TW201615648A - 用於液力黏結劑之單及雙伸烷基三烷氧基矽烷分散劑 - Google Patents

用於液力黏結劑之單及雙伸烷基三烷氧基矽烷分散劑 Download PDF

Info

Publication number
TW201615648A
TW201615648A TW104130078A TW104130078A TW201615648A TW 201615648 A TW201615648 A TW 201615648A TW 104130078 A TW104130078 A TW 104130078A TW 104130078 A TW104130078 A TW 104130078A TW 201615648 A TW201615648 A TW 201615648A
Authority
TW
Taiwan
Prior art keywords
group
alkyl
formula
alkylalkyltrialkoxydecane
enyl
Prior art date
Application number
TW104130078A
Other languages
English (en)
Inventor
馬丁 昂斯特
雅慶姆 費生貝克
Original Assignee
巴斯夫歐洲公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巴斯夫歐洲公司 filed Critical 巴斯夫歐洲公司
Publication of TW201615648A publication Critical patent/TW201615648A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/40Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
    • C04B24/42Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation
    • C08G2650/04End-capping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Civil Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Polyethers (AREA)

Abstract

本發明係關於通式(I)之單及雙伸烷基三烷氧基矽烷, □其中:-Y-為-O-或-N(R9)2-a-;-Z-在各情形下相同或不同且選自由-O-及-CHR4b-組成之群;若-Y-=-O-,則a為1;且若-Y-=-N(R9)2-a-,則a為1或2;m為1至20之自然數;n為7至200之自然數;R1在各情形下相同或不同且選自由以下組成之群:甲基、乙基、正丙基、異丙基、正丁基、異丁基、第二丁基、第三丁基及苯基;且R2、R3、R4a、R4b、R5、R6、R7、R8及R9在各情形下獨立地為H、適合之 直鏈或分支鏈C1-C20烷基,或視情況為C2-C20烯基、C2-C20炔基、C1-C20烷醯基、C3-C20烯醯基、ω-羧基-(C1-C6烷基)羰基及ω-羧基-(C2-C6烯基)羰基及/或C7-C20芳醯基;且關於其製備方法及其作為分散劑用於由凝集物及液力黏結劑構成之水性懸浮液中的用途;且關於此等水性懸浮液本身。

