TW201602617A - 單基板超音波成像裝置的架構、相關設備及方法 - Google Patents

單基板超音波成像裝置的架構、相關設備及方法 Download PDF

Info

Publication number
TW201602617A
TW201602617A TW104112351A TW104112351A TW201602617A TW 201602617 A TW201602617 A TW 201602617A TW 104112351 A TW104112351 A TW 104112351A TW 104112351 A TW104112351 A TW 104112351A TW 201602617 A TW201602617 A TW 201602617A
Authority
TW
Taiwan
Prior art keywords
ultrasonic
circuitry
delay
waveform
delay grid
Prior art date
Application number
TW104112351A
Other languages
English (en)
Other versions
TWI649580B (zh
Inventor
強納森M 羅斯貝格
泰勒S 拉司頓
尼瓦達J 桑雪茲
安卓J 卡司伯
Original Assignee
蝴蝶網路公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蝴蝶網路公司 filed Critical 蝴蝶網路公司
Publication of TW201602617A publication Critical patent/TW201602617A/zh
Application granted granted Critical
Publication of TWI649580B publication Critical patent/TWI649580B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52034Data rate converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52096Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging related to power management, e.g. saving power or prolonging life of electronic components
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8918Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being linear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8959Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
    • G01S15/8963Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes using pulse inversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • G01S7/5202Details of transmitters for pulse systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/0015Layout of the delay element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本文中所述技術的觀點和超音波裝置電路系統有關,其可以形成一具有整合式超音波換能器的單基板超音波裝置的一部分。該超音波裝置電路系統可以幫助以節省電力且節省資料的方式來產生超音波波形。

