圖描述使用在一保全數位視訊記錄系統70中之一 81^0(:-11 700(類似第3圖中描述之81^00:-113 5)的一實例。 系統70包含SLOC-R 700,一連接至周邊裝置710、712及 714之DVR處理器702, 一類比視訊解碼器704,一數位視 訊解碼器708及HD數位顯示處理器706。如上述,SLOC-R 700接收及解碼來自coax 72之信號,其典型包含一類比 標準畫質視訊信號及一 HD數位視訊信號。SL0C-R 700 Γ *: 亦透過coax 72傳輸上行音訊及控制信號。SLOC-R典型 20 201116058 將輸入信號72中之類比CVBS信號與HD數位視訊信號分 開,提供數位視訊信號703至處理器702且CVBS信號701 至一標準晝質監視器74作為一來自第6圖所示相機60之 現場饋送。SLOC-R 700可視需要提供類比基頻視訊信號 701至類比視訊解碼器704,其處理該信號以產生一數位 標準晝質視訊信號705。顯示處理器706在數位標準晝質 信號705及自經儲存HD數位視訊之播放導出的一信號 707之間多工及/或選擇。顯示處理器可依一可由HD電視 或監視器76顯示的格式提供選定信號。 DVR處理器702接收數位HD視訊信號703及視需要儲 存該信號之至少一部分作為由相機60擷取的視訊之一記 錄。該記錄可在一本機硬碟機714中、在透過網路介面710 及/或USB/Firewire或其他本機匯流排712連接之網路儲 存器(未顯示)上或其他光學、電磁或半導體儲存器中儲 存。經記錄視訊可進一步壓縮以節省儲存空間。DVR處 理器可擷取經記錄視訊及使用數位視訊解碼器708提供 一播放信號707。 第8圖描述使用在一網路化保全裝置80中之一 SLOC-R 800(類似第3圖中描述之SLOC-R 35)的一實例。裝置80 包含SLOC-R 800及一網路開關處理器802,其典型由一 網路連接至IP視訊伺服器86。如上述,SLOC-R 800接收 Γ «; 及解碼來自coax 82之信號,其典型包含一類比標準晝 21 201116058 視訊信號及一 HD數位視訊信號。SLOC-R 800視需要透過 coax 82傳輸上行音訊及控制信號。SL0C-R典型地將在輪 入信號82中之類比CVBS信號與HD數位視訊信號分開, 提供數位視訊信號803至處理器802且CVBS信號801至一 標準晝質監視器84作為一來自第6圖所示相機60之現場 饋送。在某些具體實施例中,SL0C-R 80可包括組件8〇4、 806或類似者’以數位化CVBS信號8〇1用於配合一數位顯 示器(諸如高畫質顯示器85)使用,亦作為一來自第6圖所 示相機60之現場饋送。然而’應理解一適當配備之顯示 裝置或計算裝置可接收CVBS信號801及施行信號的數位 化。網路開關處理器802接收數位HD視訊信號803及視需 要將信號傳輸給一接著可保持由相機6〇摘取之視訊的一 記錄之網路視訊伺服器86。數位HD視訊信號803可在傳 輸至視訊伺服器86前進一步壓縮。 再次參考第5及6圖,本發明的某些具體實施例准許視 需要選擇基頻類比信號50及下行信號52的内容。在一實 例中’基頻信號50與下行信號52兩者含有相同影像,前 者依類比形式且後者經數位編碼。數位影像可經壓縮及 未壓縮、依標準晝質與高晝質及以全訊框率或減少訊框 率而視需要及選擇性地傳輸。在另一實例中,基頻信號 50提供由影像感測器擷取之全影像的一部分,而下行信 f ' 號52承載全影像。在另一實例中,基頻信號5〇提供由秦 22 201116058 像感測器提供的全影像,而該下行含有全影像之一部 分。因而,預想一種容許數位相機之使用者自各式各樣 選項中選擇用於顯示、記錄及傳輸視訊影像之高度可組 態系統。 之類比竿〆l··. 本發明的某些具體實施例包括用於改善電纜中之高頻 斜坡衰減(roll off)之效應的系統及方法’該效應係當電纜 長度增加時造成更多南頻衰減。由電纜導入之此傾斜使 基頻類比視訊及通帶數位視訊信號退化’當電纜長度增 加時’該退化會惡化。然而,本發明的某些具體實施例 提供一等化器(典型在數位接收器中),其移除數位通帶 信號上的傾斜,使被傳輸之符元(symb〇1)能可靠的解 碼0 本發明的某些具體實施例改進系統及設備(包括上述 系統)之效能,其中基頻視訊信號可與基頻視訊信號的數 位表示及與控制信號組合,從而致能透過諸如一同轴電 纜(coax)的單一電纜傳輸。第3及4圖顯示提供一sl〇c系 統之具體實施例的實例且第5圖顯示SLOC系統之一可能 調變方案。採取第3圖之實例,HD相機3〇提供包含壓縮 數位HD視訊332之一輸出’及包含類比標準畫質 (SD)CVBS之一辅助相機輸出330。壓縮HD視訊信號332 係利用一 SLOC相機側數據機31調變至通帶52,數據機 23 201116058 包含提供可與基頻類比CVBS信號330組合之一調變信號 的一 QAM調變器。經組合信號透過同轴電纜33傳輸下 行’典型地達到可延伸至300米或更長距離。在監視器側 處,一 SLOC監視器側數據機35將代表基頻CVBS信號330 之一信號與通帶下行視訊信號332的一信號分離。代表 CVBS之信號饋送一 SD顯示34用於無延遲現場檢視。高通 帶下行信號係用一 QAM解調器解調,其輸出饋送一主處 理器及DVR3 2 ’其支援在監視器3 4上之現場(雖然可能務 有延遲)HD檢視及非即時Hd播放用於後續檢視。 在該實例中,上行通信當需要時係藉由(例如)Ip協定提 供。上行通信可額外用來自監視器側傳輸音訊及相機控 制信號334至相機30。典型地,上行信號之位元率及因此 所需頻寬係典型地比下行通帶信號所需者低得多。監視 器侧SLOC數據機3 5包括一 QAM調變器,其調變ip信號至 上行通帶54。如第5圖中所述,上行通帶54及下行通帶52 位於不同頻譜位置。在相機側處,SL〇c數據機31包括用 於接收上行彳g號之一 QAM解調器。此方法提供優於先前 系統及方法之若干優點,包括: (1) 增加操作範圍-增加距離。 (2) 系統可使用現存基礎結構並再利用同軸電纜佈署。 (3) 低延遲、即時(現場)視訊之可用性。The nickname 605 includes the video signal provided by the processor 604 to the SLOC-T 606 and the uplink control, audio and other uplink information transmitted from the SL 〇 C_T6 〇 6 to the processor 〇4 from the line 62. The upstream audio information can be decoded, processed and/or formatted by the iS 18 201116058 604 before being passed to the audio, converter or other audio output system 612 in the audio. The processor can amplify the audio signal or can use a separate amplifier in the audio output component 612. Uplink control may include optical component control 601 and control signals for external devices 'typically provided through control interface 618. The external device can include a motor or actuator for translating, rotating or orienting the camera 60. Optical component control signal 601 and external control signal 618 can be generated by a remote control system in response to predefined commands. For example, the remote user can manipulate a joystick that produces a sequence of encoded instructions that are interpreted by the camera processor 604 to mean "rotate the camera 90 degrees clockwise in the horizontal plane" and the processor 6〇4 can borrow The pulse of the sequence is transmitted to the stepper motor mounted axially relative to the camera 60 in response to 'the pulse of the sequence causing the desired rotation of the camera 6 about its vertical axis. Similar commands adjust the focus, zoom, and aperture of the optics_. In another example, instructions and data may be provided in uplink control information that may be used to control the functionality of processor 〇4 and/or 602. The command and data can be used to select within the field of view of the camera 60 - the area is used to encode in the - or majority of the next name video signal. In some embodiments, the processor and the sensing ϋ cooperate to provide a portion of the damage that can be manipulated to be encoded, or a majority of the virtual phase, by which the portion is optically directed by the camera 60 The component determines the virtual panning, zooming, and tilting functions of the actual field of view. In some embodiments, the (4) 604 can additionally cause physical movement of the camera, thereby extending the panning, "201116058 and zoom functions. Scope It is envisioned that in at least some embodiments, the CVBS and digital signals can each carry a portion of the image captured by image sensor 602. The image portions can overlap or can be from different regions within the field of view provided by lens 600. In some embodiments, an additional camera 60 and/or additional image sensor 602 can be used to expand the available field of view. For example, a complex camera may need to be configured to obtain a panoramic (3 60°) field of view for an area. One or more processors 604 can provide analog and digital signals representative of the field of view, or a portion of the field of view. In one example, the full panoramic field of view can be recorded on a DVR Provided in a digital signal, the CVBS signal provides a selectable field of view within the panorama. The selectable field of view can be controlled using zoom, pan and other controls. In another example, the CVBS and digital signals provide panoramic view A common or different portion and the portions can be independently controlled by a remote viewer. Figure 7 depicts the use of one of 81*0 (:-11 700 in a secured digital video recording system 70 (similar to that described in Figure 3). An example of 81^00:-113 5) System 70 includes a SLOC-R 700, a DVR processor 702 coupled to peripheral devices 710, 712, and 714, an analog video decoder 704, and a digital video decoder 708. And the HD digital display processor 706. As described above, the SLOC-R 700 receives and decodes signals from the coax 72, which typically includes an analog standard video signal and an HD digital video signal. SL0C-R 700 Γ *: The coax 72 transmits the uplink audio and control signals. The SLOC-R model 20 201116058 separates the analog video signal from the CVBS signal and the HD digital video signal to provide the digital video signal 703 to the processor 702 and the CVBS signal 701 to a standard. The quality monitor 74 acts as a field feed from the camera 60 shown in Fig. 6. The SLOC-R 700 can optionally provide an analog baseband video signal 701 to an analog video decoder 704 that processes the signal to produce a digital standard enamel video. Signal 705. The display processor 706 multiplexes and/or selects between the digital standard quality signal 705 and a signal 707 derived from the playback of the stored HD digital video. The display processor can be enabled by an HD television or monitor 76. The format displayed provides the selected signal. The DVR processor 702 receives the digital HD video signal 703 and optionally stores at least a portion of the signal as one of the video captured by the camera 60. The record may be in a local hard drive 714, on a network storage (not shown) connected via a network interface 710 and/or USB/Firewire or other local bus 712, or other optical, electromagnetic or semiconductor Stored in the storage. Recorded video can be further compressed to save storage space. The DVR processor can retrieve the recorded video and provide a playback signal 707 using the digital video decoder 708. Figure 8 depicts an example of a SLOC-R 800 (similar to the SLOC-R 35 described in Figure 3) used in a networked security device 80. The device 80 includes a SLOC-R 800 and a network switch processor 802, which is typically connected to the IP video server 86 by a network. As mentioned above, the SLOC-R 800 receives Γ «; and decodes signals from the coax 82, which typically includes an analog 昼 21 201116058 video signal and an HD digital video signal. The SLOC-R 800 transmits upstream audio and control signals via coax 82 as needed. The SL0C-R typically separates the analog CVBS signal from the HD digital video signal in the round signal 82, provides the digital video signal 803 to the processor 802 and the CVBS signal 801 to a standard quality monitor 84 as a picture from FIG. The live feed of the camera 60 shown. In some embodiments, SL0C-R 80 may include components 8〇4, 806 or the like 'to digitize CVBS signal 8〇1 for use with a digital display (such as high-quality display 85), also as A live feed from the camera 60 shown in Fig. 6. However, it should be understood that a suitably equipped display device or computing device can receive the CVBS signal 801 and digitize the execution signal. The network switch processor 802 receives the digital HD video signal 803 and, if desired, transmits the signal to a network video server 86 that maintains a record of the video picked up by the camera 6. The digital HD video signal 803 can be further compressed before being transmitted to the video server 86. Referring again to Figures 5 and 6, certain embodiments of the present invention permit selection of the contents of the baseband analog signal 50 and the downlink signal 52 as desired. In an example, both the fundamental signal 50 and the downstream signal 52 contain the same image, the former being analogous and the latter being digitally encoded. Digital images can be compressed and uncompressed, with standard enamel and high quality, and transmitted at full frame rate or frame rate as needed. In another example, the baseband signal 50 provides a portion of the full image captured by the image sensor, while the downstream signal f'#52 carries the full image. In another example, the baseband signal 5〇 provides a full image provided by a Qin 22 201116058 image sensor, and the downstream contains a portion of the full image. Thus, it is envisioned that a user of a digital camera can select a highly configurable system for displaying, recording, and transmitting video images from a wide variety of options. Analogy · l··. Certain embodiments of the present invention include systems and methods for improving the effects of high frequency ramp roll in a cable. This effect causes more south when the cable length is increased. Frequency attenuation. This tilt introduced by the cable degrades the fundamental frequency analog video and the passband digital video signal' as the cable length increases, the degradation deteriorates. However, some embodiments of the present invention provide an equalizer (typically in a digital receiver) that removes skew on the digital passband signal so that the transmitted symbol (symb〇1) can be reliably decoded. 0 Certain embodiments of the present invention improve the performance of systems and devices, including the above-described systems, wherein the baseband video signal can be combined with a digital representation of the baseband video signal and with a control signal to enable transmission through, for example, a coaxial cable. Single cable transmission (coax). Figures 3 and 4 show an example of a specific embodiment providing a sl〇c system and Figure 5 shows one possible modulation scheme for the SLOC system. Taking the example of Figure 3, the HD camera 3 provides an output of one of the compressed digital HD video 332 and an auxiliary camera output 330 containing an analog standard quality image (SD) CVBS. The compressed HD video signal 332 is modulated to a passband 52 by a SLOC camera side modem 31. The modem 23 201116058 includes a QAM modulator that provides a modulated signal that can be combined with the baseband analog CVBS signal 330. The combined signal is transmitted through the coaxial cable 33 and is typically 'extendable to a distance of 300 meters or more. On the monitor side, a SLOC monitor side modem 35 separates a signal representative of the baseband CVBS signal 330 from a signal of the passband down video signal 332. A signal feed representing an CVBS, an SD display 34, is used for no-delay on-site inspection. The Qualcomm downlink signal is demodulated with a QAM demodulator, and its output is fed to a host processor and DVR3 2 'which supports the scene on the monitor 34 (although it may be delayed) for HD viewing and non-instant Hd playback. For subsequent review. In this example, upstream communication is provided by, for example, an Ip protocol when needed. The upstream communication can additionally transmit audio and camera control signals 334 from the monitor side to camera 30. Typically, the bit rate of the upstream signal and thus the desired bandwidth is typically much lower than that required for the downlink passband signal. The monitor side SLOC modem 35 includes a QAM modulator that modulates the ip signal to the upstream passband 54. As described in Figure 5, the upstream passband 54 and the downstream passband 52 are located at different spectral locations. At the camera side, the SL 〇c modem 31 includes a QAM demodulator for receiving an upstream 彳g number. This approach provides several advantages over previous systems and methods, including: (1) Increased operating range - increased distance. (2) The system can use existing infrastructure and deploy it with coaxial cable. (3) Low latency, instant (on-site) video availability.

(4) 現場CVBS視訊及HD視訊可在不同位置中檢視。K 24 201116058 第2 1圖係顯示第4圖之SLOC相機側數據機49的額外細 節之一簡化示意圖。對於HD相機21 00之IP連接係透過媒 體獨立介面(]\411)模組210建立至()入1^調變器212及(^八]^ 解調器214之介面。在一實例中,MII 2 10符合IEEE 802.3 標準。QAM調變器212使用熟知原理操作以轉換基頻IP 資料流2100成為通帶QAM符元2120。此等符元在216與基 頻CVBS信號2160相加及接著饋送至雙工器218。雙工器 218可為一 2向類比裝置,其將經組合基頻及低通帶下行 信號2162傳遞至coax及自coax接收之高通帶上行信號 2140且將其饋送至QAM解調器214。QAM解調器214典型 地使用熟知原理操作以將自監視器側接收的高通帶上行 信號2140解調及輸出基頻資料至MII介面210。 第22圖係顯示第4圖之SLOC監視器側數據機45的額外 細節之一簡化示意圖。雙工器220自一同軸電纜接收下行 組合基頻CVBS與低通帶IP信號2200,及藉由低通(LP)及 高通(HP)濾波將信號分成組成元件(component element)2201至2203。可將CVBS信號2201直接傳輸至一 標準畫質監視器或其他顯示裝置。可將低通帶信號2202 饋送至QAM解調器222,其饋送MII介面模組226。雙工器 亦可自QAM調變器224接受一高通帶信號2203及可將此 上行信號傳遞至同軸電纜。QAM調變器222典型自可連接 Γ Γ 至一支援IP協定之主/DVR的MII介面226取得其輸入’ 25 201116058 同轴電纜典型會顯現一明顯高頻斜坡衰減特性,其當 電繞長度增加時造成更多高頻衰減。此「傾斜」在一通 帶信號之頻帶内可能明顯且其可產生相當大間干擾 (ISI)。可能需求數位等化以致使QAM解調器222能正確地 恢復傳輸資料。 基頻至通帶镅鍈 第23圖更詳細顯示相機侧基頻至通帶qam調變器 212(第21圖)。來自MII 210之資料係藉由FEC編碼器/映射 器2300接收’其使用(例如)級聯之Reed_s〇l〇m〇n編碼、 位元組交錯及/或籬柵編碼將誤差保護資料加至自Μπ 210接收的資料流中。映射器/編碼器2300將資料解多工 成為流2300及2302 ’其中各資料流之位元組的—給定大 小群組分別代表在實及虛方向中之一 QAM振幅位準。一 隔離傳輸QAM脈衝係給定為: = dR,mq(t)cos{l7rfct) - dImq{t)sm{27tfct) = KQ[dmq{t)en^ } 其中办及必m係藉由兩獨立訊息流決定且分別代表— 複數QAM之貫及虛部,其中w = 指示基數之—2、維 QAM群集,其中Μ係調變載波頻率,且g(t)係一根昇餘弦 脈衝函數。 一連續串列之傳輸QAM脈衝<ί)以&1/7^之一逮率# 過一吵雜多路徑通道。因此,在至Q AM接收器之輪入 接收的信號係藉由冲)=冲)*c(〇 + v(〇給定,其中*指示迴旋[ί 26 201116058 c〇)係通道脈衝響應,且ν(ί)係相加性白高斯雜訊。因此: r(i) = Rep2K>+e。5 [4«W(’)]c(卜 + 呛), 其中ί/[«]係複數傳輸’ Α及%分別係相關於傳輸器之接收 器通帶至基頻解調器本機振盈器的相位及頻率偏移,使 得/iO=/c-/〇。 基頻至通帶解調器 第24A圖更詳細顯示監視器側通帶至基頻qam解調器 222(第22圖)。一信號r(i)可自一同軸電纜接收,例如係以 比該率更高之一速率取樣(參見240),導致取樣信號 。取樣後: K«LP) = R+7(/』^'^4m]*《(>77;a)np)]c(/i7;amp-m7;)} + v(«7;—)。 接著,在向下轉換後’依率1/7;再取樣及匹配濾波獲 得:x(W;) = ^]=e;w,+e-g+Hit-m]+4t] /Π=—〇0 其中ν’μ]係取樣複數濾波雜訊,因為脈衝成型與匹配 濾波β與完美率取樣時序組合,故假設任何isi係僅由於通 道脈衝響應C。 等化器及裁波相位/镅率i回敗 第24A圖之數位等化器及載波相位/頻率迴路係參考第 25圖更詳細討論。一信號对句進入一適應性數位等化器 250,其可包括用來補償起因於通道脈衝響應^之傾斜的。 27 201116058 線性數位濾波器。階權重調整可使用一或多數已知方 法達到,包括LMS演算法。等化器將其輸出y[幻與一相位 旋轉版本之二維(2D)分割器決定,比較以產生一誤差 t號,用來計算濾波器階權重的一更新組。LMS演算法 可操作如下: 若对幻表示一#長等化器輸入向量,及 少[句表示等化器輸出向量/μμμ], 其中〆[幻係#長等化器階權重向量且孖上標指示共軛移 項(Hermitian)。 e\k] = d\k\-y[k] 咖+ 1] = ^]-2/4ψ*[4 其中#係一小段差大小參數且*上標指示複數共軛。為 了移除通帶電纜傾斜的影響,在收斂後1^^§等化器階可 近似通道脈衝響應^之反轉。 一 2D分割益252將ζ[Α:]及輪出咖](其係初始傳輸之可勾的 一估計)的實及虛部獨立地分割。相位誤差偵測器模組 258接收明及且形成相位誤差信號4]=Ιηι{ψ刚。低 通(LP)濾波器256可為一積分比例濾波器,其容許該迴路 校正相位及頻率偏移兩者。低通濾波器256的輸出饋送一 複數離散電壓控制振盪器(VCO)254,其輸出一針對及心 及/〇兩者校正的一複雜相位/頻率校正因子^Mk]。vc〇 254 亦提供「未校正」分割器輸出2[灸]之一輸出(e+Mk]),使‘- 28 201116058 可其可用來導出一用於等化器階更新的誤差信號。此典 型需要係因為等化器在对句上操作。亦參考第24A圖,等 化器輸出z[幻係饋送至轉換偵測到實及虛位準成為位元 之群組的一解映射器。FEC解碼器接著執行Viterbi解碼, 位元組解父錯,及/或Reed-Solomon解碼以校正接收到位 疋誤差及將所得資料傳遞至MII介面。 電規長度的影響(4) On-site CVBS video and HD video can be viewed in different locations. K 24 201116058 Figure 2 is a simplified schematic diagram showing additional detail of the SLOC camera side modem 49 of Figure 4. The IP connection for the HD camera 21 00 is established through the media independent interface (]\411) module 210 to () the interface of the modulator 212 and the demodulator 214. In an example, The MII 2 10 conforms to the IEEE 802.3 standard. The QAM modulator 212 operates using well known principles to convert the baseband IP data stream 2100 into a passband QAM symbol 2120. These symbols are added to the baseband CVBS signal 2160 at 216 and then fed. To duplexer 218. Duplexer 218 can be a 2-way analog device that passes the combined baseband and lowpassband downlink signal 2162 to coax and the high passband uplink signal 2140 received from coax and feeds it to QAM. Demodulator 214. QAM demodulator 214 typically operates using well known principles to demodulate high frequency pass upstream signal 2140 received from the monitor side and output baseband data to MII interface 210. Figure 22 shows Figure 4 A simplified schematic of one of the additional details of the SLOC monitor side data machine 45. The duplexer 220 receives the downlink combined baseband CVBS and low passband IP signal 2200 from a coaxial cable, and with low pass (LP) and high pass (HP) Filtering divides the signal into component elements 2201 through 2203. The CVBS signal 2201 is directly transmitted to a standard picture quality monitor or other display device. The low pass band signal 2202 can be fed to the QAM demodulator 222, which feeds the MII interface module 226. The duplexer can also be self-QAM modulator The 224 accepts a high pass signal 2203 and can transmit the upstream signal to the coaxial cable. The QAM modulator 222 typically connects to the MII interface 226 of the master/DVR supporting the IP protocol to obtain its input '25 201116058 coaxial The cable typically exhibits a distinct high frequency ramp attenuation characteristic that causes more high frequency attenuation as the electrical winding length increases. This "tilt" may be significant in the band of the passband signal and it can create considerable inter-interference (ISI). It may be desirable to digitize the bits so that the QAM demodulator 222 can properly recover the transmitted data. The baseband to passband 镅鍈 Figure 23 shows the camera side fundamental frequency to the passband qam modulator 212 in more detail (Fig. 21). The data from MII 210 is received by FEC encoder/mapper 2300's use of, for example, cascading Reed_s〇l〇m〇n encoding, byte interleaving and/or fence encoding to add error protection data to Received from Μπ 210 In the stream, the mapper/encoder 2300 demultiplexes the data into streams 2300 and 2302 'where the tuples of each data stream—the given size group represents one of the QAM amplitude levels in the real and imaginary directions, respectively. An isolated transmission QAM pulse is given as: = dR,mq(t)cos{l7rfct) - dImq{t)sm{27tfct) = KQ[dmq{t)en^ } The independent message flow determines and represents respectively - the complex and imaginary parts of the complex QAM, where w = indicates the base number - 2, the dimensional QAM cluster, where the system is modulated by the carrier frequency, and g(t) is a raised cosine pulse function. A continuous series of transmitted QAM pulses < ί) is a random multipath path with &1/7^. Therefore, the signal received by the wheel in the Q AM receiver is rushed by = rush) * c (〇 + v (〇 given, where * indicates the cyclotron [ί 26 201116058 c〇) is the channel impulse response, and ν(ί) is an additive white Gaussian noise. Therefore: r(i) = Rep2K>+e.5 [4«W(')]c(b+ 呛), where ί/[«] is a complex transmission ' Α and % are the phase and frequency offsets of the transmitter passband of the transmitter to the local oscillator of the baseband demodulator, respectively, such that /iO=/c-/〇. Baseband to passband demodulation Figure 24A shows the monitor side passband to the baseband qam demodulator 222 (Fig. 22) in more detail. A signal r(i) can be received from a coaxial cable, for example at a rate higher than this rate. Sampling (see 240) results in a sampled signal. After sampling: K«LP) = R+7(/』^'^4m]*(>77;a)np)]c(/i7;amp-m7; )} + v(«7;—). Then, after down-conversion, the rate is 1/7; resampling and matching filtering are obtained: x(W;) = ^]=e; w, +e-g+Hit-m]+4t] /Π=- 〇0 where ν'μ] is a sample complex filtering noise, since pulse shaping and matched filtering β are combined with perfect rate sampling timing, it is assumed that any isi is only due to channel impulse response C. The equalizer and the trim phase/reciprocal rate i return. The digital equalizer and carrier phase/frequency loop of Figure 24A are discussed in more detail in Figure 25. A signal pair enters an adaptive digital equalizer 250, which may be included to compensate for the tilt caused by the channel impulse response. 27 201116058 Linear digital filter. The order weight adjustment can be achieved using one or more known methods, including the LMS algorithm. The equalizer determines its output y [magic and one-phase rotated version of the two-dimensional (2D) splitter, compares to produce an error t number, which is used to calculate an updated set of filter order weights. The LMS algorithm can operate as follows: If the illusion represents a #long equalizer input vector, and less [sentence represents the equalizer output vector /μμμ], where 〆[幻系#长等器级重重 Vector and 孖The indicator indicates a conjugate shift term (Hermitian). e\k] = d\k\-y[k] 咖+ 1] = ^]-2/4ψ*[4 where # is a small difference size parameter and * superscript indicates complex conjugate. In order to remove the influence of the tilt of the passband cable, the 1^^§ equalizer step can approximate the inversion of the channel impulse response ^ after convergence. A 2D segmentation benefit 252 separates the real and imaginary parts of ζ[Α:] and turn-out coffee], which is an estimate of the initial transmission. The phase error detector module 258 receives and forms a phase error signal 4]=Ιηι{ψ刚. Low pass (LP) filter 256 can be an integral proportional filter that allows the loop to correct both phase and frequency offsets. The output of low pass filter 256 is fed a complex discrete voltage controlled oscillator (VCO) 254 which outputs a complex phase/frequency correction factor ^Mk] corrected for both heart and / /. The vc〇 254 also provides an output of the “uncorrected” splitter output 2 [moxibustion] (e+Mk), which allows ‘- 28 201116058 to be used to derive an error signal for the equalizer order update. This paradigm is required because the equalizer operates on the opposite sentence. Referring also to Fig. 24A, the equalizer outputs z [the phantom feed to the transform detects that the real and imaginary bits become a demapper of the group of bits. The FEC decoder then performs Viterbi decoding, byte demodulation, and/or Reed-Solomon decoding to correct the received bit error and pass the resulting data to the MII interface. The influence of the length of the electric gauge

接收到視訊信號可經歷衰減成為可歸因於電纜之某些 特性的頻率的一函數。為了此討論目的,係描述一同軸 電纜的實例。衰減(經常將其稱作傾斜)的嚴重性典型地 取決於電纜類型及長度。第26入及263圖顯示衰減成為針 對電纜類型RG6及RG59之各種長度的頻率的一函數。其 可顯示該傾斜相當於多路徑失真,其中額外路徑及主路 徑具有一極小延遲展開。隨著傾斜增加,非不重要多路 徑組件的數目(及其各自之增益)亦增加。多路徑失真造 成接收信號中的ISI且因此可能使傳輸可靠性嚴重地降 級。在一數位信號中,可將一等化器用於接收器以移除 此損害。第27A及27B圖分別顯示等化器輸入之功率頻譜 密度(PSD)及收歛等化器階之振幅響應。明確言之,第27八 圖顯示在透過2000英尺RG-6電纜傳輸後等化器輸入的 PSD ’其具有15.98MHz之一載波頻率(顯示通帶及相關基 頻頻率兩者)且第27B圖顯示收歛數位等化器階之振幅^ S 29 201116058 應。 本發明的某些具體實施例包含一數位等化器,其可取 消由電纜引入的傾斜,移除通帶信號中的ISI且致能可靠 解碼傳輸資料。隨著電纜長度增加,監視器側之數位通 帶信號可使用用於數位資料之數位等化器及著名向前誤 差保護方法(如Reed-S〇l〇mon解碼及籬柵編碼)來可靠地 接收。,然而,電镜傾斜亦負面地影響基頻類比cvbs信號 的尚頻率,其當在監視器側檢視時減少圖像鮮明度及彩 度。因此,某些具體實施例提供一可調適濾波器(例如一 類比等化器),其可應用於監視器侧處之CVByf號以補 償在基頻處之電纜傾斜。某些具體實施例利用通帶數位 等化器以估計基頻處之傾斜量為接著選擇一組基頻類比 濾波器之一適當者以應用於接收到Cvbs信號。 通帶傾斜之有效率仕气· 在估計信號帶中的傾斜時,可選擇一頻率帶,其中當 以分貝罝化時’輸入信號之PSD中的傾斜將大約線性。 因此,基頻數位等化器輸入中_2 67MHz至2 67MHz的頻 率(其將因此對應於通帶輸入信號中的13 31MHz& 18.65MHz)提供一適合範圍。如第26A圖中顯示,自 13.31MHz至18.65MHz之傾斜對於2000英尺之RG-6係大The received video signal can undergo attenuation as a function of the frequency attributable to certain characteristics of the cable. For the purposes of this discussion, an example of a coaxial cable is described. The severity of the attenuation (often referred to as tilt) typically depends on the cable type and length. Figures 26 and 263 show attenuation as a function of the frequency of the various lengths of cable types RG6 and RG59. It can show that the tilt is equivalent to multipath distortion, where the extra path and the main path have a very small delay spread. As the tilt increases, the number of non-important multipath components (and their respective gains) also increases. Multipath distortion causes ISI in the received signal and can therefore severely degrade transmission reliability. In a digital signal, an equalizer can be used in the receiver to remove this damage. Figures 27A and 27B show the power spectral density (PSD) of the equalizer input and the amplitude response of the convergence equalizer stage, respectively. Specifically, Figure 27 shows the PSD input from the equalizer after transmission through the 2000 ft RG-6 cable. It has a carrier frequency of 15.98 MHz (both show passband and associated fundamental frequency) and Figure 27B Display the amplitude of the convergence digitizer equalizer stage ^ S 29 201116058 should be. Some embodiments of the present invention include a digital equalizer that cancels the tilt introduced by the cable, removes the ISI in the passband signal and enables reliable decoding of the transmitted data. As the cable length increases, the digital passband signal on the monitor side can be reliably used using digital equalizers for digital data and well-known forward error protection methods such as Reed-S〇l〇mon decoding and fence coding. receive. However, the tilt of the electron microscope also negatively affects the frequency of the fundamental frequency analog cvbs signal, which reduces image sharpness and chroma when viewed on the monitor side. Accordingly, some embodiments provide an adaptable filter (e.g., an analog equalizer) that can be applied to the CVByf number at the monitor side to compensate for cable tilt at the fundamental frequency. Some embodiments utilize a passband digital equalizer to estimate the amount of tilt at the fundamental frequency for subsequent selection of one of a set of fundamental frequency analog filters to apply to receive the Cvbs signal. The efficiency of the passband tilt is important. When estimating the tilt in the signal band, a frequency band can be selected, wherein the tilt in the PSD of the input signal will be approximately linear when decimation is performed in decibels. Therefore, the frequency of the baseband digital equalizer input _2 67 MHz to 2 67 MHz (which will therefore correspond to 13 31 MHz & 18.65 MHz in the passband input signal) provides a suitable range. As shown in Figure 26A, the tilt from 13.31MHz to 18.65MHz is large for the 2,000-foot RG-6 system.

約3·7分貝。為了以分貝自收歛數位等化器濾波器階估計 傾斜,可施行以下計算: [J 201116058 (方程式1) 其中(7[幻係時域收歛等化器濾波器階之DFT,且幻及h 對應於DFT之特定頻段。因為第25圖之數位等化可用一 時域迴旋來施行,為了估計一給定幻及h之傾斜的目的, 典型地需要一 FFT(或可能用於兩點的#複數乘法及加 法)。即 池]=(7Λ [M ] + 队]=丈 g[n]ew2—A,(方程式 2 ) 其中gW^W+bW « = 0,1·..ΛΓ-Ι係#時域等化器階(賓略 時間索引上的相依)。應注意1/#純量在此計算中非必 要。一類似計算將會針對G(A:2)施行。然而,該計算可藉 由仔細選擇頻段而明顯地減少。藉由使h=iv/4 (對應於 2.67MHz的一頻率)’方程式(2)中的複數指數急劇簡化: 1 fornH.N-4. 々(雜=卜· f〇rn = l5”,.N-3·,丄 -1 /〇/·« = 2,6,...#-2.(方程式 3) .i f〇m = 3,7,...N~l. ,· (方程式3) 可使用加法計算濾波器頻率響應的實及虛部: η=0About 3. 7 decibels. In order to estimate the tilt in decibel self-converging digital equalizer filter order, the following calculation can be performed: [J 201116058 (Equation 1) where (7 [the illusion time domain convergence equalizer filter step DFT, and the magic and h corresponding In the specific frequency band of the DFT, since the digitization equalization in Fig. 25 can be performed by a time domain cyclotron, an FFT is typically required for the purpose of estimating the slope of a given magic and h (or possibly a complex multiplication of two points). And addition). ie pool]=(7Λ [M] + team]=zhangg[n]ew2—A, (Equation 2) where gW^W+bW « = 0,1·..ΛΓ-Ι# Domain equalizer order (dependency on the bin time index). It should be noted that 1/# scalar is not necessary in this calculation. A similar calculation will be performed for G(A:2). However, this calculation can be performed by By carefully selecting the frequency band, it is significantly reduced. By making h=iv/4 (corresponding to a frequency of 2.67MHz), the complex index in equation (2) is dramatically simplified: 1 fornH.N-4. 々(杂 =卜· F〇rn = l5”, .N-3·,丄-1 /〇/·« = 2,6,...#-2. (Equation 3) .if〇m = 3,7,...N ~l. , · (Equation 3) Addition can be used to calculate the filter frequency The real and imaginary parts: η = 0

6[士|^]-|^+1]-|丨,/[4„+2]+ (方程式 5) 最後,在此頻段處之功率係: 丨咏]丨2=颂]+啡] 31 201116058 藉由容許灸i=iW4,功率計算係明顯地簡化。同樣地, 若无1=3#/4(對應於-2.67河112之一頻率),則複數指數將再 次明顯地簡化。6[士|^]-|^+1]-|丨,/[4„+2]+ (Equation 5) Finally, the power system at this frequency band: 丨咏]丨2=颂]+啡] 31 201116058 The power calculation system is significantly simplified by allowing moxibustion i=iW4. Similarly, if there is no 1=3#/4 (corresponding to a frequency of -2.67 river 112), the complex index will be significantly simplified again.