Description

用於液力黏結劑之單及雙伸烷基三烷氧基矽烷分散劑
本發明係關於單及雙伸烷基三烷氧基矽烷本身,且關於其製備方法,以及其作為分散劑用於由凝集物及液力黏結劑構成之水性懸浮液中的用途。本發明亦關於水性懸浮液本身。
包含凝集物及液力黏結劑之水性懸浮液的化學及/或物理特性經常受分散劑形式助劑之添加影響。其特定目的用於防止形成固體之聚結物以及分散已存在之粒子及藉由水合新形成之粒子,從而抑止沈積傾向及改良加工性,諸如捏合性、展佈性、噴灑性、泵送性或流動性。此作用亦以目標方式用於製備包含液力黏結劑(諸如水泥、底塗黏結劑及砌體黏結劑)或液力石灰的建築材料混合物。
為了將此等包含液力黏結劑之建築材料混合物轉化為即用可加工形式,所需混合水之量通常實質上大於後續水合或硬化方法所要的量。但過量水(隨後蒸發)的可能結果為在混凝土結構內形成空隙部分,此顯著損害其機械強度及耐用性。
因此,為了減少指定有效稠度下之過量水分率及/或改良水與液力黏結劑之指定比率下之可加工性,通常使用特定助劑,其一般稱為 稀釋劑、減水劑或塑化劑。常用塑化劑為例如磺化三聚氰胺-甲醛縮合物(SMF)、磺化萘-甲醛縮合物(SNF)或木質磺酸鹽。
認為聚羧酸酯及聚羧酸酯醚是新一代之塑化劑/減水劑。其一般由基於聚(甲基)丙烯酸酯之主鏈及多個經由酯基連接之側鏈組成,且經常稱為梳狀聚合物。在主鏈由於多個羧酸酯基而在鹼性pH值下帶負電時,側鏈(諸如聚乙二醇側鏈)例如通常不帶電荷。由於主鏈帶負電,因此聚羧酸酯及/或醚吸附於帶電粒子表面上,在此處其形成較緻密或不太緻密之聚合物層。所吸附之聚合物的量及聚合物側鏈之性質決定聚合物層之密度及厚度,聚合物層之密度及厚度又影響懸浮液之流動性。在聚羧酸酯或醚之陰離子電荷使其可吸附於粒子上時,分散活性主要受由聚乙二醇側鏈引起之空間相互作用影響。側鏈長度與鏈密度均影響分散活性。
EP 0 803 521 A1揭示例如包含聚烷二醇及聚乙醇酸酯結構單元之嵌段共聚物及其作為水泥分散劑之用途。
另外,存在一系列其他塑化劑/減水劑,其與所述聚羧酸酯聚合物不同之處在於其不具有任何羧酸酯基。替代地,其具有其他酸基,諸如膦酸基,儘管如此,其在高pH值下類似於羧酸酯基同樣帶負電。
US 5,879,445 A揭示包含至少一個膦酸胺基伸烷基及至少一個聚氧烷基化鏈之化合物,以及其作為包含無機粒子及液力黏結劑之水性懸浮液的塑化劑的用途。
EP 444 542揭示作為塑化劑/減水劑之聚伸乙基亞胺膦酸酯衍生物,其使固井水泥組成物之黏度降至使其可在湍流條件下甚至在鹽存在下泵送的程度。
EP 1203046 B1描述具有如下通式之伸烷基三烷氧基矽烷基的塑化劑/減水劑,
其中,R係獨立地選自H、甲基、乙基、丙基及苯乙烯;R1係選自H、C1-C18烷基、苯基、苯甲基及烷基磺酸酯;R2係選自H及C1-C6烷基;n為10至500之數字;且X選自:
缺點為此類分散劑(包括異氰酸酯試劑)製備起來昂貴且不方便。未揭示其他製備可能性。
儘管在一些情形下已藉由所述分散劑獲得良好結果,儘管如此,仍具有很大的改良空間。
所述分散劑確實部分具有極佳稀釋劑作用,從而使得對於指定稠度,液力黏結劑之水需求相對降低。然而,在諸多情形下,此稀釋劑作用與在適當水準上降低黏度無關,且此可感覺地減損加工性,諸如泵送性。
其他分散劑可實際上降低包含液力黏結劑之建築材料混合 物之黏度,從而使流動特性且因此亦使加工性改良。然而,經常地,其具有不太明顯之稀釋劑作用及/或帶有非所需副作用,諸如可感覺之延遲凝固、分隔混合物及滲出混合水。因此,其僅具有有限有用性,尤其在就液力黏結劑而言需要短凝固時間時。為了實現加工性、尤其泵送性之所要改良,此等現有分散劑必須以將產生增加程度之此類副作用的數量使用。
本發明解決之問題為提供一種尤其適合在包含凝集物及液力黏結劑之水性懸浮液中作為塑化劑/減水劑而不會嚴重延遲液力黏結劑之凝固時間的分散劑。
已發現使用通式(I)之單及雙伸烷基三烷氧基矽烷作為包含凝集物及液力黏結劑之水性懸浮液的分散劑能夠減少水需求且確保水性懸浮液之良好加工性,而不會同時嚴重延遲液力黏結劑之凝固時間。
因此,本發明提供通式(I)之單及雙伸烷基三烷氧基矽烷,
其中,-Y-為-O-或-N(R9)2-a-;-Z-在各情形下相同或不同且選自由-O-及-CHR4b-組成之群,若-Y-=-O-,則a為1;且若-Y-=-N(R9)2-a-,則a為1或2;m為1至20之自然數; n為7至200之自然數;R1在各情形下相同或不同且選自由以下組成之群:甲基、乙基、正丙基、異丙基、正丁基、異丁基、第二丁基、第三丁基及苯基;R2、R3、R4a及R4b在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C10烷基組成之群;或R2與R4a一起形成伸烷基鏈-R2-R4a-,該伸烷基鏈選自由-C(R5)2-C(R5)2-及-C(R5)2-C(R5)2-C(R5)2-組成之群,且R3及R4b在各情形下相同或不同且選自由H及C1-C10烷基組成之群;或R2與R4b一起形成伸烷基鏈-R2-R4b-,該伸烷基鏈選自由-C(R5)2-及-C(R5)2-C(R5)2-組成之群,且R3及R4a在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C10烷基組成之群;R5在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C6烷基組成之群;R6在各情形下相同或不同且選自由H、甲基及乙基組成之群;R7選自由直鏈或分支鏈C1-C20烷基、C1-C20烷醯基及C7-C20芳醯基組成之群;R8及R9在各情形下相同或不同且選自由以下組成之群:H、直鏈或分支鏈C1-C20烷基、C2-C20烯基、C2-C20炔基、C1-C20烷醯基、C3-C20烯醯基以及ω-羧基-(C1-C6烷基)羰基及其鹽、ω-羧基-(C2-C6烯基)羰基及其鹽、以及C7-C20芳醯基。
通式(I)之單及/或雙伸烷基三烷氧基矽烷未必如先前技術已知之分散劑般具有陰離子基。假定其能夠在水性懸浮液中主要之鹼性條 件下共價鍵結於液力黏結劑中之顆粒固體的矽酸鹽相。假定本文之三烷氧基矽烷基充當錨而將聚氧伸烷基鏈固定於粒子表面上。
藉助於通式(I)之單及雙伸烷基三烷氧基矽烷可為電中性且此電中性很可能在假定之鹼性水解及與欲分散之粒子之矽酸鹽相形成共價鍵後亦保持的事實,對液力黏結劑之凝固時間的影響遠小於使用先前技術之通常帶多重負電之塑化劑的情形。
出於本發明之目的,術語「塑化劑(plasticizer)」指使加工性改良以及視情況使製備包含液力黏結劑之水性懸浮液中的水需求降低的混合物。
在本發明之情形下,表述「C1-C6烷基(C1-C6-alkyl)」不僅涵蓋非環狀烴基甲基、乙基、正丙基、異丙基、正丁基、第二丁基、異丁基、第三丁基、正戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1,1-二甲基丙基、2,2-二甲基丙基、1,2-二甲基丙基、1-乙基丙基、正己基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基、1,1,-二甲基丁基、1,2-二甲基丁基、1,3-二甲基丁基、2,2-二甲基丁基、2,3-二甲基丁基、3,3-二甲基丁基、1-乙基丁基、2-乙基丁基、1-乙基-1-甲基-丙基、1-乙基-2-甲基丙基、2-乙基-1-甲基丙基及2-乙基-2-甲基丙基,而且涵蓋環烴基環丙基、環丁基、環戊基、1-甲基環丁基、2-甲基環丁基、3-甲基環丁基、環己基、1-甲基環戊基、2-甲基環戊基、3-甲基環戊基、1,2-二甲基環丁基、1,3-二甲基環丁基、2,2-二甲基環丁基、2,3-二甲基環丁基及3,3-二甲基環丁基。
相應地,表述「C1-C10烷基(C1-C10-alkyl)」涵蓋具有1至10個碳原子之所有飽和、環狀或非環狀烴基。因此,除上文對於「C1-C6烷基」 所列之烴基以外,亦涵蓋尤其正庚基、5-甲基己基、2-乙基-3-甲基丁基、正辛基、5-甲基庚基、4,4-二甲基己基、3-乙基己基、2-乙基-3-甲基戊基、正壬基、正癸基、環癸基及十氫萘基。
類似評論適用於表述「C1-C20烷基(C1-C20-alkyl)」,其除關於表述「C1-C10烷基」所述之烴基以外,亦涵蓋尤其正十一烷基、正十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、正十七烷基、正十八烷基、正十九烷基及正二十烷基。
在本發明之情形下,表述「C2-C20烯基(C2-C20-allkenyl)」用於具有2至20個碳原子且包含一或多個烯烴基團之環狀或非環狀烴基。表述「C2-C20烯基」不僅涵蓋具有2至6個碳原子之非環狀烴基(非環狀「C2-C6烯基」)乙烯基、丙-1-烯基、丙-2-烯基(烯丙基)、甲基烯丙基、1-甲基烯丙基、高烯丙基、丁-2-烯基、戊-1-烯基、戊-2-烯基、戊-3-烯基、1-甲基丁-1-烯基、2-甲基丁-1-烯基、3-甲基丁-1-烯基、1-甲基丁-2-烯基、2-甲基丁-2-烯基、3-甲基丁-2-烯基、1-甲基丁-3-烯基、2-甲基丁-3-烯基、3-甲基丁-3-烯基、1-乙基丙-1-烯基、1-乙基丙-2-烯基、己-1-烯基、己-2-烯基、己-3-烯基、己-4-烯基、己-5-烯基、1-甲基戊-1-烯基、2-甲基戊-1-烯基、3-甲基戊-1-烯基、4-甲基戊-1-烯基、1-甲基戊-2-烯基、2-甲基戊-2-烯基、3-甲基戊-2-烯基、4-甲基戊-2-烯基、1-甲基戊-3-烯基、2-甲基戊-3-烯基、3-甲基戊-3-烯基、4-甲基戊-3-烯基、1-甲基戊-4-烯基、2-甲基戊-4-烯基、3-甲基戊-4-烯基,4-甲基戊-4-烯基、1,2-二甲基丁-1-烯基、1,3-二甲基丁-1-烯基、3,3-二甲基丁-1-烯基、1,1-二甲基丁-2-烯基、1,2-二甲基丁-2-烯基、1,3-二甲基丁-2-烯基、2,3-二甲基丁-2-烯基、1,1-二甲基丁-3-烯基、1,2-二甲基丁-3-烯基、1,3-二甲基丁-3-烯基、 2,2-二甲基丁-3-烯基及2,3-二甲基丁-3-烯基,而且涵蓋尤其具有7至20個碳原子之非環狀烴基:庚烯基、辛烯基、壬烯基、癸烯基、十一烯基、十二烯基、十三烯基、十四烯基、十五烯基、十六烯基、十七烯基、十八烯基、十九烯基及二十烯基,以及環烴基環丁-1-烯基、環丁-2-烯基、環戊-1-烯基、環戊-2-烯基、環戊-3-烯基、環己-1-烯基、環己-2-烯基、環己-3-烯基及環癸烯基。
