CN102427890A - 具有导电过孔的晶片键合的cmut阵列 - Google Patents

具有导电过孔的晶片键合的cmut阵列 Download PDF

Info

Publication number
CN102427890A
CN102427890A CN2010800225984A CN201080022598A CN102427890A CN 102427890 A CN102427890 A CN 102427890A CN 2010800225984 A CN2010800225984 A CN 2010800225984A CN 201080022598 A CN201080022598 A CN 201080022598A CN 102427890 A CN102427890 A CN 102427890A
Authority
CN
China
Prior art keywords
layer
wafer
cmut
silicon
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800225984A
Other languages
English (en)
Inventor
西格丽德·伯格
卡马尔·恰帕金
乔恩·杜-汉森
谢尔·阿恩·英厄布里格森
吉尔·尤里·延森
谢尔斯蒂·米德伯
埃里克·尤特讷·波普
阿恩·罗内克莱夫
戴格·索尔斯坦·望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTNU Technology Transfer AS
Original Assignee
NTNU Technology Transfer AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0905255A external-priority patent/GB0905255D0/en
Priority claimed from GB0905256A external-priority patent/GB0905256D0/en
Priority claimed from GB0909296A external-priority patent/GB0909296D0/en
Application filed by NTNU Technology Transfer AS filed Critical NTNU Technology Transfer AS
Publication of CN102427890A publication Critical patent/CN102427890A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Bipolar Transistors (AREA)
  • Pressure Sensors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种包括多个横跨衬底分布的CMUT元件的晶片键合的CMUT阵列,每个元件包括一个空腔和一个形成在所述衬底内的信号电极,和一个封闭所述空腔并形成接地电极的导电薄膜,其中所述单个元件的薄膜形成横跨所述阵列的表面的完整的接地面,并且其中通过导电过孔提供了到所述信号电极的电连接,所述导电过孔由此悬垂穿过所述衬底从所述信号电极到所述衬底的后部。

