TW201539328A - Optical mark reader - Google Patents

Optical mark reader Download PDF

Info

Publication number
TW201539328A
TW201539328A TW104106234A TW104106234A TW201539328A TW 201539328 A TW201539328 A TW 201539328A TW 104106234 A TW104106234 A TW 104106234A TW 104106234 A TW104106234 A TW 104106234A TW 201539328 A TW201539328 A TW 201539328A
Authority
TW
Taiwan
Prior art keywords
points
code reader
substrate
optical code
light
Prior art date
Application number
TW104106234A
Other languages
Chinese (zh)
Other versions
TWI651654B (en
Inventor
Brian C Johansen
Kyung-Young Kim
Bruce W Ball
Justin D Redd
Original Assignee
Electro Scient Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/194,455 external-priority patent/US9269035B2/en
Application filed by Electro Scient Ind Inc filed Critical Electro Scient Ind Inc
Publication of TW201539328A publication Critical patent/TW201539328A/en
Application granted granted Critical
Publication of TWI651654B publication Critical patent/TWI651654B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06046Constructional details
    • G06K19/06178Constructional details the marking having a feature size being smaller than can be seen by the unaided human eye
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K1/00Methods or arrangements for marking the record carrier in digital fashion
    • G06K1/12Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
    • G06K1/126Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching by photographic or thermographic registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10712Fixed beam scanning
    • G06K7/10722Photodetector array or CCD scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K2007/10485Arrangement of optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

Each data point within a two-dimensional code can be represented by a distribution of spots (32). Each spot (32) can be made small enough to be invisible to the human eye so that the two-dimensional code can be invisible on or within transparent or nontransparent materials. The spots (32) can be spaced at a large distance (s) to increase the signal-to-noise ratio for an optical code reader. A code reader can be adapted to read the spots (32) and determine the data points.

Description

光學標記讀取器 Optical marker reader 【著作權聲明】[Copyright Notice]

©2015Electro Scientific Industries公司本專利文件之揭示內容之一部分包含受著作權保護之材料。著作權所有人並不反對任何人對如出現於專利及商標局之專利檔案或記錄中之專利文件或專利揭示內容之複製再現,但除此之外任何情況下保留所有著作權。37 CFR § 1.71(d)。 ©2015 Electro Scientific Industries, Inc. One of the disclosures of this patent document contains material that is subject to copyright protection. The copyright owner does not object to the reproduction or reproduction of any patent document or patent disclosure in the patent file or record of the Patent and Trademark Office, except in all cases. 37 CFR § 1.71(d).

【相關申請案】[related application]

本申請案係2014年8月6日申請之美國專利申請案第62/033,989號之一非臨時申請案,該案之內容之全文為了所有目的以引用的方式併入本文中,且本申請案係2014年2月28日申請之美國專利申請案第14/194,455號之一部分接續,該案之內容之全文為了所有目的以引用的方式併入本文中。 This application is a non-provisional application of U.S. Patent Application Serial No. 62/033,989, filed on Aug. 6, 2014, the content of which is hereby One of the U.S. Patent Application Serial No. 14/194,455, filed on Feb. 28, 2014, the entire content of which is hereby incorporated by reference.

本申請案係關於光學讀取器,且特定言之,係關於用於讀取光學標記(諸如對一人眼不可見之標記)之系統及方法。 This application relates to optical readers and, in particular, to systems and methods for reading optical indicia, such as indicia that are invisible to a human eye.

二維識別(2DID)碼(諸如快速回應(QR)碼及GS1 DataMatrix(DM)碼)係廣泛地用於產品追蹤及提供各種資訊之一矩陣條碼之類型。QR碼包含在一淺色背景下配置於一方格內之填充之深色正方形(黑色正方 形)且適於藉由一成像裝置(諸如一相機)之高速擷取。在此等碼中,各正方形表示一資料點。典型方格圖案在從每列或每行11個正方形至177個正方形之範圍中。獲取影像之水平及垂直分量中之圖案可顯露或啟動(諸如)用於商業追踪、娛樂及交通票務、產品標示、產品營銷、行動電話標籤、優惠券、顯示文字、添加電子卡聯繫人資訊、打開一URL或URI或撰寫電子郵件或文字訊息之寫碼資訊。QR碼由一ISO標準涵蓋,且其使用係免授權。QR碼產生網站及應用程式廣泛地可用,因而使用者可產生及列印其等自身QR碼以供其他者掃描。(參閱http://en.wikipedia.org/wiki/QR_code。)一例示性QR碼展示於圖1中。 Two-dimensional identification (2DID) codes (such as Quick Response (QR) codes and GS1 DataMatrix (DM) codes) are widely used for product tracking and provide a type of matrix bar code for various information. The QR code consists of a filled dark square (black square) placed in a square on a light background. And adapted for high speed capture by an imaging device such as a camera. In these codes, each square represents a data point. Typical checkered patterns range from 11 squares to 177 squares per column or row. Acquiring patterns in the horizontal and vertical components of the image can be revealed or activated (such as for business tracking, entertainment and transportation ticketing, product labeling, product marketing, mobile phone labels, coupons, display text, adding electronic card contact information, Open a URL or URI or write a code message for an email or text message. QR codes are covered by an ISO standard and their use is exempt. QR code generation websites and applications are widely available, so users can generate and print their own QR codes for others to scan. (See http://en.wikipedia.org/wiki/QR_code.) An exemplary QR code is shown in Figure 1.

GS1 DataMatrix碼亦由若干ISO及IEC標準(諸如15424及15459)涵蓋且對於許多應用程式係免授權。參閱http://en.wikipedia.org/wiki/Data_Matrix。GS1 DataMatrix碼產生資源亦廣泛地可用。使用http://datamatrix.kaywa.com產生之一例示性GS1 DataMatrix碼展示於圖2中。 The GS1 DataMatrix code is also covered by several ISO and IEC standards (such as 15424 and 15459) and is exempt from authorization for many applications. See http://en.wikipedia.org/wiki/Data_Matrix. GS1 DataMatrix code generation resources are also widely available. An exemplary GS1 DataMatrix code generated using http://datamatrix.kaywa.com is shown in Figure 2.

存在用於在多種材料上及以許多不同大小標記此等DM或2DID碼之方法,其中2DID碼之整個圖案大於500微米(μm)。例如,一些2DID碼可使用傳統列印技術列印於標示上,刻印於金屬中及雕刻於墓碑石中。 There are methods for marking such DM or 2DID codes on a variety of materials and in many different sizes, wherein the entire pattern of 2DID codes is greater than 500 microns ([mu]m). For example, some 2DID codes can be printed on the logo using conventional printing techniques, engraved in metal and engraved in the tombstone.

光碼讀取器可用於從支援此等光碼之外部表面讀取該等光碼。寫碼及解碼方案一般較強健且包含嵌入之循環冗餘檢查(CRC)誤差校正,其確保資料完整性以用於準確列印之碼。例如,用於寫碼及解碼某些類型之此等2DID碼之國際標準可在 http://www.gs1.org/docs/gsmp/barcodes/GS1_General_Specifications.pdf中發現。但是,若2DID碼包含列印誤差或不一致,則2DID碼可能解碼起來困難得多(若不是不可能)。 An optical code reader can be used to read the optical codes from an external surface that supports the optical codes. The write and decode schemes are generally robust and include embedded Cyclic Redundancy Check (CRC) error correction, which ensures data integrity for accurate printing of the code. For example, international standards for writing and decoding certain types of such 2DID codes can be Found at http://www.gs1.org/docs/gsmp/barcodes/GS1_General_Specifications.pdf. However, if the 2DID code contains printing errors or inconsistencies, the 2DID code may be much more difficult to decode (if not impossible).

提供本發明內容以按簡化形式引入例示性實施例之詳細描述中進一步描述之概念之選擇。本發明內容並非易欲識別主張之標的之關鍵或本質發明概念,或並非易欲限制主張之標的之範疇。 The Summary is provided to introduce a selection of concepts in the Detailed Description. This Summary is not intended to identify key or essential inventive concepts of the subject matter, or the scope of the subject matter.

在一些實施例中,一二維碼由具有一對比背景之一基板上或內之一點散佈表示,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點。 In some embodiments, a two-dimensional code is represented by a dot spread on or within a substrate having a contrasting background, wherein the dot spreads a plurality of points including a plurality of groups, the points of the groups including the first and second a point of a group, wherein each of the points of the first and second groups represents a geometric shape such that the points are interspersed to form an array of multiple columns and a plurality of rows of geometric regions, wherein some of the geometric regions comprise a The points of the group and some of the geometric regions are missing points.

在一些替代、額外或累積實施例中,一種用於利用一二維識別碼標記一基板之方法包括產生雷射脈衝且在該基板處導向該等雷射脈衝以在該基板上或內形成一點散佈,其中該點散佈表示該二維碼且包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點。 In some alternative, additional or cumulative embodiments, a method for marking a substrate with a two-dimensional identification code includes generating a laser pulse and directing the laser pulses at the substrate to form a point on or within the substrate a scatter, wherein the point scatters a point representing the two-dimensional code and includes a plurality of groups, the points of the groups including points of the first group and the second group, wherein the points of the first and second groups are Each represents a geometric shape such that the dots are interspersed to form an array of multiple columns and rows of geometric regions, wherein some of the geometric regions comprise a group of points and some of the geometric regions are missing points.

在一些替代、額外或累積實施例中,一種用於在一工件之一基板上或內利用一二維識別碼標記一基板之雷射微加工系統,其中該二維碼包含一陣列之幾何形狀區域,其中指定該等幾何形狀區域之一些且未指 定該等幾何形狀區域之一些,該雷射微加工系統包括:一雷射,其用於沿著一束軸產生雷射脈衝;一工件支撐系統,其用於移動該工件;一束定位系統,其用於朝著該工件導向該束軸,使得一雷射脈衝可操作以在該基板上標記一點;及一控制器,其用於協調該工件支撐系統及該束定位系統之相對移動,且用於針對表示該等指定幾何形狀區域之該等群組之點實施該二維碼之指定幾何形狀區域至該基板上之相對位置之轉換。 In some alternative, additional or cumulative embodiments, a laser micromachining system for marking a substrate on or within a substrate of a workpiece using a two-dimensional identification code, wherein the two-dimensional code comprises an array of geometries a region that specifies some of these geometric regions and does not refer to Determining some of the geometrical regions, the laser micromachining system comprising: a laser for generating a laser pulse along a beam axis; a workpiece support system for moving the workpiece; a beam positioning system Operative to direct the beam axis toward the workpiece such that a laser pulse is operable to mark a point on the substrate; and a controller for coordinating relative movement of the workpiece support system and the beam positioning system, And for converting a specified geometrical region of the two-dimensional code to a relative position on the substrate for points representing the groups of the specified geometric regions.

在一些替代、額外或累積實施例中,一種用於讀取具有第一及第二相對表面之一基板內之一二維識別碼之方法包括:將光朝著該基板之一第一表面導向,其中該光具有一波長且其中該基板對該波長透明,其中該二維碼由該基板內之一點散佈表示,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點,其中該光之一第一部分由該等點阻擋,且其中該光之一第二部分穿過超出該等點且傳播通過該基板之該第二表面;放大傳播通過該基板之該第二表面之該光之該第二部分;利用一成像器使傳播通過該基板之該第二表面且放大之該光之該第二部分成像;分析該光之該第二部分之一影像及由該光之該第一部分之阻擋引起之陰影以決定該等點之散佈;及基於由該成像器成像之該等點之散佈決定該二維碼。 In some alternative, additional or cumulative embodiments, a method for reading a two-dimensional identification code in a substrate having one of the first and second opposing surfaces includes directing light toward a first surface of the substrate Wherein the light has a wavelength and wherein the substrate is transparent to the wavelength, wherein the two-dimensional code is represented by a dot spread in the substrate, wherein the dot spreads a plurality of points including a group, the points of the group include a point of a first group and a second group, wherein each of the points of the first and second groups represents a geometric shape such that the points are dispersed to form an array of multiple columns and a plurality of rows of geometric regions, wherein the geometric regions Some of the points comprising a group and some of the geometric regions are missing points, wherein a first portion of the light is blocked by the points, and wherein a second portion of the light passes beyond the points and propagates through the a second surface of the substrate; amplifying the second portion of the light that propagates through the second surface of the substrate; utilizing an imager to propagate through the second surface of the substrate and amplifying the second portion of the light Imaging; analyzing the light One image and the second portion of the barrier by the light of the first portion of shading due to determine the spread of such points; and determining the two-dimensional code based on the spreading of the points of such forming of the imager.

在一些替代、額外或累積實施例中,一種用於讀取具有第一及第二相對表面之一基板內之一二維識別碼之方法包括:將光朝著該基板之該第一表面導向,其中該光具有一波長,且其中該基板及其第一表面對 該波長透明,其中該二維碼由該基板內之一點散佈表示,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點,其中該光之一第一部分穿過超過該等點且在該第二表面處吸收,其中該第二表面或施覆於其上之一塗層對該波長具吸收性,且其中該光之一第二部分穿過超出該等點且通過該第一表面傳播通過該基板之該第二表面;放大傳播通過該第一表面之光之第二部分;利用一成像器使傳播通過該第一表面且放大之該光之該第二部分成像;分析該光之該第二部分之一影像及由該光之該第一部分之吸收引起之一黑色背景以決定該等點之散佈;及基於由該成像器成像之該等點之散佈決定該二維碼。 In some alternative, additional or cumulative embodiments, a method for reading a two-dimensional identification code in a substrate having one of the first and second opposing surfaces includes directing light toward the first surface of the substrate Where the light has a wavelength, and wherein the substrate and its first surface pair The wavelength is transparent, wherein the two-dimensional code is represented by a point spread in the substrate, wherein the point spreads a plurality of points including a group, and the points of the groups include points of the first group and the second group, wherein the points Each of the points of the first and second groups represents a geometric shape such that the points are interspersed to form an array of multiple columns and rows of geometric regions, wherein some of the geometric regions comprise a group of points and the geometries Some of the regions lack points in which a first portion of the light passes beyond the points and is absorbed at the second surface, wherein the second surface or one of the coatings applied thereto absorbs the wavelength, And wherein a second portion of the light passes through the second surface beyond the point and propagates through the first surface through the second surface; amplifying a second portion of light propagating through the first surface; using an imager Imaging the second portion of the light that propagates through the first surface and magnifying; analyzing an image of the second portion of the light and absorbing one of the black portions of the first portion of the light to determine the point Disperse; and based on the imager Such as the point of decision to distribute the two-dimensional code.

在一些替代、額外或累積實施例中,一種用於讀取具有第一及第二相對表面之一基板內之一上維識別碼之方法包括:將光朝著該基板之該第一表面導向,其中該光具有一波長,且其中該基板及其第一表面對該波長透明,其中該二維碼由該基板內之一點散佈表示,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點,其中該光之一些穿過超出該等點且藉由該第二表面變為反射光,其中第二表面或施覆於其上之一塗層對該波長具反射性,其中該反射光之一第一部分由該等點阻擋且其中該反射光之一第二部分穿過超出該等點且傳播通過該基板之該第一表面;放大傳播通過該第一表面之反射 光之第二部分;利用一成像器使傳播通過基板之第二表面且放大之該反射光之該第二部分成像;分析該反射光之該第二部分之一影像及由該反射光之該第一部分之阻擋引起之陰影以決定該等點之散佈;及基於由該成像器成像之該等點之散佈決定該二維碼。 In some alternative, additional or cumulative embodiments, a method for reading an upper dimensional identification code in a substrate having one of the first and second opposing surfaces includes directing light toward the first surface of the substrate Wherein the light has a wavelength, and wherein the substrate and the first surface thereof are transparent to the wavelength, wherein the two-dimensional code is represented by a dot spread in the substrate, wherein the dot spreads a plurality of groups including dots The points of the group include points of the first group and the second group, wherein each of the points of the first and second groups represents a geometric shape such that the points are dispersed to form an array of multiple columns and rows of geometric regions , wherein some of the geometric regions comprise a group of points and some of the geometric regions lack points, wherein some of the light passes beyond the points and becomes reflected light by the second surface, wherein the second a surface or a coating applied thereto is reflective to the wavelength, wherein a first portion of the reflected light is blocked by the points and wherein a second portion of the reflected light passes beyond the points and propagates through The first surface of the substrate; Propagating through the reflecting surface of the first a second portion of the light; imaging the second portion of the reflected light that propagates through the second surface of the substrate by an imager; analyzing an image of the second portion of the reflected light and the reflected light The shadow caused by the blocking of the first portion determines the spread of the points; and the two-dimensional code is determined based on the spread of the points imaged by the imager.

在一些替代、額外或累積實施例中,該代表性幾何形狀係一矩形幾何形狀,且該等第一及第二群組之點經定位以表示該矩形幾何形狀之隅角。 In some alternative, additional or cumulative embodiments, the representative geometry is a rectangular geometry and the points of the first and second groups are positioned to represent the corners of the rectangular geometry.

在一些替代、額外或累積實施例中,該等第一及第二群組之點各包含一偶數數量之點。 In some alternative, additional or cumulative embodiments, the points of the first and second groups each comprise an even number of points.

在一些替代、額外或累積實施例中,該等第一及第二群組之點各包含一奇數數量之點。 In some alternative, additional or cumulative embodiments, the points of the first and second groups each comprise an odd number of points.

在一些替代、額外或累積實施例中,表示該二維碼之該點散佈在離一人眼之大於或等於25mm之一距離下對該人眼不可見。 In some alternative, additional or cumulative embodiments, the point representing the two-dimensional code is invisible to the human eye at a distance greater than or equal to 25 mm from a human eye.

在一些替代、額外或累積實施例中,該陣列具有大於50微米之一陣列尺寸。 In some alternative, additional or cumulative embodiments, the array has an array size greater than 50 microns.

在一些替代、額外或累積實施例中,該陣列具有大於500微米之一陣列尺寸。 In some alternative, additional or cumulative embodiments, the array has an array size of greater than 500 microns.

在一些替代、額外或累積實施例中,該陣列具有小於500微米之一陣列尺寸。 In some alternative, additional or cumulative embodiments, the array has an array size of less than 500 microns.

在一些替代、額外或累積實施例中,該陣列具有小於250微米之一陣列尺寸。 In some alternative, additional or cumulative embodiments, the array has an array size of less than 250 microns.

在一些替代、額外或累積實施例中,該陣列具有小於或等於 1mm之一陣列尺寸。 In some alternative, additional or cumulative embodiments, the array has less than or equal to One array size of 1mm.

在一些替代、額外或累積實施例中,該等群組之點在離該人眼之大於或等於25mm之一距離下對該人眼不可見。 In some alternative, additional or cumulative embodiments, the points of the groups are not visible to the human eye at a distance greater than or equal to 25 mm from the human eye.

在一些替代、額外或累積實施例中,各點在離該人眼之大於或等於25mm之一距離下對該人眼不可見。 In some alternative, additional or cumulative embodiments, the points are invisible to the human eye at a distance greater than or equal to 25 mm from the human eye.

在一些替代、額外或累積實施例中,各點具有小於35微米之用於一主空間軸之一尺寸。 In some alternative, additional or cumulative embodiments, each point has a dimension of less than 35 microns for one of the main spatial axes.

在一些替代、額外或累積實施例中,各點具有一主空間軸之一點尺寸,且其中大於或等於該主空間軸之該點尺寸之四倍的一距離使該等點分離。 In some alternative, additional or cumulative embodiments, each point has a point dimension of a primary spatial axis, and wherein a distance greater than or equal to four times the size of the point of the primary spatial axis separates the points.

在一些替代、額外或累積實施例中,幾何區域表示一QR碼中之正方形。 In some alternative, additional or cumulative embodiments, the geometric region represents a square in a QR code.