Description

單基板超音波成像裝置的架構、相關設備及方法
本文中所述技術的觀點係關於單基板超音波成像裝置的架構、相關設備及方法。
相關申請案之交叉參考
本申請案在35 U.S.C.§119(e)的規範下主張2014年4月18日所提申的美國臨時專利申請案序號第61/981,469號的權利,該案標題為「單基板超音波成像裝置的架構、相關設備及方法(ARCHITECTURE OF SINGLE SUBSTRATE ULTRASONIC IMAGING DEVICES,RELATED APPARATUS,AND METHODS)」,律師檔案編號為B1348.70011US00,本文以引用的方式將其完整併入。
在超音波成像工業中相當重要的習知超音波掃描器具有離散式換能器以及控制電子元件。該些換能器經常為壓電式。因此,該些掃描器係利用「切割與填充(dice and fill)」製造過程來製成,其中,單獨的壓電式元件會先被切割並且接著被各自定位在一基板上,用以形成一換能器探針。此些製程傾向於有加工與繞線的高成本、不均勻性、以及不可放大 性的問題。控制電子元件通常不會與該些換能器整合,而是分開形成及安置。
用於醫療應用的超音波換能器探針通常包括許多超音波元 件,每一個超音波元件皆被配置成用以發射超音波訊號,該些訊號會一起產生一醫療相關的超音波場,以便產生用於醫療應用的超音波影像。一般來說,每一個超音波換能器會被配置成用以發射一由一對應的波形產生器所產生的超音波波形。因此,在一具有許多超音波元件的習知超音波換能器探針中需要許多波形產生器來產生一超音波場。
本文中所述技術的觀點包含可以幫助整合一超音波成像系 統的大部分,甚至整個超音波成像系統,於單一半導體基板上的架構與技術。據此,本文中所述的許多特點與方法都係關於單晶片超音波成像解決方案,或者,關於該超音波成像系統中的至少大部分被提供在單一晶片上的裝置與系統。
根據本技術的一項觀點,該單基板超音波成像系統包括波形 產生器、延遲網格電路系統、以及超音波換能器,它們全部和該基板整合在一起。該延遲網格電路系統可以被配置成用以提供該些波形產生器所產生的波形給該些超音波換能器並且可以讓該系統擁有少於超音波換能器的波形產生器,其可以幫助於單一晶片上提供該成像系統。為達此目的,該延遲網格電路系統可以接收一對應於由一波形產生器所產生之波形的輸入訊號,產生該輸入訊號的複數個有時間延遲的版本,以及提供該些生成訊號給多個超音波換能器。
本發明的某些實施例和一種設備有關,其包括:一基板;一 與該基板整合的第一超音波傳送單元;以及與該基板整合的延遲網格電路系統,其被耦合至該第一超音波傳送單元的一輸入並且被配置成用以輸出一對應於由一波形產生器所產生之波形的延遲網格電路系統輸入訊號的有時間延遲的版本給該第一超音波傳送單元。
本發明的某些實施例和一種設備有關,其包括:一基板;與 該基板整合的複數個超音波傳送單元;以及與該基板整合的延遲網格電路系統,其被耦合至該複數個超音波傳送單元的輸入並且被配置成用以輸出對應於由一波形產生器所產生之波形的延遲網格電路系統輸入訊號的複數個有時間延遲的版本給該複數個超音波傳送單元。
本發明的某些實施例和一種設備有關,其包括:一基板;與 該基板整合的複數個超音波傳送單元;以及與該基板整合的延遲網格電路系統,其被耦合至該複數個超音波傳送單元的輸入並且被配置成用以:響應於一第一延遲網格控制訊號的輸入而輸出對應於由一波形產生器所產生之波形的延遲網格電路系統輸入訊號的第一複數個有時間延遲的版本給該複數個超音波傳送單元;以及響應於一不同於該第一延遲網格控制訊號的第二延遲網格控制訊號的輸入而輸出對應於由該波形產生器所產生之波形的延遲網格電路系統輸入訊號的第二複數個有時間延遲的版本給該複數個超音波傳送單元,其中,該延遲網格電路系統輸入訊號的該第一複數個有時間延遲的版本不同於該延遲網格電路系統輸入訊號的該第二複數個有時間延遲的版本。
本發明的某些實施例和一種設備有關,其包括:一基板;與 該基板整合的複數個波形產生器;與該基板整合的複數個超音波傳送單元;以及與該基板整合的延遲網格電路系統,其被耦合至該複數個超音波傳送單元的輸入並且被配置成用以輸出對應於由該複數個波形產生器所產生之複數個波形的延遲網格電路系統輸入訊號的複數個有時間延遲的版本給該複數個超音波傳送單元。
本發明的某些實施例和一種設備有關,其包括:一互補式金 屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)基板;至少一波形產生器,其與該CMOS基板整合並且被配置成用以產生至少一初始波形;與該CMOS基板整合的編碼電路系統,其被耦合至該至少一波形產生器的至少一輸出,並且被配置成用以編碼該至少一初始波形,以便產生至少一經編碼的波形;與該CMOS基板整合的延遲網格電路系統,其被耦合至該編碼電路系統的至少一輸出,並且被配置成用以產生該至少一經編碼的波形的複數個有時間延遲的版本;以及與該CMOS基板整合的複數個超音波傳送單元,其被耦合至該延遲網格電路系統的複數個輸出,該複數個超音波傳送單元包括:解碼電路系統,其被配置成用以解碼該至少一經編碼的波形的該複數個有時間延遲的版本,以便產生複數個經解碼的波形;以及複數個超音波換能器,其被配置成用以至少部分藉由同時傳送對應於該複數個經解碼的波形的多個超音波訊號來產生一超音波場。
本發明的某些實施例和一種方法有關,其包括利用單基板超 音波裝置來實施:編碼由一波形產生器所產生的波形,以便取得一經編碼的波形;產生該經編碼的波形的複數個有時間延遲的版本;解碼該經編碼的波形的該複數個有時間延遲的版本,以便取得複數個經解碼的波形;以 及至少部分藉由利用複數個超音波元件來平行傳送對應於該複數個經解碼的波形的多個超音波訊號來產生一超音波場。
100‧‧‧單基板超音波裝置
101‧‧‧基板
102‧‧‧波形產生器
102a‧‧‧訊號
103‧‧‧編碼電路系統
104‧‧‧經編碼的波形
105‧‧‧延遲網格電路系統
106‧‧‧有時間延遲的版本
107‧‧‧超音波傳送單元
109‧‧‧解碼電路系統
111‧‧‧超音波元件
302‧‧‧基板
304‧‧‧超音波電路系統模組
306‧‧‧超音波元件
308‧‧‧超音波換能器
402‧‧‧輸入訊號電路系統
403‧‧‧延遲網格電路系統
404‧‧‧延遲網格單元
406‧‧‧超音波傳送單元
500‧‧‧延遲網格單元
502a‧‧‧訊號部
502b‧‧‧訊號部
502c‧‧‧訊號部
502d‧‧‧訊號部
502e‧‧‧訊號部
502f‧‧‧訊號部
502g‧‧‧訊號部
502h‧‧‧訊號部
550‧‧‧延遲網格單元
552‧‧‧延遲網格單元
554‧‧‧波形產生器
556‧‧‧延遲網格單元控制訊號
558‧‧‧延遲網格單元
559‧‧‧多工器
560‧‧‧超音波傳送單元
565‧‧‧延遲單元
566‧‧‧輸入電線
568‧‧‧寫入選擇電路系統
570‧‧‧緩衝器
572‧‧‧讀取選擇電路系統
574‧‧‧輸出電線
575‧‧‧輸出電線
576a‧‧‧訊號部
576b‧‧‧訊號部
576c‧‧‧訊號部
576d‧‧‧訊號部
600‧‧‧延遲網格電路系統
602‧‧‧延遲網格單元
604‧‧‧超音波傳送單元
702‧‧‧編碼電路系統
704‧‧‧解碼電路系統
800‧‧‧編碼電路系統的有限狀態機(FSM)
810‧‧‧解碼電路系統的有限狀態機(FSM)
820‧‧‧編碼電路系統的有限狀態機(FSM)
830‧‧‧解碼電路系統的有限狀態機(FSM)
現在將參考下面的圖式來說明本發明技術的各種觀點與實施例。應該明白的係,該些圖式未必依照比例繪製。出現在多個圖式中的項目會在它們出現的所有圖式中以相同的元件符號來表示。
圖1所示的係具現本文中所述技術之各項觀點的解釋性單基板超音波裝置。
圖2所示的係根據本文中所述之某些實施例,利用單基板超音波裝置來產生與傳送一超音波場的解釋性方法的流程圖。
圖3所示的係根據本文中所述之某些實施例,與一單基板超音波裝置的基板整合的多個超音波換能器的解釋性排列。
圖4所示的係根據本文中所述之某些實施例,包括多個延遲網格單元的延遲網格電路系統。
圖5A所示的係根據本文中所述之某些實施例的一延遲網格的一解釋性延遲網格單元的輸入與輸出。
圖5B所示的係根據本文中所述之某些實施例的一解釋性延遲網格單元的架構。
圖6所示的係根據本文中所述之某些實施例,包括多個延遲網格單元的延遲網格電路系統的解釋性配置。
圖7所示的係根據本文中所述之某些實施例的編碼與解碼電路系統的操作,該編碼與解碼電路系統可以為一單基板超音波裝置的電路系統的一 部分。
圖8A所示的係編碼電路系統的其中一實施例的操作的有限狀態機圖。
圖8B所示的係解碼電路系統的其中一實施例的操作的有限狀態機圖,該解碼電路系統被配置成用以解碼操作方式如圖8A中所示的編碼電路系統所編碼的訊號。
圖8C所示的係編碼電路系統的另一實施例的操作的有限狀態機圖。
圖8D所示的係解碼電路系統的另一實施例的操作的有限狀態機圖,該解碼電路系統被配置成用以解碼操作方式如圖8C中所示的編碼電路系統所編碼的訊號。
本文中所述技術的觀點係關於一種超音波裝置電路系統架 構,其可以形成具有多個整合式超音波換能器(舉例來說,互補式金屬氧化物半導體(CMOS)超音波換能器)的單基板超音波裝置的一部分。因此,該電路系統架構可以於某些實施例中形成一超音波晶片上系統(System-On-a-Chip,SoC)的一部分,該超音波晶片上系統(SoC)具有整合式電路系統以及與一基板(例如,半導體基板)整合的多個超音波換能器(舉例來說,被形成在該基板之中,或者與該基板一體成形整合)。
如下面的進一步說明,本技術的觀點提供延遲電路系統配置 以及編碼/解碼電路系統配置,其有助於以節省電力以及節省資料的方式利用一整合式超音波換能器排列方式來產生和醫療有關的超音波波形。
本案申請人已經明白,於單一基板(例如,CMOS基板)上施 行具有多個整合式超音波換能器以及整合式電路系統的超音波裝置仍然因 為此些裝置的複雜性的關係而非常困難。產生複雜且醫療相關的超音波波形以便使用在超音波成像中通常需要用到大量的資料,且所以,需要龐大可利用的記憶體儲存體來儲存波形參數。於此同時,單基板超音波裝置的配置與操作亦會有實務上的限制,舉例來說,能夠被使用的記憶體、資料、以及功率的數量。
其中一種此類實務性限制為被用來產生由與該基板整合的 多個超音波換能器所組成的排列(舉例來說,陣列)所發射之波形的波形產生器的數量。雖然為每一個超音波換能器提供一個波形產生器於某些背景中可能有好處;但是,於因為空間及功率需求的關係而要將該些波形產生器整合在具有該些超音波換能器的基板上的情況中,如此作法並不實際。因此,本案申請人已經明白,於某些情況中,較佳的作法係,提供一單基板超音波裝置,其上的所整合的波形產生器少於要被提供該所希望的波形的超音波換能器。
根據本技術的一項觀點,一種超音波裝置的電路系統架構可 以包含被配置成用以從由一波形產生器所提供的單一波形中產生該波形之複數個版本的電路系統,該複數個版本會被提供至一超音波換能器排列的複數個超音波換能器,以便產生一所希望的超音波場。該複數個波形版本可以包含該波形的有時間延遲的版本及/或該波形的反向版本。該波形的該複數個版本可以於至少某些實施例中被平行地提供,俾使得所希望的(舉例來說,醫療相關的)超音波場(舉例來說,平面波場、圓柱形聚焦場、聚焦射束、虛擬來源場、…等)可以從該複數個超音波換能器處被發射。
根據本技術的一項觀點,該電路系統可以包含一用以達成產 生該波形的該多個版本之任務的延遲網格,該延遲網格具有:一輸入,其被配置成用以接收由該波形產生器所產生的波形;以及複數個(平行)輸出,其被配置成用以提供該波形的該多個版本給該複數個超音波換能器。該延遲網格可以受到控制,用以響應於被施加至該延遲網格的不同控制訊號而產生由該波形產生器所產生的波形的不同版本。依此方式,該超音波裝置會受到控制而產生不同類型的超音波場,其範例會在下面作說明。
根據本技術的一項觀點,該超音波裝置的電路系統包含編碼 與解碼電路系統,其被配置成用以編碼與解碼要被提供至一超音波換能器排列中的複數個超音波換能器的波形。該編碼與解碼電路系統可以減少提供由一或更多個波形產生器所產生之波形給被配置成用以傳送對應於該些波形之超音波訊號的(多個)超音波換能器所需要的資料量,且因此可以減少用以在該單基板超音波裝置的器件之間儲存以及交換所希望的波形資料所需要的記憶體的寶貴數量。於某些實施例中,該編碼與解碼電路系統可以被排列在一波形產生器以及要被提供該波形的該(些)超音波換能器之間。於某些實施例中,延遲網格電路系統可以被排列在編碼電路系統與解碼電路系統之間,其可以減少用以在該延遲網格電路系統的器件之間儲存以及交換該波形資料所需要的記憶體的寶貴數量。
於某些實施例中,延遲網格電路系統可以包括複數個延遲網 格單元,每一個延遲網格單元都可以延遲一輸入訊號用以取得該輸入訊號的一或更多個有時間延遲的版本並且將該些有時間延遲的版本當作輸出提供給一或更多個超音波傳送單元以便被傳送及/或提供給一或更多個其他延遲網格單元以便作進一步處理。被提供至一或更多個其它延遲網格單元的 輸出訊號可以被該些延遲網格單元進一步時間延遲並且被傳送至另外其它延遲網格單元及/或由另外其它延遲網格單元作進一步處理。依此方式,一被輸入至該延遲網格電路系統的訊號可以傳播通過複數個延遲網格單元,該些延遲網格單元中的一或更多者會時間延遲該訊號,以便提供該(些)最終的有時間延遲的版本給一或更多個超音波元件來傳送。因此,延遲網格電路系統可以產生該輸入訊號的多個有時間延遲的版本並且提供此些版本傳送給與該單基板超音波裝置整合的多個超音波換能器,用以產生一超音波場。
一延遲網格單元可以包括一緩衝器,用以儲存一被輸入至該 緩衝器的訊號及/或對該訊號實施運算。於某些實施例中,延遲網格電路系統可能包括許多延遲網格單元,且因此,縮減每一個延遲網格單元的緩衝器的大小可以縮減於單基板超音波裝置中施行延遲網格電路系統的空間需求以及電力需求。
從上面可以明白,本技術的觀點提供節省空間與節省電力的 電路系統配置來提供所希望的波形給一超音波換能器排列,用以產生醫療相關的超音波場。該電路系統可以於某些實施例中完全數位化,並且可以與該些超音波換能器整合在單一基板(例如,CMOS基板)上。
下面會進一步說明上面所述的觀點與實施例以及額外的觀點與實施例。此些觀點及/或實施例單獨使用、一起使用、或者以二或更多者之任何組合方式來使用,因為本文中所述的技術於此方面並沒有限制。
圖1所示的係具現本文中所述技術之各項觀點的解釋性單基板超音波裝置100。超音波裝置100包括:一基板101,例如,CMOS基 板或晶片(舉例來說,一半導體基板,例如,矽基板);以及被形成在其上的整合式電路系統。如圖所示,與該基板101整合的電路系統可以包括:波形產生器102、編碼電路系統103、延遲網格電路系統105、以及複數個超音波傳送單元107。一超音波傳送單元107可以包括一解碼電路109以及一或更多個超音波元件111。因此,超音波裝置100可以包括複數個解碼電路(本文中亦稱為「解碼電路系統」)以及複數個超音波元件。超音波元件111可以包含一或更多個超音波換能器(本文中亦稱為「換能器胞體」)。換言之,多個超音波換能器可以被聚集在一起用以形成超音波元件,如下面參考圖3的更詳細說明。應該明白的係,上面所述的器件雖然可以於某些實施例中被整合在單一基板上;但是,該些上面所述器件中至少一部分亦可以不必互相整合在相同基板上。
圖1中所示的解釋性配置可以幫助形成一超音波晶片上系 統裝置或是一超音波晶片上子系統裝置,其包含整合式的多個超音波換能器與電路系統(舉例來說,類比及/或數位電路系統,例如,用以控制該些超音波換能器之操作及/或處理由此些換能器所產生之訊號的前端及/或後端電路系統,舉例來說,用以形成及/或顯示超音波影像)。於至少某些實施例中,一超音波晶片上系統裝置可以於單一基板上包含一由與類比和數位電路系統整合的多個超音波換能器所組成的排列,並且能夠實施超音波成像功能,例如,發射及接收超音波以及處理已接收的超音波而產生超音波影像。
如圖1中所示,被排列在波形產生器102與超音波元件111 之間的電路系統的功能係以節省空間與電力的方式提供波形產生器102所 產生的波形給超音波元件111並且可被稱為「精簡式網格架構(compact-mesh architecture)」。於圖中所示的實施例中,該精簡式網格架構包含編碼電路系統103、延遲網格電路系統105、以及解碼電路系統109。不過,於其它實施例中,該精簡式網格架構可以包括延遲網格電路系統,而不包含編碼電路系統或解碼電路系統。
於某些實施例中,波形產生器102可以產生一初使波形並且 輸出該初始波形至編碼電路系統103的一輸入。編碼電路系統103可以被配置成用以編碼該初始波形而產生一經編碼的波形並且輸出該經編碼的波形至該延遲網格電路系統105的一輸入。該延遲網格電路系統105可以被配置成用以產生該經編碼的波形的複數個有時間延遲的版本,並且平行輸出該經編碼的波形的該複數個有時間延遲的版本至多個超音波傳送單元107的輸入。也就是,該延遲網格電路系統可以產生比其收到的輸入版本更大數量的輸出版本。該些超音波傳送單元107可以被配置成用以利用解碼電路系統109來解碼該經編碼的波形的複數個有時間延遲的版本中個別的有時間延遲的版本,用以產生複數個經解碼的波形並且以該複數個經解碼的波形為基礎來驅動該些超音波元件111,俾使得該些超音波元件111會傳送對應於該些經解碼的波形(舉例來說,以該些經解碼的波形為基礎)的超音波訊號。依此方式,超音波元件111可以平行操作,用以發射一所希望的超音波,下面將提供其範例。下面會更詳細說明上面提及的器件以及對應的功能。
於圖中所示的實施例中,所有的圖示元件雖然皆被形成在單 一基板101上;然而,應該明白的係,於替代實施例中,該些圖示元件中 的一或更多者亦可以被耦合至基板101,而並非與其整合。舉例來說,於某些實施例中,波形產生器102的位置可以在基板101外面,被耦合至該基板101,俾使得波形產生器102可以與編碼電路系統103進行通信(舉例來說,提供輸入訊號給編碼電路系統103)。於另一範例中,該精簡式網格架構(舉例來說,該延遲網格電路系統105以及,視情況,編碼電路系統103與解碼電路系統109)可以與該基板101整合;但是,該波形產生器102及/或該些超音波元件111則可以被耦合至基板101,而沒有與基板101整合。
如已述,於某些實施例中,超音波裝置100可以包括:單一 基板;與該基板整合的多個超音波換能器;以及與該基板整合的電路系統(舉例來說,控制電路系統)。應該明白的係,該些超音波換能器可以相對於與該基板整合的任何其它電路系統(舉例來說,波形產生器102、編碼電路系統103、延遲網格105、解碼電路系統109、…等)以任何合宜的方式被定位。 於某些實施例中,與該超音波裝置的該基板整合的至少某些電路系統可以被定位在該裝置的該些超音波換能器底下。於某些實施例中,該整合式電路系統的一部分可以被定位在該超音波裝置的一周圍區域(或是「凸出部(tab)」)中。舉例來說,於該些超音波換能器或超音波元件中的二或更多者之間被共用的電路系統可以被定位在該周圍區域中。於某些實施例中,一超音波元件特有的或是一特殊超音波換能器特有的電路系統可以被定位在該超音波元件或超音波換能器底下。
波形產生器102可以被配置成用以產生(或生產)任何合宜的 (多個)激發波形,用以激發該些超音波換能器。該波形產生器可以被配置成(舉例來說,可程式化成)用以從多種可能的種類(其包含脈衝波、連續波、 啁啾波形(chirp waveform)(舉例來說,線性頻率調變(Linear Frequency Modulation,LFM)啁啾)、以及有碼的激發訊號(舉例來說,二元有碼式激發訊號))中產生所希望種類的波形。此種被產生波形中的靈活性亦可以促成使用非常先進的超音波成像技術。於某些實施例中,該波形產生器可以產生一波形為一數值序列,每一個數值皆選擇自一組可能的數值。該組可能的數值可以僅由兩個數值所組成、僅由三個數值所組成、僅由五個數值所組成、僅由至少五個數值所組成、僅由三至十個數值所組成、或者由任何其它合宜數量的數值所組成。舉例來說,該組可能的數值可以僅由可藉由一n位元數位至類比轉換器(也就是,2n位位元)來產生的任何數值所組成,其中,n為任何正整數(舉例來說,2、4、8、16、32、64、…等)。於某些實施例中,該波形產生器可以被配置成用以產生用於一雙極脈衝器(bipolar pulser)的輸出。
如圖所示,波形產生器102被耦合至編碼電路系統103的一 輸入。依此方式,波形產生器可以提供要產生給編碼電路系統103的任何一或多個訊號102a。該波形產生器102可以任何合宜的方式被耦合至編碼電路系統103的一輸入,本文中所述技術的觀點於此方面並沒有限制。