Description

具有导电过孔的晶片键合的CMUT阵列
技术领域
本发明涉及电容式微加工超声传感器(CMUT)阵列,尤其涉及一种适用于小型成像系统的阵列。本发明还延伸为一种制造这种阵列的方法。
背景技术
常用的超声系统是基于使用压电元件的。为了提供元件阵列,压电材料被粘合到印刷电路板上然后切分成单个的元件。通过扇出结构间接地形成到集成电路的连接,扇出结构具有可能降低信号质量的缺点。
需要重视的是这种结构难于按比例缩减,这对于需要大大地缩短元件之间的距离的高频应用是必须的。CMUT技术是2D超声阵列的有希望的候选者,2D超声阵列可以被用于在高频率下使用小型仪器产生3D影像。
一个单一CMUT传感器元件采用具有一个第一刚性(底部)电极和一个由薄膜形成的第二(顶部)电极的电容器的形式,薄膜在用作接收器时弯曲以响应来自超声波的压力。因此,CMUT本质上是作为一个电容麦克风。在典型的结构中,主动声学部分和CMUT电容的上电极为金属镀层的氮化硅薄膜,而重掺杂硅衬底形成底电极。在使用中,直流偏压被施加在顶电极和底电极之间,由于静电引力底电极将薄膜拉向衬底的方向。如果施加交流电压在此被偏置的薄膜上,将得到谐波的薄膜的运动,如果被偏置的CMUT膜处于冲击的超声波压力场,薄膜的运动将产生交流检测电流。
如其名字所示,CMUT是使用微加工技术制造的,这是众所周知的技术,包括如刻蚀硅和硅基的晶片和带有不同表层的硅晶片的工艺,以产生想要得到的机械结构,硅基的晶片例如氧化埋层硅晶片。“Surface Micromachined CapacitiveUltrasonic Transducers”(表面微加工的电容式超声传感器),Ladabaum等,IEETransactions on Ultrasonics,Ferroelectrics and Frequency Control,Vol45,No 3,1998年5月,描述了一种早期的技术。文中,CMUT从一个单一的硅晶片形成。在晶片上形成氧化层然后沉积氮化层。然后由等离子刻蚀在氮化层形成孔隙,然后使用进入孔隙的氢氟酸去除氧化区域以形成传感器的空腔。然后通过沉积另一层氮化物封闭空隙,然后在氮化物上加上导电的金属层形成接地面薄膜。
一个重大的进步是引入了晶片键合,通过把多个硅晶片键合在一起以形成需要的结构(参见“Fabricating Capacitive Micromachined Ultrasonic Transducerswith Wafer-Bonding Technology”(用晶片键合技术制造电容式微加工超声传感器),Huang等,JMEMS,12(2),128(2003))。这允许用于微加工的结构的各种各样的新构型。这篇文章表明晶片键合引起机械性能的提高,通过晶片键合制作的高质量的薄膜优于那些由表面微加工可以得到的。例如,空腔的形状与薄膜的形状无关,空腔的深宽比不受刻蚀工艺的限制;在器件的设计上限制较少;薄膜可以由单晶体制作,因此具有较少的内部缺陷和较低的机械损失;以及更高的均匀性,应力可控制性和工艺的可重复性是可能的。
“Fabrication and characterization of CMUTs realized by wafer bonding”(用晶片键合实现的CMUT的制造和特性描述),K 
Figure BPA00001464544100021
Figure BPA00001464544100022
和D T Wang,2006 IEE Ultrasonics Symposium,描述了一种适合的键合技术(熔融键合),还描述了一个使用了用堆叠的或分层的结构而形成的CMUTs的完整的超声传感器器件,在这种结构中,上层由CMUT阵列结构形成,其下(以CMUT为上端,以探测器表面为最上端)提供了处理层,比如放大器、模数转换器、复用级。最后,在堆叠的底部,提供了环氧树脂或类似材料的衬垫层,这为结构提供了声音衰减。这样一个层是必要的,因为不然的话在器件内传播和反射的波会提供被传感器检测到的错误信号,因此显著地降低性能。
CMUT技术的目的是使超声传感器小型化,达到以至于能够创造出为了成像目的能被放到人体内的成像器件。特别地,基于导管的静脉超声成像系统已经被提议用于在动脉内检测斑块,以区分斑块是易损的还是稳定的。(参见“Self-biased charge sampling amplifier in 90 nm CMOS for medical ultrasoundimaging”(用于医疗超声成像的90nm CMOS工艺的自偏压电荷取样放大器),L R Cenkeramaddi,,T Singh和T Ytterdal,GLS VLSI′07,,2007年,3月,11-13日)。
为了提供具有有用的分辨率的成像器件并且为了对约为90°的所需锥角成像,需要大约1000个或更多的传感器元件在一个必须约为1立方毫米的器件里。如上所述,通常的结构是元件的堆叠,以CMUT阵列在上端,其下是处理电子器件。为了提供所需分辨率,该器件应该在20到50MHZ下操作,更好地达到约100MHZ。这样的频率表明CMUT阵列在厚度上应该只有20μm左右。
面临的一个特别的问题是在单个的传感器元件之间提供必要的电连接,元件包括阵列和下层中的必须处理输出信号的相关联的电子器件。由于在CMUT阵列的上表面有任何暴露的携带信号的导体都是非常不可取的事实,问题进一步地复杂。此表面形成器件的外部,并且将在使用中接触身体组织和体液。因此,为了安全和防止信号干扰的原因,整个表面应该处于地面电位。不得不在CMUT薄膜结构上提供额外的绝缘层来绝缘携带信号的导体是不大可取的,因为这样既会增加制造的复杂度还可能会降低性能。但是增加一层来确保生物相容性是必要的。
US 2008/0048211说明了(在其现有技术的论述中)一种使用微加工和晶片键合形成的CMUT结构。其中,硅层形成器件的衬底,其上的氧化层中形成CMUT空腔。空腔由氧化硅形成的薄膜层封闭。空腔下面的导电的体硅层形成背电极,其中形成沟槽以提供元件之间的电隔离。这被称为“沟槽隔离”结构。但是,尽管这是一个有效的技术,但沟槽会削弱结构。
如“Wafer-Bonded 2-D CMUT Arrays Incorporating Through-WaferTrench-Isolated Interconnects with a Supporting Frame”(带有支撑结构的集成穿透晶片的隔离绝缘的互联的晶片键合的2-D CMUT阵列),Xuefeng Zhuang等,IEEETransactions on Ultrasonics,Ferroelectrics and Frequency Control,Vol 56,No 1,2009年1月1日,所论述的,已经开展了关于使用通孔作为沟槽隔离的替代的工作。在此,一种导电材料,通常是掺杂的多晶硅,被用来填充穿过元件下面的衬底的过孔(通道)。在将这种方法应用到晶片键合的CMUT阵列时有一个特别的问题;过孔的形成步骤可能导致后续的键合步骤的问题,以及可能对晶片产生不希望有的应力。该文章得出结论“迄今为止,没有成功的通孔制造技术被证明与制作CMUT的晶片的键合技术兼容”。然而,它提出了一种改进的基于沟槽隔离的构造技术。
US 2008/0048211(上面引用的)也说明了穿透晶片的过孔的使用限于表面微加工的CMUT结构。在其中描述的发明再用到了沟槽隔离结构但是过孔(必须是电绝缘的)是通过薄膜自身形成的。
发明内容
从第一方面考虑,本发明提供了一种包括横跨衬底分布的多个CMUT元件的晶片键合的CMUT阵列,每个元件包括一个空腔和一个形成在衬底内的信号电极,和一个封闭空腔并形成接地电极的导电薄膜,其中单个元件的薄膜形成横跨阵列的表面的完整的接地面,其中通过导电过孔提供了到信号电极的电连接,导电过孔由此悬垂穿过衬底从信号电极到衬底的后部。
因此,已知的沟槽隔离结构的缺点可以用本发明克服。特别地,剔除隔离沟槽去除了现有技术的晶片键合设计中的弱点的起因,因此根据本发明的阵列可以显著地更为坚固。而且,本发明的阵列具有与晶片键合结构相关的所有优点。
在本发明的论述中,关于元件的方向使用了和现有技术描述中相同的规范。因此,薄膜形成一个“上”或“前”表面,从该表面发出和/或在该表面接收及检测超声波。器件的反面是“底”或者“后”或者“背”面。因此导电过孔从信号(或“热”)电极向下通过到器件的后部,在那里提供有控制和/或信号处理电子器件。术语“晶片键合”在本技术领域中具有其如上所述的普通的含义。因此,CMUT阵列的结构由多个键合到一起的晶片形成。
因此,通过本发明,提供了一种晶片键合(例如熔融键合)的CMUT阵列结构,其不需沟槽过孔,并且具有摆脱了携带信号电压的导体的前表面,由此,阵列自身的前表面可以被完全保持在地面电位。
为了提供最紧凑的结构,更好地,每个过孔直接从单个的信号电极向下悬垂(例如,远离器件的接地面表面)。然而,可能把多个的传感器结合成一组,比如,四个(或者更好地,更多个的)来形成实际上为一个元件的器件。那些单个传感器的电极可以通过导体连接,这些导体可以处于电极的同一层并且可以与此集成地形成。因此,多个电极可以形成一个相连的导电表面,此导电表面可以被连接到单个导电过孔。
优选地,在空腔内提供有电极。这是与常见的现有技术形成对照的,现有技术中,在形成空腔的单独的结构的下方提供电极层。例如,在常见的微加工的结构中,氧化层形成在电极结构之上。由于电极结构通常由具有显著的表面粗糙度的多晶硅形成,这导致氧化层也不平整。这样的不平整的表面是不合适晶片键合的,虽然这在表面微加工的器件中可以被容忍。发明者通过在空腔内形成电极确认了这个问题,空腔可以在形成衬底的晶片内形成,因此薄膜结构可以被键合到衬底晶片,而不是生长的氧化层上。对于键合这是固有地更合适的表面,由于它可以被化学抛光以呈现一个非常光滑的表面。
尽管对微加工本发明的结构可以采用各种方法,但优选的方法是由硅或者硅基的晶片产生衬底。在一些实施例中可使用氧化埋层硅晶片,因为其具有在制造过程中有用的氧化层。
导电过孔和空腔结构可以在单一晶片上形成,或者过孔在一个晶片上形成而空腔结构和信号电极在另一个晶片上形成。在后一种情况下,氧化层可在这两个晶片之间形成绝缘层。
最方便地,过孔可以通过至少在晶片的硅器件层刻蚀孔并在其中填入导电材料而形成。但是,为了使过孔绝缘,通常首先在孔内产生氧化层。孔可能一端不通,在这种情况下,晶片在孔末端(可被用作把手)之下的部分被去除之后,过孔将从穿过衬底的底部到信号电极提供电通讯。
在每个元件中,每个单个的传感器的空腔优选地通过部分刻蚀掺杂硅到预定的深度来形成。这个深度(比如50-70nm,优选地,60nm)可以是这样,以使掺杂硅的一部分残留在空腔的底部,可被用来形成信号电极。因此,阵列可包括多个的信号电极(或者几组这样的电极),信号电极包括由刻蚀进入掺杂硅内的通道所隔离的掺杂硅的区域。
可选地,可以形成更深的空腔,可以由沉积在空腔内的多晶硅形成信号电极。优选地,多晶硅掺磷。空腔间隙可以通过刻蚀形成空腔的底部的多晶硅到上面列举的所需高度来调整。