在一些替代、額外或累積實施例中,該等幾何區域表示一GS1 DataMatrix碼中之正方形。 In some alternative, additional or cumulative embodiments, the geometric regions represent squares in a GS1 DataMatrix code.

在一些替代、額外或累積實施例中,各點由一雷射脈衝或由一群組之雷射脈衝形成。 In some alternative, additional or cumulative embodiments, each point is formed by a laser pulse or by a group of laser pulses.

在一些替代、額外或累積實施例中,各點由一雷射脈衝或一群組之雷射脈衝形成,各雷射脈衝具有短於或等於50ps之一脈衝寬度。 In some alternative, additional or cumulative embodiments, each point is formed by a laser pulse or a group of laser pulses, each laser pulse having a pulse width that is shorter than or equal to 50 ps.

在一些替代、額外或累積實施例中,該等點係黑色且該基板係淺色。 In some alternative, additional or cumulative embodiments, the dots are black and the substrate is light colored.

在一些替代、額外或累積實施例中,該等點製成淺色標記且該基板係黑色。 In some alternative, additional or cumulative embodiments, the dots are made in a light color and the substrate is black.

在一些替代、額外或累積實施例中,該等點係黑色且該基板大體上對可見光透明。 In some alternative, additional or cumulative embodiments, the dots are black and the substrate is substantially transparent to visible light.

在一些替代、額外或累積實施例中,該基板對可見光不透明。 In some alternative, additional or cumulative embodiments, the substrate is opaque to visible light.

在一些替代、額外或累積實施例中,該基板包括一結晶材料。 In some alternative, additional or cumulative embodiments, the substrate comprises a crystalline material.

在一些替代、額外或累積實施例中,該基板包括藍寶石。 In some alternative, additional or cumulative embodiments, the substrate comprises sapphire.

在一些替代、額外或累積實施例中,該基板包括一非結晶材料。 In some alternative, additional or cumulative embodiments, the substrate comprises an amorphous material.

在一些替代、額外或累積實施例中,該基板包括玻璃。 In some alternative, additional or cumulative embodiments, the substrate comprises glass.

在一些替代、額外或累積實施例中,該基板包括一塑膠。 In some alternative, additional or cumulative embodiments, the substrate comprises a plastic.

在一些替代、額外或累積實施例中,該基板包括鋁。 In some alternative, additional or cumulative embodiments, the substrate comprises aluminum.

在一些替代、額外或累積實施例中,雷射脈衝經導向以在形成一第二群組之點之前循序形成一第一群組之點。 In some alternative, additional or cumulative embodiments, the laser pulses are directed to sequentially form a first group of points prior to forming a second group of points.

在一些替代、額外或累積實施例中,該等雷射脈衝經導向以形成該第一群組中之一第二點之前形成第一及第二群組之各者中之一第一點。 In some alternative, additional or cumulative embodiments, the laser pulses are directed to form a first point of each of the first and second groups prior to forming a second point in the first group.

在一些替代、額外或累積實施例中,一束定位系統及一基板支撐系統協作以相對於該基板上之位置定位該等雷射束之該等點,且其中該等點至位置之定位準確性比10微米更差。 In some alternative, additional or cumulative embodiments, a beam positioning system and a substrate support system cooperate to position the points of the laser beam relative to a position on the substrate, and wherein the points are positionally accurate Sex is worse than 10 microns.

在一些替代、額外或累積實施例中,其中一束定位系統及一基板支撐系統協作以相對於該基板上之位置定位該等雷射束之該等點,且其中該等點至位置之定位準確性比5微米更差。 In some alternative, additional or cumulative embodiments, a beam positioning system and a substrate support system cooperate to position the points of the laser beam relative to a position on the substrate, and wherein the points are positioned to a position The accuracy is worse than 5 microns.

在一些替代、額外或累積實施例中,其中一束定位系統及一 基板支撐系統協作以相對於該基板上之位置定位該等雷射束之該等點,且其中該等點至位置之定位準確性比1微米更差。 In some alternative, additional or cumulative embodiments, one of the positioning systems and one The substrate support system cooperates to position the points of the laser beams relative to the position on the substrate, and wherein the positioning accuracy of the points to position is worse than 1 micron.

在一些替代、額外或累積實施例中,該群組之點提供大於或等於5之一信雜比。 In some alternative, additional or cumulative embodiments, the points of the group provide a signal to noise ratio greater than or equal to one.

在一些替代、額外或累積實施例中,群組之點之間之間距或外部分離可表示信號振幅,且協調之束定位及工件支撐系統之不確定性或最大不準確性可表示雜訊。 In some alternative, additional or cumulative embodiments, the separation or external separation between the points of the group may represent signal amplitude, and the coordinated beam positioning and the uncertainty or maximum inaccuracy of the workpiece support system may represent noise.

在一些替代、額外或累積實施例中,增加該等群組之點之間之該間距或外部分離以增加該信雜比。 In some alternative, additional or cumulative embodiments, the spacing or external separation between the points of the groups is increased to increase the signal to noise ratio.

在一些替代、額外或累積實施例中,採用一控制器以針對該等群組之點將該二維碼之黑色正方形轉換為該基板上之各自位置。 In some alternative, additional or cumulative embodiments, a controller is employed to convert the black squares of the two-dimensional code to respective locations on the substrate for the points of the groups.

在一些替代、額外或累積實施例中,採用一控制器以針對該等群組之點將該二維碼之黑色正方形轉換為該基板上之各自位置。 In some alternative, additional or cumulative embodiments, a controller is employed to convert the black squares of the two-dimensional code to respective locations on the substrate for the points of the groups.

在一些替代、額外或累積實施例中,該陣列在一列或一行中包括至少50個幾何區域。 In some alternative, additional or cumulative embodiments, the array includes at least 50 geometric regions in a column or row.

在一些替代、額外或累積實施例中,該二維識別碼意欲為機器可讀。 In some alternative, additional or cumulative embodiments, the two-dimensional identification code is intended to be machine readable.

在一些替代、額外或累積實施例中,光源經定位以沿著橫穿該第一表面之一照明路徑傳播該光,其中該成像器及該光學系統沿著可操作以接收從該第二表面反射之該光之一成像路徑定位。 In some alternative, additional or cumulative embodiments, the light source is positioned to propagate the light along an illumination path that traverses the first surface, wherein the imager and the optical system are operable to receive from the second surface One of the reflected light is positioned in the imaging path.

在一些替代、額外或累積實施例中,第一電子電路分析由藉由點阻擋光引起之陰影。 In some alternative, additional or cumulative embodiments, the first electronic circuit analyzes the shadow caused by blocking light by the dots.

在一些替代、額外或累積實施例中,光源經定位以沿著橫穿該第一表面之一照明路徑傳播該光,其中該成像器及該光學系統沿著橫穿該第一表面且可操作以接收傳播通過該第一表面之該光之一成像路徑定位。 In some alternative, additional or cumulative embodiments, the light source is positioned to propagate the light along an illumination path that traverses the first surface, wherein the imager and the optical system traverse the first surface and are operable Positioning is performed on an imaging path that receives the light propagating through the first surface.

在一些替代、額外或累積實施例中,該等點至少部分對該光具反射性,其中該第二表面或其上之一層至少部分對該光具吸收性,且其中第一電子電路分析從該等點反射之該光。 In some alternative, additional or cumulative embodiments, the points are at least partially reflective to the light, wherein the second surface or a layer thereon is at least partially absorbable to the light, and wherein the first electronic circuit analyzes The light reflected by the points.

在一些替代、額外或累積實施例中,該等點至少部分對該光具吸收性,其中該第二表面或其上之一層至少部分對該光具反射性,且其中該第一電子電路分析由藉由該等點阻擋該光引起之陰影。 In some alternative, additional or cumulative embodiments, the points are at least partially absorbable to the light, wherein the second surface or a layer thereon is at least partially reflective to the light, and wherein the first electronic circuit analyzes The shadow caused by blocking the light by the points.

在一些替代、額外或累積實施例中,二維碼由基板內之一點散佈表示,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,且其中幾何區域之一些包含一群組之點且幾何區域之一些缺少點。 In some alternative, additional or cumulative embodiments, the two-dimensional code is represented by a point spread within the substrate, wherein the point spreads points comprising a plurality of groups, the points of the groups comprising the points of the first and second groups , wherein each of the points of the first and second groups represents a geometric shape such that the points are interspersed to form an array of multiple columns and rows of geometric regions, and wherein some of the geometric regions comprise a group of points and Some of the geometric regions are missing points.

在一些替代、額外或累積實施例中,照明路徑以一垂直角橫穿第一表面。 In some alternative, additional or cumulative embodiments, the illumination path traverses the first surface at a vertical angle.

在一些替代、額外或累積實施例中,光源沿著大致上垂直於基板之第一表面之一照明軸定位。 In some alternative, additional or cumulative embodiments, the light source is positioned along an illumination axis that is substantially perpendicular to a first surface of the substrate.

在一些替代、額外或累積實施例中,成像器沿著照明軸定位。 In some alternative, additional or cumulative embodiments, the imager is positioned along the illumination axis.

在一些替代、額外或累積實施例中,光源沿著具有並非垂直於基板之第一表面之一入射角之一照明軸定位。 In some alternative, additional or cumulative embodiments, the light source is positioned along an illumination axis having an incidence angle that is not perpendicular to the first surface of the substrate.

在一些替代、額外或累積實施例中,該照明軸具有1度與70度之間之一入射角。 In some alternative, additional or cumulative embodiments, the illumination axis has an angle of incidence between 1 and 70 degrees.

在一些替代、額外或累積實施例中,該照明軸具有10度與65度之間之一入射角。 In some alternative, additional or cumulative embodiments, the illumination axis has an angle of incidence between 10 and 65 degrees.

在一些替代、額外或累積實施例中,該照明軸具有小於或等於60度之一入射角。 In some alternative, additional or cumulative embodiments, the illumination axis has an angle of incidence of less than or equal to 60 degrees.

在一些替代、額外或累積實施例中,成像器沿著垂直於第一表面之一成像軸定位。 In some alternative, additional or cumulative embodiments, the imager is positioned along an imaging axis that is perpendicular to one of the first surfaces.

在一些替代、額外或累積實施例中,光源包括一LED。 In some alternative, additional or cumulative embodiments, the light source comprises an LED.

在一些替代、額外或累積實施例中,光源提供一可見波長。 In some alternative, additional or cumulative embodiments, the light source provides a visible wavelength.

在一些替代、額外或累積實施例中,光源提供以下波長之一者或多者:660nm、635nm、633nm、623nm、612nm、592nm、585nm、574nm、570nm、565nm、560nm、555nm、525nm、505nm、470nm及430nm。 In some alternative, additional or cumulative embodiments, the light source provides one or more of the following wavelengths: 660 nm, 635 nm, 633 nm, 623 nm, 612 nm, 592 nm, 585 nm, 574 nm, 570 nm, 565 nm, 560 nm, 555 nm, 525 nm, 505 nm, 470nm and 430nm.

在一些替代、額外或累積實施例中,光源提供一紅色波長。 In some alternative, additional or cumulative embodiments, the light source provides a red wavelength.

在一些替代、額外或累積實施例中,成像器係單色。 In some alternative, additional or cumulative embodiments, the imager is monochrome.

在一些替代、額外或累積實施例中,成像器係全彩色。 In some alternative, additional or cumulative embodiments, the imager is full color.

在一些替代、額外或累積實施例中,光學系統採用提供從2倍至50倍放大之光學器件。 In some alternative, additional or cumulative embodiments, the optical system employs optics that provide from 2x to 50x magnification.

在一些替代、額外或累積實施例中,光學系統採用提供大於5倍放大之光學器件。 In some alternative, additional or cumulative embodiments, the optical system employs optics that provide greater than 5x amplification.

在一些替代、額外或累積實施例中,光學系統採用提供大於 10倍放大之光學器件。 In some alternative, additional or cumulative embodiments, the optical system is provided to provide greater than 10x magnification optics.

在一些替代、額外或累積實施例中,光學系統採用提供小於20倍放大之光學器件。 In some alternative, additional or cumulative embodiments, the optical system employs optics that provide less than 20x magnification.

在一些替代、額外或累積實施例中,光碼讀取器具有大於50個線對/毫米之一調變傳送函數。 In some alternative, additional or cumulative embodiments, the optical code reader has a modulation transfer function of greater than 50 line pairs per millimeter.

在一些替代、額外或累積實施例中,光碼讀取器具有大於75個線對/毫米之一調變傳送函數。 In some alternative, additional or cumulative embodiments, the optical code reader has a modulation transfer function of greater than 75 line pairs/mm.

在一些替代、額外或累積實施例中,光碼讀取器具有大於80個線對/毫米之一調變傳送函數。 In some alternative, additional or cumulative embodiments, the optical code reader has a modulation transfer function of greater than 80 line pairs/mm.

在一些替代、額外或累積實施例中,光碼讀取器具有大於90個線對/毫米之一調變傳送函數。 In some alternative, additional or cumulative embodiments, the optical code reader has a modulation transfer function of greater than 90 line pairs/mm.

在一些替代、額外或累積實施例中,光學系統提供大約+/- 50μm之一景深。 In some alternative, additional or cumulative embodiments, the optical system provides a depth of field of approximately +/- 50 [mu]m.

在一些替代、額外或累積實施例中,光學系統提供大約+/- 10μm之一景深。 In some alternative, additional or cumulative embodiments, the optical system provides a depth of field of approximately +/- 10 μm.

在一些替代、額外或累積實施例中,光學系統提供大約+/- 2.5μm之一景深。 In some alternative, additional or cumulative embodiments, the optical system provides a depth of field of approximately +/- 2.5 [mu]m.

在一些替代、額外或累積實施例中,光學系統提供大於或等於大約500μm之一視場。 In some alternative, additional or cumulative embodiments, the optical system provides a field of view greater than or equal to about 500 [mu]m.

在一些替代、額外或累積實施例中,光學系統提供大於或等於大約800μm之一視場。 In some alternative, additional or cumulative embodiments, the optical system provides a field of view greater than or equal to about 800 [mu]m.

在一些替代、額外或累積實施例中,光學系統提供小於或等 於大約800μm之一視場。 In some alternative, additional or cumulative embodiments, the optical system provides less than or equal At a field of view of approximately 800 μm.

在一些替代、額外或累積實施例中,該等點形成具有擁有小於500微米之一側尺寸之一場大小的一DM或2DID碼。 In some alternative, additional or cumulative embodiments, the dots form a DM or 2DID code having a field size having a side dimension of less than 500 microns.

在一些替代、額外或累積實施例中,該等點形成具有擁有小於250微米之一側尺寸之一場大小的一DM或2DID碼。 In some alternative, additional or cumulative embodiments, the dots form a DM or 2DID code having a field size having a side dimension of less than 250 microns.

在一些替代、額外或累積實施例中,該等點形成具有擁有小於125微米之一側尺寸之一場大小的一DM或2DID碼。 In some alternative, additional or cumulative embodiments, the dots form a DM or 2DID code having a field size having a side dimension of less than 125 microns.

在一些替代、額外或累積實施例中,該等點形成具有擁有小於250微米之兩個尺寸之一場大小的一DM或2DID碼。 In some alternative, additional or cumulative embodiments, the dots form a DM or 2DID code having a field size of two dimensions of less than 250 microns.

在一些替代、額外或累積實施例中,該等點形成具有擁有小於125微米之兩個尺寸之一場大小的一DM或2DID碼。 In some alternative, additional or cumulative embodiments, the dots form a DM or 2DID code having a field size having two dimensions of less than 125 microns.

額外態樣及優點將從參考附圖進行之較佳實施例之以下詳細描述了解。 The additional aspects and advantages will be apparent from the following detailed description of the preferred embodiments of the drawings.

10‧‧‧方格圖案 10‧‧‧ checkered pattern

12‧‧‧縮小標記/標記 12‧‧‧Reduced mark/mark

14‧‧‧放大標記/標記 14‧‧‧Enlarged mark/mark

16‧‧‧邊緣 16‧‧‧ edge

18‧‧‧未對準標記/標記 18‧‧‧ misaligned mark/mark

30‧‧‧群組 30‧‧‧Group

32‧‧‧點 32‧‧‧ points

40‧‧‧雷射微加工系統 40‧‧‧Laser micromachining system

42‧‧‧表面 42‧‧‧ surface

44‧‧‧基板 44‧‧‧Substrate

46‧‧‧工件 46‧‧‧Workpiece

50‧‧‧雷射 50‧‧‧Laser

52‧‧‧雷射脈衝 52‧‧‧Laser pulse

54‧‧‧控制器 54‧‧‧ Controller

60‧‧‧光學路徑 60‧‧‧ optical path

62‧‧‧雷射光學器件 62‧‧‧Laser optics

64‧‧‧摺疊鏡 64‧‧‧Folding mirror

66‧‧‧衰減器或脈衝拾取器 66‧‧‧Attenuator or pulse picker

68‧‧‧回饋感測器 68‧‧‧Feedback sensor

70‧‧‧雷射束定位系統 70‧‧‧Laser beam positioning system

72‧‧‧束軸 72‧‧‧ beam axis

80‧‧‧焦點 80‧‧‧ focus

82‧‧‧雷射台 82‧‧ ‧ laser station

84‧‧‧迅速定位器台/迅速定位器Z台 84‧‧‧Rapid Locator/Rapid Locator Z

86‧‧‧工件台 86‧‧‧Workpiece table

88‧‧‧空間能量散佈 88‧‧‧ Space energy distribution

90‧‧‧腰部 90‧‧‧ waist

92‧‧‧主軸 92‧‧‧ Spindle

94‧‧‧主軸 94‧‧‧ Spindle

96‧‧‧距離 96‧‧‧ distance

98‧‧‧距離 98‧‧‧ distance

100‧‧‧晶圓 100‧‧‧ wafer

104‧‧‧表面 104‧‧‧ Surface

106‧‧‧表面 106‧‧‧ surface

130‧‧‧塗層材料/折射率匹配流體 130‧‧‧Coating material/index matching fluid

140‧‧‧平坦表面 140‧‧‧flat surface

142‧‧‧平坦表面 142‧‧‧flat surface

150‧‧‧外罩 150‧‧‧ Cover

220‧‧‧光學標記讀取器 220‧‧‧Optical Marker Reader

220a‧‧‧光學標記讀取器 220a‧‧‧Optical Marker Reader

220b‧‧‧光學標記讀取器 220b‧‧‧Optical Marker Reader

220c‧‧‧光學標記讀取器 220c‧‧‧Optical Marker Reader

220d‧‧‧光學標記讀取器 220d‧‧‧Optical Marker Reader

220e‧‧‧光學標記讀取器 220e‧‧‧Optical Marker Reader

220f‧‧‧光學標記讀取器 220f‧‧‧Optical Marker Reader

220g‧‧‧光學標記讀取器 220g‧‧‧Optical Marker Reader

222‧‧‧光源 222‧‧‧Light source

224‧‧‧相機 224‧‧‧ camera

226‧‧‧光線 226‧‧‧Light

226a‧‧‧光線 226a‧‧‧Light

226b‧‧‧光線 226b‧‧‧Light

226c‧‧‧光線 226c‧‧‧Light

226d‧‧‧光線 226d‧‧‧Light

226g‧‧‧光線 226g‧‧‧Light

226h‧‧‧光線 226h‧‧‧Light

226i‧‧‧光線 226i‧‧‧Light

228‧‧‧成像器 228‧‧‧ Imager

230‧‧‧光學器件 230‧‧‧Optical devices

232‧‧‧透鏡 232‧‧‧ lens

234‧‧‧視訊顯微鏡單元/顯微單元 234‧‧•Video microscope unit/micro unit

240‧‧‧擴散器 240‧‧‧Diffuser

242‧‧‧管透鏡 242‧‧‧ tube lens

250‧‧‧聚焦透鏡 250‧‧‧focus lens

260‧‧‧管線性偏光器 260‧‧‧tube linear polarizer

262‧‧‧分束鏡 262‧‧‧beam splitter

264‧‧‧準直空間 264‧‧ ‧ Collimation space

270‧‧‧照明導管 270‧‧‧Lighting catheter

272‧‧‧照明路徑鏡 272‧‧‧Lighting Path Mirror

274‧‧‧照明系統 274‧‧‧Lighting system

278‧‧‧準直透鏡 278‧‧‧ Collimating lens

280‧‧‧孔隙 280‧‧‧ pores

282‧‧‧導管線性偏光器 282‧‧‧Tube Linear Polarizer

286‧‧‧導管調適器 286‧‧‧ catheter adaptor

290‧‧‧導管區段 290‧‧‧ catheter section

圖1係一習知QR碼之一實例。 Figure 1 is an example of a conventional QR code.