在本發明之情形下,表述「C2-C20炔基(C2-C20-alkynyl)」用於具有2至20個碳原子且包含一或多個碳-碳參鍵之烴基。表述「C2-C20炔基(C2-C20-alkynyl)」涵蓋尤其乙炔基、丙-2-炔基、丁-2-炔基、丁-3-炔基、1-甲基丙-2-炔基、戊-2-炔基、戊-3-炔基、戊-4-炔基、1-甲基丁-2-炔基、1-甲基丁-3-炔基、2-甲基丁-3-炔基、己-2-炔基、己-3-炔基、己-4-炔基、己-5-炔基、庚炔基、辛炔基、壬炔基、癸炔基、十一炔基、十二炔基、十三炔基、十四炔基、十五炔基、十六炔基、十七炔基、十八炔基、十九炔基及二十炔基。
在本發明之情形下,表述「C1-C20烷醯基(C1-C20-alkanoyl)」涵蓋具有1至20個碳原子之所有環狀或非環狀烷基羰基。更特定言之,表述「C1-C20烷醯基(C1-C20-alkanoyl)」涵蓋甲醯基、乙醯基(ethanoyl/acetyl)、丙醯基、丁醯基、2-甲基-丙醯基、戊醯基、2-甲基丁醯基、3-甲基丁醯基、2,2-二甲基丙醯基、環戊醯基、己醯基、2-甲基戊醯基、3-甲基戊醯基、4-甲基戊醯基、2,2-二甲基丁醯基、2,3-二甲基丁醯基、3,3-二甲基丁醯基、環己醯基、庚醯基、2-甲基己醯基、3-甲基己醯基、4-甲基己醯基、5-甲基己醯基、4,4-二甲基戊醯基、辛醯基、壬醯基、癸醯基、環癸醯基、十二醯基、 十三醯基、十四醯基、十五醯基、十六醯基、十七醯基、十八醯基、十九醯基及二十醯基。
表述「C3-C20烯醯基(C3-C20-alkenoyl)」在本發明之情形下用於具有3至20個碳原子且包含一或多個烯烴基團之所有烯基羰基。表述「C3-C20烯醯基」涵蓋尤其丙烯醯基、甲基丙烯醯基、丁-2-烯醯基、丁-3-烯醯基、環丁烯基羰基、戊-2-烯醯基、戊-3-烯醯基、戊-4-烯醯基、環戊烯基羰基、己-2-烯醯基、己-3-烯醯基、己-4-烯醯基、己-5-烯醯基、環己烯基羰基、庚烯醯基、辛烯醯基、壬烯醯基、癸烯醯基、環癸烯醯基、十一烯醯基、十二烯醯基、十三烯醯基、十四烯醯基、十五烯醯基、十六烯醯基、十七烯醯基、十八烯醯基、十九烯醯基及二十烯醯基。
在本發明之情形下,表述「ω-羧基-(C1-C6烷基)羰基(ω-carboxy-(C1-C6-alkyl)carbonyl)」涵蓋具有總共3至8個碳原子且末端經羧基官能基(COOH)取代之所有非環狀烷基羰基。此處圓括號內之表述「C1-C6烷基」具有上文已給之定義。此類ω-羧基-(C1-C6烷基)羰基為2-羧基乙醯基(1-羧基甲基羰基)、3-羧基丙醯基(2-羧基乙基羰基)、4-羧基丁醯基(3-羧基丙基羰基)及3-羧基-2-甲基丙醯基(對應於2-羧基-1-甲基乙基羰基)。在本發明之情形下,「ω-羧基-(C1-C6烷基)羰基之鹽(Salts of ω-carboxy-(C1-C6-alkyl)carbonyl)」為如下「ω-羧基-(C1-C6烷基)羰基」,其中羧基官能基(COOH)之氫經金屬、更特定言之鹼金屬或鹼土金屬(較佳Li、Na、K、[Mg]0.5或[Ca]0.5)置換。
在本發明之情形下,表述「ω-羧基-(C2-C6烯基)羰基(ω-carboxy-(C2-C6-alkenyl)carbonyl)」涵蓋具有總共3至8個碳原子且末端 經羧基官能基(COOH)取代之所有非環狀烯基羰基。此處圓括號內之表述「C2-C6烯基」具有上文已給之定義。此類ω-羧基-(C2-C6烯基)羰基之實例為2-羧基乙烯基羰基及3-羧基丙-1-烯基羰基。在本發明之情形下,「ω-羧基-(C2-C6烯基)羰基之鹽(Salts of ω-carboxy-(C2-C6-alkenyl)carbonyl)」為如下「ω-羧基-(C2-C6烯基)羰基」,其中羧基官能基(COOH)之氫經金屬、更特定言之鹼金屬或鹼土金屬(較佳Li、Na、K、[Mg]0.5或[Ca]0.5)置換。
在本發明之情形下,表述「C7-C20芳醯基(C7-C20-aryloyl)」涵蓋苯基羰基以及含有苯基羰基子結構且具有7至20個碳原子之所有烴基。更特定言之,表述「C7-C20芳醯基」涵蓋苯基羰基、2-甲基苯基羰基、3-甲基苯基羰基、4-甲基苯基羰基、2,3-二甲基苯基羰基、2,4-二甲基苯基羰基、2,5-二甲基苯基羰基、2,4,6-三甲基苯基羰基、1-萘基羰基、2-萘基羰基、9-蒽基羰基及9-菲基羰基。
通式(1)之單及雙伸烷基三烷氧基矽烷中的m較佳為1至10之自然數,更佳1至5且極佳1至3之自然數。
在通式(I)之單及雙伸烷基三烷氧基矽烷中,n較佳為11至150之自然數,更佳16至125之自然數且極佳21至125之自然數。
在通式(I)之單及雙伸烷基三烷氧基矽烷中,R1較佳獨立地選自甲基、乙基、第三丁基及苯基。R1更佳獨立地選自甲基及乙基。
R5較佳為H。
R6在每次出現時獨立地選自由H、甲基及乙基組成之群。此處之H、甲基及乙基可例如藉由統計分佈排列於由n個氧化烯單元組成或各具有相同R6之一或多個嵌段形式的聚氧化乙烯鏈上。在本發明之情形 下,「在各情形下具有相同R6之嵌段」意謂由至少2個直接相鄰氧化烯單元組成的聚氧化乙烯鏈之一部分,其中該等氧化烯單元具有相同R6。由n個氧化烯單元組成之聚氧化乙烯鏈較佳具有各具有相同R6之多個嵌段。R6尤其較佳獨立地選自H及甲基。極佳地,R6=H。
通式(I)之單及雙伸烷基三烷氧基矽烷中的R7較佳選自由H、甲基及乙醯基(C(=O)Me)組成之群。尤其較佳為H及甲基。極佳地,R7=甲基。
通式(I)之單及雙伸烷基三烷氧基矽烷中的R8較佳選自由組成之群:H、C1-C20烷醯基、C7-C20芳醯基、羧基-(C1-C6烷基)羰基及羧基-(C2-C6烯基)羰基。
在本發明之一個特定具體實例中,R8為H。式(I-a)涵蓋此特定具體實例之單及雙伸烷基三烷氧基矽烷,
其中Y、Z、a、m、n、R1至R7及R9具有上文對於通式(I)之單及雙伸烷基三烷氧基矽烷指定之定義。
在另一特定具體實例中,單及雙伸烷基三烷氧基矽烷具有式(I-b),
其中Y、Z、a、m、n、R1至R7及R9具有上文對於通式(I)之單及雙伸烷基三烷氧基矽烷指定之定義,且R8選自由羧基-(C1-C6烷基)羰基及羧基-(C2-C6烯基)羰基組成之群。
在本發明之一個具體實例中,通式(I)之單及雙伸烷基三烷氧基矽烷中的-Y-為-N(R9)2-a-,且a=2。
在本發明之另一具體實例中,通式(I)中之-Y-為-N(R9)2-a-,且a=1。
在此具體實例中,R9較佳選自由以下組成之群:直鏈或分支鏈C1-C20烷醯基、C7-C20芳醯基、羧基-(C1-C6烷基)羰基及羧基-(C2-C6烯基)羰基。
在本發明之一個尤其較佳具體實例中,R9=R8,且選自由以下組成之群:C1-C20烷醯基、C7-C20芳醯基、羧基-(C1-C6烷基)羰基及羧基-(C2-C6烯基)羰基。
在本發明之另一具體實例中,通式(I)中之-Y-為-O-,且a為1。
在本發明之一較佳具體實例中,通式(I)之單及雙伸烷基三烷氧基矽烷之特徵為-Z-為-O-。在本發明之較佳具體實例中,通式(I)中之R2、R3及R4a在各情形下較佳相同或不同且選自由H及直鏈或分支鏈C1-C10 烷基組成之群。式(I-c)涵蓋此較佳具體實例之單及雙伸烷基三烷氧基矽烷,
其中Y、a、m、n、R1及R5至R9具有上文對於通式(I)之單及雙伸烷基三烷氧基矽烷指定之定義,且R2、R3及R4a在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C10烷基組成之群。
在本發明之一個尤其較佳具體實例中,在通式(I)中,-Z-為-O-,-Y-為-N(R9)2-a-,且a=2。
在另一極佳具體實例中,在通式(I)中,-Z-為-O-,-Y-為-N(R9)2-a-,a=1,且R9=R8,且R8及R9選自由以下組成之群:C1-C20烷醯基、C7-C20芳醯基、羧基-(C1-C6烷基)羰基及羧基-(C2-C6烯基)羰基。
在本發明之另一較佳具體實例中,在通式(I)之單及雙伸烷基三烷氧基矽烷中,-Z-為-CHR4b-;且R2與R4a一起形成伸烷基鏈-R2-R4a-,此伸烷基鏈選自由-C(R5)2-C(R5)2-及-C(R5)2-C(R5)2-C(R5)2-組成之群,且R3及R4b在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C10烷基組成之群;或R2與R4b一起形成伸烷基鏈-R2-R4b-,此伸烷基鏈選自由-C(R5)2-及-C(R5)2-C(R5)2-組成之群,且R3及R4a在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C10烷基組成之群。
此具體實例之尤其較佳單及雙伸烷基三烷氧基矽烷具有式 (I-d1)、(I-d2)、(I-d3)或(I-d4),
其中Y、a、m、n、R1及R5至R9具有上文對於通式(I)之單及雙伸烷基三烷氧基矽烷指定之定義,且R3、R4a及R4b在各情形下相同或不同且選自由H及C1-C10烷基組成之群。
單及雙伸烷基三烷氧基矽烷極佳具有式(I-d1)。在此極佳具體實例之一個變化形式中,m=2,且R3=R4a-=R5=H。
因此,本發明亦提供式(I-d11)之單及雙伸烷基三烷氧基矽烷,
其中Y、a、n、R1及R6至R9具有上文對於通式(I)之單及雙伸烷基三 烷氧基矽烷指定之定義。
通式(I)之單及/或雙伸烷基三烷氧基矽烷可以經稀釋或純形式在製備水性懸浮液之不同階段、尤其在實際製備黏結劑期間添加,或直到將黏結劑與水混合之階段才添加。因此,其可例如在研磨水泥期間添加,在添加研磨助劑、早期強度增強劑、其他塑化劑及減水劑之前添加,與其一起添加或在添加其之後添加,或獨立地添加。其亦可噴灑於乾燥砂漿混合物之組分上或經加工乾燥砂漿混合物上。隨後,其在粉狀混合物或顆粒與水接觸而以水性懸浮液形式塗覆時產生其作用。