因为此结构是晶片键合的,薄膜是用另一个,通常是硅基的,晶片形成。此处的实施例中,薄膜由被氮化硅,可选地还有氧化硅,包覆的硅晶片形成,此硅晶片键合到形成空腔结构的晶片上。然后通过至少在传感器元件之上的区域向下刻蚀至单一层的氮化硅层,或者如果合适,氧化硅层,形成薄膜。
如上面指出的,元件通过横跨单个元件的表面形成于薄膜上面的接地电极层被完善(可以把这看作形成单一的导电的接地面薄膜表面)。为了环绕器件的边缘形成竖立的构件,形成薄膜的晶片的一部分被完整地留下。
更优选地,为了提供到薄膜自身的声电连接,在此边缘提供接地电极。因为这些电极处于地面电位,上述关于暴露的信号电极的问题不会出现。优选地,薄膜通过在其上提供一个金属层/膜,被制为导电的。这可包括铝、钛或者钨,通过,例如,溅射工艺,形成。
如果需要,可以额外地提供上述的导电过孔来提供到CMUT的第三个电连接。这可被用于从射频电压中隔离直流偏压。
还可以使用一个额外的电极来电调节CMUT的共振频率和耦合因数,释放存储于CMUT阵列的单独的电极的能量也可以被用于产生传输脉冲,并且因此从接收信号隔离传输信号。
本发明还可以延伸为一种产生以上概述的传感器阵列类型的方法。因此从另外一个方面来看,本发明提供了一种制造包括多个横跨衬底分布的CMUT元件的CMUT阵列的方法,方法包括:在硅衬底内,形成每个元件的空腔和单一信号电极和提供到电极的电连接的导电过孔,导电过孔被布置从元件悬垂;以及提供导电薄膜以封闭每个空腔并形成接地电极,由此横跨CMUT阵列的表面形成的完整的接地面;其中导电薄膜由键合到衬底上的硅晶片形成。
如此,形成了具有通孔的晶片键合的CMUT阵列。如上所述,薄膜提供了横跨元件表面的完整的接地面(即,它在使用中被连接到地面电位,薄膜的表面处于此公共电位)。通过在其上提供的触点,优选地在器件的边缘,可提供到薄膜的电连接。
优选地,空腔和过孔在衬底中形成,衬底包括单一(第一)硅晶片,薄膜以上面描述的方式形成在另一(第二)晶片中。
在此方法中,优选地,过孔在空腔之前形成;因此,可提供第一硅片并在其中刻蚀孔,此孔将在整体结构中形成过孔。接着,可在第一硅片内形成空腔。通过在其表面形成氧化层可使空腔和孔绝缘。导电材料,如多晶硅,可被用来形成孔内的导体和空腔内的电极;这可以同时进行来形成相连的导电部分(即,过孔和连接电极(多个))。
如上面所提到的,电极优选地在空腔内形成,最优选地延伸以形成空腔的底部,而不是在形成空腔的层之下。因此,优选地,该方法包括在衬底内形成空腔,之后在其中形成电极(尽管如上所指出的,在一个实施例中,空腔可被向下刻蚀至其后用于形成电极的硅)。
优选地,在和形成薄膜的晶片键合之前,抛光衬底的上表面。
如上所论述的,导电薄膜可包括单独的硅片,优选地,其包覆有氮化层。优选地它在过孔完成之前电极形成之后键合到衬底。优选地,形成过孔的孔不被刻蚀到正好穿透硅晶片,在这种情况下,优选地,过孔因此通过去除衬底背面的一部分以暴露孔内的导体而完成。
通过该方法的优选特征,尽可能晚地开始键合步骤以避免对薄膜的应力。最优选地,键合步骤发生在过孔形成之后,并在薄膜将被键合到的衬底的表面抛光之后。然后以已知的方式通过在第二硅晶片上刻蚀掉材料以留下薄膜层来形成薄膜。然后可提供导电的接地面,正如可提供必要的电触点。
本发明的实施例将随后描述,优选地该方法进一步地包括它适当的特征。
在CMUT阵列的空腔内形成电极的概念也被认为是有创造性的,因此从进一步的方面看,提供了一种CMUT阵列,包括:其中形成的空腔的衬底,包含电极的空腔,和布置于空腔上以封闭空腔的导电薄膜。优选地,还提供了从电极悬垂穿过衬底以提供信号连接的过孔,薄膜形成公共电极。优选地,该阵列包括本发明的其他方面的优选特征。
从更进一步的方面来考虑,本发明提供了一种制造CMUT阵列的方法,包括:在第一硅基晶片中形成导电过孔的阵列和空腔结构阵列;提供另一硅晶片并由此形成导电薄膜;其中每个硅晶片都被微加工以形成它们各自的结构并被键合到一起以形成阵列,以使薄膜延伸横跨空腔,在每个空腔内提供单一信号电极,而且每个过孔提供了到形成在空腔结构中的信号电极的电连接。
在可替换的方法中,衬底可由多个硅晶片形成。一个晶片可用于形成空腔,另一个用于形成过孔。优选地,在薄膜晶片键合之前把这些晶片键合到一起。因此,从另一方面考虑,提供了一种构造CMUT阵列的方法,包括提供了:第一硅晶片并在其中形成导电过孔阵列;第二硅晶片并在其中形成空腔结构的阵列;和第三硅晶片并由此形成导电薄膜;其中每个晶片都被微加工以形成它们各自的结构并键合到一起以形成阵列,以使薄膜延伸横跨空腔,在每个空腔内提供单一信号电极,而且每个过孔提供了到形成在空腔结构中的信号电极的电连接。
在这种方法中,最优选的是,空腔结构和晶片和通孔阵列晶片由硅晶片形成并且薄膜优选地由氮化物包覆的晶片形成。
通常,过孔结构首先通过刻蚀多个穿过各自的晶片的器件层的孔产生,然后形成空腔结构的(第二)晶片可以倒转的构型被放置在第一晶片上面,以使两个晶片的器件层邻接。然而,优选的是,在此之前,在第一晶片的器件层上提供氧化层。在两个晶片键合后,硅的“把手”层可以从第二硅片上被去除。
优选地,一旦做完这个,可掺杂第二晶片的硅器件层并在其中刻蚀空腔结构。优选地,这可以形成大量隔离的区域。最优选地,该工艺进一步包括刻蚀掉每个隔离结构的一部分以提供一个在其下面具有部分的形成信号电极的掺杂硅的空腔。通常,为了提供这样深度的空腔,大约60nm的掺杂硅将被刻蚀。
优选地下一步骤包含将第三(薄膜形成)晶片放置于结构的上面,这样氮化硅层位于之前描述的空腔的上方。这样通过从晶片上刻蚀掉硅以留下形成薄膜的基础的氮化层来形成薄膜是可能的。虽然应当刻蚀掉传感器阵列的上方的硅,环绕器件边缘的部分阵列可以被留在原处,以提供竖立构件。薄膜可以如上述地被完成。
在工艺中的某个时刻,去除第一晶片的把手硅层。优选地这在第三(薄膜)晶片被应用之后进行,因为这给结构提供了显著的机械强度。这样把导电材料填入孔中以形成过孔是可能的。
因此,可以看到提供了一种用于形成其前表面上摆脱了不接地的电导体的CMUT阵列的非常方便的方法。
尽管在晶片键合的结构的背景中已经描述了本发明,相信在这里描述的创造性的概念可适用于非晶片键合的结构。因此从更进一步的方面来看,本发明提供了一种CMUT阵列,包括:横跨衬底分布的多个CMUT元件,每个元件包括衬底内形成的空腔和单一信号电极,和封闭空腔并形成接地电极的导电薄膜,其中单个元件的薄膜形成横跨阵列的表面的完整的接地面,其中用导电过孔提供了到信号电极的电连接,该过孔由此悬垂穿过衬底从信号电极到衬底背部。最优选地,如上所述地在空腔内形成电极。
如之前所论述的,本发明的CMUT阵列是意图用作集成超声传感器部件的一部分,此部件包括布置于CMUT阵列层下面的信号处理层。在这样的结构中,优选地,来自每个传感器的电信号彼此并行地通过器件(且被并行处理),经过比如模数转换器、放大器等的不同阶段,至少直到它们到达信号处理器的阶段,在那里它们可以被复用。通常,如本技术领域中众所周知的,一个提供衰减的吸声衬垫层在器件的背面被提供。
然而,本发明人发现,如果在CMUT阵列和处理结构之间提供另一个声音衰减层,器件的声学特性可以改善。对这个层来说,特别优选的是直接提供于CMUT阵列邻近处,由此通过这另一个声学层提供了到信号处理电路的电连接。
相信这个布置本身代表了进一步的发明并且因此,从进一步的方面考虑,本发明提供了一种集成CMUT结构,此结构包括CMUT阵列、信号处理电路和第一声学层,其中信号处理电路被提供于CMUT层和第一声学层之间,其中在CMUT阵列和信号处理结构之间提供了另一声学层。优选地,如上所述,第二声学层被提供在直接邻接CMUT阵列层处。该发明还延伸为一种产生这种阵列的方法。
这里描述的另一个发明涉及用于CMUT器件的吸声衬垫层,比如上面论述的那个。如上所指出的,在CMUT器件中提供了吸声衬垫层。这确保了任何从传感器传播进入衬垫的声音信号在衬垫中被吸收,这样它不会以在传感器接收的信号(在接收时)或者从传感器传送的信号(在传送时)中给出错误的回音的方式来激发传感器。如果它不被吸收,也会以这样的方式被降低,以使它不干扰传感器那时被设定接收或者传送的信号。在多数情况下这意味着波的传输方向被改变。
考虑以如此小的部件生产这些器件的需要,很多情况下传感器的下面可用空间很少,这样难以容纳一个具有高传播损耗的足够厚的材料层来确保没有信号被反射回传感器。
解决这个问题常用办法是提供一个散射波的不规则的底表面结构,但是它们也会占用一些空间,不是解决这个问题最好的办法。
在US7231181中,提议了一种衬垫层,在该层内,形状规则的、四分之一波长深度的凹槽形成在底或上表面。这导致形成有效的衍射栅。一半的通过该层传送的波从衬垫层的底表面反射,一半从凹槽部分反射,结果是这些波变成彼此相位相差180度,并且经受相消干涉。其原理在后面相关图39详述。
虽然这种方法是有效的,但它固定地调整到一个特定的波长,因此它的有效性受到一点限制。
根据本发明,提供一个用于超声传感器的吸声衬垫层,该层被布置以散射多个不同频率的超声波,其中衬垫层包括多个相互独立起作用的散射结构,这样每个都在一个给定的频率上在反射波的反射系数上产生一个零。
此处使用的术语“吸声衬垫层”意思为为了抑制超声波,例如阻止体波传播,或者至少减弱它们而提供的一个层。
因此,使用本发明,提供了一个衬垫层,它可以压缩体积,同时还可以散射一部分频率的超声波。
通常,布置散射结构以使对从由于使用其它的传播迟延而增加的传播长度的任何可能类型的总区域的一半反射的信号增加了2hi的传播长度。(该层底部深度h的凹部将导致反射波具有比从该层底部反射出的波的路径短2h的传播路径,如果h是四分之一波长,行进较短路径的波将与那些行进了较长路径的波相消干涉)。传播延迟中的这一平衡将较佳地既被在整个结构上全局保持,也被用于结构中每一处较小区域的局部保持。
一种能够实现这个的结构包括不同尺寸的刻蚀方块,其中每个尺寸的方块就像在棋盘上一样被安排,并且,比如说对于第i个棋盘,黑色的棋盘方格被向下刻蚀到一定高度hi。为了用上面描述的平衡的方式容纳三个高度,棋盘上方块的大小可按比例调节以使它们之间在尺寸上存在至少为2的线性因子(2的整数幂)。因此,四个较小图案的方块可以被放在第二大方块之一的里面,以此类推。通过选择高度差,大的方块将优选地在较低的频率上产生相消。
因此本发明提供了一种系统的方法以使后表面将波散射为具有明显改变的传播方向的波,通常给出返回传感器的长的传播路径。因此如果它们可能返回到传感器,将只在很小的程度上影响传感器的成像。它还可以在衬垫中将波转换成横波,通常在衬垫材料中横波具有比进来的纵波更高的传播损耗,因此也减少了波能量以明显的强度到达传感器的几率。这种结构占空间小,因为它在衬垫材料的底部的总厚度约为一个波长。
棋盘布置是使散射结构用于本发明的多个方法之一。使用具有和凹槽宽度相同的凹槽间距的平行凹槽也是可能的。几个凹槽结构可以在彼此顶部叠放,以使它们可以同时起作用,并且以上面描述的方式平衡。对具有不同深度或许还具有不同宽度的凹槽使用不同方向也是可能的,凹槽被设计以使它们在所需频率上起作用。三个凹槽结构可以具有内部相差为45度和90度的凹槽方向。另一种方法是提供多套方向相同,具有不同的深度和宽度的周期性的凹槽,它们叠放在彼此之上。这样做使得一个给定点上的总深度来自于所有叠放的凹槽结构的总和。这种情况下,在不同凹槽结构的周期之间应该有整数的关系,来实现局部平衡原理。