(方程式7) forn = 0,4,...N-4. forn = l,5,...N-3· forn = lfi,...N_2· forn = 3J,."N _\· 實及虛部係計算為: GA]=名客g/[4« + l]-名gj4» + 2]+ 客g,[4„ + 3](方程式 8) 。刺=^[4»]+&[4« + 1】-系[4« + 2]一各[4« + 3](方程式 9) 且功率係汁鼻如上。在第2b圖中,收敛滤波器階 之振幅響應(依分貝)中的向上傾斜即使具有針對一 64-QAM之適度SNR亦係大約線性。此外,當以此方式計 算時,k«4.〇dB,其在3.7dB的此帶上極接近實際傾斜。 使用通帶傾斜估計用於基頻CVBS傾斜校正 在估計數位視訊信號之通帶傾斜後,可自从不同濾波 器之一選擇一適當基頻類比濾波器。其此可顯示數位視 訊t號帶之估計通帶傾斜將指示基頻CVBs信號中傾斜 的嚴重丨生,接著可用一類比濾波器大略地校正。在第28A 圖中顯不用於RG-6、RG-ll、rg-59及RG-174之自 13’31MHZ至18.65MHz之數位視訊信號帶中的傾斜且該 等電.·見之可旎長度。第28A圖顯示3 “MHz處的損失相對 32 201116058 於RG-6、RG-U、RG-59及RG-174電纜類型之通帶數位視 訊信號中的傾斜。第28B圖顯示6MHz處之損失。可觀察 到3.5 8MHz及6MHz處的損失對於一給定傾斜之所有四種 電纜類型係大略相同。第29A圖顯示3.58MHz處相對於 RG-6、RG-n、RG-59及RG-174電纜類型之通帶數位視訊 信號中的傾斜的損失。第29B圖顯示6MHz處之損失。將 會可觀察到3.58MHz及6MHz處的損失對於一給定傾斜之 所有四種電纜類型係大略相同。 因為估計通帶傾斜係有關電纜頻率響應的唯一可用資 訊,故理想情形係其中在基頻(CVBS信號帶)之電纜的頻 率響應以已知方式與通帶數位信號的傾斜相關聯,而不 論電纜類型或長度如何。第28B、29A及29B圖確認在 DC、3.58MHz及6MHz處之頻率響應中的此情況。例如, 分別針對所有四電纜,在通帶數位視訊信號中之1 5分貝 的一傾斜處,DC處的損失、彩色載波處的損失 (3.5 8MHz) ’及6MHz處的損失係約0.68分貝、4.1分貝及 5.3分貝。因此’不論1.5分貝的通帶傾斜是否自275英尺 之RG-174、750英尺之rg-59、825英尺之RG-6或1825英 尺之RG-11所造成,相同的類比濾波器將會取消cvbs信 號之基頻傾斜。 用於自一組Λ/濾波器選擇一適當類比濾波器之演算法 的一實例顯示如下: ^ - 33 201116058(Equation 7) forn = 0,4,...N-4. forn = l,5,...N-3· forn = lfi,...N_2· forn = 3J,."N _\· The real and imaginary parts are calculated as: GA]=名客g/[4« + l]-name gj4» + 2]+ guest g, [4„ + 3] (equation 8). 刺=^[4»] +&[4« + 1]--[4« + 2]-[4« + 3] (Equation 9) and the power system is as above. In Figure 2b, the amplitude response of the convergence filter step ( The upward tilt in decibels is approximately linear even with a moderate SNR for a 64-QAM. Furthermore, when calculated in this way, k«4.〇dB, which is very close to the actual tilt on this band of 3.7 dB Using passband tilt estimation for baseband CVBS tilt correction After estimating the passband tilt of the digital video signal, an appropriate baseband analog filter can be selected from one of the different filters. This can display the digital video t-band. It is estimated that the passband tilt will indicate a severe spike in the fundamental frequency CVBs signal, which can then be roughly corrected with an analog filter. It is not used in RG-6, RG-ll, rg-59, and RG-174 in Figure 28A. The tilt in the digital video signal band from 13'31MHZ to 18.65MHz and the Electrical · see the available laying length. 28A, FIG display "relative to the RG-6, RG-U, RG-59 and RG-174 cable type of the pass band of the digital visual information signal in inclined 3 loss MHz at 32201116058. Figure 28B shows the loss at 6 MHz. It can be observed that the losses at 3.5 8 MHz and 6 MHz are roughly the same for all four cable types for a given tilt. Figure 29A shows the loss of tilt in the passband digital video signal at 3.58 MHz relative to the RG-6, RG-n, RG-59, and RG-174 cable types. Figure 29B shows the loss at 6 MHz. It will be observed that losses at 3.58 MHz and 6 MHz are roughly the same for all four cable types for a given tilt. Since the estimated passband tilt is the only information available on the cable frequency response, the ideal situation is where the frequency response of the cable at the fundamental frequency (CVBS signal band) is associated with the tilt of the passband digital signal in a known manner, regardless of the cable. Type or length. Figures 28B, 29A and 29B confirm this in the frequency response at DC, 3.58 MHz and 6 MHz. For example, for all four cables, at a slope of 15 dB in the passband digital video signal, the loss at DC, the loss at the color carrier (3.5 8 MHz)' and the loss at 6 MHz are about 0.68 dB, 4.1. Decibels and 5.3 decibels. So 'whether the 1.5-dB passband tilt is caused by 275-foot RG-174, 750-foot rg-59, 825-foot RG-6, or 1825-foot RG-11, the same analog filter will cancel cvbs The fundamental frequency of the signal is tilted. An example of an algorithm for selecting an appropriate analog filter from a set of Λ/filters is shown below: ^ - 33 201116058

Iiiputs: |<?fA:i]|2,|C?lA:2]|2Iiiputs: |<?fA:i]|2,|C?lA:2]|2

Rn = anlGIfe!]!2, for 71 = 〇, 1,... f M. = == 0,1,____, M — 1. ^ |GNI2e^then Select aaalog filter L. end if 應注思CK Q - 1 ’ Q: n的其他值係< 1及經選定以致位元偏移 加法係足以計算杬。因此,第24A圖之監視器側QAM解調 器係典型地修改使得通帶QAM解調器之數位等化器提供 選擇Μ類比CVBS濾波響應之一的一信號。第24B圖顯示 監視器側Q AM解調器之修改部分,其中類比濾波器選擇 來自根據上述演算法運算之數位等化器的輸出。第3〇圖 顯不整個監視器側數據機,其中在QAM解調器3〇4内之一 數位等化器提供一濾波器選擇信號3〇5至(:¥38類比等化 器 302。 第31圖顯示適用於等化基頻CVBS信號之一類比主動 M=3,因此有4個可能濾 濾波器的一實例。在此實例中 波選擇。所需濾波器響應係由在開關模組31〇中關閉射 1開關之一來選擇,Rn = anlGIfe!]!2, for 71 = 〇, 1,... f M. = == 0,1,____, M — 1. ^ |GNI2e^then Select aaalog filter L. end if should be thinking about CK Q - 1 ' Q: The other values of n are < 1 and are selected such that the bit offset addition is sufficient to calculate 杬. Thus, the monitor side QAM demodulator of Figure 24A is typically modified such that the digital equalizer of the passband QAM demodulator provides a signal that selects one of the analogy CVBS filtered responses. Figure 24B shows a modified portion of the monitor side Q AM demodulator, wherein the analog filter selects the output from the digital equalizer that operates according to the above algorithm. The third diagram shows the entire monitor side data machine, in which a digital equalizer in the QAM demodulator 3〇4 provides a filter selection signal 3〇5 to (:¥38 analog equalizer 302. Figure 31 shows an analogy for an equalized fundamental frequency CVBS signal with an active M = 3, so there is an example of four possible filter filters. Wave selection in this example. The required filter response is from the switch module 31. 〇 Turn off one of the shot 1 switches to select,

量客[«]之FFT中多於二More than two in the FFT of the passenger [«]

臺校正方法的數位通信系統。熟習此 b到可使用通帶數位等化器階權重向 一點來選擇一類比濾波器用於CVBS 34 201116058 ^號’及可使用其他類型之數位等化器設計用於通帶信 號,包括頻域等化器,其中[幻及之值將已經計算 作為等化程序的部分。另外,可使用除了 LMs以外的習 知等化器階權重計算方法,諸如RLS。 在某些具體實施例中,具有可選擇響應之一 CVBS類比 濾波器可採取上述以外的一形式。另外,CVbs信號的等 化器可採取一數位濾波器的形式,在該情況下,cvBS 於等化前取樣及數位化。在此情況下,數位濾波器之階 權重係根據經描述以選擇Μ類比濾波器響應之一的相同 演算法自一組預定从階權重向量中選擇。 在數位诵信系統中分据 數位資料流典型地具有某種框結構使得資料被組織成 為位元或位元組的均一大小之群組。使用以區塊為主之 向前誤差校正(FEC)的任何系統將具有組織成約誤差校 正碼字元大小的訊框。另外,若系統用交錯來對抗脈衝 雜訊’訊框結構將會考慮交錯器參數來配置。若系統用 資料隨機化來達到一平頻譜,則所用之偽隨機序列可同 步化至訊框結構’在各訊框的開始處重新開始。 對於一 RF數位通信系統,一接收器典型地必須首先達 到載波及時脈同步及等化。其可捿著恢復該傳輸資料。 但為了瞭解此進入資料流,接收器亦必須同步至該訊框 結構。換句話說,接收器必須知道誤差校正碼字元在^ 35 201116058 處開始及結束。其亦必須能同步化諸如解交錯器之接收 器模組以匹配傳輸器之交錯器操作’使得所得之解交以 位兀,及位m確㈣序’且解隨機產生器用以匹配 傳輸态中所用之偽隨機序列的起點而使頻譜平坦化。 習知系統經常藉由在訊框之開始或結束處附加一固定 長度的符元之已知模式來提供接收器訊則步化。每一 訊框重複此相同槿#,B甘 、 且八..坐;由具有有利之自相關性 質的一二位準(即二進位)偽隨機序列組成。此意味著儘 s該序列與其本身之自相關在零偏移處獲得一大值,若 偏移係非零’則相關值(旁瓣,side lGbe)係極小。另外, 八有隨機符s之此訊框同步序列的相關將獲得—小值。 因此,右接收器執行進入符元與訊框同步模式之一儲存 版本的相關’其應該期望僅在各訊框的確切開始處獲 得大值。接著接收器可易於決定各訊框的起點。 訊框結構的實例 參考第9圖’在1996年採用的ATSC數位電視(DTV)地面 傳輸標準冑供資料在訊框中傳輸的-系統。各訊框90包 3 片^又且各片段含有832個符元,每一訊框總共 260416個符元。各片段中的首先四符元係包含序列[+5,A digital communication system for the calibration method. Familiar with this b to use the passband digital equalizer step weight to select a class filter for CVBS 34 201116058 ^ ' and other types of digital equalizers can be used for passband signals, including frequency domain, etc. The chemist, where [the value of the magical value will have been calculated as part of the equalization procedure. In addition, a conventional equalizer order weight calculation method other than LMs, such as RLS, can be used. In some embodiments, one of the CVBS analog filters having a selectable response may take a form other than the above. In addition, the equalizer of the CVbs signal can take the form of a digital filter, in which case the cvBS is sampled and digitized prior to equalization. In this case, the order weights of the digital filters are selected from a set of predetermined order weight vectors according to the same algorithm described to select one of the Μ analog filter responses. The data stream in a digital signal system typically has a box structure such that the data is organized into groups of uniform sizes of bits or bytes. Any system that uses block-based forward error correction (FEC) will have frames organized into approximately error correction code character sizes. In addition, if the system uses interleaving to combat the pulsed noise, the frame structure will be configured in consideration of the interleaver parameters. If the system uses data randomization to achieve a flat spectrum, the pseudo-random sequence used can be synchronized to the frame structure 'restart at the beginning of each frame. For an RF digital communication system, a receiver typically must first achieve carrier-to-sense synchronization and equalization. It can recover the transmission data. However, in order to understand this incoming data stream, the receiver must also synchronize to the frame structure. In other words, the receiver must know that the error correction code character begins and ends at ^ 35 201116058. It must also be able to synchronize the receiver module such as the deinterleaver to match the interleaver operation of the transmitter 'so that the resulting decipher is in the bit 兀, and the bit m is in the (four) order' and the random generator is used to match the transmission state. The starting point of the pseudo-random sequence used is used to flatten the spectrum. Conventional systems often provide receiver signal stepping by appending a known pattern of fixed length symbols at the beginning or end of the frame. Each frame repeats this same 槿#, B 甘, and 八.. sit; consists of a two-bit pseudo-random (ie, binary) pseudo-random sequence with favorable autocorrelation properties. This means that the sequence has a large value at zero offset from its own autocorrelation, and the correlation value (side lGbe) is minimal if the offset is non-zero. In addition, the correlation of this frame synchronization sequence with eight random characters s will result in a small value. Therefore, the right receiver performs the correlation of the incoming symbol with the stored version of one of the frame sync modes. It should expect to obtain a large value only at the exact beginning of each frame. The receiver can then easily determine the starting point of each frame. Example of frame structure Refer to Figure 9 for the ATSC digital television (DTV) terrestrial transmission standard used in 1996 for data transmission in the frame. Each frame has 90 packets of 3 pieces and each segment contains 832 symbols, and each frame has a total of 260,416 symbols. The first four symbols in each fragment contain the sequence [+5,

’ _5 ’ +5]之片段同步符元92。各訊框中的第一片段係 一具有312資料片段96、98之訊框同步片段94。現參考第 1〇圖’訊框同步片段94具有一片段同步100,一 511符kT 36 201116058 偽隨機雜訊(PN511)序列101,一 63符元偽隨機雜訊(PN63) 序列102,一第二PN63序列203及一第:PN63序列104。 此係由指示模態係8VSB的24模態符元1〇5跟隨。預編碼 符元107及保留符元1〇6完成訊框同步片段94»片段同步 100及PN5 11 101符元對於接收器係事前已知及可用來經 由相關方法獲取訊框同步化。所有前述符元來自集合 { + 5,-5}。此片段的最後12個符元來自集合 {-7_5-3-1 + 1+3 + 5 + 7},且係前置資料攔位之最後12個符元 的複製。此等係稱為預編碼符元(在此内未討論)。 亦參考第11圖’對於該攔位之後續312片段的各者(稱 作資料片段),跟隨四片段同步符元30的828符元32係藉 由一次採取2位元而自一單一 207位元組(1656位 元)Reed-Solomon(RS)碼字元產生,將其籬柵編碼成為3 位元,接著將3位元的各單元映射至來自該集合 {-7-5-3-1 + 1+ 3 + 5 + 7}之 一 8位準符元。 在ISDB-T的系統中見到在一數位通信系統中分框的另 一實例。與單一載波ATSC系統不同,ISDB-Τ係利用編碼 正交分頻多工處理(COFDM)的一多載波系統。例如, ISDB-Τ之模態1使用1404載波。一訊框由204 COFDM符 元組成且可認為各COFDM符元係1404獨立QAM符元的 組合,載波之各者使用一者。因此,訊框係由 204x1404=286416 QAM符元的組合組成。此等中,254592 37 201116058 係資料,且3 1824包含先導資訊(其可用於訊框同步化)及 模態資訊,其係依一已知模式散布該訊框。 第12圖顯示此訊框配置的一簡化圖。可見到圖及模態 資訊依一已知模式散布訊框中。此系統具有利用三不同 QAM群集-QPSK、16QAM及64QAM之模態。其亦支援基 於一單一刪餘(punctured)母碼之五不同籬柵編碼率(1/2, 2/3,3/4,5/6,7/8)。此著名技術使其極經濟地在接收器 中建構一單一 Viterbi解碼器,其可易於調整以解碼所有 五個特定碼。 於傳輸處離拇編碼前’資料係形成為2 0 4位元組 (1632位元)長RS區塊。當每一訊框COFDM符元的數目始 終恆定時,每一訊框RS區塊的數目隨著選擇模態變化, 但最重要的是,該數目始終係一整數。一旦訊框同步已 經建立且籬柵碼率已知,此容許接收器中容易使RS區塊 同步。為了使此為真,籬柵編碼之前的每一訊框的資料 位元數目必須可針對所有模式由1 632恰好整除。 表1顯示針對所有模態(QAM群集及籬柵碼率的組合) 每一訊框之資料位元的數目。在每一情況中每一訊框之 資料位元數目係由1632恰好整除(資料位元意指籬柵編 碼前的位元)。Fragment sync symbol 92 of '_5 ' + 5]. The first segment of each frame is a frame sync segment 94 having 312 data segments 96,98. Referring now to Figure 1, the frame sync segment 94 has a segment sync 100, a 511 symbol kT 36 201116058 pseudo random noise (PN511) sequence 101, a 63 symbol pseudo random noise (PN63) sequence 102, a first Two PN63 sequences 203 and one: PN63 sequence 104. This is followed by the 24-modal symbol 1〇5 indicating the modal system 8VSB. The precoding symbol 107 and the reserved symbol 1〇6 complete the frame synchronization segment 94»fragment synchronization 100 and PN5 11 101 symbols are known to the receiver beforehand and can be used to obtain frame synchronization by the related method. All of the preceding symbols come from the set { + 5,-5}. The last 12 symbols of this fragment are from the set {-7_5-3-1 + 1+3 + 5 + 7} and are the copy of the last 12 symbols of the pre-block. These are referred to as pre-encoded symbols (not discussed here). Referring also to FIG. 11 ' for each of the subsequent 312 segments of the block (referred to as a data segment), the 828 symbol 32 following the four segment sync symbol 30 is from a single 207 bit by taking 2 bits at a time. The tuple (1656 bits) Reed-Solomon (RS) code character is generated, its fence is encoded into 3 bits, and then the units of 3 bits are mapped to from the set {-7-5-3-1 + 1+ 3 + 5 + 7} One of the 8-bit quasi-symbols. Another example of a sub-frame in a digital communication system is seen in the ISDB-T system. Unlike single-carrier ATSC systems, ISDB-Τ utilizes a multi-carrier system that encodes orthogonal frequency division multiplexing (COFDM). For example, Mode 1 of ISDB-Τ uses 1404 carrier. A frame consists of 204 COFDM symbols and each COFDM symbol can be considered to be a combination of 1404 independent QAM symbols, one for each of the carriers. Therefore, the frame consists of a combination of 204x1404=286416 QAM symbols. In this case, 254592 37 201116058 is the data, and 3 1824 contains the pilot information (which can be used for frame synchronization) and modal information, which spreads the frame in a known pattern. Figure 12 shows a simplified diagram of this frame configuration. It can be seen that the map and modal information are scattered in the frame according to a known pattern. This system has a modality that utilizes three different QAM clusters - QPSK, 16QAM and 64QAM. It also supports five different fence coding rates (1/2, 2/3, 3/4, 5/6, 7/8) based on a single punctured mother code. This well-known technology makes it extremely economical to construct a single Viterbi decoder in the receiver that can be easily adjusted to decode all five specific codes. Before the transmission, the data was formed into a long RS block of 2 0 4 bytes (1632 bits). When the number of COFDM symbols per frame is always constant, the number of RS blocks per frame varies with the selection modality, but most importantly, the number is always an integer. Once the frame synchronization has been established and the fence rate is known, this allows the RS block to be easily synchronized in the receiver. In order for this to be true, the number of data bits per frame before the fence encoding must be exactly divisible by 1 632 for all modes. Table 1 shows the number of data bits per frame for all modalities (a combination of QAM cluster and fence rate). In each case, the number of data bits per frame is exactly divisible by 1632 (the data bit means the bit before the fence code).

模態 資料位元/訊框(籬栅编碼前) 籬柵編碼後的位 元/訊框 1/2 2/3 3/4 5/6 7/8 L 38 201116058 QPSK 254592 339456 381888 424320 445536 509184 16QAM 509184 678912 763776 848640 891372 1318368 64 QAM 763776 1318368 1145664 1272960 1336608 1527552 表1 : ISDB-Τ之每一訊框的資料位元 本發明之某些具體實施例提供數位通信系統中所用之 調變系統的一分框結構。尤其是,發信號系統及方法係 提供可用於保全系統(包括上述者)。一迴旋位元組交錯 器將資料的一訊框交錯,其中交錯器同步化至一訊框結 構且一隨機產生器可組態以自交錯資料訊框產生一隨機 化資料訊框。在一實例中,一刪餘籬栅碼調變器係在一 可選擇碼率處操作以自隨機化資料訊框產生一籬柵編碼 資料訊框。一 QAM映射器將在籬柵編碼資料訊框中之成 群組的位元映射至調變符元,從而提供一映射訊框且一 同步器將一同步封包加至映射訊框。視需要可使刪餘籬 柵碼調變器繞行以在各種白雜訊條件下獲得一最佳化淨 位元率,從而允許系統的效能最佳化。 在某些具體實施例中,在一單一載波通信系統中提供 新穎訊框結構。在一訊框的開始或結束處之一固定長度 的符元之一已知模式的自相關在零偏移處獲得一大值, 若偏移係非零,則相關值(旁瓣)極小。然而,此訊框同 步序列與隨機符元之相關將獲得一小值。因此,一接收 器可執行進入符元與訊框同步模式之一儲存版本的相關 以在各訊框的確切開始處獲得一大值致使接收器能決定 39 201116058 各訊框的起點。通信系統可在複數模態之任何模態中操 作,及可使用符元群集、籬柵編碼及交錯模式的各種組 合。接收器必須辨識及理解該模態以成功恢復傳輸資 料。由於此目的,可將額外模態符元加至訊框同步模式。 可使用相關方法可靠地接收此等模態符元因為其在每一 訊框重複地傳送。可藉由使用一區塊碼將其編碼使其甚 至更強健。 根據本發明某些態樣的一訊框結構利用刪餘籬柵編碼 及QAM的群集組合(類似用於1!5〇8_丁者)。每—訊框之 符元數目可根據模態為一可變整數而每一訊框之RS封包 的數目係不論模態而為一恆定整數。此配置簡化處理區 塊之接收器的設計(例如解隨機產生器及解交錯器),因 為每一訊框的RS封包數目始終係固定。在諸如ISdb_t之 習知系統中,每一訊框的符元數目係恆定而每一訊框的 RS封包數目根據模態係一可變整數。訊框將會參考第13 圖所述根據本發明的某些態樣建構之一傳輸器結構的一 實例來描述。 一 RS編碼器1300接受位元組資料13〇1及一指示 3 15Reed-Solomon封包1322之各群組的開始之外部產生訊框 同步信號。如第14圖中顯示,各封包丨4〇包含207位元組, 其中20位元組係奇偶性位元組丨42。此3丨5 Reed_s〇i〇mon封Modal data bit/frame (before fence coding) Fence-coded bit/frame 1/2 2/3 3/4 5/6 7/8 L 38 201116058 QPSK 254592 339456 381888 424320 445536 509184 16QAM 509184 678912 763776 848640 891372 1318368 64 QAM 763776 1318368 1145664 1272960 1336608 1527552 Table 1: Data Bits for Each Frame of ISDB-Τ Some embodiments of the present invention provide one of the modulation systems used in digital communication systems Sub-frame structure. In particular, signaling systems and methods are provided for use in security systems (including those described above). A whirling byte interleaver interleaves the frames of the data, wherein the interleaver is synchronized to a frame structure and a random generator is configurable to generate a random data frame from the interleaved data frame. In one example, a punctured fence code modulator operates at a selectable code rate to generate a fence-encoded data frame from the randomized data frame. A QAM mapper maps the group of bits in the fence-encoded data frame to the modulation symbols to provide a mapping frame and a synchronizer adds a synchronization packet to the mapping frame. The punctured fence modulator can be bypassed as needed to achieve an optimized net bit rate under various white noise conditions, thereby allowing system performance to be optimized. In some embodiments, a novel frame structure is provided in a single carrier communication system. The autocorrelation of one of the fixed-length symbols at the beginning or end of a frame obtains a large value at the zero offset. If the offset is non-zero, the correlation value (side lobe) is extremely small. However, the correlation between this frame synchronization sequence and random symbols will result in a small value. Therefore, a receiver can perform the correlation of the incoming symbol with the stored version of one of the frame sync modes to obtain a large value at the exact beginning of each frame so that the receiver can determine the starting point of each frame. The communication system can operate in any modal mode of the complex modality and can use various combinations of symbol clustering, fence coding, and interleaving modes. The receiver must recognize and understand the modality to successfully recover the transmission data. For this purpose, additional modal symbols can be added to the frame sync mode. These modal symbols can be reliably received using correlation methods because they are repeatedly transmitted at each frame. It can be encoded to be even more robust by using a block code. A frame structure in accordance with certain aspects of the present invention utilizes a cluster combination of punctured fence coding and QAM (similar to 1! 5 〇 8_). The number of symbols per frame can be a variable integer according to the modality and the number of RS packets per frame is a constant integer regardless of the modality. This configuration simplifies the design of the receiver of the processing block (e.g., de-randomizer and de-interleaver) because the number of RS packets per frame is always fixed. In a conventional system such as ISdb_t, the number of symbols per frame is constant and the number of RS packets per frame is a variable integer according to the modality. The frame will be described with reference to an example of a transmitter structure in accordance with certain aspects of the present invention as described in FIG. An RS encoder 1300 accepts the externally generated frame synchronization signal of the start of each of the group data 13〇1 and a group of 3 15Reed-Solomon packets 1322. As shown in FIG. 14, each packet contains 207 bytes, of which 20 bytes are parity bytes 丨42. This 3丨5 Reed_s〇i〇mon seal

Γ C 包形成含有65205位元組的向前誤差校正(Fec)資料訊 201116058 1322 ° 一迴旋位元組交錯器1302如下。第15圖說明對抗影響 傳輸信號之脈衝雜訊的交錯器1302之操作的一模態。路 徑156、158中之參數Β係設定成207,且路徑152、154、 156及158中的參數Μ設定成1。訊框同步信號13〇3強制輸 入及輸出換向器150及151至頂部位置1500,從而同步化 對於訊框結構之交錯。當一位元組進入交錯器且一不同 位元組離開交錯器時輸入及輸出換向器i 50及i 5丨向下移 一位置1502。當換向器150及151達到底部1508時,其移 回至頂部1500。B平行路徑1506、1508之各者含有一移位 暫存器156及158,其具有在第15圖中顯示之長度(路徑 1506具有長度(5-2)从且路徑1508具有長度(5-7)从)。 隨機產生器1306藉由在每一訊框同步時間處重設pn 序列產生器所縮短之一長度219-1的PN(偽隨機雜訊)序 列在FEC資料訊框1324之65205x8 = 8521640位元上運算 (藉由在該等位元上執行一互斥或運算)來產生一隨機 化FEC資料訊框1328。 一可選擇碼率刪餘籬柵編碼調變(PTCM )模組13 08 之—實例更詳細顯示於第16圖中。PTCM 1308使用一種 熟習此項技術者已知的方法。該方法以64狀態1/2率編碼 器開始且執行刪餘以達到5不同碼率之任一者。在某些具 體實施例中,PTCM1308亦可完全繞行(碼率=1)。此容一‘ 201116058 在系統的淨位元率及白雜訊效能之間 似 可選擇地折衷《類The ΓC packet forms a forward error correction (Fec) data message containing 65205 bytes. 201116058 1322 ° A convolutional byte interleaver 1302 is as follows. Figure 15 illustrates a modality of operation of the interleaver 1302 against pulse noise affecting the transmitted signal. The parameter 路 in paths 156, 158 is set to 207, and the parameter Μ in paths 152, 154, 156, and 158 is set to 1. The frame sync signal 13〇3 forces the input and output commutators 150 and 151 to the top position 1500 to synchronize the interleaving of the frame structure. The input and output commutators i 50 and i 5 are shifted downward by a position 1502 when a tuple enters the interleaver and a different byte leaves the interleaver. When the commutators 150 and 151 reach the bottom 1508, they move back to the top 1500. Each of the B parallel paths 1506, 1508 includes a shift register 156 and 158 having the length shown in Figure 15 (path 1506 has a length (5-2) and path 1508 has a length (5-7). )From). The random generator 1306 shortens a PN (pseudo-random noise) sequence of one length 219-1 by resetting the pn sequence generator at each frame synchronization time on the 65205x8 = 8521640 bits of the FEC data frame 1324. An operation (by performing a mutual exclusion or operation on the bits) produces a randomized FEC data frame 1328. A selectable code rate punctured fence coding modulation (PTCM) module 13 08 - an example is shown in more detail in FIG. PTCM 1308 uses a method known to those skilled in the art. The method begins with a 64 state 1/2 rate encoder and performs puncturing to achieve any of 5 different code rates. In some embodiments, the PTCM 1308 can also be completely bypassed (code rate = 1). This Rongyi ‘ 201116058 seems to be an alternative to the class between the net bit rate of the system and the white noise performance.

提, 式丟棄。QAM映射器1313自編碼器輸出1332取得成2、* 或6之群組的位元及將其分別映射成為QpsK、i6qam或 64QAM符元。此等映射的實例係在第丨7圖中提供。 模組13 12將一訊框同步/模態符元封包(所有符元係 QP S K)加至各FEC^料訊框1334的開始。參考第18圖,此 封包的第一部分180包含127個符元及包含一相同二進位 PN序列用於符元的實及虛部兩者。其他pN序列長度亦可 月b ’且貫及虚部可具有相反符號。此封包的第二部分is〗 包含指示傳輸模態之資料-選定QAM群集及選定籬柵碼 率。此模態資訊可使用一區塊誤差校正碼來編碼用於接 收器處的增加可靠性。可使用的方法包括BCH編碼及其 他區塊碼。在一實例中,包括繞行的6個可能籬栅碼率係 可能。此外,三群集可能導致1 8個模態。因此,需要5 位元來表示可能模態選擇之各者。5位元可使用一延伸 BCH碼來編碼成為一 16位元碼字元。因為各QPSK符元含 有2位元,故需要8模態符元。 第19圖說明提供予通帶調變(PB Mod) 1314的一訊框 結構1336(參見第13圖)。承載190包括315 RS封包(52164^ 42 201116058 位元)。3 1 5RS封包所映射之QAM符元的數目隨模態選擇 而變化。PB Mod模組1 3 14接著使用熟習此項技術者已知 之任何適合方法調變基頻QAM符元至通帶。 根據本發明某些態樣的訊框結構有利地克服習知訊框 之一些缺點及失效❶尤其係,訊框結構對於所有模態提 供: -不論模態每一訊框之一恆定整數的RS封包,及 •對於所有模態,每一訊框之QAM符元數係一可變整數 _對於所有模態,每一訊框之一整數的刪餘模式循環。 請注意每一訊框提供一整數的QAM符元並非無關重要 之方式,因為FEC資料訊框必須確切地包含Ιχ2〇7資料位 兀組,其中I係選定整數以便每一訊框具有一固定整數的 RS封包。因此,於籬柵編碼前每一訊框之資料位元的數 目不僅必須為一整數,且對於所有模態該數目必須可由 2〇7Χ8=1656恰好整除。此外,每— QAM符元之籬柵編碼 器輸出位元的數目分別對於Qpsk、16QAM及6叫應而 言係2、4及6位元(參見表2,其對於籬柵碼繞行顯示一碼 率=1)。此外,籬柵編碼增加位元。籬柵編碼前之每一符 元的資料位元數目係顯干於忘 尔.,肩不於表2中,其中各項目係計算 碼率 43 201116058 群集 籬栅編瑪率 1/2 2/3 3/4 5/6 7/8 1 QPSK 1.00 4/3 1.50 5/3 1.75 2.00 16QAM 2.00 8/3 3.00 13/3 3.50 4.00 64 QAM 3.00 4.00 4.50 5.00 5.25 6.00 表2-每一符元資料位元(每一映射QAM符元至籬柵編碼 器之輸入位元) 每一符元之資料位元數目可為分數之事實需要精確地 選擇每一訊框之RS封包大小及RS封包數目。使用每一訊 框207及3 15封包的RS封包大小可達到每一訊框之一整數 符元。如表3中顯示,各項目可計算為: 每一訊框之資料位元數 = 521640 每一符元之資料位元數 來自表2之項目 群集 籬栅編碼率 1/2 2/3 3/4 5/6 7/8 1 QPSK 521640 391230 347760 312984 298080 260820 16 QAM 260820 195615 173880 156492 149040 130410 64 QAM 173880 130410 115920 104328 99360 86940 表3-每一訊框之符元 此訊框提供額外優點係對於所有模態係有一整數的每 一訊框之刪餘模式循環(pp/frame)。為了正確地解碼該删 餘籬柵編碼資料,接收器中之解碼器必須知悉删餘模式 如何與資料對準。在母碼籬柵編碼器之輸出處應用的泛 位元刪餘模式係在第16圖之表的第二欄中指示。各刪餘 模式中之1的數目係刪餘模式長度。在建議的系統中,刪 ΓLift, discard. The QAM mapper 1313 obtains bits of the group 2, * or 6 from the encoder output 1332 and maps them to QpsK, i6qam or 64QAM symbols, respectively. Examples of such mappings are provided in Figure 7. Module 13 12 adds a frame sync/modal symbol packet (all symbol QP S K) to the beginning of each FEC frame 1334. Referring to Figure 18, the first portion 180 of the packet contains 127 symbols and contains both the same binary PN sequence for both the real and imaginary parts of the symbol. Other pN sequences may also be of the length b ′ and the imaginary and imaginary parts may have opposite signs. The second part of this packet is contains information indicating the transmission mode - the selected QAM cluster and the selected fence rate. This modal information can be encoded for increased reliability at the receiver using a block error correction code. The methods that can be used include BCH coding and other block codes. In one example, it is possible to include six possible fence codes around the line. In addition, three clusters may result in 18 modalities. Therefore, 5 bits are required to represent each of the possible modal choices. The 5-bit element can be encoded into a 16-bit code character using an extended BCH code. Since each QPSK symbol contains 2 bits, an 8 modal symbol is required. Figure 19 illustrates a frame structure 1336 (see Figure 13) provided to passband modulation (PB Mod) 1314. The bearer 190 includes 315 RS packets (52164^42 201116058 bits). The number of QAM symbols mapped by the 3 1 5RS packet varies with modal selection. The PB Mod module 1 3 14 then modulates the baseband QAM symbols to the passband using any suitable method known to those skilled in the art. The frame structure according to some aspects of the present invention advantageously overcomes some of the shortcomings and drawbacks of conventional frames. In particular, the frame structure provides for all modes: - a constant integer RS for each frame of the modality Packets, and • For all modalities, the QAM symbol number of each frame is a variable integer _ for all modalities, one of each frame is an integer puncturing mode loop. Please note that it is not unimportant to provide an integer QAM symbol for each frame, because the FEC data frame must contain exactly 2Ιχ7 data bits, where I selects an integer so that each frame has a fixed integer. RS packet. Therefore, the number of data bits of each frame before the fence encoding must not only be an integer, but the number must be exactly divisible by 2〇7Χ8=1656 for all modes. In addition, the number of output elements of the fence encoder per QAM symbol is 2, 4, and 6 bits for Qpsk, 16QAM, and 6 respectively (see Table 2, which shows one for the fence code bypass). Rate = 1). In addition, the fence coding adds bits. The number of data bits per symbol before the fence coding is obvious. It is not in Table 2. The calculation rate of each item is 43 201116058. The cluster fence is 1/2 2/3. 3/4 5/6 7/8 1 QPSK 1.00 4/3 1.50 5/3 1.75 2.00 16QAM 2.00 8/3 3.00 13/3 3.50 4.00 64 QAM 3.00 4.00 4.50 5.00 5.25 6.00 Table 2 - Each symbol data bit (Each mapping QAM symbol to the input bit of the fence encoder) The fact that the number of data bits per symbol can be a fraction requires precise selection of the RS packet size and the number of RS packets per frame. The RS packet size of each frame 207 and 3 15 packets can be used to reach one of the integer symbols of each frame. As shown in Table 3, each item can be calculated as: Number of data bits per frame = 521640 The number of data bits per symbol comes from the item cluster fence coding rate of Table 2 1/2 2/3 3/ 4 5/6 7/8 1 QPSK 521640 391230 347760 312984 298080 260820 16 QAM 260820 195615 173880 156492 149040 130410 64 QAM 173880 130410 115920 104328 99360 86940 Table 3 - Symbols for each frame This frame provides additional advantages for all The modality has a puncturing mode loop (pp/frame) for each frame of an integer. In order to correctly decode the punctured fence encoded data, the decoder in the receiver must know how the puncturing pattern is aligned with the data. The ubiquitous puncturing mode applied at the output of the mother code fence encoder is indicated in the second column of the table of Figure 16. The number of 1 in each puncturing mode is the puncturing mode length. In the proposed system, delete

L 餘模式始終與FEC資料訊框的開始一致。此容許接收器 44 201116058 中使用訊框同步以將接收器Viterbi解碼器中之解刪餘器 與位元流對準。所需對準係在表4中指示,其顯示對於所 有模態之一整數的pp/frame。每一符元之刪餘模式 (pp/symbol)項目可計算為: _長盾_ 每一符元之籬柵編碼器輸出之# 該pp/frame項目可計算為: 自表3之每一訊框的符元 pp/symbolThe L residual mode is always consistent with the beginning of the FEC data frame. Frame interleaving is used in this permissive receiver 44 201116058 to align the de-puncturing device in the receiver Viterbi decoder with the bit stream. The required alignment is indicated in Table 4, which shows a pp/frame for one of the integers of all modalities. The pp/symbol project for each symbol can be calculated as: _ long shield _ the output of each fence element encoder # The pp/frame item can be calculated as: The symbol of the box pp/symbol