通式(I)之單及/或雙伸烷基三烷氧基矽烷一般為水溶性的或水分散性的。其可為液體或固體;其經常具有蠟狀稠度。宜提供水溶液形式的通式(I)之單及/或雙伸烷基三烷氧基矽烷以便於在可能之應用中進行計量。此水溶液可包含其他添加劑,諸如起泡劑、消泡劑、乳化劑及其類似物。通式(I)之單及/或雙伸烷基三烷氧基矽烷亦可以粉末形式或包含載劑(諸如二氧化矽或CaCO3)的粉末形式或薄片形式提供。通式(I)之單及/或雙伸烷基三烷氧基矽烷較佳以水溶液形式或粉末形式提供。
本發明亦提供通式(I)之單及/或雙烷基三烷氧基矽烷作為包含凝集物及液力黏結劑之水性懸浮液中的分散劑的用途。
水性懸浮液一般為建築材料混合物,較佳混凝土或砂漿。
當通式(I)之單及/或雙伸烷基三烷氧基矽烷用作包含凝集物及液力黏結劑之水性懸浮液的分散劑時,伸烷基三烷氧基矽烷可共價鍵結於液力黏結劑之粒子的矽酸鹽相。因此,伸烷基三烷氧基矽烷例如可結合於水泥中之熟料粒子的矽酸三鈣(tricalcium silicate/alite)及/或矽酸二鈣 (dicalcium silicate/belite)相。然而,當然,其亦可結合於所選凝集物中所存在的矽酸鹽相。因此,通式(I)之單及/或雙伸烷基三烷氧基矽烷尤其適用於以液力黏結劑之乾質量計SiO2含量為至少2wt%的液力黏結劑。液力黏結劑為如下黏結劑,其在與水混合後在空氣中與在水下硬化,且其在硬化後保持固體且在尺寸上穩定,甚至在水下。
所用通式(I)之單及/或雙伸烷基三烷氧基矽烷的量取決於施加於水性懸浮液上之要求。一般而言,單及/或雙伸烷基三烷氧基矽烷以液力黏結劑之乾燥重量計以0.005至5.0wt%之量用於水性懸浮液中。通式(I)之單及/或雙伸烷基三烷氧基矽烷以液力黏結劑乾燥重量計較佳以0.01至2.0wt%之量、更佳0.01至1.0wt%之量使用。
通式(I)之單及/或雙伸烷基三烷氧基矽烷可在添加其他組分前、與一或多種其他組分同時或在添加其他組分後添加。此處單及/或雙伸烷基三烷氧基矽烷之整個量可一次性添加或逐份添加。
較佳液力黏結劑係選自水泥、液力石灰及土聚矽酸鹽黏結劑j。尤其較佳地,液力黏結劑係選自水泥及土聚矽酸鹽黏結劑。尤其較佳地,液力黏結劑係選自Portland水泥、Portland礦渣水泥、Portland矽酸鹽水泥、Portland火山灰水泥、Portland飛灰水泥、Portland葉岩水泥、Portland石灰石水泥、Portland複合水泥、鼓風爐水泥、火山灰水泥、複合水泥及其混合物。
在本發明之情形下,術語「凝集物(aggregate)」係指所有類型之凝集物,其可包括於液力黏結劑中且具有適合尺寸穩定性。凝集物可來自天然沈積物或可在再循環建築材料中獲得或作為工業副產物獲得。 適合凝集物之實例包括未壓碎之礫石及砂子、礫石材料、碎屑、壓碎之砂子、岩石、鼓風爐礦渣、碎裂之熟料、再循環之混凝土碎屑、浮石、幼蟲砂、幼蟲礫石、矽藻石、膨脹之板岩、膨脹之黏土、浮石礦渣、重晶石(heavy spar/barytes)、磁鐵礦、赤鐵礦、褐鐵礦及廢料。
添加至水性懸浮液之適合水之實例包括飲用水、地下水及天然地表水(例如河水、湖水、泉水)。
本發明亦提供一種水性懸浮液,其包含通式(I)之單及/或雙伸烷基三烷氧基矽烷作為分散劑且包含凝集物以及液力黏結劑。
水性懸浮液中所用之液力黏結劑的精確量及水與液力黏結劑j之比率關鍵取決於施加於水性懸浮液上之要求及由其形成之完全固化固體。此亦適用於所用凝集物之性質、所用粒度組及相關量,尤關於其液力黏結劑之相關量。此外,是否(且若如此)添加該等助劑、輔助物質及/或纖維的事項關鍵取決於特定要求。欲用於特定應用之此等組分的性質及量例如完全遵循多個DIN EN標準。對於混凝土及其個別組分,例如資料見於以下標準中:DIN EN 206-1、DIN EN 197、DIN EN 12620、DIN EN 13139、DIN EN 13055-1、DIN EN 934-2、DIN EN 14889、DIN EN 1008。對於砂漿,尤其標準DIN EN 998-2含有關於欲用於特定應用之各情形下之組分的性質及量的資料。
一般而言,以1m3水性懸浮液計,液力黏結劑之量為100至600kg/m3,凝集物之量為1000至3000kg/m3,且水含量為50至600kg/m3。水與液力黏結劑之比率通常為0.3至0.6。
水性懸浮液中通式(I)之單及/或雙伸烷基三烷氧基矽烷之 量以所用液力黏結劑之乾燥重量計根本上為0.005至5.0wt%、較佳0.01至2.0wt%且更佳0.01至1.0wt%。
視情況,水性懸浮液中可存在混合物。在本發明之意義上,「混合物」為液體、粉狀或顆粒狀物質,以液力黏結劑之乾燥質量計,其可少量添加至懸浮液中。其藉由化學及/或物理作用影響懸浮液之特性。適合混合物包括促凝劑、緩凝劑、起泡劑、密封劑、泡沫形成劑、消泡劑、固化促進劑、硬化促進劑、腐蝕抑制劑、沈積減少劑、其他塑化劑及減水劑,例如聚羧酸酯醚、β-萘基磺酸-甲醛縮合物(BNS)、木質素磺酸鹽、磺化三聚氰胺-甲醛縮合物及其混合物。
此外,添加劑及纖維視情況可能存在於水性懸浮液中。在本發明之意義上,「添加劑」為經使用而以目標方式改良特性的細有機或無機物質。其包括實際上惰性之添加劑,諸如細粉狀礦石、顏料以及火山灰或潛在液力添加劑,諸如火山土、飛灰、二氧化矽灰塵及細粉狀礦渣砂。在本發明之意義上,「纖維(Fiber)」為各種尺寸之鋼纖維、聚合物纖維及玻璃纖維。
本發明亦提供一種製備通式(I)之單及/或雙伸烷基三烷氧基矽烷之方法,其包含以下步驟:(i)用一或多種通式(III)之環氧矽烷,
其中Z、m、R1、R2、R3、R4a及R5具有上文指定之定義, β-羥基烷化通式(II)之聚醚醇或聚醚胺,
其中Y、n、R6及R7具有上文指定之定義,以形成通式(I-a)之特定單及/或雙伸烷基三烷氧基矽烷,
其中Y、Z、m、n、R1、R2、R3、R4a、R5、R6及R7具有上文指定之定義;及(ii)視情況醯匕或烷化步驟(i)中所形成之羥基官能基及視情況通式(I-a)之特定單及/或雙伸烷基三烷氧基矽烷的二級胺官能基,其係使用選自由以下組成之群的醯化劑:式R8CI之羰基氯化物,式(R8)2O之羧酸酐,其中R8為C1-C20烷醯基、C3-C20烯醯基或C7-C20芳醯基,式(IV-b1)之環狀羧酸酐及式(IV-b2)之環狀羧酸酐,
或使用選自由以下組成之群的烷化劑:R8X,其中R8為C1-C20烷基、C2-C20 烯基或C2-C20炔基,且X為Cl、Br、I、OS(=O)2CF3(三氟甲烷磺酸酯)、OS(=O)2CH3(甲烷磺酸酯)或甲苯磺酸酯。
在本發明之情形下,表述「C1-C6伸烷基(C1-C6-alkylene)」涵蓋非環狀烴單元亞甲基、伸乙基、伸正丙基、1-甲基伸乙基、正伸丁基、1-甲基伸丙基、2-甲基伸丙基、1,1-二甲基伸乙基、伸正戊基、1-甲基伸丁基、2-甲基伸丁基、3-甲基伸丁基、1,1-二甲基伸丙基、2,2-二甲基伸丙基、1,2-二甲基伸丙基、1-乙基伸丙基、伸正己基、1-甲基伸戊基、2-甲基伸戊基、3-甲基伸戊基、4-甲基伸戊基、1,1,-二甲基伸丁基、1,2-二甲基伸丁基、1,3-二甲基伸丁基、2,2-二甲基伸丁基、2,3-二甲基伸丁基、3,3-二甲基伸丁基、1-乙基伸丁基、2-乙基伸丁基、1-乙基-1-甲基伸丙基、1-乙基-2-甲基伸丙基、2-乙基-1-甲基伸丙基及2-乙基-2-甲基伸丙基。
相應地,表述「C2-C6伸烯基(C2-C6-alkenylene)」涵蓋具有2至6個碳原子之非環狀烴單元:伸乙烯基、丙-1-烯基、丙-2-烯基、2-甲基伸丙-2-烯基、1-甲基伸丙-2-烯基、伸丁-3-烯基、伸丁-2-烯基、伸戊-1-烯基、伸戊-2-烯基、伸戊-3-烯基、1-甲基伸丁-1-烯基、2-甲基伸丁-1-烯基、3-甲基伸丁-1-烯基、1-甲基伸丁-2-烯基、2-甲基伸丁-2-烯基、3-甲基伸丁-2-烯基、1-甲基伸丁-3-烯基、2-甲基伸丁-3-烯基、3-甲基伸丁-3-烯基、1-乙基伸丙-1-烯基、1-乙基伸丙-2-烯基、伸己-1-烯基、伸己-2-烯基、伸己-3-烯基、伸己-4-烯基、伸己-5-烯基、1-甲基伸戊-1-烯基、2-甲基伸戊-1-烯基、3-甲基伸戊-1-烯基、4-甲基伸戊-1-烯基、1-甲基伸戊-2-烯基、2-甲基伸戊-2-烯基、3-甲基伸戊-2-烯基、4-甲基伸戊-2-烯基、1-甲基伸戊-3-烯基、2-甲基伸戊-3-烯基、3-甲基伸戊-3-烯基、4-甲基伸戊-3-烯基、1-甲基伸戊-4-烯基、2-甲基伸戊-4- 烯基、3-甲基伸戊-4-烯基、4-甲基伸戊-4-烯基、1,2-二甲基伸丁-1-烯基、1,3-二甲基伸丁-1-烯基、3,3-二甲基伸丁-1-烯基、1,1-二甲基伸丁-2-烯基、1,2-二甲基伸丁-2-烯基、1,3-二甲基伸丁-2-烯基、2,3-二甲基伸丁-2-烯基、1,1-二甲基伸丁-3-烯基、1,2-二甲基伸丁-3-烯基、1,3-二甲基伸丁-2-烯基、2,2-二甲基伸丁-3-烯基及2,3-二甲基伸丁-3-烯基。
本發明由(但不限於)以下實施例更詳細描述。
實施例 實施例1:合成本發明之式(I-a1)之(聚氧伸乙基)胺基-雙伸烷基三甲氧基矽烷
Pluriol®A 1020 E-胺:
將50.0g(50mmol,M=1000g/mol)Pluriol®A 1020 E-胺(氧伸乙基單元之平均數量為22的聚氧伸乙基胺混合物)置於經預乾燥之100mL三頸燒瓶中且在氮氣氛圍中加熱至70℃。隨後在攪拌下添加24.82g(105mmol,M=236.34g/mol)縮水甘油氧基丙基三甲氧基矽烷且再在100℃下攪拌反應混合物。以2小時之時間間隔,藉由薄層層析(CHCl3/MeOH/水88:11:1;Rf(Pluriol®A 1020 E-胺)=0.1,Rf(縮水甘油氧基丙基三甲氧基矽烷)=0.74,Rf(具有矽烷頭基之中間物)=0.3,Rf(產物)=0.5)確定反應進展。4小時後,所有Pluriol®A 1020 E-胺均已反應且使反應終止。
pH(5%,於水中):7