另一个可能的结构具有两个三角形的基本图案,两个三角形一起形成正方形或者矩形。与此结合形成平衡的深度图案的结构可能是如果正方形或者矩形被两个可能的对角线中另外一个分成三角形而得到的结构。为了包含更多的图案,可以用矩形重复相同的结构,其平面上的尺寸被按比例地放大或缩小2的因数。
在上面的论述中,考虑了表面结构形状的边缘是尖锐的情况。但是,具有更平缓的边缘的结构也可以工作,并可能更容易地通过铸造来制造。声学层可以由任何适合的材料形成,例如环氧树脂和适合浇铸的钨。
尽管本发明主要是设想为衬垫层,在本发明的其它方面,所述类型的层可被提供于超声传感器的结构(特别是CMUT)中的其它位置。例如,在CMUT阵列和它相连的信号处理及控制电路之间提供一个衬垫层可以是必须的。本发明的结构可以被用于任一或者全部的这样的衬垫层。实际上,一个在CMUT阵列和相连的信号处理及控制电路之间具有第一衰减层的集成超声传感器装置的供给提供了本发明进一步的方面。本发明的结构也可以适用于其它需要吸收或者减弱声波或超声波的领域。
本发明对任何类型的使用吸声衬垫层的超声传感器都是有用的,但它对CMUT结构尤其有用。因此,从另外一个方面考虑,本发明提供了一种包括如上面描述的声学层的CMUT器件。
本发明还扩展为一种制造吸声衬垫层的方法,方法包含形成这样的结构,比如通过浇铸、微加工(包括刻蚀、光刻)等等,并扩展为一种制造包含这样的层的CMUT器件的方法。
如上面所指出的,在CMUT器件中供给包含声音衰减材料的衬垫层是众所周知的。在上面也提到,发明人发现如果在CMUT层和信号处理结构之间提供另一个衰减层可以改善声学特性,特别是如果其被提供直接邻近CMUT层。
然而,在所描述的阵列类型中的这种衰减层的应用中,固有的是必须提供穿过它的电连接(此领域中被称为“过孔”),从上面的CMUT层到下面的信号处理结构,这是进一步的发明的主题。发明人认识到用于制造这种过孔的公知技术将导致过硬的结构以致不能最佳地起到衰减层的作用。例如,可以通过刻蚀掉半导体晶片留下一系列被空隙包围的导体(“柱”)产生过孔,这些空隙接着用衰减材料填充。但是,已知的刻蚀技术,比如深反应离子刻蚀(DRIE),对于厚度为100微米的衰减层给柱的直径确定了10微米的下限。如果该柱被放置以,比如在两个横向方向都为25微米的间距,在垂直挤压的方面,该柱将主宰薄板的硬度,因而显著地减小层的衰减特性。
根据本发明,提供了一种用于超声传感器的声音衰减结构,衰减结构包括声音衰减材料层,此层具有上表面和下表面和多个导电体,该导电体从上表面穿过声音衰减材料层到下表面,其中每个导体在从它们接触上表面的位置横向偏移的位置处接触衰减结构的下表面。
因此,通过本发明,导体(过孔)不形成从上表面到下表面的直接的垂直路径(像圆柱),因此对这种结构提供了显著地更小的垂直的硬度。
可以通过使用被布置以显著的角度相对上表面和下表面的大体上直的导体(即不垂直)提供本发明,换句话讲,导体倾斜地延伸。但是,这种结构不易于构造而且不能提供最佳的声学特性。因此优选的是,导体不是直的而是沿着带弯的路径。导体特别优选的布置是弯曲的。因此,导体可具有从上表面延伸进入声音衰减层的第一部分,由此偏移并从下表面延伸进入声音衰减层的第二部分,和从第一部分到第二部分的在声音衰减层内延伸的第三部分。
尽管其它形式是可能的,衰减层通常是大体平坦的形式,上表面和下表面大体上平行。对导体的第一部分和第二部分来说,最方便的是大体上垂直于上表面和下表面,即如果上表面和下表面被作为水平参照,它们大体是垂直的。另外,优选地第三部分大体上平行于上表面和下表面(即水平的)。这使第三部分在构造衰减结构的过程中能作为水平层被沉积。
优选地,导体的垂直部分,如上面所描述的,通过刻蚀掉半导体(比如硅)晶片以留下柱而形成。最优选地,衰减层由多层,最简单地,由两个厚度为最终厚度的一半的层形成。这提供了进一步的优势,柱的直径可以减小到厚度的一半,比如5微米,与之相比上面的例子中为10微米。
两个层然后被这样连接在一起,以使每个部分的柱的位置相偏移。例如,如果柱形成了在第一层中的格子的角,第二层上的那些柱将位于在第二层中的相同的格子的中心。在上面的例子中,25微米的格子间隔是合适的。这种布置被看作是进一步的创造性概念,因此,从进一步的方面来考虑它提供了一种用于超声传感器的声音衰减结构,衰减层包括至少两个邻近的衰减层状部分,每个都有导电体穿过,其中一个层状部分的导电体的每一个都通过置于两层之间交界处的横向导体连接到另一个层状部分的导电体。
可以使用一层(优选地,薄的)各向异性的导电胶连接两个层。这种胶具有相当低的导电球的密度,当两个导电表面在粘合工艺中被压在一起时,在两个表面之间提供传导性,但是不会在胶水层横向地提供导电性。
值得注意的是如果需要也可以使用更多的层。因此,可以一起使用具有两套水平传导部分的三个层,等等。在这种布置中,只有邻近层状部分的柱需要互相偏移。实际上,本发明可以被进一步地考虑作为用于超声传感器的声音衰减结构,其中过孔穿过衰减层形成,过孔沿着其中带弯的路径并且优选地包括垂直于过孔的其余部分的方向的部分。
一种构造每一层的方便的方法是使用氧化埋层(buried oxide layer)硅晶片,硅晶片带有在器件层产生的柱,优选地,柱从氧化埋层的表面延伸。于是晶片的背面在工艺中被用作把手。
然后可以用声音衰减材料环绕柱,比如包含钨的颗粒的环氧树脂,然后可以在两个晶片被键合在一起之前,在一个晶片的环氧树脂表面产生水平导电部分,这样水平导电部分在两套偏移的柱之间形成电连接。
然后去除把手层之一以使一套柱连接到超声传感器结构,例如CMUT阵列,中的其它组件上成为可能。一旦做完这个,去除残留的把手层是可能的,由此暴露另一套柱,此套柱用于连接到,比如信号处理层以形成超声传感器结构。因此,本发明的声音衰减层是意图用作集成超声传感器部件的一部分,此传感器部件包括布置于CMUT阵列层之下的信号处理层。在这种结构中,来自每个传感器的电信号优选地垂直地互相并行地通过器件(并且并行处理),经过比如模数转换器、放大器等的不同阶段,至少直到它们到达信号处理器的阶段,在那里它们可以被复用。通常,如本技术领域中众所周知的,提供衰减的吸声衬垫层在器件的背面被提供。如果其中需要导电过孔,也可以根据本发明来形成该层。
尽管本发明已经在CMUT器件的背景中被描述,它对于其它超声传感器也适用。实际上,它可以用于其它需要类似的声音衰减结构的领域。
本发明还扩展为制造声音衰减层的相应的方法,因此,从更进一步的方面考虑,本发明提供了一种构造用于超声传感器的声音衰减结构的方法,包括在第一和第二晶片上形成多个被空隙环绕的导电柱,用声音衰减材料环绕导电柱,提供与晶片中的一个的表面上的柱相连的导电路径,以及将晶片键合到一起,以使一个晶片上的每个柱从另一晶片上的柱横向偏移,以使第一晶片上的每个柱通过导电路径之一连接到第二晶片的一个柱。
本发明还扩展为一种包括如之前描述的包含这种声音衰减层的传感器的超声成像系统(优选地侵入式的),以及扩展为一种使用根据本发明的传感器的成像方法。在实际系统中,来自这种传感器的信号,优选地是被复用的,通过信号引线传输到处理系统到图像显示器件。还提供了控制电路以控制波束,等等,如超声领域里普遍知道的。
可以以机器人药丸的形式生产本发明的CMUT阵列,即以被病人吞咽的独立形式。因此,从进一步的方面考虑,本发明提供了一种包括根据本发明的任何一个其它方面的CMUT阵列的可吞咽的超声传感器。机器人药丸优选地包括电源并且优选地提供有密封的外壳以防止阵列遭受体液(胃酸等)。它可以包括数据记录系统,比如处理器和存储单元,但是在特别优选的形式中,它包括发送器(例如无线电发送器)来发送图像到外部接收器。
上面论述的每个发明还扩展为一种包括如之前描述的的传感器的超声成像系统(优选地侵入式的),以及扩展为一种使用根据本发明的传感器的成像方法。在实际系统中,来自这种传感器来的信号,的优选地是被复用的,通过信号引线传输到处理系统到图像显示器件。还提供了控制电路以控制波束,等等。如超声领域里普遍知道的。
现在关于附图,将仅以举例的方式说明本发明的实施例。
附图说明
图1为包含本发明的一个实施例的CMUT阵列的超声传感器部件的整体示意图;
图2为在构造阵列中使用的三个硅片的横截面示意图;
图3为第一硅片的截面示意图,说明了其中孔的形成;
图4为对应于图3视图,显示了进一步工艺步骤的结果;
图5为对应于图4的截面示意图,显示了第二硅片添加到结构;
图6和图7为对应于图5的截面示意图,显示了进一步连续工艺步骤的结果;
图8为对应于图7的截面示意图,显示了第三硅片添加到结构;
图9和图10为对应于图8的截面示意图,显示了进一步工艺步骤的结果;
图12A为穿过CMUT阵列的部分截面图,图12A为对应于图12A的部分平面图,说明了使用的截面线;
图13A和13B对应于图12A和12B,但使用了不同的截面线;
图14为根据本发明的另一个实施例的CMUT阵列的横截面图;
图15和图16为图14的阵列的视图,图14对应于图12B和图13B,显示了图17和图18中使用的横截面线;
图17和图18为图15的阵列分别沿着图15和图16的A-A线和B-B线的截面图;
图19和图20对应于图15和图16,但显示了简化的结构;
图21显示了用于制造图14的实施例的硅片的横截面示意图;
图22(a)和(b)到图35(a)和(b)和图37(a)和(b)为沿着图19和图20定义的A-A线和B-B线的横截面图,显示了制造根据图14的实施例的阵列中的连续步骤;
图36和图38为对应于图14的示意图,显示了制造根据图14的实施例的阵列中的最终阶段;
图39为现有技术的衬垫层的示意图;
图40为根据本发明的一个实施例的衬垫层的底部的轮廓图(以平面图)
图41为说明了来自于图40的衬垫层的反射损耗随频率变化的图;
图42为用于根据又一个实施例的衰减层的结构中的氧化埋层晶片的截面示意图,此实施例中硅被刻蚀以留下导电柱;
图43为图42的晶片的视图,其中衰减材料层已经被添加来环绕柱;
图44为形成于图43的晶片的上表面的导电路径的平面示意图;和
图45是完整的实施例的截面示意图。
具体实施方式
关于图1,说明了一个超声传感器部件。它适用于侵入式的超声过程,即它可以用在超声“照像机”上,此超声“照像机”能被安置在用于插入血管等的导管或者针头的末端。需要这样的器件能够扫描大范围的视野因此必须在阵列中提供大量的元件。本实施例可以用于成像一个90度角的圆锥体,因此在一个约1立方毫米的部件中提供了大约1000个元件。
部件1由几个独立形成的层形成,这些层形成堆叠。在顶部(如显示的)是CMUT层2,包括传感器元件3的阵列。这些元件中的每一个实际上包括四个单独的传感器3a-3d,这将在下面描述。(在其它实施例中这个数字可能不同,多数情况下更高)为了提供必须的分辨率,该实施例在20-50MHZ的频率上工作;该层是20微米厚的微加工的硅结构。它的构造将在下面详细论述。