圖2係一習知GS1 DataMatrix碼之一實例。 Figure 2 is an example of a conventional GS1 DataMatrix code.

圖3展示疊加於一方格上之一2DID碼之一部分之雷射製成之較小「黑色正方形」。 Figure 3 shows a smaller "black square" made by a laser superimposed on one of the 2DID codes on one of the squares.

圖4係用於替換2DID碼之一填充之深色正方形之雷射點之一例示性圖案之一放大表示。 Figure 4 is an enlarged representation of one of an exemplary pattern for replacing a laser spot of a dark square filled with one of the 2DID codes.

圖5係圖2之修改版之GS1 DataMatrix碼,其中用圖4之圖案替換各填充之深色正方形。 Figure 5 is a modified version of the GS1 DataMatrix code of Figure 2 in which the filled dark squares are replaced with the pattern of Figure 4.

圖5A係有利於內部分離距離、外部分離距離與間距之間之區別的圖5之一放大部分。 Figure 5A is an enlarged portion of Figure 5 that facilitates the difference between the internal separation distance, the external separation distance, and the spacing.

圖6係適於產生一修改之2DID碼之點之一例示性雷射微加工系統之一些組件之簡化及部分示意性透視圖。 Figure 6 is a simplified and partially schematic perspective view of some of the components of an exemplary laser micromachining system, one of the points suitable for generating a modified 2DID code.

圖7展示一雷射脈衝焦點及其束腰部之一圖。 Figure 7 shows a map of a laser pulse focus and its waist.

圖8係具有由一塗層材料及一外罩覆蓋之一粗糙表面之一藍寶石晶圓之一截面側視圖。 Figure 8 is a cross-sectional side view of a sapphire wafer having a rough surface covered by a coating material and a cover.

圖9係適於讀取修改之2DID碼之點之一例示性光學標記讀取器之一些組件之簡化之部分示意性側視圖。 Figure 9 is a simplified partial schematic side view of some of the components of an exemplary optical indicia reader suitable for reading a modified 2DID code.

圖10係適於讀取修改之2DID碼之點之另一例示性光學標記讀取器之一些組件之簡化之部分示意性側視圖。 Figure 10 is a simplified partial schematic side elevational view of some of the components of another exemplary optical indicia reader adapted to read the modified 2DID code.

圖11係適於讀取修改之2DID碼之點之一進一步例示性光學標記讀取器之一些組件之簡化之部分示意性側視圖。 Figure 11 is a simplified partial schematic side view of some of the components of a further exemplary optical indicia reader suitable for reading one of the modified 2DID codes.

圖12係適於讀取修改之2DID碼之點之一又一例示性光學標記讀取器之一些組件之簡化之部分示意性側視圖。 Figure 12 is a simplified partial schematic side elevational view of some of the components of yet another exemplary optical indicia reader suitable for reading a modified 2DID code.

圖13係適於讀取修改之2DID碼之點之仍另一例示性光學標記讀取器之一些組件之簡化之部分示意性側視圖。 Figure 13 is a simplified partial schematic side elevational view of still some of the components of another exemplary optical indicia reader adapted to read a modified 2DID code.

圖14係適於讀取修改之2DID碼之點之仍另一例示性光學標記讀取器之一些組件之簡化之部分示意性側視圖。 Figure 14 is a simplified partial schematic side view of still some of the components of another exemplary optical indicia reader adapted to read the modified 2DID code.

圖15係圖14之一些放大部分之簡化之部分示意性側視圖。 Figure 15 is a simplified partial schematic side elevational view of some enlarged portions of Figure 14.

下文參考附圖描述實例實施例。在不偏離於本揭示內容之精 神及教示下許多不同形式及實施例係可行的且因而本揭示內容不應視為限於本文提出之實例實施例。相反,提供此等實例實施例,使得本揭示內容將為徹底及完整的且將本揭示內容之範疇傳遞給熟悉此項技術者。在圖中,為了清楚起見可擴大組件之大小及相對大小。本文中使用之術語僅為了描述特定實例實施例之目的且並不意欲限制。如本文所使用,除非上下文另有清楚指示,否則單數形式「一」、「一個」及「該」亦意欲包含複數形式。將進一步理解,當在本說明書中使用時,術語「包括(“comprises”及/或“comprising”)」指定所陳述之特徵、整體、步驟、操作、元件及/或組件之存在,但是並不排除一個或多個其他特徵、整體、步驟、操作、元件、組件及/或其等群組之存在或添加。除非另有指定,否則陳述時之一範圍之值包含範圍之上限及下限兩者以及介於其中之任何子範圍。 Example embodiments are described below with reference to the drawings. Without departing from the essence of this disclosure Many different forms and embodiments are possible, and thus the disclosure is not to be considered as limited to the example embodiments set forth herein. Rather, the example embodiments are provided so that this disclosure will be thorough and complete and the scope of the disclosure will be disclosed to those skilled in the art. In the figures, the size and relative size of the components can be expanded for clarity. The terminology used herein is for the purpose of describing particular example embodiments and is not intended to As used herein, the singular forms " It will be further understood that the term "comprises" and / or "comprising" when used in this specification is intended to mean the existence of the stated features, integers, steps, operations, components and/or components, but not Exclusions or additions of one or more other features, integers, steps, operations, components, components, and/or groups thereof are excluded. Unless otherwise specified, the range of one of the stated ranges includes both the upper and lower limits of the range and any sub-ranges thereof.

已(諸如)藉由使用TRACKinside®技術(參閱http://www.totalbrandsecurity.com/?page_id=209#&panel1-1)在玻璃內部標記一些2DID碼。裝備有在多種參數組合下操作之適當雷射,由美國俄勒岡州波特蘭之Electro Scientific Industries公司製造之許多雷射微加工系統(諸如型號MM5330及MM5900)亦適於在各種材料(諸如陶瓷、玻璃、金屬或其等組合)上或內製成2DID碼。 Some 2DID codes have been marked inside the glass, for example by using TRACKinside® technology (see http://www.totalbrandsecurity.com/?page_id=209#&panel1-1). Equipped with the appropriate lasers operating under a combination of parameters, many laser micromachining systems (such as models MM5330 and MM5900) manufactured by Electro Scientific Industries of Portland, Oregon, USA, are also suitable for use in a variety of materials (such as ceramics, The 2DID code is made on or in the glass, metal or a combination thereof.

隨著在較小部件上標記已為所期望,2DID碼之大小已變得更小。而且,「不可見」DM或2DID碼之可用性對於一些應用(諸如對於用作無阻擋之視角為所期望而通過之螢幕之透明材料,或諸如對於可用於各種目的(諸如偵測真品與偽品)之專屬資訊或隱秘製造商標示)有用。 As marking on smaller components has been desired, the size of the 2DID code has become smaller. Moreover, the availability of "invisible" DM or 2DID codes is useful for some applications (such as transparent materials for screens that are used as a non-blocking viewing angle, or for various purposes (such as detecting genuine and fake products) ) Exclusive information or covert manufacturing marks) useful.

用於使一DM或2DID碼不可見之一方法係縮小碼之大小直 至黑色正方形之整個陣列太小而不可用人眼看見。人眼之理論最大角解析度係對應於1.0米之一距離下之d=0.35mm(350微米)及2.0米之一距離下之d=0.7mm之一點大小之1.2弧分。為了方便起見,此最大角解析度可表達為:d0.35x mm,其中d係以毫米為單位之點大小且x係以米為單位之從眼睛至點之距離。 One method for making a DM or 2DID code invisible is to reduce the size of the code until the entire array of black squares is too small to be seen by the human eye. The theoretical maximum angular resolution of the human eye corresponds to 1.2 arc minutes at d = 0.75 mm (350 microns) at a distance of 1.0 m and d = 0.7 mm at a distance of 2.0 m. For convenience, this maximum angular resolution can be expressed as: d 0.35x mm, where d is the point size in millimeters and x is the distance from the eye to the point in meters.

但是,在較近距離(諸如用於閱讀一行動電話螢幕之一典型距離(大約25cm))下,DM或2DID碼將必須更小以不可見(大約87.5微米),且個別正方形必須甚至更小。即使可採用一雷射以使個別正方形足夠小,但黑色正方形將最有可能經大小調整以在一單個雷射脈衝下等於點大小。例如,一習知較小雷射點大小(諸如大約5微米)將限制此不可見DM或2DID碼以在一列或一行上包含至多17個正方形。雷射點大小之微小之實際限制一般接受為大約採用雷射之波長之兩倍,因而小於大約1微米或2微米之點大小可能採用起來較困難及昂貴。因此,對於更明顯之DM或2DID碼縮小,存在大量成本及技術限制。 However, at a closer distance (such as for reading a typical distance (about 25 cm) of a mobile phone screen), the DM or 2DID code would have to be smaller to be invisible (about 87.5 microns), and the individual squares must be even smaller. . Even though a laser can be used to make the individual squares small enough, the black squares will most likely be sized to equal the point size under a single laser pulse. For example, a conventional smaller laser spot size (such as about 5 microns) would limit this invisible DM or 2DID code to include up to 17 squares in a column or row. The practical limitation of the small size of the laser spot is generally accepted to be approximately twice the wavelength of the laser, and thus a point size of less than about 1 micron or 2 microns may be difficult and expensive to use. Therefore, there are a large number of cost and technical limitations for more obvious DM or 2DID code reduction.

圖3展示疊加於一方格圖案10上之一DM或2DID碼之一部分之模擬之雷射製成之「黑色正方形」。實際雷射及材料可引起呈模糊、扭曲之形狀之雷射標記,該等形狀並非適當地對準且並非完全黑色,而是灰色陰影。所有此等因素(模糊、形狀扭曲、未對準及低對比度陰影)導致關於一特定正方形應分類為「黑色」還是「白色」之較少確定性。此等因素之一些可源自不可預測之雷射腔效應、光學組件之瞬態或長期未對準或束定位組件及雷射時序之瞬態或長期不協調。此等不確定性統稱為「雜訊」。 Figure 3 shows a "black square" made by a simulated laser superimposed on one of the DM or 2DID codes on the one-frame pattern 10. Actual lasers and materials can cause laser markings in a hazy, distorted shape that are not properly aligned and not completely black, but rather shaded in gray. All of these factors (blur, shape distortion, misalignment, and low contrast shadows) lead to less certainty about whether a particular square should be classified as "black" or "white." Some of these factors can result from unpredictable laser cavity effects, transients or long-term misalignment of optical components or transients or long-term inconsistencies in beam positioning components and laser timing. These uncertainties are collectively referred to as "noise."

圖3中所示之此等雷射製成之黑色正方形及網格圖案顯露此等問題可如何隨著一2DID碼之縮小而增加雜訊。特定言之,圖3展示一縮小標記12、一放大標記14及由系統雜訊引起之非均勻邊緣16。圖3亦展示可由束定位或基板定位系統中之位置不準確性或坐標不準確性或關於此等系統及雷射脈衝產生之時序不準確性引起之一未對準標記18。此等扭曲標記(特定言之,標記14及18)可甚至在最精密光學器件及誤差校正軟體下對光碼讀取器解釋產生困難。 The black squares and grid patterns made by these lasers shown in Figure 3 reveal how these problems can increase noise as a 2DID code shrinks. In particular, Figure 3 shows a reduced mark 12, an enlarged mark 14 and a non-uniform edge 16 caused by system noise. 3 also shows one of the misalignment marks 18 that can be caused by positional inaccuracies or coordinate inaccuracies in the beam positioning or substrate positioning system or with respect to timing inaccuracies generated by such systems and laser pulses. These twist marks (specifically, marks 14 and 18) can make interpretation of the optical code reader difficult even under the most sophisticated optics and error correction software.

標記之DM或2DID碼之信雜比(SNR)決定碼是否將足夠不扭曲之似然度以最小化讀取2DID碼之誤差。2DID碼中之個別正方形之大小與信號強度成比例,但個別正方形之形狀及大小之扭曲與雜訊成比例。而且,信號振幅可由表示各正方形之點之圖案之間之空間分離決定且雜訊振幅可由用於標記點之系統之準確性決定。因此,隨著個別正方形之大小變得更小,信號強度較低且碼更易受可在不盡完美之標記機器中發生之扭曲(諸如模糊或線扭曲)影響。 The signal-to-noise ratio (SNR) of the marked DM or 2DID code determines whether the code will be sufficiently non-distorted to minimize the error in reading the 2DID code. The size of the individual squares in the 2DID code is proportional to the signal strength, but the distortion of the shape and size of the individual squares is proportional to the noise. Moreover, the signal amplitude can be determined by the spatial separation between the patterns representing the points of the squares and the noise amplitude can be determined by the accuracy of the system used to mark the points. Thus, as the size of individual squares becomes smaller, the signal strength is lower and the code is more susceptible to distortions (such as blur or line distortion) that can occur in less than perfect marking machines.

然而,俄勒岡州波特蘭之Electro Scientific Industries公司使一雷射微加工系統藉由精確地控制系統組件之對準、時序及坐標且藉由限制雷射系統參數之處理窗以將小於10微米之雷射點精確地傳遞至一工件46(圖6)上之所期望位置來成功地克服許多此等問題。在一特定實施例中,製成一126×126微米陣列之正方形之一顯微2DID碼,其中各指定黑色正方形由一4至5微米點表示。而且,用於製成此2DID碼之雷射微加工系統非常大且採用非常昂貴之組件。 However, Electro Scientific Industries of Portland, Oregon, enables a laser micromachining system to be less than 10 microns by precisely controlling the alignment, timing, and coordinates of system components and by limiting the processing window parameters of the laser system. The laser spot is accurately delivered to the desired location on a workpiece 46 (Fig. 6) to successfully overcome many of these problems. In a particular embodiment, a microscopic 2DID code of one square of a 126 x 126 micron array is formed, wherein each designated black square is represented by a 4 to 5 micron dot. Moreover, the laser micromachining system used to make this 2DID code is very large and uses very expensive components.

為了利用一雷射降低用於產生不可見DM或2DID碼之系統 成本,申請者追求一完全不同之範例。申請者決定2DID碼可由包含使人眼對2DID碼之各黑色正方形不可見之一群組之點的一修改之2DID碼表示,而非對付與將一整個2DID碼縮小至足夠小而對人眼不可見關聯之成本及問題。 In order to utilize a laser to reduce the system used to generate invisible DM or 2DID codes Cost, the applicant pursues a completely different paradigm. The applicant decides that the 2DID code can be represented by a modified 2DID code containing a point that makes the human eye invisible to each of the black squares of the 2DID code, instead of dealing with and reducing an entire 2DID code to a small enough for the human eye. The costs and problems of invisible associations.

圖4係用於替換一習知2DID碼之一填充之深色正方形之雷射標記或點32之一例示性圖案或群組30之一放大表示。如前所述,為了方便起見,人眼之最大角解析度可表達為d0.35x mm,其中d係以毫米為單位之雷射點之一主軸且x係以米為單位之從眼睛至點之距離。因而,對於大約125cm之一典型最小閱讀距離,2DID碼中之各點將必須具有擁有一點尺寸之一主軸,該點尺寸短於或等於大約44微米以對人眼不可見(放大時(諸如在顯微觀看下)仍可見)。 4 is an enlarged representation of one exemplary pattern or group 30 for replacing a dark square laser mark or point 32 filled with one of the conventional 2DID codes. As mentioned above, for the sake of convenience, the maximum angular resolution of the human eye can be expressed as d 0.35x mm, where d is one of the major points of the laser point in millimeters and x is the distance from the eye to the point in meters. Thus, for a typical minimum reading distance of about 125 cm, each point in the 2DID code would have to have a major axis that has a point size that is shorter than or equal to about 44 microns to be invisible to the human eye (such as when zoomed in) Under micro-viewing) still visible).

在用分組圖案實驗期間,申請者指出當不可見小點32緊密地分組在一起時,其等可看似一較大大小之一單個點,因此使得點32之群組30變為可見。但是,當點32之中心至中心分離s如圖4中所示大於直徑之四倍(即,s4d)時,基於實驗之經驗資料證實具有一直徑d之圓形形狀點32看似個別點(相對於看似一單個點之點之一叢集)。 During the experiment with the grouping pattern, the Applicant indicates that when the invisible dots 32 are closely grouped together, they may look like a single point of a larger size, thus making the group 30 of points 32 visible. However, when the center-to-center separation s of point 32 is greater than four times the diameter as shown in Figure 4 (ie, s 4d), based on experimental empirical data, it is confirmed that the circular shape point 32 having a diameter d looks like an individual point (relative to a cluster of points that appear to be a single point).

簡單軟體可用於將一習知2DID碼轉換為一修改形式,其中各黑色正方形(或各資料點)由小點32(子資料點)之一圖案表示,其中各個別點32經選擇以具有足夠小以對人眼不可見之一主空間軸d且任何兩個點32之間之中心至中心間距或距離大於個別點32之最大截面尺寸(例如,主空間軸d)之四倍。因此,可選擇各點32之形狀以及點32之大小。圓形點32通常最容易產生,但是例如,亦可採用正方形或橢圓形點32。類 似地,形成各點32之空間能量分佈不需要為均勻。 Simple software can be used to convert a conventional 2DID code into a modified form, wherein each black square (or each data point) is represented by a pattern of dots 32 (sub-data points), wherein each individual point 32 is selected to have sufficient The center-to-center spacing or distance between any two points 32 that is invisible to the human eye is less than four times the maximum cross-sectional dimension of the individual points 32 (eg, the main spatial axis d). Therefore, the shape of each point 32 and the size of the point 32 can be selected. The circular points 32 are generally the easiest to produce, but for example, square or elliptical dots 32 may also be employed. class Similarly, the spatial energy distribution forming each point 32 need not be uniform.