編碼電路系統103可以被配置成用以編碼由波形產生器102 所產生的一初始波形,用以產生一經編碼的波形104並且用以提供該經編碼的波形給延遲網格電路系統105作為輸入訊號。為達此目的,編碼電路系統103的一輸入可以被耦合至波形產生器102的一輸出並且編碼電路系統103的一輸出可以被耦合至延遲網格電路系統105的一輸入。編碼電路系統103與波形產生器102的耦合以及編碼電路系統103與延遲網格電路系統105 的耦合可以任何合宜的方式來施行,本文中所述技術的觀點於此方面並沒有限制。
編碼電路系統103可以被配置成用以施形壓縮編碼,俾使得 當該編碼電路系統103編碼一輸入訊號時,最終的經編碼的訊號係僅由少於被編碼的輸入訊號的位元所組成。這會減少資料而更可能將本文中所述的系統整合於單一基板上。舉例來說,如下面更詳細說明,壓縮編碼該輸入訊號可以允許力用較少數量的記憶體來施行該延遲網格電路系統中的延遲網格單元,其會導致空間與電力的節省。於某些實施例中,編碼電路系統103可以被配置成用以施行一N對M位元編碼器(其中,N與M中的每一者皆為正整數,且其中,N大於M),俾使得當該編碼電路系統103編碼一由B位位元組成的輸入訊號時,最終的經編碼的訊號會由約B*M/N位位元組成(其中,B為正整數)。於一特定的非限制性範例中,編碼電路系統103可以被配置成用以施行一2對1位元編碼器,俾使得當該編碼電路系統編碼一由B位位元組成的輸入訊號時,最終的經編碼的訊號會由約B/2位位元組成。於另一特定的非限制性範例中,編碼電路系統103可以被配置成用以施行一3對2位元編碼器,俾使得當該編碼電路系統編碼一由B位位元組成的輸入訊號時,最終的經編碼的訊號會由約2B/3位位元組成。於又一特定的非限制性範例中,編碼電路系統103可以被配置成用以施行一3對1位元編碼器,俾使得當該編碼電路系統編碼一由B位位元組成的輸入訊號時,最終的經編碼的訊號會由約B/3位位元組成。下面會參考圖7、8A、以及8C來更詳細說明編碼電路系統103。
延遲網格電路系統105可以被配置成用以產生對應於由一 波形產生器所產生之波形的延遲網格電路系統輸入訊號104的複數個有時間延遲的版本並且提供該波形的該些已產生的有時間延遲的版本給超音波傳送單元107。於圖1的實施例中,該延遲網格電路系統輸入訊號可以為藉由使用編碼電路系統103來編碼由波形產生器102所產生之波形而取得的一經編碼的波形。於其它實施例中(舉例來說,於該編碼電路系統103未被使用或者並非超音波裝置100的一部分的實施例中),該延遲網格電路系統輸入訊號可以為由波形產生器102所產生的波形102a。於此些實施例中,該延遲網格能夠適應於(舉例來說,具有適當大小的緩衝器)未經編碼的輸入訊號。
如圖所示,延遲網格電路系統105的一輸入可以被耦合至編 碼電路系統103的一輸出並且延遲網格電路系統105的一輸出可以被耦合至超音波傳送單元107的輸入。或者,延遲網格電路系統105的一輸入可以被耦合至波形產生器102的一輸出。延遲網格電路系統105與編碼電路系統103(及/或波形產生器102)的耦合以及延遲網格電路系統105與超音波傳送單元107的耦合可以任何合宜的方式來施行,本文中所述技術的觀點於此方面並沒有限制。
延遲網格電路系統105可以被配置成用以至少部分藉由傳 播該輸入訊號經過一由多個互連延遲網格單元所組成的網路而產生一延遲網格電路系統輸入訊號的複數個有時間延遲的版本,該些多個互連延遲網格單元為該延遲網格電路系統的一部分。每一個延遲網格單元可以被配置成用以接收一輸入訊號,將其延遲一指定數額,並且將該輸入訊號的一或更多個有延遲的版本輸出至一或更多個其它延遲網格單元及/或超音波傳送 單元。依此方式,該些延遲網格單元可操作用以產生該延遲網格輸入訊號的一組有時間延遲的版本並且提供此些訊號給該複數個超音波傳送單元107,其可操作用以同時傳送該延遲網格輸入訊號的該些有時間延遲的版本中的至少一部分而發射一所希望的超音波場。可以明白的係,每一個延遲網格單元可以被配置成用以提供該延遲網格單元所收到的訊號的一或更多個有時間延遲的版本給多個其它目的地(舉例來說,一延遲網格單元可以提供該訊號被延遲一個數額的版本給另一個延遲網格單元並且提供該訊號被延遲另一個不同數額的版本給一超音波傳送單元)。此靈活性讓該延遲網格可以創造該延遲網格輸入訊號的多個實例或版本。
於某些實施例中,延遲網格電路系統105可以受到控制用以 產生該延遲網格輸入訊號的一組所希望的有時間延遲的版本106。於某些實施例中,延遲網格電路系統105可以程式化,俾使得該延遲網格電路系統105中的一或更多個延遲網格單元可以被程式化用以延遲被輸入至該(些)可控制的延遲網格單元的(多個)訊號某個數額(舉例來說,時間數額、位元數量、…等),該數額由被提供至該(些)延遲網格單元的(多個)控制訊號來指示。除此之外,或者,該延遲網格電路系統105可以重新配置而使得一或更多個控制訊號可被用來指定哪些延遲網格單元可以彼此通信(舉例來說,接收輸入及/或提供輸出)。舉例來說,該延遲網格電路系統105中的一延遲網格單元可以受到控制用以從被提供至該延遲網格單元的(多個)控制訊號所指示的來源(舉例來說,另一延遲網格單元、一波形產生器、…等)處接收一輸入訊號。於另一範例中,該延遲網格電路系統105中的一延遲網格單元可以受到控制用以提供該輸入訊號的一有時間延遲的版本106給被提供 至該延遲網格單元的(多個)控制訊號所指示的延遲網格單元及/或超音波傳送單元。據此,該延遲網格輸入訊號傳播經過該延遲網格電路系統105的方式可以藉由提供控制訊號給該延遲網格電路系統105中的一或更多個延遲網格單元來控制,以便取得該延遲網格電路系統輸入訊號的一組所希望的有時間延遲的版本。下面會參考圖4、5A至5B、以及6來進一步說明延遲網格電路系統105的觀點。
超音波傳送單元107可以被配置成用以從延遲網格電路系 統105處接收該延遲網格電路系統的該些有時間延遲的版本,解碼該延遲網格電路系統訊號的該些有時間延遲的版本用以取得複數個經解碼的波形,以及傳送對應於該複數個經解碼波形的至少一子集的超音波訊號。如圖所示,超音波傳送單元107的輸入可以被耦合至延遲網格電路系統105的輸出。超音波傳送單元107與延遲網格電路系統105的耦合可以任何合宜的方式來施行,本文中所述技術的觀點於此方面並沒有限制。超音波裝置100可以包括任何合宜數量的超音波傳送元件。下面會參考圖3作進一步詳細說明。
如圖所示,一超音波傳送單元包括一解碼電路109以及一或 更多個超音波元件111。然而,於某些實施例中,一超音波傳送單元可以包括額外的電路系統,其包含,但是並不限制於,一或更多個放大器(舉例來說,一或更多個轉阻抗放大器)、一或更多個脈衝器(舉例來說,一或更多個三位準脈衝器、被配置成用以驅動正電壓與負電壓的一或更多個雙極脈衝器、一或更多個單極脈衝器、…等)、及/或任何其它合宜的電路系統,本文中所述技術的觀點於此方面並沒有限制作為超音波元件111之一部分的電 路系統的類型。
超音波傳送單元107可以被配置成用以藉由使用解碼電路 系統109來解碼該延遲網格電路系統輸入訊號104的該些有時間延遲的版本106。解碼電路系統109可以被配置成用以施行對應於由編碼電路系統103所施行之編碼的解碼。舉例來說,於編碼電路系統103被配置成用以編碼一初始訊號使得最終經編碼的訊號的位元數少於該初始訊號的實施例中,解碼電路系統109可以被配置成用以解碼該經編碼的訊號,俾使得該經解碼的訊號的位元數大於該經編碼的訊號(舉例來說,該經解碼的訊號可以有和被該編碼電路系統所編碼的初始訊號相同數量的位元)。
於某些實施例中,解碼電路系統109可以被配置成用以施行 一M對N位元解碼器(其中,N與M中的每一者皆為正整數,且其中,N大於M),俾使得當該解碼電路系統109解碼一由B位位元組成的經編碼的訊號時,最終的經解碼的訊號會由約B*N/M位位元組成。於一特定的非限制性範例中,解碼電路系統109可以被配置成用以施行一1對2位元解碼器,俾使得當該解碼電路系統解碼一由B位位元組成的經編碼的訊號時,最終的經解碼的訊號會由約2B位位元組成。於另一特定的非限制性範例中,解碼電路系統109可以被配置成用以施行一2對3位元解碼器,俾使得當該解碼電路系統解碼一由B位位元組成的經編碼的訊號時,最終的經解碼的訊號會由約3B/2位位元組成。此解碼器可以用於5至8位準的脈衝器。 於又一特定的非限制性範例中,解碼電路系統109可以被配置成用以施行一1對3位元解碼器,俾使得當該解碼電路系統解碼一由B位位元組成的經編碼的訊號時,最終的經解碼的訊號會由約3B位位元組成。下面會參考 圖7、8B、以及8D來更詳細說明解碼電路系統109。
超音波傳送單元107可以被配置成用以藉由使用超音波元 件111來傳送對應於該複數個經解碼波形的超音波訊號。這可以任何合宜的方式來達成。舉例來說,該些超音波元件可以根據該複數個經解碼的波形被驅動,用以產生對應於該複數個經解碼的波形的多個超音波訊號。如先前所述,一超音波元件111可以包括一或多個超音波換能器。該些超音波換能器可以為任何合宜的類型,且於某些實施例中,該些超音波換能器可以相容於一CMOS基板,因而可以讓它們一體成形地被形成在一具有多個CMOS整合式電路的CMOS基板上。依此方式,可以形成一整合式裝置(舉例來說,一超音波晶片上系統)。
於某些實施例中,該些超音波換能器可以為CMOS超音波 換能器(CMOS Ultrasonic Transducer,CUT),其包含一被形成在一CMOS晶圓上並且與CMOS整合式電路系統一體成形整合的超音波換能器。舉例來說,一CUT可以包含一被形成在一CMOS晶圓中的凹腔,有一薄膜(或是膜片)疊置在該凹腔上方,並且於某些實施例中,密封該凹腔。多個電極可以被提供用以從該被覆蓋的凹腔結構中創造一換能器胞體。該CMOS晶圓可以包含該換能器胞體可以連接的整合式電路系統。
CUT並非可以整合該換能器與一IC的唯一超音波換能器類 型。於某些實施例中,該些超音波換能器可以為電容式微加工超音波換能器(Capacitive Micromachined Ultrasonic Transducer,CMUT)。
並非所有實施例都僅限於具現CUT或CMUT於本文中所述 類型的一超音波換能器裝置之中。本文中所述技術的某些觀點適用於多個 超音波換能器裝置,不論所施行的超音波換能器的類型為何。舉例來說,於某些實施例中,亦可以使用揚聲器陣列、麥克風陣列、或是任何合宜的超音波換能器陣列。
於某些實施例中,該延遲網格電路系統輸入訊號的複數個有 時間延遲的版本中的每一者(由延遲網格電路系統105所產生)可以被輸出至一個別的超音波傳送單元107(每一個超音波傳送單元107皆包括一解碼電路109以及超音波元件111,如圖1中所示)。一特殊超音波傳送單元107的解碼電路109可以被配置成用以解碼被提供至該特殊超音波傳送單元的延遲網格電路系統輸入訊號的有時間延遲的版本。據此,該些超音波傳送單元107中的該些解碼電路109可以被配置成用以產生複數個經解碼的波形。接著,該些超音波傳送單元107中的超音波元件111會被配置成用以傳送對應於該複數個經解碼的波形的多個超音波訊號。
於某些實施例中,該些超音波傳送單元107中的超音波元件 111會被配置成以時間上平行的方式傳送對應於該複數個經解碼的波形的多個超音波訊號,俾使得該些經解碼的波形的平行傳送可導致藉由該單基板超音波裝置100來傳送一所希望的超音波場。舉例來說,該被發射的超音波場可以被形成為由該些超音波元件111平行傳送的多個訊號(舉例來說,對應於該些經解碼的波形的多個超音波訊號)的疊置。
於某些實施例中,兩個訊號的平行傳送可以為同時、實質上 同時、或者實質上同步。倘若兩個訊號在被傳送時有任何時間上重疊的話,該些訊號的傳送便為同時。倘若時間上重疊至少80%、至少90%、或是更多的話,多個訊號的傳送便為實質上同時。倘若時間上重疊約95%或是更 多的話,兩個訊號的傳送便為同步。
從上面可以明白,藉由多個超音波元件111的平行操作所產 生的超音波場的類型至少部分相依於該延遲網格電路系統105受控用以產生一波形(在該波形被編碼並且由波形產生器102產生之後)的一組有時間延遲的版本的方式。該延遲網格電路系統105可以受控而使得多個超音波元件的平行操作可以被配置成用以產生任何眾多類型的超音波場,其包含,但是並不限制於:平面波場、有方位角對稱性的場、有仰角對稱性的場、兼具方位角對稱性與仰角對稱性的場、圓柱形場、有方位角對稱性的圓柱形場、有仰角對稱性的圓柱形場、球形或圓柱形聚焦射束場、球形或圓柱形發散波場、3D平面波場、任何合宜的醫療相關超音波場、及/或任何其它合宜類型的超音波場或場組。於一非限制性的範例中,根據哈德瑪得碼(Hadamard code)對波形套用反向運算可以創造一組合宜的場。
還應該明白的係,控制該延遲網格電路系統105產生由一波 形產生器所產生的一場序列中每一個場所組成的一組有時間延遲的版本的方式可被用來對一目標施行掃描及/或操控由該超音波裝置所發射的場。接著,此功能可被用來施行3D成像功能。
還應該明白的係,圖1中所示的單基板超音波裝置的架構為 解釋性並且可以採用此架構的變化例。舉例來說,在圖1的實施例中,單一波形產生器102雖然被耦合至編碼電路系統103;但是,於其它實施例中,超音波裝置100可以包括被耦合至編碼電路系統103的多個波形產生器。於此些實施例中,編碼電路系統103可以包括多個編碼電路,每一者皆被耦合至一個別的波形產生器,或者,多個波形產生器可以被耦合至單一編碼 電路。每一個波形產生器可以被配置成用以產生一或更多個波形。該些波形產生器可以同時操作,或者,二或更多個波形產生器可以平行操作。
據此,於某些實施例中,單基板超音波裝置可以包括任何合 宜數量的波形產生器。於某些實施例中,該單基板超音波裝置可以僅由數量少於超音波傳送單元的波形產生器所組成。如上面的討論,波形產生器少於超音波傳送單元(其每一者皆包含一或更多個超音波換能器)可以縮減用以於單一基板上整合該些波形產生器與該些超音波傳送單元所需要的空間與電力(不同於波形產生器的數量等於超音波傳送單元的數量的情況)。於一非限制性的範例中,一單基板超音波裝置可以包含至少兩倍於波形產生器的超音波傳送單元。於另一非限制性的範例中,一單基板超音波裝置可以包含至少四倍於波形產生器的超音波傳送單元。於又一非限制性的範例中,一單基板超音波裝置可以包含八倍(或是十六倍、或是三十二倍、或是六十四倍、至少100倍、至少250倍、至少500倍、至少1000倍、至少5000倍、至少10,000倍、介於500倍與15,000倍之間、…等)於波形產生器的超音波傳送單元。
在圖1中所示之架構(圖中顯示編碼與解碼電路系統)的變化 例的另一範例中,單基板超音波裝置於某些實施例中可以被施行為不具有編碼與解碼電路系統。於此實施例中,與該基板整合的(多個)波形產生器可以直接或間接被耦合至與該基板整合的延遲網格電路系統的一輸入,該延遲網格電路系統接著可以被耦合至與該基板整合的超音波傳送單元的輸入。
還應該明白的係,圖1中所示的器件可以僅為單基板超音波 裝置100的一部分。舉例來說,圖1中所示的器件可以為超音波裝置100的器件所組成的單一超音波電路系統模組,而超音波裝置100則可能包括多個此種模組(舉例來說,至少兩個模組、至少十個模組、至少100個模組、至少1000個模組、至少5000個模組、至少10,000個模組、至少25,000個模組、至少50,000個模組、至少100,000個模組、至少250,000個模組、至少500,000個模組、介於兩個模組與一百萬個模組之間、…等),每一個模組皆包括圖1中所示的器件。該多個超音波電路系統模組可以被配置成彼此獨立操作及/或彼此協同操作。這會在下面參考圖3作更詳細說明。
於某些實施例中,圖1中所示的器件的操作可以由位在單基 板超音波裝置100外面的器件來控制。舉例來說,於某些實施例中,另一計算裝置(舉例來說,FPGA、可以利用被儲存在至少一非暫時性電腦可讀取媒體中的指令來程式化的至少一電腦硬體處理器、…等)可以被配置成用以控制單基板裝置100的一或更多個器件的操作。於一非限制性的範例中,一計算裝置可以提供一或更多個控制訊號用以控制波形產生器102、編碼電路系統103、延遲網格電路系統105、及/或一或更多個超音波傳送單元107的操作。除此之外,或者,單基板超音波裝置100可以包括一或更多個控制器件,其被配置成用以控制(舉例來說,透過一或更多個控制訊號)單基板超音波裝置100的其它器件的操作。於某些實施例中,單基板超音波裝置的一或更多個器件可以藉由一或更多個裝置100之中的「晶片上」器件以及被排列在裝置100外面的「晶片外」器件的組合來控制。
下面會參考圖2來進一步解釋圖1中所示的電路系統的操作 的觀點,圖中所示的係藉由利用單基板超音波裝置來產生與傳送一超音波 場的解釋性方法200的流程圖,以便產生與傳送形成該超音波場的一或更多個超音波波形。方法200可以由任何合宜的單基板超音波裝置(舉例來說,參考圖1所述的超音波裝置100)來實施。
方法200始於202處,於該處,一波形會由一波形產生器來 產生。該波形產生器可以為任何合宜類型的產生器並且可以與該單基板超音波裝置的基板整合,例如,參考圖1所述的波形產生器102。所產生的波形可以為任何合宜的類型(舉例來說,包括下面一或更多者的波形:脈衝波、連續波、啁啾波、有碼的激發訊號、…等)。於某些實施例中,該波形可以被產生作為方法200的一部分。於其它實施例中,該波形可以在實施202方法200之前先被產生(由該波形產生器或是任何其它合宜的電路系統來產生)並且可以被載入(或是以其它方式來存取)作為方法200的階段202的一部分。
接著,方法200前進至204,在202處所取得的波形會於該 處被編碼電路系統編碼,用以取得一經編碼的波形。該編碼電路系統可以為任何合宜的類型並且可以與該單基板超音波裝置的基板整合,例如,參考圖1所述的編碼電路系統103。該波形可以利用任何合宜的編碼技術來編碼(舉例來說,壓縮技術、有損失的編碼技術、無損失的編碼技術、本文中所述的任何編碼技術、…等)。於某些實施例中,該經編碼的波形可以僅由數量少於在202處所取得之波形的位元數所組成。
在204處取得一經編碼的波形之後,方法200會前進至206,於該處可以取得該經編碼的波形的一或更多個有時間延遲的版本或實例。該經編碼的波形的任何合宜數量的有時間延遲的版本可以被取得。於某些 實施例中,可以針對與該單基板裝置整合的多個超音波傳送單元中的每一者取得該經編碼的波形的一有時間延遲的版本。於一非限制性的範例中,可以針對被形成在該超音波裝置的基板上的一超音波電路系統模組中的某些或所有超音波傳送單元中的每一者取得該經編碼的波形的一有時間延遲的版本。於另一非限制性的範例中,可以針對被形成在該超音波裝置的基板上的多個超音波電路系統模組中的某些或所有超音波傳送單元中的每一者取得該經編碼的波形的一有時間延遲的版本。
於某些實施例中,該經編碼的波形的該(些)有時間延遲的實 例可以藉由被整合在該單基板超音波裝置的基板上的延遲網格電路系統來取得。舉例來說,延遲網格電路系統105(已參考圖1說明過)可以被用來實施方法200的階段206。該延遲網格電路系統可以包括多個延遲網格單元並且可以被配置成用以至少部分藉由於該些延遲網格單元之中傳播該經編碼的波形而產生該經編碼的波形的該(些)有時間延遲的版本。該些延遲網格單元中的每一者可以被配置成用以延遲通過它的波形一可組態設定的數額。 如下面的更詳細說明,該延遲網格的操作可以由一或多個參數來控制,該些參數會控制該延遲網格網路中的延遲網格單元如何相互通信並且控制每一個延遲網格單元延遲通過該單元之訊號的操作方式。
在206處取得該經編碼的波形的(多個)有時間延遲的版本之 後,方法200會前進至208,於該處,該經編碼的波形的該(些)有時間延遲的版本會被一解碼電路系統解碼,以便取得一或更多個經解碼的波形。該解碼電路系統可以為任何合宜的類型並且可以與該單基板超音波裝置的基板整合,例如,參考圖1所述的解碼電路系統109。該解碼可以利用任何合 宜的解碼技術來實施(本文中已說明其範例)。於某些實施例中,一經解碼的波形可以僅由數量大於被用來取得該經解碼的波形的經編碼的波形的有時間延遲的版本的位元所組成。
在208處取得該(些)經解碼的波形之後,方法200會前進至 210,於該處,該些經解碼的波形會被用來驅動該一或更多個超音波元件(舉例來說,參考圖1所述的超音波元件111),用以產生超音波訊號。該些經解碼的波形中的至少一部分(舉例來說,全部)可以平行驅動多個超音波元件,用以產生一所希望的超音波。本文已於上面說明過可依此方式產生的超音波的範例。
應該明白的係,方法200為解釋性並且可以採用變化例。舉 例來說,於某些實施例中,方法200可以被實施為分別不實施204與208處的編碼與解碼。於此些實施例中,一波形會在202處被產生,並且於206處會取得該已產生波形的一或更多個有時間延遲的版本。接著,該已產生波形的該(些)有時間延遲的版本會被提供至該(些)超音波換能器,用以在210處進行傳送。
還應該明白的係,方法200可以由一超音波裝置的一或多個 超音波電路系統模組中的每一者來實施,該超音波裝置包括多個此類模組。包括多個超音波電路系統模組的單基板超音波裝置的其中一種實施例顯示在圖3中。