其余的层置于CMUT层2之下。通常,这些层包括与CMUT元件相配的多个元件,这样,来自或者到达每个CMUT的信号路径在该结构中是平行的和垂直的(如图示)。
CMUT层2之下是声学层4,声学层4起提供传感器与器件的其余部分的声音隔离的作用。由于器件的顶层几乎是纯硅,提供该层以阻止表面波的传播。表面波是横跨传感器的表面传播的波。如果允许表面波传播,那么它们将破坏器件的工作,至少在一定的角度范围内。(在现有技术的器件中,提供隔离沟槽来减少波的传播,但是在本实施例中没有使用这些。)声学层2由环氧树脂和钨珠形成,厚度为100微米。
下一层是高压传送层5。它给每个传感器提供了必需的驱动电压以使它们发出超声波。这一层提供+/-10到15的电压范围内的驱动电压(在现有背景下这些是“高压”)。它还使传输脉冲能被导向到预期的方向上,这是通过在预定的频率上激发每个不同的元件来实现的,正如超声传感器领域中普遍知道的那样。还可以控制这层以使传送时只使用一部分阵列。
在所描述的实施例中,同样的元件被用于传送和接收,然而,在其它实施例中(未图示),提供分开的传送和接收元件。
接收层6接收来自传感器的信号并在它们被传送到信号处理和通信层7之前预处理它们。特别是,层6包括被布置以把来自每个传感器的输出转换为数字形式的模数转换器。然后层7处理并复用数字信号以使它们可以通过小量的导体传输到显示器件。因此,它具有对应于每个CMUT元件的输入,但有数量小的多的输出来从器件提供图象信号。
因此,在本实施例中,和CMUT元件被用于接收和传送两种模式一样,接收和传送的电路在一个统一的结构中被提供。但是,在较简单的实施例(未图示)中,传送器可以被放在独立于接收器的芯片上,并没有必要和接收器以及波束形成器的堆叠一起对齐。
最终层8是另一个的声音衰减层,其阻止体波传播。这样的层在常规的基于压电材料的传感器中是常见的。但是,本设计中使用两个声学层(4和8)是独创的。在常规的压电式超声器件中,传感器部分厚得多,在两个衰减层之间没有硅夹层,因此在结构的底部的单独的衰减层(即层8)足够衰减表面波。但是,当它和传感器之间有硅层时,如所描述的实施例中的,发现它没有效果。
该器件的一个重要的特点是没有到达或者穿过器件前部(如图所示的顶部)的不接地的电连接,只经过CMUT元件的后部(如图所示的底部)提供带电的连接,这将在下面详细描述。这能使器件的前部接地并因此没有携带“带电”的信号的导体暴露在器件的外部。这有安全性的考虑,其中高驱动电压被包含并在携带信号的导体的电绝缘中提出问题。
关于其余的图,现在将描述制造器件的CMUT层2的工艺。应该注意的是,尽管图2显示了形成CMUT传感器元件阵列的硅晶片,图12A到13B显示了(部分)完整的阵列,为了清晰的原因,图2到11仅说明了四个传感器3a-3d的单个CMUT元件的形成。图仅仅是示意图,没有按比例。另外,为了使细节能被看清楚,相对于图2和图12A-13B,图3-11在水平方向上略微有点缩短。
CMUT层2由三个独立的硅晶片9、10和11形成,如图2所示。第一晶片9是有氧化(SiO2)层12以及氧化层上面的100nm的氮化(Si3N4)层13包覆的硅晶片。这将被用于构造CMUT薄膜。第二和第三层10、11是正规的氧化埋层硅晶片,即它们各自具有被夹于它们中间的氧化层14、15。(氧化层通常用于减少集成电路表面上相邻电路之间的电容。)晶片10具有8微米的器件层21和0.3微米的氧化埋层14;对于晶片11,这些厚度分别是10微米和2微米。把手层23和17(还有晶片11的层22,它也是一个把手)明显地较厚,尽管这些尺寸不是关键的。如将要描述的,这些晶片中的每个的大部分将在微加工工艺中被刻蚀掉。
在完整的CMUT阵列中,底部的晶片11形成主要的硅结构,其上具有传感器元件,其内形成了形成电连接的过孔。中间层10形成CMUT空腔结构,顶层9用于产生薄膜。晶片以其通常方式被显示——以形成电路的晶片10和11的器件层——在上部。注意在后面的工艺中,中间晶片10将被反转。
第一个微加工阶段显示于图3。显示了晶片11,其经历了氧化工艺以环绕其侧面提供氧化层15′。在那之后,向下刻蚀一个直径4微米的孔18穿过顶部的硅层16并穿过氧化层15。这个孔最后将被用于形成导电过孔。通过反应离子刻蚀(RIE)(氧化层15′),通过深反应离子刻蚀(DRIE)(硅层16,)刻蚀新产生的氧化层15′的顶部部分并穿过硅层16,使用HF刻蚀完成穿过氧化层15的孔。在这个工艺中,光刻胶19被应用于上表面以形成掩模,不过顶部氧化层15′在DRIE工艺中起部分的掩模作用。如果底部的硅层17有点被刻蚀是不重要的,因为这在后面将被去除掉。
另外,在氧化层15′形成图像配准标记R1和R2,以在接下来的键合工艺中用于使此晶片和的其它晶片上相应的标记对准。尽管在接下来的论述中没有进一步的讨论,对于每个晶片,这些标记作为第一处理步骤的一部分被刻蚀以使键合工艺中晶片的对准变得容易。重要的是晶片的晶向匹配好以得到好的键合。接下来,控制何处发生刻蚀的光刻胶被去除,而且1微米的氧化层20被应用于孔18的内部——参见图4。这为过孔形成绝缘层。
在下一阶段,使用了中间晶片10。如从图5可见的,它被反转(相对于图2中的视图)并放置于底部晶片11的上面。为了形成可靠的键合,以常规方式,晶片的表面被清洁及亲水化处理、对准、压在一起,然后被加热。
下一步(见图6)是从晶片10上刻蚀顶层23(如现在所显示的),顶层23对结构起“把手”的作用。(它仅有的作用是为残留的很薄的氧化层和硅层提供支持)。
一旦做完这个,氧化层被去除,使用POCI3掺杂硅层21,以在表面上给它高浓度的磷。这在表面上留下被称为磷玻璃的残留物,它应该被去除,因此进行后续步骤:刻蚀掉磷玻璃;生长薄的氧化层;长时间地高温处理晶片以允许磷扩散进入器件层从而得到1016/cm3到1019/cm3量级的磷的浓度;刻蚀掉氧化层;生长新的厚度为500nm的氧化层。
接下来,光刻胶掩模25被施加到氧化层14,并且使用反应离子刻蚀(RIE)和深反应离子刻蚀(DRIE)刻蚀通道26进入氧化层14和掺杂硅层21。这些通道形成单个传感器元件3a-3d的轮廓。
接下来,(参见图7),光刻胶25和氧化层22一起被去除。然后,施加一层新的光刻胶(来界定新的刻蚀区域),结构上部分的中心部分27(见图6,7)被向下刻蚀60nm来形成将位于CMUT空腔内的部分。必须以非常受控制的方式刻蚀这部分。这是知道了取决于氧化层的厚度硅以不同的速度氧化,并且知道了需要形成氧化物的硅是从氧化的表面获得的,来进行的。于是工艺如下:均匀地氧化整个表面(500nm);用光刻胶保护将要竖立的表面;在要凹进去的区域刻蚀掉氧化层;去除光刻胶;再次氧化合适的时间;去除所有的氧化层。这样留下如图7所示的结构。
现在转到图8,在清洁、亲水化处理之后,第三也是最后的晶片9被放在结构的上面,然后使用图像配准标记R1,R2等,对准晶片,键合到一起。这晶片的氮化层26的下部将形成封闭CMUT空腔的薄膜的一部分。
既然在结构的顶部有提供机械强度的坚固的晶片9,可能通过首先用RIE来去除氧化层以去除硅的底部“把手”层17。然后使用四甲基氢氧化铵TMAH刻蚀掉层15。另外,部分氧化层和在孔18的底部形成的氧化物由RIE刻蚀掉以形成如图9所示的结构,其中,孔18的底部是打开的。
下一阶段是通过在孔18中填入导电材料来形成过孔。如图10所示——首先,一层多晶硅(无定形态的多晶硅)30被提供以勾勒出孔。然后这被重掺杂,然后更多的多晶硅31被用来填充孔18。然后去除残留在结构底部的过量的多晶硅,并且通过溅射施加铝触点32。施加另一个的铝触点33以提供到硅主体的连接。
转向图11,下一步骤是TMAH刻蚀掉CMUT元件上的硅层22(和它的覆盖层)下至氮化层28。注意层22的外部区域被保留以提供环绕结构的上面部分的竖立构件,以允许测试时方便拿取。尽管本描述显示了单个元件,如后面的图所示,在所有CMUT阵列上方的硅层22被刻蚀,竖立构件被保留环绕整个器件。在本发明的另一个实施例中,一个底部的衰减层8为阵列结构提供把手强度,因此竖立构件不是必须的。
接下来,100nm的导电膜,例如铝或者钛或者钨或者它们的混合的膜39被沉积,然后使用等离子体增强气相沉积,在其上部形成一层150nm的氮化硅34。这样产生CMUT的薄膜,氮化层对薄膜提供强度,并保护导电膜,导电膜进而提供导电的“电容极板”。最后,孔被刻蚀到器件的边缘并填入金触点35以提供接地。铝膜形成公用的接地面,因此环绕整个阵列的边缘只需要少数这样的电极。
因此,在完整的CMUT中,包含铝的薄膜(39等)形成电容元件的一个(接地的)极板,掺杂硅层21的部分36形成带电/信号极板。这两个极板互相平行且由空腔38分开。到接地薄膜的电连接经过触点35而到带电极板36的连接经过过孔32,过孔32向下延伸穿过在其正下方的硅层。
如上面提到的,完整的实施例包括大概1000个元件,每个元件包括四个单个的传感器3a-3d,如图12A-13B所示。图12B和13B最清楚地显示了元件3的布局,每一个元件包括四个单个的传感器3a-3d。图12A和13A显示了相邻的元件和它们各自的过孔31关于彼此是如何布置的。注意,每个四个传感器的元件只有一个过孔,四个传感器每个的信号电极连接在一起。这可以在图12B和图13B中最好地看到。每个传感器的中心部分,如前面所描述的,被向下刻蚀60nm以形成CMUT中空腔的底部,另外形成0.85微米的连接电路的窄“线”。图12A和13A中可以看到的残留的空隙40是图像配准标记。
现在关于附图14-38描述本发明的进一步的实施例,以及其制作方法。该实施例在整体结构上与上面描述的实施例相似,但是空腔形成在和过孔相同的硅晶片上。
图14显示了实施例的横截面,此实施例显示了具有统一的接地的顶电极106和到背面的电过孔连接111(“过孔”)的真空密封的CMUT空腔或单元102的阵列,背面提供电触点108。主体硅衬底具有独立的电触点109。CMUT单元上的薄膜堆叠包括LPCVD的氮化硅(103)、氧化硅104、金属层105和PECVD(Plasma Enhanced Chemical Vapour Deposition,等离子体增强化学气相沉积)的氮化硅层106。金触点110被沉积以提供用于到薄膜堆叠的金属层105的电连接,金属层105构成顶电极。
CMUT阵列包括几千个元件,那里每个元件包括四个环形的CMUT单元102,部分CMUT阵列显示于图14。图15和16显示了在薄膜堆叠的熔融键合前两个CMUT元件的顶视略图。体硅晶片201的表面构成用于氮化硅103到硅201的熔融键合的区域,这将在下面全面论述。图15和16中每个元件的一个单元中的小环211说明了图1中的电过孔连接111的位置。掺杂的多晶硅213形成底电极和CMUT单元之间的互连线,该互连线将四个CMUT单元电连接到一起以形成一个元件。多晶硅表面213界定了空腔的底部。氧化硅212的沟槽在元件之间提供了隔离并界定了底电极区域的直径和圆形薄膜的直径。
提供了带有横截面线的图15和16,横截面线定义了后面两图中使用的截面视图。图15显示了用于图17中穿过一个元件的横截面A-A’。类似的,图16中的B-B’显示了用于图18中对角地穿过的一个元件的横截面。