一般而言,各點32之主空間軸d介於大約0.5微米與大約90微米之間。(小於大約87.5微米之一主空間軸d在25cm之一距離下對人眼不可見。)在一些實施例中,點32之主空間軸d介於大約1微米與大約75微米之間,或點32之主空間軸d短於75微米。在一些實施例中,點32之主空間軸d介於大約1微米與大約50微米之間,或點32之主空間軸d短於50微米。(小於大約43.75微米之一主空間軸d在12.5cm之一距離下對人眼不可見。)在一些實施例中,點32之主空間軸d介於大約1微米與大約25微米之間,或點32之主空間軸d短於25微米。(小於大約22微米之一主空間軸d在6.25cm之一距離下對人眼不可見。一般而言,大約30微米或更小之一點大小在任何距離下對大多數人眼不可見,此歸因於人眼之解剖侷限及習知眼鏡之光學侷限。)在一些實施例中,點32之主空間軸d介於大約1微米與大約10微米之間,或點32之主空間軸d短於10微米。在一些實施例中,點32之主空間軸d介於大約1.5微米與大約5微米之間,或點32之主空間軸d短於5微米。 In general, the primary spatial axis d of each point 32 is between about 0.5 microns and about 90 microns. (less than about 87.5 microns, one of the main spatial axes d is invisible to the human eye at a distance of 25 cm.) In some embodiments, the main spatial axis d of the points 32 is between about 1 micrometer and about 75 micrometers, or The main space axis d of point 32 is shorter than 75 microns. In some embodiments, the primary spatial axis d of the point 32 is between about 1 micrometer and about 50 micrometers, or the principal spatial axis d of the point 32 is shorter than 50 micrometers. (One of the primary spatial axes d less than about 43.75 microns is invisible to the human eye at a distance of 12.5 cm.) In some embodiments, the primary spatial axis d of the points 32 is between about 1 micrometer and about 25 micrometers, Or the main spatial axis d of point 32 is shorter than 25 microns. (One of the principal space axes d less than about 22 microns is invisible to the human eye at a distance of 6.25 cm. In general, a point size of about 30 microns or less is invisible to most human eyes at any distance, this Due to the anatomical limitations of the human eye and the optical limitations of conventional glasses.) In some embodiments, the principal spatial axis d of the point 32 is between about 1 micrometer and about 10 micrometers, or the principal spatial axis d of the point 32. Shorter than 10 microns. In some embodiments, the main spatial axis d of the point 32 is between about 1.5 microns and about 5 microns, or the main spatial axis d of the point 32 is shorter than 5 microns.

一般而言,有利的是在不明顯增加雷射微加工系統之成本或明顯增加光碼讀取器之成本下使點32之主空間軸d實際儘可能小(且至少足夠小,以便不會不利地影響待標記之基板)。將明白點32之主空間軸d製成得越小,最小點分離距離s在不會使點32之群組30可見下可製成得越小(且總體2DID碼之大小可製成得越小)。但是,亦將明白可存在使點32以分離距離間隔之優點,該等分離距離明顯大於最小分離距離s以甚至在最小化點32之主空間軸d時增加信雜比。 In general, it is advantageous to make the main spatial axis d of point 32 as small as possible (and at least small enough so as not to significantly increase the cost of the laser micromachining system or significantly increase the cost of the optical code reader). Detrimentally affecting the substrate to be marked). It will be understood that the smaller the main spatial axis d of point 32 is made, the smaller the minimum point separation distance s can be made without making the group 30 of points 32 visible (and the overall 2DID code size can be made more small). However, it will also be appreciated that there may be an advantage in spacing the points 32 apart by a separation distance that is significantly greater than the minimum separation distance s to increase the signal to noise ratio even when the main spatial axis d of the point 32 is minimized.

為了簡單起見,各點32可在形狀及大小上類似,且形成有一類似空間能量分佈;但是,若期望,對於特定點32,可刻意改變此等特性。而且,因為有利之信雜比,不同點32之間之特性上之非刻意差異並不引起光學讀取誤差。 For simplicity, each point 32 can be similar in shape and size and formed with a similar spatial energy distribution; however, if desired, such characteristics can be deliberately altered for a particular point 32. Moreover, because of the favorable signal-to-noise ratio, unintentional differences in characteristics between different points 32 do not cause optical read errors.

在一些實施例中,基於大約1微米之一點大小及申請者之經驗資料,最小分離距離s大於或等於4微米。在將以1mm×1mm場標記之一177×177 DM或2DID碼之一例示性陣列中,1微米點32之間之分離距離s可大至大約5.6微米。當然,修改之2DID碼之場不需要如此小,因而最大分離距離s可由基板之大小除以2DID碼之一列或行中之幾何區域之數量決定。例如,一177×177 2DID碼之一10cm×10cm場可在1微米點32之間提供大至一565微米分離距離s;一57×57 2DID碼之一20cm×20cm場可在1微米點32之間提提供大至3500微米分離距離s;或一21×21 2DID碼之一1mm×1mm場可在25微米點32之間提供大至大約40微米分離距離s。如前所述,較大分離距離s提供較大信雜比。而且,雷射微加工系統之性質可影響點32之間之分離距離s之選擇。例如,若一雷射微加工系統具有大約+/- 20微米之一點位置定位準確性,則40微米之一分離距離s可為有利。 In some embodiments, the minimum separation distance s is greater than or equal to 4 microns based on a point size of about 1 micron and the applicant's empirical data. In an exemplary array of one of 177 x 177 DM or 2DID codes to be marked with a 1 mm x 1 mm field, the separation distance s between 1 micron points 32 can be as large as about 5.6 microns. Of course, the field of the modified 2DID code need not be so small, and thus the maximum separation distance s can be determined by dividing the size of the substrate by the number of columns of the 2DID code or the number of geometric regions in the row. For example, a 10 cm x 10 cm field of one 177 x 177 2DID code can provide a separation distance s of up to a 565 micrometer between 1 micrometer dots 32; one of a 57 x 57 2 DID code 20 cm x 20 cm field can be at a micron point of 32 A separation distance s of up to 3500 microns is provided therebetween; or a 1 mm x 1 mm field of one 21 x 21 2 DID code can provide a separation distance s of up to about 40 microns between 25 micrometers 32. As mentioned earlier, the larger separation distance s provides a larger signal to noise ratio. Moreover, the nature of the laser micromachining system can affect the choice of separation distance s between points 32. For example, if a laser micromachining system has a point location accuracy of about +/- 20 microns, a separation distance s of 40 microns may be advantageous.

一群組面積可由形成群組30中之點之散佈之周界之點32界定。群組30中之各點32具有如先前討論之一點大小或點面積。一累積點面積可表示一群組30內之點32之點面積之和。在一些實施例中,累積點面積小於或等於少於群組面積之10%。在一些實施例中,累積點面積小於或等於少於群組面積之5%。在一些實施例中,累積點面積小於或等於少於群組 面積之1%。在一些實施例中,累積點面積小於或等於少於群組面積之0.5%。在一些實施例中,累積點面積小於或等於少於群組面積之0.1%。 A group of areas may be defined by points 32 that form the perimeter of the spread of points in group 30. Each point 32 in group 30 has a point size or point area as previously discussed. A cumulative point area may represent the sum of the area of points 32 of a group 30. In some embodiments, the cumulative spot area is less than or equal to less than 10% of the group area. In some embodiments, the cumulative spot area is less than or equal to less than 5% of the group area. In some embodiments, the cumulative point area is less than or equal to less than the group 1% of the area. In some embodiments, the cumulative spot area is less than or equal to less than 0.5% of the group area. In some embodiments, the cumulative spot area is less than or equal to less than 0.1% of the group area.

圖5係圖2之一修改版之GS1 DataMatrix碼,其中用圖4之點32之圖案替換陣列中之各黑色(指定)正方形。點32之群組30展示為具有配置成一圖案之四個點32,使得各點32定位成接近於一指定正方形或定位於一指定正方形之一隅角處。 Figure 5 is a modified version of the GS1 DataMatrix code of Figure 2 in which the black (designated) squares in the array are replaced with the pattern of point 32 of Figure 4. Group 30 of points 32 is shown having four points 32 arranged in a pattern such that each point 32 is positioned close to a designated square or positioned at one of the corners of a designated square.

修改之DM或2DID碼陣列之場大小僅受待標記之工件46(圖6)上之基板44之大小限制。在許多實施例中,場將小於20cm×20cm且大於50微米×50微米。在一些實施例中,場將小於或等於500微米×500微米(且大於1微米×1微米)。在一些實施例中,場將小於或等於250微米×250微米(且大於1微米×1微米)。在一些實施例中,場將小於或等於100微米×100微米(且大於1微米×1微米)。 The field size of the modified DM or 2DID code array is limited only by the size of the substrate 44 on the workpiece 46 (Fig. 6) to be marked. In many embodiments, the field will be less than 20 cm x 20 cm and greater than 50 microns x 50 microns. In some embodiments, the field will be less than or equal to 500 microns by 500 microns (and greater than 1 micron by 1 micron). In some embodiments, the field will be less than or equal to 250 microns by 250 microns (and greater than 1 micron by 1 micron). In some embodiments, the field will be less than or equal to 100 microns by 100 microns (and greater than 1 micron by 1 micron).

在一些實施例中,修改之2DID碼之大小將大於或等於600微米×600微米。在一些實施例中,修改之2DID碼之大小將小於或等於1mm×1mm。在一些實施例中,修改之2DID碼之大小將大於或等於1mm×1mm且小於或等於10mm×10mm。在一些實施例中,修改之2DID碼之大小將大於或等於1cm×1cm且小於或等於10cm×10cm。如先前提及,所選雷射微加工之性質可影響點大小且限制定位場。因為可存在用於最大化一些材料中之分離距離s之結構完整性或優點,所以基板44之性質亦可影響陣列之場大小。此外,光碼讀取器之大小及成本與其等能力及碼偵測之處理能力亦可為決定2DID碼陣列之一適當場大小之因素。最後,修改之2DID碼之目的可影響為其陣列所選之場大小。 In some embodiments, the modified 2DID code size will be greater than or equal to 600 microns by 600 microns. In some embodiments, the size of the modified 2DID code will be less than or equal to 1 mm x 1 mm. In some embodiments, the size of the modified 2DID code will be greater than or equal to 1 mm x 1 mm and less than or equal to 10 mm x 10 mm. In some embodiments, the size of the modified 2DID code will be greater than or equal to 1 cm x 1 cm and less than or equal to 10 cm x 10 cm. As mentioned previously, the nature of the selected laser micromachining can affect the spot size and limit the localization field. Because of the structural integrity or advantages that can be used to maximize the separation distance s in some materials, the nature of the substrate 44 can also affect the field size of the array. In addition, the size and cost of the optical code reader and its ability to process and detect the code can also be a factor in determining the appropriate field size of the 2DID code array. Finally, the purpose of modifying the 2DID code can affect the size of the field selected for its array.

將明白,陣列中之幾何區域不需要為正方形。例如,其等可為三角形或六角形。而且,點32之數量及表示各幾何區域之一群組30中之點32之圖案可在某種程度上為任意或可經特定選擇。例如,五個點可表示各指定幾何區域(諸如一正方形),其中四個點32定位於隅角且一點32定位於中間。因此,各指定幾何區域可由一偶數數量之點或由一奇數數量之點表示。在此實施例中,點32之四者與中間點32分離達所選距離s,此係因為該距離s係群組30中之任何兩個點32之間之最短距離。因此,隅角(或周界)點分離達大於s之一距離。因此,一群組30中之點32(或最近鄰近點32)可分離達不等距離。 It will be appreciated that the geometric regions in the array need not be square. For example, they may be triangular or hexagonal. Moreover, the number of dots 32 and the pattern of dots 32 in groups 30 of each geometric region may be arbitrary or may be selected to some extent. For example, five points may represent respective designated geometric regions (such as a square) with four points 32 positioned at the corners and a point 32 positioned intermediate. Thus, each designated geometric region can be represented by an even number of points or by an odd number of points. In this embodiment, four of the points 32 are separated from the intermediate point 32 by a selected distance s because the distance s is the shortest distance between any two points 32 in the group 30. Therefore, the corner (or perimeter) points are separated by a distance greater than one of s. Thus, point 32 (or nearest neighbor 32) in a group 30 can be separated by unequal distances.

如先前提及,陣列中之指定幾何區域不需要由類似於幾何區域之一幾何圖案表示。例如,一指定正方形幾何區域可由其他幾何圖案表示,該等幾何圖案包含(但不限於)矩形圖案、圓形圖案、六角形圖案、八角形圖案或三角形圖案。為了方便及簡單起見,各指定幾何區域可提供有點32之相同幾何圖案。但是,所選指定幾何區域可用一不同數量之點32、點32之圖案之一不同大小或點之一不同圖案標示。例如,一QR碼之位置正方形及/或對準正方形可由不同圖案或由不同大小之圖案表示。 As mentioned previously, the specified geometric region in the array need not be represented by a geometric pattern similar to one of the geometric regions. For example, a designated square geometric region may be represented by other geometric patterns including, but not limited to, a rectangular pattern, a circular pattern, a hexagonal pattern, an octagonal pattern, or a triangular pattern. For convenience and simplicity, each of the designated geometric regions provides the same geometric pattern of a bit 32. However, the selected geometric region may be indicated by a different number of dots 32, one of the patterns of dots 32, a different size or a different pattern of dots. For example, the position squares of a QR code and/or alignment squares may be represented by different patterns or by patterns of different sizes.

參考圖3,相鄰標記之正方形之間不存在刻意分離,且標記之正方形之間之間距具有相同於標記之正方形之側之尺寸。因此,在圖3中所示之實施例中,雜訊可相當於信號。但是,再次參考圖5,在許多實施例中,點32之鄰近群組30可分離達一外部分離距離e(從不同群組之相鄰點之間之最小分離距離)及一間距p(相鄰幾何區域或其等代表性群組之間之中心至中心間隔)。圖5A係有利於內部分離距離s、外部分離距離e與間 距p之間之區別的圖5之一放大部分。 Referring to Figure 3, there is no intentional separation between the squares of adjacent marks, and the distance between the squares of the marks has the same size as the side of the square of the marks. Thus, in the embodiment shown in Figure 3, the noise can be equivalent to a signal. However, referring again to FIG. 5, in many embodiments, the adjacent group 30 of points 32 can be separated up to an external separation distance e (the smallest separation distance from adjacent points of the different groups) and a spacing p (phase The center-to-center spacing between adjacent geometric regions or their representative groups. Fig. 5A is an enlarged portion of Fig. 5 which facilitates the difference between the internal separation distance s , the external separation distance e and the pitch p .

在許多實施例中,間距p將不同於及大於外部分離距離e,且間距p及外部分離距離e兩者將不同於且一般大於一群組30中之點32之間之所選最小分離距離sIn many embodiments, the pitch p will be different from and greater than the outer separation distance e , and both the pitch p and the outer separation distance e will be different and generally greater than the selected minimum separation distance between the points 32 in a group 30. s .

而且,在一些實施例中,陣列中之列或行之間之外部分離距離e可大於或等於1s以維持一所期望信雜比。將明白列之間之外部分離距離e可不同於行之間之外部分離距離e。亦將明白,對於列出點大小、場大小及一列或行中之群組30之數量之早先實例,列與行之間之外部分離距離e可使分離s減少了大於一半。 Moreover, in some embodiments, the external separation distance e between the columns or rows in the array can be greater than or equal to 1 s to maintain a desired signal to noise ratio. It will be appreciated that the external separation distance e between the columns can be different from the external separation distance e between the rows. It will also be appreciated that for earlier instances of list point size, field size, and number of groups 30 in a column or row, the external separation distance e between the columns may reduce the separation s by more than half.

類似地,在一些實施例中,陣列中之列或行之間之間距p可大於或等於1s以維持一所期望信雜比。吾亦將明白列之間之間距p可不同於行之間之間距p。亦將明白,對於列出點大小、場大小及一列或行中之群組30之數量之早先實例,列與行之間之間距p可使分離距離s減少了大於一半。 Similarly, in some embodiments, the distance p between columns or rows in the array can be greater than or equal to 1 s to maintain a desired signal to noise ratio. I will also understand that the distance p between columns can be different from the distance p between rows. It will also be appreciated that for earlier instances of the list of point sizes, field sizes, and the number of groups 30 in a column or row, the distance p between the columns may reduce the separation distance s by more than half.

因此,亦可藉由使得幾何區域(諸如正方形)之整體大小比由點32之圖案(若圖案分組於幾何區域之中心附近)界定之周界大得多來改進信雜比。 Thus, the signal to noise ratio can also be improved by making the overall size of the geometric regions (such as squares) much larger than the perimeter defined by the pattern of dots 32 (if the pattern is grouped near the center of the geometric region).

在一些實施例中,信號振幅可由外部分離距離e或間距p表示。雜訊振幅可由點位置相對於基板44上之一特定位置之不確定性或不準確性表示。例如,若標記點之雷射微加工系統具有+/- 20微米之一標記不準確性,則此不準確性將表示雜訊。所以,信雜比將為外部分離距離e或間距p對標記不準確性之比率。若一雷射系統中固有之標記不準確性允許為 較大或隨著時間推移變差,則可增加外部分離距離e或間距p以維持一適當信雜比。或者,若知道不準確性為一固定數字,則信雜比可藉由增加外部分離距離e或間距p而增加至一任意較大數字。 In some embodiments, the signal amplitude can be represented by an external separation distance e or pitch p . The noise amplitude can be represented by the uncertainty or inaccuracy of the point location relative to a particular location on the substrate 44. For example, if the laser micromachining system of the marked point has a mark inaccuracy of +/- 20 microns, this inaccuracy will indicate noise. Therefore, the signal-to-noise ratio will be the ratio of the external separation distance e or the pitch p to the mark inaccuracy. If the inaccuracy of the mark inherent in a laser system is allowed to be large or deteriorates over time, the external separation distance e or pitch p may be increased to maintain an appropriate signal-to-noise ratio. Alternatively, if the inaccuracy is known to be a fixed number, the signal to noise ratio can be increased to an arbitrarily large number by increasing the external separation distance e or pitch p .

鑑於上述,信雜比可易於建立為大於5,該值根據羅斯準則為能夠在100%確定下區分影像特征之最小信雜比。但是,應明白,可採用小於5之信雜比值。而且,本文描述之修改之二維碼可提供任意較大信雜比值,諸如大於或等於10,大於或等於100或大於或等於1000。 In view of the above, the signal-to-noise ratio can be easily established to be greater than 5, which is based on the Ross criterion as the minimum signal-to-noise ratio capable of distinguishing image features at 100% determination. However, it should be understood that a signal to noise ratio of less than 5 can be employed. Moreover, the modified two-dimensional code described herein can provide any large signal-to-noise ratio, such as greater than or equal to 10, greater than or equal to 100, or greater than or equal to 1000.

在一些替代實施例中,不使用陣列中之列或行之間之間隔,使得相鄰指定幾何區域中之圖案可共用點32。例如,鄰近指定正方形幾何區域之兩個隅角圖案可沿著兩個正方形幾何區域之邊界共用兩個點32。光碼讀取器將必須經調適以辨識(例如)三對均勻間隔之點32表示兩個指定正方形。 In some alternative embodiments, the spacing between columns or rows in the array is not used such that patterns in adjacent designated geometric regions can share point 32. For example, two corner patterns adjacent to a given square geometric region may share two points 32 along the boundaries of the two square geometric regions. The optical code reader will have to be adapted to identify, for example, three pairs of evenly spaced points 32 representing two designated squares.

無論陣列之大小,點32之間之分離距離s,外部分離距離e(若有的話)或列之間及行之間之間距距離p,群組30之所選圖案及幾何區域之大小及形狀如何,點32可轉換回指定幾何區域(諸如黑色正方形)。 Regardless of the size between arrays, the separation distance between a point of 32 s, the distance separating the external e (if any) or the column size and the distance p, the selected pattern group 30 and the geometric area of the spacing between the rows and The shape 32 can be converted back to a specified geometric area (such as a black square).

如先前提及,如本文描述般修改2DID碼之優點包含用於使2DID碼在各種基板材料(透明材料或不透明材料)中對人眼不可見之方法。例示性材料包含陶瓷、玻璃、塑膠及金屬或其等組合。例示性材料可為結晶或非結晶。例示性材料可為天然或合成。例如,雷射微加工系統可在半導體晶圓材料(此氧化鋁或藍寶石)上或內製成適當大小之標記。雷射微加工系統亦可在玻璃、強化玻璃及Corning Gorilla GlassTM上或內製成適當大小之標記。雷射微加工系統亦可在聚碳酸酯及丙烯酸酯上或內製成適當大 小之標記。雷射微加工系統亦可在鋁、鋼及鈦上或內製成適當大小之標記。 As mentioned previously, the advantages of modifying the 2DID code as described herein include methods for rendering the 2DID code invisible to the human eye in various substrate materials (transparent or opaque materials). Exemplary materials include ceramic, glass, plastic, and metal or combinations thereof. Exemplary materials can be crystalline or amorphous. Exemplary materials can be natural or synthetic. For example, a laser micromachining system can be made of a suitably sized mark on or within a semiconductor wafer material (this alumina or sapphire). Laser micromachining system also in glass, tempered marker made of a suitable size and the glass or the Corning Gorilla Glass TM. Laser micromachining systems can also be made of appropriate size markings on or in polycarbonate and acrylate. Laser micromachining systems can also be made of appropriate size markings on or in aluminum, steel and titanium.