圖3所示的係其上形成多個超音波電路系統模組304的一超 音波裝置的基板302(舉例來說,半導體基板)。如圖所示,一超音波電路系統模組304可以包括多個超音波元件306。一超音波元件306可以包括多個 超音波換能器308。
於圖中所示的實施例中,基板302包括144個模組,其被排 列成一具有72列與2行的陣列。然而,應該明白的係,單基板超音波裝置的基板可以包括任何合宜數量的超音波電路系統模組(舉例來說,至少兩個模組、至少十個模組、至少100個模組、至少1000個模組、至少5000個模組、至少10,000個模組、至少25,000個模組、至少50,000個模組、至少100,000個模組、至少250,000個模組、至少500,000個模組、介於兩個模組與一百萬個模組之間、…等),其可以被排列成一二維的模組陣列,該二維的模組陣列具有任何合宜的列數與行數或者具有任何其它合宜的方式。
於其中所示的實施例中,每一個模組包括64個超音波元 件,其被排列成一具有兩列與32行的陣列。然而,應該明白的係,一超音波電路系統模組可以包括任何合宜數量的超音波元件(舉例來說,一個超音波元件、至少兩個超音波元件、至少四個超音波元件、至少八個超音波元件、至少16個超音波元件、至少32個超音波元件、至少64個超音波元件、至少128個超音波元件、至少256個超音波元件、至少512個超音波元件、介於兩個元件與1024個元件之間、至少2500個元件、至少5,000個元件、至少10,000個元件、至少20,000個元件、介於1000個元件與20,000個元件之間、…等),其可以被排列成一二維的超音波元件陣列,該二維的超音波元件陣列具有任何合宜的列數與行數或者具有任何其它合宜的方式。
於圖中所示的實施例中,每一個超音波元件包括16個超音 波換能器,其被排列成一具有四列與四行的陣列。然而,應該明白的係,一超音波元件可以包括任何合宜數量的超音波換能器(舉例來說,一個、至 少兩個、至少四個、至少16個、至少25個、至少36個、至少49個、至少64個、至少81個、至少100個、介於一個元件與200個之間、…等),其可以被排列成一二維陣列,該二維陣列具有任何合宜的列數與行數(正方形或矩形)或者具有任何其它合宜的方式。
應該明白的係,上面所述的任何器件(舉例來說,超音波傳 送單元、超音波元件、超音波換能器)皆可以被排列成一維陣列、被排列成二維陣列、或者,被排列成任何其它合宜的方式。
如前面所述,一超音波電路系統模組可以包括除此一或更多 個超音波元件之外的電路系統。於某些實施例中,一超音波電路系統模組可以包括一或更多個波形產生器(舉例來說,兩個波形產生器、四個波形產生器、…等)、編碼電路系統(舉例來說,編碼電路系統103)、延遲網格電路系統(舉例來說,延遲網格電路系統105)、及/或解碼電路系統(舉例來說,包括一或更多個解碼電路的解碼電路系統109)。可以為超音波電路系統模組的一部分的電路系統的此些範例為解釋性而沒有限制意義,因為一超音波電路系統可以額外或者替代性包括任何其它合宜的電路系統。
於某些實施例中,一單基板超音波裝置可以包括模組互連電 路系統,其與該基板整合並且被配置成用以相互連接多個超音波電路系統模組,以便讓資料在該些超音波電路系統模組之中流動。舉例來說,該模組互連電路系統可以在相鄰的超音波電路系統模組之中提供連接。依此方式,一超音波電路系統模組可以被配置成用以提供資料給該裝置上的一或更多個其它超音波電路系統模組及/或從該裝置上的一或更多個其它超音波電路系統模組處接收資料。
於超音波電路系統模組被配置成用以彼此通信的實施例 中,一由其中一個超音波電路系統模組中的一波形產生器所產生(並且視情況被編碼)的波形的有時間延遲的版本可以被傳播至一或更多個超音波電路系統模組中的一或更多個超音波元件並且(在解碼之後,如果有實施編碼的話)由該一或更多個超音波元件來傳送。於一非限制性的範例中,一超音波場可以藉由將該已產生的波形朝外傳播通過所有該些超音波電路系統模組而藉由使用被設置在該基板中心附近的單一波形產生器來產生。將起源於一第一超音波電路系統模組的訊號傳播至一第二電路系統模組可以至少部分藉由傳播該訊號通過該第一超音波電路系統模組的延遲網格、該第一電路系統模組的延遲網格、以及分離該第一超音波電路系統模組及第二超音波電路系統模組的任何超音波電路系統模組的(多個)延遲網格來實施。因此,應該明白的係,模組互連電路系統可以包括用以連接不同超音波電路系統模組的延遲網格的電路系統。
延遲網格電路系統(舉例來說,圖1的延遲網格電路系統105) 的觀點可以參考圖4來進一步瞭解,圖4中圖解延遲網格電路系統403,其包括複數個延遲網格單元404。延遲網格電路系統403可以被配置成用以從輸入訊號電路系統402處接收輸入訊號並且提供輸出訊號給超音波傳送單元406。於圖中所示的實施例中,每一個延遲網格單元404的一輸入會被耦合至輸入訊號電路系統402的一輸出,該輸入訊號電路系統402被配置成用以提供一或更多個輸入訊號給延遲網格單元404。每一個延遲網格單元404的一輸出會被耦合至一對應的超音波傳送單元406的一輸入。據此,延遲網格電路系統403中的延遲網格單元404可以被配置成用以從輸入訊號電路 系統402處接收一輸入訊號,產生該輸入訊號的多個有時間延遲的版本,並且提供該輸入訊號的該些已產生的有時間延遲的版本給該些超音波傳送單元406。
於某些實施例中,輸入訊號電路系統402包括編碼電路系統 (舉例來說,圖1的編碼電路系統103),其被配置成用以提供經編碼的訊號作為延遲網格電路系統403的輸入訊號。該編碼電路系統可以提供藉由編碼一或多個波形產生器(舉例來說,圖1的波形產生器102)所產生的一或更多個波形所獲得的一或更多個經編碼的波形作為延遲網格單元404的輸入訊號。除此之外,或者,輸入訊號電路系統402可以包括一或多個波形產生器(舉例來說,一個波形產生器、兩個波形產生器、三個波形產生器、…等),其被配置成用以產生波形並且將該些波形提供給該些延遲網格單元404作為輸入訊號。
延遲網格電路系統403可以被耦合至任何合宜數量的超音 波傳送單元406(舉例來說,至少一個單元、至少兩個單元、至少四個單元、至少八個單元、至少十六個單元、至少32個單元、至少64個單元、至少128個單元、至少256個單元、單一超音波電路系統模組中的部分或全部超音波傳送單元、多個超音波電路系統模組中的部分或全部超音波傳送單元、…等)。
於圖中所示的實施例中,每一個延遲網格單元404的一輸出 會被耦合至一單一對應的超音波傳送單元406的一輸入。然而,於某些實施例中,一或多個延遲網格單元404可以被配置成用以提供多個輸出訊號給多個超音波傳送單元406,本文中所述技術的觀點於此方面並沒有限制。 這會參考圖5B作進一步討論。
延遲網格電路系統403包括一由多個互連的延遲網格單元 404所組成的網路。如下面的更詳細說明,每一個延遲網格單元404可以被配置成用以:從一或更多個來源(舉例來說,一或更多個其它延遲網格單元及/或輸入訊號電路系統402)處接收一或更多個輸入訊號;接收一或更多個控制訊號;至少部分以該些控制訊號為基礎對該(些)輸入訊號實施一或更多項動作而產生一或更多個輸出訊號;以及提供該些輸出訊號給一或多個目的地(舉例來說,一或更多個其它延遲網格單元404及/或一或更多個超音波傳送單元406)。
延遲網格電路系統403可以包括任何合宜數量的延遲網格 單元。於某些實施例中,延遲網格電路系統403可以包括與該延遲網格電路系統403耦合的超音波傳送單元的數量至少相同數量的延遲網格單元。 於一非限制性的範例中,延遲網格電路系統403可以包括與該延遲網格電路系統403耦合的超音波傳送單元的數量相同數量的延遲網格單元。於另一非限制性的範例中,延遲網格電路系統403可以包括與該延遲網格電路系統403耦合的超音波傳送單元的數量的至少兩倍(或者三倍、或者四倍、或者五倍、…等)數量的延遲網格單元。
一延遲網格單元可以被配置成用以對一輸入訊號實施眾多 類行動作中的任何動作,其包含,但是並不限制於下面知中的任何一或更多項動作:在將該輸入訊號輸出至一或更多個目的地之前先延持該輸入訊號;選擇並且提供該輸入訊號的一部分作為一或更多個目的地的輸出訊號;以及對該輸入訊號實施任何合宜的位元級算術運算及/或邏輯運算。
一延遲網格單元可以被配置成用以輸出該輸入訊號的不同 版本給不同的目的地。舉例來說,於某些實施例中,一延遲網格單元可以被配置成用以延遲該輸入訊號一第一數額並且提供該生成的有延遲的訊號給一或更多個延遲網格單元,並且延遲該輸入訊號一第二數額並且提供該生成的有延遲的訊號給一或更多個超音波傳送單元。
延遲網格單元404可以被配置成用以彼此通信(舉例來說, 接收輸入及/或提供輸出)。於某些實施例中,一延遲網格單元可以被配置成用以和該延遲網格電路系統中的一或更多個相鄰的延遲網格單元進行通信。舉例來說,如圖4中所示,一延遲網格單元被配置成用以和它的左右相鄰的延遲網格單元進行通信。於另一範例中,倘若該些延遲網格單元被排列在一二維的格柵中的話,一延遲網格單元可以被配置成用以和它的左、右、上、下相鄰的延遲網格單元進行通信。然而,應該明白的係,一延遲網格單元並不受限於和它相鄰的延遲網格單元進行通信,並且除此之外,或者,可以被配置成用以和該延遲網格電路系統中的任何其它延遲網格單元(舉例來說,對角線相鄰的延遲網格單元、相鄰延遲網格單元的相鄰延遲網格單元、相鄰延遲網格單元以外的延遲網格單元、同一列之中的延遲網格單元、同一行之中的延遲網格單元、…等)進行通信。
延遲網格電路系統可以受控用以響應於一或更多個延遲網 格電路系統控制訊號而產生該延遲網格輸入訊號的一組所希望的有時間延遲的版本。於某些實施例中,延遲網格電路系統可以被配置成用以響應於不同的延遲網格電路系統控制訊號而產生同一個延遲網格輸入訊號的一組不同的有時間延遲的版本。於某些實施例中,延遲網格電路系統可以受到 不同精確程度的控制(舉例來說,在所希望的時間週期裡面、精確至所希望的時脈循環數量、精確至該輸入波形的指定相位內、…等),用以產生該延遲網格輸入訊號的有延遲的版本。
一延遲網格電路系統控制訊號可以包括一或更多個延遲網 格單元控制訊號,用以控制該延遲網格之中的單獨延遲網格單元。一延遲網格單元控制訊號可以控制一延遲網格單元如何操作的各種觀點。圖5A所示的係被套用至延遲網格單元500(顯示在任何延遲網格電路系統的外面)的一延遲網格單元控制訊號的多個訊號部。
於某些實施例中,一延遲網格單元控制訊號可以指定該延遲 網格單元要接收一輸入訊號的來源。舉例來說,用於一延遲網格單元的延遲網格單元控制訊號可以指定另一延遲網格單元為該延遲網格單元要接收一輸入訊號的來源或者可以選擇延遲網格輸入電路系統(舉例來說,波形產生器、一波形產生器的編碼器編碼輸出、…等)作為該延遲網格單元要接收一輸入訊號的來源。如圖5A中所示,舉例來說,一延遲網格單元控制訊號包括訊號部502a,用以控制該延遲網格單元500要接收一輸入訊號的來源選擇結果。於圖5A的實施例中,訊號部502a控制介於四個相鄰延遲網格單元以及一波形產生器之中的來源選擇結果(舉例來說,藉由控制一多工器)。於其它實施例中,訊號部502a可以控制介於任何合宜數量延遲網格單元(相鄰或不相鄰)及/或任何合宜數量波形產生器之中的來源選擇結果,本文中所述技術的觀點於此方面並沒有限制。
一延遲網格單元可以包括一緩衝器(舉例來說,其被施行為 一移位暫存器、可定址的記憶體、及/或任何其它合宜的方式),其被配置成 用以儲存該延遲網格單元所接收的(舉例來說,接收自另一延遲網格單元、接收自一波形產生器、…等)一或更多個輸入訊號。據此,於某些實施例中,一延遲網格單元控制訊號可以指定該緩衝器中該輸入訊號要被寫入的(多個)位置。如圖5A中所示,舉例來說,一延遲網格單元控制訊號包括訊號部502c(稱為「寫入選擇」),用以指定該緩衝器中該輸入訊號要被寫入的(多個)位置。於一非限制性的範例中,於該緩衝器被施行為一移位暫存器的實施例中,訊號部502c可以指定該移位暫存器裡面該輸入訊號要被寫入的位置。 於另一非限制性的範例中,於該緩衝器被施行為一可定址記憶體的實施例中,訊號部502c可以指定該輸入訊號要被連續寫入至該緩衝器的起始初始位置或者訊號部502c可以指定用以寫入該輸入訊號的一組位置。
於某些實施例中,一延遲網格單元控制訊號可以指定該緩衝 器中一要輸出之訊號要被讀取的(多個)位置。如圖5A中所示,舉例來說,一延遲網格單元控制訊號包括訊號部502b(稱為「讀取選擇」),用以指定該緩衝器中該輸出訊號要被讀取的(多個)位置。於一非限制性的範例中,於該緩衝器被施行為一移位暫存器的實施例中,訊號部502b可以指定該移位暫存器裡面該輸出訊號要被讀取的位置。於另一非限制性的範例中,於該緩衝器被施行為一可定址記憶體的實施例中,訊號部502b可以指定該輸出訊號要從該緩衝器處被連續讀取的起始初始位置或者訊號部502b可以指定用以讀取該輸出訊號的一組位置。
從上面可以明白,控制一延遲網格單元的緩衝器中要寫入一 輸入訊號的(多個)位置以及要從該緩衝器中讀取一輸出訊號的位置允許指定在將一訊號輸出至一目的地(舉例來說,另一延遲網格單元及/或一超音波 傳送單元)之前延遲該訊號進入該延遲網格單元的時間數額(舉例來說,藉由時脈取樣的數量來指定)。依此方式,延遲網格電路系統中的每一個延遲網格單元可以受控用以延遲個別輸入訊號指定的數額。應該明白的係,不同的延遲網格單元可以受控用以延遲個別外來的輸入訊號不同的數額,本文中所提供之技術的觀點於此方面並沒有限制。
據此,一延遲網格單元控制訊號可以包括:一重置訊號(舉 例來說,圖5A中被稱為「RST」的訊號部502d),用以重置該延遲網格單元;一時脈訊號(舉例來說,圖5A中被稱為「CLK」的訊號部502e);一用以表示是否反轉正在被輸出至該超音波傳送單元之波形的訊號(舉例來說,請參見圖5A中被稱為「反向(invert)」的訊號部502f);一用以表示是否致能或禁能該延遲網格單元的訊號(舉例來說,請參見圖5A中被稱為「單元致能(unit enable)」的訊號部502g);以及一用以表示是否致能或禁能送往一或更多個輸出目的地(例如,一對應超音波傳送單元中的脈衝器或者一或更多個其它延遲網格單元)之輸出的訊號(舉例來說,請參見圖5A中被稱為「輸出致能(output enable)」的訊號部502h)。該些單元致能(unit enable)訊號與輸出致能(output enable)訊號可以被用來關閉該延遲網格單元的電源,或者致能其作為一緩衝器但是阻止送往一或更多個輸出目的地(例如,該(些)對應的超音波傳送單元)的輸出。
圖5B所示的係根據本文中所述之某些實施例的一解釋性延 遲網格單元550的架構。延遲網格單元550可以為任何合宜的延遲網格單元,並且舉例來說,可以為參考圖4所述的多個延遲網格單元404中的其中一者。延遲網格單元550可以由一或更多個延遲網格單元控制訊號來控制。 如圖所示,延遲網格單元550係由延遲網格控制訊號556來控制。延遲網格控制訊號556包括訊號部576a、576b、576c(下面會作更詳細的說明)、以及訊號部576d(其包括前面所述的時脈訊號與重置訊號)。延遲網格單元控制訊號556可以由與其上整合延遲網格單元550的單基板裝置整合一或更多個「晶片上」器件來提供,可以由被耦合至該單基板超音波裝置但是並未與其整合的一或更多個「晶片外」器件(例如,一或更多個計算裝置)來提供,或者由一或更多個晶片上器件及一或更多個晶片外器件來提供。
延遲網格單元550包括受到延遲網格控制訊號部576a(圖中 稱為「指令選擇(direction select)」)控制的輸入電線566,用以選擇延遲網格單元550接收輸入的來源。於某些實施例中,輸入電線566可以包括可由訊號部576a控制的至少一多工器,用以選擇一輸入來源。如圖所示,延遲網格單元550可以受控用以從相鄰的延遲網格單元552中的其中一者處或是從其它輸入電路系統處(例如,從一或更多個波形產生器(圖中顯示為(多個)波形產生器554)或編碼電路系統(圖中並未顯示)處)接收一輸入訊號。應該明白的係,一延遲網格單元並不受限於僅從一或更多個相鄰的延遲網格單元處(舉例來說,該延遲網格單元的左邊的單元、右邊的單元、上方的單元、以及下方的單元)接收輸入,並且舉例來說,可以被配置成用以從該單基板超音波裝置中的延遲網格電路系統的任何其它延遲網格單元部分處接收輸入。舉例來說,於該些延遲網格單元被排列在一二維格柵中的實施例中,一延遲網格單元可以被配置成用以從位於該延遲網格單元對角線的另一延遲網格單元處接收輸入。
延遲網格單元550進一步包括延遲單元565,其至少部分被 用來儲存延遲網格單元550透過輸入電線566所收到的輸入訊號。延遲網格單元550中,而非延遲單元565中,的電路系統可被稱為「網格連結」。如圖5B中所示,網格連結包含輸入電線566、輸出電線574、以及輸出電線575。
延遲單元565包括:緩衝器570;寫入選擇電路系統568, 其被配置成用以(響應於「寫入選擇(write select)」延遲網格單元訊號部576b)來控制延遲網格單元550所收到的一輸入訊號要被寫入的緩衝器570中的(多個)位置;以及讀取選擇電路系統572,其被配置成用以(響應於「讀取選擇(read select)」訊號部576c)來控制用以讀取訊號的緩衝器570中的(多個)位置,以便被提供成為送往一或更多個輸出目的地的輸出訊號。應該明白的係,延遲單元565為一延遲單元的其中一實施例並且一延遲單元可以任何其它合宜的方式來施行,本文中所述技術的觀點於此方面並沒有限制。
於某些實施例中,緩衝器570可以被施行為一移位暫存器。 於此些實施例中,寫入選擇電路系統568及讀取選擇電路系統572中的每一者可以利用一或更多個多工器來施行,它們分別被配置成用以選擇緩衝器570中要寫入一輸入訊號以及要讀取一輸出訊號的(多個)位置。於其它實施例中,緩衝器570可以被施行為一可定址記憶體。於此些實施例中,寫入選擇電路系統568及讀取選擇電路系統572中的每一者可以被配置成用以利用一或更多個指標來選擇緩衝器570中要寫入一輸入訊號以及要讀取一輸出訊號的(多個)位置。該指標可以任何合宜的方式遞增,本文中所提供之技術的觀點於此方面並沒有限制。應該明白的係,緩衝器570並不受限於被施行為一移位暫存器或可定址記憶體並且可以任何其它合宜的方式來施 行。
不論緩衝器570的施行方式為何,緩衝器570都可以被配置 成用以儲存一任何合宜大小的輸入訊號。於一非限制性的範例中,緩衝器570可以被配置成用以儲存10個數值或更少,20個數值或更少,多個數值位元或更少,50個數值或更少,100個數值或更少,介於10個至100個數值之間,介於50個至500個數值之間,介於100個至1000個數值之間,介於500個至1000個數值之間,或是任何其它合宜數量的數值。接著,每一個數值皆可以僅由任何合宜數量的位元所組成(舉例來說,一個位元、兩個位元、四個位元、八個位元、16個位元、32個位元、64個位元、128個位元、256個位元、…等)。
來自延遲網格單元550的一輸出訊號可以被提供至一或更 多個輸出目的地。如圖所示,延遲網格單元550包括輸出電線574,其被配置成用以從緩衝器570處提供一輸出訊號至一或更多個延遲網格單元558(其可能相同於或是不同於延遲網格單元552)。輸出電線574可以包括任何合宜數量的電線,以便提供該輸出訊號給任何合宜數量的延遲網格單元(舉例來說,一個、兩個、三個、四個、五個、…等)。
除此之外,延遲網格單元550還可以被配置成用以從緩衝器 570處提供一輸出訊號至一或更多個超音波傳送單元560。超音波傳送單元可以為任何合宜的超音波傳送單元,並且舉例來說,可以為參考圖4所述的超音波傳送單元406。於圖中所示的實施例中,延遲網格單元550被配置成用以透過電線575從緩衝器570處提供一輸出訊號給多工器559,其可以受控用以選擇多個超音波傳送單元560中的其中一者以提供該輸出訊號給 該超音波傳送單元。多工器559可以為任何合宜的類型並且可以被配置成用以選擇多個超音波傳送單元560中的任何一者(或是任何合宜的數量)以提供該輸出訊號給該超音波傳送單元。舉例來說,多工器559可以被配置成用以選擇兩個或三個或四個或五個超音波傳送單元560中的任何一者。 於其它實施例中,延遲網格電路系統可能不包含多工器559(如多工器559的虛線所示)並且延遲網格單元550可以被配置成用以透過電線575從緩衝器570處直接提供一輸出訊號至超音波傳送單元560。
應該明白的係,延遲網格單元550可以提供不同的輸出訊號 至(多個)延遲網格單元558以及(多個)超音波傳送單元560。舉例來說,延遲網格單元550可以提供藉由延遲一輸入訊號一第一數額而取得的一輸出訊號給(多個)延遲網格單元558並且提供藉由延遲該輸入一不同於該第一數額的第二數額而取得的一不同的輸出訊號給(多個)超音波傳送單元560。不過,於某些實施例中,一延遲網格單元可以輸出相同的輸出訊號給所有輸出目的地(舉例來說,提供相同輸出訊號給(多個)延遲網格單元558以及(多個)超音波傳送單元560),本文中所提供之揭示內容的觀點於此方面並沒有限制。