瑪 率 PP 長 度 QPSK (2 bits/sym) 16 QAM (4 bits/sym) 64 QAM (6 bits/sym) pp/symbol pp/frame pp/symbol pp/frame pp/symbol pp/frame 1/2 2 1 521640 2 521640 3 521640 2/3 3 2/3 260820 4/3 260820 2 260820 3/4 4 1/2 173880 1 173880 3/2 173880 5/6 5 1/3 134328 2/3 134328 1 134328 7/8 8 1/4 74520 1/2 74520 3/4 74520 1 NA ΝΑ ΝΑ NA NA NA NA 表4-每一訊框之刪餘模式 應暸解可使用RS封包大小及每一訊框之封包數目的其 他組合以獲得同樣所需結果。在此提供的數目僅用於說 明目的而描述。 如第20圖顯示,本發明的某些具體實施例提供一接收 器,其經建構以處置根據本發明的某些態樣構造之一訊 框。模組2000接收在通帶信號中傳輸的資料及將其轉換 成基頻QAM符元。由模組2000執行的操作可包括符元時 脈同步化,等化(以移除符元間干擾)及載波恢復,其 45 201116058 型地係使用子模組。因此,模組2000可包括一等化器, 其輸出恢復基頻QAM符元2001。基頻QAM信號2〇〇1被提 供至二位準分割器2018用於在實及虛方向兩者争分割, 從而形成序列⑷】及〜We[_1+1】2〇丨9,其係提供至訊 框同步模組2020。訊框同步模組2〇2〇用二進位訊框同步 PN序列的一儲存複本,在進入之分割QAM符元2019上針 對實及虛部分開地執行一連續交叉相關運算。儲存複本 之各成員具有-1或+1之一值,此運算給定如下: 126 〜及味她[„]], π=0 (方程式10) 其中^係長127之訊框同#ΡΝ序列中之儲存複本。h或 ~之最大量值指示FEC資料訊框的開始。 一旦找到訊框同步開始位置,則得知含有模態位元(群 集及籬柵碼率)的碼字元之位置。碼字元可由(何如)一 BCH解碼器或由將接收到瑪字元與所有可能碼字元相關 且選擇產生最高所得值的碼字元而可靠地解碼。因為重 複傳送此資故可由需要在接受其前相同結果發生多 次而獲得額外可靠性。 使用此導出訊框同步信號2021來指示在將符元饋送至 軟解映射器2_前哪些符元係要在「移除訊框同步/模態 符凡」模組2004中移除。在一實例中,將127訊框同步符 兀及8模態符元自該流中移除以碟保僅對應於RS封包知 46 201116058 符凡被傳遞至軟解映射 2006。軟解映射器2006使用此 項技術中已知演算法 J如由Akay及Tosato描述之 演算法)計算軟^比較量。為了正確操作,軟解映射器 細6必須知道將哪一刪餘模式(哪—離柵碼率)用於傳輸 15及該模式與接收到位元的對準。此資訊則由訊框同 d、、且2020提供,其解瑪該模態資訊及亦提供—重複訊 框同步信號至刪餘模式所對準者而不論目前模態為何。 此等軟位元比較量被饋送至以此項技術中已知之方式操 作的Viterbi解碼請〇8以達到被輸入至傳輸器中的 PTCM編碼器之位元的估計。 均藉由訊框同步信號2〇21同步之解隨機產生器Μ。、 位元組解交錯器㈣㈣解碼器2〇16分别將位元組資料 解隨機、解交錯騎碼,以獲得原始輸人傳輸器中之rs 編碼器的資料。 i波相位儋銘妨,不 本發明之某些具體實施例使用載波相位偏移校正系統 及方法0在某些具體實施例,一接收器包含一相位偏移 校正器,其接收一代表一正交振幅調變信號之等化信 號,且自該等化信號導出一相位校正信號;—二位準分 割器’其分割等化信號以獲得實及虛序列;一訊框同步 器,其用一儲存訊框同步偽隨機序列之對應部分及由訊 框同步器提供至相位偏移校正器之一相位校正符元,y 47 201116058 執打實及虛序列的一相關。相位校正信號係基於相關之 最大實及虛值。訊框同步器在進入之分割正交振幅調變 符元上執行連續交叉相關。連續交叉相關用一二進位訊 框同步偽隨機雜訊序列之一儲存複本分開地針對實及虛 序列執行。 基頻至通帶調變 某些無線數位通系統(包括廣播、無線L an及廣域行 動系統)使用某些QAM形式。QAM亦用於北美及歐洲數位 電纜電視標準兩者,其使用致使雙側帶抑制載波調變波 月占用相同通道頻寬之正交載波多工,其中各波由一獨 立訊息調變。如以上討論,第23圖描述一簡單qam調變 器’其可用作第13圖的實例中之PB mod 13 14。一隔離傳 輸脈衝QAM係給定如下: sm (0 = dRjnq{t) cos(2^c〇 - dImq(t) sin(2^c〇 = Re{dmq{t)eJ2^} 其中及心,m係分別由兩獨立訊息流決定且代表一複 數QAM符元之實及虛部(參見’例如第17圖),其中 厂指示一2維QAM群集之基數,其中M係調變載波 頻率’且g(i)係一根提升餘弦脈衝函數。 一連續系列之傳輸QAM脈衝ί⑴(以一 Fi=1/Ts速率)通 過一吵雜多路徑通道。因此,在至QAM接收器之輪入處 的接收到信號係由r(〇=>s(i)*c(i)+v(i)給定,其中*指迴 旋’ c(i)係通道脈衝響應,且ν(ί)係相加白高斯雜訊。 48 201116058 此, r(i) = Rej^2也+/X g[φ]*柳]c(卜”7;)} + v(〇Ma rate PP length QPSK (2 bits/sym) 16 QAM (4 bits/sym) 64 QAM (6 bits/sym) pp/symbol pp/frame pp/symbol pp/frame pp/symbol pp/frame 1/2 2 1 521640 2 521640 3 521640 2/3 3 2/3 260820 4/3 260820 2 260820 3/4 4 1/2 173880 1 173880 3/2 173880 5/6 5 1/3 134328 2/3 134328 1 134328 7/8 8 1/4 74520 1/2 74520 3/4 74520 1 NA ΝΑ ΝΑ NA NA NA NA Table 4 - The puncturing mode of each frame should be aware of other combinations of RS packet size and number of packets per frame. Get the same desired results. The numbers provided herein are for illustrative purposes only. As shown in Fig. 20, some embodiments of the present invention provide a receiver that is constructed to handle a frame of certain aspects of construction in accordance with the present invention. Module 2000 receives the data transmitted in the passband signal and converts it into a baseband QAM symbol. The operations performed by module 2000 may include symbol synchronization, equalization (to remove inter-symbol interference), and carrier recovery, which employs sub-modules. Thus, module 2000 can include an equalizer whose output restores the fundamental frequency QAM symbol 2001. The baseband QAM signal 2〇〇1 is provided to the two-bit quasi-splitter 2018 for contention in both the real and imaginary directions, thereby forming a sequence (4)] and ~We[_1+1]2〇丨9, which are provided To the frame synchronization module 2020. The frame synchronization module 2〇2 uses a binary frame to synchronize a stored copy of the PN sequence, and performs a continuous cross-correlation operation on the divided QAM symbol 2019 for the real and imaginary parts. Each member of the stored copy has a value of -1 or +1, and the operation is given as follows: 126 ~ and taste her [„]], π=0 (Equation 10) where ^ is a long 127 frame with the #ΡΝ sequence The stored copy. The maximum value of h or ~ indicates the start of the FEC data frame. Once the frame sync start position is found, the position of the code character containing the modal bit (cluster and fence rate) is known. The codeword can be reliably decoded by (for example) a BCH decoder or by a codeword that will receive the Margin associated with all possible codewords and select the highest resulting value. Additional reliability is obtained by accepting the same result multiple times before. The derived frame synchronization signal 2021 is used to indicate which symbols are to be "removed frame synchronization" before the symbols are fed to the soft demapper 2_. The Modal Symbol is removed in Module 2004. In one example, the 127 frame sync symbol and the 8 modal symbol are removed from the stream so that the disc guarantee corresponds only to the RS packet. 46 201116058 Fu Fan is passed to the soft dismap 2006. The soft demapper 2006 calculates the soft comparison amount using the algorithm J known in the art, as described by Akay and Tosato. For proper operation, the soft demapper detail 6 must know which puncturing mode (which is off-grid rate) is used for transmission 15 and the alignment of the mode with the received bit. This information is provided by the frame and d, and 2020, which decodes the modal information and also provides - repeating the frame synchronization signal to the puncturing mode regardless of the current mode. These soft bit comparison quantities are fed to a Viterbi decoding request 8 operating in a manner known in the art to achieve an estimate of the bits of the PTCM encoder that are input to the transmitter. The random generator Μ is synchronized by the frame synchronization signal 2〇21. The byte deinterleaver (4) (4) decoder 2 〇 16 respectively decompose the byte data and deinterlace the code to obtain the data of the rs encoder in the original input transmitter. i wave phase 儋 , , , , , , 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波 载波An equalization signal of the amplitude modulation signal is exchanged, and a phase correction signal is derived from the equalization signal; the two-bit quasi-splitter 'divides the equalization signal to obtain a real and virtual sequence; and the frame synchronizer uses one Corresponding part of the stored frame synchronization pseudo-random sequence and a phase correction symbol provided by the frame synchronizer to the phase offset corrector, y 47 201116058 A correlation between the hit and the virtual sequence. The phase correction signal is based on the correlation between the maximum real and imaginary values. The frame synchronizer performs continuous cross-correlation on the incoming split quadrature amplitude modulation symbols. The continuous cross-correlation is performed by one of the binary pseudo-random noise sequences stored in the pseudo-random noise sequence separately for the real and virtual sequences. Baseband to passband modulation Some wireless digital communication systems, including broadcast, wireless Lan and wide area mobile systems, use some form of QAM. QAM is also used in both North American and European digital cable television standards, and its use causes the two-side band-suppressed carrier modulated wave to occupy the same channel bandwidth of orthogonal carrier multiplexing, where each wave is modulated by a separate message. As discussed above, Fig. 23 depicts a simple qam modulator which can be used as PB mod 13 14 in the example of Fig. 13. An isolated transmission pulse QAM is given as follows: sm (0 = dRjnq{t) cos(2^c〇- dImq(t) sin(2^c〇= Re{dmq{t)eJ2^} where and heart, m The system is determined by two independent message streams and represents the real and imaginary parts of a complex QAM symbol (see, for example, Figure 17), where the factory indicates the cardinality of a 2-dimensional QAM cluster, where M is the modulation carrier frequency 'and g (i) is a raised cosine pulse function. A continuous series of transmitted QAM pulses ί(1) (at a Fi=1/Ts rate) through a noisy multipath channel. Therefore, reception at the wheel to the QAM receiver The signal to the signal is given by r(〇=>s(i)*c(i)+v(i), where * means the cyclotron 'c(i) is the channel impulse response, and ν(ί) is added to the white Gaussian noise. 48 201116058 This, r(i) = Rej^2 also +/X g[φ]*柳]c(卜"7;)} + v(〇

V «=-00 J 其中可《]係複數傳輸符元,Λ及心分別係相關於傳輸器 之接收器通帶至基頻解調器本機振盪器之頻率及相位偏 移’因此/^=/>/0。 通帶至基頻解調器 第35圖更詳細顯示第2〇圖的ΡΒ至ΒΒ、sym時脈同步、 等化器/載波恢復模組2〇〇〇的一實例。接收到信號係 以高於符元率之一速率取樣350,導致取樣信號。 取樣後: v m*-〇〇 J y 接著’在解調後’依符元率丨/八再取樣及匹配濾波獲得: ms) = x[k] = £d[mHk - m]+ v'[k] W=*-o〇 其中V’ 〇]係取樣複數濾波雜訊。此假設由於脈衝成型 及匹配濾波9 ’與完美符元率取樣時序組合,任何ISI係 僅由於通道脈衝響應在解調後’假設完美等化,在等 化器輸出處之近基頻複數序列z[幻係給定如下: 因此’恢復的近基頻序列表示傳輸群集,具有依一頻 率/〇旋轉的一相位偏移心。為了使用例如一二維分割器可 49 201116058 靜態相位偏移 罪地恢復傳輸⑷,,等化器(與一相位及頻率偏移恢復 迴路組合)必㈣除造成群集”之㈣偏M,且接收 器必須移除否則將使群集在—靜態旋轉位置内之心剩餘 為了理解相位/頻率恢復,必須理解基頻處叫綱 集。在第33A圖之—簡單實例中,4Qam調變(其亦稱為竹 QPSK)’該群集由四符元組成。在所述實例中,仙之實 及虛部可各採取2不同值(例如±3)。相位偏移〜在已恢複 _上的影響顯示在第33B圖中,其顯示複數平面中之一 旋轉。藉由注意在-圓中旋轉(逆時針方向或順時針方向 取決於Λ之符號)時前進來理解八的影響。 等化器及載波相位/頻率迴路 第34圖中,一信號对幻34〇由一數位等化器及載波相位/ 頻率迴路248接收(參見,例如第24八圖)。等化器34ι組件 典型地包含一線性數位濾波器,且使用例如最小均方 (LMS)凟算法的一專有或眾所週知的方法,等化器^“將 其輸出與分割器決定办?:]343的一相位旋轉版本比 較’以產生用來計算濾波器階權重的一更新組之一誤差 k號。此遽波器移除起因於通道脈衝響應的 2D分割器342獨立地分割及輸出之實和虛部,其 係原始傳輸別幻的一估計。对幻及可Λ]兩者進入相位誤差横 測器模組346及形成由㈣給定的一相位誤差 50 201116058 號。一積分比例(IP)濾波器345可包含第35圖的據波器或 熟習此項技術者已知的任何等效物。IP濾波器345允許迴 路校正相位及頻率偏移兩者。IP濾波器345的一輸出饋送 一複數電壓控制振盪器(VCO)344,其輸出一校正心及八 兩者的一複數相位/頻率校正因子y網。vc:〇344亦輸出 e+湖以「未校正」分割輸出綱,以致其可用來導出用於 等化器階更新的一誤差信號。指示此方法因為等化器在 含有〜及Λ兩者上操作。 在某些具體實施例中,可由依一離散形式實施VC0344 作為饋送一複數指數查找表(LUT)的一積分器之延遲而 獲得效率。然而’用於〜之最後校正可具有冗/2的一不定 性(ambiguity ),其意指恢復相位可被校正(〇ffset=〇)或 可具有7Γ/2的一偏移,π之一偏移,或3ττ/4的一偏移。此 等結果係在第36及37圖中說明:一實際傳輸符元係顯示 於第36圖中且具有各自偏移之可能恢復符元在第37八至 37D圖中顯示。典型地,接收器無法知道四個可能符元中 哪一個係實際上傳輸,因為2D分割器342執行一最靠近相 鄰者操作。第38圖示範其中一傳輸符元^係在等化器輸入 處接收為具有心之^的一實例。因此,相位恢復迴路可 旋轉該信號以補償心,以致^與^對準。然而,2D分割器 162之決定將會是正確符元係6,因為其較接近〆。此可 使相位恢復迴路依旋轉群集以致,與&對準的方式1^: 51 201116058 斂。在此種情況下,最後相位自其原有處偏移_π/2。 本發明的某些具體實施例提供用於最小化及/或消除 綠桃編碼系統中之此等問題的方法,包括用於某些現描 述具體實施例之刪餘籬柵碼的族群。如上述,等化器的 輸出由一2D位準分割器342分成實及虛方向而形成序列 _]+1,+1]及Λ/Μεμ,+1] ’其被饋送至一訊框同步模組 2〇2〇(參見第20圖)。訊框同步模組2〇2〇用二進位訊框同 步ΡΝ序列之一儲存複本,在進入之分割qam符元上分别 針對實及虛部執行一連續交叉相關運算。經儲存複本之 各成員具有一值-1或+1。此運算之特徵因此為: 126 126 W = Σ s-灸]及 ~ W =艺 ί [η» - it], π=0 "=〇 其中ί係127長訊框同步ρν序列之儲存複本。或~之 最大量值指示FEC資料訊框的開始。 wax \之符號 max b,之符號^ 所需相位校正 + + 0 - + + π/2 - - + π + :π/2 表5 對於訊框同步符元,實及虛部具有相同符號且第”圖 顯示其群集。因此,可理解最大量值或沁之符號對於零 旋轉兩者均為正。一_ π/2旋轉獲得一負最大量值、及一正 最大1》對於;Z·之一旋轉,和沁兩者為負,而對於记/之1 52 201116058 之一旋轉,最大量值心係正而最大量值卜係負。此在以上 表5中概述。因此,組合中的最大量值、及卜之各自符號 指示最後相位偏移已收斂之複數平面的象限。 Q谷許應 用一額外相位校正至該信號,如第2〇圖所示。最大&和 办/之符號自相關為主訊框同步模組傳送至相位偏移校正 此運 盗。一相位偏移校正器模組之運算顯示於第4〇圖中 LUT運算404在實例中圖示。給定啦卜4㈨+/Z/[A:], 算可簡單地執行為: 1.對於 0 的情況: 2·對於 ψ=+π/2的情況: 3.對於 0=-7Γ/2的情況:/!>] = +々[幻 第4〇圖係代表藉由用根據本發明之某些態樣的一相關 的最大真及虛值的符號索引一查找表導出一相位校正信 號的一相位偏移校正器的方塊圖。 i模態OAM群竿 某些具體實施例提供自一組可能接收到QAM群集決定 未知QAM群集的系統及方法。一方法利用符元間干擾 (isi)已用一修改恆定模數演算法(CMA)等化器最小化之 後,但在載波頻率及相位已完全恢復以前之信號的功率 之一直方圖。未知群集接著自直方圖決定。等化程序接 著基於現已知群集用標準CAM重新開始以使isi減至最 少。等化H輸出可正確地比例縮放,其後可施行減少^ 53 201116058 群集載波恢復(RCCR)之階段及決定相關載波恢復,導致 藉由組合等化器載波頻率/相位迴路而恢復載波頻率及 相位。在用於決定一未知QAM群集的另一方法中,等化 器最初使用修改CMA操作來使ISI減至最少。雖然等化器 輸出在該权序中之此點處可能無法正碟地比例縮放,但 等化器載波頻率/相位迴路可在不知道群集下用RCCR來 恢復載波頻率及相位。經恢復相位可為吵雜。接收器可 讀取嵌入信號訊框中指示哪一 QAM群集被傳輸之資訊。 接著基於已知群集用一標準CMA重新開始等化器操作, 之後為RCCR及決定相關載波恢復。 本發明的某些具體實施例使用刪餘籬柵編碼及qAM群 集組合,類似於用於ISDB-T及上述者❹如在此使用,一 群集係瞭解意指在一調變方案内之可能符元的複數平面 中之一映射。每一訊框之符元數目係取決於模態之一可 變整數且每一訊框的RS封包數目不論模態如何係一恆定 整數。此配置係於上更詳細描述及簡化一接收器的設計。 再次參考第20圖,訊框同步模組2〇2〇用二進位訊框同 步N序列之一儲存複本,在進入之分割qAM符元1219上 刀别針對實及虛部執行—連續交又相關運算。該儲存複 本之各成員具有—丨或+丨之一值。此運算由方程式1〇(在以 上)給定,且在此重複: 54 201116058 126 126 〜W=Σ 沒Ι/Φ/? [w -灸]及 6/ [灸]=艺 [” - jt], n=〇 ㈣ ’ (方程式10) 其中以系127長訊框同步PN序列中之儲存複本。^或办 之最大量值指示FEC資料訊框的開始。 如將更詳細在下文中解釋,恢復载波相位中具有一冗 /2之不定性。&導致零、4/2或冗的―任意額外恢復相 位偏移。對於訊框同步符元,實及虛部係相同符元且第 39圖顯*其傳輸群#。因&,可理解對於零相位偏移, 最大量值h或之符號兩者均為正。如第4〇圖之表4〇4所 概述,一/2偏移將會獲得一負最大量值、及一正最大 量值~ ;對於7Γ之一偏移,心和~兩者將為負’而對於冗 /2之偏移’最大量值〜將為正而最大量值~將為負。因 此’組合令的最大量值h及幻之各自符號可指示最後相位 偏移所收斂之複數平面的象限。此允許應用一額外相位 校正至相位偏移校正器模組2〇〇2甲之該信號。最大、和 6/之符號自相關為主訊框同步模組2〇2〇傳送至相位偏移 校正器2002。 另外參考第40圖’可更加瞭解第2〇圖之實例中的相位 偏移校正器2002之某些態樣之操作。LUT 4〇〇基於最大量 值h和心之符號產生一輸出(參見第4〇圖之元件4〇4)。給 定衬幻=〜[幻勺·巧⑷,運算4〇2可執行如下:V «=-00 J where "" is a complex transmission symbol, and the heart and phase are respectively related to the transmitter passband of the transmitter to the frequency and phase offset of the local oscillator of the baseband demodulator. 'So /^ =/>/0. Passband to Baseband Demodulator Figure 35 shows an example of the ΡΒ to ΒΒ, sym clock synchronization, equalizer/carrier recovery module 2〇〇〇 of Figure 2 in more detail. The received signal is sampled 350 at a rate higher than the symbol rate, resulting in a sampled signal. After sampling: vm*-〇〇J y then 'after demodulation' is obtained by the symbol rate 丨/eight resampling and matched filtering: ms) = x[k] = £d[mHk - m]+ v'[ k] W=*-o〇 where V' 〇] is a sample complex filtering noise. This assumption is due to the combination of pulse shaping and matched filtering 9 'with perfect symbol rate sampling timing, any ISI is only due to the channel impulse response after demodulation' hypothesis perfect equalization, near the fundamental frequency complex sequence at the output of the equalizer z [The phantom is given as follows: Thus the 'recovered near-base frequency sequence represents a transport cluster with a phase offset heart that is rotated by a frequency/〇. In order to recover the transmission (4) using, for example, a two-dimensional splitter, the equal phase shifter (combined with a phase and frequency offset recovery loop) must (4) besides causing the cluster (4) partial M, and receive The device must be removed or the cluster will remain in the static rotation position. In order to understand the phase/frequency recovery, it is necessary to understand that the fundamental frequency is called the set. In the simple example of Figure 33A, 4Qam modulation (also known as For the bamboo QPSK) 'The cluster consists of four symbols. In the example, the sacred and imaginary parts can each take 2 different values (eg ±3). The effect of the phase offset ~ on the recovered _ is shown in In Figure 33B, it shows one of the rotations in the complex plane. The effect of octave is understood by taking note of the rotation in the -circle (counterclockwise or clockwise depending on the sign of Λ). Equalizer and carrier phase In Fig. 34, a signal pair is received by a digital equalizer and carrier phase/frequency loop 248 (see, for example, Fig. 24). The equalizer 341 component typically includes a linear digital filter. And use, for example, minimum A proprietary or well-known method of the square (LMS) algorithm, the equalizer ^ "comparing its output with a phase-rotated version of the splitter decision ?: 343" to generate a one used to calculate the filter order weight Update one of the errors in the group k. This chopper removes the real and imaginary parts of the 2D splitter 342 resulting from the channel impulse response, which are independent of the original transmission, which is an estimate of the original transmission. Both the illusion and the ambiguity] enter the phase error traverse module 346 and form a phase error 50 201116058 given by (d). An integral ratio (IP) filter 345 can include the data filter of Figure 35 or any equivalent known to those skilled in the art. The IP filter 345 allows the loop to correct both phase and frequency offsets. An output of the IP filter 345 feeds a complex voltage controlled oscillator (VCO) 344 which outputs a complex phase/frequency correction factor y network of both the correction center and the eight. Vc: 〇 344 also outputs e+ lake to divide the output class by "uncorrected" so that it can be used to derive an error signal for the equalizer order update. This method is indicated because the equalizer operates on both ~ and Λ. In some embodiments, efficiency can be obtained by implementing VC0344 in a discrete form as a delay to feed an integrator of a complex index lookup table (LUT). However, the final correction for ~ may have a ambiguity of /2, which means that the recovery phase can be corrected (〇 ffset = 〇) or can have an offset of 7 Γ /2, one of π Shift, or an offset of 3ττ/4. These results are illustrated in Figures 36 and 37: an actual transmission symbol is shown in Figure 36 and the possible recovery symbols with respective offsets are shown in Figures 37-8D. Typically, the receiver cannot know which of the four possible symbols is actually transmitted because the 2D splitter 342 performs a closest neighbor operation. Figure 38 illustrates an example in which a transmission symbol is received at the input of the equalizer as having a heart. Therefore, the phase recovery loop can rotate the signal to compensate for the heart so that it is aligned with ^. However, the decision of the 2D splitter 162 will be the correct symbol system 6, as it is closer to 〆. This allows the phase recovery loop to be clustered by rotation so that it is aligned with & 1^: 51 201116058. In this case, the final phase is offset by _π/2 from its original position. Certain embodiments of the present invention provide methods for minimizing and/or eliminating such problems in a green peach coding system, including for some of the populations of the pruning fence codes of the presently described embodiments. As described above, the output of the equalizer is divided into real and imaginary directions by a 2D level divider 342 to form a sequence _]+1, +1] and Λ/Μεμ, +1] 'which is fed to a frame synchronization mode. Group 2〇2〇 (see Figure 20). The frame synchronization module 2〇2 stores the replica by one of the binary frame synchronization sequences, and performs a continuous cross correlation operation on the divided qam symbols for the real and imaginary parts respectively. Each member of the stored copy has a value of -1 or +1. The characteristics of this operation are therefore: 126 126 W = Σ s- moxibustion] and ~ W = art ί [η» - it], π=0 "=〇 where ί is a stored copy of the 127 long frame sync ρν sequence. Or the maximum value of ~ indicates the beginning of the FEC data frame. Wax \ symbol max b, the symbol ^ required phase correction + + 0 - + + π/2 - - + π + : π/2 Table 5 For the frame synchronization symbol, the real and imaginary parts have the same symbol and the The graph shows its cluster. Therefore, it can be understood that the maximum magnitude or the sign of 沁 is positive for both zero rotations. One _ π/2 rotation obtains a negative maximum magnitude, and a positive maximum 1 ′ for; Z· A rotation, and 沁 are both negative, and for one of the 1/1 2011 20115858 rotations, the maximum magnitude is positive and the maximum magnitude is negative. This is summarized in Table 5 above. Therefore, the largest of the combinations The respective values of the magnitude and the sign indicate the quadrant of the complex plane in which the final phase offset has converged. Q Gu Xu applies an additional phase correction to the signal, as shown in Figure 2. Maximum & The related main frame synchronization module transmits the phase offset correction to the pirate. The operation of a phase offset corrector module is shown in the fourth diagram. The LUT operation 404 is illustrated in the example. Given a 4 (9) + /Z/[A:], can be simply executed as: 1. For the case of 0: 2. For the case of ψ = +π/2: 3. For The case of 0=-7Γ/2: /!>] = +々 [The magic 4th figure represents a search by using a symbol index of a related maximum true and imaginary value according to some aspects of the present invention. The table derives a block diagram of a phase offset corrector for a phase correction signal. i Modal OAM Groups Certain embodiments provide systems and methods for determining an unknown QAM cluster from a set of possible QAM clusters. The inter-symbol interference (isi) has been corrected by a modified constant modulus algorithm (CMA) equalizer, but the power of the signal before the carrier frequency and phase have been fully recovered. Unknown cluster followed by histogram The equalization procedure is then restarted with the standard CAM based on the currently known cluster to minimize isi. The equalized H output can be scaled correctly, and then reduced to reduce the stage of the cluster carrier recovery (RCCR). Determining the associated carrier recovery results in recovering the carrier frequency and phase by combining the equalizer carrier frequency/phase loop. In another method for determining an unknown QAM cluster, the equalizer initially uses modified CMA operations to make the ISI Minimize. Although the equalizer output may not scale proportionally at this point in the order, the equalizer carrier frequency/phase loop can recover the carrier frequency and phase with the RCCR without knowing the cluster. The recovered phase can be noisy. The receiver can read the information in the embedded signal frame indicating which QAM cluster was transmitted. Then restart the equalizer operation with a standard CMA based on the known cluster, then determine the correlation for the RCCR. Carrier Recovery. Certain embodiments of the present invention use a punctured fence coding and a qAM cluster combination, similar to that used for ISDB-T and the above, as used herein, a cluster is understood to mean within a modulation scheme. It is possible to map one of the complex planes of the symbol. The number of symbols per frame depends on one of the modal variables and the number of RS packets per frame is a constant integer regardless of the modality. This configuration is described in more detail above and simplifies the design of a receiver. Referring again to FIG. 20, the frame synchronization module 2〇2 uses one of the binary frame synchronization N sequences to store the replica, and on the segmentation qAM symbol 1219, the execution is performed for the real and imaginary parts—continuous intersection and correlation Operation. Each member of the stored copy has a value of -丨 or +丨. This operation is given by Equation 1〇 (above) and is repeated here: 54 201116058 126 126 ~W=Σ No Ι/Φ/? [w - moxibustion] and 6/ [moxibustion]=art [" - jt] , n=〇(4)' (Equation 10) where the stored replica in the PN sequence is synchronized by the 127 frame. The maximum magnitude of the signal indicates the beginning of the FEC data frame. As will be explained in more detail below, the carrier is recovered. There is a redundancy /2 uncertainty in the phase. & causes zero, 4/2 or redundant "arbitrary extra recovery phase offset. For frame sync symbols, the real and imaginary parts are the same symbol and the 39th figure * Its transmission group #. Because &, it can be understood that for zero phase offset, the maximum magnitude h or the sign is positive. As outlined in Table 4〇4 of Figure 4, a /2 offset will Will get a negative maximum magnitude, and a positive maximum magnitude ~; for one of the 7Γ offsets, both heart and ~ will be negative 'and for redundancy/2 offset' maximum magnitude ~ will be positive and maximum The magnitude ~ will be negative. Therefore the 'maximum magnitude h of the combination order and the respective symbols of the illusion may indicate the quadrant of the complex plane to which the final phase offset converges. This allows an additional phase to be applied. The signal is corrected to the phase offset corrector module 2〇〇2, and the maximum and 6/symbol autocorrelation is transmitted to the phase offset corrector 2002 by the main frame synchronization module 2〇2〇. 40 Figure' can be more aware of the operation of certain aspects of the phase offset corrector 2002 in the example of Figure 2. The LUT 4〇〇 produces an output based on the maximum magnitude h and the sign of the heart (see Figure 4). The component 4〇4). Given the lining==[幻勺·巧(4), the operation 4〇2 can be executed as follows:

士於0 +万的情況:2,[是卜-:及⑷-如[灸] [I 55 201116058 2·對於 0 =+?r/2的情況:z 對於0 π/2的情況:ζ 一旦找到訊框同步開始位置且校正m 7Γ /2相位偏移,會 传知含有模態位元(群集及籬柵碼率)的碼字元之位置。 碼字疋可藉由(例如)一 BCH解碼器或藉由將接收到碼字 几與所有可能碼字元相關且選擇產生最高所得值的碼字 凡來可靠地解碼。因為重複傳送此資訊,可由需要在接 爻其前發生多次相同結果而獲得額外可靠性。 第41圖顯示可由訊框同步模組2020執行之此一程序的 一實例。回應於訊框同步信號2〇21,在步驟41〇〇處,接 收到群集碼字元係與所有有效碼字元交叉相關。交又相 關產生可用來選擇最可能匹配之一值。在—實例中,在 步驟4102處選擇產生最大相關值的有效碼字元。接著可 用此選定碼字元來識別一目前群集。在步驟41〇4處,目 前群集之識別係與一先前識別群集的已記錄或儲存識別 比較。在步驟4104,若目前群集及先前識別群集係相同 群集,則可增加一信賴計數。若在步驟41〇4決定先前識 別群集係與目則群集不同,則目前群集在步驟4丨〇7記錄 為先前識別群集且信賴計數在步驟41〇7減量且另一同步 訊框在步驟4109處等待。步驟41〇6信賴計數之增量後, 在步驟4108處檢查信賴計數,且若在步驟41〇8處決定超 過一預定或經組態臨限值,則可在步驟4丨丨〇處作成信^] 56 201116058 群集的決疋。可反覆執行此程序直至信賴計數超過預定 或經組態臨限值。 等化器及載波相位/頻率迴路 參考第42圖,將描述第24A圖之等化器及載波相位/頻 率迴路248的某些態樣。一信號对幻進入數位等化器及載 波相位/頻率迴路248,其可包括一等化器42〇(其包括一 線性數位濾、波器)。一誤差計算器模組4 2 2計算一誤差信 说e[&]’其可用以使用熟習此項技術者已知之任何適合方 法計算一更新組的濾波器階權重。在一實例中,可使用 LMS/貝舁法。滤波器移除起因於通道脈衝響應e的π!。 等化器420之一輸出少[灸]接著係在421處相位旋轉以減少 任何剩餘載波相位及頻率偏移。相位旋轉輸出2[是]接著由 分割器及相位誤差偵測器模組42 7處理,其計算饋送至一 積分比例(IP)濾波器426的一相位誤差值〜闵。IP遽波器 426輸出饋送一積分器且複數指數查找表(LlJT)424,其計 异用於迴路以校正載波相位及頻率偏移的複數指數值。 分割器及相位誤差偵測器模組427亦輸出一最靠近相鄰 者2維分割符元決定,其相位係在425用相乘而「未校 正」且接著用於誤差計算器模組422。誤差計算器模組422 使用該輸入以及以計算一誤差信號。如所述,誤 差計算器模組422和分割器及相位誤差偵測器模組427的 内部操作取決於由階段管理器423決定的一目前階段 57 201116058 作(1、2 或 3)。 在某些具體實施例中,一最小均方(LMS)演算法用於計 具等化器渡波器階權重及操作如下: 若对幻表示一L長等化器輸出向量,少[幻表示等化器輸 出向量,其中少,其中γ[幻係z長等化器階權 重向量且Η上標指示共軛移項(Hermitian)。接著,使用例 如以下描述之方法計算在誤差計算器模組422中的更新 e[k]: g[k +1] = ^[A:]-2μχ^Υ[k], (方程式 11) 其中μ係小段差大小參數且*上標指示複數共軛。 在實例中,階段管理器423在整個操作的三階段中採用 等化器及載波相位/頻率迴路428,藉以自階段i至階段2 至階#又3之切換係基於輸入資料樣本X [ &]的簡單計數臨限 值執行。應注意,基於等化器輸出處之誤差的估計的複 雜階段切換亦可能。三階段係在表6中概述。 階段 eefk]訪算方法 W計算方法 頻率/相位恢復之狀態 1 CMA 但為零 群集旋轉 2 CMA 基於減少之群集(RCCR) 相位/頻率漸恢復 3 DD 基於完全群集 相位雜訊減少 表6 :等化器及載波相位/頻率迴路階段 一分割器及相位誤差偵測器模組427在第43圖中更詳 細顯示。開關430根據操作的三階段之一 434設定。在階 段1期間,開關430在最高位置中,以致〇 [幻=〇。此有效 地關閉載波迴路因此在此階段期間沒有載波相位校正: 58 201116058 在階段2期間,開關43〇在中間位置中且迴路使用一減少 群集載波恢復(RCCR)演算法操作。若由|2闲丨2給定之符 元衬幻的功率超過一臨限值p,則其假設2[幻係群集的角 落付元之一及RCCR係由設定經描述之第二開關432至上 方位置而賦能,產生ejA】 = Im卜[ψ[吨„(z•⑷否則,若丨咖〗2 ^, 則第二開關432在下方經描述位置而停用載波迴路。在階 段2期間僅符元的一子集可作用於載波恢復。臨限值g可 減少以在群集角落附近之區域中包括更多符元,但所得 相位校正項〜闵將更吵雜。在階段3期間,開關430在最低 描述位置’產生〜,其中係最靠近相鄰者 2維分割符元決定^[α:]的複數共輛。在階段3期間,假設已 經過足夠時間,因此等化器階已收斂且载波相位已實質 上校正以致該分割符元決定係可靠。尤其,關係 〜Μ=ΐΓη{ΦΗ_(雄])]}及%在複數平面的單一象 限内有效地操作。其導致以上討論在恢復載波相位中之w π /2之不定性。 IP濾波器426(參見第42圖)之一實例在第35圖中更詳細 顯示。IP濾波器426容許迴路校正相位及頻率偏移兩者。 IP濾波器426的輸出饋送積分器及複數指數LUT模組 424,第45圖更詳示。積分器/LUT424的輸入與模數2ττ於 440相加(第44圖)至延遲一步驟442之輸入部分以形成饋In the case of 0 + 10,000: 2, [Yes -: and (4) - such as [moxibustion] [I 55 201116058 2 · For 0 = +? r / 2: z For the case of 0 π / 2: ζ Once Finding the frame sync start position and correcting the m 7Γ /2 phase offset will inform the location of the code character containing the modal bit (cluster and fence rate). The codeword can be reliably decoded by, for example, a BCH decoder or by correlating the received codewords with all possible codewords and selecting the codeword that produces the highest resulting value. Because this information is transmitted repeatedly, additional reliability can be obtained by requiring the same result to occur multiple times before the interface. Figure 41 shows an example of such a procedure that can be performed by the frame synchronization module 2020. In response to the frame sync signal 2〇21, at step 41〇〇, the received cluster code character is cross-correlated with all valid code characters. The intersection and correlation generation can be used to select one of the most likely matches. In an example, at step 4102, a valid code character that produces the largest correlation value is selected. This selected code character can then be used to identify a current cluster. At step 41〇4, the identification of the current cluster is compared to the recorded or stored identification of a previously identified cluster. At step 4104, if the current cluster and the previously identified cluster are the same cluster, a trust count can be added. If it is determined in step 41〇4 that the previously identified cluster system is different from the target cluster, then the current cluster is recorded as a previously identified cluster in step 4丨〇7 and the trust count is decremented in step 41〇7 and another synchronization frame is at step 4109. wait. After step 41〇6 trusts the increment of the count, the trust count is checked at step 4108, and if it is determined at step 41〇8 that a predetermined or configured threshold is exceeded, then a letter can be made at step 4丨丨〇. ^] 56 201116058 Cluster's decision. This procedure can be repeated until the confidence count exceeds the predetermined or configured threshold. Equalizer and Carrier Phase/Frequency Circuit Referring to Figure 42, some aspects of the equalizer and carrier phase/frequency loop 248 of Figure 24A will be described. A signal pair phantom enters the digital equalizer and carrier phase/frequency loop 248, which may include an equalizer 42 (which includes a linear digital filter, waver). An error calculator module 4 2 2 calculates an error signal saying e[&]' which can be used to calculate an updated set of filter step weights using any suitable method known to those skilled in the art. In one example, the LMS/Bell method can be used. The filter removes π! resulting from the channel impulse response e. One of the equalizers 420 outputs less [moxibustion] followed by a phase rotation at 421 to reduce any remaining carrier phase and frequency offset. Phase rotation output 2 [Yes] is then processed by a divider and phase error detector module 42 7 which computes a phase error value ~ 馈送 fed to an integral ratio (IP) filter 426. The IP chopper 426 outputs an integrator and complex index lookup table (LlJT) 424 that is used for loops to correct the complex index values of the carrier phase and frequency offset. The splitter and phase error detector module 427 also outputs a two-dimensional split symbol decision closest to the neighbor, the phase of which is multiplied by 425 and "uncorrected" and then used in the error calculator module 422. The error calculator module 422 uses the input and calculates an error signal. As described, the internal operations of the error calculator module 422 and the splitter and phase error detector module 427 depend on a current phase 57 201116058 (1, 2 or 3) as determined by the phase manager 423. In some embodiments, a Least Mean Square (LMS) algorithm is used to calculate the equalizer wave weight and operation as follows: If the illusion represents an L long equalizer output vector, less [magic representation, etc. The chemist output vector, which is less, where γ [the illusion z long equalizer order weight vector and the Η superscript indicates the conjugate shift term (Hermitian). Next, the update e[k] in the error calculator module 422 is calculated using, for example, the method described below: g[k +1] = ^[A:]-2μχ^Υ[k], (Equation 11) where μ A small step size parameter and a * superscript indicates a complex conjugate. In an example, the stage manager 423 employs an equalizer and carrier phase/frequency loop 428 throughout the three phases of operation, whereby the switching from phase i to phase 2 to step #3 is based on the input data sample X [ & ] Simple count threshold execution. It should be noted that complex phase switching based on an estimate of the error at the output of the equalizer is also possible. The three stages are summarized in Table 6. Phase eefk] Visiting Method W Calculation Method Frequency/Phase Recovery State 1 CMA But Zero Cluster Rotation 2 CMA Based Reduced Cluster (RCCR) Phase/Frequency Recovery 3 DD Based on Complete Cluster Phase Noise Reduction Table 6: Equalization The carrier and carrier phase/frequency loop phase splitter and phase error detector module 427 are shown in more detail in FIG. Switch 430 is set according to one of the three stages of operation 434. During phase 1, switch 430 is in the highest position, so that [幻 = 〇. This effectively turns off the carrier loop so there is no carrier phase correction during this phase: 58 201116058 During phase 2, switch 43 is in the middle position and the loop uses a reduced cluster carrier recovery (RCCR) algorithm operation. If the power of the symbol illusion given by |2 leisure 2 exceeds a threshold p, then it assumes 2 [one of the corners of the phantom cluster and the RCCR is set by the second switch 432 described above. Positioning and energizing produces ejA] = Imb [ψ[t[(3) otherwise, if 〗 2], the second switch 432 deactivates the carrier loop below the described position. During phase 2 only A subset of the symbols can be applied to carrier recovery. The threshold g can be reduced to include more symbols in the area near the corner of the cluster, but the resulting phase correction term ~闵 will be more noisy. During phase 3, the switch 430 generates ' at the lowest description position, where the nearest two-dimensional split symbol determines the complex number of ^[α:]. During phase 3, it is assumed that sufficient time has elapsed, so the equalizer order has converged And the carrier phase has been substantially corrected so that the split symbol decision is reliable. In particular, the relationship ~Μ=ΐΓη{ΦΗ_(male))]} and % operate effectively in a single quadrant of the complex plane. Uncertainty of w π /2 in carrier phase. IP filter 426 (see section 42) An example is shown in more detail in Figure 35. The IP filter 426 allows the loop to correct both phase and frequency offsets. The output of the IP filter 426 feeds the integrator and the complex exponential LUT module 424, which is more detailed in Figure 45. The input of the integrator/LUT 424 is added to the modulus 2ττ at 440 (Fig. 44) to the input portion of the delay one step 442 to form a feed.