如从图17和18可以看到的,在其上部带有氧化硅304的LPCVD(LowPressure Chemical Vapour Deposition,低压化学气相沉积)的氮化硅303由此被熔融键合到体硅表面301。悬在真空密封的CMUT单元302上方的薄膜堆叠被一个薄的金属层305和一个PECVD的氮化硅层306完成。掺杂的多晶硅313构成了底电极和到部件背面的电过孔连接。氧化硅312使过孔连接之间隔离并界定了底电极区域的直径和圆形薄膜的直径。
现在关于图19到38,逐步地描述制造该实施例的工艺。图19和20对应于图15和16,但为了清楚,显示了组成每个元件401的单元400之间的简化的(单路径)互连,后面的图对应于此布置并显示了由这些图定义的横截面A-A(左到右)和B-B(对角)。
和前面一样,每个元件的一个单元中的小环402显示了电过孔连接的顶部。灰点区域403是掺杂的多晶硅底电极,在CMUT单元之间具有把四个CMUT单元电连接到一个元件的互连线404。多晶硅表面界定了空腔的底部。环绕区域405表示氧化硅的沟槽。这些沟槽使元件间隔离并界定了底电极区域的直径和圆形薄膜的直径。外部区域406显示了裸硅晶片。这是用于熔融键合到形成薄膜的晶片的键合表面。
图21显示了该工艺中使用的晶片。在左边显示了标准的硅晶片407,CMUT元件和过孔连接将在其内形成。在右边显示了标准的硅晶片408,其周围有氧化硅薄层。低压化学气相沉积(LPCVD)的氮化硅410被沉积在顶部以形成最外层。这个晶片将被熔融键合到裸硅晶片上。
在接下来的图中,左侧的“(a)”部分显示了图15的横截面A-A,右侧的“(b)”图显示了图16的横截面B-B。将通过仅使用该数字一起描述两个图,因此,“图22”指图22(a)和22(b)。
工艺步骤从标准硅晶片开始。图22显示了晶片407被湿法氧化以在图形化光刻胶412之前提供氧化硅层411。图形化光刻胶之后,通过RIE刻蚀氧化硅411,结果显示于图23,其中硅的上表面的部分413被暴露。留下的氧化层将在后面被用作用于界定元件区域的氧化物掩模,参见图26。图24显示了用于定义过孔连接的位置415的第二个光刻胶掩模414。
然后在位置415,如图25所示,通过深反应离子刻蚀(DRIE)刻蚀20um深的孔进入晶片。过孔的直径约4μm。
下一阶段是去除光刻胶414,通过RIE界定元件417的区域,参见图26。
晶片被湿法氧化一厚氧化硅418,参见图27。这提供了一个用作使过孔之间相互隔离的绝缘层。此外,氧化硅将在元件之间构成隔离沟槽并界定底电极的直径和薄膜的直径(参见下图31)。
过孔用磷掺杂的多晶硅419填充(图28)。这形成了穿过过孔的导体420,导体420和将形成元件信号电极的材料相连。如图29所示,下一步骤是去除及化学机械抛光(CMP)晶片的上部分,其定义了电极421。
通过光刻胶422图形化晶片,通过RIE刻蚀大约60nm的多晶硅调整空腔间隙423(图30)。然后通过使用BuHF刻蚀掉200-300nm的氧化硅产生隔离沟槽424(图31)。这完成了单元的下部的形成,因此图21的右侧显示的晶片然后可以被熔融键合到上部以封闭单元,如图32所示。
当做完那个,使用四甲基氢氧化铵(TMAH)减薄底部晶片的背面(所示的下部),并使用RIE来暴露过孔420的底部426(图33)。氧化一层热氧化层以使底部硅表面绝缘(图34),在氧化层上提供有开口用来形成到过孔的触点和用来隔离触点与硅晶片。然后铝被溅射、图形化和烧结以形成到多晶硅过孔420和底电极的背面触点428、429(图35)。
现在转到图36,可以看到顶部硅晶片的顶部表面的氮化硅层410和氧化层硅409被图形化并通过RIE刻蚀。在阵列区域上方,顶部硅晶片408自身通过TMAH被刻蚀掉,刻蚀停止于氧化硅。因此,顶部晶片的下表面的氧化硅和氮化硅,两者都构成薄膜堆叠的一部分,最终被暴露。如图37所示,一个薄的均匀的金属层430被溅射在氧化硅409之上,它在TMAH刻蚀顶部硅的过程中作为刻蚀停止层。此薄膜堆叠金属层通常可包括单层的铝、钛或钨或者甚至是两个或更多的单层金属的复合。薄膜堆叠最终通过一层等离子体增强化学气相沉积(PECVD)的绝缘的、均匀的钝化层431完成,该钝化层通常是沉积在金属层430上部的氮化硅。
最后的阶段(图38)是在芯片的边缘将PECVD的钝化层向薄膜堆叠金属打开。沉积金432用于电接触薄膜堆叠金属,见图38。
我们现在讨论衬垫层8(见图1)。当该实施例在20-50MHZ的超声频率下操作时,为了提供必需的分辨率,层2是一个20微米厚的微加工的硅结构。
如上面所论述的,在CMUT层2的下面是一个起提供传感器和器件的其余部分的声学隔离作用的声学层4。由于器件的顶层几乎是纯硅,提供此层以阻止表面波的传播。表面波是横跨传感器表面传播的波。如果允许表面波传播,则它们将破坏器件的工作,至少在一定的角度范围内。(在现有技术的器件中,提供隔离沟槽来减少波的传播,但是在本实施例中没有使用这些。)声学层4由环氧树脂形成,厚度为100微米。
现在详细讨论最终层,它是另一个阻止体波的传播的声音衰减层8。这样的层在常规的基于压电材料的传感器中是常见的。但是,本设计中使用两个声学层(4和8)是独创的。在常规的压电式超声器件中,传感器部分厚的多,而且在两个衰减层之间没有硅夹层,因此在结构的底部的单独的衰减层(即层8)足够衰减表面波和体波。但是,当它和传感器之间有硅层时,如所描述的实施例中的,发现它特别是对表面波是无效的。
图39的现有技术的衬垫层相当于图1的层8。它的底部的自由表面具有“皱纹”的表面,此表面包括规则的深度为一(特定的)波长的四分之一的矩形凹槽。
显示了一个平面纵波向皱纹表面传播。凹槽具有和凹槽间距相等的宽度,d,凹槽高度为h。在虚线上,凹槽底部的正上方,作为初步的近似,沿着该虚线将有统一振幅的反射波,但是在带有和没有凹槽的区域之间具有2h2π/λ的相位差。这里λ是波长。在4h=λ的频率,相位差为π,并且镜面反射的振幅为零,镜面反射是本来将从平面的底部表面反射的波。反而,波被转换为在传播方向上具有+/-2π/(2d)的倍数的k-矢量的纵波和横波。
但是,这种变换只在相当窄的频带上是有效的。现在将描述的本发明的实施例能够覆盖更大的频带,并且使用了有效地增加几个具有不同有效高度h的这样的散射周期的结构。
为了使几个这样的散射结构独立工作以致它们中的每一个都在其设计的频率上在镜面反射系数中产生一个零,有必要布置它们以使对从由于使用其它传播迟延而增加的传播长度的任何可能类型的总区域的一半反射的信号增加2hi的传播长度。在传播迟延上的这个平衡应该较佳地既被在整个结构上全局保持,也被用于结构中每一处较小区域的局部保持。
图40中说明的实施例是能实现这个的这种结构的一个例子。它包括不同尺寸的刻蚀方块,每个尺寸的方块被像在棋盘上一样被安排。该图是交织的棋盘图案的一部分的等高线图。沿轴的尺度在1到1.5mm的范围内,高度单位为微米。
为了采用一般的情况(不限制于图40的实施例),假设对第i个棋盘,黑色的棋盘方块被向下刻蚀到一定的高度hi。为了以上面描述的平衡的方式容纳三个高度,我们必须按比例调节棋盘上方块的大小以使它们之间在尺寸上存在至少为2的线性因子(2的整数幂)。四个较小图案的方块应该被放在第二大方块之一的里面,以此类推。通过选择高度差,大的方块将在较低的频率上产生相消。
图示的实施例使用带有三个交织的棋盘的这样的结构。在图40中,显示了稍多于四乘四的较大的方块(最大周期为二乘二)。
图41中显示了对于本实施例得到的镜面反射系数关于频率的图。选择高度以在15.2MHZ、24.7MHZ、和36.1MHZ上产生反射相消。46MHZ频率的相消起因于对于15.2MHZ结构的1.5λ的迟延差。因此在该频率上它没有如它本该达到的局部平衡。
在替换的实施例中,在尺度上被按比例调节此结构中的一个棋盘图案以使上述的两个规则的因子被破坏。在这种情况下,在宏观尺度上需要的平衡仍然被保持,因此图41的结果几乎没有改变。但是仔细地观察较小面积的反射中发生了什么,将表明效率降低了。
在另一个实施例中(未图示),几个凹槽在彼此的顶部叠放以使它们可以同时起作用,并且如上面描述的那样平衡。对具有不同深度和不同宽度的凹槽使用不同的方向,凹槽被设计以使它们在所需频率上起作用。三个凹槽结构可能具有内部偏差为45度和90度的凹槽方向。
另一个实施例(未图示)具有两个三角形的基本图案,两个三角形一起形成正方形或者矩形。与此结合形成平衡的深度图案的结构可能是如果正方形或矩形被两个可能的对角线中另外一个分成三角形而得到的结构。
为了包含更多的图案,可以用矩形重复相同的结构,其平面上的尺寸被按比例地放大或者缩小2的因数。
如上面所论述的,在CMUT层2的下面(见图1)是声音衰减层4,它起提供传感器和器件的其余部分的声音隔离作用。现在关于其余的图,进一步详细描述衰减层4的制造工艺。
先转到图42,该工艺以两个相似的氧化埋层硅晶片509、510开始,硅晶片带有厚度为55微米的器件层511和厚度为100nm的氧化层512。在这些晶片上,我们在背面514(没有器件层的面)上定义对准标记513,然后在两个晶片正面用光刻胶图形化器件层511,并使用深反应离子刻蚀,DRIE,刻蚀此层,以形成具有5微米直径的硅柱515,硅柱515为矩形图案,在两个方向都为25微米的间距。如可以看到的那样,刻蚀一直穿过器件层11,停止于氧化层512。
下一步骤是掺杂晶片509和510以及高温处理以使柱材料得到高导电性。
如可以从图43看到的,下一阶段是将液体环氧树脂和钨粉的混合物516小心地在晶片的顶部铺开(带有柱的面指向上)以使柱515被这种材料环绕。在真空下合适地高温处理晶片509,510以允许环氧树脂易于流动并脱气。它还允许钨粉沉到环氧树脂层的底部,接近硅表面,然后硬化。在环氧树脂固化后,打磨并仔细地抛光晶片509、510上具有环氧树脂的表面直到柱515的顶表面被释放。然后,如可以从图44的平面图中看到的,在一个晶片上使用金属沉积(湿润加工或溅射)、光刻胶图形化和刻蚀来制造导电体金属线17。
使用晶片背面的对准标记13使两个晶片9、10的环氧树脂层对准,以使一个晶片里的柱位于另一晶片上的四个柱的中心。一旦它们被正确地对准,使用各向异性的导电胶将晶片粘合到一起。现在一个晶片上的金属线517将在两个晶片的导电柱15之间形成电接触,如图45所示。(注意该图显示了在衬垫层514等被去除之后的完整的衰减层4,参见下文。)
然后下一步是使用合适的刻蚀,刻蚀掉两个衬垫层514(曾用作把手)中的一个向下至氧化层512。通过氧化层512柱所在的区域将是可见的,因为氧化层薄(100nm)。然后以光刻胶图形化氧化层,并至少在柱上方刻蚀掉氧化层,可选地,在整个表面上。然后在表面形成金属膜(未图示),使用刻蚀和光刻胶来图形化金属膜而使触点适合于连接到CMUT晶片2的底表面。(可替代地,它可以是已经连接到CMUT晶片的一个或更多的电子晶片的底表面)。再次使用各向异性的导电胶以连接衰减层4和CMUT层2。
完成这些,然后可以通过CMUT层2的反面的把手层(未图示)拿取此组合的结构。这允许如上面描述的,刻蚀掉第二晶片510的保留的把手层514以及准备用于连接到其它电子晶片(特别地层5)的表面,连接使用各向异性导电胶。