如上面所述,延遲網格電路系統可以被配置成用以藉由將一 輸入訊號(舉例來說,從一波形產生器處輸出的波形)傳播經過該延遲網格電路系統中的複數個延遲網格單元來延遲該輸入訊號。每一個延遲網格單元皆可以被配置成用以將該輸入訊號的一版本延遲一指定的數額。這會在圖6中作進一步圖解,圖6顯示延遲網格電路系統600,其包括多個延遲網格單元602(圖6的每一列對應於單一延遲網格單元)。每一個延遲網格單元602 會被配置成用以提供一輸出訊號給個別的超音波傳送單元604。每一個延遲網格單元602皆包括一緩衝器,其被施行為一連串的移位暫存器與多工器。 離開一第一延遲網格單元並且進入一第二延遲網格單元的每一個虛線箭頭皆表示一訊號從該第一延遲網格單元的緩衝器中被讀取的位置以及從該第一延遲網格單元處被讀取的訊號要被寫入至該第二延遲網格單元的緩衝器中的位置。如上面所述,該些讀取位置與寫入位置可以藉由利用延遲網格單元控制訊號來指定一圖6中所示的箭頭提供一組延遲網格單元控制訊號的代表符,其指定圖6中所示的延遲網格單元602的讀取位置與寫入位置。 也就是,在圖6所示的係的網格連結中,延遲網格單元602的讀取位置與寫入位置係由一組延遲網格單元控制訊號來指定。
此些延遲網格單元控制訊號的淨結果會導致圖6中所示的 輸入訊號的延遲。如圖所示,被輸入至延遲網格電路系統600的訊號的一版本會沿著頂端的延遲網格單元602傳播並且在其傳播至該頂端的延遲網格單元的輸出之前被延遲六個時間單位(其中,舉例來說,一個時間單位對應於一或多個時脈循環)。傳播經過該延遲網格電路系統600(舉例來說,從該頂端的延遲網格單元開始並且經過第二個至第五個延遲網格單元中的一或更多者)並且從第二個至第五個延遲網格單元中任一者處被輸出的延遲網格輸入訊號的版本會被延遲七個時間單位。傳播經過該延遲網格電路系統600(舉例來說,從該頂端的延遲網格單元開始並且依序沿著第二個至第八個延遲網格單元中的一或更多者)並且從第六個至第八個延遲網格單元中任一者處被輸出的延遲網格輸入訊號的版本會被延遲八個時間單位。
圖7、8A、8B、8C、以及8D所示的係根據本文中所述之某 些實施例的編碼與解碼電路系統的操作,該編碼與解碼電路系統可以為一單基板超音波裝置的電路系統的一部分。如上面所述,編碼電路系統可以被配置成用以施行壓縮編碼,俾使得一經編碼的訊號僅由數量少於被編碼的輸入訊號的位元所組成。接著,該解碼電路系統可以被配置成用以解壓縮該經編碼的訊號,用以取得一具有和被編碼的輸入訊號相同數量的位元(或是較大數量的位元)的經解碼的訊號。於某些實施例中,該編碼電路系統可以被配置成用以編碼一K狀態的訊號(其中,K為大於等於2的任何整數),用以取得一經編碼的L狀態的訊號(其中,L為大於等於1的任何整數,L小於K)。接著,該解碼電路系統可以被配置成用以解碼一L狀態的訊號,用以取得一K狀態的經編碼的訊號。
如圖7中所示的一非限制性範例,編碼電路系統702可以被 配置成用以編碼一三狀態的訊號(可以利用兩位位元來代表其狀態的訊號),用以取得一二狀態的訊號(也就是,可以利用一位位元來代表其狀態的訊號),而解碼電路系統704可以被配置成用以解碼一二狀態的訊號,用以取得一三狀態的訊號。此編碼/解碼可以用來減少施行延遲網格電路系統所需要的記憶體的數額。舉例來說,當利用壓縮編碼來編碼被提供至延遲網格電路系統的輸入訊號時,該延遲網格電路系統中的延遲網格單元可以利用較小型的緩衝器來施行。
於某些實施例中,編碼電路系統702與解碼電路系統704可 以如圖8A與8B中所示的有限狀態機所示般來操作。圖8A所示的係於某些實施例中代表編碼電路系統702之操作的有限狀態機(Finite State Machine,FSM)800。圖8B所示的係於某些實施例中代表解碼電路系統704之操作的 FSM 810。
FSM 800被配置成用以編碼具有數值+1、0、以及-1的三元 式波形,以便取得一數值代表狀態轉移的二元式波形。也就是,在每一個位置處,正在被編碼的波形會有數值+1、0、或-1,並且經編碼的波形會有數值0或1。於某些實施例中,由根據本文中所述之實施例的波形產生器所產生的波形可能不含連續性轉移(這基本上為三元式波形之頻寬的限制條件,因為其不允許高頻組成)。據此,於某些實施例中,FSM 800可以被配置成藉由在解碼時無法還原連續性狀態轉移的方式來編碼波形而善用該正在被編碼的波形的有限頻寬的性質,其可導致經編碼的波形的長度縮減(舉例來說,200%)。就此來說,倘若FSM 800被用來編碼一具有兩個連續性轉移的波形的話,此些轉移可能無法在解碼時被還原。依照此意義,該編碼/解碼技巧為有損失。舉例來說,倘若波形「0+1 0-1 0-1 0」被FSM 800編碼並且接著被FSM 810解碼的話,該經解碼的波形可能為「0+1+1-1-1-1-1」-原來的波形沒有被還原。
如圖所示,FSM 800包括四種狀態:「0」、「00」、「sgn」狀態 以及「sgn*」狀態。「sgn」狀態對應於數值被用來施行該FSM 800並且佔有數值0或1的位元數值。請注意,「sgn」位元的數值在該些狀態轉移的其中兩者會改變。「sgn*」狀態代表對應波形數值「+1」與「-1」。圖中的箭頭代表狀態之間的狀態轉移。每一個數值上的編號代表編碼。符號「X」表示和編碼目的無關的數值。
FSM 810被配置成用以反轉由FSM 800所實施的編碼。也就 是,FSM 810被配置成用以將佔有數值0與1(在該波形中的每一個位置處) 的二元式波形解碼為佔有數值+1、0、以及-1(在該波形中的每一個位置處)的三元式波形。如圖所示,FSM 810包括三種狀態:「0」、「sgn」狀態、以及「sgn*」狀態。如FSM 800的情況中,「sgn」狀態佔有數值0或1;「sgn*」狀態代表對應波形狀態「+1」與「-1」,並且符號「X」表示和解碼目的無關的數值。
於某些實施例中,編碼電路系統702以及解碼電路系統704 可以如圖8C與8D中所示的有限狀態機所示般來操作。圖8C所示的係於某些實施例中代表編碼電路系統702之操作的有限狀態機(FSM)820。圖8C的FSM 820的操作的轉移表顯示在下面的表1中。圖8D所示的係於某些實施例中代表解碼電路系統704之操作的FSM 830。圖8D的FSM 830的操作的轉移表顯示在下面的表2中。
圖8C的FSM 820和圖8A的FSM 800的差異在於狀態「0」 與狀態「sgn*」之間的轉移的數值係從分別從(1,!sgn)與(1,sgn)改變為(1,1)與(1,0)。圖8D的FSM 830和圖8B的FSM 810的差異亦相同。當編碼電路系統702以及解碼電路系統704分別如FSM 820以及FSM 830般地操作時,改變輸入波形中的一位位元(舉例來說,該輸入波形的第二位元)可能會在解碼時導致該波形被反向(舉例來說,於每一個數值佔有數值-1、0、或是1的三元式波形中,反向的效果為每一個-1會變成+1並且每一個+1會變成-1)。 此功能於包含編碼/解碼電路系統的實施例中可能有優點,因為其提供一種藉由使用超音波傳送單元中的解碼電路系統來反向一波形的有效方式;因而不需要用於實施反向的額外電路系統。
本文中所述技術的觀點可以提供一或更多項好處,某些好處 已於前面說明過。現在說明的係此些好處的某些非限制性範例。應該明白的係,並非所有觀點與實施例都必須提供現在所述的所有好處。進一步言之,應該明白的係,本文中所述技術的觀點亦可能提供現在所述好處以外 的額外好處。
本技術的觀點提供一種單基板超音波裝置,其包括節省空間 且節省電力的電路系統來提供所希望的波形給用於產生醫療相關超音波場的超音波換能器。該電路系統可以於某些實施例中完全數位化,並且可以與該些超音波換能器整合於單一基板(例如,一CMOS基板)上。該電路系統包括一延遲網格,其可以讓該超音波裝置於其上整合的波形產生器少於超音波換能器。
根據本申請案的一項觀點,本發明提供一種設備,其包括: 一基板;一與該基板整合的第一超音波傳送單元;以及與該基板整合的延遲網格電路系統,其被耦合至該第一超音波傳送單元的一輸入並且被配置成用以輸出一對應於由一波形產生器所產生之波形的延遲網格電路系統輸入訊號的有時間延遲的版本給該第一超音波傳送單元。現在將說明此項觀點的各種實施例,該些實施例可以單獨使用或者以任何組合來使用。
於其中一實施例中,該設備進一步包括該波形產生器,並且 於某些此類實施例中,該波形產生器會與該基板整合。
於其中一實施例中,該設備進一步包括與該基板整合的編碼 電路系統。該編碼電路系統被配置成用以編碼由該波形產生器所產生的波形而產生該延遲網格電路系統輸入訊號。於某些此類實施例中,該波形產生器有一輸出被耦合至該編碼電路系統的一輸入,並且該編碼電路系統有一輸出被耦合至該延遲網格電路系統的一輸入。於某些實施例中,該編碼電路系統被配置成用以施行一N對M位元編碼器,其中,N與M中的每一者皆為正整數,且其中,N大於M。於某些實施例中,該編碼電路系統被 配置成用以施行一2對1位元編碼器。
於其中一實施例中,該延遲網格電路系統為可程式化。
於其中一實施例中,該延遲網格電路系統包括一第一延遲網格單元,其被配置成用以接收一延遲網格單元控制訊號以及一延遲網格單元輸入訊號,並且用以延遲該延遲網格單元輸入訊號一時間數額而產生一延遲網格單元輸出訊號,該時間數額係至少部分以該延遲網格單元控制訊號為基礎來決定。於某些此類實施例中,該延遲網格電路系統進一步包括被耦合至該第一延遲網格單元的複數個延遲網格單元,該複數個延遲網格單元包含至少一第二延遲網格單元以及一第三延遲網格單元。該第一延遲網格單元進一步被配置成用以從該第二延遲網格單元處接收該延遲網格單元輸入訊號並且提供該延遲網格單元輸出訊號給該第三延遲網格單元。
於其中一實施例中,該第一超音波傳送單元包括至少一超音波元件,其包括至少一超音波換能器。於某些此類實施例中,該至少一超音波元件包括複數個超音波元件,該複數個超音波元件中的每一者皆包括至少一超音波換能器,並且於某些實施例中包括複數個超音波換能器。該第一超音波傳送單元包括解碼電路系統,其被配置成用以解碼該延遲網格電路系統輸入訊號的有時間延遲的版本,用以取得一經解碼的波形。該解碼電路系統被配置成用以施行一M對N位元解碼器,其中,N與M中的每一者皆為正整數,其中,M小於N。於某些實施例中,該解碼電路系統被配置成用以施行一1對2位元解碼器。於某些實施例中,該至少一超音波換能器被配置成用以傳送一對應於該經解碼的波形的超音波訊號。
於其中一實施例中,該波形產生器可配置成用以產生下面一 或更多者:脈衝波、連續波、有碼的激發訊號、或是啁啾波形。於某些實施例中,該啁啾波形為一線性頻率調變(LFM)啁啾波。
於其中一實施例中,該基板為一互補式金屬氧化物半導體 (CMOS)基板。
於其中一實施例中,該設備進一步包括與該基板整合的複數 個超音波傳送單元,其中,該延遲網格電路系統被耦合至該複數個超音波傳送單元中每一者的一輸入。於某些實施例中,該延遲網格電路系統被配置成用以輸出對應於由一波形產生器所產生之波形的該延遲網格電路系統輸入訊號的一個別有時間延遲的版本至該複數個超音波傳送單元中的每一者。於某些實施例中,該延遲網格電路系統被配置成用以輸出對應於由一波形產生器所產生之波形的該延遲網格電路系統輸入訊號的複數個有時間延遲的版本至該複數個超音波傳送單元。於某些實施例中,該複數個超音波傳送單元包括複數個解碼電路以及複數個超音波換能器,該複數個超音波傳送單元中的每一者皆包括該複數個解碼電路中的至少其中一者以及該複數個超音波換能器中的至少其中一者。於某些實施例中,該複數個解碼電路被配置成用以解碼該延遲網格電路系統輸入訊號的該複數個有時間延遲的版本,用以取得複數個經解碼的波形。
於某些實施例中,該複數個超音波換能器被配置成用以至少 部分藉由傳送對應於該複數個經解碼波形的多個超音波訊號而產生一超音波場。於某些實施例中,該複數個超音波換能器被配置成用以藉由平行傳送對應於該複數個經解碼波形中二或更多者的多個超音波訊號而產生該超音波場。於某些實施例中,該超音波場為一具有方位角對稱性的場、有仰 角對稱性的場、有圓柱形對稱性的場、有球形對稱性的場,或者為一平面波場。
根據本申請案的一項觀點,本發明提供一種設備,其包括: 一基板;與該基板整合的複數個波形產生器;與該基板整合的複數個超音波傳送單元;以及與該基板整合的延遲網格電路系統。該延遲網格電路系統被耦合至該複數個超音波傳送單元的輸入並且被配置成用以輸出對應於由該複數個波形產生器所產生之複數個波形的延遲網格電路系統輸入訊號的複數個有時間延遲的版本給該複數個超音波傳送單元。現在將說明此項觀點的各種實施例,該些實施例可以單獨使用或者以任何組合來使用。
於其中一實施例中,該設備進一步包括編碼電路系統,其與 該基板整合並且包括複數個編碼電路,其中,該些編碼電路中的每一者皆被耦合至該複數個波形產生器中至少其中一者的一輸出。該些編碼電路中的每一者皆包括一被耦合至該延遲網格電路系統之一輸入的輸出。於某些實施例中,該編碼電路系統被配置成用以至少部分藉由編碼該複數個波形產生器所產生的複數個波形而產生該些延遲網格電路系統輸入訊號,並且將該些延遲網格電路系統輸入訊號輸出至該延遲網格電路系統。
於其中一實施例中,該複數個超音波傳送單元包括複數個解 碼電路以及複數個超音波換能器,該複數個超音波傳送單元中的每一者皆包括該複數個解碼電路中的至少其中一者以及該複數個超音波換能器中的至少其中一者。於某些實施例中,該複數個解碼電路被配置成用以解碼該延遲網格電路系統輸入訊號的該複數個有時間延遲的版本,用以取得複數個經解碼的波形。於某些實施例中,該複數個超音波換能器被配置成用以 至少部分藉由傳送對應於該複數個經解碼波形的多個超音波訊號而產生一超音波場。於某些實施例中,該複數個超音波換能器被配置成用以藉由平行傳送對應於該複數個經解碼波形中二或更多者的多個超音波訊號而產生該超音波場。於其中一實施例中,該超音波場為一具有方位角對稱性的場、有仰角對稱性的場、有圓柱形對稱性的場、有球形對稱性的場,或者為一平面波場。
於其中一實施例中,該延遲網格電路系統為可程式化。於其 中一實施例中,該延遲網格電路系統為可重新配置。於某些實施例中,該延遲網格電路系統被配置成受控於一或更多個延遲網格控制訊號。
根據本申請案的一項觀點,本發明提供一種設備,其包括: 一互補式金屬氧化物半導體(CMOS)基板;至少一波形產生器,其與該CMOS基板整合並且被配置成用以產生至少一初始波形;與該CMOS基板整合的編碼電路系統,其被耦合至該至少一波形產生器的至少一輸出,並且被配置成用以編碼該至少一初始波形,以便產生至少一經編碼的波形。該設備進一步包括與該CMOS基板整合的延遲網格電路系統,其被耦合至該編碼電路系統的至少一輸出,並且被配置成用以產生該至少一經編碼的波形的複數個有時間延遲的版本。該設備進一步包括與該CMOS基板整合的複數個超音波傳送單元,其被耦合至該延遲網格電路系統的複數個輸出。該複數個超音波傳送單元包括:解碼電路系統,其被配置成用以解碼該至少一經編碼的波形的該複數個有時間延遲的版本,以便產生複數個經解碼的波形;以及複數個超音波換能器,其被配置成用以至少部分藉由同時傳送對應於該複數個經解碼的波形的多個超音波訊號來產生一超音波場。現在將 說明此項觀點的各種實施例,該些實施例可以單獨使用或者以任何組合來使用。
於其中一實施例中,該至少一波形產生器包括複數個波形產 生器以及該編碼電路系統包括一用於該複數個波形產生器中每一者的編碼電路。
於其中一實施例中,該延遲網格電路系統為可程式化。於其 中一實施例中,該延遲網格電路系統為可重新配置。
於其中一實施例中,該設備僅由數量少於超音波傳送單元的 波形產生器所組成。於其中一實施例中,該設備僅由數量為波形產生器之至少兩倍、至少四倍、至少八倍、至少十六倍、至少三十二倍、至少六十四倍的超音波傳送單元所組成。
於其中一實施例中,該超音波場為一具有方位角對稱性的 場、有仰角對稱性的場、有圓柱形對稱性的場、有球形對稱性的場,或者為一平面波場。
根據本申請案的一項觀點,本發明提供一種方法,其包括利 用單基板超音波裝置來實施:編碼由一波形產生器所產生的波形,以便取得一經編碼的波形;產生該經編碼的波形的複數個有時間延遲的版本;解碼該經編碼的波形的該複數個有時間延遲的版本,以便取得複數個經解碼的波形;以及至少部分藉由利用複數個超音波元件來平行傳送對應於該複數個經解碼的波形的多個超音波訊號來產生一超音波場。現在將說明此項觀點的各種實施例,該些實施例可以單獨使用或者以任何組合來使用。
於其中一實施例中,該波形產生器會與該單基板超音波裝置 整合,並且該方法進一步包括產生該波形。
於其中一實施例中,編碼該波形包括利用一2對1位元編碼 器。
於其中一實施例中,解碼該經編碼的波形的該複數個有時間 延遲的版本包括利用至少一1對2位元解碼器。
於其中一實施例中,該超音波場為一具有方位角對稱性的 場、有仰角對稱性的場、有圓柱形對稱性的場、有球形對稱性的場,或者為一平面波場。
本文已經說明本申請案之技術的數項觀點與實施例,應該明 白的係,熟習本技術的人士便可輕易地進行各種改變、修正、以及改良。 此些改變、修正、以及改良皆希望落在本申請案中所述技術的精神與範疇裡面。舉例來說,熟習本技術的人士便會輕易設計出用以實施本文中所述功能及/或達成本文中所述結果及/或一或更多項本文中所述優點的各式各樣其它構件及/或結構,並且此些改變及/或修正中的每一者均被視為落在本文中所述實施例的範疇裡面。熟習本技術的人士僅利用一般的實驗便會明瞭或者能夠確認本文中所述特定實施例的許多等效例。所以,應該瞭解的 係,前面的實施例僅透過範例來呈現,並且在隨附申請專利範圍及其等效 範圍的範疇內,亦可以本文中明確說明以外的方式來實行本發明的創新實施例。此外,倘若本文中所述的特點、系統、物品、材料、工具、及/或方法沒有彼此不一致的話,那麼,二或更多個此些特點、系統、物品、材料、工具、及/或方法的任何組合便包含在本揭示內容的範疇裡面。
另外,如本文所述,本發明的某些觀點可以被具現為一或更 多種方法。被實施作為該方法之一部分的動作亦可以任何合宜方式來排序。據此,本發明的實施例可以被建構為以不同於本文所闡述的順序來實施其動作,其可以包含同步實施某些動作,即使它們在解釋性實施例中被顯示為依序的動作。
本文中所定義及使用的所有定義均應該被理解為對照字典的定義、本文以引用的方式併入的文件中的定義、及/或該些被定義項目的一般意義。
除非清楚表示為相反意義,否則,本文在說明書中及申請專利範圍中所使用的不定冠詞「一」均應被理解為具有「至少其中一者」的意義。
本文在說明書中及申請專利範圍中所使用的詞組「及/或」均應被理解為具有該些被連結元件中「任一者或兩者兼具」的意義,也就是,於某些情況中一起出現並且於其它情況中分開出現的元件。配合「及/或」所列出的多個元件應該以相同方式來推斷,也就是,該些被連結元件中的「一或更多者」。藉由「及/或」詞組明確確認以外的元件可以視情況存在,不論是否和明確確認的元件有關或無關。因此,於一非限制性的範例中,當配合開放式語言(例如,「包括」)使用時,「A及/或B」能夠:於其中一實施例中僅表示A(視情況包含B以外的元件);於另一實施例中僅表示B(視情況包含A以外的元件);於又一實施例中表示A與B兩者(視情況包含其它元件);…等。
本文在說明書中及申請專利範圍中關於一或更多個元件組成的清單而使用的詞組「至少其中一者」應該被理解為具有從該元件清單 中的任何一或更多個元件處所選擇的至少其中一個元件的意義,但是未必包含該元件清單裡面所明確表列的每一個元件的至少其中一個元件並且沒有排除該元件清單中的元件的任何組合。此定義亦允許詞組「至少其中一者」所參照的元件清單裡面所明確表列的元件以外的元件可以視情況存在,不論是否和明確確認的元件有關或無關。因此,於一非限制性的範例中,「A與B中的至少其中一者」(或者,等效詞組為「A或B中的至少其中一者」,或者,等效詞組為「A及/或B中的至少其中一者」)能夠:於其中一實施例中表示至少一個A,其視情況包含一個以上的A,而沒有任何B存在(並且視情包含B以外的元件);於另一實施例中表示至少一個B,其視情況包含一個以上的B,而沒有任何A存在(並且視情況包含A以外的元件);於又一實施例中表示至少一個A,其視情況包含一個以上的A,以及至少一個B,其視情況包含一個以上的B(並且視情況包含其它元件);…等。
同樣地,本文中所使用的詞組與術語係為達說明的目的,而不應該被視為限制性。本文中所使用的「包含」、「包括」、或者「具有」、「含有」、「涉及」、以及它們的變化用語具有涵蓋表列在其後面的項目及其等效項目以及額外項目的意義。
在申請專利範圍中以及上面的說明書中,所有連接詞(例如,「包括」、「包含」、「載有」、「具有」、「含有」、「涉及」、「固持」、「由…所構成」、以及類似詞)均應被理解為開放式,也就是,其意義為包含,但是並不限制於。僅有連接詞「僅由…所組成」以及「基本上僅由…所組成」分別為封閉式連接詞或是半封閉式連接詞。
100‧‧‧單基板超音波裝置
101‧‧‧基板
102‧‧‧波形產生器
102a‧‧‧訊號
103‧‧‧編碼電路系統
104‧‧‧經編碼的波形
105‧‧‧延遲網格電路系統
106‧‧‧有時間延遲的版本
107‧‧‧超音波傳送單元
109‧‧‧解碼電路系統
111‧‧‧超音波元件