1H NMR(500MHz,CDCl3):δ=0.6-0.7ppm,m,4 H,CH2-CH 2-Si;1.65-1.75ppm,m,4 H,CH 2-CH2-Si;2.2ppm,寬單峰,2 H,OH;2.5-2.9ppm,m,6 H,CH 2-N;3.35,s,3 H,O-CH 3;3.4-3.8ppm,m,94 H,O-CH 2-CH2-O/CHOH;3.5-3.6ppm,m,18 H,Si-O-CH 3
實施例2:合成本發明之式(I-a2)之(聚氧伸乙基)胺基-雙伸烷基三乙氧基矽烷
將40.0g(40mmol,M=1000g/mol)Pluriol®A 1020 E-胺置於經預乾燥之100mL三頸燒瓶中且在氮氣氛圍中加熱至70℃。隨後在攪拌下添加23.4g(82mmol,M=278.4g/mol)縮水甘油氧基丙基三甲氧基矽烷且再在100℃下攪拌反應混合物。以2小時之時間間隔,藉由薄層層析(CHCl3/MeOH/水88:11:1;Rf(Pluriol®A 1020 E-胺)=0.1,Rf(縮水甘油氧基丙基三甲氧基矽烷)=0.74,Rf(具有矽烷頭基之中間物)=0.3,Rf(產物)=0.5)確定反應進展。8小時後,所有Pluriol®A 1020 E-胺已反應。
1H NMR(500MHz,CDCl3):δ=0.6-0.7ppm,m,4 H,CH2-CH 2-Si;1.2ppm,t, 18 H,Si-O-CH2-CH 3;1.65-1.75ppm,m,4 H,CH 2-CH2-Si;2.5-2.9ppm,m,6 H,CH 2-N;3.35,s,3 H,O-CH 3;3.4-3.6ppm,m,10 H,CH 2-O;3.6-3.7ppm,m,82 H,O-CH 2-CH2-O;3.8ppm,m,14 H,Si-O-CH 2-CH3/CH-OH。
實施例3:合成本發明之式(I-a3)之(聚氧伸乙基)胺基-雙伸烷基三甲氧基矽烷
Pluriol®A 2010 E-胺:
將100.0g(50mmol,M=2000g/mol)Pluriol®A 2010 E-胺(氧伸乙基單元之平均數量為45的聚氧伸乙基胺混合物)置於經預乾燥之250mL四頸燒瓶中且在氮氣氛圍中加熱至70℃。隨後在攪拌下添加24.8g(103mmol,M=236.3g/mol)縮水甘油氧基丙基三甲氧基矽烷,在120℃下攪拌反應混合物8小時且在140℃下再攪拌7小時。以3小時之時間間隔,藉由薄層層析確定反應進展。15小時後,Plurilo®A 1020 E-胺完全反應。
1H NMR(500MHz,CDCl3):δ=0.6-0.7ppm,m,4 H,CH2-CH 2-Si;1.65-1.75ppm,m,4 H,CH 2-CH2-Si;2.2ppm,寬單峰,2 H,OH;2.5-2.9ppm,m,6 H,CH 2-N;3.35,s,3 H,O-CH 3;3.4-3.8ppm,m,188 H,O-CH 2-CH2-O及CHOH;3.5-3.6ppm,m,18 H,Si-O-CH 3
實施例4:合成本發明之式(I-a4)之(聚氧伸乙基)胺基-雙伸烷基三甲 氧基矽烷
將100.0g(50mmol,M=2000g/mol)Pluriol®A 2010 E-胺置於經預乾燥之250mL四頸燒瓶中且在氮氣氛圍中加熱至80℃。隨後在攪拌下依序添加0.05g(2.5mmol;M=18g/mol)去離子水及24.8g(103mmol,M=236.3g/mol)縮水甘油氧基丙基三甲氧基矽烷。加熱反應混合物至100℃且在此溫度下攪拌1小時。隨後將溫度升高至140℃,在此溫度下進行攪拌9小時且再添加0.05g去離子水。再經2小時後,終止反應。
1H NMR(500MHz,CDCl3):δ=0.6-0.7ppm,m,4 H,CH2-CH 2-Si;1.65-1.75ppm,m,4 H,CH 2-CH2-Si;2.2ppm,寬單峰,2 H,OH;2.5-2.9ppm,m,6 H,CH 2-N;3.35,s,3 H,O-CH 3;3.4-3.9ppm,m,188 H,O-CH 2-CH2-O及CHOH;3.5-3.6ppm,m,18 H,Si-O-CH 3
實施例5:合成本發明之式(I-a5)之(聚氧伸乙基)胺基-雙伸烷基三甲氧基矽烷
將50.0g(50mmol,M=1000g/mol)Pluriol®A 1020 E-胺置於經預乾燥之100mL三頸燒瓶中且在氮氣氛圍中加熱至80℃。隨後在攪拌下添加12.4g(52mmol,M=236.3g/mol)縮水甘油氧基丙基三甲氧基矽烷。加熱反應混合物至140℃且在此溫度下攪拌12小時。每4小時藉由薄層層析(CHCl3/MeOH/水88:11:1)監測反應進展。在混合物上形成表層。12小時 後,終止反應。
1H NMR(500MHz,CDCl3):δ=0.6-0.8ppm,m,2 H,CH2-CH 2-Si;1.60-1.80ppm,m,2 H,CH 2-CH2-Si;2.5-2.9ppm,m,4 H,CH 2-N;3.35,s,3 H,O-CH 3;3.4-3.9ppm,m,95 H,O-CH 2-CH2-O及CHOH;3.5-3.6ppm,m,18 H,Si-O-CH 3
實施例6:合成本發明之式(I-b1)之(聚氧伸乙基)胺基-雙伸烷基三甲氧基矽烷
將15.0g(10.2mmol,M=1472.7g/mol)式(I-a1)之(聚氧伸乙基)胺基-雙伸烷基三甲氧基矽烷之實施例1中所獲得之粗產物置於經預乾燥之100mL三頸燒瓶中且在減壓下加熱至40℃。30分鐘後,不再觀察到氣泡形成。隨後添加2.1g(20.9mmol,M=98g/mol)順丁烯二酸酐且在氮氣氛圍中加熱所得反應混合物至70℃且在此溫度下攪拌。藉由薄層層析(CHCl3/MeOH/水88:11:1)監測反應進展。2小時後,所有起始物質均已反應且使反應終止。
1H NMR(500MHz,CDCl3):δ=0.6-0.7ppm,m,4 H,CH2-CH 2-Si;1.65-1.75 ppm,m,4 H,CH 2-CH2-Si;2.2ppm,寬單峰,1 H,OH;2.5-2.9ppm,m,6 H,CH 2-N;3.35,s,3 H,O-CH 3;3.4-3.8ppm,m,94 H,O-CH 2-CH2-O;3.5-3.6ppm,m,18 H,Si-O-CH 3;4.2-4.4ppm,m,2H,CHOC(=O);6.2ppm,d,2H,CH-C(O)OH;6.4ppm,d,2 H,CH-C(=O)O-C。
實施例7:合成本發明之式(I-b2)之(聚氧伸乙基)胺基-雙伸烷基三乙氧基矽烷
將25.0g(16.1mmol,M=1556.8g/mol)自實施例2獲得之式(I-a2)之(聚氧伸乙基)胺基-雙伸烷基三乙氧基矽烷置於經預乾燥之100mL三頸燒瓶中且在減壓下加熱至70℃。當式(I-a2)之伸烷基三乙氧基矽烷液化時,添加3.37g(33.0mmol,M=100g/mol)丁二酸酐且在70℃下在氮氣氛圍中攪拌所得反應混合物。藉由薄層層析(CHCl3/MeOH/水88:11:1)監測反應進展。2小時後,所有起始物質均已反應且使反應終止。
pH(5%,於水中):4-5
1H NMR(500MHz,CDCl3):δ=0.6-0.7ppm,m,4 H,CH2-CH 2-Si;1.2ppm,t,18 H,Si-O-CH2-CH 3;1.65-1.75ppm,m,4H,CH 2-CH2-Si;2.55-2.65ppm,m,8H,CH 2-CO2;2.7-2.8ppm,m,6 H,CH 2-N;3.35ppm,s,3 H,O-CH 3;3.4-3.7ppm,m,94 H,CH 2-O;3.8ppm,q,12 H,Si-O-CH 2-CH3;5.1ppm,m,2 H CHOC(=O);8-9ppm, 寬單峰,2 H,COOH
實施例8:合成本發明之式(I-b6)之(聚氧伸乙基)胺基-雙伸烷基三乙氧基矽烷
將21.1g(13.7mmol,M=1556.8g/mol)自實施例2獲得之式(I-a2)之(聚氧伸乙基)胺基-雙伸烷基三乙氧基矽烷置於經預乾燥之100mL三頸燒瓶中且加熱至70℃。當式(I-a2)之伸烷基三乙氧基矽烷液化時,添加2.8g(28.0mmol,M=98g/mol)順丁烯二酸酐且在70℃下在氮氣氛圍中攪拌所得反應混合物。藉由薄層層析(CHCl3/MeOH/水88:11:1)監測反應進展。4小時後,所有起始物質均已反應且使反應終止。
1H NMR(500MHz,CDCl3):δ=0.6-0.7ppm,m,4 H,CH2-CH 2-Si;1.2ppm,t,18 H,Si-O-CH2-CH 3;1.65-1.75ppm,m,4H,CH 2-CH2-Si;2.3-2.8ppm,m,6 H,CH 2-N;3.35,s,3 H,O-CH 3;3.4-3.7ppm,m,90 H,CH 2-O;3.8ppm,q,12 H,Si-O-CH 2-CH3;4.2-4.3,m,2 H,HCOC(=O);6.2 d,CH-C(O)OH,6.4,d,CH-C(=O)O-C;10-11ppm,寬單峰,2 H,COOH
實施例9:合成本發明之式(I-b3)之(聚氧伸乙基)胺基-雙伸烷基三甲氧基矽烷
將50.0g(20.2mmol,M=2472.6g/mol)自實施例3獲得之式(I-a3)之(聚氧伸乙基)胺基-雙伸烷基三甲氧基矽烷置於經預乾燥之250 mL四頸燒瓶中且加熱至80℃。當式(I-a3)之伸烷基三甲氧基矽烷液化時,添加4.25g(41.4mmol,M=100g/mol)丁二酸酐且在80℃下在氮氣氛圍中攪拌所得反應混合物。藉由薄層層析(CHCl3/MeOH/水88:11:1)監測反應進展。6小時後,所有起始物質均已反應且使反應終止。
1H NMR(500MHz,CDCl3):δ=0.6-0.7ppm,,m,4 H CH2-CH 2-Si;1.65-1.75ppm,m,4 H,CH 2-CH2-Si;2.5-2.9ppm,m,14 H,CH 2-CO2及CH 2-N;3.35,s,3 H,O-CH 3;3.4-3.8ppm,m,206 H,O-CH 2-CH2-O,Si-OCH 3;5.1ppm,m,2 H CHOC(O);11-12ppm,寬單峰,2 H,COOH