Γ C 送至一查找表(LUT)444的一相位誤差信號0闲,LUT444輸 59 201116058 出校正00及/〇兩者的相位校正因子445〇-湖)。LUT 444亦 提供-輸出4释轉】),其「未校正」分割器輸出叫,以 致其可用來導出一用於等化器階更新的誤差信號。此因 為等化器在含有心及/〇兩者之綱上操作而需要。 誤差計算器模組及階段操作概述 誤差β十算器422可根據階段使用不同方法計算 。對 於階1及2,典型地使用基於一恆定模數演算法(cma) 的一程序計算: Φ】=水|水]2 -/?), 其中Λ係一預定常數,其係由以下給定: ipif}' (方程式 12) 且其中五係預期望運算元且研幻係一符元(參見第17 圖)。注意自以上方程式11導出之階更新係獨立於符元決 定及Λ:阅的相位而僅取決於等化器輸出、等化器輸入及群 集的統計。在階段1及2期間可顯示,將CMA誤差用於驅 動方程式11相當於使ISI減至最少,即使該群集由於載波 頻率及相位偏移旋轉。 因此’在階段1期間,相位/頻率恢復迴路停用,且等 化器使用CMA誤差功能將ISI減至最少。在已使ISI減至最 少後,階段2開始且迴路對於RCCR打開;載波相位/頻率 恢復僅使用群集之角落符元開始’如先前關於第43圖解r 60 201116058 釋。在階段2結束處,已充分恢復载波相位及頻率,以致 第43圖的2維分割器436開始輸出可靠之符元決定雄]。 決疋相關(DD)誤差可用於階段3。dd誤差可計算為 刷-刺。為了此描述目的,在此假設接收器已決 定傳輸第17圖之三群集中哪一群集,因為及對於此等群集 之各者係不同。此外,RCCR需要群集的知識,及尤其群 集之角落符元之功率的知識。Γ C sends a phase error signal 0 to a look-up table (LUT) 444, LUT444 loses 59 201116058 out of correction 00 and / / phase correction factor 445 〇 - lake). The LUT 444 also provides an output 4 release, which has an "uncorrected" splitter output so that it can be used to derive an error signal for the equalizer order update. This is because the equalizer is required to operate on both the heart and the heart. Error Calculator Module and Stage Operation Overview The error beta calculator 422 can be calculated using different methods depending on the stage. For steps 1 and 2, a program calculation based on a constant modulus algorithm (cma) is typically used: Φ]=water|water]2 -/?), where the enthalpy is a predetermined constant, which is given by : ipif}' (Equation 12) and five of them are pre-expected operands and the illusion is a symbol (see Figure 17). Note that the order update derived from Equation 11 above is independent of the symbol decision and the phase of the read and depends only on the statistics of the equalizer output, the equalizer input, and the cluster. It can be shown during phases 1 and 2 that the use of CMA error for driving equation 11 is equivalent to minimizing ISI even if the cluster is rotated due to carrier frequency and phase offset. Therefore, during Phase 1, the phase/frequency recovery loop is deactivated and the equalizer uses the CMA error function to minimize ISI. After the ISI has been minimized, Phase 2 begins and the loop is turned on for the RCCR; carrier phase/frequency recovery begins using only the corner symbols of the cluster as previously described with respect to Section 43 diagram r 60 201116058. At the end of phase 2, the carrier phase and frequency have been fully recovered so that the 2-dimensional splitter 436 of Fig. 43 begins to output a reliable symbol decision. The correlation (DD) error can be used in Phase 3. The dd error can be calculated as a brush-spur. For the purposes of this description, it is assumed here that the receiver has decided which of the clusters in Figure 17 of the three clusters to transmit because it is different for each of these clusters. In addition, RCCR requires knowledge of the cluster, and in particular the power of the corner symbols of the cluster.

具有一未知群集之CMA 在此内描述的實例中,可傳輸三不同QAM群集之一且 上述等化及相位/頻率恢復需要已傳輸群集的知識。當群 集選擇在模態符元中編碼,等化及相位/頻率恢復先於訊 框同步(參見第20圖),其中此資訊可如上述直接解碼(如 第18、20及41圖)。因而,在某些具體實施例中群集係 在等化器及載波恢復演算法本身内決定。 注意該(如方程式12中提供)係群集相依。在某些具體 實施例中及繼續參考第17圖,64-QAM之符元的實及户部 係選自集合±{1 ’ 3,5,7} ’ 16-QAM之符元的實及虛部 係選自集合±{2, 6},而QPSK之符元的實及虛部係選自 集合±4。依據方程式12,R的值將為:CMA with an Unknown Cluster In the example described herein, one of three different QAM clusters can be transmitted and the above-described equalization and phase/frequency recovery requires knowledge of the transmitted cluster. When the cluster selection is encoded in the modal symbol, the equalization and phase/frequency recovery precedes the frame synchronization (see Figure 20), where this information can be decoded directly as described above (see Figures 18, 20 and 41). Thus, in some embodiments the cluster is determined within the equalizer and carrier recovery algorithm itself. Note that this (as provided in Equation 12) is cluster dependent. In some embodiments, and with continued reference to Figure 17, the real and household units of the 64-QAM symbol are selected from the set of ±{1 '3,5,7} '16-QAM symbols. The ministry is selected from the set ±{2, 6}, and the real and imaginary parts of the symbol of QPSK are selected from the set ±4. According to Equation 12, the value of R will be:

58 用於 64-QAM 52.8 用於 16-QAM 32 用於 QPSK (方程式13) 對於第17圖中之三群集的任一者,其可顯示將—比^ 61 201116058 縮放值〇/?用於CMA誤差計算造成等化器濾波階收斂至由 士比例縮放之相同組的值’其中等化器輸出同樣地比例 縮放。然而其可顯示ISI最少。在群集未知之一實例中, 及可設定成58,及不論傳輸的群集為何,將使ISI在階段i 期間減至最少。對於所述實例,將會使用範圍於32至58 之任何Λ值。然而,最大值(即58)的選擇防止在等化器輸 出處之最密群集(在此之64-QAM)的壓縮及減少等化器 效能的負擔。 使用比例縮放參數之結果導致由收斂濾波器階之等 化輸出的比例向上’因此等化器輸出的統計將為: £{丨刺4}/五{|刹2 }=58 ’ 其假設完美isi移除及不論群集。因此,對於QpSK, 等化器輸出將在階段1期間已使ISI最小化後比例縮放。 y[k] = ej2^kTs+ea 濃(±4±/4) = eJ2^Ts^ (± 5.385 ± >5.385) 第45A圖說明其中<90=/〇=〇之情況下用於具有qPSK2 一系統之等化輸出的實部。可見到輸出由於Λ = 58的值而 藉由V58/32比例縮放’因為等化器係收敛至移除isi之一解 答。第45Β圖說明用於其中心=八=〇之情況下具有16_qam 之一系統之等化輸出的實部。因為相對較靠近i, 故等化器輸出之貫部看似僅輕微地比例縮放。因此實際 比例縮放在等化器收斂期間係明顯。 62 201116058 群集偵測方法 某些具體實施例中,可用一直方圖方法來決定進入階 段2前之群集。即使還沒有恢復載波相位及頻率亦可決定 該群集。考慮在第46A、46B及46圖中分別針對qPSK、 16-QAM及64—QAM群集之等化器輸出咖卜办伙㈨之功率 的直方圖。直方圖表示在等化器已用及收斂後之功 率。因為等化器輸出之功率獨立於相位且各群集的直方 圖實質上不同,故可在接收器中自等化器輸出功率直方 圖決定傳輸的群集。 無相加或階雜訊下,對於QPSK群集,各等化器輸出樣 本之功率係;7阅=58。對於16-QAM群集,用於等化器輸出 功率之機率質量函數係:58 for 64-QAM 52.8 for 16-QAM 32 for QPSK (Equation 13) For any of the three clusters in Figure 17, it can be displayed as a comparison to ^ 61 201116058 scaling value 〇 /? for CMA The error calculation causes the equalizer filter order to converge to the same set of values by the scaler' where the equalizer output is scaled as such. However, it can show the least ISI. In one instance of the cluster unknown, and can be set to 58, and regardless of the cluster being transmitted, ISI will be minimized during phase i. For the example, any threshold value ranging from 32 to 58 will be used. However, the selection of the maximum (i.e., 58) prevents compression of the densest cluster (here 64-QAM) at the output of the equalizer and reduces the burden on the equalizer performance. The result of using the scaling parameter results in the ratio of the equalized output of the convergence filter step up' so the statistics of the equalizer output will be: £{丨刺4}/五{|刹2}=58 'The assumption is perfect isi Remove and regardless of cluster. Therefore, for QpSK, the equalizer output will have the ISI minimized and scaled during Phase 1. y[k] = ej2^kTs+ea 浓 (±4±/4) = eJ2^Ts^ (± 5.385 ± > 5.385) Figure 45A illustrates the case where <90=/〇=〇 is used qPSK2 The real part of the equalization output of a system. It can be seen that the output is scaled by V58/32 due to the value of Λ = 58 because the equalizer converges to remove one of the isi solutions. Figure 45 illustrates the real part of the equalized output of one of the 16_qam systems for its center = eight = 〇. Because it is relatively close to i, the intersection of the equalizer output appears to be only slightly scaled. Therefore the actual scaling is evident during the convergence of the equalizer. 62 201116058 Cluster Detection Method In some embodiments, the histogram method can be used to determine the cluster before entering phase 2. The cluster can be determined even if the carrier phase and frequency have not been recovered. Consider the histograms of the powers of the coffee makers (9) for the equalizers of the qPSK, 16-QAM, and 64-QAM clusters, respectively, in Figures 46A, 46B, and 46. The histogram shows the power after the equalizer has been used and converged. Since the power of the equalizer output is independent of the phase and the histograms of the clusters are substantially different, the cluster of transmitted power can be determined by the equalizer output power histogram in the receiver. For no QPSK clusters, there is no additive or order noise, and the equalizer outputs the power of the sample; 7 reads = 58. For a 16-QAM cluster, the probability mass function for the equalizer output power:

Pr{/7[yt]= = j1/4 f〇r ξ = 8-58/52.8, 72 · 58/52.8 \l/2 /or ^ = 40-58/52.8 (方程式 14) 同樣地,對於64-QAM群集,用於等化器輸出功率之機 率質量函數係:Pr{/7[yt]== j1/4 f〇r ξ = 8-58/52.8, 72 · 58/52.8 \l/2 /or ^ = 40-58/52.8 (Equation 14) Similarly, for 64 -QAM cluster, the probability mass function system for equalizer output power:

PrfcW=^}= 1/161/8 3/16 /or ^=2,18,98 /or 卜 10,26,34,58,74 for ξ =50 (方程式15) 由於輪入信號上的階更新雜訊及相加雜訊ν,’即使例如 對於30分貝之―實質隨在此等值周圍的直方圖中存在 某些展開。模擬等化器輸出上的雜訊作為相加及獨立於 該等符元’及假設該輸出無ISI,則: 63 201116058 Ι*]|2 =|φ]+φ]|2 =|Φ]+Φ]|2 =|φ]|2+hWI2+2Re{4^*W} (^16 在一給定符元上調節有關2Re{4A:]«*[A:]}項之變化隨著増 加符元功率而增加。在直方圖之圖式中,此現象呈現為 展開(即變化)’其圍繞隨增加符元功率而增加之一給定 群集功率。在16_qAM情況中,關於符元±21±)2.1之群集 功率的展開少於關於符元±6.3±7·6·3之群集功率的展開。 可自等化器輸出功率的直方圖觀察到某些其他關係: •在QPSK直方圖中’區域^大略落在16-QAM的直方 圖中第一及第二區域(分別為尺2及r3 )之間。因此, 對於QPSK及Ιό-QAM群集,表示哪一符元被傳輸之 區域係未重疊。 • QPSK直方圖對64-QAM的直方圖之一比較顯露 [咖7;}用於M-QAM。因此,對於π闲對區 域Τι之一比較,;/[A:]更可能在該區域外。 *當64-QAM實例中不存在雜訊時,;以機率9/16採 取來自集合{2,18,26,34,58,98}之一值。因 此’當下方群集係64-QAM時忽視雜訊:PrfcW=^}= 1/161/8 3/16 /or ^=2,18,98 /or Bu 10,26,34,58,74 for ξ =50 (Equation 15) Due to the step update on the wheel signal The noise and the added noise ν, 'even if for example 30 decibels - there is some expansion in the histogram around this value. The noise on the output of the analog equalizer is added and independent of the symbols' and the output is assumed to be ISI-free: 63 201116058 Ι*]|2 =|φ]+φ]|2 =|Φ]+ Φ]|2 =|φ]|2+hWI2+2Re{4^*W} (^16 Adjusting the change of 2Re{4A:]«*[A:]} on a given symbol In the graph of the histogram, this phenomenon appears as an expansion (ie, change) 'which increases by a given cluster power with increasing symbol power. In the case of 16_qAM, about the symbol ± 21 The expansion of the cluster power of ±) 2.1 is less than the expansion of the cluster power with respect to the symbol ± 6.3 ± 7·6·3. Some other relationships can be observed from the histogram of the output power of the equalizer: • In the QPSK histogram, the area ^ falls roughly in the first and second regions of the 16-QAM histogram (foot 2 and r3, respectively) between. Therefore, for QPSK and Ιό-QAM clusters, the areas in which symbols are transmitted are not overlapped. • The QPSK histogram shows a comparison of one of the 64-QAM histograms [Cay 7;} for M-QAM. Therefore, for a comparison of π idle pairs Τι, ;/[A:] is more likely to be outside the region. * When there is no noise in the 64-QAM instance, the value from the set {2, 18, 26, 34, 58, 98} is taken at a probability of 9/16. Therefore, when the cluster below is 64-QAM, the noise is ignored:

Pr{{v[k]e Λ,)U{v[k]e i?2)U foWe i?3)} < 1/2, (万程式1 7) 其中U指示一 OR。因此’若傳輸群集係64-QAM及7[幻 與區域Ri、R_2及R_3比較,7[幻更可能在該等區域外。 某些具體實施例使用基於此等觀察的演算法: 201116058 fc = 0, λ4[—1] = 〇> 1] = ο while k < Ν do Φ] ^Pr{{v[k]e Λ,)U{v[k]e i?2)U foWe i?3)} < 1/2, (10,000 program 1 7) where U indicates an OR. Therefore, if the transport clusters are 64-QAM and 7 [magic and the regions Ri, R_2 and R_3 are compared, 7 [magic is more likely to be outside of these regions. Some embodiments use an algorithm based on such observations: 201116058 fc = 0, λ4[-1] = 〇> 1] = ο while k < Ν do Φ] ^

If τ/[ί:| € Τχ then 、阆=λιΡ - 1] + 1; else = max{A4[& -1] ~ 1,0}; end ifIf τ/[ ί:| € Τχ then , 阆=λιΡ - 1] + 1; else = max{A4[& -1] ~ 1,0}; end if

If ((i7[A?] G Ri) U (n[k] € R2) u (r?[fc] G Rd)) then A16[fe] = Ai6[A: - 1H1; elseIf ((i7[A?] G Ri) U (n[k] € R2) u (r?[fc] G Rd)) then A16[fe] = Ai6[A: - 1H1; else

Ai6[A] = max{Ai6[fe - 1] - 1,0}; end if fc = fe+ I; end while 演算法可在等化器收斂後初始,及在第一部分中增量 QPSK計數器;U阅,若等化器輸出功率在區域A中經過iV等 化器輸出樣本。若等化器輸出功率不在區域K,則計數 器減量。同樣地,若#:]在區域Ri、R2及R3中,16-QAM 計數器ΜΑ:]增量,否則減量。 在#等化器輸出取樣後,其可假設已正確地描述直方 圖。若下方群集係64-QAM,則QPSK及16-QAM計數器將 極小,因為功率估計7阅將更可能落在QPSK及16-QAM區 域外。若傳輸群集係QPSK或16-QAM,該傳輸群集的計 數器將明顯較大。因此, 65 201116058 jf (〜[JV] < Λί) Π (λ16【ΛΠ < M) then 64-QAM C!onsteUation Transmitted, elseAi6[A] = max{Ai6[fe - 1] - 1,0}; end if fc = fe+ I; end while algorithm can be initialized after the equalizer converges, and incremental QPSK counter in the first part; U Read, if the equalizer output power is output in the area A through the iV equalizer output sample. If the equalizer output power is not in zone K, the counter is decremented. Similarly, if #:] is in the regions Ri, R2, and R3, the 16-QAM counter ΜΑ:] is incremented, otherwise it is decremented. After the # equalizer output samples, it can assume that the histogram has been correctly described. If the cluster below is 64-QAM, the QPSK and 16-QAM counters will be extremely small, as the power estimate 7 will be more likely to fall outside the QPSK and 16-QAM areas. If the transport cluster is QPSK or 16-QAM, the counter of the transport cluster will be significantly larger. Therefore, 65 201116058 jf (~[JV] < Λί) Π (λ16[ΛΠ < M) then 64-QAM C!onsteUation Transmitted, else

If X4N] > Ms[N] QPSK Cousbellaliion Transmitted, else 16-QAM Constellation Transmitted* end if * e nd if 臨限值M可用經驗決定,但相較於#應較小。該演算法 極為健全,當傳輸QPSK、16-QAM或64-QAM時,可靠地 針對低信號對雜訊比(SNR )選擇正確的群集。在已可 靠決定群集後,可設定及以校正方程式13值且階段1可執 行至完成。等化器輸出將適當地比例縮放且階段2可用 RCCR所需之臨限值f的知識開始。 現描述等化器進入階段3前決定群集的另一方法。在此 方法中,階段1執行及容許用及=68完成。因此及如已解 釋,所有三群集將已在等化器輸出處比例縮放導致:^阅如 第47圖的三群集中顯示,雖然此等群集將可能旋轉。如 關於第43圖討論,對於階段二RCCR之一關鍵係僅考慮其 中如由|4幻I 2給定之符元的功率超過一臨限值之符 元。接著其假設z[A:]係群集的角落符元之一。同樣地,If X4N] > Ms[N] QPSK Cousbellaliion Transmitted, else 16-QAM Constellation Transmitted* end if * e nd if threshold M can be determined empirically, but should be smaller than #. The algorithm is extremely robust, and when transmitting QPSK, 16-QAM or 64-QAM, the correct cluster is reliably selected for low signal-to-noise ratio (SNR). After the cluster has been reliably determined, the value of Equation 13 can be set and corrected and Phase 1 can be executed to completion. The equalizer output will be scaled appropriately and Phase 2 can begin with the knowledge of the threshold f required by the RCCR. Another method of determining the cluster before the equalizer enters phase 3 will now be described. In this method, phase 1 execution and permissibility are completed with =68. Thus, and as already explained, all three clusters will have been scaled at the equalizer output resulting in: seeing the three clusters as shown in Figure 47, although such clusters will likely rotate. As discussed in relation to Figure 43, for a critical phase of the Phase II RCCR, only the symbols whose powers as given by |4 Magic I 2 exceed a threshold value are considered. It then assumes that z[A:] is one of the corner symbols of the cluster. Similarly,

卜可指示一角落符元。當群集已知時相對較容易選 擇f的一值,如第48(A)圖針對64-QAM群集所說明。第 48圖顯示在等化器輸出及載波相位/頻率恢復迴路模組S 66 201116058 輸入處之所有三群集。可見到對於角落點丨Ζ[Α] I =9.90。 例如,由點線圓484指示的一臨限值_^ = 9.3〇確保僅選擇角 洛點。同樣地’一 7^ = 7.48圓482及一 # = 7.0圓480可將較寬 裕之邊際分別用於16-QAM及QPSK。 第49圖顯示所有三群集之右上方象限的一重疊圖。可 見到若V? = 7·34 ’僅用於QPSK及16-QAM之角落點(落在 點圓外)會由RCCR利用。然而’若接收64-QAM,五群 集點(四個非角落)落在圓外及將由RCCR利用。因為恢復 相位較不吵雜’故若僅使用角落群集點,RCCR典型運作 較佳。然而,即使使用一些額外點,RCCR仍可成功恢復 相位’雖然會產生相位雜訊增加。因此,階段2最初可用 V? = 7.34操作,容許對於所有三群集之適當初始載波恢復 而群集對接收器來說仍保持未知。 如以上關於第20圖之描述,等化器2〇〇〇饋送一 2位準分 割器201 8 ’其繼而饋送訊框同步2020。訊框同步模組2020 可如方程式10描述用二進位訊框同步PN序列的一儲存 複本在進入之分割QAM符元的符號上施行一連續交叉相 關運算。連續交叉相關運算可分開地針對實及虛部施 行。儲存複本之各成員具有―丨或+丨之一值。h及卜之最大 量值指示FEC資料訊框的開始。現唯一差別係對於 64-QAM群集,2位準分割器2〇18在一具有某些額外相位 雜訊的彳5號上操作。然而,此額外相位雜訊在2位準分士ε 67 201116058 及其後父叉相關為主§fl框同步上且古伸,丨、么 上具有很少負面影響,即 使出現相位雜訊其亦很穩健。如春 如先則描述,群集碼字元 之解碼對於相位雜訊亦很穩健。 此可概 第50®_決定該群集之此替代方法的操作, 述如下: =58完成階段1,接著進 (1)等化器及相位/頻率迴路用及 入階段2。 ⑺不等待階段3,在階段2期間該相關為主訊框同步 2020接受輸入資料,找到訊框同步,及解碼群集碼字 元0 (3) 將決定群集資訊202丨傳送回至等化器2〇〇〇及相位/ 頻率迴路,其使用適當地對應該決定群集之一R值回 至階段1。 (4) 接著如之前完成階段1、2及3。 應瞭解到,第50圖及第20圖中描述之系統之間的主要 差別係自訊框同步2020至承載群集資訊的等化器/載波 恢復2000之額外連接5〇〇〇。 周軸安全連結中之SPOT監視 本發明的某些具體實施例中改進系統及設備的效能, 包括以上描述者且其中基頻視訊信號可與基頻視訊信镜 及控制信號的數位表示組合,從而達成透過例如一同輪 電纜(coax)的單一電纜傳輸。再次參考第4圖’本發明 68 201116058 一具體實施例提供透過coax安全連結(SLOC)之一系統。 第5圖顯示SLOC系統之一可能調變方案。在該實例中, HD相機3 0提供包含壓縮數位HD視訊影像332之一 IP輸出 41,及包含類比SD CVBS 330的一辅助相機信號。壓縮 HD視訊IP信號3 32利用一 SLOC相機側數據機49調變至通 帶52,SLOC相機側數據機49包含一 QAM調變器(參見在 第21圖之數據機32中的調變器21 2)。調變器21 2提供一可 與基頻類比CVBS信號330組合的調變信號。組合信號透 過同軸電纜41傳輸「下行」,典型地可延伸至300米或更 長距離。在監視器側,一 SLOC監視器側數據機45分離基 頻CVBS信號330與通帶下行IP信號332。經分離CVBS信 號33 0饋入一 SD顯示43用於現場、無延遲檢視。通帶下 行IP信號332係用一 QAM解調器(參見第22圖中之解調器 222)解調,其輸出一信號至主網路開關44或一處理器 /DVR(未顯示於圖4)。 在該實例中,上行通信依據IP需求提供。上行通信334 可額外用來自監視器側傳送音訊及相機控制信號42至相 機40。典型地,上行信號的位元率及對應需求頻寬將比 下行通帶信號所需低得多。監視器側SLOC數據機45包括 一 QAM調變器(參見第22圖中之調變器224),其調變IP信 號至上行通帶44。如第5圖中之描述,上行通帶54及下行 Γ | 通帶52位於不同頻譜位置。在相機側,SLOC數據機包ά 69 201116058 一 QAM解調器49(參見第21圖之數據機中的解調器214) 用於接收上行信號。此方法提供優於先前系統及方法之 若干優點’包括增加操作範圍,易於使用現存⑶以基礎 建設佈署及獲得低延遲、即時視訊。第21及22圖之簡化 示意圖顯示第4圖之SLOC相機側數據機及第4圖中之 SLOC監視側數據機45的額外細節。 第5 1A圖顯示基於第4圖說明之系統的一 SLOC系統,其 中一濾波階519在同軸電纜片段512及514之間提供,以使 階5 13及電纜片段512及5 14操作以連接相機側設備與監 視側組件。經濾波之階5 13典型地用來擷取至少一部分基 頻CVBS信號5 100至相機側SD顯示器5130。可在相機51〇 附近提供顯示器5130用於測試、設定及/或局部監視。濾 波階5 13典型地包含一低通濾波器,其阻擋可能干擾顯示 功能5130之不需要信號,例如調變數位、注及/或控制信 號。階513亦可包括在數據機511及515之間阻擋信號傳輸 的濾波器或開關。例如’ 一測試數據機5丨3丨可透過階5 i 3 連接以致能故障診斷或初始設定相機側數據機5丨丨且顯 示側數據機5 15可斷開以避免信號的干擾及/或劣化。如 第5圖中顯示,SLOC相機側數據機5丨丨典型地基於信號 5102之由相機產生之部分輸出一低通帶qAM信號及基頻 CVBS信號MOO,且SLOC監視側數據機5丨5基於信號517〇 中之控制信號輸出一高通帶QAM信號。可藉由階513提士 70 201116058 一或多數濾波器以避免可在SD顯示器513 〇及/或516上見 到的不合需求之干擾’且阻擋IP及控制信號。應瞭解一 些顯示及監視器缺少阻擋通帶信號中較高頻信號(相對 於基頻CVBS信號5100)所需之濾波。 第51B圖中顯示一基於第3圖申說明的系統之一 SL〇c 系統’其中相機侧及監視側之間的電境5 14已在相機側暫 時斷開,且已將一 SD顯示裝置或監視器513〇透過電纜片 段519直接連接至SLOC相機侧數據機5 11。一測試數據機 5131可視需要連接用於測試/設定目的。sd顯示裝置5130 顯示基頻CVBS信號及提供在相機51〇的實體位置附近自 相機5 10監視視訊的一能力且可能需求連接的再組態以 圖中’低通帶QAM信號Bu can indicate a corner symbol. It is relatively easy to choose a value of f when the cluster is known, as illustrated in Figure 48(A) for a 64-QAM cluster. Figure 48 shows all three clusters at the input of the equalizer and the input of the carrier phase/frequency recovery loop module S 66 201116058. It can be seen that for the corner point Α[Α] I = 9.90. For example, a threshold _^ = 9.3 indicated by the dotted circle 484 ensures that only the angular point is selected. Similarly, the '7^= 7.48 circle 482 and one #= 7.0 circle 480 can be used for the 16-QAM and QPSK. Figure 49 shows an overlay of the upper right quadrant of all three clusters. It can be seen that if V? = 7·34 ’ is only used for the corner points of QPSK and 16-QAM (falling outside the circle), it will be used by the RCCR. However, if 64-QAM is received, the five cluster points (four non-corners) fall outside the circle and will be utilized by the RCCR. Because the recovery phase is less noisy, the RCCR typically works better if only corner cluster points are used. However, even with some extra points, the RCCR can successfully recover the phase, although phase noise increases. Therefore, Phase 2 can initially operate with V? = 7.34, allowing proper initial carrier recovery for all three clusters while the cluster remains unknown to the receiver. As described above with respect to Fig. 20, the equalizer 2 〇〇〇 feeds a 2-bit order divider 201 8 ' which in turn feeds the frame sync 2020. The frame synchronization module 2020 can perform a continuous cross-correlation operation on the symbols of the incoming split QAM symbols using a stored copy of the binary frame PN sequence as described in Equation 10. Continuous cross-correlation operations can be performed separately for real and imaginary parts. Each member of the stored copy has a value of "丨 or +丨". The maximum value of h and Bu indicates the beginning of the FEC data frame. The only difference is that for a 64-QAM cluster, the 2-bit quasi-divider 2〇18 operates on a 彳5 with some extra phase noise. However, this extra phase noise is synchronized between the two-point accredited ε 67 201116058 and its subsequent parent-fork-related §fl box, and there are few negative effects on the §, 么, even if there is phase noise. Very stable. As described in Spring, the decoding of cluster code characters is also robust to phase noise. This can be used to determine the operation of this alternative method for the cluster, as follows: =58 Completion Phase 1, followed by (1) Equalizer and Phase/Frequency Circuit and Phase 2. (7) Waiting for phase 3, during phase 2, the relevant master frame synchronization 2020 accepts input data, finds frame synchronization, and decodes the cluster codeword 0 (3) to transfer the cluster information 202 to the equalizer 2 〇〇〇 and phase/frequency loops, which are used appropriately, should determine the value of one of the clusters back to phase 1. (4) Then complete stages 1, 2 and 3 as before. It will be appreciated that the primary differences between the systems depicted in Figures 50 and 20 are the additional connections from the frame synchronization 2020 to the equalizer/carrier recovery 2000 carrying the cluster information. SPOT monitoring in a weekly axis secure link improves the performance of the system and device in certain embodiments of the present invention, including the above description, and wherein the baseband video signal can be combined with the digital representation of the baseband video signal and control signal, thereby A single cable transmission through, for example, a coax cable is achieved. Referring again to Figure 4, the present invention 68 201116058 A specific embodiment provides a system through a Coax Secure Link (SLOC). Figure 5 shows one of the possible modulation schemes for the SLOC system. In this example, HD camera 30 provides an IP output 41 comprising one of compressed digital HD video images 332 and an auxiliary camera signal including analog SD CVBS 330. The compressed HD video IP signal 3 32 is modulated to the pass band 52 by a SLOC camera side data unit 49, and the SLOC camera side data unit 49 includes a QAM modulator (see the modulator 21 in the data unit 32 of Fig. 21). 2). Modulator 21 2 provides a modulated signal that can be combined with a baseband analog CVBS signal 330. The combined signal transmits "down" through coaxial cable 41, typically extending to a distance of 300 meters or more. On the monitor side, a SLOC monitor side modem 45 separates the baseband CVBS signal 330 from the passband downstream IP signal 332. The separated CVBS signal 33 0 is fed into an SD display 43 for on-site, no-delay viewing. The passband downstream IP signal 332 is demodulated with a QAM demodulator (see demodulator 222 in FIG. 22), which outputs a signal to the main network switch 44 or a processor/DVR (not shown in FIG. 4). ). In this example, uplink communication is provided in accordance with IP requirements. The upstream communication 334 can additionally transmit audio and camera control signals 42 from the monitor side to the camera 40. Typically, the bit rate of the upstream signal and the corresponding required bandwidth will be much lower than required for the downlink passband signal. The monitor side SLOC modem 45 includes a QAM modulator (see modulator 224 in Fig. 22) that modulates the IP signal to the upstream passband 44. As depicted in Figure 5, the upstream passband 54 and the downstream passband passband 52 are located at different spectral locations. On the camera side, the SLOC modem package 69 201116058 A QAM demodulator 49 (see demodulator 214 in the data machine of Figure 21) is used to receive the upstream signal. This approach offers several advantages over previous systems and methods' including increased operating range, ease of use of existing (3) infrastructure deployments, and low latency, instant video. The simplified diagrams of Figures 21 and 22 show additional details of the SLOC camera side data machine of Figure 4 and the SLOC monitoring side data machine 45 of Figure 4. Figure 5A shows a SLOC system based on the system illustrated in Figure 4, wherein a filter stage 519 is provided between coaxial cable segments 512 and 514 to operate the step 5 13 and cable segments 512 and 5 14 to connect the camera side. Equipment and monitoring side components. The filtered step 5 13 is typically used to capture at least a portion of the baseband CVBS signal 5 100 to the camera side SD display 5130. A display 5130 can be provided near the camera 51A for testing, setting, and/or local monitoring. The filter stage 5 13 typically includes a low pass filter that blocks unwanted signals, such as modulation digits, and/or control signals, that may interfere with the display function 5130. Stage 513 can also include a filter or switch that blocks signal transmission between data machines 511 and 515. For example, 'a test data machine 5丨3丨 can be connected through the stage 5 i 3 to enable fault diagnosis or to initially set the camera side data unit 5 丨丨 and the display side data machine 5 15 can be disconnected to avoid signal interference and/or degradation. . As shown in FIG. 5, the SLOC camera side data unit 5A typically outputs a low pass band qAM signal and a base frequency CVBS signal MOO based on the portion of the signal 5102 generated by the camera, and the SLOC monitoring side data machine 5丨5 is based on The control signal in signal 517A outputs a high pass QAM signal. One or more filters may be used by the step 513 Tis 70 201116058 to avoid undesirable interferences that can be seen on the SD display 513 and/or 516 and to block IP and control signals. It should be appreciated that some displays and monitors lack the filtering required to block higher frequency signals in the passband signal (relative to the baseband CVBS signal 5100). FIG. 51B shows a system based on the third embodiment of the system SL〇c system in which the environment between the camera side and the monitoring side is temporarily disconnected on the camera side, and an SD display device or The monitor 513 is directly connected to the SLOC camera side data unit 5 11 via the cable segment 519. A test data machine 5131 can be connected for testing/setting purposes as needed. The sd display device 5130 displays the baseband CVBS signal and provides a capability to monitor video from the camera 51 in the vicinity of the physical location of the camera 51A and may require reconfiguration of the connection to the 'low pass QAM signal'.