Claims (25)

  1. 一種設備,其包括:一基板;與該基板整合的複數個超音波傳送單元;以及與該基板整合的延遲網格電路系統,其被耦合至該複數個超音波傳送單元的輸入並且被配置成用以輸出對應於由一波形產生器所產生之波形的延遲網格電路系統輸入訊號的複數個有時間延遲的版本給該複數個超音波傳送單元。
  2. 根據申請專利範圍第1項的設備,其進一步包括:該波形產生器,其與該基板整合並且有一輸出被耦合至編碼電路系統的一輸入;以及該編碼電路系統,其與該基板整合並且有一輸出被耦合至該延遲網格電路系統的一輸入。
  3. 根據申請專利範圍第2項的設備,其中,該編碼電路系統進一步被配置成用以:至少部分藉由編碼該波形產生器所產生的波形而產生該延遲網格電路系統輸入訊號;以及將該延遲網格電路系統輸入訊號輸出至該延遲網格電路系統。
  4. 根據申請專利範圍第1項的設備,其中,該複數個超音波傳送單元包括複數個解碼電路以及複數個超音波換能器,該複數個超音波傳送單元中的每一者皆包括該複數個解碼電路中的至少其中一者以及該複數個超音波換能器中的至少其中一者。
  5. 根據申請專利範圍第4項的設備,其中,該複數個解碼電路中的至少其中一者被配置成用以解碼該延遲網格電路系統輸入訊號的該複數個有時間延遲的版本中的至少其中一者,以取得複數個經解碼波形。
  6. 根據申請專利範圍第5項的設備,其中,該複數個超音波換能器被配置成用以至少部分藉由傳送對應於該複數個經解碼波形的多個超音波訊號而產生一超音波場。
  7. 根據申請專利範圍第6項的設備,其中,該複數個超音波換能器進一步被配置成用以藉由平行傳送對應於該複數個經解碼波形中二或更多者的多個超音波訊號而產生該超音波場。
  8. 根據申請專利範圍第6項的設備,其中,該超音波場具有方位角對稱性。
  9. 根據申請專利範圍第6項的設備,其中,該超音波場具有仰角對稱性。
  10. 根據申請專利範圍第6項的設備,其中,該超音波場具有圓柱形對稱性。
  11. 根據申請專利範圍第6項的設備,其中,該超音波場具有球形對稱性。
  12. 根據申請專利範圍第6項的設備,其中,該超音波場為一平面波場。
  13. 根據申請專利範圍第1項的設備,其中,該延遲網格電路系統為可程式化。
  14. 根據申請專利範圍第1項的設備,其中,該延遲網格電路系統為可重新配置。
  15. 根據申請專利範圍第1項的設備,其中,該延遲網格電路系統進一 步被配置成用以:響應於一第一延遲網格控制訊號的輸入而輸出該延遲網格電路系統輸入訊號的該複數個有時間延遲的版本給該複數個超音波傳送單元;以及響應於一不同於該第一延遲網格控制訊號的第二延遲網格控制訊號的輸入而輸出對應於該延遲網格電路系統輸入訊號的第二複數個有時間延遲的版本給該複數個超音波傳送單元,其中,該延遲網格電路系統輸入訊號的該複數個有時間延遲的版本不同於該延遲網格電路系統輸入訊號的該第二複數個有時間延遲的版本。
  16. 根據申請專利範圍第15項的設備,其中,該複數個超音波傳送單元包括複數個解碼電路以及複數個超音波換能器,該複數個超音波傳送單元中的每一者皆包括該複數個解碼電路中的至少其中一者以及該複數個超音波換能器中的至少其中一者。
  17. 根據申請專利範圍第16項的設備,其中,該複數個解碼電路被配置成用以解碼該延遲網格電路系統輸入訊號的該複數個有時間延遲的版本,以取得第一複數個經解碼波形,並且進一步被配置成用以解碼該延遲網格電路系統輸入訊號的該第二複數個有時間延遲的版本,以取得第二複數個經解碼波形。
  18. 根據申請專利範圍第17項的設備,其中,該複數個超音波換能器被配置成用以至少部分藉由傳送對應於該第一複數個經解碼波形的多個超音波訊號而產生一第一超音波場,並且至少部分藉由傳送對應於該第二複數個經解碼波形的多個超音波訊號而產生一第二超音波場,其中,該第一超音波場的場類型不同於該第二超音波場。
  19. 根據申請專利範圍第1項的設備,其進一步包括:與該基板整合的複數個波形產生器,該複數個波形產生器包含該波形產生器;其中,該延遲網格電路系統進一步被配置成用以輸出對應於由該複數個波形產生器所產生之複數個波形的延遲網格電路系統輸入訊號的複數個有時間延遲的版本給該複數個超音波傳送單元,該延遲網格電路系統輸入訊號的該複數個有時間延遲的版本包含由該波形產生器所產生的延遲網格電路系統輸入訊號。
  20. 根據申請專利範圍第19項的設備,其中,該設備僅由數量少於超音波傳送單元的波形產生器所組成。
  21. 根據申請專利範圍第1項的設備,其中,該波形產生器與該基板整合並且被配置成用以產生一初始波形;其中,該設備進一步包括編碼電路系統,其與該基板整合,被耦合至該波形產生器的至少一輸出,並且被配置成用以編碼該初始波形而產生該延遲網格電路系統輸入訊號;以及其中,該複數個超音波傳送單元包括:解碼電路系統,其被配置成用以解碼該延遲網格電路系統輸入訊號的該複數個有時間延遲的版本,以產生複數個經解碼波形;以及複數個超音波換能器,其被配置成用以至少部分藉由同時傳送對應於該複數個經解碼波形的多個超音波訊號來產生一超音波場。
  22. 根據申請專利範圍第1項的設備,其中,該基板包括一互補式金屬氧化物半導體(CMOS)基板。
  23. 一種延遲電路,其被配置成用以接收一輸入波形並且產生複數個輸出波形,該延遲電路包括:一延遲電路控制器,其被配置成用以輸出一控制訊號;以及複數個延遲單元,該複數個延遲單元中的每一者皆包括一控制訊號輸入,其被配置成用以接收該控制訊號,且其中,該複數個延遲單元中的每一者皆被配置成以該控制訊號為基礎來選擇一延遲週期、一輸入訊號、以及一輸出路徑,且其中,該複數個輸出波形係以二或更多個延遲週期為基礎來產生。
  24. 根據申請專利範圍第23項的延遲電路,其中,該延遲電路控制器被配置成用以輸出一第一控制訊號,以便從該輸入訊號處產生第一複數個輸出波形,且其中,該延遲電路控制器進一步被配置成用以輸出一第二控制訊號,以便從該輸入訊號處產生第二複數個輸出波形。
  25. 根據申請專利範圍第23項的延遲電路,其中,該延遲電路被整合在一基板上,且其中,該延遲電路被配置成用以從一與該基板整合的波形產生器處接收該輸入波形,且其中,該延遲電路進一步被配置成用以輸出該複數個輸出波形給複數個超音波傳送單元。
TW104112351A 2014-04-18 2015-04-17 單基板超音波成像裝置的架構、相關設備及方法 TWI649580B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461981469P 2014-04-18 2014-04-18
US61/981,469 2014-04-18