修改之DM或2DID碼之不可見標記不僅提供在不使透明材料模糊下放置碼之一方法,而且提供將專屬資訊隱藏於修改之碼內之一方法。例如,多個圖案可提供於一修改之2DID碼內,其中僅圖案之一些包含專屬資訊。此外,小型及展開點32可經配置以在基板材料中看似不完整,因而使一競爭者或潛在複製者甚至難以知道存在修改之2DID碼。最後,可使修改之2DID碼比標準2DID碼更複雜,因而修改之2DID碼可更難以藉由一偽造者識別及複製。 The invisible mark of the modified DM or 2DID code not only provides a method of placing the code without blurring the transparent material, but also provides a method of hiding the proprietary information within the modified code. For example, multiple patterns may be provided within a modified 2DID code, with only some of the patterns containing proprietary information. In addition, the small and expansion points 32 can be configured to appear to be incomplete in the substrate material, thus making it difficult for a competitor or potential copyer to know that there is a modified 2DID code. Finally, the modified 2DID code can be made more complex than the standard 2DID code, so the modified 2DID code can be more difficult to identify and copy by a counterfeiter.

無論是否使2DID碼不可見,修改之2DID碼藉由一任意較大區域上之修改之碼之擴展實現較於習知2DID碼之信雜比(SNR)方面之較大改進。而且,無論點32是否不可見,修改之2DID碼減少誤差且減少誤差校正之成本及時間(處理能力)。 Regardless of whether the 2DID code is rendered invisible, the modified 2DID code achieves a significant improvement over the signal-to-noise ratio (SNR) of the conventional 2DID code by extending the modified code over an arbitrarily large area. Moreover, regardless of whether point 32 is invisible, the modified 2DID code reduces the error and reduces the cost and time (processing power) of the error correction.

在一較大區域上擴展2DID碼之另一優點實現較便宜及較低精確度雷射標記系統之使用,同時維持不可見性(若期望)。 Another advantage of extending the 2DID code over a larger area enables the use of less expensive and less accurate laser marking systems while maintaining invisibility if desired.

如先前提及,點32可標記於工件46(圖6)之基板材料上或內。對於許多應用,內部標記點32可為有利。不可見點32非常小且更可能使一些材料磨損或易於被磨耗。但是,內部標記不那麼容易正常磨損或磨耗。內部標記亦容許表面相對於灰塵或流體保持其等不透性且較不可能折衷結構完整性或促進表面裂縫伸展或其他表面缺陷。 As previously mentioned, the dots 32 can be marked on or within the substrate material of the workpiece 46 (Fig. 6). Internal marker points 32 may be advantageous for many applications. The invisible point 32 is very small and is more likely to cause some material to wear or be easily worn. However, internal markings are not as easy to wear or wear as normal. Internal marking also allows the surface to remain relatively impermeable to dust or fluid and less likely to compromise structural integrity or promote surface crack extension or other surface defects.

一般而言,內部標記可包含一基板44之表面之間之核心材料之裂解、密度修改、孔洞產生、應力場或再結晶之一者或多者。 In general, the internal indicia can comprise one or more of cracking, density modification, hole generation, stress field, or recrystallization of the core material between the surfaces of a substrate 44.

可經選擇以改進基板44之雷射標記之可靠性及可重複性之 例示性雷射脈衝參數包含雷射類型、波長、脈衝持續時間、脈衝重複速率、脈衝之數量、脈衝能量、脈衝時間形狀、脈衝空間形狀及焦點大小及形狀。額外雷射脈衝參數包含指定焦點相對於物件之表面之位置且相對於物件導向雷射脈衝之相對運動。 Can be selected to improve the reliability and repeatability of the laser markings of substrate 44 Exemplary laser pulse parameters include laser type, wavelength, pulse duration, pulse repetition rate, number of pulses, pulse energy, pulse time shape, pulse space shape, and focus size and shape. The additional laser pulse parameters include the relative motion of the specified focus relative to the surface of the object and directed to the laser pulse relative to the object.

圖6係適於產生一修改之2DID碼之點之一例示性雷射微加工系統40之一些組件之簡化及部分示意性透視圖。參考圖6,可操作用於在一工件46之基板44之一表面42上或下面標記點32之一些例示性雷射處理系統係ESI MM5330微加工系統、ESI ML5900微加工系統及ESI 5955微加工系統,上述所有者由俄勒岡州波特蘭97229之Electro Scientific Industries公司製造。 6 is a simplified and partially schematic perspective view of some of the components of an exemplary laser micromachining system 40 that is suitable for generating a modified 2DID code. Referring to Figure 6, some exemplary laser processing systems operable to mark points 32 on or under one surface 42 of substrate 44 of workpiece 46 are ESI MM5330 micromachining systems, ESI ML5900 micromachining systems, and ESI 5955 micromachining. The system is manufactured by Electro Scientific Industries, Inc., 97229 Portland, Oregon.

此等系統通常採用一固態二極體泵送之雷射,其可經組態以在多達5MHz之脈衝重複速率下發射從大約266nm(UV)至大約1320nm(IR)之波長。但是,此等系統可由適當雷射、雷射光學器件、部件處置設備及控制軟體之代替或添加調適以如先前所描述般在基板44上或內可靠地及可重複地產生所選點32。此等修改允許雷射處理系統在所期望速率及雷射點或脈衝之間之間距下將具有適當雷射參數之雷射脈衝導向至一適當定位及保持之工件46上之所期望位置以產生具有所期望色彩、對比度及/或光學密度之所期望點32。 Such systems typically employ a solid state diode pumped laser that can be configured to emit wavelengths from about 266 nm (UV) to about 1320 nm (IR) at pulse repetition rates of up to 5 MHz. However, such systems may be replaced or otherwise adapted by appropriate lasers, laser optics, component handling equipment, and control software to reliably and reproducibly select selected points 32 on or within substrate 44 as previously described. Such modifications allow the laser processing system to direct laser pulses having appropriate laser parameters to a desired position on a suitably positioned and held workpiece 46 at a desired rate and between laser points or pulses to produce The desired point 32 has the desired color, contrast, and/or optical density.

在一些實施例中,雷射微加工系統40採用在1064nm波長下操作之一二極體泵送之Nd:YVO4固態雷射50,諸如由德國凱澤斯勞滕之Lumera Laser GmbH製造之一型號Rapid。可視情況使用一固態諧波頻率產生器使此雷射頻率加倍以將波長減少至532nm,藉此產生可見(綠色)雷射 脈衝,或頻率增至三倍至大約355nm或頻率增至四倍至大約266nm,藉此產生紫外線(UV)雷射脈衝。此雷射50為額定以產生6瓦特之連續功率且具有1000KHz之一最大脈衝重複速率。此雷射50在與控制器54協作下產生具有1微微秒至1,000奈秒之持續時間之雷射脈衝52(圖7)。 In some embodiments, the laser micromachining system 40 employs a diode-pumped Nd:YVO 4 solid state laser 50 operating at a wavelength of 1064 nm, such as one manufactured by Lumera Laser GmbH of Kaiserslautern, Germany. Model Rapid. A solid-state harmonic frequency generator can be used to double the laser frequency to reduce the wavelength to 532 nm, thereby producing a visible (green) laser pulse, or increasing the frequency by a factor of three to about 355 nm or four times the frequency to Approximately 266 nm, thereby generating ultraviolet (UV) laser pulses. This laser 50 is rated to produce 6 watts of continuous power and has a maximum pulse repetition rate of 1000 KHz. This laser 50, in cooperation with controller 54, produces a laser pulse 52 (Fig. 7) having a duration of from 1 picosecond to 1,000 nanoseconds.

在一些實施例中,雷射微加工系統40採用具有大約1030nm至1550nm之範圍內之一基波長之一二極體泵送之摻鉺光纖雷射。可視情況使用一固態諧波頻率產生器使此等雷射頻率加倍以將波長減少至大約515nm,藉此產生可見(綠色)雷射脈衝或減少至大約775nm,藉此產生(例如)可見(深紅色)雷射脈衝或頻率增至三倍至大約343nm或大約517nm或頻率增至四倍至大約257nm或大約387.5nm,藉此產生紫外線(UV)雷射脈衝。 In some embodiments, the laser micromachining system 40 employs an erbium-doped fiber laser pumped with one of the base wavelengths in the range of about 1030 nm to 1550 nm. A solid-state harmonic frequency generator can optionally be used to double the laser frequencies to reduce the wavelength to approximately 515 nm, thereby producing a visible (green) laser pulse or reducing to approximately 775 nm, thereby producing (eg) visible (deep) The red) laser pulse or frequency is increased by a factor of three to about 343 nm or about 517 nm or the frequency is increased by a factor of four to about 257 nm or about 387.5 nm, thereby producing an ultraviolet (UV) laser pulse.

此等雷射脈衝52可為高斯函數或由雷射光學器件62特別塑形或定製,該雷射光學器件62通常包括沿著一光學路徑60定位以允許點32之所期望特性之一個或多個光學組件。例如,可使用一「頂帽」空間分佈,其傳遞在整個點32上具有撞擊基板44之一均勻劑量之輻射之一雷射脈衝12。可使用繞射光學元件或其他光束塑形組件產生諸如此類之特別塑形之空間分佈。可在Corey Dunsky等人之美國專利案第6,433,301號中發現修改雷射點32之空間輻照分佈之一詳細描述,該案受讓給本申請案之受讓人且以引用的方式併入本文中。 These laser pulses 52 may be Gaussian functions or specially shaped or customized by laser optics 62, which typically include one that is positioned along an optical path 60 to allow for the desired characteristics of point 32 or Multiple optical components. For example, a "top hat" spatial distribution can be used that delivers a laser pulse 12 having a uniform dose of radiation that strikes one of the substrates 44 over the entire point 32. The spatial distribution of such special shaping can be produced using diffractive optical elements or other beam shaping components. A detailed description of the modification of the spatial irradiance distribution of the laser spot 32 is found in U.S. Patent No. 6,433,301, the entire disclosure of which is incorporated herein by reference. in.

雷射脈衝52沿著一光學路徑60傳播,該光學路徑60亦可包含摺疊鏡64、衰減器或脈衝拾取器(諸如聲光或電光裝置)66及回饋感測器(諸如用於能量、時序或位置)68。 The laser pulse 52 propagates along an optical path 60, which may also include a folding mirror 64, an attenuator or pulse picker (such as an acousto-optic or electro-optic device) 66, and a feedback sensor (such as for energy, timing). Or location) 68.

沿著光學路徑60之雷射光學器件62及其他組件與由控制器54導向之一雷射束定位系統70協作來導向沿著光學路徑60傳播之雷射脈衝52之一束軸72以在一雷射點位置於接近於基板44之表面42處形成一雷射焦點80。雷射束定位系統70可包含:一雷射台82,其可操作以沿著一行進軸(諸如X軸)移動雷射50;及一迅速定位器台84,其沿著一行進軸(諸如Z軸)移動一迅速定位器(未展示)。一典型迅速定位器採用一對電流計受控鏡,其等能夠在基板44上之一較大場上快速改變束軸72之方向。此場如稍後所描述般通常小於由工件台86提供之移動場。一聲光裝置或一可變形鏡亦可用作迅速定位器,即使此等裝置趨向於比電流計鏡更小之束偏轉範圍。或者,一聲光裝置或一可變形鏡可用作除了電流計鏡之外之一高速定位裝置。 Laser optics 62 and other components along optical path 60 cooperate with one of laser beam localization systems 70 directed by controller 54 to direct a beam 72 of one of the laser pulses 52 propagating along optical path 60 to The laser spot position forms a laser focus 80 at a surface 42 proximate to the substrate 44. The laser beam positioning system 70 can include a laser stage 82 operative to move the laser 50 along a travel axis (such as the X axis) and a rapid locator table 84 along a travel axis (such as Z-axis) moves a quick locator (not shown). A typical rapid positioner employs a pair of galvanometer controlled mirrors that are capable of rapidly changing the direction of the beam axis 72 over a larger field on the substrate 44. This field is typically smaller than the mobile field provided by the workpiece table 86 as described later. An acousto-optic device or a deformable mirror can also be used as a rapid locator, even if such devices tend to have a smaller beam deflection range than the galvanometer mirror. Alternatively, an acousto-optic device or a deformable mirror can be used as one of the high speed positioning devices in addition to the galvanometer mirror.

此外,工件46可由一工件台86支撐,該工件台86具有可操作以相對於束軸72定位基板44之運動控制元件。工件台86可操作以沿著一單個軸(諸如Y軸)行進或工件台86可操作以沿著橫向軸(諸如X軸及Y軸)行進。或者,工件台86可操作以(諸如)圍繞一Z軸使工件46旋轉(單獨或以及沿著X軸及Y軸移動工件46)。 Additionally, the workpiece 46 can be supported by a workpiece table 86 having motion control elements operable to position the substrate 44 relative to the beam axis 72. The workpiece table 86 is operable to travel along a single axis (such as the Y-axis) or the workpiece table 86 is operable to travel along a lateral axis (such as the X-axis and the Y-axis). Alternatively, the workpiece table 86 is operable to rotate the workpiece 46 (either alone or along the X and Y axes) about a Z axis, such as.

控制器54可協調雷射束定位系統70及工件台86之操作以提供復合束定位能力,其有利於在基板42上或內標記點32,同時工件46可相對於束軸72呈連續相對運動。此能力並非為在基板42上標記點32所必需,但此能力可為增加之處理能力所期望。在Donald R.Cutler等人之美國專利案第5,751,585號中描述此能力,該案受讓給本申請案之受讓人且以引用的方式併入本文中。可採用束定位之額外或替代方法。在Spencer Barrett 等人之美國專利案第6,706,999號及Jay Johnson之第7,019,891號中描述束定位之一些額外或替代方法,該等案兩者受讓給本申請案之受讓人且以引用的方式併入本文中。 The controller 54 can coordinate the operation of the laser beam positioning system 70 and the workpiece table 86 to provide a composite beam positioning capability that facilitates marking points 32 on or in the substrate 42 while the workpiece 46 can be in continuous relative motion relative to the beam axis 72. . This capability is not necessary to mark points 32 on substrate 42, but this capability may be desirable for increased processing power. This ability is described in U.S. Patent No. 5,751,585, the entire disclosure of which is incorporated herein by reference. Additional or alternative methods of beam positioning may be employed. At Spencer Barrett Some additional or alternative methods of beam locating are described in U.S. Patent No. 6,706, 999, the disclosure of which is incorporated herein by reference. in.

本文描述之多種束定位系統可經控制以在基板44上之一點32之所期望位置之若干微米內提供雷射點位置之束定位準確性。但是,應注意,可利用較高成本組件、較大回饋控制及較慢系統處理能力實施高準確性。一般而言,歸因於由本文描述之修改之DM或2DID碼供應之明顯增加之信雜比,束定位誤差可大至分離距離之一半。對於非常大之場,此可容許誤差可相當大,諸如1mm。但是,即使非常低成本之雷射微加工系統可達成較大準確性。申請者已決定針對許多實施例,甚至對於較小場,雷射點位置之誤差可大至基板44上之一點32之所期望位置之+/- 20微米。針對具有非常小之場之許多實施例,雷射點位置之誤差可大至基板44上之一點32之所期望位置之+/- 10微米。但是,對於最小化之場大小,雷射點位置之誤差可大至基板44上之一點32之所期望位置之+/- 1微米。 The various beam positioning systems described herein can be controlled to provide beam positioning accuracy of the laser spot position within a few microns of a desired position of a point 32 on the substrate 44. However, it should be noted that high accuracy can be implemented with higher cost components, greater feedback control, and slower system processing power. In general, the beam positioning error can be as large as one-half the separation distance due to the significantly increased signal-to-noise ratio of the DM or 2DID code supply modified as described herein. For very large fields, this tolerance can be quite large, such as 1 mm. However, even very low cost laser micromachining systems can achieve greater accuracy. Applicants have decided that for many embodiments, even for smaller fields, the position of the laser spot may be as large as +/- 20 microns of the desired position of one of the points 32 on the substrate 44. For many embodiments with very small fields, the position of the laser spot can be as large as +/- 10 microns of the desired position of one of the points 32 on the substrate 44. However, for minimized field size, the error in the position of the laser spot can be as large as +/- 1 micron of the desired position of one of the points 32 on the substrate 44.

用於產生一126×126微米示範之+/- 0.5微米準確性雷射微加工系統之成本可大大超過一百萬美元。用於+/- 20微米準確性雷射微加工系統之成本可為大約更準確機器之成本之十分之一(即,大約$100,000)。而且,更準確機器大得多且要求一嚴格受控之溫度環境(及受控振動),但是+/- 20微米準確性機器明顯更小且可在不具有特殊侷限之一典型工廠環境中工作。 The cost of producing a 126 x 126 micron demonstration +/- 0.5 micron accuracy laser micromachining system can greatly exceed one million dollars. The cost for a +/- 20 micron accuracy laser micromachining system can be about one tenth of the cost of a more accurate machine (ie, approximately $100,000). Moreover, the more accurate machine is much larger and requires a tightly controlled temperature environment (and controlled vibration), but the +/- 20 micron accuracy machine is significantly smaller and can work in a typical factory environment without special limitations. .

圖7展示焦點80及其束腰部90之一圖。參考圖7,雷射脈衝52之焦點80將具有大部分由雷射光學器件62決定之一束腰部90(截面) 及雷射能量散佈。點32之主空間軸d通常係束腰部之主軸之一函數且兩者可為相同或類似。但是,點32之主空間軸d可大於或小於束腰部之主軸。 Figure 7 shows a view of the focus 80 and its waist portion 90. Referring to Figure 7, the focus 80 of the laser pulse 52 will have a majority of the waist 90 (section) and laser energy spread determined by the laser optics 62. The main spatial axis d of point 32 is typically a function of one of the major axes of the waist and both may be the same or similar. However, the main spatial axis d of the point 32 may be larger or smaller than the major axis of the waist.

雷射光學器件62可用於控制束腰部之焦深及因此基板44內之點32之深度。藉由控制焦深,控制器54可導向雷射光學器件62及迅速定位器Z台84以在高精確度下在基板44之表面處或附近可重複地定位點32。藉由在基板44之表面42上方或下方定位焦點製成標記容許雷射束散焦一指定量且藉此增加由雷射脈衝照亮之區域且減少表面42處之雷射通量(減少至小於表面處之材料之損壞臨限值之一量)。因為知道束腰部之幾何,所以在基板之實際表面42上方或下方或內精確地定位焦點80將對主空間軸d及通量提供額外精確度控制。 Laser optics 62 can be used to control the depth of focus of the waist and thus the depth of point 32 within substrate 44. By controlling the depth of focus, the controller 54 can direct the laser optics 62 and the rapid locator Z stage 84 to reproducibly position the point 32 at or near the surface of the substrate 44 with high precision. The marking is made by positioning the focus above or below the surface 42 of the substrate 44 to allow the laser beam to defocus a specified amount and thereby increase the area illuminated by the laser pulse and reduce the laser flux at the surface 42 (reduced to Less than one of the damage thresholds of the material at the surface). Because the geometry of the waist is known, accurately positioning the focus 80 above or below the actual surface 42 of the substrate will provide additional precision control over the main space axis d and flux.