促進設定及故障診斷。第51B 5102可造成缺少高頻濾波的|51)顯示器513〇上之不合需 求的可見干擾。 在第51A及51B圖顯示的實例中, ’可能發生數據機5 11Facilitate setting and troubleshooting. The 51B 5102 can cause an undesirable undesirable interference on the display 513 that lacks high frequency filtering. In the example shown in Figures 51A and 51B, the data machine 5 11 may occur.

測試數據機5131暫時替換顯 示器數據機典 71 201116058 型包括一程序,其包括數據機511及515之間斷開,在數 據機511及5131之間建立連接,在數據機511及5131之間 斷開及在數據機511及515之間再建立連接。QAM信號之 斷開可使用數據機5 11的各種功能組件偵測。因此,以下 詳盡描述SLOC系統的操作。 用於一 SLOC系統的QAM調變器結構 如上述’第19圖說明提供至通帶調變(pb)模組1314 的一訊框結構1336(參見第13圖)。第16圖之籬柵編碼增 加位元,籬柵編碼前每一映射q AM符元之資料位元數目 (如表2中顯示)。第14圖之3 15RS封包(521640位元)所映射 之QAM符元的數目隨模態選擇而變化。使用每一訊框2〇7 及3 1 5封包的RS封包大小,獲得每一訊框一整數個符元, 如表3中顯示。PB Mod模組13 14接著使用熟習此項技術 者已知的任何適合方法調變基頻QAM符元至通帶《(參 見’例如以上有關第24圖之描述)。 如上述,參考第20圖,將進一步描述第21及22圖的Q AM 解調器。模組2000接收在一通帶信號中的傳輸資料及將 其轉換成基頻QAM符元。由模組2〇〇〇施行的操作可包括 符元時脈同步化,等化(以移除符元間干擾)及载波恢 復’其典型地係使用子模組。因此,模組2〇〇〇可包含一 等化器,其輸出恢復基頻QAM符元2001。基頻QAM信號 2〇〇1被提供至二位準分割器2018用於為在實及虛方向 72 201116058 者中分割’從而形成序列%[士[_1+1]及α,㈨e[_1+1]2〇19,其 被提供至訊框同步模組2〇2〇。 訊框同步模組2020用二進位訊框同步pn序列的一儲 存複本,在進入之分割QAM符元2〇19上分開地針對實及 虛部執行一連續交叉相關運算。經儲存複本之各成員具 有-1或+1之一值。此運算由方程式1給定,重複於下: 126 W =之 [« -灸]及味]=[« -无】, "=° ^ (方程式10) 其中S係127長訊框同步ΡΝ序列中之儲存複本。“或卜 之最大量值指示FEC資料訊框的開始。當在該流中偵測 到此FEC資料訊框起點時將一訊框同步脈衝或其他同步 */吕號傳送至接收器模組之一或多數。 第52Α及52Β圖顯示當接收到一雜訊信號時能可靠地 產生一訊框同步脈衝的一程序的元件。第52A圖顯示決定 訊框長度之程序的一部分。訊框長度可根據選定傳輸模 態變化(表3)。當符元接收到時重複執行在步驟52〇〇處開 始的一程序,且一符元計數器在執行間追蹤一些符元, 其導致在一預定臨限值上的一值。在步驟5 2〇1處,針對 各到達符元施行交叉相關且將符元計數器增量直至在步 驟5202處決定已超過預定臨限值。符元計數器針對各符 元增量5203直至超過臨限值。當在步驟52〇2超過臨限值 時’則清除符元計數器5204且重複交叉相關5205、增暈 73 201116058 符7G計數器5207及接收一新符元5208的步驟,直至其決 足在步驟5206處已超過臨限值。在步驟52〇8處記錄—中 間符元計數且在步驟5209處重設符元計數器。交又相關 5210、增量符元計數器5212及接收一新符元5213之步騍 被重複直至其在步驟5211處中決定超過臨限值。若在步 驟5214處符元計數器係與步驟52〇8處記錄的中間符元計 數相同’則訊框長度在5215處返回成為符元計數器的 值。應瞭解,在上述實例中’訊框長度可在兩連續一致 計數後決定《然而,所需連續相同計數的數目可視需要 選擇。 第52B圖說明即使當接收到信號極吵雜時訊框同步模 組2020亦可藉由其產生正確地計時訊框同步脈衝的一程 序。該程序亦提供用於當信號之一暫時性中斷發生時, 或傳輸器傳輸模態改變造成知改變後擁取一新訊 框同步位置。一自由運行符元計數器使用模數 算術计數接收到符元,其中一size已由關於第5 2 A圖描 述的步驟決定。已預期當方程式10交又相關的結果超過 選定臨限值時’符元計數器值將始終具有相同值。當該 值係一致時,使一信賴計數器增量直至一選定最大值(例 如最大值為1 6 );否則信賴計數器其係減量至零的一最小 值。 因此’當在5250處接收一符元時’在5251處執行交^[: 74 201116058 相關,及若在5252處的結果超過臨限值,在5253處將目 前最大值設定成臨限值且將一最大點設定成符元計數器 的目前值。在所述實例中,若將信賴計數器設定成至少4 的(5254)且目前符元計數指示訊框同步點(5255),則一 訊框同步信號係在5256處輸出。其次,符元計數器在5257 處增量’在此使用模數4加法。下一符元在步驟5 2 77處等 待’除非在步驟5270處決定符元計數器係零^若符元計 數器係零’則在5271處重設目前最大值。接著,在5272 處若目前最大值點等於訊框同步點,則信賴計數器在 5273處增量且下一符元在步驟5277處等待;否則,信賴 計數器在5274處減量。在目前說明的實例中,若在步驟 5275處決定該信賴已落至2之下,則在步驟5276處將訊框 同步點設定至目前最大值點。不論何情況,下一符元在 步驟5277處等待。 總之,根據上述的程序,當信賴計數器超過一預定值 (此例中為4)時決定訊框同步已可靠地獲得。該訊框同步 模組接著可清除以在正球時間提供__訊框同步脈衝。若 L賴彳數器超過4 ’該訊框同步脈衝將在正確時間輸出 (,、里也對應於訊框的開始),即使雜訊偶爾使方程式 1 0產生一低值。 右傳輸模態改變,信賴計數器最終地將計數回至零。 此可用來觸發決定新訊框長度的訊框長度之—重計^ 75 201116058 (如,使用第52A圖的程序)。如以下將關於載波恢復所 述’在恢復載波相位中可能有一 7Γ /2之不定性,盆,首 致零、±7Γ /2或7Γ的一任意額外恢復相位偏移。對於訊框 同步符元,實及虛部係相同符號且傳輸群集顯示於第Μ 圖中。 因此,應瞭解對於零相位偏移,最大量值、與幻之符號 兩者均為正。如表5所概述,-κ/2偏移將會獲得_負最大 量值、及一正最大量值對於π之一偏移,6/?和~兩者 將為負,而對於7Γ/2之一偏移,最大量值。將為正而最大 量值將為負。因此,組合中的最大量值、及心之各自的 符號可指示最後相位偏移已收斂之複數平面的象限❶此 允許一額外相位校正應用至相位偏移校正器模組2 〇 〇 2中 之該信號(第20圖最大、與卜之符號自相關為主訊框 同步模組2020傳送至相位偏移校正器2002。 另外參考第4〇圖,可更加瞭解第20圖之實例中的相位 偏移校正器2002之某些態樣。LUT 4〇〇基於最大量值办及 和幻之符號產生一輸出(參見表5)。給定 ’運算402可執行如下: (1) 對於 0=+7Γ 的情況: [幻 (2) 對於 0=+7r/2的情況:W[幻=-Z/[幻+/αμ] (3) 對於0 =_;τ/2的情況: 之,[幻=+;[免»及[幻 一旦找到訊框同步開始位置且校正w冗/2相位偏移,得」 76 201116058 知含有模態位元(群集及籬柵碼率)的碼字元之位置。碼 字元可接著由(例如)-BCH解碼器或由將接收到碼字元 與所有可能碼字元相關且選擇產生最高所得值的碼字元 而可靠地解碼。因為重複傳送此資訊,可要求在接受前 產生多次相㈣結果以獲得額外可靠性。第41圖顯示可 藉由訊框同步模組2020施行之一程序的一實例。 繼續第20圖的系統,自訊框同步模組2〇2〇輸出之訊框 同步信號的2〇21可用來指示在將符元饋送至軟解映射器 前哪些符元係要在模組2004中移除。在一實例中,將Η? 訊框同步符元及8模態符元自㈣中移除確保僅對應於 RS封包之符元被傳遞至軟解映射器2〇〇6。軟解映射器 2006使用此項技術演算法計算軟位元計量,例如,由八乂# 及Tosato描述之演算法。為了正確操作,軟解映射器2〇〇6 必須知道將哪一刪餘模式(哪一籬柵碼率)用於傳輸器及 該模式與接收到位元的對準。此資訊2〇21由訊框同步模 組2020提供,其解碼該模態資訊及亦提供一重複訊框同 步信號至刪餘模式所對準者,而不論目前模態為何。此 等軟位元比較量被饋送至以此項技術中已知之方式操作 的Viterb!解碼器2008以達到被輸入至傳輸器中的pTCM 編碼器之位元的估計處。均藉由訊框同步信號2〇21同步 之解隨機產生器2013、位元組解交錯器2〇 14&RS解碼器 2016分别將位元組資料解隨機、解交錯及解碼,以獲^] 77 201116058 原始輸入傳輸器中之RS編碼器的資料。 階段切換 某些具體實施例使用基於等化器輸出處之均方誤差的 估計之階段切換。等化器輸出處之均方誤差的一精確估 計可自藉由第42圖的誤差計算器模组422計算的一系列 誤差e[A:]得到。例如’可由使用以下獲得一估計: MSE[k] =(1-J3)e2[A:] + pMSE[k-1]. (方程式 18) 其中冷<1係一遺忘因子。用於平均e[幻的其他方法係 為人已知及可使用。方程式18產生可與一預定臨限值比 較之一結果及由第42圖的階段控制器模組423用以當 [幻降至該臨限值下時切換自階段1至階段2的操作。 其可與一第二預定臨限值比較以當五[幻降至該第二臨 限值下時切換自階段2至階段3的操作。 偵測斷開及再連接 某些具體貫施例提供用於摘測一通信連結之相機側上 的斷開及再連接事件之系統及方法。再次參考第51A及 5 1B圖,數據機5 11及5 1 5之間信號的部分或完全斷開可在 正常操作中發生。某些斷開影響在相機側數據機511及監 視側SLOC數據機515間之QAM發信號。尤其係,承載藉 由HD相機5 10擷取之影像的信號係藉由數據機511編碼 及/或調變用於透過電纜514傳輸至顯示側數據機515。可 藉由相機侧SLOC數據機511施行偵測關於同轴514之^ε] 78 201116058 開及再連接事件的複數方法❶回應於一斷開或再連接事 件,數據機511可暫停,開始或再開始下行通帶QAM傳 輸在些具體貫施例中,自一 QAM解調器至一 qaM調 變器傳輸的「同軸連接」信號可用以控制用於連接相關 事件的傳輸。 參考第5 3圖,例如,一相機側qAm解調器5 3 〇可經組態 以僅當一同軸連接信號53丨藉由一相機側QAM調變器532 確也時傳輸一下行通帶信號533。相機側QAM解調器532 可使用各種方法決定藉由監視器侧QAm調變器(未顯示) 傳輸的輸入信號534的存在。典型地’當確認群集識別及 /或在已獲得一訊框同步之驗證時,而當輸入信號534之 接收經可靠確認時,該同轴連接信號531藉由相機側qAM 解調器532確證。 偵測輸入信號534的存在之一方法包括一種基於一自 動增益控制(AGC)迴路的方法。在通信接收器(包括 解調器)中一般發現AGC係用來在接收器中的各級及點 處控制js號位準。第2 7圖中描述一實例,其顯示加至第 24圖之接收器前端的AGC迴路540。在AGC迴路540中, 一複數信號的量值在541決定且在542自一預定參考位準 543減去。該結果由低通滤波器(LPF)544遽波以抑制雜訊 及短程變動。LPF 5 44提供一輸出饋送至一包含加法器 545及一延遲元件546的累積器。該累積器輸出係用作 79 201116058The test data machine 5131 temporarily replaces the display data. The model 71 201116058 includes a program including disconnection between the data machines 511 and 515, establishing a connection between the data machines 511 and 5131, disconnecting between the data machines 511 and 5131, and A connection is established between the data machines 511 and 515. The disconnection of the QAM signal can be detected using various functional components of the modem 5 11. Therefore, the operation of the SLOC system is described in detail below. QAM Modulator Structure for a SLOC System A frame structure 1336 provided to the passband modulation (pb) module 1314 is illustrated as described above in Figure 19 (see Figure 13). The fence code of Figure 16 increases the number of data bits per map q-symbol before the fence is encoded (as shown in Table 2). Figure 14 of 3 The number of QAM symbols mapped by the 15RS packet (521640 bits) varies with modal selection. Use the RS packet size of each frame 2〇7 and 315 packets to obtain an integer number of symbols for each frame, as shown in Table 3. The PB Mod module 13 14 then modulates the baseband QAM symbol to the passband using any suitable method known to those skilled in the art (see, e.g., the description above with respect to Figure 24). As described above, with reference to Fig. 20, the Q AM demodulator of Figs. 21 and 22 will be further described. Module 2000 receives the transmitted data in a passband signal and converts it into a baseband QAM symbol. The operations performed by module 2 may include symbol clock synchronization, equalization (to remove inter-symbol interference), and carrier recovery 'which typically uses sub-modules. Therefore, the module 2A can include an equalizer whose output restores the fundamental frequency QAM symbol 2001. The baseband QAM signal 2〇〇1 is provided to the two-bit quasi-splitter 2018 for segmentation in the real and imaginary directions 72 201116058 to form a sequence % [士[_1+1] and α, (9) e[_1+1 ] 2〇19, which is provided to the frame synchronization module 2〇2〇. The frame synchronization module 2020 synchronizes a stored replica of the pn sequence with the binary frame and performs a continuous cross-correlation operation on the divided singular QAM symbols 2〇19 for the real and imaginary parts separately. Each member of the stored copy has a value of -1 or +1. This operation is given by Equation 1, repeated below: 126 W = [[- moxibustion] and taste] = [« - no], "=° ^ (Equation 10) where S is 127 long frame sync sequence A copy of the deposit in the middle. “The maximum value of the indicator indicates the beginning of the FEC data frame. When the start of the FEC data frame is detected in the stream, a frame sync pulse or other synchronization */ Lu number is transmitted to the receiver module. One or more. Sections 52 and 52 show the components of a program that can reliably generate a frame sync pulse when a noise signal is received. Figure 52A shows a portion of the procedure for determining the frame length. According to the selected transmission modal change (Table 3), a program starting at step 52 is repeatedly executed when the symbol is received, and a symbol counter tracks some symbols during execution, which results in a predetermined threshold A value on the value. At step 5 〇1, cross-correlation is performed for each arriving symbol and the symbol counter is incremented until it is determined at step 5202 that the predetermined threshold has been exceeded. The symbol counter is incremented for each symbol 5203. Until the threshold is exceeded. When the threshold is exceeded in step 52〇2, the symbol counter 5204 is cleared and the cross-correlation 5205, the halo 73 201116058 7G counter 5207, and the reception of a new symbol 5208 are repeated until it is The threshold is exceeded at step 5206. The intermediate symbol count is recorded at step 52 〇 8 and the symbol counter is reset at step 5209. The correlation 5210, the incremental symbol counter 5212, and the receipt of a new symbol are received. The step of element 5213 is repeated until it determines that the threshold value is exceeded at step 5211. If the symbol counter is the same as the intermediate symbol count recorded at step 52〇8 at step 5214, then the frame length is at 5215. Returning to the value of the symbol counter. It should be understood that in the above example, the frame length can be determined after two consecutive coincidence counts. However, the number of consecutive identical counts required can be selected as needed. Figure 52B illustrates even when a signal is received. The extremely noisy frame sync module 2020 can also generate a program for correctly timing the frame sync pulse. The program is also provided for when a temporary interruption of the signal occurs, or the transmitter transmits a modal change. A new frame sync position is acquired after the change is made. A free running symbol counter receives the symbol using the modulo arithmetic count, wherein a size has been determined by the steps described in relation to FIG. It has been expected that the symbol counter value will always have the same value when Equation 10 cross-correlation results exceed the selected threshold. When the values are consistent, a trust counter is incremented until a selected maximum value (such as the maximum value) 1 6 ); otherwise the counter is decremented to a minimum of zero. Therefore 'when receiving a symbol at 5250', the intersection is performed at 5251[: 74 201116058 correlation, and if the result at 5252 exceeds The threshold value, the current maximum value is set to the threshold value at 5253 and a maximum point is set to the current value of the symbol counter. In the example, if the trust counter is set to at least 4 (5254) and currently When the symbol count indicates the frame synchronization point (5255), the frame synchronization signal is output at 5256. Second, the symbol counter is incremented at 5257 'modulo 4 addition is used here. The next symbol waits at step 5 2 77 'unless it is determined at step 5270 that the symbol counter is zero if the symbol counter is zero' then the current maximum is reset at 5271. Next, at 5272, if the current maximum point is equal to the frame sync point, then the trust counter is incremented at 5273 and the next symbol is waited at step 5277; otherwise, the trust counter is decremented at 5274. In the presently illustrated example, if it is determined at step 5275 that the trust has fallen below 2, the frame sync point is set to the current maximum point at step 5276. In either case, the next symbol waits at step 5277. In summary, according to the above procedure, it is determined that frame synchronization has been reliably obtained when the trust counter exceeds a predetermined value (4 in this example). The frame sync module can then be cleared to provide a __ frame sync pulse at the time of the ball. If the L 彳 超过 超过 exceeds 4 ′, the frame sync pulse will be output at the correct time (, , also corresponds to the beginning of the frame), even if the noise occasionally causes Equation 10 to produce a low value. The right transfer mode changes and the trust counter eventually counts back to zero. This can be used to trigger the length of the frame that determines the length of the new frame - recalculation ^ 75 201116058 (eg, using the procedure in Figure 52A). As will be described below with respect to carrier recovery, there may be an uncertainty of 7 Γ /2 in the recovered carrier phase, an arbitrary additional recovery phase offset of the basin, first zero, ±7 Γ /2 or 7 。. For frame sync symbols, the real and imaginary parts are the same symbol and the transport cluster is shown in the figure. Therefore, it should be understood that for zero phase offset, both the maximum magnitude and the illusion are positive. As summarized in Table 5, the -κ/2 offset will result in a _ negative maximum magnitude, and a positive maximum magnitude for π one offset, 6/? and ~ will both be negative, and for 7Γ/2 One offset, the largest value. Will be positive and the maximum value will be negative. Therefore, the maximum magnitude in the combination, and the respective symbols of the heart, can indicate the quadrant of the complex plane in which the final phase offset has converged, thus allowing an additional phase correction to be applied to the phase offset corrector module 2 〇〇 2 The signal (the largest and the symbolic autocorrelation in Fig. 20 is transmitted to the phase offset corrector 2002 by the main frame synchronization module 2020. Referring to Fig. 4, the phase offset in the example of Fig. 20 can be further understood. Some aspects of the shift corrector 2002. The LUT 4 产生 generates an output based on the maximum magnitude and the phantom symbol (see Table 5). The given 'operation 402 can be performed as follows: (1) For 0=+7Γ The situation: [magic (2) For the case of 0=+7r/2: W[幻=-Z/[幻+/αμ] (3) For the case of 0 =_;τ/2: +; [Free » and [After finding the frame sync start position and correcting w redundant / 2 phase offset, get it" 76 201116058 Know the position of the code character containing the modal bit (cluster and fence rate). The code character may then be associated with, for example, a -BCH decoder or by receiving the received code character with all possible code characters and selecting the highest resulting value The code character is reliably decoded. Because this information is repeatedly transmitted, it is required to generate multiple phase (four) results before receiving to obtain additional reliability. Figure 41 shows one of the programs that can be executed by the frame synchronization module 2020. Example: Continuing with the system of Figure 20, the frame synchronization signal 2〇21 of the frame synchronization module 2〇2〇 can be used to indicate which symbols are to be in the mode before the symbol is fed to the soft demapper. Removed from group 2004. In an example, the frame sync symbol and the 8-modal symbol are removed from (4) to ensure that only symbols corresponding to the RS packet are passed to the soft demapper 2〇〇6 Soft Demapper 2006 uses this technique algorithm to calculate soft bit metrics, for example, algorithms described by Gossip # and Tosato. For proper operation, soft demapper 2 〇〇 6 must know which puncturing The mode (which is the gate rate) is used for the transmitter and the alignment of the mode with the received bit. This information is provided by the frame synchronization module 2020, which decodes the modal information and also provides a repeat message. The frame sync signal is aligned to the puncturing mode, regardless of the current mode The soft bit comparison quantities are fed to a Viterb! decoder 2008 operating in a manner known in the art to achieve an estimate of the bits input to the pTCM encoder in the transmitter. The frame synchronization signal 2〇21 synchronization solution random generator 2013, the byte deinterleaver 2〇14&RS decoder 2016 respectively decompose, deinterleave and decode the byte data to obtain the original input. Information on the RS encoder in the transmitter. Stage Switching Some embodiments use stage switching based on an estimate of the mean square error at the output of the equalizer. An accurate estimate of the mean square error at the output of the equalizer can be obtained from a series of errors e[A:] calculated by the error calculator module 422 of Fig. 42. For example, an estimate can be obtained by using: MSE[k] = (1-J3)e2[A:] + pMSE[k-1]. (Equation 18) where cold <1 is a forgetting factor. Other methods for averaging e[illusion are known and available for use. Equation 18 produces a result that can be compared to a predetermined threshold and is used by stage controller module 423 of Fig. 42 to switch from phase 1 to phase 2 when [the phantom falls below the threshold. It can be compared to a second predetermined threshold to switch from phase 2 to phase 3 when five [phantom down to the second threshold. Detecting Disconnection and Reconnection Some specific embodiments provide systems and methods for extracting disconnection and reconnection events on the camera side of a communication link. Referring again to Figures 51A and 5B, partial or complete disconnection of the signal between data units 5 11 and 5 15 can occur during normal operation. Some disconnection affects the QAM signal between the camera side modem 511 and the monitoring side SLOC modem 515. In particular, the signals carrying the images captured by the HD camera 510 are encoded and/or modulated by the data engine 511 for transmission to the display side data unit 515 via the cable 514. The camera side SLOC modem 511 can perform a plurality of methods for detecting the opening and reconnecting events of the coaxial 514, and the data machine 511 can pause, start or re-send in response to a disconnect or reconnect event. Initiating Downlink Bandpass QAM Transmission In some embodiments, a "coaxial connection" signal transmitted from a QAM demodulator to a qaM modulator can be used to control the transmission for connection related events. Referring to FIG. 5, for example, a camera side qAm demodulator 5 3 can be configured to transmit a line pass signal only when a coaxial connection signal 53 is confirmed by a camera side QAM modulator 532. 533. Camera side QAM demodulator 532 can use various methods to determine the presence of input signal 534 transmitted by a monitor side QAm modulator (not shown). Typically, the coaxial connection signal 531 is verified by the camera side qAM demodulator 532 when the cluster identification is confirmed and/or when verification of a frame synchronization has been obtained, and when the reception of the input signal 534 is reliably confirmed. One method of detecting the presence of an input signal 534 includes a method based on an automatic gain control (AGC) loop. AGCs are commonly found in communication receivers (including demodulators) to control the js level at various levels and points in the receiver. An example is shown in Figure 27 which shows the AGC loop 540 applied to the front end of the receiver of Figure 24. In AGC loop 540, the magnitude of a complex signal is determined at 541 and subtracted from a predetermined reference level 543 at 542. The result is chopped by a low pass filter (LPF) 544 to suppress noise and short range variations. The LPF 5 44 provides an output feed to an accumulator including an adder 545 and a delay element 546. The accumulator output is used as 79 201116058

饋至系統輸入549處之增益塊548的增益控制信號547<>在 一實例中,增益控制信號547用作一增益因子或乘法器, 其決定由增益塊548提供的增益以致當增益控制547增加 時’由增益塊548提供的増益在預定極限内增加。當輸入 549斷開時(如該同轴斷開),量值塊541的輸出傾向於極 低。典型地,該同軸連接之信號531可僅當量值塊輸出在 一預定臨限值上時確證。此外,當輸入549斷開時,增益 控制信號547典型極高。因此’該同軸連接信號53丨可僅 當增益控制信號低於一預定臨限值時確證。即使在qAM 解調器532中他處找到該迴路,亦可用agc迴路540來監 視輸入549的連接狀況。 偵測輸入信號534之存在的另一方法係基於第43圖顯 不的等化器及載波相位/頻率迴路級(亦參見方程式18)。 尤其係,當QAM解調器532的QAM調變器階段控制器 434(最初在階段1}基於方程式18的結果切換至階段2 時,可確證同軸連接信號531。僅在同轴連接時發生階段 1至1¾ #又2轉變且QAM解調器532主動地自監視器側QAM 調變裔接收一上行信號。該同轴的任何後續斷開將造成 信號的損失,由方程式18計算之纖的—增加將導致反 轉至階段1。當QAM解調器532在階段㈣,可重設或解確 證該同轴連接信號531。在-些具體實施例中,相機側 QAM解調器532其可需求在確證同轴連接信號⑶前已y;] 201116058 到階段3。 用於偵測輸入信號534之存在的另一方法係基於有關 第52B圖討論之解調器訊框同步信賴計數器。尤其係該 同軸連接信號531可僅當信賴計數器顯示大於一預定臨 限值之一值時由相機側QAM解調器532確證。在一實例 中’臨限值可為4。因此,僅當同軸連接且監視器側數據 機對相機傳輸SLOC訊框至相機時將確證該同轴連接信 號5 3 1。若即使未接收任何符元而訊框同步程序持續自由 運行時’斷開將使信賴計數器向後計數及最終落至4以下 且該同軸連接信號531將解確證。 用於4貞測輸入彳§號534的存在的另一方法係基於更高 層協定。再參考第51A圓,HD相機30及監視器側主系統 38可使用一網路協定通信。為了討論目的,將普遍存在 之網際網路協定(IP)用作一網路協定的一實例。Ip的一些 模態固有係雙向且導致資料在上行及下行兩者傳送。若 電魔斷開,HD相機30及/或數據機32中的一網路控制器或 處理器認知沒有返回IP封包自監視器側到達且可通知相 機側SLOC數據機32停止通帶傳輸。在一實例中,此通知 可包括自HD相機30透過例如用第53圖顯示之ΜΠ介面 536傳輸一特別預定資料封包至數據機32。 本發明某些態樣的額外描述 本發明的先前描述意欲為說明性而非限制。例如, 81 201116058 習此項技術者將瞭解本發明τ用上述功能及能力的各種 組合來實踐’且可包括比在上述者較少或額外組件。本 發明之某些額外態樣及特性在下文中進一步提出,及可 使用以上更詳細描述的功能及組件獲得’如熟習此項技 術者經本揭示内容教示後將會瞭解。 本發明的某些具體實施例提供有關一相機的系統及方 法。一些此等具體實施例包含一處理器’其自一影像感 測器接收一影像信號及產生代表該影像信號之複數視訊 仏號,及一編碼器,其組合該基頻視訊信號及該數位視 訊信號作為透過一電纜傳輸之一輸出信號。在一些此等 具體實施例中’該專視訊信號包括一基頻視訊信號及一 數位視讯信號。在一些此等具體實施例中,該等組合基 頻及數位視訊信號係實質上同步。在一些此等具體實施 例中,該相機係一閉路高晝質電視相機。在一些此等具 體實施例,該基頻視訊信號包含一標準畫質類比視訊信 號。在一些此等具體實施例,該數位視訊信號在與該基 頻視訊信號組合前調變。在一些此等具體實施例中,該 數位視訊彳5破包含塵縮視訊信號。在一些此等具體實施 例中’該數位視訊信號係一高畫質數位視訊信號。在一 些此等具體實施例中,該數位視訊信號的訊框率小於該 影像彳5说的訊框率。在-些此等具體實施例中,對___視 訊記錄器提供該調變數位信號。 82 201116058 一些此等具體實施例包含-解碼器,其係經組態 調自電纜接收之一上扞俨铼 .u 仃仏諕在一些此等具體實施例 ’該解調上行信號包含控制信號。在一些此等具體實 施例广’該等控制信號包括用以控制相機的位置及定向 號在些此等具體實施例中,該等控制信號包括 用以藉由該處理器控制該基頻視訊信號及該數位視訊信 唬的產生之信號。在一些此等具體實施例中,該等控制 信號包括用以選握县彡後# • 〜象心唬之一邛分用於編碼作為該基 頻視訊信號之信號。在一歧 —此寻具體貫施例中,該等控 制L號包括用以選摆令习禮产 逻释该衫像k唬之一部分用於編碼作為 該數位視訊信號之柃铋 . 。在一些此等具體實施例中,該 解調上行信號包含用來| 用|驅動該相機之一音訊輸出的一音 訊信號。 發月的某二具體實施例提㈣於傳輸視訊影像之方 、、一此等具體實施例包含將自—高晝質影像裝置接 收之一視訊信號分頻多工處 屑夕恿理以獲侍一調變數位信號, 藉由組合該調變數位信號與一代表該視訊信號之基頻類 比信號來產生一輸出信號’及同時將該輸出信號傳輸至 -顯示系統及數位視訊榻取及/或儲存裝置。在一些此等 具體實施例中,該顯千备始1 .,、具不糸統顯不自代表該視訊信號之該 中’該數位視訊儲存器使用一數位視訊記錄器記錄自 基頻類比表示導出之一影像。在一些此等具體實施例 該 83 201116058 調變數位信號擷取的一高畫質訊框序列。 一些此等具體實施例包含壓縮該視訊信號。在一些此 等具體實施例中,分頻多工處理該數位視訊信號之步驟 包括調變之前壓縮該視訊信號。在一些此等具體實施例 中’傳輸該輸出信號包括提供該輸出信號至一同軸電 纜。一些此等具體實施例包含將自該同軸電纜接收之一 輸入k號解調以獲得一控制信號。一些此等具體實施例 包含藉由將一複合視訊信號中之視訊信號的一部分編碼 來產生該基頻類比信號。一些此等具體實施例包含使用 S亥控制信號選擇待在該複合視訊信號中編碼的視訊信號 之該部分。一些此等具體實施例包含使用該控制信號控 制該相機之一位置。在一些此等具體實施例中,將該輸 入k號解調包括自該輸入信號掏取一音訊信號。 本發明之某些具體實施例提供用於操作相機的系統及 方法。一些此等具體實施例包含一處理器,其自一影像 感測器接收一影像信號且產生複數視訊信號;控制邏 輯,其經組態以回應於藉由該相機接收的一控制信號; 及一調變器’其經組態以調變該數位視訊信號作為—調 變k號。在一些此等具體實施例中,該複數視訊信號包 括一基頻視訊信號及一數位視訊信號。在一些此等具體 實施例中,該複數視訊信號之各者表示該相機的一視野 之至少一部分。在一些此等具體實施例中,該控制信赢s 84 201116058 控制該等基頻及數位視訊信號的内容。在一些此等具體 實施例中,該調變信號及該基頻視訊信號由該相機同時 傳輸》 在一些此等具體實施例中,該等基頻及數位視訊信號 實質上同步。一些此等具體實施例包含一編碼器,其組 合該基頻視訊信號及該調變信號作為用於透過一電麗傳 輸的一輸出信號。在一些此等具體實施例中,該控制信 號接收作為一無線信號。在一些此等具體實施例中,該 調變信號係無線傳輸。在一些此等具體實施例中,該數 位視訊信號為一高晝質數位視訊信號。在一些此等具體 實施例中,數位視訊信號包含壓縮數位視訊。在—些此 等具體實施例中,該控制信號移動藉由該等視訊信號之 一表示的該視野的部分。 本發明的某些具體實施例提供一等化器,其用於配合 由頻率分離及由一電纜承載之一數位信號及一基頻類比 信號。一些此等具體實施例包含一數位等化器,其將自 在該接收器接收的數位信號移除失真。一些此等具體實 施例包含一類比等化器,其補償起因於該電纜之類比信 號的衰減。在一些此等具體實施例中,該類比等化器應 用一組基頻類比濾波器之一來補償該衰減。在一些此等 具體實施例中’基於由不同頻率之衰減中差別的數位等 化益所計算的估計選擇應用的基頻類比濾波器。 [ 85 201116058 在&此等具體實施例中,在一相機中體現的一傳輸 器及接收器之間傳輸該數位信號及該類比信號,且其 中該接收器提供代表類比信號之—等化信號至一監視 器。在#等具體實施例中,該電徵包含一同轴電繞。 在些此等具體實施例中,該失真隨該電鐵長度而増 加。在一些此等具體實施例中,該失真包括多路徑失真。 在-些此等具體實施例中,該衰減估計自具有其中傾斜 係大約線性的一功率頻譜密度的一頻帶計算。在一些此 等具體實施例中’該傾斜係針對複數滤波器階使用一快 速傅立葉(F〇urier)轉換來計算。在一些此等具體實施例 中’該頻帶中之頻段經選^以允許使用以下加法式計算 該數位等化器之一濾波器的頻率響應: rt=0 Λ=〇Gain Control Signal 547 <> Feeded to Gain Block 548 at System Input 549 In an example, gain control signal 547 is used as a gain factor or multiplier that determines the gain provided by gain block 548 such that when gain control 547 When added, the benefit provided by gain block 548 increases within predetermined limits. When input 549 is off (e.g., the coaxial is off), the output of magnitude block 541 tends to be extremely low. Typically, the coaxially coupled signal 531 can be asserted only when the equivalent value block output is at a predetermined threshold. Moreover, when input 549 is off, gain control signal 547 is typically extremely high. Thus the coaxial connection signal 53 can be asserted only when the gain control signal is below a predetermined threshold. Even if the loop is found elsewhere in the qAM demodulator 532, the agc loop 540 can be used to monitor the connection status of the input 549. Another method of detecting the presence of input signal 534 is based on the equalizer and carrier phase/frequency loop stages shown in Figure 43, (see also Equation 18). In particular, when the QAM modulator stage controller 434 of the QAM demodulator 532 (initially in phase 1) switches to phase 2 based on the result of equation 18, the coaxial connection signal 531 can be confirmed. The phase occurs only during the coaxial connection. The 1 to 13⁄4 #2 transition and the QAM demodulator 532 actively receives an upstream signal from the monitor side QAM modem. Any subsequent disconnection of the coaxial will result in a loss of signal, the fiber calculated by Equation 18 - The increase will result in a reversal to phase 1. When the QAM demodulator 532 is in phase (d), the coaxial connection signal 531 can be reset or de-asserted. In some embodiments, the camera-side QAM demodulator 532 can be required. Before confirming the coaxial connection signal (3), y;] 201116058 to stage 3. Another method for detecting the presence of the input signal 534 is based on the demodulator frame synchronization trust counter discussed in relation to Figure 52B. The coaxial connection signal 531 can be confirmed by the camera side QAM demodulator 532 only when the trust counter display is greater than a predetermined threshold. In an example, the threshold can be 4. Therefore, only when coaxially connected and monitored Side-side data machine transmits SL to camera The coaxial connection signal 5 3 1 will be confirmed when the OC frame is sent to the camera. If the frame synchronization program continues to run freely even if no symbols are received, the disconnection will cause the trust counter to count backward and eventually fall below 4 and the The coaxial connection signal 531 will be de-confirmed. Another method for the presence of the 4-input input § § 534 is based on a higher layer protocol. Referring again to the 51A circle, the HD camera 30 and the monitor side main system 38 can use a network. Road protocol communication. For the purposes of discussion, the ubiquitous Internet Protocol (IP) is used as an example of a network protocol. Some modalities of Ip are inherently bidirectional and cause data to be transmitted both upstream and downstream. The magic disconnect, a network controller or processor in the HD camera 30 and/or the data processor 32 recognizes that no return IP packet arrives from the monitor side and can notify the camera side SLOC modem 32 to stop the passband transmission. The notification may include transmitting, from the HD camera 30, a particular predetermined data packet to the data processor 32 via, for example, the interface 536 shown in Figure 53. Additional Description of Certain Aspects of the Invention The foregoing description of the present invention is intended to be Illustrative rather than limiting. For example, 81 201116058 It will be appreciated by those skilled in the art that the present invention can be practiced with various combinations of the above-described functions and capabilities and can include fewer or additional components than those described above. The aspects and features are further set forth below, and may be obtained using the functions and components described in more detail above, as will be appreciated by those skilled in the art in light of this disclosure. Certain embodiments of the present invention provide a Systems and methods. Some such embodiments include a processor that receives an image signal from an image sensor and generates a plurality of video signals representing the image signal, and an encoder that combines the baseband video signals And the digital video signal is output as one of transmission through a cable. In some such embodiments, the video signal includes a baseband video signal and a digital video signal. In some such embodiments, the combined baseband and digital video signals are substantially synchronized. In some such embodiments, the camera is a closed-circuit, high-quality television camera. In some such embodiments, the baseband video signal includes a standard picture quality analog video signal. In some such embodiments, the digital video signal is modulated prior to combining with the baseband video signal. In some such embodiments, the digital video burst 5 contains a dust video signal. In some such embodiments, the digital video signal is a high quality digital video signal. In some such embodiments, the frame rate of the digital video signal is less than the frame rate of the image 彳5. In some of these specific embodiments, the modulated digital bit signal is provided to the ___ video recorder. 82 201116058 Some such embodiments include a decoder that is configured to receive from a cable reception. In some such embodiments, the demodulated uplink signal includes a control signal. In some specific embodiments, the control signals include a position and an orientation number for controlling the camera. In some embodiments, the control signals include control of the baseband video signal by the processor. And the signal generated by the digital video signal. In some such embodiments, the control signals include a signal for selecting a video signal as the baseband video signal. In the case of a specific example, the control L number includes a method for selecting a part of the shirt to be encoded as a digital video signal. In some such embodiments, the demodulated uplink signal includes an audio signal for driving the audio output of one of the cameras. A specific embodiment of the month of the month provides (4) a method for transmitting a video image, and a specific embodiment includes receiving a video signal from a high-quality video device to divide the video signal to obtain a message. A variable-bit signal is generated by combining the modulated digital signal with a fundamental analog signal representative of the video signal to generate an output signal and simultaneously transmitting the output signal to a display system and a digital video couch and/or Storage device. In some such embodiments, the display device has a display, and the digital video memory is recorded by a digital video recorder using a digital video recorder. Export one of the images. In some such embodiments, the 83 201116058 modulated digital signal sequence captured by the digital signal. Some such embodiments include compressing the video signal. In some such embodiments, the step of frequency division multiplexing processing the digital video signal includes compressing the video signal prior to modulation. In some such embodiments, transmitting the output signal includes providing the output signal to a coaxial cable. Some such embodiments include demodulating one of the input k numbers from the coaxial cable to obtain a control signal. Some such embodiments include generating the fundamental analog signal by encoding a portion of the video signal in a composite video signal. Some such embodiments include using the S-Hui control signal to select the portion of the video signal to be encoded in the composite video signal. Some such embodiments include using the control signal to control a position of the camera. In some such embodiments, demodulating the input k number includes extracting an audio signal from the input signal. Certain embodiments of the present invention provide systems and methods for operating a camera. Some such embodiments include a processor that receives an image signal from an image sensor and generates a plurality of video signals; control logic configured to respond to a control signal received by the camera; The modulator 'is configured to modulate the digital video signal as a modulation k number. In some such embodiments, the complex video signal includes a baseband video signal and a digital video signal. In some such embodiments, each of the plurality of video signals represents at least a portion of a field of view of the camera. In some such embodiments, the control signal wins s 84 201116058 to control the content of the baseband and digital video signals. In some such embodiments, the modulated signal and the baseband video signal are simultaneously transmitted by the camera. In some such embodiments, the baseband and digital video signals are substantially synchronized. Some such embodiments include an encoder that combines the baseband video signal and the modulated signal as an output signal for transmission through a galvanic transmission. In some such embodiments, the control signal is received as a wireless signal. In some such embodiments, the modulated signal is transmitted wirelessly. In some such embodiments, the digital video signal is a high quality digital video signal. In some such embodiments, the digital video signal includes compressed digital video. In some such embodiments, the control signal moves a portion of the field of view represented by one of the video signals. Some embodiments of the present invention provide an equalizer for cooperating with a frequency separation and carrying a digital signal and a fundamental analog signal from a cable. Some such embodiments include a digital equalizer that removes distortion from the digital signal received at the receiver. Some such embodiments include an analog equalizer that compensates for the attenuation of the analog signal due to the cable. In some such embodiments, the analog equalizer applies one of a set of fundamental frequency analog filters to compensate for the attenuation. In some such embodiments, the baseband analog filter of the selected selection application is based on an estimate calculated from the difference in the attenuation of the different frequencies. [ 85 201116058 In these embodiments, the digital signal and the analog signal are transmitted between a transmitter and a receiver embodied in a camera, and wherein the receiver provides an equalization signal representative of the analog signal To a monitor. In a specific embodiment, such as #, the electrical sign includes a coaxial electrical winding. In these particular embodiments, the distortion increases with the length of the electrical iron. In some such embodiments, the distortion includes multipath distortion. In some such embodiments, the attenuation is estimated from a frequency band having a power spectral density in which the tilt is approximately linear. In some such embodiments, the tilt is calculated for a complex filter stage using a fast Fourier transform. In some such embodiments, the frequency band in the frequency band is selected to allow the frequency response of one of the digital equalizers to be calculated using the following addition: rt = 0 Λ = 〇