Publications (2)

Publication Number Publication Date
TW201602617A true TW201602617A (zh) 2016-01-16
TWI649580B TWI649580B (zh) 2019-02-01

Family

ID=53175611

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107146175A TWI687710B (zh) 2014-04-18 2015-04-17 單基板超音波成像裝置的架構、相關設備及方法
TW104112351A TWI649580B (zh) 2014-04-18 2015-04-17 單基板超音波成像裝置的架構、相關設備及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW107146175A TWI687710B (zh) 2014-04-18 2015-04-17 單基板超音波成像裝置的架構、相關設備及方法

Country Status (9)

Country Link
US (5) US9229097B2 (zh)
EP (1) EP3132441B1 (zh)
JP (1) JP6552599B2 (zh)
KR (1) KR102399314B1 (zh)
CN (1) CN106461767B (zh)
AU (1) AU2015247494B2 (zh)
CA (1) CA2946120C (zh)
TW (2) TWI687710B (zh)
WO (1) WO2015161157A1 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8804457B2 (en) * 2011-03-31 2014-08-12 Maxim Integrated Products, Inc. Transmit/receive systems for imaging devices
JP6279706B2 (ja) 2013-03-15 2018-02-14 バタフライ ネットワーク,インコーポレイテッド 超音波デバイスおよび超音波システム
EP3024594A2 (en) 2013-07-23 2016-06-01 Butterfly Network Inc. Interconnectable ultrasound transducer probes and related methods and apparatus
JP6546267B2 (ja) 2014-04-18 2019-07-17 バタフライ ネットワーク,インコーポレイテッド 超音波撮像圧縮方法及び装置
CN106461767B (zh) 2014-04-18 2019-05-28 蝴蝶网络有限公司 单衬底超声成像装置的架构、相关设备和方法
KR102108616B1 (ko) 2014-10-07 2020-05-07 버터플라이 네트워크, 인크. 초음파 신호 처리 회로와 관련 장치 및 방법
EP3203915B1 (en) 2014-10-08 2023-12-06 BFLY Operations, Inc. Parameter loader for ultrasound probe and related apparatus and methods
JP6542047B2 (ja) * 2015-07-03 2019-07-10 キヤノンメディカルシステムズ株式会社 超音波診断装置
US9492144B1 (en) 2015-12-02 2016-11-15 Butterfly Network, Inc. Multi-level pulser and related apparatus and methods
US9705518B2 (en) 2015-12-02 2017-07-11 Butterfly Network, Inc. Asynchronous successive approximation analog-to-digital converter and related methods and apparatus
US10175347B2 (en) 2015-12-02 2019-01-08 Butterfly Network, Inc. Ultrasound receiver circuitry and related apparatus and methods
US9473136B1 (en) 2015-12-02 2016-10-18 Butterfly Network, Inc. Level shifter and related methods and apparatus
US10082488B2 (en) 2015-12-02 2018-09-25 Butterfly Network, Inc. Time gain compensation circuit and related apparatus and methods
US10187020B2 (en) 2015-12-02 2019-01-22 Butterfly Network, Inc. Trans-impedance amplifier for ultrasound device and related apparatus and methods
US10624613B2 (en) 2016-01-15 2020-04-21 Butterfly Network, Inc. Ultrasound signal processing circuitry and related apparatus and methods
EP3411730B1 (en) * 2016-02-04 2023-11-01 Koninklijke Philips N.V. Ultrasound imaging system and method
US10082565B2 (en) 2016-03-31 2018-09-25 Butterfly Network, Inc. Multilevel bipolar pulser
US10859687B2 (en) * 2016-03-31 2020-12-08 Butterfly Network, Inc. Serial interface for parameter transfer in an ultrasound device
US9778348B1 (en) 2016-03-31 2017-10-03 Butterfly Network, Inc. Symmetric receiver switch for bipolar pulser
US11154279B2 (en) 2016-03-31 2021-10-26 Bfly Operations, Inc. Transmit generator for controlling a multilevel pulser of an ultrasound device, and related methods and apparatus
US10856840B2 (en) 2016-06-20 2020-12-08 Butterfly Network, Inc. Universal ultrasound device and related apparatus and methods
US11712221B2 (en) 2016-06-20 2023-08-01 Bfly Operations, Inc. Universal ultrasound device and related apparatus and methods
US10231713B2 (en) 2016-09-13 2019-03-19 Butterfly Network, Inc. Analog-to-digital drive circuitry having built-in time gain compensation functionality for ultrasound applications
US11510648B2 (en) * 2017-01-25 2022-11-29 Canon Medical Systems Corporation Ultrasonic diagnostic apparatus, ultrasonic probe, and ultrasonic diagnostic assistance method
US11531096B2 (en) 2017-03-23 2022-12-20 Vave Health, Inc. High performance handheld ultrasound
US10469846B2 (en) 2017-03-27 2019-11-05 Vave Health, Inc. Dynamic range compression of ultrasound images
US11446003B2 (en) 2017-03-27 2022-09-20 Vave Health, Inc. High performance handheld ultrasound
US10856843B2 (en) 2017-03-23 2020-12-08 Vave Health, Inc. Flag table based beamforming in a handheld ultrasound device
US10755692B2 (en) 2017-06-19 2020-08-25 Butterfly Network, Inc. Mesh-based digital microbeamforming for ultrasound applications
WO2018236779A1 (en) 2017-06-20 2018-12-27 Butterfly Network, Inc. AMPLIFIER WITH INTEGRATED TIME GAIN COMPENSATION FOR ULTRASONIC APPLICATIONS
US11324484B2 (en) 2017-06-20 2022-05-10 Bfly Operations, Inc. Multi-stage trans-impedance amplifier (TIA) for an ultrasound device
KR20200019210A (ko) 2017-06-20 2020-02-21 버터플라이 네트워크, 인크. 초음파 디바이스를 위한 단일-종단 트랜스-임피던스 증폭기(tia)
CA3065214A1 (en) 2017-06-20 2018-12-27 Butterfly Network, Inc. Analog to digital signal conversion in ultrasound device
TW201904677A (zh) 2017-06-23 2019-02-01 美商蝴蝶網路公司 用於超音波裝置之差動超音波換能器元件
CN110313933A (zh) * 2018-03-30 2019-10-11 通用电气公司 超声设备及其用户交互单元的调节方法
WO2020097419A1 (en) 2018-11-09 2020-05-14 Butterfly Network, Inc. Trans-impedance amplifier (tia) for ultrasound devices
WO2020205949A1 (en) 2019-04-03 2020-10-08 Butterfly Network, Inc. Methods and apparatuses for elevational beamforming of ultrasound data
US11536818B2 (en) 2019-06-25 2022-12-27 Bfly Operations, Inc. Methods and apparatuses for processing ultrasound signals
CN114072062A (zh) 2019-06-25 2022-02-18 布弗莱运营公司 用于处理超声信号的方法和装置
CN114173671A (zh) 2019-07-25 2022-03-11 布弗莱运营公司 用于打开和关闭超声设备中的adc驱动器的方法和装置
CN114556140A (zh) 2019-09-19 2022-05-27 布弗莱运营公司 用于超声设备的对称接收器开关
CA3155022A1 (en) 2019-09-27 2021-04-01 Nevada J. Sanchez Methods and apparatuses for monitoring fetal heartbeat and uterine contraction signals
TW202210830A (zh) 2020-04-16 2022-03-16 美商蝴蝶網路公司 用於超音波裝置中之電路系統及/或換能器之內建自測試的方法和電路系統
US11808897B2 (en) 2020-10-05 2023-11-07 Bfly Operations, Inc. Methods and apparatuses for azimuthal summing of ultrasound data
US11881875B1 (en) * 2022-08-25 2024-01-23 Stmicroelectronics S.R.L. Waveform generator using a waveform coding scheme for both long states and toggle states
KR102625027B1 (ko) * 2023-03-24 2024-01-16 한국과학기술원 공간 초음파 변조기 및 이를 구비하는 초음파 장치와 이를 이용한 진폭변조 초음파의 생성방법