實施例10:合成本發明之式(I-b3)之(聚氧伸乙基)胺基-雙伸烷基三甲氧基矽烷
將50.0g(20.2mmol,M=2472.6g/mol)自實施例4獲得之式(I-a4)之(聚氧伸乙基)胺基-雙伸烷基三甲氧基矽烷置於經預乾燥之250mL四頸燒瓶中且加熱至80℃。當式(I-a4)之伸烷基三甲氧基矽烷液化時,添加4.25g(41.4mmol,M=100g/mol)丁二酸酐且在80℃下在氮氣氛圍中攪拌所得反應混合物。藉由薄層層析(CHCl3/MeOH/水88:11:1)監測反應進展。6小時後,所有起始物質均已反應且使反應終止。
1H NMR(500MHz,CDCl3):δ=0.6-0.7ppm,m,4 H CH2-CH 2-Si;1.65-1.75 ppm,m,4 H,CH 2-CH2-Si;2.5-2.9ppm,m,10 H,CH 2-CO2及CH 2-N;3.35,s,3 H,O-CH 3;3.4-3.8ppm,m,210 H,O-CH 2-CH2-O,Si-OCH 3及CH 2-N;5.1ppm,m,2 H CHOC(O);11-12ppm,寬單峰,2 H,COOH
實施例11:合成本發明之式(I-b5)之(聚氧伸乙基)胺基-雙伸烷基三甲氧基矽烷
將29.03g(23.5mmol,M=1236.3g/mol)自實施例5獲得之式(I-a5)之(聚氧伸乙基)胺基-伸烷基三甲氧基矽烷置於經預乾燥之50mL單頸燒瓶中且加熱至100℃。當式(I-a5)之伸烷基三甲氧基矽烷液化時,添加4.7g(47mmol,M=100g/mol)丁二酸酐且在140℃下在氮氣氛圍中攪拌所得反應混合物4小時。藉由薄層層析(CHCl3/MeOH/水88:11:1)監測反應進展。4小時後,所有起始物質均已反應且使反應終止。
1H NMR(500MHz,CDCl3):δ=0.6-0.7ppm,m,4 H CH2-CH 2-Si;1.65-1.75ppm,m,4 H,CH 2-CH2-Si;2.5-2.9ppm,m,8 H,CH 2-CO2;3.35,s,3 H,O-CH 3;3.4-3.8ppm,m,100 H,O-CH 2-CH2-O,Si-OCH 3及CH 2-N;5.1ppm,m,1 H CHOC(O);11-12ppm,寬單峰,2 H,COOH
比較實施例1:合成聚羧酸酯醚(PCE)(V)
Sokalan®PA 25 XS:聚丙烯酸(M=5000g/mol)
PIuriol®A 1020 E:
向燒瓶中饋入Sokalan®PA 25 XS(3.0當量,M=5000g/mol)、Pluriol®A 1020 E(1.0當量,M=1000g/mol)及催化量之甲基磺酸。隨後,在175℃之溫度及20毫巴之壓力下,移除酯化期間釋放之冷凝水直至薄層層析表明Pluriol®A 1020 E完全反應為止。
比較實施例2:合成(聚氧伸乙基)三氧基伸丙基胺基-雙亞甲基-膦酸(VI)
根據FR 2696736實施例1b)以Jeffamine®M 1000為起始物質製備(聚氧伸烷基)三氧基伸丙基胺基-雙亞甲基膦酸(VI)。
用途實施例12至28:測定新鮮砂漿稠度
首先,由以下根據DIN EN196-1製備標準化砂漿:450g水泥(「Heidelberger Zement」CEM I,42.5 R),-1350g砂子,及-225g去離子水(考慮隨後與塑化劑一起添加之水)。
將砂漿組分混合90秒,隨後與包含塑化劑(0.10至0.20wt%,以水泥之乾燥重量計)及消泡劑Degressal®SD 40(7wt%,以相應塑化劑之乾燥重量計)之水性混合物混合,繼而再混合60秒。將因此產生之砂漿分兩層引入截頭錐模具中,其中各砂漿層藉由10個具有研杵之輕柔頭以一定方式展佈以使得可均勻填充截頭錐模具。之後,將所射出之砂漿直接汽提出。10至15秒後,將坍落之錐垂直向上緩慢撤出,且藉由15個往復頭使砂漿坍落(每秒一個往復頭)。在彼此呈直角安置之兩個位置量測砂漿餅之直徑。將此兩個量測之平均值報導為表1中之坍落流動度。
量測後,將砂漿自坍落板移除。在30、60、90、120及150分鐘後用相同砂漿重複測試。以此方式測定之具有不同組成之砂漿的坍落流動度展示於表1中。
由表1中之數字顯而易見,經由添加本發明之(聚氧伸乙基)胺基-雙伸烷基三烷氧基矽烷:矽烷(I-1a)、(I-a2)、(I-a4)、(I-b1)、(I-b2)、(I-b3)、(I-b6)、(I-a5)、(I-b5)(實施例13-20、24、25、27及28),將砂漿塑化為較高坍落流動度獲得成功。
表1中之實施例12展示在不添加塑化劑下相同砂漿之坍落流動度以供比較。可以看出,坍落流動度最初為約17.7cm,隨後在僅90分 鐘內降回至13.4cm。以水泥之乾燥重量計,僅添加0.10wt%本發明之雙矽烷(I-a1)、(I-a2)或(I-b1)(實施例13、15、17)中之一者使坍落流動度增加約3至5cm。此可藉由升高塑化劑之量進一步增加(參見實施例14、16、18-20、24、25、27及28)。
與雙膦酸VI(實施例26)相比,相同量的本發明塑化劑使得坍落流動度較大幅增加(參見實施例14、16、18-20、24、25、27及28)。
在短的測試時間內,比較實施例(實施例21)之聚羧酸酯醚(PCE)V與本發明之塑化劑在使砂漿塑化至限定坍落流動度之作用方面大致類似。然而,該作用更快速地衰減,且經90分鐘即不再可測定。
用途實施例29至45:測定動態黏度
對於預期用途,不僅在塑化作用、而且在降低新鮮砂漿黏度方面發揮顯著作用。黏度為流動性之量度,且在本發明之情形下,亦為新鮮砂漿之泵送性及加工性之量度。在此情形下,黏度愈低,加工性愈佳,且更特定言之,新鮮砂漿之泵送性愈佳。此外,使新鮮砂漿置於模具中之能力更容易。
黏度在Anton Paar MCR 102流變儀上量測。用於此等量測之砂漿如上所述根據DIN EN196-1製備。所用量測系統為建築材料之特定單元(BMC-90)。所用攪拌器為ST59-2V-44.3/120。進行10次量測,在各情形下剪切速率為10s-1。每次量測之量測時間總計為5秒。在量測之間,使系統在不攪拌下靜止595秒。此測試中動態黏度之測定值展示於表2中。
由表2可以看出,當PEC(V)(實施例30)用於砂漿中時,相對短時間內之動態黏度急劇提高。此使得流動性降低,且最終尤其使得砂漿可加工之時間顯著縮短。
高於特定量,相較於PEC(V)(實施例30),本發明之雙矽烷(I-a1)、(I-a3)、(I-a4)及(I-b1)至(I-b4)(實施例34、36及38至43)使得動態黏度之提高大大減慢。在此情形下,黏度值大多低於經由使用塑化劑雙膦酸(VI)(實施例29)獲得之值。
表2中之實施例31展示在低雙矽烷添加量下,不可節約PCE。然而,藉由向以正常量添加之PCE添加少量雙矽烷,可使黏度降低作用大大增加(實施例32)。然而,此作用具有有限持續時間。此等結果表明所要作用之進一步延長可藉由添加較高水準之雙矽烷獲得。
用途實施例46至55:測定撓曲拉伸強度及抗壓強度
稜柱狀樣品試樣之砂漿如上所述根據DIN EN 196-1製備。然而,區別在於將混合物直接與水一起添加至水泥中,隨後混合砂子。對於各欲測定值,製備三個砂漿稜柱以補償任何量測不確定性。
在震盪器台上展開尺寸為40×40×160mm之稜柱模具。隨後將砂漿以均勻分佈引入稜柱模具中,且藉由振動120秒(振動振幅:0.7mm)壓實。隨後展開模具且將過量砂漿直接汽提出。將模具遮蓋且根據標準在20℃及90%之大氣濕度下儲存24小時,隨後脫模。隨後將所製備之砂漿試樣脫模且在20℃及90%濕度下再儲存直至臨開始量測前為止。
首先,使用三個所得砂漿稜柱中之各者測定撓曲拉伸強度。此後,在由撓曲拉伸強度測定產生之六個稜柱半邊上量測抗壓強度。
撓曲拉伸強度使用Form+Test Prüfsysteme之Mega 10-200-10DM1機測定。
表3展示使用砂漿稜柱測定之撓曲拉伸強度值(在各情形下三次量測之平均值)。
抗壓強度使用Form+Test Prüfsysteme之Mega 10-200-10DM1機測定。
表4展示所製備砂漿之使用稜柱半邊測定之抗壓強度值(在各情形下六次量測之平均值)。
由表3及表4可以看出,在不超過7天(168小時)後,如藉由與具有相同組成但不添加塑化劑之砂漿(表3,實施例46;表4,實施例51)比較所示,硬化砂漿之撓曲拉伸強度與抗壓強度均受使用本發明之雙矽烷(I-a2)、(I-b1)及(I-b2)(表3,實施例47至50;表4,實施例52 至55)正面影響。
用途實施例56至63:量測水合熱
砂漿如上關於用途實施例46至55所述根據DIN EN 196-1製備。此外,在此處,在砂漿製備剛開始時即與水一起添加混合物。
在各情形下,將新鮮製備之砂漿置於容器中。隨後將溫度感測器(K型溫度感測器,B&B Thermo-Technik股份有限公司)安裝在容器中。用無助劑砂漿填充第二容器且亦安裝溫度探頭。隨後將容器密封且藉由應用絕緣板(Basotect®)適當分隔。隨後,經數小時量測溫度(數位4通道溫度計,Voltcraft;PC Plus軟體,Voltcraft;K型溫度感測器,B&B Thermo-Technik股份有限公司),且在各情形下記錄達到溫度最大值之時間。兩個時間之間的差值(延遲時間)展示於下表5中。
如由表5中所列之延遲時間顯而易見,本發明之矽烷(I-a2)、(I-a5)、(I-b1)、(I-b2)、(I-b5)及(I-b6)(實施例56至62)對砂漿中早期強度之產生的扼止比先前技術塑化劑雙膦酸(VI)大得不多。
概言之,在提供固定水/水泥比率、常用於此目的之聚羧酸 酯醚(諸如PCE(v))下,用途實施例12至63展示本發明之單及雙矽烷(I-a)及(I-b)在塑化砂漿方面具有類似良好適用性。然而,與使用聚羧酸酯醚相比,在使用本發明之單及雙矽烷(I-a)及(I-b)時,砂漿之黏度幾乎不會快速地上升,且此改良砂漿之加工性且尤其延長可加工(泵取、併入、展佈)砂漿之時間。