Gp]係時域收斂等化器濾波器階之離散傅立葉轉換,且 知對應於該DFT之一特定頻段。在一些此等具體實施例 中,該數位信號包含由一相機擷取之視訊信號的一高晝 質表示’及其中該類比信號包含該等視訊信號之一標準 畫質表示。 本發明的某些具體實施例提供用於等化一類比信號的 方法’該類比信號係在亦承載由頻率自該類比信號分▲ S6 201116058 之數位信號的電纜中。在一些此等具體實施例中,該 方法係由一數據機施行,其接收該等類比及數位信號及 輸出一基頻視訊信號。一些此等具體實施例包括計算該 數位信號中的傾斜。在—些此等具體實施例中,該傾斜 將衰減描述為可歸因於該電纜之頻率的一函數。一些此 等具體實施例包含基於經計算傾斜等化該數位信號。一 些此等具體實施例包含藉由使用該計算傾斜以選擇一組 基頻類比濾波器之一來組態一類比等化器。一些此等具 體實施例包含使用該選定基頻類比渡波器等化該類比信 號》 〇 在一些此等具體實施例中,該類比信號包含一基頻視 訊信號且該數位信號包含該基頻視訊信號之一高晝質版 本。在-些此等具體實施例中,該電繞包含一同轴電镜 且其中該冑斜隨該電纜的長度變化。在一些&等具體實 施例中’該傾斜自多路徑失真導出。在一些此等具體實 施例中’計算傾斜包括估計在具有其中傾斜係大約線性 的一功率頻譜密度的—頻帶中之衰減。在—些此等具體 實施例中,估計衰減包括針對複㈣波器階使用一快速 傅立葉轉換。在—些此等具體實施射,估計衰減包括 ^該頻帶中選擇頻段。在—些此等具體實施例中,該選 疋頻&最佳化計算該傾斜之步驟的效率。 本發明的某些具體實施例提供使用一新颖分框結構丄s 87 201116058 數位通信系統。一些此等具體實施例包括交錯—資料訊 框的一迴旋位元組交錯器,其中該交錯器經同步化至一 訊框結構。一些此等具體實施例包括一隨機產生器,其 經組態以自該交錯資料訊框產生一隨機化的資料訊框。 些此等具體實施例包含一删餘籬栅碼調變器,其以自 該隨機化資料訊框產生一籬柵編碼資料訊框的一可選擇 碼率操作。一些此等具體實施例包含一 qam映射琴。其 映射該籬柵編碼資料訊框中成群組的位元至調變符元, 從而提供一映射訊框。一些此等具體實施例包括一同步 器’其將一同步封包加至該映射訊框。 在些此專具體實施例中,該刪餘籬栅碼調變器繞行 以基於該系統之一量測白雜訊效能獲得一最佳化淨位元 率。在一些此等具體實施例中,該相同同步封包加至一 後續映射訊框序列中之各者。在一些此等具體實施例 中’相同同步封包係加至各映射訊框。在一些此等具體 實施例中’該同步封包之一部分包含127個符元。在一也 此等具體實施例中,該同步封包之一部分包含用於該等 調變符元之實及虛部之不同二進位序列。在一些此等具 體實施例中,該同步封包之一部分包含用於該等調變符 元之實及虛部的一相同二進位序列。在一些此等具體實 施例中’該同步封包包含指示該映射訊框之一傳輸模雖 的資料。在一些此等具體實施例中,傳輸模態的指示 88 201116058 括一選定QAM群集及一選定籬栅碼率。在一些此等具體 實施例中,不論傳輸模態如何,該系統產生用於資料的 各訊框的一怪疋整數之Reed-S〇丨〇mon封包。在一班·此等 具體實施例中’不論傳輸模態如何,該系統產生用於資 料的各訊框的一可變整數之調變符元。在一些此等具體 實施例中,不論傳輸模態如何,該系統產生用於資料的 每一訊框的一整數之刪餘模式循環。 本發明的某些具體實施例提供用於一可變淨位元率數 位通彳s系統之分框方法。一些此等具體實施例包含提供 一組不同正交振幅調變(qAM)群集。一些此等具體實施 例包含使用刪餘籬栅碼組合產生資料封包的訊框,各組 合對應於一相關模態。一些此等具體實施例包括提供具 有QAM符元之一可變整數的—訊框。在—些此等具體實 施例中,QAM符元的數目對應於一選定模態。在一些此 等具體實施例巾’位元組及每—訊框編^。·封包 之一相關數目係常數。在—些此等具體實施例中,不論 才關模態如何’使用刪餘籬柵碼組合產生資料封包之訊 框包括產生用於資料的每—訊框的—整數之刪餘模式循 環。在—些此等具體實施例中,用於-或多數模態之每 - QAM符元之資料位元的數目係分數。在一些此等具體 實施例中,對於所有模態,每-訊框之籬柵編碼器刪餘 模式循環之一數目係一整數。 [s 89 201116058 本發明的某些具體實施例提供校正相位偏移之系統。 一些此等具體實施例包含—相位偏移校正器,其接收代 表-正交振幅調變信號之等化信號及自該等化信號導出 -相位校正信號。一些此等具體實施例包含一二位準分 割器’其將等化信號分割以獲得實及虛序列一些此等 具體實施例包含一訊框同步器,其用一儲存訊框同步偽 隨機序列之對應部分施行該等實及虛序列的一相關。一 些此等具體實施例包含由該訊框同步器提供至該相位偏 移校正器的一相位校正信號。在一些此等具體實施例 中,該相位校正信號基於該相關之最大實及虛值。在一 些此等具體實施例中,該訊框同步器在進人之分割正交 振幅調變符元上施行連續交又相關。 在一些此等具體實施例中,該連續交又相關係用二進 位訊框同步偽隨機雜訊序列的經儲存複本分開地針對該 等實及虛序列執行。在一些此等具體實施例令,使用刪 餘籬柵碼調變該正交振幅調變信號。在一些此等具體實 施例中,使用正父相移鍵控調變來調變該正交振幅調變 信號。在一些此等具體實施例中,該正交振幅調變(qaM) 仏號使用16-QAM調變。在一些此等具體實施例中,該正 交振幅調變的(QAM)信號使用64-QAM調變。在一些此等 具體貫施例中’正交振幅調變信號之訊框同步符元真有 相同符號且該相關之最大真及虛值的符元係指示該等jtT· 90 201116058 fs號中的相位旋轉。在一 牡些此寺具體實施例中,由該訊 框同步器提供的相位;^ 4人 ^日诅杈正彳5唬包含該相關之最大實及虚 值的符號。在一肽此黧复辨鲁说☆丨; 一此荨具體貫施例中,該相位偏移校正 器藉由用該相關之最大實及虛值的符號索引—查找表以 決定一相位校正值來導出該相位校正信號。 本發明的某些具體實施例提供用於在一接收器中校正 一正交振幅調變信號中之載波相位偏移的方法。一些此 等具體實施例包括等化該信號。一些此等具體實施例包 含分割該等化信號’從而自該等化信號獲得實及虛序 列。一些此等具體實施例包含識別該等實及虛序列中的 一訊框同步序列。在一些此等具體實施例中,識別該訊 框同步序列包括將一儲存偽隨機序列與該等實及虛序列 相關。在一些此等具體實施例中’識別該訊框同步序列 包括自關聯該等真及虛序列之最大相關值決定一訊框之 一開始。一些此等具體實施例包含基於該等最大相關值 校正該等化信號中之一相位誤差。 在一些此等具體實施例中,該相關步驟包括用一二進 位訊框同步偽隨機雜訊序列的一儲存複本在一系列分割 正交振幅調變符元上施行連續交叉相關。在一些此等具 體實施例中,該相關步驟包括分開地用該等實及虛序列 在一儲存複本的訊框同步序列上施行連續交又相關。在Gp] is a discrete Fourier transform of the time domain convergence equalizer filter stage, and is known to correspond to a particular frequency band of the DFT. In some such embodiments, the digital signal comprises a high quality representation of the video signal captured by a camera and wherein the analog signal comprises a standard picture quality representation of the video signals. Certain embodiments of the present invention provide a method for equalizing an analog signal. The analog signal is also in a cable that also carries a digital signal from the analog signal ▲ S6 201116058. In some such embodiments, the method is performed by a data machine that receives the analog and digital signals and outputs a baseband video signal. Some such embodiments include calculating the tilt in the digital signal. In some such embodiments, the tilt describes the attenuation as a function of the frequency attributable to the cable. Some such embodiments include equalizing the digital signal based on the calculated tilt. Some such embodiments include configuring an analog equalizer by using the computational tilt to select one of a set of fundamental frequency analog filters. Some such embodiments include equalizing the analog signal using the selected fundamental frequency analogizer. In some embodiments, the analog signal includes a baseband video signal and the digital signal includes the baseband video signal One of the high quality versions. In some such embodiments, the electrical winding comprises a coaxial electron microscope and wherein the skew varies with the length of the cable. In some & and the like, the tilt is derived from multipath distortion. In some such embodiments, calculating the tilt includes estimating the attenuation in a frequency band having a power spectral density in which the tilt is approximately linear. In some such embodiments, estimating the attenuation includes using a fast Fourier transform for the complex (four) wave order. In some of these specific implementations, the estimated attenuation includes the selected frequency band in the frequency band. In some of these specific embodiments, the selected frequency & optimizes the efficiency of the step of calculating the tilt. Certain embodiments of the present invention provide for the use of a novel sub-frame structure 丄s 87 201116058 digital communication system. Some such embodiments include a whirling byte interleaver of the interleaving-data frame, wherein the interleaver is synchronized to a frame structure. Some such embodiments include a random generator configured to generate a randomized data frame from the interleaved data frame. Some such embodiments include a punctured fence code modulator that operates a selectable bit rate operation of a fence-encoded data frame from the randomized data frame. Some such embodiments include a qam mapping piano. It maps the bits in the fence encoded data frame into groups of modulated symbols to provide a mapping frame. Some such embodiments include a synchronizer 'which adds a sync packet to the map frame. In some specific embodiments, the punctured fence code modulator bypasses to obtain an optimized net bit rate based on measuring white noise performance of one of the systems. In some such embodiments, the same synchronization packet is added to each of a subsequent sequence of mapping frames. In some such embodiments, the same synchronous packet is added to each mapping frame. In some such embodiments, one portion of the synchronization packet contains 127 symbols. In one such embodiment, a portion of the synchronization packet includes different bin sequences for the real and imaginary parts of the modulation symbols. In some such embodiments, one portion of the synchronization packet contains an identical binary sequence for the real and imaginary parts of the modulation symbols. In some such embodiments, the synchronization packet contains information indicating a transmission mode of the mapping frame. In some such embodiments, the indication of the transmission modality 88 201116058 includes a selected QAM cluster and a selected fence rate. In some such embodiments, the system generates a quirky integer Reed-S〇丨〇mon packet for each frame of the data, regardless of the transmission modality. In a particular embodiment, regardless of the transmission modality, the system generates a variable integer modulation symbol for each frame of the data. In some such embodiments, the system generates an integer puncturing mode loop for each frame of data regardless of the transmission modality. Some embodiments of the present invention provide a framing method for a variable net bit rate digital overnight system. Some such embodiments include providing a set of different quadrature amplitude modulation (qAM) clusters. Some such embodiments include frames for generating data packets using a combination of punctured fence codes, each combination corresponding to a correlated modality. Some such embodiments include providing a frame with a variable integer of one of the QAM symbols. In some such embodiments, the number of QAM symbols corresponds to a selected modality. In some of these specific embodiments, the 'bytes' and each frame are edited. • One of the related numbers of the packets is a constant. In some of these specific embodiments, regardless of the mode, the frame for generating a data packet using the punctured fence code combination includes generating a puncturing pattern loop for each frame of the data. In some such embodiments, the number of data bits per - QAM symbol for - or most modalities is a fraction. In some such embodiments, for each modality, the number of fenced encoder puncturing mode loops per frame is an integer. [s 89 201116058 Certain embodiments of the present invention provide systems for correcting phase offsets. Some such embodiments include a phase offset corrector that receives an equalized signal representative of the quadrature amplitude modulation signal and derives a phase correction signal from the equalized signal. Some such embodiments include a two-bit quasi-splitter that divides the equalization signal to obtain real and imaginary sequences. Some such embodiments include a frame synchronizer that synchronizes a pseudo-random sequence with a stored frame. The corresponding portion performs a correlation of the real and imaginary sequences. Some such embodiments include a phase correction signal provided by the frame synchronizer to the phase offset corrector. In some such embodiments, the phase correction signal is based on the maximum real and imaginary values of the correlation. In some such embodiments, the frame synchronizer performs continuous intersection and correlation on the segmented quadrature amplitude modulation symbols. In some such embodiments, the continuous cross-correlation is performed separately for the real and imaginary sequences by a stored copy of the binary frame pseudo-random noise sequence. In some such embodiments, the quadrature amplitude modulation signal is modulated using a punctured fence code. In some such embodiments, the positive amplitude phase shift keying is modulated using positive father phase shift keying modulation. In some such embodiments, the quadrature amplitude modulation (qaM) apostrophe uses 16-QAM modulation. In some such embodiments, the quadrature amplitude modulated (QAM) signal is modulated using 64-QAM. In some such embodiments, the frame sync symbol of the quadrature amplitude modulation signal has the same sign and the symbol of the maximum true and imaginary value of the correlation indicates the phase in the jtT·90 201116058 fs Rotate. In a specific embodiment of the temple, the phase provided by the frame synchronizer; the symbol of the maximum real and imaginary value of the correlation. In a specific embodiment, the phase offset corrector determines a phase correction value by using a symbol index of the associated maximum real and imaginary value - a lookup table. To derive the phase correction signal. Certain embodiments of the present invention provide methods for correcting a carrier phase offset in a quadrature amplitude modulated signal in a receiver. Some such embodiments include equalizing the signal. Some such embodiments include segmenting the equalized signal' to obtain real and imaginary sequences from the equalized signal. Some such embodiments include identifying a frame synchronization sequence in the real and imaginary sequences. In some such embodiments, identifying the frame synchronization sequence includes correlating a stored pseudo-random sequence with the real and imaginary sequences. In some such embodiments, 'identifying the frame synchronization sequence includes determining the beginning of a frame by correlating the maximum correlation values of the true and imaginary sequences. Some such embodiments include correcting one of the phased errors in the equalized signal based on the maximum correlation values. In some such embodiments, the correlating step includes performing a continuous cross-correlation on a series of split orthogonal amplitude modulation symbols using a stored copy of a binary frame synchronized pseudo-random noise sequence. In some such embodiments, the correlating step includes separately performing a continuous intersection and correlation on the frame synchronization sequence of a stored replica using the real and imaginary sequences separately. in

一些此等具體實施例中’該訊框同步序列之訊框同步;[夺S 201116058 疋具有相同符元。在—些此等具體實施例中,校正一相 位誤差包括基於該等最大相關值的符元在該等化信號中 決定相位旋轉。在—些此等具體實施例尹,校正該等化 信號中的一相位誤差包括用兮望 i祜用3玄專實及虛最大相關值的符 號來索?丨一查找表。 本發明的某些具體實施例提供用於在一正交振幅調變 信號中校正载波相位偏移的方法。在-些此等具體實施 例中’該方法可在包含經組態以執行指令的—或多數處 理器之-系統中實施。一些此等具體實施例包含在一或 多數處理器上執行經組態以等化㈣號的指令。一些此 等具體實施例包括在—或多數處理器上執行經組態以分 割該等化信號從而自該等化信號獲得實及虛序列的指 ^ 二此等具體實施例包括在一或多數處理器上執行 經組態以識別料實及虛序列中之—訊框同步序列的指 7。在一些此等具體實施例中,識別該訊框同步序列包 括刀開地用該等實及虚序列在一储存複本的訊框同步序 列上施行連續交又相關。在—些此等具體實施例中,識 別該訊框同步序列包自關聯料實及虛序狀最大相關 值決定—訊框之—開始。-些此等具體實㈣包含在-或多數處理器上執行經組態以基於該等最大相關值校正 該等化信號中—相位誤差的指令。在一些此等具體實施 例中,該訊樞同步序列的訊框同步符元具有相同符元 92 201116058 一些此等具體實施例中,校正—相位誤差包括基於該等 最大相關值的符號決定該等化信號中之相位旋轉。 本發月的某些具體實施例提供用於識別符元之一群集 的方法。在i此等具體實施例中,由—多模態正交振 幅調變通信系統之一或多數處理器執行該方法。一些此 等八體s施例包含執行造成—或多數處理器在—信號中 描述功率分佈的指令。在—些此等具體實施例中,該功 率分佈統計上追蹤該信號中偵測到功率位準的發生。一 些此等具體實施例包含執行造成—或多數處理器決定功 率分佈内功率位準之-或多數尖料生的指令…些此 等具體實施例包含執行造成—或多數處理器基於該等尖 峰發生的分佈決定該群集的指令。 在-些此等具體實施例中,一或多數處理器亦基於一 或多數尖♦發生之展開決定該冑集。纟一些此等具體實 施例中’該信號係一等化信號且其中一或多數處理器藉 由在該功率分佈的直方圖中檢查複數區段來決定該群 集。在-些此等具體實施例巾’料區段之各者對應於 功率位準之〜範圍’該等功率位準關聯複數群集候選者 之-但非所有。在—些此等具體實施例中,該複數群集 候選者包括-正交相移鍵控群集及一正交振幅調變 (QAM)群集。在-些此等具體實施例中,該複數群集候 選者包括16-QAM及64-QAM群集。在一些此等具體實 93 201116058 例中’該複數群集候選者包括_ Μ 群集。 -些此等具體實施例包括執行造成一或多數處理器藉 由施行針對系列群集決定之各者的步驟來建立一識別 群集的可靠性之指令。在-些此等具體實施例中,當一 後續決:¾:確 < 該群集之識別時,該等步驟包含增量一計 數益。在—些此等具體實施例中,當一後續決定識別一 不同群集時’該等步驟包含減量-計數器。在一些此等 具體實施例中,該等步驟包括基於該計數器的值提供可 靠性之—測量。在-些此等具體實施例中,該群集係當 该什數态超過一臨限值時被識別。在一些此等具體實施 例中’—计數器提供用於複數群集候選者的各者且其中 料集§其對應計數器超過—臨限值時被識別。在一些 此等,體實施例中,功率位準之尖锋發生對應於該群集 〜夺70在一些此等具體實施例中,在該信號等化 前識別出該群集》 本發明的某些具體實施例提供在一多模態正交振幅調 變通㈣統㈣別符元之—群㈣方法ϋ此等具 體實加例中,該等方法由該通信系統之—數據機中的一 處理器執些此等具體實施例包含執行造成該處理 器口應於在數據機接收之—資料之訊框的—開始之偵測 :自該資料的訊框擷取模態資訊的指令。一些此等具體 貫施例包含執行造成該處理器藉由自複數可能群集中4。 94 201116058 擇一最緊密匹配該等模態位元之一對應碼來決定一目前 群集的指令。一些此等具體實施例包含執行若該目前群 集匹配一先前決定群集則造成該處理器增加關聯該先前 識別群集之一信賴計量的指令❶一些此等具體實施例包 含執行若該目前群集不同於該先前識別群集,則造成處 理器減少信賴計量,且記錄該目前群集作為該先前識別 群集的指令。一些此等具體實施例包含重複造成該處理 器擷取模態資訊,選擇一目前群集及調整信賴計量用於 資料的後續訊框直至該信賴計量超過一預定臨限值的該 等步驟。在一些此等具體實施例中,當該信賴計量超過 該預定臨限值時該群集被識別出。In some of these specific embodiments, the frame synchronization of the frame synchronization sequence is performed; [S 20111058 疋 has the same symbol. In some such embodiments, correcting a phase error includes determining a phase rotation in the equalized signal based on the symbols of the maximum correlation values. In some of these specific embodiments, correcting a phase error in the equalized signal includes using the symbol of the imaginary real and the virtual maximum correlation value. A lookup table. Certain embodiments of the present invention provide methods for correcting carrier phase offset in a quadrature amplitude modulation signal. In some of these specific embodiments, the method can be implemented in a system including - or a plurality of processors configured to execute instructions. Some such embodiments include executing instructions configured to equalize the (four) number on one or more processors. Some such embodiments include performing on a processor or a plurality of processors to perform segmentation of the equalized signal to obtain real and imaginary sequences from the equalized signal. The specific embodiments include one or more processing A finger 7 configured to identify the frame synchronization sequence in the material and virtual sequences is executed on the device. In some such embodiments, identifying the frame synchronization sequence includes performing a continuous intersection and correlation on the frame synchronization sequence of the stored replicas using the real and imaginary sequences. In some of these specific embodiments, identifying the frame synchronization sequence packet begins with the associated correlation and the maximum correlation value of the virtual sequence. - These such concrete (4) include instructions executed on - or a plurality of processors configured to correct the phase error in the equalized signal based on the maximum correlation values. In some such embodiments, the frame synchronization symbols of the pivot synchronization sequence have the same symbol 92. 201116058. In some such embodiments, the correction-phase error includes determining the such values based on the symbols of the maximum correlation values. The phase rotation in the signal. Certain embodiments of the present month provide a method for identifying a cluster of one of the symbols. In one such embodiment, the method is performed by one or a plurality of processors of a multi-modal quadrature amplitude modulation communication system. Some of these eight-body s examples include instructions that cause - or most processors to describe the power distribution in the - signal. In some such embodiments, the power distribution statistically tracks the occurrence of detected power levels in the signal. Some such embodiments include performing instructions that cause - or a majority of the processor to determine the power level within the power distribution - or a majority of the instructions - some of these embodiments include execution - or a majority of processors based on the spikes The distribution determines the instructions of the cluster. In some of these specific embodiments, one or more processors also determine the set based on the expansion of one or more spikes. In some such embodiments, the signal is an equalization signal and one or more of the processors determine the cluster by examining the complex segments in a histogram of the power distribution. Each of these specific embodiments corresponds to a range of power levels - but not all of the power level associated complex cluster candidates. In some such embodiments, the complex cluster candidate includes a quadrature phase shift keying cluster and a quadrature amplitude modulation (QAM) cluster. In some such embodiments, the plurality of cluster candidates include 16-QAM and 64-QAM clusters. In some of these specific examples, the complex cluster candidate includes a _ 群集 cluster. Some such embodiments include the execution of an instruction that causes one or more processors to perform a determination for each of the series of cluster decisions to establish an identification of the reliability of the cluster. In some of these specific embodiments, when a subsequent decision is made: <the identification of the cluster, the steps include increments and counts. In some such embodiments, when a subsequent decision identifies a different cluster, the steps include a decrement-counter. In some such embodiments, the steps include providing a measure of reliability based on the value of the counter. In some of these specific embodiments, the cluster is identified when the even state exceeds a threshold. In some such embodiments, the counter is provided for each of the plurality of cluster candidates and wherein the set § its corresponding counter exceeds the threshold. In some such embodiments, the power level spike occurs corresponding to the cluster. In some such embodiments, the cluster is identified prior to the signal equalization. Embodiments provide a multi-modal quadrature amplitude modulation (four) system (four) different symbol-group (four) method, in such specific implementation examples, the method is performed by a processor in the communication system - the data processor Some such embodiments include performing a detection that causes the processor port to be received at the data machine - the frame of the data: an instruction to retrieve modal information from the frame of the data. Some of these specific implementations include execution of the processor by means of a self-complexing number of possible clusters4. 94 201116058 Select one of the most closely matched codes for one of these modal bits to determine the current cluster instruction. Some such embodiments include executing an instruction to cause the processor to increase association with one of the previously identified clusters if the current cluster matches a previously determined cluster. Some such embodiments include performing if the current cluster is different from the Identifying the cluster previously causes the processor to reduce the trust metering and record the current cluster as an instruction to identify the cluster previously. Some such embodiments include the steps of repeatedly causing the processor to retrieve modal information, selecting a current cluster and adjusting the trusted metering for subsequent frames of the data until the trusted metering exceeds a predetermined threshold. In some such embodiments, the cluster is identified when the confidence measure exceeds the predetermined threshold.