在(諸如)用於標記透明材料(諸如藍寶石)之一些實施例中,可藉由從基板44之表面42上調整雷射點之位置以位於基板44內之一精確距離而在基板44之核心處精確地控制雷射通量。參考圖7,束腰部90表示為由FWHM方法量測之沿著束軸72之一雷射脈衝52之一空間能量散佈88。若雷射微加工系統40在表面42上方之一距離96處使雷射脈衝52聚焦,則主軸92表示表面42上之雷射脈衝點大小。若雷射處理系統在表面下方之一距離98處使雷射脈衝聚焦,則主軸94表示表面42上之雷射脈衝點大小。針對點32之內部標記為所期望之大多數實施例,焦點80經導向以定位於基板44內,而非其表面42上方或下方。可在除了焦點80之外以低於基板材料之燒蝕臨限值之一量採用通量或輻照,在該焦點80處通量或輻照集中於超過基板材料之燒蝕臨限值。 In some embodiments, such as for marking a transparent material, such as sapphire, the core can be at the core of the substrate 44 by adjusting the position of the laser spot from the surface 42 of the substrate 44 to a precise distance within the substrate 44. Precise control of laser flux. Referring to Figure 7, the waist portion 90 is shown as a spatial energy spread 88 along one of the laser pulses 52 of the beam axis 72 as measured by the FWHM method. If the laser micromachining system 40 focuses the laser pulse 52 at a distance 96 above the surface 42, the spindle 92 represents the size of the laser pulse spot on the surface 42. If the laser processing system focuses the laser pulse at a distance 98 below the surface, the spindle 94 represents the size of the laser pulse spot on the surface 42. With respect to most of the embodiments in which the interior of the dot 32 is desired, the focus 80 is directed to be positioned within the substrate 44 rather than above or below its surface 42. Flux or irradiation may be employed at an amount below the ablation threshold of the substrate material other than the focus 80 at which the flux or radiation concentrates beyond the ablation threshold of the substrate material.

在一些實施例中,可採用雷射脈衝之群組以產生一單個點 32。特定言之,雷射參數可經選擇以使得各雷射脈衝影響小於用於一點32之所期望大小之一區域。在此等案例中,複數個雷射脈衝可導向於一單個位置直至點32達到一所期望大小(該大小仍可能未能由人眼偵測)。雷射脈衝之群組可在相對運動中或在大體上相對靜止位置中傳遞。 In some embodiments, a group of laser pulses can be employed to generate a single point 32. In particular, the laser parameters can be selected such that each laser pulse affects an area that is less than one of the desired sizes for point 32. In such cases, a plurality of laser pulses can be directed to a single location until point 32 reaches a desired size (which may still be undetectable by the human eye). The group of laser pulses can be transmitted in relative motion or in a substantially relative rest position.

可針對一些實施例有利地採用之雷射參數包含使用具有在從IR至UV,或更特定言之,從大約10.6微米下至大約266nm之範圍中之波長之雷射50。雷射50可在1W至100W,或更佳地,1W至12W之範圍中之2W下操作。脈衝持續時間在從1微微秒至1000ns,或更佳地從大約1微微秒至200ns之範圍中。雷射重複速率可在從1KHz至100MHz,或更佳地,從10KHz至1MHz之一範圍中。雷射通量可在從大約0.1×10-6J/cm2至100.0J/cm2,或更特定言之,從1.0×10-2J/cm2至10.0J/cm2之範圍中。束軸72相對於正被標記之基板44移動之速度在從1mm/s至10m/s,或更佳地,從100mm/s至1m/s之範圍中。基板44上之相鄰列之點32之間之間距或間隔可在從1微米至1000微米,或更佳地,從10微米至100微米之範圍中。基板44之表面42處量測之雷射脈衝52之主空間軸d可在從10微米至1000微米或從50微米至500微米之範圍中。當然,若點32易欲為不可見,則主空間軸d較佳地小於大約50微米。雷射脈衝52之焦點80相對於基板44之表面42之升高可在從-10mm至+10mm或從-5mm至+5mm之範圍中。在用於表面標記之許多實施例中,焦點80定位於基板44之表面42處。針對內部標記之許多實施例,焦點80定位於基板44之表面42下面(基板44之表面之間)。針對內部標記之一些實施例,焦點80定位於基板44之表面42下面之至少10微米處。針對內部標記之一些實施例,焦點80定位於基 板44之表面42下面之至少50微米處。針對內部標記之一些實施例,焦點80定位於基板44之表面42下面之至少100微米處。 The laser parameters that may be advantageously employed for some embodiments include the use of a laser 50 having a wavelength in the range from IR to UV, or more specifically, from about 10.6 microns down to about 266 nm. The laser 50 can operate at 1 W in the range of 1 W to 100 W, or more preferably, 1 W to 12 W. The pulse duration is in the range from 1 picosecond to 1000 ns, or more preferably from about 1 picosecond to 200 ns. The laser repetition rate can range from 1 KHz to 100 MHz, or more preferably, from 10 KHz to 1 MHz. Laser flux can be from about 0.1 × 10 -6 J / cm 2 to 100.0J / cm 2, or more specific words, from 1.0 × 10 -2 J / cm 2 to the range of 10.0J / cm 2 of the medium. The speed at which the beam shaft 72 moves relative to the substrate 44 being marked is in the range of from 1 mm/s to 10 m/s, or more preferably, from 100 mm/s to 1 m/s. The spacing or spacing between points 32 of adjacent columns on substrate 44 can range from 1 micron to 1000 microns, or more preferably, from 10 microns to 100 microns. The main spatial axis d of the laser pulse 52 measured at the surface 42 of the substrate 44 can range from 10 microns to 1000 microns or from 50 microns to 500 microns. Of course, if point 32 is desired to be invisible, the main spatial axis d is preferably less than about 50 microns. The rise of the focus 80 of the laser pulse 52 relative to the surface 42 of the substrate 44 may range from -10 mm to +10 mm or from -5 mm to +5 mm. In many embodiments for surface marking, the focus 80 is positioned at the surface 42 of the substrate 44. For many embodiments of the internal indicia, the focus 80 is positioned below the surface 42 of the substrate 44 (between the surfaces of the substrates 44). For some embodiments of the internal indicia, the focus 80 is positioned at least 10 microns below the surface 42 of the substrate 44. For some embodiments of the internal indicia, the focus 80 is positioned at least 50 microns below the surface 42 of the substrate 44. For some embodiments of the internal indicia, the focus 80 is positioned at least 100 microns below the surface 42 of the substrate 44.

申請者發現一次表面焦點80之使用與產生在從1微微秒至1,000微微秒之範圍中之雷射脈衝寬度之微微秒雷射之使用可提供在一些透明半導體基板44(諸如藍寶石)內可靠地及可重複地產生標記之一較好方法。在一些實施例中,可採用在從1ps至100ps之範圍中之脈衝寬度。在一些實施例中,可採用在從5ps至75ps之範圍中之脈衝寬度。在一些實施例中,可採用在從10ps至50ps之範圍中之脈衝寬度。可推測產生10至1000毫微微秒範圍中之波長之毫微微秒雷射可替代地提供較好結果。但是,使用微微秒雷射之一優點在於其等便宜得多,要求少得多之維護且通常具有比現有毫微微秒雷射長得多之操作壽命。 Applicants have found that the use of a surface focus 80 and the use of a picosecond laser that produces a laser pulse width in the range from 1 picosecond to 1,000 picoseconds can be reliably provided in some transparent semiconductor substrates 44, such as sapphire. And a better method of reproducibly generating one of the markers. In some embodiments, a pulse width in the range from 1 ps to 100 ps may be employed. In some embodiments, a pulse width in the range from 5 ps to 75 ps can be employed. In some embodiments, a pulse width in the range from 10 ps to 50 ps may be employed. It is speculated that a femtosecond laser that produces a wavelength in the range of 10 to 1000 femtoseconds may alternatively provide better results. However, one advantage of using a picosecond laser is that it is much less expensive, requires much less maintenance, and typically has a much longer operational life than existing femtosecond lasers.

雖然可如先前討論在各種波長下完成標記,但申請者發現在微微秒範圍中操作之IR雷射特定提供可重複之較好結果。在1064nm下或1064nm附近之波長特別有利。一例示性雷射50係一Lumera 6W雷射。將明白可採用光纖雷射或其他類型之雷射。 While the marking can be accomplished at various wavelengths as previously discussed, Applicants have found that IR lasers operating in the picosecond range provide reproducible better results. Wavelengths at 1064 nm or around 1064 nm are particularly advantageous. An exemplary laser 50 series is a Lumera 6W laser. It will be appreciated that fiber lasers or other types of lasers may be employed.

類似參數亦可用於在金屬或塗覆金屬(諸如陽極化鋁)中製成不可見次表面標記。為陽極化鋁基板44定製標記詳細描述於美國專利案第8,379,679號中及美國專利公開案第2013-0208074號中,該等案兩者為Haibin Zhang等人所有且該等案兩者受讓給本申請案之受讓人且該等案兩者以引用的方式併入本文中。 Similar parameters can also be used to make invisible subsurface markings in metal or coated metals such as anodized aluminum. Customized markings for the anodized aluminum substrate 44 are described in detail in U.S. Patent No. 8,379,679 and U.S. Patent Publication No. 2013-0208074, both of which are owned by Haibin Zhang et al. The assignee of the present application is hereby incorporated by reference.

如先前討論,可藉由在基板材料處選擇性導向雷射輸出來內部標記透明半導體基板材料。基板44之內部標記保持表面42之完整性,諸 如其防水及防塵。內部標記亦減少由表面標記產生之裂縫伸展及其他不利效果。 As previously discussed, the transparent semiconductor substrate material can be internally marked by selectively directing the laser output at the substrate material. The internal markings of the substrate 44 maintain the integrity of the surface 42, Such as waterproof and dustproof. Internal marking also reduces crack propagation and other adverse effects caused by surface markings.

參考圖8,申請者亦已指出從單晶塊切割之晶圓100或其他半導體基板材料趨向於具有擁有粗糙表面紋理之表面104及106。在其等自然態中之此等表面104及106之表面紋理可不利地影響晶圓100之基板44處導向之雷射脈衝52之光學性質。 Referring to Figure 8, Applicants have also indicated that wafer 100 or other semiconductor substrate material cut from a single crystal block tends to have surfaces 104 and 106 having a rough surface texture. The surface texture of such surfaces 104 and 106 in their natural state can adversely affect the optical properties of the laser pulses 52 directed at the substrate 44 of the wafer 100.

申請者亦決定具有擁有粗糙紋理之一表面104或106(諸如一未拋光表面)之晶圓100之基板44可能難以在不會對表面104或106引起損壞下內部標記。 The Applicant also determined that the substrate 44 having the wafer 100 having one of the rough textured surfaces 104 or 106 (such as an unpolished surface) may be difficult to internally mark without causing damage to the surface 104 or 106.

可藉由採用有效地提供一平坦表面140或142以接收雷射輸出110之一塗層材料130來減輕粗糙表面之不利光學效果。平坦表面140表示塗層材料130之上表面。平坦表面142係用於塗層材料130之一外罩150之平坦表面。塗層材料130具有與基板折射率光學相容之一塗層折射率。 The adverse optical effects of the rough surface can be mitigated by employing a flat surface 140 or 142 that effectively provides a coating material 130 that is one of the laser outputs 110. The flat surface 140 represents the upper surface of the coating material 130. The flat surface 142 is used for the flat surface of the outer cover 150 of one of the coating materials 130. The coating material 130 has a refractive index that is optically compatible with the refractive index of the substrate.

塗層折射率可在基板折射率之折射率之2內(諸如在攝氏25度下)。塗層折射率可在基板折射率之折射率之1內。塗層折射率可在基板折射率之折射率之0.5內。塗層折射率可在基板折射率之折射率之0.2內。塗層折射率可在1.2與2.5之間。塗層折射率可在1.5與2.2之間。塗層折射率可在1.7與2.0之間。塗層折射率可在1.75與1.85之間。外罩亦可具有此等範圍中之匹配折射率。 The refractive index of the coating can be within 2 of the refractive index of the substrate (such as at 25 degrees Celsius). The refractive index of the coating can be within 1 of the refractive index of the refractive index of the substrate. The refractive index of the coating can be within 0.5 of the refractive index of the refractive index of the substrate. The refractive index of the coating can be within 0.2 of the refractive index of the refractive index of the substrate. The refractive index of the coating can be between 1.2 and 2.5. The refractive index of the coating can be between 1.5 and 2.2. The refractive index of the coating can be between 1.7 and 2.0. The refractive index of the coating can be between 1.75 and 1.85. The outer cover can also have a matching index of refraction in these ranges.

塗層材料130可包括流體、膠體或油。塗層材料130可具有大於攝氏180度之一沸點(諸如在760mm Hg下)。塗層材料可具有2g/cc與5g/cc之間之一密度(諸如在攝氏25度下)。塗層材料130可具有2.5g/cc 與4g/cc之間之一密度。塗層材料可具有3g/cc與3.5g/cc之間之一密度。 Coating material 130 can include a fluid, a gel, or an oil. The coating material 130 can have a boiling point greater than 180 degrees Celsius (such as at 760 mm Hg). The coating material can have a density between 2 g/cc and 5 g/cc (such as at 25 degrees Celsius). Coating material 130 can have 2.5 g/cc One density between 4g/cc. The coating material can have a density between 3 g/cc and 3.5 g/cc.

在一些實施例中,塗層材料130可包括二碘甲烷。塗層材料130可包括一寶石折射計液體。塗層材料130可在雷射處理期間維持流體性質。塗層材料130可包括一水準測量組合物。較佳的是,在雷射處理之後塗層材料130易於從粗糙表面移除。可藉由丙酮、四氯化碳、乙醚、二氯甲烷、甲苯、二甲苯或其等組合從粗糙表面清洗塗層材料130,或可藉由水從粗糙表面清洗塗層材料130,或可藉由乙醇從粗糙表面清洗塗層材料130。 In some embodiments, the coating material 130 can include diiodomethane. Coating material 130 can include a gem refractometer liquid. The coating material 130 can maintain fluid properties during laser processing. Coating material 130 can include a leveling composition. Preferably, the coating material 130 is easily removed from the rough surface after the laser treatment. The coating material 130 may be cleaned from the rough surface by a combination of acetone, carbon tetrachloride, diethyl ether, dichloromethane, toluene, xylene or the like, or the coating material 130 may be washed from the rough surface by water, or may be borrowed The coating material 130 is cleaned from the rough surface by ethanol.

外罩150可對雷射波長透明。外罩150可包括基板材料。外罩150可包括在該波長下不具反射性之一光滑外罩表面。外罩150可包括一玻璃。外罩150可包括一藍寶石、金剛石、矽或塑膠。 The cover 150 is transparent to the laser wavelength. The outer cover 150 can include a substrate material. The outer cover 150 can include a smooth outer cover surface that is non-reflective at this wavelength. The outer cover 150 can include a glass. The cover 150 may comprise a sapphire, diamond, enamel or plastic.

此等粗糙表面減輕技術描述於Haibin Zhang等人之美國臨時專利申請案第61/912,192號中,該案以引用的方式併入本文中。 Such a rough surface mitigation technique is described in U.S. Provisional Patent Application Serial No. 61/912,192, the disclosure of which is incorporated herein by reference.

雖然在本文中已藉由實例對2DID碼進行以上描述,但熟練人員可明白藉由利用深度控制以用於標記透明基板44,可建構採用點32之3D碼。 Although the 2DID code has been described above by way of example, those skilled in the art will appreciate that by utilizing depth control for marking the transparent substrate 44, a 3D code employing point 32 can be constructed.

儘管點32對人眼不可見或為基板44之內部,但一光學標記讀取器220可經設計以讀取點32且解碼2DID碼。圖9至圖15展示適於讀取一修改之2DID碼之點32之例示性光學標記讀取器220a至220g(一般地,光學標記讀取器220)之一些組件的簡化之部分示意性側視圖。 Although point 32 is not visible to the human eye or is internal to substrate 44, an optical indicia reader 220 can be designed to read point 32 and decode the 2DID code. 9 through 15 show a simplified partial schematic side view of some of the components of an exemplary optical indicia reader 220a through 220g (generally, optical indicia reader 220) adapted to read a modified point 32 of a 2DID code. view.

參考圖9,例示性光學標記讀取器220a採用一光源222及包含一視訊顯微鏡單元234之一成像顯微鏡系統。在一些實施例中,光源222可經定位以沿著橫穿底部表面106之一照明路徑傳播光線226,且成像器228 及光學器件230沿著可操作以接收從上表面104發射之光線226a之一成像路徑定位。在一些特定實施例中,光源222及一相機224可定位於工件46之相對側上,使得從光源222發射之光線226穿過基板44以到達相機224之一成像器228。在一些實施例中,照明路徑以一垂直角橫穿下表面106。在一些實施例中,光源222沿著大致上垂直於基板44之第一表面之一照明軸定位。在一些實施例中,成像器228沿著大致上垂直於基板44之上表面之一成像軸定位。在一些實施例中,照明軸及成像軸係平行。在一些實施例中,照明軸及成像軸係共線的。 Referring to FIG. 9, an exemplary optical indicia reader 220a employs a light source 222 and an imaging microscope system including a video microscope unit 234. In some embodiments, light source 222 can be positioned to propagate light 226 along an illumination path that traverses bottom surface 106, and imager 228 And optics 230 are positioned along an imaging path operable to receive one of the rays 226a emitted from the upper surface 104. In some particular embodiments, light source 222 and a camera 224 can be positioned on opposite sides of workpiece 46 such that light 226 emitted from light source 222 passes through substrate 44 to reach imager 228 of one of cameras 224. In some embodiments, the illumination path traverses the lower surface 106 at a vertical angle. In some embodiments, light source 222 is positioned along an illumination axis that is substantially perpendicular to a first surface of substrate 44. In some embodiments, imager 228 is positioned along an imaging axis that is substantially perpendicular to an upper surface of substrate 44. In some embodiments, the illumination axis and the imaging axis are parallel. In some embodiments, the illumination axis and the imaging axis are collinear.

在一些特定實施例中,若使用鏡子(未展示),則即使在從光源222發射之光線226穿過基板44以到達一成像器228時,光源222及相機224可定位於工件46之相同側上。例如,光源222可經定位以沿著橫穿底部表面106之一照明路徑傳播光線226,且鏡子沿著可操作以接收從上表面104發射之光線226a且將光線226a反射至一成像器228之一成像路徑定位,且光學器件230定位於底部表面106下面之一標高處(在必然不會使光線226a第二次穿過工件46下)。而且,一些實施例依賴於光線226之反射,在該等案例中,光源222及相機224可大致上定位於工件46之相同側上。 In some particular embodiments, if a mirror (not shown) is used, the light source 222 and camera 224 can be positioned on the same side of the workpiece 46 even when the light 226 emitted from the source 222 passes through the substrate 44 to reach an imager 228. on. For example, light source 222 can be positioned to propagate light 226 along an illumination path that traverses bottom surface 106, and the mirror is operative to receive light 226a emitted from upper surface 104 and to reflect light 226a to an imager 228 An imaging path is positioned and the optic 230 is positioned at an elevation below the bottom surface 106 (without necessarily illuminating the light 226a through the workpiece 46 a second time). Moreover, some embodiments rely on the reflection of light 226, in which case light source 222 and camera 224 can be positioned substantially on the same side of workpiece 46.