Claims (16)

  1. 一種通式(I)之單或雙伸烷基三烷氧基矽烷, 其中:-Y-為-O-或-N(R9)2-a-;-Z-在各情形下相同或不同且選自由-O-及-CHR4b-組成之群;若-Y-=-O-,則a為1;且若-Y-=-N(R9)2-a-,則a為1或2;m為1至20之自然數;n為7至200之自然數;R1在各情形下相同或不同且選自由以下組成之群:甲基、乙基、正丙基、異丙基、正丁基、異丁基、第二丁基、第三丁基及苯基;R2、R3、R4a及R4b在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C10烷基組成之群;或R2與R4a一起形成伸烷基鏈-R2-R4a-,該伸烷基鏈選自由-C(R5)2-C(R5)2-及-C(R5)2-C(R5)2-C(R5)2-組成之群,且R3及R4b在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C10烷基組成之群;或R2與R4b一起形成伸烷基鏈-R2-R4b-,該伸烷基鏈選自由-C(R5)2-及-C(R5)2-C(R5)2-組成之群,且R3及R4a在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C10烷基組成之群; R5在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C6烷基組成之群;R6在各情形下相同或不同且選自由H、甲基及乙基組成之群;R7選自由直鏈或分支鏈C1-C20烷基、C1-C20烷醯基及C7-C20芳醯基組成之群;R8及R9在各情形下相同或不同且選自由以下組成之群:H、直鏈或分支鏈C1-C20烷基、C2-C20烯基、C2-C20炔基、C1-C20烷醯基、C3-C20烯醯基以及ω-羧基-(C1-C6烷基)羰基及其鹽、ω-羧基-(C2-C6烯基)羰基及其鹽、以及C7-C20芳醯基。
  2. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中-Z-=-O-且R2、R3及R4a在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C10烷基組成之群。
  3. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中m=3,且R5=H。
  4. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中-Z-選自-CHR4b-,且R2與R4b一起形成伸烷基鏈-R2-R4b-,該伸烷基鏈選自-C(R5)2-及-C(R5)2-C(R5)2-,且R3及R4a在各情形下相同或不同且選自由H及直鏈或分支鏈C1-C10烷基組成之群。
  5. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中該伸烷基三烷氧基矽烷具有式(I-d11), 其中Y、a、n、R1及R6至R9具有如申請專利範圍第1項所指定之定義。
  6. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中-Y-=-N(R9 2-a-,且a=1或2。
  7. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中-Y-=-O-,且a=1。
  8. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中R8=H。
  9. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中R8選自由羧基-(C1-C6烷基)羰基及羧基-(C2-C6烯基)羰基組成之群。
  10. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中n為21至120之自然數。
  11. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中R6=H。
  12. 如申請專利範圍第1項之伸烷基三烷氧基矽烷,其中R7選自甲基及乙醯基。
  13. 一種如申請專利範圍第1項之單及/或雙伸烷基三烷氧基矽烷之用途,其作為分散劑用於由凝集物及液力黏結劑構成之水性懸浮液中。
  14. 如申請專利範圍第13項之用途,其中該液力黏結劑選自水泥及土聚矽酸鹽黏結劑。
  15. 一種水性懸浮液,其包含作為分散劑之如申請專利範圍第1項之單及/或雙伸烷基三烷氧基矽烷、凝集物及液力黏結劑。
  16. 一種製備如申請專利範圍第1項之單及/或雙伸烷基三烷氧基矽烷之方法,其包含以下步驟:(i)用一或多種通式(III)之環氧矽烷, 其中Z、m、R1、R2、R3、R4a、R4b及R5具有如申請專利範圍第1項至第12項中任一項所指定之定義,使通式(II)之聚醚醇或聚醚胺發生β-羥基烷化, 其中Y、n、R6及R7具有如申請專利範圍第1項至第12項中任一項所指定之定義,以形成通式(I-a)之特定單及/或雙伸烷基三烷氧基矽烷, 其中Y、Z、m、n、R1、R2、R3、R4a、R5、R6及R7具有如申請專利範圍第1項至第12項中任一項指定之定義;及,(ii)視情況使步驟(i)中所形成之羥基官能基及視情況通式(I-a)之該 等特定單及/或雙伸烷基三烷氧基矽烷的二級胺官能基發生醯化或烷化,其係使用選自由以下組成之群的醯化劑:式R8CI之羰基氯化物、式(R8)2O之羧酸酐,其中R8為C1-C20烷醯基、C3-C20烯醯基或C7-C20芳醯基;式(IV-b1)之環狀羧酸酐及式(IV-b2)之環狀羧酸酐, 或使用選自由以下組成之群的烷化劑:R8X,其中R8為C1-C20烷基、C2-C20烯基或C2-C20炔基,且X為Cl、Br、I、OS(=O)2CF3(三氟甲烷磺酸酯)、OS(=O)2CH3(甲烷磺酸酯)或甲苯磺酸酯。
TW104130078A 2014-10-22 2015-09-11 用於液力黏結劑之單及雙伸烷基三烷氧基矽烷分散劑 TW201615648A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14189932 2014-10-22