在一些此等具體實施例中,選擇一群集碼包含造成該 處理器對於具有對應碼位元之複數可能群集碼的各者施 行交叉相關。在一些此等具體實施例中,該群集係在一 承載資料的訊框及資料的後續訊框之未等化信號中識別 出。在一些此等具體實施例中,該群集被識別出而該處 理器係自该信號恢復一載波。一些此等具體實施例包含 執行造成該處理器使用一恆定模數演算法(CMA)來計算 一誤差信號以收斂等化器濾波器階來允許該信號的等化 的指令。在一些此等具體實施例中,該誤差信號係使用 一比例縮放CMA參數以改進等化效能來計算。在一些此 等具體實施例中,執行該信號的等化包括分析該等化j言S 95 201116058 號之功率的該等直方圖。在—些此等具體實施例中分 析該等直方圖包括使用一機率質量函數。在一些此等具 體實施例中’施行該信號的等化包含執行造成該處理器 計算關聯該等化信號中之複數符元之功率的指令β在一 些此等具體實施射,施行該信號的等化包含執行造成 該處理器藉由使用-臨限值功率位準識別該群集的角落 符元之指令。在一些此等具體實施例中,該臨限值功率 位準指示該群集的識別。 本發明的某些具體實施例提供用於傳輸視訊信號之系 統,該系統包含一相機側數據機,其經組態以自一視訊 相機接收兩信號,各信號係代表由該相機擷取之影像的 序列,且進一步經組態以傳輸兩信號之一作為一複合基 頻視訊信號及調變與傳輸另一信號作為一通帶視訊信 號’其不重疊基頻信號。在-些此等具體實施例中,該 相機側數據機包括-混合器’其組合該等基頻及通帶視 些此等具體實施例中 訊信號以提供一傳輸信號。在一 該相機側數據機包括一雙工器’其經組態以透過一傳輪 線傳輸該傳輸信號及自該傳輸線擷取一接收到通帶信 號。在-些此等具體實施例中,該相機側數據機包括一 偵測器,其監視該相機側數據機及當識別出該接收到通 帶信號時產生一致能信號。在一些此等具體實施例,該 致能信號控制該基頻視訊信號及該通帶視訊信號之至^ 96 201116058 一者的傳輸。 在一些此等具體實施例中,僅當產生該致能信號時傳 輸該通帶視訊信號。力 ,, 現在一些此等具體實施例中,該接收 到通帶信號係正交据幅细 乂搌調變。在一些此等具體實施例 中’該偵測器監視在一正交調幅解調器中之均方誤差的 估計’且其巾當歸計超過—隸值時產生該致能信 號在些此等具體實施例中n貞測器監視—群㈣ '' 在二此等具體貫施例中,基於由該群集偵測器 提供之可靠性的一測量產生該致能信號❶在一些此等具 體實施例中,該可靠性測量基於1框同步序列。在一 些此等具體實施例中’該偵測器監視一等化器中之均方 、差的估冲。在一些此等具體實施例中,當該估計超 臨限值時產生該致能信號。在一些此等具體實施例 中,該偵測器監視該相機側數據機的一自動增益控制模 、、且中之一增益因子。在一些此等具體實施例令,當增益 子具有小於一臨限值之一值時產生該致能信號。在一 一匕等具體貫施例中,該偵測器監視該接收到通帶信號 之一量值。在一些此等具體實施例中,當該量值具有超 過〜臨限值之一值時產生該致能信號。在一些此等具體 包例中’該接收到通帶信號包含根據網際網路協定編 碼的資料。 本發明的某些具體實施例提供用於控制在一保全系 97 201116058 中發彳S號的方法。一些此等具體實施例包含在一上行數 據機處決定在一同轴電缵上傳輸之一複合信號中的一上 打QAM信號的存在。一些此等具體實施例包含當決定存 在該上行QAM信號時,造成該上行數據機在同軸電纜上 傳輸一複合基頻視訊信號及一通帶視訊信號。在一些此 等具體實施例中,該複合基頻視訊信號及通帶視訊信號 係由一視訊相機擷取的一影像序列的並行表示。一些此 等具體貫施例包含當決定不存在該上行QAM信號時,造 成上行數據機在同軸電纜上傳輸該複合基頻視訊信號及 防止該通帶視訊信號的傳輸。 在一些此等具體實施例中,當一自動增益控制信號中 的一增益值超過一臨限值時,決定該上行QAM信號存 在《在一些此等具體實施例中,當該上行信號量值 之一測量小於一臨限值時,決定該上行QAM信號存在。 在一些此等具體實施例中,當一等化器中之均方誤差的 一估計超過一臨限值時,決定該上行QAM信號不存在。 在-些此等具體實施例中’當在該上行QAM信號中識別 出一網際網路協定資料封包時’決定該上行QAM信號不 存在》 本發明的某些具體實施例提供自動再組態系統用於傳 輸視訊信號。一些此等具體實施例包含一上行數據機, 其經組態以自一視訊相機接收兩信號。在一些此等具 98 201116058 貫施例中’各信號係代表由該相機擷取之影像的序列。 在些此等具體實施例中,該上行數據機經組態以傳輸 兩信號之一作為一複合基頻視訊信號及調變與傳輸該另 一信號作為一通帶視訊信號,其不重疊該基頻信號。一 些此等具體實施例包含一下行數據機,其經組態以自該 上行數據機接收複合基頻視訊信號及通帶視訊信號,且 進一步經組態以傳輸一上行通帶信號至該上行數據機。 在一些此等具體實施例中,當偵測該上行通帶信號中之 劣化時’該上行數據機停止兩信號之至少一信號的傳 輸。 雖然本發明已參考特定範例性具體實施例描述,但熟 習此項技術者將會明瞭可在不脫離本發明的更廣泛精神 及範圍下進行對此等具體實施例的各種修正及改變。例 如,已描述系統並行地提供壓縮數位HD視訊與一基頻類 比視訊仏號。本發明之其他具體實施例同時提供標準晝 質數位及類比饋送。其他具體實施例連同基頻類比視訊 提供全訊框率數位HD視訊。因此,說明書及圖式應視為 說明性而非一限制性意義。 【圖式簡單說明】 第1圖說明使用同轴以承載標準畫質類比視訊的一先 前技術系統。 第2圖說明傳輸高晝質數位視訊之先前技術方法。 99 201116058 第3圖描述根據本發明❾某些態樣傳輸類比及數位視 訊的一系統。 第4圖描述根據本發明的某些態樣傳輸類比及數位視 訊的一網路系統。 第5圖顯示根據本發明的某些態樣透過一同軸電纜傳 輸類比及數位視訊的頻寬分配。 第6圖說明根據本發明的某些態樣構造的cctv相機 設備的一實例。 第7圖說明用於根據本發明的某些態樣構造之設 備的一數據機之一實例。 第8圖說明用於根據本發明的某些態樣構造之網路開 關設備的一數據機之一實例。 第9圖係用於AT S C數位電視的一訊框結構之一實例。 第10圖係一習知訊框同步封包的一實例。 第11圖係在一習知資料訊框中之資料片段的一實例。 第12圖提供一訊框配置的一簡化圖。 第13圖係根據本發明的某些態樣之一調變器的—方 塊圖。 第14圖係使用於本發明的某些具體實施例的—訊樞 結構之方塊圖。 第15圖說明在本發明的某些具體實施例中之一迴旋 位元組交錯器的操作。 第16圖係使用於發明的某些具體實施例之一可選擇 碼率刪餘交錯編碼調變的一方域圖。 [ε 100 201116058 第17圖說明QAM映射的實例。 第1 8圖顯示一訊框同步/模態封包。 第19圖係使用於本發明的某些具體實施例的一簡化 訊框結構。 第20圖係根據本發明的某些態樣之一解調器的一方塊 圖。 第21圖係根據本發明的某些態樣之一相機側數據機的 一方塊圖。 第22圖係根據本發明的某些態樣之一監視器侧的數據 機之一方塊圖。 第23圖說明根據本發明的某些態樣之一相機側基頻對 通帶QAM調變器。 第24 A及24B圖說明根據本發明的某些態樣之監視器 側通帶對基頻QAM解調器。 第2 5圖說明根據本發明的某些態樣之一監視器侧數位 等化及載波相位/頻率迴路。 第26圖顯示描述衰減為同轴電纜中之頻率的一函數。 第27 A圖描述等化器輸入之功率頻譜密度(psD)。 第27B圖描述收斂等化器階之振幅響應。 第28A、28B、29A及29B圖顯示在不同頻率 、 广於一通帶 數位視訊信號中之損失相對於傾斜。 第3 0圖顯示根據本發明的某些態樣在qam解調器豆 L X .i, j 101 201116058 有一數位等化器的一監視器側數據機。 第31圖描述根據本發明的某些態樣適用於等化基頻 CVBS之一類比主動據波器。 第32圖顯不在本發明的宜此杳 我乃的某些具體貫施例中之濾波器回 應的實例。 第33A及33B圖說明在複數平面中之旋轉QpsK群集。 第34圖係說明根據本發明的某些態樣之相位校正程序 之一方塊圖。 第35圖描述根據本發明的某些態樣之積分比例(ιρ)濾 波器。 第36圖說明一經傳輸符元。 第3 7A、3 7B、3 7C及3 7D圖說明為基於第36圖之傳輸符 元的可能恢復符元。 第3 8圖顯示在一接收到符元中之相位偏移的一實例。 第39圖顯示基於訊框同步符元之實及虛部的一傳輸群 集之一實例。 第40圖係使用於本發明的某些具體實施例之一相位偏 移的一方塊圖。 第41圖說明決定有關訊框同步化的可靠性之一程序。 第42圖描述使用於本發明之某些具體實施例的一等化 器及載波相位/頻率迴路的某些態樣。 r r L ·_* 第43圖顯示使用於本發明的某些具體實施例之分割器 102 201116058 及相位誤差偵測器模組。 第44圖說明使用於本發明之某些具體實施例的一複數 指數LUT模組。 第45A及45B圖繪製在一 qpsk信號(第45A圖)及一 16-QAM信號(第45B圖)中之等化輸出的實部。 第46A、46B及46圖係當使用其中等化器在R=58收歛之 一具體實施例產生的群集係qPSK(第46A圖)' 16-QAM(第46B圖)及64-QAM(第46C圖)時之等化輸出之 功率的直方圖。 第47圖說明等化器輪出及載波相位/頻率恢復迴路模 組輸入處之群集的實例。 第48圖顯示具有所描述臨限值之qAM映射的實例。 第49圖顯示在相同圖上重疊之所有三群集的右上方象 限。 第50圖說明決定一群集之方法的操作。 第51A及51B圖描述根據本發明之某些態樣用於同時 傳輸標準晝質及高晝質視訊及具有信號之—階或中斷的 系統。 第52A及52B圖說明想播士膝B日认甘u 口几a很摞本發明的某些態樣自一吵雜 ^號產生一訊框同步脈衝之程序。In some such embodiments, selecting a cluster code includes causing the processor to cross-correlate each of the plurality of possible cluster codes having corresponding code bits. In some such embodiments, the cluster is identified in an unequalized signal of a frame carrying the data and subsequent frames of the data. In some such embodiments, the cluster is identified and the processor recovers a carrier from the signal. Some such embodiments include executing instructions that cause the processor to use a constant modulus algorithm (CMA) to calculate an error signal to converge the equalizer filter stage to allow equalization of the signal. In some such embodiments, the error signal is calculated using a scaled CMA parameter to improve equalization performance. In some such embodiments, performing the equalization of the signal includes analyzing the histograms of the power of the equalization S 95 201116058. Analyzing these histograms in some of these specific embodiments involves the use of a probability mass function. In some such embodiments, 'equalizing the signal includes performing an instruction to cause the processor to calculate the power of the complex symbol in the associated signal, in some of the specific implementations, performing the signal, etc. The instruction includes executing instructions that cause the processor to identify the corner symbols of the cluster by using a - threshold power level. In some such embodiments, the threshold power level indicates the identification of the cluster. Certain embodiments of the present invention provide a system for transmitting a video signal, the system including a camera side data machine configured to receive two signals from a video camera, each signal representing an image captured by the camera The sequence is further configured to transmit one of the two signals as a composite baseband video signal and to modulate and transmit the other signal as a passband video signal 'which does not overlap the baseband signal. In some such embodiments, the camera-side data unit includes a -mixer' that combines the baseband and passbands to view the signal of the particular embodiment to provide a transmission signal. In the camera side data machine, a duplexer is provided which is configured to transmit the transmission signal through a transmission line and to receive a passband signal from the transmission line. In some such embodiments, the camera side data unit includes a detector that monitors the camera side data unit and generates a consistent energy signal when the received passband signal is recognized. In some such embodiments, the enable signal controls transmission of the baseband video signal and the passband video signal to one of the cameras. In some such embodiments, the passband video signal is transmitted only when the enable signal is generated. Force, and in some of these specific embodiments, the received passband signal is spectrally fine-tuned. In some such embodiments, 'the detector monitors the estimate of the mean squared error in a quadrature amplitude modulation demodulator' and the wiper generates the enable signal when the score exceeds the value of the value. In the embodiment, in the specific embodiment, the enabling signal is generated based on a measurement provided by the cluster detector. In some of these specific embodiments The reliability measurement is based on a 1-box synchronization sequence. In some such embodiments, the detector monitors the mean squared and poor estimates in the equalizer. In some such embodiments, the enable signal is generated when the estimate exceeds a threshold. In some such embodiments, the detector monitors an automatic gain control mode of the camera side data unit, and one of the gain factors. In some such embodiments, the enable signal is generated when the gain has a value less than a threshold. In a specific embodiment, such as one, the detector monitors a magnitude of the received passband signal. In some such embodiments, the enable signal is generated when the magnitude has a value above one of the thresholds. In some of these specific package cases, the received passband signal contains data encoded in accordance with the Internet Protocol. Certain embodiments of the present invention provide a method for controlling the number of S in a security system 97 201116058. Some such embodiments include the determination of the presence of a top QAM signal in a composite signal transmitted on a coaxial power grid at an upstream computer. Some such embodiments include causing the uplink data unit to transmit a composite baseband video signal and a passband video signal over the coaxial cable when the uplink QAM signal is determined to be present. In some such embodiments, the composite baseband video signal and the passband video signal are represented in parallel by an image sequence captured by a video camera. Some such specific embodiments include when the uplink QAM signal is determined to be absent, causing the uplink data unit to transmit the composite baseband video signal on the coaxial cable and prevent the transmission of the passband video signal. In some such embodiments, when a gain value in an automatic gain control signal exceeds a threshold, determining that the uplink QAM signal is present. In some such embodiments, when the uplink signal magnitude is When a measurement is less than a threshold, it is determined that the uplink QAM signal exists. In some such embodiments, when an estimate of the mean square error in the equalizer exceeds a threshold, it is determined that the uplink QAM signal does not exist. In some such embodiments, 'when an internet protocol data packet is identified in the uplink QAM signal, 'determines that the uplink QAM signal does not exist.' Some embodiments of the present invention provide an automatic reconfiguration system Used to transmit video signals. Some such embodiments include an upstream data machine configured to receive two signals from a video camera. In some of these applications, the signals are representative of the sequence of images captured by the camera. In some such embodiments, the uplink data machine is configured to transmit one of the two signals as a composite baseband video signal and to modulate and transmit the other signal as a passband video signal that does not overlap the baseband. signal. Some such embodiments include a downlink data machine configured to receive a composite baseband video signal and a passband video signal from the uplink data machine, and further configured to transmit an uplink passband signal to the uplink data machine. In some such embodiments, the uplink data machine stops transmission of at least one of the two signals when detecting degradation in the uplink passband signal. While the invention has been described with respect to the specific embodiments of the present invention, it will be understood that various modifications and changes of the embodiments may be made without departing from the scope of the invention. For example, the system has been described to provide compressed digital HD video and a baseband analog video nickname in parallel. Other embodiments of the present invention provide both standard enamel digits and analog feeds. Other embodiments provide full frame rate digital HD video along with a baseband analog video. Therefore, the description and drawings are to be regarded as illustrative rather than restrictive. [Simple Description of the Drawings] Figure 1 illustrates a prior art system that uses coaxial to carry standard picture quality analog video. Figure 2 illustrates a prior art method of transmitting high quality digital video. 99 201116058 Figure 3 depicts a system for transmitting analog and digital video in certain aspects in accordance with the present invention. Figure 4 depicts a network system for analog analog and digital video transmission in accordance with certain aspects of the present invention. Figure 5 shows the bandwidth allocation for analog and digital video transmission over a coaxial cable in accordance with certain aspects of the present invention. Figure 6 illustrates an example of a cctv camera device constructed in accordance with certain aspects of the present invention. Figure 7 illustrates an example of a data machine for use with a device constructed in accordance with certain aspects of the present invention. Figure 8 illustrates an example of a data machine for a network switch device constructed in accordance with certain aspects of the present invention. Figure 9 is an example of a frame structure for an AT S C digital television. Figure 10 is an example of a conventional frame synchronization packet. Figure 11 is an example of a data fragment in a conventional data frame. Figure 12 provides a simplified diagram of a frame configuration. Figure 13 is a block diagram of a modulator in accordance with some aspects of the present invention. Figure 14 is a block diagram of a pivot structure used in some embodiments of the present invention. Figure 15 illustrates the operation of one of the wrap byte interleavers in some embodiments of the present invention. Figure 16 is a block diagram of one of a number of specific embodiments of the invention that may be selected for rate puncturing interleaved modulation modulation. [ε 100 201116058 Figure 17 illustrates an example of QAM mapping. Figure 18 shows a frame sync/modal packet. Figure 19 is a simplified frame structure for use in some embodiments of the present invention. Figure 20 is a block diagram of a demodulator in accordance with some aspects of the present invention. Figure 21 is a block diagram of a camera side data machine in accordance with some aspects of the present invention. Figure 22 is a block diagram of one of the data units on the monitor side in accordance with some aspects of the present invention. Figure 23 illustrates a camera side fundamental to passband QAM modulator in accordance with certain aspects of the present invention. Figures 24A and 24B illustrate a monitor side passband pair baseband QAM demodulator in accordance with certain aspects of the present invention. Figure 25 illustrates a monitor side digital equalization and carrier phase/frequency loop in accordance with certain aspects of the present invention. Figure 26 shows a function describing the attenuation as a frequency in a coaxial cable. Figure 27A depicts the power spectral density (psD) of the equalizer input. Figure 27B depicts the amplitude response of the convergence equalizer stage. Figures 28A, 28B, 29A, and 29B show the loss versus tilt in different frequency bands that are wider than a passband digital video signal. Figure 30 shows a monitor side data machine having a digital equalizer in the qam demodulator L X .i, j 101 201116058 in accordance with certain aspects of the present invention. Figure 31 depicts an analogous active data filter suitable for equalizing the fundamental frequency CVBS in accordance with certain aspects of the present invention. Figure 32 shows an example of a filter response in some specific embodiments of the present invention. Figures 33A and 33B illustrate a rotating QpsK cluster in a complex plane. Figure 34 is a block diagram showing a phase correction procedure in accordance with some aspects of the present invention. Figure 35 depicts an integrated ratio (ιρ) filter in accordance with certain aspects of the present invention. Figure 36 illustrates a transmitted symbol. Figures 3A, 3B, 3C, and 3D are illustrated as possible recovery symbols based on the transmission symbols of Figure 36. Figure 38 shows an example of the phase offset in a received symbol. Figure 39 shows an example of a transmission cluster based on the real and imaginary parts of the frame sync symbol. Figure 40 is a block diagram of phase shifting used in one of the specific embodiments of the present invention. Figure 41 illustrates one of the procedures for determining the reliability of frame synchronization. Figure 42 depicts certain aspects of a first-class equalizer and carrier phase/frequency loop for use with certain embodiments of the present invention. r r L ·_* Figure 43 shows a splitter 102 201116058 and a phase error detector module for use with certain embodiments of the present invention. Figure 44 illustrates a complex index LUT module for use with certain embodiments of the present invention. Figures 45A and 45B plot the real part of the equalized output in a qpsk signal (Fig. 45A) and a 16-QAM signal (Fig. 45B). 46A, 46B, and 46 are clusters of qPSK (Fig. 46A) generated by a specific embodiment in which the equalizer converges at R = 58. 16-QAM (Fig. 46B) and 64-QAM (46C) Figure) Histogram of the power of the equalized output. Figure 47 illustrates an example of a cluster at the input of the equalizer wheel and carrier phase/frequency recovery loop module. Figure 48 shows an example of a qAM mapping with the described threshold. Figure 49 shows the upper right quadrant of all three clusters that overlap on the same graph. Figure 50 illustrates the operation of the method of determining a cluster. Figures 51A and 51B depict systems for simultaneously transmitting standard enamel and high quality video and having a signal order or interruption in accordance with certain aspects of the present invention. Figures 52A and 52B illustrate the procedure for generating a frame sync pulse from a noisy number of certain aspects of the present invention.

第53圖係根據本發明的某些態樣具有一同轴連接指示 符的一相機數據機之一方塊圖。 U 103 201116058 第54圖說明一自動增益控制迴路的某些態樣。 【主要元件符元說明】 10 類比相機 11 coax/同軸電镜 12 數位錄影機/ DVR 14 監視器 16 數位相機 17 同軸電镜 20 數位相機 21 同軸電纜 22 DVR/MII協定介面 24 局晝質相機 25 雙絞線電纜 26 同軸電纜 27 數據機 28 控制及音訊信號 29 數據機 30 相機 31 數據機/SLOC-T 32 DVR/數據機 33 同軸電纜 34 SD顯示 35 SLOC-R數據機 104 201116058 36 資料 38 監視器側主系統 40 數位相機 41 IP輸出 42 控制信號 43 顯示器/ SD顯示器 44 網路開關/上行通帶 45 監視器側SLOC數據機 49 SLOC相機側數據機 50 基頻類比信號 52 單一頻帶 53 載波 5 4 通道/上行通帶 60 相機 70 系統 72 同軸電纜 74 標準晝質監視器 80 網路化保全裝置 82 同轴電纜/輸入信號 84 標準晝質監視器 85 高晝質顯示器 86 IP視訊伺服器 92 片段同步符元 94 訊框同步片段 105 201116058 96 資料片段 98 資料片段 100 片段同步 101 符元偽隨機雜訊序列 102 符元偽隨機雜訊 104 第三PN63序列 105 模態符元 106 保留符元 107 預編碼符元 140 封包 142 奇偶性位元組 150 輸入換向器 151 輸出換向器 152 路徑 154 路徑 156 路徑/移位暫存器 158 路徑/移位暫存器 180 第一部分 182 第二部分 190 酬載 203 第二PN63序列 207 訊框 210 媒體獨立介面(MII)模組 212 QAM調變器 106 201116058 214 QAM解調器 216 符元 218 雙工器 220 雙工器 222 QAM解調器 224 QAM調變器 226 MII介面模組 248 數位等化器及載波相位/頻率迴路 250 數位等化器 252 2D分割器Figure 53 is a block diagram of a camera modem having a coaxial connection indicator in accordance with certain aspects of the present invention. U 103 201116058 Figure 54 illustrates some aspects of an automatic gain control loop. [Main component description] 10 analog camera 11 coax / coaxial electron microscope 12 digital video recorder / DVR 14 monitor 16 digital camera 17 coaxial electron microscope 20 digital camera 21 coaxial cable 22 DVR / MII protocol interface 24 enamel camera 25 Twisted pair cable 26 Coaxial cable 27 Data machine 28 Control and audio signal 29 Data machine 30 Camera 31 Data machine / SLOC-T 32 DVR / data machine 33 Coaxial cable 34 SD display 35 SLOC-R data machine 104 201116058 36 Data 38 Monitoring Unit side main system 40 Digital camera 41 IP output 42 Control signal 43 Display / SD display 44 Network switch / Uplink passband 45 Monitor side SLOC modem 49 SLOC camera side data machine 50 Baseband analog signal 52 Single band 53 Carrier 5 4 Channels / Uplink Passband 60 Camera 70 System 72 Coaxial Cable 74 Standard Tandem Monitor 80 Network Security Device 82 Coaxial Cable / Input Signal 84 Standard Tandem Monitor 85 High Quality Display 86 IP Video Server 92 Fragment Synchronization symbol 94 frame synchronization segment 105 201116058 96 data segment 98 data segment 100 segment synchronization 1 01 symbol pseudo-random noise sequence 102 symbol pseudo-random noise 104 third PN63 sequence 105 modal symbol 106 reserved symbol 107 pre-encoded symbol 140 packet 142 parity byte 150 input commutator 151 output exchange Path 154 Path 154 Path 156 Path/Shift Register 158 Path/Shift Register 180 First Part 182 Second Part 190 Reload 203 Second PN63 Sequence 207 Frame 210 Media Independent Interface (MII) Module 212 QAM Modulator 106 201116058 214 QAM Demodulator 216 Symbol 218 Duplexer 220 Duplexer 222 QAM Demodulator 224 QAM Modulator 226 MII Interface Module 248 Digital Equalizer and Carrier Phase/Frequency Circuit 250 Digital Equalizer 252 2D splitter

254 電壓控制振盪器/VCO 25 6 低通瀘、波器 258 相位誤差偵測器模組 302 CVBS類比等化器 304 QAM解調器 305 濾波器選擇信號 330 類比CVBS信號/輔助相機輸出 332 高晝質信號/通帶下行IP信號 334 上行通信 340 信號 341 等化器 342 2D分割器254 Voltage Controlled Oscillator/VCO 25 6 Low Pass 泸, Wave 258 Phase Error Detector Module 302 CVBS Analog Equalizer 304 QAM Demodulator 305 Filter Selection Signal 330 Analog CVBS Signal / Auxiliary Camera Output 332 High Quality signal / passband downlink IP signal 334 uplink communication 340 signal 341 equalizer 342 2D splitter

344 電壓控制振盪器/VCO 345 IP濾波器 107 201116058 346 相位誤差偵測器模組344 Voltage Controlled Oscillator / VCO 345 IP Filter 107 201116058 346 Phase Error Detector Module

400 LUT 402 運算 404 元件 420 等化器 422 誤差計算器模組 423 階段管理器400 LUT 402 Operation 404 Component 420 Equalizer 422 Error Calculator Module 423 Phase Manager

424 查找表/LUT 426 IP濾波器 427 分割器及相位誤差偵測器模組 428 等化器及載波相位/頻率迴路 430 開關 432 第二開關 434 三階段 436 2維分割器424 Lookup Table/LUT 426 IP Filter 427 Splitter and Phase Error Detector Module 428 Equalizer and Carrier Phase/Frequency Circuit 430 Switch 432 Second Switch 434 Three Stages 436 2D Splitter

440 SLOC-R440 SLOC-R

444 LUT 445 相位校正因子 446 輸出 480 圓 482 圓 510 相機 511 SLOC相機側數據機 512 電纜片段 108 201116058 513 濾波階 514 電纜片段 515 數據機 516 SD顯示器 519 濾波階 530 相機側QAM解調器 531 同軸電纜連接信號 532 相機側QAM調變器 533 下行通帶信號 534 輸入信號 540 AGC迴路 543 預定參考位準444 LUT 445 Phase Correction Factor 446 Output 480 Circle 482 Circle 510 Camera 511 SLOC Camera Side Data Machine 512 Cable Segment 108 201116058 513 Filter Stage 514 Cable Fragment 515 Data Machine 516 SD Display 519 Filter Stage 530 Camera Side QAM Demodulator 531 Coaxial Cable Connection signal 532 camera side QAM modulator 533 downlink passband signal 534 input signal 540 AGC loop 543 predetermined reference level

544 低通濾波器/LPF 545 加法器 546 延遲元件 547 增益控制信號 548 增益塊 549 系統輸入 600 相機光學元件 602 影像感測器 603 掃描信號 604 處理器 605 信號 606544 Low Pass Filter / LPF 545 Adder 546 Delay Element 547 Gain Control Signal 548 Gain Block 549 System Input 600 Camera Optics 602 Image Sensor 603 Scan Signal 604 Processor 605 Signal 606

SLOC-T 109 201116058SLOC-T 109 201116058

606 數據機/SLOC-T 610 儲存器 612 音訊輸出系統/揚聲器 614 麥克風 616 感測器 618 控制介面606 Data Machine / SLOC-T 610 Storage 612 Audio Output System / Speaker 614 Microphone 616 Sensor 618 Control Interface

700 SLOC-R 701 類比基頻視訊信號 702 DVR處理器 703 數位視訊信號 704 類比視訊解碼器 705 數位標準晝質視訊信號 706 HD數位顯示處理器 707 信號 708 數位視訊解碼器 710 周邊裝置/網路介面 712 周邊裝置/本機匯流排 714 周邊裝置/本機硬碟機700 SLOC-R 701 analog baseband video signal 702 DVR processor 703 digital video signal 704 analog video decoder 705 digital standard video signal 706 HD digital display processor 707 signal 708 digital video decoder 710 peripheral device / network interface 712 Peripheral device / local bus 714 Peripheral device / local hard disk drive

800 SL0C-R 801 CVBS 信號 802 網路開關處理器 803 數位視訊信號 804 組件 806 組件 110 201116058 1300 RS編碼器 1301 位元組資料 1302 迴旋位元組交錯器 1303 訊框同步信號 1306 隨機產生器 1308 PT CM 模組 1312 模組 1313 QAM映射器 1314 通帶調變/PB Mod 1322 封包/向前誤差校正(FEC)資料訊框 1324 FEC資料訊框 1328 輸入 1332 輸出位元/編碼器輸出 1334 FEC資料訊框 1336 訊框結構 1500 頂部 1506 平行路徑 1508 平行路徑/底部 2000 模組 2001 基頻QAM符元 2002 相位偏移校正器 2004 模組 2006 軟解映射器 2008 Viterbi 解碼器 111 201116058 2014 位元組解交錯器 2016 RS解碼器 2018 二位準分割器 2019 分割QAM符元 2020 訊框同步模組 2021 訊框同步信號 2023 解隨機產生器 2100 相機/基頻IP資料流 2120 通帶QAM符元 2160 基頻CVBS信號 2162 通帶下行信號 2140 高通帶上行信號 2200 低通帶IP協定信號 2201 CVBS 信號 2202 低通帶信號 2203 高通帶信號 2300 映射器/編碼器/流 2302 流 5000 額外連接 5100 基頻CVBS信號 5102 信號 5130 相機側SD顯示器 5131 測試數據機 5170 信號 112800 SL0C-R 801 CVBS Signal 802 Network Switch Processor 803 Digital Video Signal 804 Component 806 Component 110 201116058 1300 RS Encoder 1301 Byte Data 1302 Cyclotron Interleaver 1303 Frame Synchronization Signal 1306 Random Generator 1308 PT CM Module 1312 Module 1313 QAM Mapper 1314 Passband Modulation/PB Mod 1322 Packet/Forward Error Correction (FEC) Data Frame 1324 FEC Data Frame 1328 Input 1332 Output Bit/Encoder Output 1334 FEC Data Box 1336 Frame Structure 1500 Top 1506 Parallel Path 1508 Parallel Path / Bottom 2000 Module 2001 Fundamental Frequency QAM Symbol 2002 Phase Offset Corrector 2004 Module 2006 Soft Demapper 2008 Viterbi Decoder 111 201116058 2014 Bits Deinterlaced 2016 RS decoder 2018 two-bit quasi-segment 2019 split QAM symbol 2020 frame synchronization module 2021 frame synchronization signal 2023 solution random generator 2100 camera / base frequency IP data stream 2120 pass band QAM symbol 2160 base frequency CVBS Signal 2162 passband downstream signal 2140 high passband uplink signal 2200 low passband IP protocol signal 2201 CVBS signal 2202 lowpassband signal 2203 high 2300 band signal mapper / encoder / stream CVBS signal 5102 signal 5130 SD camera-side display unit 5170 a data signal test 5131 2302 5000 Flow baseband additional connections 112 5100

Claims (1)