光源222可為與協作(顯微鏡)光學器件230及成像器228配對之幾乎任何種類物。在一些實施例中,光源222發射單色光以移除色差之一些可能不利結果。在一些實施例中,光源222能夠在高強度下(諸如在較短時間間隔(諸如毫秒或幾十毫秒)內,大於或等於穩定狀態之十倍)選通。在一些實施例中,光源222係一發光二極體(LED)或一群組之 LED,諸如一陣列之LED。LED較便宜且展現用於與本文揭示之技術關聯之照明應用之許多所期望性質。 Light source 222 can be of virtually any kind that is paired with cooperating (microscope) optics 230 and imager 228. In some embodiments, light source 222 emits monochromatic light to remove some of the potential adverse effects of chromatic aberration. In some embodiments, the light source 222 can be gated at high intensity, such as within a short time interval (such as milliseconds or tens of milliseconds, greater than or equal to ten times the steady state). In some embodiments, the light source 222 is a light emitting diode (LED) or a group of LEDs, such as an array of LEDs. LEDs are less expensive and exhibit many of the desirable properties for lighting applications associated with the techniques disclosed herein.

在一些實施例中,諸如在圖9中所示之組件之相對定位中,光源222沿著大致上垂直於基板44之底部表面106且大致上垂直於成像器228之影像平面的一軸(未展示)定位。在一些實施例中,光源222沿著大致上垂直於基板44之底部表面106且平行於大致上垂直於成像器228之影像平面之一第二軸的一第一軸定位,使得光源222經定位以相對於成像器228具有一入射角。在一些實施例中,光源222沿著大致上垂直於成像器228,但相對於成像器228呈一入射角之第二軸定位。 In some embodiments, such as in the relative positioning of the components shown in FIG. 9, the light source 222 is along an axis that is substantially perpendicular to the bottom surface 106 of the substrate 44 and substantially perpendicular to the image plane of the imager 228 (not shown) ) Positioning. In some embodiments, the light source 222 is positioned along a first axis that is substantially perpendicular to the bottom surface 106 of the substrate 44 and parallel to a second axis that is substantially perpendicular to the image plane of the imager 228 such that the light source 222 is positioned. There is an angle of incidence with respect to imager 228. In some embodiments, light source 222 is positioned along a second axis that is substantially perpendicular to imager 228 but at an angle of incidence relative to imager 228.

光源222可發射包括任何適當波長之光線226。用於光源222之例示性適當可見波長可包含(但不限於)以下波長之一者或多者:660nm、635nm、633nm、623nm、612nm、592nm、585nm、574nm、570nm、565nm、560nm、555nm、525nm、505nm、470nm及430nm。可個別或組合地採用此等波長。在包含一原型之一些例示性實施例中,已採用一紅色波長(諸如635nm)。可替代地或額外地採用不可見波長(諸如在UV範圍或IR範圍中之該等波長)。 Light source 222 can emit light 226 including any suitable wavelength. Exemplary suitable visible wavelengths for light source 222 can include, but are not limited to, one or more of the following wavelengths: 660 nm, 635 nm, 633 nm, 623 nm, 612 nm, 592 nm, 585 nm, 574 nm, 570 nm, 565 nm, 560 nm, 555 nm, 525 nm, 505 nm, 470 nm, and 430 nm. These wavelengths can be used individually or in combination. In some exemplary embodiments that include a prototype, a red wavelength (such as 635 nm) has been employed. Invisible wavelengths (such as those in the UV range or the IR range) may alternatively or additionally be employed.

在一些實施例中,光源222可包含一多光譜發射源。若僅一個或多個特定波長將成像,則可採用一個或多個波長濾波器以阻擋非所期望波長,或可採用一個或多個單色相機224以將資料擷取限於(若干)特定波長。 In some embodiments, light source 222 can include a multi-spectral emission source. If only one or more particular wavelengths are to be imaged, one or more wavelength filters may be employed to block undesired wavelengths, or one or more monochrome cameras 224 may be employed to limit data extraction to (several) specific wavelengths. .

在一些實施例中,光源222可包含發射不同特定波長之發射源。在一些實施例中,當採用特定多個波長時,尤其在基於基板44中之摻 雜物或雜質之比色性質選擇波長之情況下,可採用一單色相機224以增強對比度判定。例示性發射波長可包含一紅色、藍色及綠色發射方案;一紅色、紅外線及綠色發射方案;或一紅色、紅外線、藍色及綠色發射方案。但是,可採用其他發射方案。 In some embodiments, light source 222 can include an emission source that emits different specific wavelengths. In some embodiments, when a particular plurality of wavelengths are employed, especially in the based on substrate 44 In the case where the colorimetric properties of the foreign matter or impurities are selected, a monochrome camera 224 can be employed to enhance the contrast determination. Exemplary emission wavelengths can include a red, blue, and green emission scheme; a red, infrared, and green emission scheme; or a red, infrared, blue, and green emission scheme. However, other launching schemes may be employed.

對比度分析可採用美國專利案第7,589,869號中揭示之技術,該案讓與給本申請案之受讓人,以引用的方式併入本文中且描述一種使用多波長照明改進經由單色相機捕捉之影像中之影像品質的方法。一對比度最佳化演算法決定可用之波長之中哪個特定波長最適於最大化對比度。可藉由決定提供一目標與一背景之間之最大及最小對比度之照明方案透過主動雜訊去除進一步改進影像之品質。接著透過(例如)最大對比度影像除以最小對比度影像之逐像素除法來完成影像紋理資料(即,雜訊)之消除。或者,使用至少兩個波長獲得之影像(或來自其之影像資料)可代數地組合以用於雜訊減少。所得合成影像資料可饋送至任何已知目標識別演算法。 Contrast analysis can be performed using the techniques disclosed in U.S. Patent No. 7,589,869, the disclosure of which is incorporated herein by reference in its entirety in its entirety herein in The method of image quality in images. A contrast optimization algorithm determines which particular wavelength of the available wavelengths is best suited to maximize contrast. The quality of the image can be further improved by active noise removal by deciding to provide a maximum and minimum contrast between the target and a background. The image texture data (ie, noise) is then eliminated by, for example, dividing the maximum contrast image by the pixel-by-pixel division of the minimum contrast image. Alternatively, images obtained using at least two wavelengths (or image data therefrom) may be combined algebraically for noise reduction. The resulting synthetic image data can be fed to any known target recognition algorithm.

相機224可為與協作光學器件230及光源222配對之幾乎任何種類。如先前所討論,相機224可為全彩色、單色或針對複數個特定波長所選。將明白,可在更接近於相機224或光源222處採用可選波長選擇性濾波器(未展示),或可在接近於相機224及光源222兩者處放置可選波長選擇性濾波器。 Camera 224 can be of almost any kind that is paired with cooperating optics 230 and light source 222. As previously discussed, camera 224 can be full color, monochrome, or selected for a plurality of particular wavelengths. It will be appreciated that a selectable wavelength selective filter (not shown) may be employed closer to camera 224 or light source 222, or an alternative wavelength selective filter may be placed proximate to both camera 224 and light source 222.

例示性成像器228包含具有688×488、1032×776、1288×946、1280×1024、1384×1032、1624×1224或2448×2048個像素之一解析度之VGA成像器(CCD或CMOS)。但是,可採用具多種解析度之其他適 當類型之成像器228。一光學標記讀取器220之一原型之一例示性實施例採用來自加拿大不列顛哥倫比亞省列治文之Point Grey Research公司之一Flea®2相機。 The exemplary imager 228 includes a VGA imager (CCD or CMOS) having one resolution of 688 x 488, 1032 x 776, 1288 x 946, 1280 x 1024, 1384 x 1032, 1624 x 1224, or 2448 x 2048 pixels. However, other suitable formats with multiple resolutions can be used. When the type of imager 228. An exemplary embodiment of one of the prototypes of an optical indicia reader 220 utilizes a Flea® 2 camera from Point Grey Research, Inc. of Richmond, British Columbia, Canada.

光學器件230可包含一個或多個透鏡232。透鏡232可包含相異透鏡片或可為一單個復合透鏡片。例示性光學器件230提供從2倍至50倍放大。在一些實施例中,光學器件230提供大於或等於5倍放大。在一些實施例中,光學器件230提供大於或等於10倍放大。在一些實施例中,光學器件230提供大於或等於5倍放大且小於或等於20倍放大。在許多實施例中,光學器件230包含一物鏡232。光學標記讀取器220之一原型之一例示性實施例採用來自美國伊利諾伊州奧羅拉之Mitutoyo America公司之一10x ∞校正之平場消色差物鏡(平場復消色差無限校正之長工作距離物鏡)。在一些實施例中,光學器件230及相機224組裝於一顯微鏡單元234中。採用可容納相機224及光學器件230之一例示性視訊顯微鏡單元234之一原型包含來自美國伊利諾伊州奧羅拉之Mitutoyo America公司之一視訊顯微鏡單元(VMU)。 Optical device 230 can include one or more lenses 232. Lens 232 can comprise a distinct lens sheet or can be a single composite lens sheet. Exemplary optics 230 provides from 2x to 50x magnification. In some embodiments, optical device 230 provides greater than or equal to 5 times magnification. In some embodiments, optical device 230 provides greater than or equal to 10 times magnification. In some embodiments, optical device 230 provides greater than or equal to 5 times magnification and less than or equal to 20 times magnification. In many embodiments, optical device 230 includes an objective lens 232. One exemplary embodiment of one of the optical indicia readers 220 employs a 10x(R) corrected flat field achromatic objective lens (flat field apochromatic infinitely corrected long working distance objective) from Mitutoyo America, Inc. of Aurora, Ill. In some embodiments, optics 230 and camera 224 are assembled in a microscope unit 234. One prototype of an exemplary video microscope unit 234 that employs a camera 224 and optics 230 includes a Visual Microscope Unit (VMU) from Mitutoyo America, Inc. of Aurora, Ill.

用於光學器件230之景深之一例示性範圍係大約+/- 50μm。在一些實施例中,諸如在採用5倍放大時,用於光學器件230之景深之範圍係大約+/- 10μm。在一些實施例中,諸如在採用10倍放大時,用於光學器件230之景深之範圍係大約+/- 2.5μm。 An exemplary range of depth of field for optics 230 is about +/- 50 [mu]m. In some embodiments, such as when 5x magnification is employed, the depth of field for optics 230 ranges from about +/- 10 [mu]m. In some embodiments, such as when 10x magnification is employed, the depth of field for optics 230 ranges from about +/- 2.5 [mu]m.

用於成像器228(與光學器件230組合)之視場(FOV)之一例示性範圍係從大約500μm至大約1.2mm。在一些實施例中,諸如在採用5倍放大時,用於視場之範圍大於或等於大約1mm。在一些實施例中, 諸如在採用5倍放大時,用於視場之範圍大於或等於大約1.5mm。 An exemplary range of field of view (FOV) for imager 228 (in combination with optics 230) is from about 500 [mu]m to about 1.2 mm. In some embodiments, such as when 5x magnification is employed, the range for the field of view is greater than or equal to about 1 mm. In some embodiments, For example, when using 5x magnification, the range for the field of view is greater than or equal to about 1.5 mm.

在一些實施例中,諸如在採用10倍放大時,用於視場之範圍大於或等於大約500μm。在一些實施例中,諸如在採用10倍放大時,用於視場之範圍大於或等於大約800μm。在一些實施例中,諸如在採用5倍放大時,用於視場之範圍大於或等於大約800μm。在一些實施例中,諸如在採用10倍放大時,用於視場之範圍小於或等於大約800μm。 In some embodiments, such as when 10x magnification is employed, the range for the field of view is greater than or equal to about 500 [mu]m. In some embodiments, such as when 10x magnification is employed, the range for the field of view is greater than or equal to about 800 [mu]m. In some embodiments, such as when 5x magnification is employed, the range for the field of view is greater than or equal to about 800 [mu]m. In some embodiments, such as when 10x magnification is employed, the range for the field of view is less than or equal to about 800 [mu]m.

ISO標準要求2DID碼之一場大小之最小x及y尺寸大於或等於255μm。光學器件230提供可靠地讀取具有擁有小於500微米之一側尺寸之一場大小之2DID碼的能力。在一些實施例中,光學器件230提供可靠地讀取具有擁有小於250微米之一側尺寸之一場大小之2DID碼的能力。在一些實施例中,諸如在利用提供10倍放大之一物鏡232下,光學器件230提供可靠地讀取具有擁有小於125微米之一側尺寸之一場大小之2DID碼的能力。 The ISO standard requires that the minimum x and y dimensions of a field size of a 2DID code be greater than or equal to 255 μm. Optics 230 provides the ability to reliably read 2DID codes having a field size that has a side dimension of less than 500 microns. In some embodiments, optics 230 provides the ability to reliably read a 2DID code having a field size that has a side dimension of less than 250 microns. In some embodiments, such as with one of the objective lenses 232 providing 10x magnification, the optics 230 provides the ability to reliably read a 2DID code having a field size that has a side dimension of less than 125 microns.

在一些實施例中,光學器件230提供可靠地讀取具有擁有小於250微米之兩個尺寸之一場大小之2DID碼的能力。在一些實施例中,光學器件230提供可靠地讀取具有擁有小於125微米之兩個尺寸之一場大小之2DID碼的能力。 In some embodiments, optics 230 provides the ability to reliably read 2DID codes having a field size of two sizes less than 250 microns. In some embodiments, optics 230 provides the ability to reliably read 2DID codes having a field size of two sizes less than 125 microns.

在一些實施例中,顯微單元234能夠達成大於50個線對/毫米之一調變傳送函數(MTF)。在一些實施例中,顯微單元234能夠達成大於75個線對/毫米之一MTF。在一些實施例中,顯微單元234能夠達成大於80個線對/毫米之一MTF。在一些實施例中,顯微單元234能夠達成大於90個線對/毫米之一MTF。在一些實施例中,顯微單元234能夠達成大於100 個線對/毫米之一MTF。在一些實施例中,顯微單元234能夠達成大於125個線對/毫米之一MTF。 In some embodiments, the microscopy unit 234 is capable of achieving a modulation transfer function (MTF) of greater than 50 line pairs per millimeter. In some embodiments, the microscopy unit 234 is capable of achieving an MTF of greater than 75 line pairs per millimeter. In some embodiments, the microscopy unit 234 can achieve an MTF of greater than 80 line pairs/mm. In some embodiments, the microscopy unit 234 is capable of achieving an MTF of greater than 90 line pairs/mm. In some embodiments, the microscopy unit 234 can achieve greater than 100 One line pair / mm one MTF. In some embodiments, the microscopy unit 234 can achieve an MTF of greater than 125 line pairs/mm.

再次參考圖9,光學標記讀取器220a可採用定位於光源222與基板44之間之一擴散器240。從光源222發射之光線226由擴散器240擴散且傳播至基板44中。光線226a之一些在形成2DID碼之資料點(群組30或正方形)之片段之點32之間穿過。此等光線226a到達相機224之成像器228。光線226b之一些由點32攔截且衰減及擴散。歸因於傳播至基板44中之光線226b之散射,點32引起視光學密度上之一局部增加。光線226b未到達相機224之成像器228。因此,點32對照一淺色背景看似黑色陰影。 Referring again to FIG. 9, optical indicia reader 220a can employ a diffuser 240 positioned between source 222 and substrate 44. Light ray 226 emitted from light source 222 is diffused by diffuser 240 and propagates into substrate 44. Some of the rays 226a pass between points 32 that form a segment of the data point (group 30 or square) of the 2DID code. These rays 226a arrive at the imager 228 of the camera 224. Some of the light 226b is intercepted by the point 32 and attenuated and spread. Due to the scattering of light 226b propagating into substrate 44, point 32 causes a local increase in apparent optical density. Light 226b does not reach imager 228 of camera 224. Thus, point 32 looks like a black shade against a light background.

關於圖9描述之實施例對於可靠地讀取具有對光線226之(若干)波長有效地透明之表面104及106之一拋光基板44中之點32特別有用。 The embodiment described with respect to FIG. 9 is particularly useful for reliably reading a point 32 in a polishing substrate 44 that has one of surfaces 104 and 106 that are effectively transparent to the wavelength(s) of light 226.

圖10展示適於讀取一修改之2DID碼之點32之另一例示性光學標記讀取器220b之一些組件之一部分示意性側視圖。圖10中描繪之許多組件具有類似於圖9中描繪之對應組件之功能且已提供有對應參考數字而不論特定組件是否完全相同或可能不同。參考圖10,視訊顯微鏡單元234採用一長形管,其容納光學地定位於成像器228與光學器件230之物鏡232之間之一管透鏡242。 Figure 10 shows a partial schematic side view of some of the components of another exemplary optical indicia reader 220b adapted to read a modified point 32 of a 2DID code. Many of the components depicted in FIG. 10 have functions similar to the corresponding components depicted in FIG. 9 and have been provided with corresponding reference numerals regardless of whether the particular components are identical or may be different. Referring to FIG. 10, the video microscope unit 234 employs an elongate tube that houses a tube lens 242 optically positioned between the imager 228 and the objective lens 232 of the optics 230.

關於圖10描述之實施例亦可對於可靠地讀取具有對光線226之(若干)波長有效地透明之表面42之一拋光基板44中之點32特別有用。 The embodiment described with respect to FIG. 10 can also be particularly useful for reliably reading a point 32 in a substrate 44 that has a surface 42 that is effectively transparent to the wavelength(s) of the ray 226.

圖11展示適於讀取一修改之2DID碼之點32之另一例示性 光學標記讀取器220c之一些組件之一部分示意性側視圖。圖11中描繪之許多組件具有類似於圖9中描繪之對應組件之功能且已提供有對應參考數字而不論特定組件是否完全相同或可能不同。參考圖11,工件46可為一未拋光工件46,諸如圖8中所示之晶圓100。特定言之,未拋光工件46可具有一個或多個表面104及106,其等為粗糙或在可為(例如)大約+/- 5微米之表面偏差下鈮切。具有粗糙表面紋理之表面104及106可使次表面點32之陰影之影像模糊或以別的方式不利地影響該等影像。 Figure 11 shows another illustrative point of point 32 suitable for reading a modified 2DID code. A partially schematic side view of one of some of the components of optical indicia reader 220c. Many of the components depicted in Figure 11 have functions similar to the corresponding components depicted in Figure 9 and have been provided with corresponding reference numerals regardless of whether the particular components are identical or may be different. Referring to Figure 11, the workpiece 46 can be an unpolished workpiece 46, such as the wafer 100 shown in Figure 8. In particular, the unpolished workpiece 46 may have one or more surfaces 104 and 106 that are rough or may be chopped at a surface deviation of, for example, about +/- 5 microns. Surfaces 104 and 106 having a rough surface texture may obscure or otherwise adversely affect the image of the shadow of subsurface point 32.

因此,參考圖8及其描述,可用一折射率匹配流體130覆蓋圖11之工件46之一個或兩個表面104及106以減輕表面104及106中之表面偏差。而且,一光滑外罩150亦可用於覆蓋折射率匹配流體130。 Thus, referring to FIG. 8 and its description, one or both surfaces 104 and 106 of workpiece 46 of FIG. 11 may be covered with an index matching fluid 130 to mitigate surface variations in surfaces 104 and 106. Moreover, a smooth outer cover 150 can also be used to cover the index matching fluid 130.

折射率匹配流體130及外罩150可減少具有粗糙表面紋理之表面104及106之不利效果,使得成像器228可準確地辨別由點32產生之陰影。 The index matching fluid 130 and the outer cover 150 reduce the adverse effects of the surfaces 104 and 106 having a rough surface texture such that the imager 228 can accurately discern the shadows produced by the dots 32.