Publications (1)

Publication Number Publication Date
TW201615648A true TW201615648A (zh) 2016-05-01

Family

ID=51752049

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104130078A TW201615648A (zh) 2014-10-22 2015-09-11 用於液力黏結劑之單及雙伸烷基三烷氧基矽烷分散劑

Country Status (7)

Country Link
US (1) US20170355642A1 (zh)
EP (1) EP3209707A1 (zh)
JP (1) JP2017533313A (zh)
KR (1) KR20170076730A (zh)
CN (1) CN107108358A (zh)
TW (1) TW201615648A (zh)
WO (1) WO2016062552A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10450261B2 (en) 2015-05-28 2019-10-22 Basf Se Method for the homogeneous catalytic reductive amination of carbonyl compounds
CN108137451A (zh) 2015-10-12 2018-06-08 巴斯夫欧洲公司 用于生产1,6-二取代己烷衍生物的氢甲酰化方法
CN108219128B (zh) * 2017-12-20 2019-12-27 江苏苏博特新材料股份有限公司 具有硫酸盐适应性和降粘效果的水泥分散剂的制备方法
JP7050583B2 (ja) * 2018-06-04 2022-04-08 信越化学工業株式会社 ポリシロキサンモノマー及びその製造方法
CN110028763B (zh) * 2019-04-12 2021-08-06 西北工业大学 低密度高倍率环氧树脂微孔材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085694A (en) * 1991-03-04 1992-02-04 Dow Corning Corporation Polish compositions
US6133347A (en) * 1999-07-09 2000-10-17 Mbt Holding Ag Oligomeric dispersant
CA2677249C (en) * 2007-02-05 2014-10-28 Cytec Technology Corp. Silane substituted polyethylene oxide reagents and method of using for preventing or reducing aluminosilicate scale in industrial processes
JP5771523B2 (ja) * 2008-08-19 2015-09-02 ビック−ケミー ゲゼルシャフト ミット ベシュレンクテル ハフツング 硬化性ポリマー混合物
DE102009022627A1 (de) * 2009-05-25 2010-12-02 Evonik Goldschmidt Gmbh Reaktive Silylgruppen tragende Hydroxylverbindungen als Keramikbindemittel
KR20160065850A (ko) * 2013-10-02 2016-06-09 바스프 에스이 분산제로서의 폴리(옥시알킬렌)옥시- 및/또는 폴리(옥시알킬렌)아미노알킬트리알콕시실란의 용도

Also Published As

Publication number Publication date
WO2016062552A1 (de) 2016-04-28
KR20170076730A (ko) 2017-07-04
CN107108358A (zh) 2017-08-29
US20170355642A1 (en) 2017-12-14
JP2017533313A (ja) 2017-11-09
EP3209707A1 (de) 2017-08-30

Similar Documents

Publication Publication Date Title
TW201615648A (zh) 用於液力黏結劑之單及雙伸烷基三烷氧基矽烷分散劑
JP4611587B2 (ja) オリゴマー分散剤
JP4394765B2 (ja) セメント添加剤
CA2362378C (en) Powdery polyethercarboxylate-based polymeric compositions
TW201546016A (zh) 水凝性組合物用阻碳劑
CN103857712B (zh) 用于快速悬浮的粉末组合物
KR20050027079A (ko) 콘크리트 및 자동수평 화합물용 고유동화제
US8519028B2 (en) Early strengthening agent for hydraulic composition
KR20120101478A (ko) 갈변 가능성을 저감시키는 미네랄 결합제용 첨가제
CA2824807A1 (en) Setting retarder for hydrate-forming binders
RU2536898C2 (ru) Разжижающая смесь для композиции с основой из гидравлического вяжущего
JP6905795B2 (ja) 吹付コンクリート組成物およびその製造方法
JP4772004B2 (ja) 収縮低減機能と減水機能を併せ持つ一液型セメント用添加剤組成物及びセメント組成物
FR2875496A1 (fr) Inertant d'argile
JP7039280B2 (ja) Scm混和材高含有コンクリート用混和剤、並びにこれを含む混和剤含有組成物及びセメント組成物
JP5889058B2 (ja) セメント系硬化体及びセメントモルタル又はコンクリートの養生方法
JP6362531B2 (ja) 水硬性組成物
JP2009501818A (ja) 両親媒性ポリマー化合物、その製造方法及びその使用
RU2351560C1 (ru) Комплексная добавка для строительной смеси
DK2742089T3 (en) Dispersion polymers with improved thermal stability
WO2019116425A1 (ja) 水硬性組成物
JP2000327387A (ja) セメント混和剤
CN105408276B (zh) 聚(乙二醇)偕磷酸酯、其在水硬性组合物中作为添加剂的用途、和含有该添加剂的组合物
JP5962903B2 (ja) 防水性プレミックスセメント組成物およびその製造方法
KR20220112826A (ko) 실리콘으로 처리된 조성물 및 이의 용도