Claims (57)

1.一种包括多个横跨衬底分布的CMUT元件的晶片键合的CMUT阵列,每个元件包括空腔和形成在所述衬底内的信号电极,以及封闭所述空腔并形成接地电极的导电薄膜,其中单个元件的薄膜形成横跨所述阵列的表面的完整的接地面,并且其中通过导电过孔提供了到所述信号电极的电连接,所述导电过孔由此悬垂穿过所述衬底而从所述信号电极到所述衬底的后部。
2.如权利要求1所述的CMUT阵列,所述阵列具有摆脱了携带信号电压的导体的前表面,由此所述阵列的前表面自身可以被完全保持在地面电位。
3.如权利要求1或2所述的CMUT阵列,其中所述衬底由一个或多个硅或硅基晶片形成。
4.如权利要求3所述的CMUT阵列,其中所述晶片是氧化埋层硅晶片。
5.如权利要求3或4所述的CMUT阵列,其中所述导电过孔和空腔结构在单一晶片上形成。
6.如权利要求3或4所述的CMUT阵列,其中所述导电过孔在第一晶片中形成,所述空腔结构和信号电极在第二晶片中形成。
7.如前面任何一个权利要求所述的CMUT阵列,其中所述过孔包括至少穿过晶片的硅器件层的刻蚀孔,并且在其中具有绝缘的氧化层和导电材料。
8.如前面任何一个权利要求所述的CMUT阵列,其中所述信号电极包括掺杂硅。
9.如前面任何一个权利要求所述的CMUT阵列,其中所述信号电极在所述各自的空腔内形成。
10.如权利要求1到7中的任何一个所述的CMUT阵列,其中所述信号电极包括多晶硅。
11.如前面任何一个权利要求所述的CMUT阵列,其中在掺杂硅中将每个单个传感器的所述空腔刻蚀到预定的深度。
12.如权利要求3到8中的任何一个所述的CMUT阵列,其中通过切入掺杂硅层的通道使一个元件的信号电极与另一个元件的信号电极隔离。
13.如前面任何一个权利要求所述的CMUT阵列,其中使用另一个硅基晶片形成与所述衬底分开的薄膜。
14.如前面任何一个权利要求所述的CMUT阵列,其中所述薄膜包括氮化硅层。
15.如权利要求14所述的CMUT阵列,其中所述薄膜还包括金属膜层。
16.如前面任何一个权利要求所述的CMUT阵列,其中所述元件以相关联元件的组来提供,所述相关联元件共享到一个过孔的共同连接。
17.一种制造具有多个横跨衬底分布的CMUT元件的CMUT阵列的方法,所述方法包括:
在硅衬底内,形成每个元件的空腔和信号电极,以及提供到所述电极的电连接的导电过孔,所述导电过孔被布置为从所述元件垂悬;和
提供导电薄膜以封闭每个空腔并形成接地电极,由此横跨所述CMUT阵列的表面形成完整的接地面;
其中所述导电薄膜由键合到所述衬底的硅晶片形成。
18.如权利要求17所述的方法,其中所述空腔和导电过孔在第一硅基晶片内形成,所述薄膜由第二硅基晶片形成。
19.如权利要求17或18所述的方法,其中所述电极在所述空腔内形成。
20.如权利要求17到19中的任何一个所述的方法,其中通过在所述空腔内沉积多晶硅而形成所述电极。
21.如权利要求20所述的方法,还包括刻蚀所述多晶硅来调整所述空腔。
22.如权利要求18到21中的任何一个所述的方法,其中所述第一晶片直接键合到所述第二晶片。
23.如权利要求17到22中的任何一个所述的方法,其中通过在形成于所述衬底内的孔中沉积多晶硅而形成所述过孔。
24.如权利要求17到23中的任何一个所述的方法,其中形成所述薄膜以提供横跨所述元件的表面的完整的接地面。
25.如权利要求17到24中的任何一个所述的方法,其中形成完全穿过器件的衬底的信号电极连接。
26.如权利要求17到25中的任何一个所述的方法,包括刻蚀多个穿过所述第一晶片的器件层的孔的步骤。
27.如权利要求17到26中的任何一个所述的方法,包括在所述衬底之上放置形成薄膜的晶片,以使氮化硅层位于所述空腔的上方。
28.如权利要求27所述的方法,还包括从所述晶片刻蚀掉硅以留下所述氮化层。
29.如权利要求28所述的方法,还包括在所述氮化层上提供金属涂层以形成接地电极。
30.一种集成CMUT结构,包括CMUT阵列、信号处理电路和第一声学层,其中所述信号处理电路被提供于CMUT层和所述第一声学层之间,其中另一个声学层被提供于所述CMUT阵列和所述信号处理结构之间。
31.如权利要求30所述的集成CMUT结构,其中提供了直接邻近所述CMUT阵列层的所述第二声学层。
32.一种用于超声传感器中的吸声衬垫层,布置所述层以散射多个不同频率的超声波,其中所述层包括多个相互独立地起作用的散射结构,以使每个散射结构在给定的频率下在镜面波反射系数中产生一个零。
33.如权利要求32所述的吸声衬垫层,其中布置所述散射结构以使它们对从由于使用其它传播迟延而增加的传播长度的任何可能类型的总区域的一半反射来的信号增加2hi的传播长度。
34.如权利要求32或33所述的声学层,其中所述散射结构包括不同尺寸的刻蚀方块。
35.如权利要求34所述的声学层,其中如以棋盘样式来安排每个尺寸的所述方块,对于第i个棋盘,对应于棋盘上的一种颜色的所述方块被刻蚀到一定的高度hi
36.如权利要求35所述的声学层,其中所述棋盘中方块的尺寸可以按比例调节,以使在它们之间在尺寸上存在至少为2的线性因子。
37.如权利要求32或33所述的吸声衬垫层,其中所述结构包括在彼此顶部叠放的平行凹槽。
38.如权利要求37所述的吸声衬垫层,其中单独的结构的凹槽具有内部相差为45度和/或90度的凹槽方向。
39.如权利要求32或33所述的吸声衬垫层,其中所述结构包括多套方向相同、具有不同深度和宽度的周期性的凹槽,所述凹槽叠放在彼此之上,以使在一个给定点上的总深度是从所有叠放的凹槽结构的总和得出来的。
40.如权利要求39所述的吸声衬垫层,其中在不同的凹槽结构的周期之间具有整数关系。
41.如权利要求32或33所述的吸声衬垫层,其中所述结构包括两个三角形的图案,所述两个三角形一起形成正方形或矩形。
42.如前面任何一个权利要求所述的声学层,由环氧树脂和钨形成。
43.如权利要求32到42中任何一个所述的声学层,其中所述结构包括表面中的凹部,所述凹部的深度是它们减弱的波的波长的四分之一。
44.一种超声传感器,包括CMUT阵列、信号处理层和如权利要求32到43中的任何一个所述的衬垫层。
45.如权利要求44所述的超声传感器,还包括所述CMUT阵列和所述信号处理层之间的声学层。
46.一种用于超声传感器中的声音衰减结构,所述衰减结构包括声音衰减材料层,所述声音衰减材料层具有上表面、下表面和从所述上表面穿过所述声音衰减材料层延伸到所述下表面的多个电导体,其中所述导体均在从它们接触所述上表面的位置处横向偏移的位置处接触所述衰减结构的下表面。
47.如权利要求46所述的声音衰减结构,其中所述导体沿着在其中带弯的路径。
48.如权利要求46或47所述的声音衰减结构,其中所述导体是曲柄状的。
49.如权利要求46到48中的任何一个所述的声音衰减结构,其中所述导体具有从所述上表面延伸进入所述声音衰减层的第一部分,由此偏移并从所述下表面延伸进入所述声音衰减层的第二部分,和在所述声音衰减层内延伸的从所述第一部分到所述第二部分的第三部分。
50.如权利要求49所述的声音衰减结构,其中所述声音衰减层包括至少两个层状部分,并且所述导体的第三部分被置于所述两个层状部分之间的分界处。
51.一种用于超声传感器钟的声音衰减结构,所述衰减层包括至少两个邻近的衰减层状部分,每个层状部分均有电导体穿过,其中一个层状部分的电导体均通过置于所述层状部分之间的分界处的横向导体连接到在另一个层状部分中的电连接器。
52.如权利要求50或51所述的声音衰减结构,其中使用各向异性的导电胶连接所述层状部分。
53.如权利要求46到52中的任何一个所述的声音衰减结构,其中所述衰减层包括环氧树脂和/或钨颗粒。
54.一种构造用于超声传感器中的声音衰减结构的方法,包括在第一和第二晶片上形成多个被空隙环绕的导电柱,用声音衰减材料环绕所述导电柱,提供与所述晶片中的一个的表面上的柱电连接的导电路径,以及将所述晶片键合到一起以使得一个晶片的柱均与另一个晶片的柱横向偏移并使得所述第一晶片的每个柱通过所述导电路径之一连接到所述第二晶片的一个柱。
55.如权利要求54所述的方法,其中所述晶片是硅晶片。
56.如权利要求55所述的方法,其中所述晶片是氧化埋层硅晶片。
57.一种CMUT器件,包括根据权利要求46到53中的任何一个所述的声音衰减结构或者根据权利要求54到56中的任何一个所述地被构造。
CN2010800225984A 2009-03-26 2010-03-26 具有导电过孔的晶片键合的cmut阵列 Pending CN102427890A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
GB0905256.4 2009-03-26
GB0905255A GB0905255D0 (en) 2009-03-26 2009-03-26 Cmut array
GB0905255.6 2009-03-26
GB0905256A GB0905256D0 (en) 2009-03-26 2009-03-26 Ultrasound transducer backing layer
GB0909296A GB0909296D0 (en) 2009-05-28 2009-05-28 Ultrasound transsducer damping layer
GB0909296.6 2009-05-28
PCT/GB2010/000583 WO2010109205A2 (en) 2009-03-26 2010-03-26 Cmut array