Family Cites Families (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594662A (en) 1982-11-12 1986-06-10 Schlumberger Technology Corporation Diffraction tomography systems and methods with fixed detector arrays
JPH0560734A (ja) * 1991-09-04 1993-03-12 Hitachi Constr Mach Co Ltd マトリクス切り換え装置
US7497828B1 (en) * 1992-01-10 2009-03-03 Wilk Ultrasound Of Canada, Inc. Ultrasonic medical device and associated method
US5269307A (en) 1992-01-31 1993-12-14 Tetrad Corporation Medical ultrasonic imaging system with dynamic focusing
US5722412A (en) 1996-06-28 1998-03-03 Advanced Technology Laboratories, Inc. Hand held ultrasonic diagnostic instrument
US7819807B2 (en) 1996-06-28 2010-10-26 Sonosite, Inc. Balance body ultrasound system
US6416475B1 (en) 1996-06-28 2002-07-09 Sonosite, Inc. Ultrasonic signal processor for a hand held ultrasonic diagnostic instrument
US5817024A (en) 1996-06-28 1998-10-06 Sonosight, Inc. Hand held ultrasonic diagnostic instrument with digital beamformer
US5893363A (en) 1996-06-28 1999-04-13 Sonosight, Inc. Ultrasonic array transducer transceiver for a hand held ultrasonic diagnostic instrument
US5782769A (en) 1996-06-28 1998-07-21 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic image flash suppression technique
US6135961A (en) 1996-06-28 2000-10-24 Sonosite, Inc. Ultrasonic signal processor for a hand held ultrasonic diagnostic instrument
US6962566B2 (en) 2001-04-19 2005-11-08 Sonosite, Inc. Medical diagnostic ultrasound instrument with ECG module, authorization mechanism and methods of use
US6203498B1 (en) 1996-06-28 2001-03-20 Sonosite, Inc. Ultrasonic imaging device with integral display
US6575908B2 (en) 1996-06-28 2003-06-10 Sonosite, Inc. Balance body ultrasound system
US6569101B2 (en) 2001-04-19 2003-05-27 Sonosite, Inc. Medical diagnostic ultrasound instrument with ECG module, authorization mechanism and methods of use
US6383139B1 (en) 1996-06-28 2002-05-07 Sonosite, Inc. Ultrasonic signal processor for power doppler imaging in a hand held ultrasonic diagnostic instrument
US5740805A (en) 1996-11-19 1998-04-21 Analogic Corporation Ultrasound beam softening compensation system
US5997479A (en) * 1998-05-28 1999-12-07 Hewlett-Packard Company Phased array acoustic systems with intra-group processors
JP3892594B2 (ja) * 1998-10-07 2007-03-14 株式会社東芝 超音波診断装置
US6645145B1 (en) 1998-11-19 2003-11-11 Siemens Medical Solutions Usa, Inc. Diagnostic medical ultrasound systems and transducers utilizing micro-mechanical components
US6605043B1 (en) 1998-11-19 2003-08-12 Acuson Corp. Diagnostic medical ultrasound systems and transducers utilizing micro-mechanical components
KR100570241B1 (ko) 1999-01-22 2006-04-12 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치 및 그 제조 방법
US6364839B1 (en) 1999-05-04 2002-04-02 Sonosite, Inc. Ultrasound diagnostic instrument having software in detachable scanhead
US6447451B1 (en) 1999-05-04 2002-09-10 Sonosite, Inc. Mobile ultrasound diagnostic instrument and docking stand
US6471651B1 (en) 1999-05-05 2002-10-29 Sonosite, Inc. Low power portable ultrasonic diagnostic instrument
US6371918B1 (en) 1999-05-05 2002-04-16 Sonosite Inc. Transducer connector
US6241676B1 (en) * 1999-06-10 2001-06-05 Agilent Technologies, Inc. Ultrasound transmit waveforms having low harmonic content
US6430109B1 (en) 1999-09-30 2002-08-06 The Board Of Trustees Of The Leland Stanford Junior University Array of capacitive micromachined ultrasonic transducer elements with through wafer via connections
US6443901B1 (en) 2000-06-15 2002-09-03 Koninklijke Philips Electronics N.V. Capacitive micromachined ultrasonic transducers
USD461895S1 (en) 2001-04-19 2002-08-20 Sonosite, Inc. Handheld medical diagnostic ultrasound instrument
USD456509S1 (en) 2001-04-19 2002-04-30 Sonosite, Inc. Combined module and cable for ultrasound system
US6524254B2 (en) * 2001-06-20 2003-02-25 Bae Systems Information And Electronic Systems Integration, Inc. Orthogonally reconfigurable integrated matrix acoustical array
US6880137B1 (en) 2001-08-03 2005-04-12 Inovys Dynamically reconfigurable precision signal delay test system for automatic test equipment
US6694817B2 (en) 2001-08-21 2004-02-24 Georgia Tech Research Corporation Method and apparatus for the ultrasonic actuation of the cantilever of a probe-based instrument
US6795374B2 (en) 2001-09-07 2004-09-21 Siemens Medical Solutions Usa, Inc. Bias control of electrostatic transducers
US6638226B2 (en) 2001-09-28 2003-10-28 Teratech Corporation Ultrasound imaging system
US6974417B2 (en) 2001-10-05 2005-12-13 Queen's University At Kingston Ultrasound transducer array
US7115093B2 (en) 2001-11-21 2006-10-03 Ge Medical Systems Global Technology Company, Llc Method and system for PDA-based ultrasound system
US6659954B2 (en) 2001-12-19 2003-12-09 Koninklijke Philips Electronics Nv Micromachined ultrasound transducer and method for fabricating same
US6780154B2 (en) 2002-01-17 2004-08-24 Siemens Medical Solutions Usa, Inc. Segmented handheld medical ultrasound system and method
US6604630B1 (en) 2002-01-30 2003-08-12 Sonosite, Inc. Carrying case for lightweight ultrasound device
US6648826B2 (en) 2002-02-01 2003-11-18 Sonosite, Inc. CW beam former in an ASIC
US7534211B2 (en) 2002-03-29 2009-05-19 Sonosite, Inc. Modular apparatus for diagnostic ultrasound
US6958255B2 (en) 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
US6835177B2 (en) 2002-11-06 2004-12-28 Sonosite, Inc. Ultrasonic blood vessel measurement apparatus and method
US6831394B2 (en) 2002-12-11 2004-12-14 General Electric Company Backing material for micromachined ultrasonic transducer devices
US7313053B2 (en) 2003-03-06 2007-12-25 General Electric Company Method and apparatus for controlling scanning of mosaic sensor array
US7280435B2 (en) 2003-03-06 2007-10-09 General Electric Company Switching circuitry for reconfigurable arrays of sensor elements
US7257051B2 (en) 2003-03-06 2007-08-14 General Electric Company Integrated interface electronics for reconfigurable sensor array
US7353056B2 (en) 2003-03-06 2008-04-01 General Electric Company Optimized switching configurations for reconfigurable arrays of sensor elements
US7443765B2 (en) 2003-03-06 2008-10-28 General Electric Company Reconfigurable linear sensor arrays for reduced channel count
US6865140B2 (en) 2003-03-06 2005-03-08 General Electric Company Mosaic arrays using micromachined ultrasound transducers
US7303530B2 (en) 2003-05-22 2007-12-04 Siemens Medical Solutions Usa, Inc. Transducer arrays with an integrated sensor and methods of use
US7549961B1 (en) 2003-07-31 2009-06-23 Sonosite, Inc. System and method supporting imaging and monitoring applications
EP1691937B1 (en) 2003-12-04 2017-03-22 Koninklijke Philips N.V. Ultrasound transducer and method for implementing flip-chip two dimensional array technology to curved arrays
US7105981B2 (en) 2003-12-10 2006-09-12 Siemens Medical Solutions Usa, Inc. Medical imaging transmit spectral control using aperture functions
US7030536B2 (en) 2003-12-29 2006-04-18 General Electric Company Micromachined ultrasonic transducer cells having compliant support structure
US7425199B2 (en) 2003-12-30 2008-09-16 General Electric Company Method and apparatus for ultrasonic continuous, non-invasive blood pressure monitoring
US7125383B2 (en) 2003-12-30 2006-10-24 General Electric Company Method and apparatus for ultrasonic continuous, non-invasive blood pressure monitoring
US7285897B2 (en) 2003-12-31 2007-10-23 General Electric Company Curved micromachined ultrasonic transducer arrays and related methods of manufacture
US7052464B2 (en) 2004-01-01 2006-05-30 General Electric Company Alignment method for fabrication of integrated ultrasonic transducer array
US7588539B2 (en) 2004-01-21 2009-09-15 Siemens Medical Solutions Usa, Inc. Integrated low-power pw/cw transmitter
WO2005077012A2 (en) 2004-02-06 2005-08-25 Georgia Tech Research Corporation Cmut devices and fabrication methods
US7691063B2 (en) 2004-02-26 2010-04-06 Siemens Medical Solutions Usa, Inc. Receive circuit for minimizing channels in ultrasound imaging
US7612483B2 (en) 2004-02-27 2009-11-03 Georgia Tech Research Corporation Harmonic cMUT devices and fabrication methods
US7646133B2 (en) 2004-02-27 2010-01-12 Georgia Tech Research Corporation Asymmetric membrane cMUT devices and fabrication methods
WO2005084284A2 (en) 2004-02-27 2005-09-15 Georgia Tech Research Corporation Multiple element electrode cmut devices and fabrication methods
US7662114B2 (en) 2004-03-02 2010-02-16 Focus Surgery, Inc. Ultrasound phased arrays
US7427825B2 (en) 2004-03-12 2008-09-23 Siemens Medical Solutions Usa, Inc. Electrical interconnections and methods for membrane ultrasound transducers
US7530952B2 (en) * 2004-04-01 2009-05-12 The Board Of Trustees Of The Leland Stanford Junior University Capacitive ultrasonic transducers with isolation posts
US8213467B2 (en) 2004-04-08 2012-07-03 Sonosite, Inc. Systems and methods providing ASICs for use in multiple applications
US7470232B2 (en) 2004-05-04 2008-12-30 General Electric Company Method and apparatus for non-invasive ultrasonic fetal heart rate monitoring
US8199685B2 (en) 2004-05-17 2012-06-12 Sonosite, Inc. Processing of medical signals
EP1762182B1 (en) 2004-06-10 2011-08-03 Olympus Corporation Electrostatic capacity type ultrasonic probe device
WO2005120359A1 (ja) * 2004-06-11 2005-12-22 Olympus Corporation 超音波プローブ装置及び超音波診断装置
US7955264B2 (en) 2004-07-07 2011-06-07 General Electric Company System and method for providing communication between ultrasound scanners
US7867168B2 (en) 2004-08-24 2011-01-11 Sonosite, Inc. Ultrasonic transducer having distributed weight properties
US7996688B2 (en) 2004-08-24 2011-08-09 Sonosite, Inc. Ultrasound system power management
US8309428B2 (en) 2004-09-15 2012-11-13 Sonetics Ultrasound, Inc. Capacitive micromachined ultrasonic transducer
US7888709B2 (en) 2004-09-15 2011-02-15 Sonetics Ultrasound, Inc. Capacitive micromachined ultrasonic transducer and manufacturing method
US8658453B2 (en) 2004-09-15 2014-02-25 Sonetics Ultrasound, Inc. Capacitive micromachined ultrasonic transducer
US20100024633A1 (en) * 2004-11-01 2010-02-04 Anthony Piscitelli Articles, manufactures, and assemblies utilizing configured and sized plates comprised of penetration-proof laminated constructs formed of asymmetric composite materials
JP2008520316A (ja) * 2004-11-22 2008-06-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 超音波ビームフォーマプローブのためのハイブリッドic
US7375420B2 (en) 2004-12-03 2008-05-20 General Electric Company Large area transducer array
US7037746B1 (en) 2004-12-27 2006-05-02 General Electric Company Capacitive micromachined ultrasound transducer fabricated with epitaxial silicon membrane
US7293462B2 (en) 2005-01-04 2007-11-13 General Electric Company Isolation of short-circuited sensor cells for high-reliability operation of sensor array
US8137280B2 (en) 2005-02-09 2012-03-20 Surf Technology As Digital ultrasound beam former with flexible channel and frequency range reconfiguration
US8388544B2 (en) 2005-03-17 2013-03-05 General Electric Company System and method for measuring blood viscosity
US8066642B1 (en) 2005-05-03 2011-11-29 Sonosite, Inc. Systems and methods for ultrasound beam forming data control
CA2607885A1 (en) 2005-05-18 2006-11-23 Kolo Technologies, Inc. Through-wafer interconnection
JP4791534B2 (ja) 2005-05-18 2011-10-12 コロ テクノロジーズ インコーポレイテッド 超小型電気機械デバイスの製造方法
JP5128470B2 (ja) 2005-06-17 2013-01-23 コロ テクノロジーズ インコーポレイテッド 絶縁延長を有する微小電気機械変換器
JP4920302B2 (ja) 2005-06-20 2012-04-18 株式会社東芝 超音波診断装置及び超音波計測方法
US7775979B2 (en) 2005-06-29 2010-08-17 General Electric Company Transmit and receive interface array for highly integrated ultrasound scanner
US20070008311A1 (en) * 2005-07-05 2007-01-11 Kazutora Yoshino High resolution and rapid three dimensional object generator advanced
US20070024256A1 (en) * 2005-07-27 2007-02-01 Yi-Chung Chou Switch-mode multiple outputs dcdc converter
WO2007015218A2 (en) 2005-08-03 2007-02-08 Kolo Technologies, Inc. Micro-electro-mechanical transducer having an optimized non-flat surface
US7880565B2 (en) 2005-08-03 2011-02-01 Kolo Technologies, Inc. Micro-electro-mechanical transducer having a surface plate
US7878977B2 (en) 2005-09-30 2011-02-01 Siemens Medical Solutions Usa, Inc. Flexible ultrasound transducer array
US7441447B2 (en) 2005-10-07 2008-10-28 Georgia Tech Research Corporation Methods of imaging in probe microscopy
US7449640B2 (en) 2005-10-14 2008-11-11 Sonosite, Inc. Alignment features for dicing multi element acoustic arrays
US7546769B2 (en) 2005-12-01 2009-06-16 General Electric Compnay Ultrasonic inspection system and method
US8465431B2 (en) 2005-12-07 2013-06-18 Siemens Medical Solutions Usa, Inc. Multi-dimensional CMUT array with integrated beamformation
US8038620B2 (en) 2005-12-20 2011-10-18 General Electric Company Fresnel zone imaging system and method
US7622848B2 (en) 2006-01-06 2009-11-24 General Electric Company Transducer assembly with z-axis interconnect
US20070238991A1 (en) 2006-01-25 2007-10-11 Jaltec Biomedical Inc. Ultrasound method and apparatus for characterizing and identifying biological tissues
US20070239019A1 (en) 2006-02-13 2007-10-11 Richard William D Portable ultrasonic imaging probe than connects directly to a host computer
GB2443756B (en) 2006-02-24 2010-03-17 Wolfson Microelectronics Plc MEMS device
US7615834B2 (en) 2006-02-28 2009-11-10 The Board Of Trustees Of The Leland Stanford Junior University Capacitive micromachined ultrasonic transducer(CMUT) with varying thickness membrane
US7764003B2 (en) 2006-04-04 2010-07-27 Kolo Technologies, Inc. Signal control in micromachined ultrasonic transducer
EP2034878A2 (en) 2006-06-23 2009-03-18 Koninklijke Philips Electronics N.V. Timing controller for combined photoacoustic and ultrasound imager
JP5175853B2 (ja) 2006-09-25 2013-04-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ フリップチップ相互接続貫通チップビア
TW200837378A (en) 2006-10-20 2008-09-16 Koninkl Philips Electronics Nv Methods and apparatus for high speed image acquisition rates in 3D medical imaging
USD558351S1 (en) 2006-10-31 2007-12-25 Sonosite, Inc. Ultrasound display apparatus
US7451651B2 (en) 2006-12-11 2008-11-18 General Electric Company Modular sensor assembly and methods of fabricating the same
US8672850B1 (en) 2007-01-11 2014-03-18 General Electric Company Focusing of a two-dimensional array to perform four-dimensional imaging
US7687976B2 (en) 2007-01-31 2010-03-30 General Electric Company Ultrasound imaging system
US7824335B2 (en) * 2007-04-26 2010-11-02 General Electric Company Reconfigurable array with multi-level transmitters
US7892176B2 (en) 2007-05-02 2011-02-22 General Electric Company Monitoring or imaging system with interconnect structure for large area sensor array
US20080296708A1 (en) 2007-05-31 2008-12-04 General Electric Company Integrated sensor arrays and method for making and using such arrays
US8461978B2 (en) 2007-06-01 2013-06-11 Koninklijke Philips Electronics N.V. Wireless ultrasound probe asset tracking
JP4960162B2 (ja) 2007-07-17 2012-06-27 株式会社東芝 超音波診断装置
US8203912B2 (en) 2007-07-31 2012-06-19 Koninklijke Philips Electronics N.V. CMUTs with a high-k dielectric
US7978461B2 (en) 2007-09-07 2011-07-12 Sonosite, Inc. Enhanced ultrasound system
USD591423S1 (en) 2007-09-07 2009-04-28 Sonosite, Inc. Ultrasound platform
US8277380B2 (en) 2007-09-11 2012-10-02 Siemens Medical Solutions Usa, Inc. Piezoelectric and CMUT layered ultrasound transducer array
US8137278B2 (en) 2007-09-12 2012-03-20 Sonosite, Inc. System and method for spatial compounding using phased arrays
EP2207484B1 (en) 2007-09-17 2016-11-09 Koninklijke Philips N.V. Production of pre-collapsed capacitive micro-machined ultrasonic transducers and applications thereof
US20100256488A1 (en) 2007-09-27 2010-10-07 University Of Southern California High frequency ultrasonic convex array transducers and tissue imaging
US7745248B2 (en) 2007-10-18 2010-06-29 The Board Of Trustees Of The Leland Stanford Junior University Fabrication of capacitive micromachined ultrasonic transducers by local oxidation
US7843022B2 (en) 2007-10-18 2010-11-30 The Board Of Trustees Of The Leland Stanford Junior University High-temperature electrostatic transducers and fabrication method
US7786584B2 (en) 2007-11-26 2010-08-31 Infineon Technologies Ag Through substrate via semiconductor components
US8483014B2 (en) 2007-12-03 2013-07-09 Kolo Technologies, Inc. Micromachined ultrasonic transducers
US8429808B2 (en) 2007-12-03 2013-04-30 Kolo Technologies, Inc. Method for fabrication an electrical transducer
WO2009073562A1 (en) * 2007-12-03 2009-06-11 Kolo Technologies, Inc. Dual-mode operation micromachined ultrasonic transducer
CN101868982B (zh) 2007-12-03 2013-10-16 科隆科技公司 带有电压反馈的电容式微机械超声换能器
CN101868981B (zh) * 2007-12-03 2014-05-07 科隆科技公司 叠层换能设备
WO2009073561A1 (en) 2007-12-03 2009-06-11 Kolo Technologies, Inc. Variable operating voltage in micromachined ultrasonic transducer
US20110055447A1 (en) 2008-05-07 2011-03-03 Signostics Limited Docking system for medical diagnostic scanning using a handheld device
JP2009291514A (ja) 2008-06-09 2009-12-17 Canon Inc 静電容量型トランスデューサの製造方法、及び静電容量型トランスデューサ
US7699120B2 (en) * 2008-07-09 2010-04-20 Smith International, Inc. On demand actuation system
US7898905B2 (en) 2008-07-28 2011-03-01 General Electric Company Reconfigurable array with locally determined switch configuration
US8133182B2 (en) * 2008-09-09 2012-03-13 Siemens Medical Solutions Usa, Inc. Multi-dimensional transducer array and beamforming for ultrasound imaging
US8237601B2 (en) 2008-10-14 2012-08-07 Sonosite, Inc. Remote control device
EP2356941B1 (en) * 2008-11-10 2018-05-23 Canon Kabushiki Kaisha Ultrasonographic system
US8176787B2 (en) 2008-12-17 2012-05-15 General Electric Company Systems and methods for operating a two-dimensional transducer array
JP5286369B2 (ja) 2009-01-16 2013-09-11 株式会社日立メディコ 超音波探触子の製造方法および超音波探触子
US8108647B2 (en) 2009-01-29 2012-01-31 International Business Machines Corporation Digital data architecture employing redundant links in a daisy chain of component modules
US8398408B1 (en) 2009-02-25 2013-03-19 Sonosite, Inc. Charging station for cordless ultrasound cart
US8402831B2 (en) 2009-03-05 2013-03-26 The Board Of Trustees Of The Leland Standford Junior University Monolithic integrated CMUTs fabricated by low-temperature wafer bonding
US8315125B2 (en) * 2009-03-18 2012-11-20 Sonetics Ultrasound, Inc. System and method for biasing CMUT elements
EP2411799B1 (en) 2009-03-23 2020-05-06 Koninklijke Philips N.V. Gas sensing using ultrasound
CN102427890A (zh) 2009-03-26 2012-04-25 Ntnu技术转让公司 具有导电过孔的晶片键合的cmut阵列
CN102368955B (zh) 2009-04-01 2014-07-16 模拟技术公司 超声波探头
US8355554B2 (en) 2009-04-14 2013-01-15 Sonosite, Inc. Systems and methods for adaptive volume imaging
US8207652B2 (en) 2009-06-16 2012-06-26 General Electric Company Ultrasound transducer with improved acoustic performance
US8451693B2 (en) * 2009-08-25 2013-05-28 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducer having compliant post structure
US8409095B1 (en) 2009-09-03 2013-04-02 Sonosite, Inc. Systems and methods for hands free control of medical devices
US20110060225A1 (en) * 2009-09-09 2011-03-10 General Electric Company Ultrasound probe with integrated pulsers
US8345508B2 (en) 2009-09-20 2013-01-01 General Electric Company Large area modular sensor array assembly and method for making the same
US8222065B1 (en) 2009-10-02 2012-07-17 National Semiconductor Corporation Method and system for forming a capacitive micromachined ultrasonic transducer
US8563345B2 (en) 2009-10-02 2013-10-22 National Semiconductor Corporated Integration of structurally-stable isolated capacitive micromachined ultrasonic transducer (CMUT) array cells and array elements
US8081301B2 (en) 2009-10-08 2011-12-20 The United States Of America As Represented By The Secretary Of The Army LADAR transmitting and receiving system and method
KR102322776B1 (ko) 2010-02-18 2021-11-04 마우이 이미징, 인코포레이티드 초음파 이미지를 구성하는 방법 및 이를 위한 다중-개구 초음파 이미징 시스템
US20110218436A1 (en) 2010-03-06 2011-09-08 Dewey Russell H Mobile ultrasound system with computer-aided detection
US8439840B1 (en) 2010-05-04 2013-05-14 Sonosite, Inc. Ultrasound imaging system and method with automatic adjustment and/or multiple sample volumes
US8647279B2 (en) 2010-06-10 2014-02-11 Siemens Medical Solutions Usa, Inc. Volume mechanical transducer for medical diagnostic ultrasound
US8527033B1 (en) 2010-07-01 2013-09-03 Sonosite, Inc. Systems and methods for assisting with internal positioning of instruments
JP5702966B2 (ja) 2010-08-02 2015-04-15 キヤノン株式会社 電気機械変換装置及びその作製方法
US7954387B1 (en) 2010-08-18 2011-06-07 General Electric Company Ultrasonic transducer device
US8128050B1 (en) 2011-02-08 2012-03-06 Sonosite, Inc. Ultrasound scanner support devices
USD657361S1 (en) 2011-03-25 2012-04-10 Sonosite, Inc. Housing for an electronic device
US8804457B2 (en) 2011-03-31 2014-08-12 Maxim Integrated Products, Inc. Transmit/receive systems for imaging devices
WO2013059358A2 (en) 2011-10-17 2013-04-25 Butterfly Network, Inc. Transmissive imaging and related apparatus and methods
WO2014014968A1 (en) * 2012-07-16 2014-01-23 Cornell University Integrated circuits having integrated acoustic communication links
US9499392B2 (en) 2013-02-05 2016-11-22 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
US9439625B2 (en) 2013-02-28 2016-09-13 General Electric Company Delta delay approach for ultrasound beamforming on an ASIC
AU2014234071B2 (en) 2013-03-15 2018-05-17 Butterfly Network, Inc. Complementary metal oxide semiconductor (CMOS) ultrasonic transducers and methods for forming the same
JP6279706B2 (ja) 2013-03-15 2018-02-14 バタフライ ネットワーク,インコーポレイテッド 超音波デバイスおよび超音波システム
JP2014188149A (ja) * 2013-03-27 2014-10-06 Seiko Epson Corp 超音波測定装置、超音波画像装置及び超音波測定方法
EP3024594A2 (en) 2013-07-23 2016-06-01 Butterfly Network Inc. Interconnectable ultrasound transducer probes and related methods and apparatus
US20150257733A1 (en) 2014-03-11 2015-09-17 Sonivate Medical, Inc. Wearable imaging system
CN106461767B (zh) 2014-04-18 2019-05-28 蝴蝶网络有限公司 单衬底超声成像装置的架构、相关设备和方法
JP6546267B2 (ja) * 2014-04-18 2019-07-17 バタフライ ネットワーク,インコーポレイテッド 超音波撮像圧縮方法及び装置

Also Published As

Publication number Publication date
JP2017511247A (ja) 2017-04-20
TW201920980A (zh) 2019-06-01
KR20160146868A (ko) 2016-12-21
WO2015161157A1 (en) 2015-10-22
US20160069989A1 (en) 2016-03-10
US20230093524A1 (en) 2023-03-23
US10416298B2 (en) 2019-09-17
AU2015247494B2 (en) 2020-10-15
TWI649580B (zh) 2019-02-01
KR102399314B1 (ko) 2022-05-18
CA2946120A1 (en) 2015-10-22
US20170067988A1 (en) 2017-03-09
US11435458B2 (en) 2022-09-06
US20150301165A1 (en) 2015-10-22
EP3132441B1 (en) 2020-11-25
US9229097B2 (en) 2016-01-05
AU2015247494A1 (en) 2016-11-10
CA2946120C (en) 2022-10-25
US20190324132A1 (en) 2019-10-24
CN106461767B (zh) 2019-05-28
EP3132441A1 (en) 2017-02-22
JP6552599B2 (ja) 2019-07-31
CN106461767A (zh) 2017-02-22
US11914079B2 (en) 2024-02-27
US9476969B2 (en) 2016-10-25
TWI687710B (zh) 2020-03-11

Similar Documents

Publication Publication Date Title
TWI649580B (zh) 單基板超音波成像裝置的架構、相關設備及方法
US11650301B2 (en) Serial interface for parameter transfer in an ultrasound device
US20220079565A1 (en) Transmit generator for controlling a multilevel pulser of an ultrasound device, and related methods and apparatus