201116058 七、申請專利範圍: 1. 一種相機,其包含: 一處理器,其自一影像感測器接收一影像信號及 產生代表該影像信號之複數視訊信號,該等視訊信號 包括一基頻視訊信號及一數位視訊信號;及 一編碼器’其結合該基頻視訊信號及該數位視訊 信號作為透過一電镜傳輸之一輸出信號,其中 該基頻視訊信號包含一標準畫質類比視訊信號, 且其中 該數位視訊信號包含一高畫質數位視訊信號。 2‘如申請專利範圍第i項所述之相機,其中該等組合基 頻及數位視訊信號係實質上等時。 3.如申請專利範圍帛丨項所述之相機,其中該數位視訊 信號在與該基頻視訊信號組合前調變。 4·如申請專利範圍第1項所述之相機,其更包含:一解 碼器,該解碼器經組態以解調自該電纜接收之一上行 信號,其十該解調上行信號包含控制信號。 5.如申請專利範圍第4項所述之相機,其中該等控制信 號匕括用以控制該相機的位置及定向之信號。 &如中請專利範圍第4項所述之相機,其中該等控制信 號包括用以控制藉由該處理器產生該基頻視訊信號及 該數位視訊信號之信號。 申請專利範圍第6項所述之相機,其中該等控制信 '括用以選擇該影像信號之—部分用於編碼以作^ ] 113 201116058 該基頻視訊信號之一信號。 機, 部分 其中該等控制信 用於編碼以作為 8.如申請專利範圍第6項所逃之相 號包括用以選擇該影像信號之一 該數位視訊信號之一信號。 .如申凊專利範圍第4項所诚 之相機,其中該解調 信號包含用來驅動該相機 調上仃 號。 《訊輸出的一音訊信 10·—種用於傳輸視訊影像之 乃击’其包含以下步驟: 將自一視訊成像裝置接收之一 J. 視5托^5號分頻多工 處理以獲得一調變數位信號; 藉由組合該調變數/立彳 数位彳5唬與代表該視訊信號之一 基頻類比k號來產生一輸出信號;及 將該輪出信號傳輸至一或多數裝置,其包括一數 位視訊掏取裝置及顯示自該基頻類比信號導出之一視 訊影像的一裳置。 11·如申請專利範圍第H)項所述之方法,其中該數位視 訊掏取裝置包括一視訊伺服器。 12. 如申請專利㈣第1G項所述之方法,其中該分頻多 工處理該數位視訊信號之步驟包括以下步驟: 壓縮該視訊信號,及 調變在一載波上之該壓縮視訊信號。 13. 如申請專利範圍第1〇項所述之方法,其中傳輸該輸 出信號之步驟包括以下步驟:提供該輸出信號至一同 轴電鐵’且更包含以下步驟: [s ] 114 201116058 解調自該同軸電纜接收之一輸入信號以獲得一控 制信號; 藉由將一複合視訊信號中之該視訊信號的一部分 編碼來產生該基頻類比信號;及 使用該控制信號選擇欲在該複合視訊信號中編碼 的該視訊信號之該部分。 14. 如申請專利範圍第13項所述之方法,其更包含以下 步驟:使用該控制信號控制該相機之一位置。 15. 如申請專利範圍第13項所述之方法,其中解調該輸 入信號之步驟包括以下步驟:自該輸入信號擷取一音 訊信號。 16. —種系統,其係用於配合由頻率分離及由介於在一相 機申實施之一傳輸器及—接收器間的一電纜承載之一 數位信號及一基頻類比信號使用,該系統包含: —數位等化器’其將接收自該接收器的該數位信 號之失真移除; 〇 一類比等化器’其補償該電纜所導致之該類比信 &的衰減’其中該類比等化器應用_組基頻類比遽波 器之一來補償該等衰減,其中該應用基頻類比濾波器 Ί於-估計來選擇’該估計基於不同頻率下之衰減 的差別’且由該數位等化ϋ所計算。 17. 如申請專利範圍第16項所述之系統,其中該衰減之 估計肖杯· /L 1 • ^ ’其係自具有其中傾斜係約線性的 力率頻譜密度的一頻帶計算出。 115 201116058 18.如申請專利刪17項所述之系統,其中該傾斜係 對複數個濾波器階(tap)使用-快速傅立葉轉換計算。 19·如申請專利範圍第17項所述之方法其中該頻帶内 之頻段(frequency bin)經選定以允許使用以下加法 計算該數位等化器之一濾波器的該頻率響應: |^j4W + l]-W|gj4„ + 2]/f ^[4„ + 3], 其中GR]係時域收斂等化器濾波器分接之該離散 傅立葉轉換’且幻對應於該DFT之一特定頻段。 2〇.如申請專利範圍第16項所述之系統,其中該數位信 號包含由一相機擷取之視訊影像的一高畫質表示,且 ’、中該類比彳§號包含該等視訊影像之一標準晝質表 示。 21.種用於等化一電缵上之類比信號的方法,且該電纜 亦承載藉由頻率與該類比信號分離之一數位信號,該 方法係藉由一數據機施行,其接收該等類比及數位信 號及輸出一基頻視訊信號,該方法包含以下步驟: 計算該數位信號中之傾斜,其中該傾斜將衰減描 述為可歸因於該電纜之頻率的一函數; 基於該計算傾斜等化該數位信號; 藉由該計算傾斜選擇一組基頻類比濾波器之一以 組態—類比等化器; 116 201116058 使用該選定基頻類比滤;皮器等化該類比信號,其 中該類比信號包括一基頻視訊信號且該數位信號包含 該基頻視訊信號之—高晝質版本。 22. 如申請專利範圍第21項所述之方法其中計算傾斜 之步驟包括以下步驟:估計在具有其中傾斜係約線性 的一功率頻譜密度的—頻帶内之衰減。 23. 如申請專利範圍第22項所述之方法,其中估計衰減 之步驟包括以下步驟:對複數個濾波器階使用一快速 傅立葉轉換。 24. 如申請專利範圍第23項所述之方法,其中估計衰減 之步驟包括以下步驟:選擇該頻帶中之頻段,其中該 等經選定之頻段將計算該傾斜之該步驟的效率最佳 25. —種數位通信系統,其包含: 一迴方疋位元組交錯器(c〇nv〇luti〇nal byte interleaver ),其交錯一圖框之資料,其中該交錯器經 同步化至一訊框結構; 一隨機產生器’其經組態以自該交錯資料訊框產 生一隨機化資料訊框; 一刪餘離拇碼調變器(punctured trellis code modulator ),其依一可選擇碼率操作操作,該可選擇碼 率操作自該隨機化資料訊框產生一籬栅編碼資料訊框 的; 一 QAM映射器,其映射該籬栅編碼資料訊框中^ ] 117 201116058 群、且的位元至調變符元,從而提供一映射訊框;及 一同步器,其將一同步封包加至該映射訊框,其 中 、 該同步封包係加至一映射訊框序列之各者。 26. 如申請專利範圍第25項所述之系統,其將該刪餘籬 柵碼調變器旁通以基於該系統之一量測到之白雜訊效 月€而獲得一最佳化淨位元率。 27. 如申請專利範圍第25項所述之系統,其中該同步封 包之一部分包含127個符元。 28. 如申請專利範圍第25項所述之系統,其中該同步封 包之一部分包含用於該等調變符元之實及虛部之不同 '一進位序列。 29. 如申請專利範圍第25項所述之系統,其中該同步封 包之-部分包含用於該等調變符元之實及虛部兩者的 一相同二進位序列。 30. 如申請專利範圍第29項所述之系統,其中該同步封 包包含指示該映射訊框之—傳輸模態的資料,該資料 包括一選定QAM群集及一選定籬栅碼率。 3 1.如申請專利範圍第25瑁 項所述之系統’其中不論傳輸 模態,該系統產生用於久# >次_丨, 用於各訊框貝料之恆定整數個 Reed-Solomon 封包。 32.如申請專利範圍第25瑙 項所述之系統,其中不論傳輸 模態,該系統產生用於久4 p 4 , 、各訊框貝料之可變整數個調變 符元。 r C 118 201116058 33.如申請專利範圍第25項所述之系統,其中不論傳輸 模態’該系統產生每一訊框資料中的整數個刪餘模式 循環。 法,其包含以下步驟: 提供一組不同正交振幅調變(QAM)群集; 使用刪餘籬柵碼組合產生資料封包的訊框,各組 合對應於一相關模態; 提供具有可變整數個QAM符元的一訊框,其中該 QAM符元之數目對應於—敎模態,其中每—訊框^ 位元組及Reed_Solom〇1^包之一相關聯數目係常數。 35.如申請專利範圍第34 <々古,其中使用刪餘 冊碼組合產生訊框資料封包之步驟包括以下步驟: 不論相關模態如何,產生每一 餘模式循環。 身科中的整數個刪 %·如申請專利範圍第35項所述之方法,其中用 多數模態之每一 QAM符元資 '^ 匕心貝杆位兀的 八 37. 如申請專利範圍第 ’、刀。 掇能β 去’其中對於所有 模I、,每一訊框之籬柵編碼器刪餘 係一整數。 之一數目 38. -種用於傳送一數位視訊信號之系統,其勺入: 一相位偏移校正器,其接收代表一 信號之經等化的信號,並自該等化信=振幅調變 校正之信號; u導出經相位 119 201116058 其將該等化信號分割以獲得實 —二位準分割器 及虛序列; 一訊框同步器,其用— 序列之對應部分以施行該等 及 已儲存之訊框同步偽隨機 實及虛序列的一相關;以 相位校正彳0號,其由該訊框同步器提供給該相 位偏移校正器,中访知 八中这相位杈正信號基於該相關之該 最大實及虛值。 39,如,請專利範圍第38項所述之系統,其中該訊框同 y器在進入之分割正交振幅調變符元上施行連續交又 相關。 4〇·如申請專利範圍第39項所述之系統,其中該連續交 叉相關用-二進位訊框同步偽隨機雜訊序列之一儲存 複本分別對該等實及虛序列施行。 1.如m彳範圍第38項所述之系統,其中該正交振 幅調變信號之訊框同步符元具有相同符號,且該相關 I等最大實及虛值的符號係指示該等化信號中的相 位旋轉。 42·如申請專利範圍第41項所述之系統,其中由該訊框 同步器提供之該相位校正信號包含該相關之該等最大 實與虛值之該等符號。 如申β月專利範圍第41項所述之系統’其中該相位偏 移校正器藉由用該相關之該等最大實及虛值的該等符 號以索引-查找表而決定一相位校正值來導出該經[石] 120 201116058 位校正之信號。 44,種用於在一正交振幅調變信號令校正載波相位偏 移的方法,其中該方法在包含經址態以執行指令的_ 或多數處理器之-系統中實施,該方法包含以下步驟: 在該一或多數處理器上,執行經組態以等化該信 號的指令; 在該或多數處理器上,執行經組態以分割該等 化信號從而自該等化信號獲得實及虛序列的指令; 在"亥或多數處理器上,執行經組態以識別該等 實及虛序列中之一訊框同步序列的指令,其中識別該 訊框同步序列之步驟包括以下步驟: 刀別用該等實及虛序列在該訊框同步序列的一 儲存複本上施行連續交叉相關,及 自關聯該等實及虛序列之最大相關值決定一訊 框之一開始;及 ^在該或夕數處理器上,執行經組態以基於該等 最大相關值校正該等化信號中之一相位誤差的指令, 其中該訊框同步序列的訊框同步符元具有相同符號, 其中校正-相位誤差包括基於該等最大相關值的該等 符號決定該等化信號中之相位旋轉。 45.如申請專利範圍第44項所述之方法,其中該訊框同 步序列之訊框同步符元具有相同符號。 46·如申請專利範圍第44項所述之方法,其中校正該等 化信號中之-相位誤差包括:用該等實及虛最大相[關S] 121 201116058 t之該等符號…一查找表。 夕用於識別群集之符元的方法,該方法係藉由一 !模態正交振幅調變通信系統之-或多數處理器施 仃,該方法包含以下步驟: 執仃使該-或多數處理器描述一信號中之功率分 佈的指令,其中兮说、玄_、 、μ力率为佈在統計上追蹤於該信號中 偵測到之功率位準的發生; 執仃使該一或多數處理器決定在該功率分佈内功 率位準之-或多數尖峰發生的指令; 行使該或夕數處理器基於該等尖峰發生的分 佈決定該群集的指令。 48·如申請專利範圍第 數處理器基於該一 集。 47項所述之方法’其中該一或多 或夕數尖峰發生之展開決定該群 49·如申凊專利範圍第47 这之方法,其中該信號係 一專化信號,且其中該一或多 ±八也 次夕數處理器藉由檢查該功 李刀佈之一直方圖中的複數區段來決定該群集’盆中 各该專區段對應於關聯複數群集候選者之一但 者的功率位準之一範圍。 ’其中該複數群 ~~正交振幅調變 50.如申請專利範圍第49項所述之方法 集候選者包括一正交相移鍵控群集及 (QAM)群集。 ^ I ψ睛寻 〜〜返之方法,其更包含:勃 行使該一或多數處理器藉由對— $ 曰田耵系列群集決定中之;^】 122 201116058 者施仃步驟來建立一 咬且已識別群集的可靠性之> yv 等步驟包括: 罪f生之私令,該 器; 及 田後續决疋確認該群集之識別時增量一 當一後續決定識別-不同群集時減量該計數 計數 器; 基於該計數器的該值提供可靠性之一測量, ”中該群集係當該計數H超過—臨限值時被 地識別。 52. 如申請專利範圍第51項所述之方法,其中對複數群 集候選者各提供一計數器,且其中當其對應計數器超 過一臨限值時該群集被可靠地識別。 53. 如申請專利範圍第47項所述之方法其中功率位準 之該等尖峰發生對應於該群集的角落符元。 54. 如申請專利範圍第47項所述之方法,其中在該信號 等化前識別出該群集。 5 5. —種用於在一多模態正交振幅調變通信系統中識別 一群集之符元的方法,該方法係藉由該通信系統之一 數據機中的一處理器施行,且包含以下步驟: 回應於在該數據機處接收之一訊框資料的一開始 之偵測’執行使該處理器自資料之該訊框資料擷取模 態資訊的指令; 執行使該處理器藉由自複數可能群集碼中選擇一 最緊密匹配該等模態位元中之一對應碼來決定一目 123 201116058 群集的指令; 若該目前群集匹配一先前決定群集,則執行使該 處理器增加關聯該先前識別群集之一信賴計量的指 令; s 若該目前群集不同於該先前識別群集,則執行使 該處理器減少該信賴計量,且記錄該目前群集作為該 先前識別群集的指令;及 重複使该處理器對後續訊框資料擷取模態資訊、 選擇一目前群集及調整該信賴計量的該等步驟,直至 該信賴計量超過一預定臨限值,其十當該信賴計量超 過該預定臨限值時該群集被識別出。 56. 如申請專利範圍第55項所述之方法,其中選擇一群 集碼之步驟包含以下步驟:使該處理器對於該複數可 能群集碼的各者施行與該等對應碼位元之交叉相關。 57. 如申請專利範圍第55項所述之方法,其中該群集係 在承載該訊框資料及後續訊框資料之一未等化信號中 被識別出。 58. 如申請專利範圍第57項所述之方法,其中該群集在 該處理器自該信號恢復一載波時被識別出。 59. 如申請專利範圍第57項所述之方法,其更包含以下 步驟.執行使該處理器使用一恆定模數演算法(CMA) 來計算一誤差信號以收敛等化器濾波器階來允許該信 號的等化的指令。 60. 如申請專利範圍第57項所述之方法,其中施行該^ 124 201116058 號的等化之步驟包括 φ 步驟:分析該等化信號之功 驟:使用-機率質=直方圖之步驟包括以下步 :二!利範圍第57項所述之方法,其中施行該信 就的等化之步驟包合 了步郡:執行使該處理器施行 以下各項之指令: 十算關聯該等化信號中之複數個符元之該功率; 及 藉由使用一臨限信玄,& # u 一 限值功率位準識別該群集的角落符 疋,其中該臨限值功率位準指示該群集的該識別。 62.-種用於傳輸視訊信號之系統,該系統包含—相機側 數據機,其經組態以自一視訊相機接收兩信號,各信 號係代表由該相機操取之影像的序列,且進一步經組 態以傳輸該兩信號之一作為一複合基頻視訊信號及調 變與傳輸該另一信號作為一通帶視訊信號,其不與該 基頻信號重疊,其中該相機側數據機包括: 一混合器,其組合該等基頻及通帶視訊信號以提 供一傳輸信號; 一雙工器,其經組態以透過一傳輸線傳輸該傳輸 Ί舌號及自該傳輸線操取一接收到通帶信號; 一偵測器’其監視該相機側數據機及當識別出該 接收到通帶信號時產生一致能信號,其中 該致能信號控制該基頻視訊信號及該通帶視訊信 號之至少一者的傳輸,其中該通帶視訊信號係僅當1該… 125 201116058 致能信號被產生時傳輪β 63·如申請專利範圍第62項所述之系統其中該接收到 之通帶L號係經正交振幅調變,其中該债測器監視在 一正交振幅解冑ϋ中之均方誤差的一估計,且其中當 該估計超過一臨限值時產生該致能信號。 64.如申請專利範圍第62項所述之系統其中該偵測器 監視一群集偵測器,及其中該致能信號基於由該群集 偵測器提供之可靠性的一測量產生。 &如申請專利範圍第62項所述之系統,其中該可靠性 測量基於一訊框同步序列。 66·如申請專利範圍第62項所述之系統,其中該偵測器 -視一等化器中之均方誤差的一估計,且其中當該估 s十超過一臨限值時產生該致能信號。 67.如申請專利範圍第62項所述之系統,其中該偵測器 監視該相機側數據機的一自動增益控制模組中之一增 应因子且其中▲該增益因子具有小於—臨限值之一 值時產生該致能信號。 队如申請專利範圍第62項所述之系統,其中該偵測器 監視該接收到通帶信號之一量值,且其中當該量值具 有超過一臨限值之一值時產生該致能信號。 69.—種用於控制在一保全系統中發信號的方法其包含 以下步驟: 在一上行數據機處決定在一同軸電境上傳輸之一 複〇 k號中的一上行q AM信號的存在; [。 126 201116058 當決定該上行QAM信號存在時,使該上行數據機 在該同轴電纜上傳輸一複合基頻視訊信號及一通帶視 訊信號’其中該複合基頻視訊信號及該通帶視訊信號 係由一視訊相機擷取的一影像序列的並行表示;及 當決定該上行QAM信號不存在時,使上行數據機 在該同轴電纜上傳輸該複合基頻視訊信號及防止該通 帶視訊信號的傳輸。 70·如申請專利範圍第69項所述之方法,其中當一自動 增益控制信號中的一增益值超過一臨限值時,決定該 上行QAM信號存在。 71. 如申請專利範圍第69項所述之方法,其中當該上行 QAM彳§號之量值之一測量小於一臨限值時,決定該上 行QAM信號存在。 72. 如申請專利範圍第69項所述之方法,其中當一等化 器中之均方誤差的一估計超過一臨限值時,決定該上 行QAM信號不存在。 73. 如申請專利範圍第69項所述之方法,其中當在該上 行QAM信號中識別出一網際網路協定資料封包時,決 定該上行QAM信號不存在。 74. —種用於傳輸視訊信號之自動再組態系統,其包含: 一上行數據機’其經組態以自一視訊相機接收兩 信號’各信號係代表由該相機擷取之影像的序列,且 進一步經組態以傳輸該兩信號之一作為一複合基頻視 訊信號及調變與傳輸該另一信號作為一通帶視訊P 127 201116058 號’其不與該基頻信號重疊; 一下行數據機’其經組態以自該上行數據機接收 該複合基頻視訊信號及該通帶視訊信號,且進一步經 組態以傳輸一上行通帶信號至該上行數據機,其中 菖該上行數據機在該上行通帶信號中债測到—少 時’該上行數據機停止該兩信號之至少一信號的僅 輪。 寻 128201116058 VII. Patent application scope: 1. A camera, comprising: a processor, receiving an image signal from an image sensor and generating a plurality of video signals representing the image signal, wherein the video signals comprise a baseband video signal a signal and a digital video signal; and an encoder combining the baseband video signal and the digital video signal as an output signal transmitted through an electron microscope, wherein the fundamental video signal includes a standard image quality analog video signal, And wherein the digital video signal comprises a high quality digital video signal. 2 'A camera as claimed in claim i, wherein the combined fundamental and digital video signals are substantially isochronous. 3. The camera of claim 2, wherein the digital video signal is modulated prior to being combined with the baseband video signal. 4. The camera of claim 1, further comprising: a decoder configured to demodulate an uplink signal received from the cable, wherein the demodulated uplink signal comprises a control signal . 5. The camera of claim 4, wherein the control signals include signals for controlling the position and orientation of the camera. The camera of claim 4, wherein the control signals include signals for controlling the baseband video signal and the digital video signal generated by the processor. The camera of claim 6, wherein the control signal includes a portion for selecting the image signal for encoding to generate a signal of the baseband video signal. And wherein the control signals are used for encoding as 8. The phase number escaped as in item 6 of the scope of the patent application includes a signal for selecting one of the digital video signals of the image signal. A camera as claimed in claim 4, wherein the demodulated signal is included to drive the camera to an apostrophe. "A voice message output 10" is used to transmit a video image. The method includes the following steps: receiving one from a video imaging device, J. 5, 5, and 5 are divided into multiplex processing to obtain a Modulating a digital signal; generating an output signal by combining the modulation/reciprocal digit 彳5唬 with a k-number representing a fundamental frequency of the video signal; and transmitting the round-trip signal to one or more devices, The invention comprises a digital video capture device and a display for displaying a video image from the fundamental analog signal. 11. The method of claim H, wherein the digital video capture device comprises a video server. 12. The method of claim 4, wherein the step of dividing the digital video signal by the frequency division multiplexing comprises the steps of: compressing the video signal, and modulating the compressed video signal on a carrier. 13. The method of claim 1, wherein the step of transmitting the output signal comprises the steps of: providing the output signal to a coaxial electric iron' and further comprising the steps of: [s] 114 201116058 demodulation Receiving an input signal from the coaxial cable to obtain a control signal; generating the base frequency analog signal by encoding a portion of the video signal in a composite video signal; and using the control signal to select a composite video signal to be used in the composite video signal The portion of the video signal encoded in it. 14. The method of claim 13, further comprising the step of using the control signal to control a position of the camera. 15. The method of claim 13, wherein the step of demodulating the input signal comprises the step of: extracting an audio signal from the input signal. 16. A system for use with a frequency separation and a digital signal carried by a cable between a transmitter and a receiver implemented in a camera and a baseband analog signal, the system comprising : a digital equalizer 'which removes the distortion of the digital signal received from the receiver; an analogous equalizer 'which compensates for the attenuation of the analog signal & caused by the cable' Applying one of the set of fundamental frequency analog choppers to compensate for the attenuation, wherein the applied fundamental frequency analog filter is - estimated to select 'the estimate is based on the difference in attenuation at different frequencies' and is equalized by the digit ϋ Calculated. 17. The system of claim 16, wherein the estimated attenuation cup · / L 1 • ^ ' is calculated from a frequency band having a force rate spectral density in which the tilt is approximately linear. 115 201116058 18. The system of claim 17, wherein the tilting is performed using a fast Fourier transform for a plurality of filter steps. 19. The method of claim 17, wherein the frequency bin in the frequency band is selected to allow the frequency response of one of the digital equalizers to be calculated using the following addition: |^j4W + l ]-W|gj4„ + 2]/f ^[4„ + 3], where GR] is the discrete Fourier transform of the time domain convergence equalizer filter tap and corresponds to a particular frequency band of the DFT. 2. The system of claim 16, wherein the digital signal comprises a high quality representation of the video image captured by a camera, and wherein the analog code includes the video image. A standard enamel representation. 21. A method for equalizing an analog signal on an electrical circuit, and wherein the cable also carries a digital signal separated by a frequency from the analog signal, the method being performed by a data machine that receives the analogy And a digital signal and a baseband video signal, the method comprising the steps of: calculating a tilt in the digital signal, wherein the tilt describes the attenuation as a function attributable to the frequency of the cable; The digital signal; selecting one of a set of fundamental frequency analog filters by the calculation to configure an analog-like equalizer; 116 201116058 using the selected fundamental frequency analog filter; the skin device equalizing the analog signal, wherein the analog signal A baseband video signal is included and the digital signal includes a high quality version of the baseband video signal. 22. The method of claim 21 wherein the step of calculating the tilt comprises the step of estimating the attenuation in a frequency band having a power spectral density wherein the tilt is approximately linear. 23. The method of claim 22, wherein the step of estimating attenuation comprises the step of using a fast Fourier transform for the plurality of filter stages. 24. The method of claim 23, wherein the step of estimating attenuation comprises the step of selecting a frequency band in the frequency band, wherein the selected frequency band is optimal for calculating the efficiency of the step of the tilt. a digital communication system comprising: a back-and-forth byte interleaver (c〇nv〇luti〇nal byte interleaver), which interleaves a frame of data, wherein the interleaver is synchronized to a frame structure a random generator 'configured to generate a randomized data frame from the interleaved data frame; a punctured trellis code modulator operating at a selectable rate The selectable bit rate operation generates a fence-encoded data frame from the randomized data frame; a QAM mapper that maps the fence-encoded data frame to the 117 201116058 group and the bit to The symbol is modulated to provide a mapping frame; and a synchronizer adds a synchronization packet to the mapping frame, wherein the synchronization packet is added to each of the mapping frame sequences. 26. The system of claim 25, wherein the prune fence modulator is bypassed to obtain an optimized net based on the white noise of one of the systems. Bit rate. 27. The system of claim 25, wherein one of the synchronization packets comprises 127 symbols. 28. The system of claim 25, wherein one of the synchronization packets includes a different one-bit sequence for the real and imaginary parts of the modulation symbols. 29. The system of claim 25, wherein the portion of the synchronization packet includes a same binary sequence for both the real and imaginary parts of the modulation symbols. 30. The system of claim 29, wherein the synchronization packet includes data indicative of a transmission mode of the mapping frame, the data comprising a selected QAM cluster and a selected fence rate. 3 1. The system described in claim 25, wherein the system generates a constant integer number of Reed-Solomon packets for each frame, regardless of the transmission mode. . 32. The system of claim 25, wherein the system generates a variable integer number of modulation symbols for each of the frames of the frame, regardless of the transmission modality. The system of claim 25, wherein the system generates an integer number of puncturing mode loops in each frame material regardless of the transmission mode. a method comprising the steps of: providing a set of different quadrature amplitude modulation (QAM) clusters; generating a frame of data packets using a combination of punctured fence codes, each combination corresponding to a correlated modal; providing a variable integer number A frame of the QAM symbol, wherein the number of the QAM symbols corresponds to a 敎 modality, wherein each of the frames and one of the Reed_Solom 〇 1^ packets are associated with a constant number. 35. The scope of claim 23, wherein the step of generating a frame data packet using a combination of punctured copies comprises the following steps: generating a pattern cycle for each mode regardless of the associated modality. An integer number in the body is deleted as described in claim 35, wherein each of the QAM symbols of the majority mode is used to '^ 匕 贝 贝 八 37 37 37 37 37 37 37 37 37 37 ',Knife.掇 can go ', where for all modulo I, each frame of the fence encoder puncturing is an integer. a number 38. A system for transmitting a digital video signal, which is scooped in: a phase offset corrector that receives an equalized signal representative of a signal and modulates from the equalized signal = amplitude Corrected signal; u derived by phase 119 201116058 which splits the equalized signal to obtain a real-two-bit quasi-divider and a virtual sequence; a frame synchronizer, which uses the corresponding part of the sequence to perform the same and has been stored a frame synchronization pseudo-random real and a correlation of the virtual sequence; phase correction 彳0, which is provided by the frame synchronizer to the phase offset corrector, and the phase correction signal in the middle of the interview is based on the correlation The maximum real and imaginary value. 39. For example, the system of claim 38, wherein the frame is associated with the continuous intersection of the incoming symmetrical elements on the incoming quadrature amplitude modulation. The system of claim 39, wherein the one of the continuous cross-correlation-binary frame pseudo-random noise sequences is stored separately for the real and imaginary sequences. 1. The system of claim 38, wherein the frame sync symbol of the quadrature amplitude modulation signal has the same symbol, and the symbol of the maximum real and imaginary value of the correlation I indicates the equalization signal Phase rotation in . 42. The system of claim 41, wherein the phase correction signal provided by the frame synchronizer comprises the symbols of the associated maximum real and imaginary values. The system of claim 41, wherein the phase offset corrector determines a phase correction value by indexing the lookup table with the symbols of the associated maximum real and imaginary values. The signal corrected by [stone] 120 201116058 is derived. 44. A method for correcting a carrier phase offset for a quadrature amplitude modulation signal, wherein the method is implemented in a system comprising an address state to execute an instruction or a majority processor, the method comprising the following steps Executing, on the one or more processors, instructions configured to equalize the signal; performing, on the or plurality of processors, configuring to split the equalized signal to obtain real and virtual from the equalized signal a sequence of instructions; on a "Hai or a majority of processors, executing instructions configured to identify a frame synchronization sequence in the real and virtual sequences, wherein the step of identifying the frame synchronization sequence comprises the steps of: Do not use the real and imaginary sequences to perform a continuous cross-correlation on a stored copy of the frame sync sequence, and determine the maximum correlation value of the real and imaginary sequences from the beginning of one of the frames; and ^ in the or And executing, on the processor, a command configured to correct a phase error in the equalized signal based on the maximum correlation values, wherein the frame synchronization symbols of the frame synchronization sequence have the same symbol, Wherein the correction-phase error includes the symbols based on the maximum correlation values to determine the phase rotation in the equalization signal. 45. The method of claim 44, wherein the frame synchronization symbol of the frame synchronization sequence has the same symbol. 46. The method of claim 44, wherein correcting the phase error in the equalized signal comprises: using the real and virtual maximum phases [off S] 121 201116058 t of the symbols... a lookup table . A method for identifying cluster symbols, which is performed by a modal quadrature amplitude modulation communication system - or a majority of processors, the method comprising the steps of: performing the - or majority processing An instruction describing a power distribution in a signal, wherein the 兮, 玄, 、, μ force rate is statistically tracked by the occurrence of the power level detected in the signal; the execution causes the one or more processing The processor determines an instruction to generate a power level within the power distribution - or a plurality of spikes; and the processor or the fraction processor determines an instruction of the cluster based on a distribution of the spikes. 48. If the patented range number processor is based on this set. The method of claim 47, wherein the expansion of the one or more or sigma peaks determines the method of the group 49, wherein the signal is a specialized signal, and wherein the signal is a specialized signal, and wherein the one or more The octave eclipse processor determines the power level of each of the cluster's corresponding segments corresponding to one of the associated complex cluster candidates by examining the complex segments in the histogram of the work knives One of the areas. Where the complex group ~~ quadrature amplitude modulation 50. The method set candidate as described in claim 49 includes a quadrature phase shift keying cluster and (QAM) cluster. ^ I ψ 寻 〜 ~ ~ 退 退 , , , , , , , , , , , , , , , , 122 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使 行使The steps of the identified reliability of the cluster > yv include: sin, the device; the follow-up decision to confirm the identification of the cluster when the increment is determined by a subsequent decision - the number is reduced when different clusters a counter that provides a measure of reliability based on the value of the counter, wherein the cluster is identified when the count H exceeds the threshold. 52. The method of claim 51, wherein The complex cluster candidates each provide a counter, and wherein the cluster is reliably identified when its corresponding counter exceeds a threshold. 53. The method of claim 47, wherein the spikes of power levels occur Corresponding to the corner symbol of the cluster. 54. The method of claim 47, wherein the cluster is identified before the signal is equalized. 5 5. The species is used in a multimodal orthogonal A method for identifying a cluster of symbols in a variable amplitude communication system, the method being performed by a processor in a data machine of the communication system, and comprising the steps of: receiving a message at the data machine The initial detection of the frame data 'executes instructions for causing the processor to retrieve modal information from the frame data of the data; performing so that the processor selects one of the most closely matched possible modules by the complex number of possible cluster codes One of the status bits corresponds to a code to determine an instruction of a 123 201116058 cluster; if the current cluster matches a previously determined cluster, an instruction is executed to cause the processor to associate with one of the previously identified clusters of the trusted meter; s if the current The cluster is different from the previously identified cluster, performing an instruction to cause the processor to reduce the trust meter, and recording the current cluster as the previously identified cluster; and repeating the processor to capture modal information, selection, and subsequent frame data a step of clustering and adjusting the trust meter until the trust meter exceeds a predetermined threshold, and the tenth is the trust meter The cluster is identified when the predetermined threshold is exceeded. 56. The method of claim 55, wherein the step of selecting a cluster code comprises the step of: causing the processor to each of the plurality of possible cluster codes 57. The method of claim 55, wherein the cluster is in an unequalized signal carrying one of the frame data and subsequent frame data. 58. The method of claim 57, wherein the cluster is identified when the processor recovers a carrier from the signal. 59. The method of claim 57, wherein Further included is the step of executing an instruction that causes the processor to use a constant modulus algorithm (CMA) to calculate an error signal to converge the equalizer filter stage to allow equalization of the signal. 60. The method of claim 57, wherein the step of equating the method of 126 201116058 comprises the step of φ: analyzing the function of the equalization signal: the step of using - probability quality = histogram comprises the following Step 2: The method described in item 57 of the benefit range, wherein the step of equalizing the execution of the letter includes a step county: executing an instruction to cause the processor to execute the following items: The power of the plurality of symbols; and identifying the corner symbol of the cluster by using a threshold signal, &# u a limit power level, wherein the threshold power level indicates the identification of the cluster . 62. A system for transmitting video signals, the system comprising a camera side data machine configured to receive two signals from a video camera, each signal representing a sequence of images taken by the camera, and further Configuring to transmit one of the two signals as a composite baseband video signal and to modulate and transmit the other signal as a passband video signal that does not overlap with the baseband signal, wherein the camera side data machine includes: a mixer that combines the baseband and passband video signals to provide a transmission signal; a duplexer configured to transmit the transmission tongue number through a transmission line and to receive a passband from the transmission line a detector that monitors the camera-side data machine and generates a coincidence signal when the received passband signal is recognized, wherein the enable signal controls at least one of the baseband video signal and the passband video signal The transmission of the passband, wherein the passband video signal is only when the one is ... 125 201116058 The enable signal is generated when the transmission is β 63 · The system of claim 62, wherein the system receives The passband L is subjected to quadrature amplitude modulation, wherein the debt detector monitors an estimate of the mean square error in a quadrature amplitude solution, and wherein the enable is generated when the estimate exceeds a threshold signal. 64. The system of claim 62, wherein the detector monitors a cluster detector and wherein the enable signal is generated based on a measurement of reliability provided by the cluster detector. The system of claim 62, wherein the reliability measurement is based on a frame synchronization sequence. 66. The system of claim 62, wherein the detector - an estimate of the mean square error in the equalizer, and wherein the estimate s exceeds a threshold Can signal. 67. The system of claim 62, wherein the detector monitors an increase factor of an automatic gain control module of the camera-side data machine and wherein ▲ the gain factor has less than - threshold The enable signal is generated at one value. The system of claim 62, wherein the detector monitors a magnitude of the received passband signal, and wherein the generation produces the enablement when the magnitude has a value greater than a threshold signal. 69. A method for controlling signalling in a security system, comprising the steps of: determining, at an uplink data machine, the presence of an uplink q AM signal in a retransmission k number on a coaxial electrical network ; 126 201116058 when determining that the uplink QAM signal exists, causing the uplink data machine to transmit a composite baseband video signal and a passband video signal on the coaxial cable, wherein the composite baseband video signal and the passband video signal are a parallel representation of a sequence of images captured by a video camera; and when it is determined that the uplink QAM signal does not exist, causing the uplink data machine to transmit the composite baseband video signal on the coaxial cable and prevent transmission of the passband video signal . 70. The method of claim 69, wherein when an gain value of an automatic gain control signal exceeds a threshold, determining the presence of the uplink QAM signal. 71. The method of claim 69, wherein the determining of the uplink QAM signal is performed when one of the magnitudes of the uplink QAM 彳§ is less than a threshold. The method of claim 69, wherein when the estimate of the mean square error in the equalizer exceeds a threshold, determining that the uplink QAM signal does not exist. 73. The method of claim 69, wherein when an internet protocol data packet is identified in the uplink QAM signal, the uplink QAM signal is determined to be absent. 74. An automatic reconfiguration system for transmitting video signals, comprising: an uplink data machine 'configured to receive two signals from a video camera' each signal representing a sequence of images captured by the camera And further configured to transmit one of the two signals as a composite baseband video signal and to modulate and transmit the other signal as a passband video P 127 201116058 'which does not overlap with the baseband signal; a downlink data The machine is configured to receive the composite baseband video signal and the passband video signal from the uplink data machine, and is further configured to transmit an uplink passband signal to the uplink data machine, wherein the uplink data machine In the uplink passband signal, when the debt is measured to be small, the uplink data machine stops only the round of at least one of the two signals. Find 128
TW099102857A 2009-01-30 2010-02-01 Mixed format media transmission systems and methods TWI530190B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US12/363,669 US8300114B2 (en) 2009-01-30 2009-01-30 Mixed format media transmission systems and methods
US18797009P 2009-06-17 2009-06-17
US18798609P 2009-06-17 2009-06-17
US18798009P 2009-06-17 2009-06-17
US18797709P 2009-06-17 2009-06-17
US18799609P 2009-06-17 2009-06-17

Publications (2)

Publication Number Publication Date
TW201116058A true TW201116058A (en) 2011-05-01
TWI530190B TWI530190B (en) 2016-04-11

Family

ID=42396071

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099102857A TWI530190B (en) 2009-01-30 2010-02-01 Mixed format media transmission systems and methods
TW105103320A TWI580272B (en) 2009-01-30 2010-02-01 Mixed format media transmission systems and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW105103320A TWI580272B (en) 2009-01-30 2010-02-01 Mixed format media transmission systems and methods

Country Status (4)

Country Link
KR (3) KR20160070170A (en)
CN (2) CN105704366B (en)
TW (2) TWI530190B (en)
WO (1) WO2010088625A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450589B (en) * 2011-08-05 2014-08-21 Acer Inc Method and apparatus for high definition video wireless transmission
US9252842B2 (en) 2012-01-20 2016-02-02 Intersil Americas LLC Power over coaxial cable
TWI745862B (en) * 2019-02-13 2021-11-11 弗勞恩霍夫爾協會 Audio transmitter processor, audio receiver processor and related methods and computer programs

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105188A (en) 2010-11-12 2012-05-31 Sony Corp Image output device, image output method, image processing system, image processing method, program, and imaging apparatus
JP2013187606A (en) * 2012-03-06 2013-09-19 Sony Corp Imaging apparatus and image transmission method
CN102724459B (en) * 2012-05-16 2014-04-09 浙江大华技术股份有限公司 Analog video signal format determination system and method and related devices
KR101271480B1 (en) * 2012-10-30 2013-06-05 주식회사 삼알글로벌 Digital video recorder having appartus for receiving automatic switched image by recognizing source and method thereof
CN103873820B (en) * 2012-12-17 2017-12-01 杭州海康威视数字技术股份有限公司 The method and system being controlled to video camera menu
KR101336636B1 (en) * 2013-10-08 2013-12-04 파인트론 주식회사 Network video recorder connected through analog coaxial cable with ip camera and method automatically assigning an ip address
KR101456251B1 (en) * 2014-06-02 2014-10-31 주식회사 아이덴코아 Camera, dvr and video monitoring system comprising thereof
CN105874784B (en) * 2014-11-19 2019-09-24 无锡中感微电子股份有限公司 Numerical data method of sending and receiving and device based on composite video signal
TWI601421B (en) * 2016-07-01 2017-10-01 物聯智慧科技(深圳)有限公司 Cloud recording system, cloud recording server and cloud recording method
US10395165B2 (en) * 2016-12-01 2019-08-27 Via Alliance Semiconductor Co., Ltd Neural network unit with neural memory and array of neural processing units that collectively perform multi-word distance rotates of row of data received from neural memory
CN108270446B (en) * 2016-12-30 2021-10-08 上海诺基亚贝尔股份有限公司 Signal processing device and method and electronic equipment comprising device
CN108536612B (en) * 2017-03-03 2021-12-21 西部数据技术公司 Determining control states for address mapping in non-volatile memory
CN108093284B (en) * 2017-09-15 2019-07-26 佛山市爱普达电子科技有限公司 Information input mode selects system
CN109218563A (en) * 2018-08-06 2019-01-15 杭州雄迈集成电路技术有限公司 A kind of non real-time simulation HD video of 1080P coaxially sends system
US10645337B1 (en) * 2019-04-30 2020-05-05 Analong Devices International Unlimited Company Video line inversion for reducing impact of periodic interference signals on analog video transmission
CN116488978B (en) * 2023-06-21 2023-08-18 江苏联康信息股份有限公司 Frame synchronization method suitable for BR Bluetooth in test environment

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701581A (en) * 1993-12-28 1997-12-23 Hitachi Denshi Kabushiki Kaisha Method for bidirectionally transmitting digital video signal and digital video signal bidirectional transmission system
US5651010A (en) * 1995-03-16 1997-07-22 Bell Atlantic Network Services, Inc. Simultaneous overlapping broadcasting of digital programs
US5877821A (en) * 1997-01-30 1999-03-02 Motorola, Inc. Multimedia input and control apparatus and method for multimedia communications
US5986691A (en) * 1997-12-15 1999-11-16 Rockwell Semiconductor Systems, Inc. Cable modem optimized for high-speed data transmission from the home to the cable head
US6377314B1 (en) * 1998-07-31 2002-04-23 Rf Technology, Inc. Methods and apparatus for transmitting analog and digital information signals
US7003030B2 (en) * 1999-03-08 2006-02-21 Lenovo (Singapore) Pte. Ltd. Receivers, methods, and computer program products for an analog modem that receives data signals from a digital modem
US7089577B1 (en) * 2000-01-14 2006-08-08 Terayon Communication Systems, Inc. Process for supplying video-on-demand and other requested programs and services from a headend
US7054279B2 (en) * 2000-04-07 2006-05-30 Broadcom Corporation Method and apparatus for optimizing signal transformation in a frame-based communications network
US7248841B2 (en) * 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
CN1192624C (en) * 2000-06-19 2005-03-09 阿斯万技术公司 Secure multimedia communications system
KR100774452B1 (en) * 2001-03-08 2007-11-08 엘지전자 주식회사 Digital broadcasting receiving apparatus for multiplex broadcasting
AU2002307075A1 (en) 2001-05-03 2002-11-18 Hrl Laboratories, Llc Method and apparatus for analog-to-digital conversion
CN1445995A (en) * 2002-03-18 2003-10-01 丁兆明 Voice, data, video frequency transmission system based on cable TV network
KR100519333B1 (en) * 2002-12-30 2005-10-07 엘지전자 주식회사 Apparatus for recovering carrier
CN1759606B (en) * 2003-03-11 2010-05-05 汤姆森许可贸易公司 Apparatus and method for distributing signals by down-converting to vacant channels
CN1479462A (en) * 2003-06-04 2004-03-03 威海克劳斯数码通迅有限公司 Full view remote network safety monitoring system
KR20070012716A (en) * 2004-05-20 2007-01-26 톰슨 라이센싱 Apparatus and method for canceling distortion
CN100515036C (en) * 2004-10-10 2009-07-15 倚强科技股份有限公司 Intelligent image process closed circuit TV camera device and its operation method
US7525600B2 (en) * 2005-01-14 2009-04-28 Broadcom Corporation Single integrated high definition television (HDTV) chip for analog and digital reception
US20070103543A1 (en) * 2005-08-08 2007-05-10 Polar Industries, Inc. Network panoramic camera system
KR100745701B1 (en) * 2005-10-25 2007-08-02 주식회사 서화정보통신 A radio transceiver for measuring environments of wireless communication equipments
JP4899534B2 (en) * 2006-02-28 2012-03-21 ソニー株式会社 Surveillance camera
CN101030903A (en) * 2006-03-03 2007-09-05 南京艾迪恩斯数字技术有限公司 System for accessing, monitoring and exchanging network video
KR101299732B1 (en) * 2006-07-14 2013-09-16 삼성전자주식회사 Method and apparatus for wireless communication in high frequency bandwidth
BRPI0718563A2 (en) * 2006-11-07 2014-03-11 Sony Corp COMMUNICATION SYSTEM AND METHOD, TRANSMITTER, PROGRAM, RECEIVER, AND COMMUNICATION CABLE.
KR101336636B1 (en) 2013-10-08 2013-12-04 파인트론 주식회사 Network video recorder connected through analog coaxial cable with ip camera and method automatically assigning an ip address

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450589B (en) * 2011-08-05 2014-08-21 Acer Inc Method and apparatus for high definition video wireless transmission
US9252842B2 (en) 2012-01-20 2016-02-02 Intersil Americas LLC Power over coaxial cable
TWI745862B (en) * 2019-02-13 2021-11-11 弗勞恩霍夫爾協會 Audio transmitter processor, audio receiver processor and related methods and computer programs
US11875806B2 (en) 2019-02-13 2024-01-16 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Multi-mode channel coding

Also Published As

Publication number Publication date
KR101708386B1 (en) 2017-02-20
TWI580272B (en) 2017-04-21
CN102365832B (en) 2016-01-20
KR20160070170A (en) 2016-06-17
TW201624997A (en) 2016-07-01
KR20110118150A (en) 2011-10-28
CN105704366B (en) 2019-01-08
KR101674524B1 (en) 2016-11-09
CN105704366A (en) 2016-06-22
CN102365832A (en) 2012-02-29
TWI530190B (en) 2016-04-11
WO2010088625A1 (en) 2010-08-05
KR20150018904A (en) 2015-02-24

Similar Documents

Publication Publication Date Title
TWI530190B (en) Mixed format media transmission systems and methods
US8576898B2 (en) SLOC spot monitoring
EP0714201B1 (en) Digital television signal processing system including a co-channel rejection filter
US8954829B2 (en) Digital broadcasting system and method of processing data
US8175041B2 (en) System and method for wireless communication of audiovisual data having data size adaptation
JP2001505727A (en) Multi-stage modulation format television signal receiver system
Sgrignoli et al. VSB modulation used for terrestrial and cable broadcasts
US8576966B2 (en) Systems and methods for detecting tampering with video transmission systems
KR100917202B1 (en) Digital broadcasting system and method of processing data in digital broadcasting system
KR101197279B1 (en) a digital multimedia signal receiver for processing a single carrier modulated signal and a multi carrier modulated signal and a receiving method thereof
KR101221660B1 (en) Digital multimedia receiver for processing single-carrier modulated signal, demodulating apparatus and multi-carrier modulated signal and receiving method thereof
KR20060070392A (en) Digital multimedia receiver for processing single-carrier modulated signal and multi-carrier modulated signal and receiving method thereof
KR20060070387A (en) Digital multimedia receiver for processing single-carrier modulated signal and multi-carrier modulated signal and receiving method thereof
KR20050059600A (en) Receiver for digital broadcasting