Publications (1)

Publication Number Publication Date
CN102427890A true CN102427890A (zh) 2012-04-25

Family

ID=42308937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800225984A Pending CN102427890A (zh) 2009-03-26 2010-03-26 具有导电过孔的晶片键合的cmut阵列

Country Status (7)

Country Link
US (1) US20120074509A1 (zh)
EP (4) EP2662153A1 (zh)
JP (1) JP5744002B2 (zh)
CN (1) CN102427890A (zh)
DK (1) DK2411163T3 (zh)
ES (1) ES2416182T3 (zh)
WO (1) WO2010109205A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701452A (zh) * 2013-12-04 2015-06-10 三星电子株式会社 电容式微加工超声换能器及其制造方法
CN106998522A (zh) * 2016-01-25 2017-08-01 中国科学院苏州纳米技术与纳米仿生研究所 微电容超声传感器

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350064B (zh) * 2007-04-27 2016-12-28 株式会社日立制作所 静电容量式超声波传感器以及超声波摄像装置
FI124354B (fi) * 2011-04-04 2014-07-15 Okmetic Oyj Menetelmä yhden tai useamman polykiteisen piikerroksen pinnoittamiseksi substraatille
WO2013059358A2 (en) 2011-10-17 2013-04-25 Butterfly Network, Inc. Transmissive imaging and related apparatus and methods
US9220415B2 (en) * 2011-10-25 2015-12-29 Andreas Mandelis Systems and methods for frequency-domain photoacoustic phased array imaging
WO2013089648A1 (en) * 2011-12-16 2013-06-20 Agency For Science, Technology And Research Capacitive micromachined ultrasonic transducer arrangement and method of fabricating the same
JP2013226389A (ja) * 2012-03-31 2013-11-07 Canon Inc 探触子及びその製造方法、及びそれを用いた被検体情報取得装置
JP6185988B2 (ja) * 2012-05-31 2017-08-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ウェハ及びその製造方法
US9012324B2 (en) * 2012-08-24 2015-04-21 United Microelectronics Corp. Through silicon via process
KR101851569B1 (ko) 2012-11-28 2018-04-24 삼성전자주식회사 초음파 변환기 및 그 제조방법
US10424711B2 (en) 2013-01-18 2019-09-24 Yale University Superconducting device with at least one enclosure
SG11201505617UA (en) * 2013-01-18 2015-09-29 Univ Yale Methods for making a superconducting device with at least one enclosure
US9499392B2 (en) 2013-02-05 2016-11-22 Butterfly Network, Inc. CMOS ultrasonic transducers and related apparatus and methods
EP2969914B1 (en) 2013-03-15 2020-01-01 Butterfly Network Inc. Complementary metal oxide semiconductor (cmos) ultrasonic transducers and methods for forming the same
CN109954646B (zh) 2013-03-15 2021-04-27 蝴蝶网络有限公司 超声装置
US9667889B2 (en) 2013-04-03 2017-05-30 Butterfly Network, Inc. Portable electronic devices with integrated imaging capabilities
EP3024594A2 (en) 2013-07-23 2016-06-01 Butterfly Network Inc. Interconnectable ultrasound transducer probes and related methods and apparatus
CA2927326C (en) 2013-10-15 2024-02-27 Yale University Low-noise josephson junction-based directional amplifier
KR20150046637A (ko) * 2013-10-22 2015-04-30 삼성전자주식회사 광음향 이미지와 초음파 이미지를 위한 광대역 초음파 프로브
EP3071935A4 (en) * 2013-11-22 2017-06-28 Sunnybrook Health Sciences Centre Ultrasonic transducer with backing having spatially segmented surface
US9948254B2 (en) 2014-02-21 2018-04-17 Yale University Wireless Josephson bifurcation amplifier
WO2015161157A1 (en) * 2014-04-18 2015-10-22 Butterfly Network, Inc. Architecture of single substrate ultrasonic imaging devices, related apparatuses, and methods
TWI671059B (zh) 2014-04-18 2019-09-11 美商蝴蝶網路公司 超音波成像壓縮方法和設備
TWI708368B (zh) 2014-04-18 2020-10-21 美商蝴蝶網路公司 在互補式金屬氧化物半導體晶圓中的超音波轉換器及相關設備和方法
US9067779B1 (en) 2014-07-14 2015-06-30 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
EP3233311B1 (en) 2014-12-21 2021-12-08 Chirp Microsystems, Inc. Piezoelectric micromachined ultrasonic transducers with low stress sensitivity and methods of fabrication
WO2016138395A1 (en) 2015-02-27 2016-09-01 Yale University Techniques for coupling plannar qubits to non-planar resonators and related systems and methods
WO2016138406A1 (en) 2015-02-27 2016-09-01 Yale University Josephson junction-based circulators and related systems and methods
JP2018513580A (ja) 2015-02-27 2018-05-24 イェール ユニバーシティーYale University 量子増幅器を作製するための技術ならびに関連する系および方法
CA2981493A1 (en) 2015-04-17 2016-10-20 Yale University Wireless josephson parametric converter
US10427188B2 (en) 2015-07-30 2019-10-01 North Carolina State University Anodically bonded vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT)
US9987661B2 (en) 2015-12-02 2018-06-05 Butterfly Network, Inc. Biasing of capacitive micromachined ultrasonic transducers (CMUTs) and related apparatus and methods
WO2017123940A1 (en) 2016-01-15 2017-07-20 Yale University Techniques for manipulation of two-quantum states and related systems and methods
FR3060844B1 (fr) 2016-12-15 2018-12-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif microelectronique acoustique
US10196261B2 (en) 2017-03-08 2019-02-05 Butterfly Network, Inc. Microfabricated ultrasonic transducers and related apparatus and methods
AU2018289454A1 (en) 2017-06-21 2019-12-05 Butterfly Network, Inc. Microfabricated ultrasonic transducer having individual cells with electrically isolated electrode sections
WO2019099013A1 (en) 2017-11-16 2019-05-23 Chirp Microsystems, Inc. Piezoelectric micromachined ultrasonic transducer with a patterned membrane structure
US11737376B2 (en) 2017-12-11 2023-08-22 Yale University Superconducting nonlinear asymmetric inductive element and related systems and methods
CN112075090B (zh) * 2018-05-03 2022-10-14 蝴蝶网络有限公司 用于cmos传感器上的超声换能器的压力端口
US11223355B2 (en) 2018-12-12 2022-01-11 Yale University Inductively-shunted transmon qubit for superconducting circuits
US11791818B2 (en) 2019-01-17 2023-10-17 Yale University Josephson nonlinear circuit
EP4176978B1 (en) * 2019-03-14 2023-11-22 Imec VZW Flexible ultrasound array
FR3114255B1 (fr) * 2020-09-18 2023-05-05 Moduleus Transducteur CMUT

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559963A2 (en) * 1992-02-13 1993-09-15 Hewlett-Packard Company Backing for acoustic transducer array
JPH08182095A (ja) * 1994-12-26 1996-07-12 Toshiba Corp 超音波トランスジューサとその製造方法
US6958255B2 (en) * 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
US20070166520A1 (en) * 2002-05-23 2007-07-19 Schott Ag Glass material for use at high frequencies
CN101193711A (zh) * 2005-06-07 2008-06-04 皇家飞利浦电子股份有限公司 用于超声传感器组件的多器件衬块
CN101262958A (zh) * 2005-03-04 2008-09-10 国家研究院 制造微加工电容式超声传感器的表面微机械工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312485A (ja) * 1988-06-13 1989-12-18 Agency Of Ind Science & Technol 静電容量型超音波トランスデューサ
US5648941A (en) * 1995-09-29 1997-07-15 Hewlett-Packard Company Transducer backing material
US6266857B1 (en) * 1998-02-17 2001-07-31 Microsound Systems, Inc. Method of producing a backing structure for an ultrasound transceiver
US6430109B1 (en) * 1999-09-30 2002-08-06 The Board Of Trustees Of The Leland Stanford Junior University Array of capacitive micromachined ultrasonic transducer elements with through wafer via connections
US6467138B1 (en) * 2000-05-24 2002-10-22 Vermon Integrated connector backings for matrix array transducers, matrix array transducers employing such backings and methods of making the same
US7321181B2 (en) * 2004-04-07 2008-01-22 The Board Of Trustees Of The Leland Stanford Junior University Capacitive membrane ultrasonic transducers with reduced bulk wave generation and method
US7545075B2 (en) * 2004-06-04 2009-06-09 The Board Of Trustees Of The Leland Stanford Junior University Capacitive micromachined ultrasonic transducer array with through-substrate electrical connection and method of fabricating same
JP5275565B2 (ja) * 2004-06-07 2013-08-28 オリンパス株式会社 静電容量型超音波トランスデューサ
KR100618287B1 (ko) * 2004-08-24 2006-08-31 삼신이노텍 주식회사 블루투스를 이용한 펜타입의 휴대용 무선통신 단말기
US20070180916A1 (en) * 2006-02-09 2007-08-09 General Electric Company Capacitive micromachined ultrasound transducer and methods of making the same
JP4804961B2 (ja) * 2006-03-03 2011-11-02 オリンパスメディカルシステムズ株式会社 超音波振動子及びそれを搭載した体腔内超音波診断装置
US7741686B2 (en) * 2006-07-20 2010-06-22 The Board Of Trustees Of The Leland Stanford Junior University Trench isolated capacitive micromachined ultrasonic transducer arrays with a supporting frame
US7843022B2 (en) * 2007-10-18 2010-11-30 The Board Of Trustees Of The Leland Stanford Junior University High-temperature electrostatic transducers and fabrication method
WO2009154091A1 (ja) * 2008-06-17 2009-12-23 株式会社日立製作所 半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559963A2 (en) * 1992-02-13 1993-09-15 Hewlett-Packard Company Backing for acoustic transducer array
JPH08182095A (ja) * 1994-12-26 1996-07-12 Toshiba Corp 超音波トランスジューサとその製造方法
US20070166520A1 (en) * 2002-05-23 2007-07-19 Schott Ag Glass material for use at high frequencies
US6958255B2 (en) * 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
CN101262958A (zh) * 2005-03-04 2008-09-10 国家研究院 制造微加工电容式超声传感器的表面微机械工艺
CN101193711A (zh) * 2005-06-07 2008-06-04 皇家飞利浦电子股份有限公司 用于超声传感器组件的多器件衬块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701452A (zh) * 2013-12-04 2015-06-10 三星电子株式会社 电容式微加工超声换能器及其制造方法
CN106998522A (zh) * 2016-01-25 2017-08-01 中国科学院苏州纳米技术与纳米仿生研究所 微电容超声传感器

Also Published As

Publication number Publication date
DK2411163T3 (da) 2013-06-10
US20120074509A1 (en) 2012-03-29
ES2416182T3 (es) 2013-07-30
EP2659987A1 (en) 2013-11-06
WO2010109205A2 (en) 2010-09-30
WO2010109205A3 (en) 2011-03-03
JP2012521704A (ja) 2012-09-13
EP2411163A2 (en) 2012-02-01
EP2669019A1 (en) 2013-12-04
EP2411163B1 (en) 2013-05-15
JP5744002B2 (ja) 2015-07-01
EP2662153A1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
CN102427890A (zh) 具有导电过孔的晶片键合的cmut阵列
US8324006B1 (en) Method of forming a capacitive micromachined ultrasonic transducer (CMUT)
EP3169450B1 (en) Method for manufacturing a capacitive micromachined ultrasonic transducer
KR102237662B1 (ko) 상보적 금속 산화물 반도체(cmos) 웨이퍼들 내의 초음파 트랜스듀서들 및 관련 장치 및 방법들
RU2607720C2 (ru) Устройство ультразвукового преобразователя и способ его изготовления
US8222065B1 (en) Method and system for forming a capacitive micromachined ultrasonic transducer
US8563345B2 (en) Integration of structurally-stable isolated capacitive micromachined ultrasonic transducer (CMUT) array cells and array elements
US8008105B2 (en) Methods for fabricating micro-electro-mechanical devices
US8018301B2 (en) Micro-electro-mechanical transducer having a surface plate
US7781238B2 (en) Methods of making and using integrated and testable sensor array
TW200411723A (en) Three-dimensional integrated CMOS-MENS device and process for making the same
US8716816B2 (en) SOI-based CMUT device with buried electrodes
KR20130021657A (ko) 전기음향 변환기 및 그 제조 방법
CN113666327B (zh) 适合高密度系统集成的soc pmut、阵列芯片及制造方法
CN113441379B (zh) 适合高密度集成的PMUT-on-CMOS单元、阵列芯片及制造方法
US20130200474A1 (en) Low Frequency CMUT with Vent Holes
US20020048955A1 (en) Method for fabricating a thin, free-standing semiconductor device layer and for making a three-dimensionally integrated circuit
WO2013089648A1 (en) Capacitive micromachined ultrasonic transducer arrangement and method of fabricating the same
Zhang et al. Fabrication of capacitive micromachined ultrasonic transducers with through-glass-via interconnects
Zhuang et al. Through-wafer trench-isolated electrical interconnects for CMUT arrays
US20230002213A1 (en) Micro-machined ultrasound transducers with insulation layer and methods of manufacture
Midtbø et al. High-frequency CMUT arrays with phase-steering for in vivo ultrasound imaging
CN117751088A (zh) 具有绝缘层的微机械超声换能器及制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20160601

C20 Patent right or utility model deemed to be abandoned or is abandoned