圖12展示適於讀取一修改之2DID碼之點32之另一例示性光學標記讀取器220d之一些組件之一部分示意性側視圖。圖12中描繪之許多組件具有類似於圖9中描繪之對應組件之功能且已提供有對應參考數字而不論特定組件是否完全相同或可能不同。參考圖12,工件46具有一基板44,該基板44具有一黑色不透明底部表面106。在一些實施例中,基板44係透明且底部表面106塗覆有一黑色或光吸收材料。光吸收材料可經選擇以對所選光源222之(若干)發射波長具吸收性及/或光源可經選擇以提供在由底部表面106或其塗層吸收之一範圍中之(若干)發射波長。 Figure 12 shows a partial schematic side view of some of the components of another exemplary optical indicia reader 220d adapted to read a modified point 32 of a 2DID code. Many of the components depicted in Figure 12 have functions similar to the corresponding components depicted in Figure 9 and have been provided with corresponding reference numerals regardless of whether the particular components are identical or may be different. Referring to Figure 12, workpiece 46 has a substrate 44 having a black opaque bottom surface 106. In some embodiments, the substrate 44 is transparent and the bottom surface 106 is coated with a black or light absorbing material. The light absorbing material can be selected to be absorptive to the emission wavelength(s) of the selected source 222 and/or the source can be selected to provide an emission wavelength(s) in a range absorbed by the bottom surface 106 or its coating. .

在圖12中,光源222及成像器228分別經定位以在基板44 之相同(上)表面104處導向光且從基板44之相同(上)表面104接收光。特定言之,光源222經定位以沿著橫穿上表面104之一照明路徑傳播光226,且成像器228及光學器件230沿著橫穿上表面之一成像路徑定位且可操作以接收傳播通過上表面104之光226c。在一些實施例中,光源222以一非垂直入射角將光線226導向至基板44之上表面104。在一些實施例中,光源222具有擁有1度與70度之間之一入射角之一照明軸。在一些實施例中,光源222之照明軸具有10度與65度之間之入射角。在一些實施例中,光源222之照明軸具有小於或等於60度之入射角。 In FIG. 12, light source 222 and imager 228 are respectively positioned to be on substrate 44. Light is directed at the same (upper) surface 104 and receives light from the same (upper) surface 104 of the substrate 44. In particular, light source 222 is positioned to propagate light 226 along an illumination path that traverses upper surface 104, and imager 228 and optics 230 are positioned along an imaging path that traverses the upper surface and are operable to receive propagation through Light 226c on upper surface 104. In some embodiments, light source 222 directs light 226 to upper surface 104 of substrate 44 at a non-normal incidence angle. In some embodiments, light source 222 has an illumination axis that has one of the angles of incidence between 1 and 70 degrees. In some embodiments, the illumination axis of light source 222 has an angle of incidence between 10 degrees and 65 degrees. In some embodiments, the illumination axis of light source 222 has an angle of incidence of less than or equal to 60 degrees.

再次參考圖12,光線226可透過一聚焦透鏡250導向以傳播至基板44中。光線226c之一些與點32相交且經反射以撞擊於成像器228上。光線226d之一些在點32之間穿過且由基板44之黑色底部表面106或其波長選擇性吸收塗層吸收。對於成像器228,點32對照一黑色背景看似明亮標記。機器視覺軟體中之對比度反轉(例如,淺色對黑色且反之亦然)及特征增強演算法基於其等群組30各表示一資料點(或正方形)之點32而產生一可靠地可讀取2DID圖案。點32對照一黑色背景看似明亮標記。 Referring again to FIG. 12, light ray 226 can be directed through a focusing lens 250 for propagation into substrate 44. Some of the light 226c intersects the point 32 and is reflected to impinge on the imager 228. Some of the light 226d passes between the dots 32 and is absorbed by the black bottom surface 106 of the substrate 44 or its wavelength selective absorbing coating. For imager 228, point 32 appears as a bright mark against a black background. Contrast inversion in machine vision software (eg, light to black and vice versa) and feature enhancement algorithms generate a reliably readable based on points 32 of which each group 30 represents a data point (or square) Take the 2DID pattern. Point 32 looks like a bright mark against a black background.

圖13展示適於讀取一修改之2DID碼之點32之另一例示性光學標記讀取器220e之一些組件之一部分示意性側視圖。圖13中描繪之許多組件具有類似於圖12中描繪之對應組件之功能且已提供有對應參考數字而不論特定組件是否完全相同或可能不同。參考圖13,視訊顯微鏡單元234採用一長形管,其容納光學地定位於成像器228與光學器件230之物鏡232之間之一管透鏡242。關於光學標記讀取器220d,光學標記讀取器220e經調適以讀取具有一黑色或黑色塗覆之底部表面106之基板44中之點32。 Figure 13 shows a partial schematic side view of some of the components of another exemplary optical indicia reader 220e adapted to read a modified point 32 of a 2DID code. Many of the components depicted in Figure 13 have functions similar to the corresponding components depicted in Figure 12 and have been provided with corresponding reference numerals regardless of whether the particular components are identical or may be different. Referring to Figure 13, the video microscope unit 234 employs an elongate tube that houses a tube lens 242 optically positioned between the imager 228 and the objective 232 of the optic 230. With respect to optical indicia reader 220d, optical indicia reader 220e is adapted to read a dot 32 in substrate 44 having a black or black coated bottom surface 106.

圖14展示適於讀取一修改之2DID碼之點32之另一例示性光學標記讀取器220f之一些組件之一側視圖,且圖15展示圖14之放大部分。圖14中描繪之許多組件具有類似於圖13中描繪之該等組件之功能且已提供有對應參考數字而不論特定組件是否完全相同或可能不同或可能定位於不同相對位置或方位。 14 shows a side view of some of the components of another exemplary optical indicia reader 220f adapted to read a modified point 32 of a 2DID code, and FIG. 15 shows an enlarged portion of FIG. Many of the components depicted in Figure 14 have functions similar to those depicted in Figure 13 and have been provided with corresponding reference numerals regardless of whether the particular components are identical or may be different or may be located at different relative positions or orientations.

參考圖14,工件46具有一基板44,該基板44具有一淺色、白色或灰白色不透明底部表面106。在一些實施例中,基板44係透明且底部表面106塗覆有一淺色或反射材料。反射材料可經選擇以對所選光源222之(若干)發射波長具反射性及/或光源可經選擇以提供在由底部表面106或其塗層反射之一範圍中之(若干)發射波長。 Referring to Figure 14, workpiece 46 has a substrate 44 having a light colored, white or off-white opaque bottom surface 106. In some embodiments, substrate 44 is transparent and bottom surface 106 is coated with a light colored or reflective material. The reflective material can be selected to be reflective to the emission wavelength(s) of the selected source 222 and/or the source can be selected to provide an emission wavelength(s) in a range that is reflected by the bottom surface 106 or its coating.

在圖14中所示之例示性光學標記讀取器220f中,顯微鏡單元234之一成像管236額外地容納沿著成像器228與管透鏡242之間之影像路徑定位之一管線性偏光器260。在一些實施例中,管透鏡242及物鏡232協作以界定其間之一準直空間264。顯微鏡單元234亦容納一分束鏡262,其沿著管透鏡與光學器件230之物鏡232之間之準直空間264中之影像路徑定位。在一些實施例中,物鏡232相對於點32之位置界定一焦距FOBJ。分束鏡262允許從不透明底部表面106反射之光線226之一些沿著影像路徑朝著管線性偏光器260及成像器228傳播。 In the exemplary optical indicia reader 220f shown in FIG. 14, one of the imaging units 236 of the microscope unit 234 additionally houses a tube linear polarizer 260 positioned along the image path between the imager 228 and the tube lens 242. . In some embodiments, tube lens 242 and objective lens 232 cooperate to define a collimating space 264 therebetween. The microscope unit 234 also houses a beam splitter 262 that is positioned along the image path in the collimating space 264 between the tube lens and the objective lens 232 of the optic 230. In some embodiments, the objective lens 232 defines a focal length F OBJ relative to the location of the point 32. Beam splitter 262 allows some of the light 226 reflected from opaque bottom surface 106 to propagate along tube path toward tube linear polarizer 260 and imager 228.

例示性光學標記讀取器220f亦採取一照明導管270,其可經定向以如圖14中所示平行於顯微鏡單元234之成像管236。將明白照明導管270可經定向以垂直於成像管236,或其等可具有彼此交替之一方位,接著可由一個或多個照明路徑鏡272適應。 The exemplary optical indicia reader 220f also takes an illumination catheter 270 that can be oriented parallel to the imaging tube 236 of the microscope unit 234 as shown in FIG. It will be appreciated that the illumination catheter 270 can be oriented to be perpendicular to the imaging tube 236, or the like, can have one of an orientations that alternate with one another, and can then be accommodated by one or more illumination path mirrors 272.

照明導管270可經調適以容納或支撐一照明系統274,其包含光源222、一個或多個準直透鏡278及一孔隙280。準直透鏡278沿著光源222與工件46之間之照明路徑定位,且孔隙沿著光源222與準直透鏡278之間之照明路徑定位。在一些實施例中,孔隙280相對於準直透鏡278之位置界定一距離FL1。孔隙280可具有一主空間軸或直徑,其為焦距FOBJ及距離FL1之函數。在一些實施例中,孔隙280之直徑或主空間軸係FL1/FOBJ之一函數。或者,焦距FOBJ及距離FL1可調整為孔隙280之直徑或主空間軸之一函數。 The illumination conduit 270 can be adapted to receive or support an illumination system 274 that includes a light source 222, one or more collimating lenses 278, and an aperture 280. The collimating lens 278 is positioned along the illumination path between the source 222 and the workpiece 46, and the aperture is positioned along the illumination path between the source 222 and the collimating lens 278. In some embodiments, the aperture 280 defines a distance F L1 relative to the position of the collimating lens 278. The aperture 280 can have a major spatial axis or diameter as a function of focal length F OBJ and distance F L1 . In some embodiments, the diameter of the aperture 280 or a function of the primary spatial axis system F L1 /F OBJ . Alternatively, the focal length F OBJ and the distance F L1 can be adjusted as a function of the diameter of the aperture 280 or the main spatial axis.

在一些實施例中,照明導管270或照明系統274亦包含一導管線性偏光器282,其可沿著準直透鏡278與工件46之間之照明路徑定位。導管線性偏光器282及/或光源222可圍繞照明路徑之軸旋轉以增強影像對比度。 In some embodiments, illumination conduit 270 or illumination system 274 also includes a catheter linear polarizer 282 that is positionable along an illumination path between collimating lens 278 and workpiece 46. Catheter linear polarizer 282 and/or light source 222 can be rotated about the axis of the illumination path to enhance image contrast.

照明導管270亦可包含一導管調適器286,其將照明導管之直徑從一直徑改變為另一者,諸如從一較小直徑改變為一較大直徑。與成像管236相交之照明導管270之一導管區段290可具有相同於成像管236之直徑之直徑。 Illumination conduit 270 can also include a catheter adapter 286 that changes the diameter of the illumination conduit from one diameter to the other, such as from a smaller diameter to a larger diameter. One of the illumination segments 270 that intersect the imaging tube 236 can have a diameter that is the same as the diameter of the imaging tube 236.

在圖14中所示之例示性實施例中,由光源222發射之光線226之一些沿著照明路徑傳播通過孔隙280。此孔隙光線226g傳播通過準直透鏡278。此等準直光線226h可傳播通過可選導管線性偏光器。此準直(及偏光)光線226h可由多個鏡子270之一者反射以與分束鏡262相交,該分束鏡262使該等光線226h通過物鏡232朝著工件46反射。 In the exemplary embodiment shown in FIG. 14, some of the light rays 226 emitted by the light source 222 propagate through the apertures 280 along the illumination path. This aperture ray 226g propagates through the collimating lens 278. These collimated rays 226h can propagate through the optional conduit linear polarizer. This collimated (and polarized) ray 226h can be reflected by one of the plurality of mirrors 270 to intersect the beam splitter 262, which causes the rays 226h to be reflected by the objective 232 toward the workpiece 46.

參考圖14及圖15,物鏡提供聚焦光線226i,其等反射離開 底部表面106且作為光線226a朝著點32傳播。光線226a之一些在形成2DID碼之資料點(群組30或正方形)之片段之點32之間穿過。此等光線226a到達相機224之成像器228。光線226b之一些由點32攔截且衰減及擴散。(諸如)關於圖9中所示之實施例所描述,點32對照一淺色背景看似一黑色陰影。 Referring to Figures 14 and 15, the objective lens provides focused light 226i, which is reflected off The bottom surface 106 and propagates as a ray 226a toward the point 32. Some of the rays 226a pass between points 32 that form a segment of the data point (group 30 or square) of the 2DID code. These rays 226a arrive at the imager 228 of the camera 224. Some of the light 226b is intercepted by the point 32 and attenuated and spread. As described with respect to the embodiment shown in Figure 9, point 32 appears to be a black shade against a light background.

關於所有描述之例示性實施例,將明白工件46及光碼讀取器220之一個或多個組件(諸如成像器228)可在點32之檢驗期間全部靜止。工件46可藉由一運送機、一卡盤或其他運輸機構放置至一檢驗位置中。在一例示性實施例中,工件46將在X軸、Y軸及Z軸上保持靜止,且顯微鏡單元234之一個或多個光學組件將在Z軸上移動至自動聚焦。 With regard to all described exemplary embodiments, it will be appreciated that one or more components of workpiece 46 and optical code reader 220, such as imager 228, may all be stationary during inspection of point 32. The workpiece 46 can be placed into an inspection position by a conveyor, a chuck or other transport mechanism. In an exemplary embodiment, the workpiece 46 will remain stationary on the X-axis, Y-axis, and Z-axis, and one or more of the optical components of the microscope unit 234 will move over the Z-axis to auto focus.

但是,工件46可處於運動中,同時檢驗光學2DID碼或光碼讀取器220之一個或多個組件可處於運動中,同時檢驗光學2DID碼。此運動可包含X或Y運動及/或Z運動(可重點關注相關)。但是,工件46及光碼讀取器220之一個或多個組件兩者可處於運動中,同時檢驗光學2DID碼。 However, the workpiece 46 can be in motion while verifying that the optical 2DID code or one or more components of the optical code reader 220 can be in motion while verifying the optical 2DID code. This movement can include X or Y movements and/or Z movements (which can be focused on related). However, both the workpiece 46 and one or more components of the optical code reader 220 can be in motion while verifying the optical 2DID code.

在其中運動及碼檢驗係併發之一些實施例中,光源22可選通以防止模糊。例如,在一例示性實施例中,點32具有大約2微米之一直徑且X/Y運動可保持於該直徑之四分之一內,諸如大約0.5微米。若視訊顯微鏡單元234之深度係大約5微米,則所期望選通可必需足夠短之光脈衝以將點32(或2DID碼)之影像保持於大約1.25微米內。因為DD=V/T,所以選通時間間隔將與速度成反比。 In some embodiments in which motion and code inspection are concurrent, light source 22 is optional to prevent blurring. For example, in an exemplary embodiment, point 32 has a diameter of about 2 microns and X/Y motion can be maintained within a quarter of the diameter, such as about 0.5 microns. If the depth of the video microscope unit 234 is about 5 microns, the desired gating may require a sufficiently short pulse of light to maintain an image of the point 32 (or 2DID code) within about 1.25 microns. Since DD = V / T, the gate time interval will be inversely proportional to the speed.

在一些實施例中,光學標記讀取器採用於解碼2DID碼(例 如,GS1資料矩陣)之一可購得標準軟體套件。在一些實施例中,藉由影像及對比度增強技術(諸如美國專利案第7,589,869號中描述之該等技術)來增強標準軟體套件。 In some embodiments, an optical tag reader is employed to decode a 2DID code (eg, For example, one of the GS1 data matrices can be purchased as a standard software package. In some embodiments, the standard software package is enhanced by image and contrast enhancement techniques such as those described in U.S. Patent No. 7,589,869.

在一些替代、額外或累積實施例中,藉由用於決定點32之群組30與資料點(黑色正方形)之相關性之技術來增強標準軟體套件。在一些實施例中,可在針對點32及/或點32之群組30之準則下提供增強或調適之軟體。準則可類似於用於如先前討論之點之選擇及群組形成之準則。此準則可包含(但不限於)以下之一者或多者:點32之空間主軸、點32之間之距離、點32之群組30之間之距離、點32是否係多於一群組30之成員之指示、群組30之尺寸、特定點32或群組30之近似位置及基板44內之點32之深度。此等值可與(例如)一2DID碼之各表示相關且儲存於查詢表中軟體或查詢表亦可包含基於用於製成點所採用之雷射微加工系統40之準確性及其他特性之可接受偏差資訊。 In some alternative, additional or cumulative embodiments, the standard software suite is enhanced by a technique for determining the correlation of the group 30 of points 32 with the data points (black squares). In some embodiments, the enhanced or adapted software may be provided under the criteria for group 32 of points 32 and/or points 32. The criteria can be similar to the criteria used for selection and group formation as previously discussed. This criterion may include, but is not limited to, one or more of the following: a spatial principal of point 32, a distance between points 32, a distance between groups 30 of points 32, whether point 32 is more than a group The indication of the member of 30, the size of the group 30, the approximate location of the particular point 32 or group 30, and the depth of the point 32 within the substrate 44. Such values may be associated with, for example, respective representations of a 2DID code and stored in a lookup table. The software or lookup table may also include accuracy and other characteristics based on the laser micromachining system 40 used to make the dots. Acceptable deviation information.

因此,光學標記讀取器220可讀取點32且決定其等屬於哪些群組30(及資料點或正方形)且接著解碼點之群組30所表示之2DID圖案。將明白,軟體亦可忽視可在基板44中出現之缺陷或不完美,此係因為此等缺陷在統計上不可能符合點32之準則或由意欲點32建立之群組30內之點32之相對或絕對位置。 Thus, optical tag reader 220 can read point 32 and determine which group 30 (and data points or squares) it belongs to and then decode the 2DID pattern represented by group 30 of points. It will be appreciated that the software may also ignore defects or imperfections that may occur in the substrate 44 because such defects are statistically impossible to meet the criteria of point 32 or the point 32 within the group 30 established by the intended point 32. Relative or absolute position.

上述繪示本發明之實施例且並非解釋為限制本發明。雖然已描述若干特定實例實施例,但是熟悉此項技術者將易於明白在不實質上脫離於本發明之新穎教示及優點下對揭示之例示性實施例以及其他實施例之許多修改係可行的。 The above embodiments of the invention are not to be construed as limiting the invention. While a few specific example embodiments have been described, it will be apparent to those skilled in the art that

因此,所有此等修改易欲包含於如申請專利範圍中定義之本發明之範疇內。例如,熟練人員將明白,任何句子或段落之標的可與其他句子或段落之一些或所有之標的組合,除非此等組合互斥。 Accordingly, all such modifications are intended to be included within the scope of the invention as defined in the scope of the claims. For example, the skilled person will understand that the subject matter of any sentence or paragraph may be combined with some or all of the other sentences or paragraphs unless such combinations are mutually exclusive.

對於熟悉此項技術者顯而易見的是可在不脫離於本發明之基本原理下對上文描述之實施例之細節作出許多改變。因此,本發明之範疇應由以下申請專利範圍決定,其中申請專利範圍之等效例將包含於其中。 It will be apparent to those skilled in the art that many changes in the details of the embodiments described above may be made without departing from the basic principles of the invention. Therefore, the scope of the invention should be determined by the scope of the following claims, in which

32‧‧‧點 32‧‧‧ points

44‧‧‧基板 44‧‧‧Substrate

46‧‧‧工件 46‧‧‧Workpiece

104‧‧‧表面 104‧‧‧ Surface

106‧‧‧表面 106‧‧‧ surface

220a‧‧‧光學標記讀取器 220a‧‧‧Optical Marker Reader

222‧‧‧光源 222‧‧‧Light source

224‧‧‧相機 224‧‧‧ camera

226‧‧‧光線 226‧‧‧Light

226a‧‧‧光線 226a‧‧‧Light

226b‧‧‧線 226b‧‧‧ line

228‧‧‧成像器 228‧‧‧ Imager

230‧‧‧光學器件 230‧‧‧Optical devices

232‧‧‧透鏡 232‧‧‧ lens

234‧‧‧視訊顯微鏡單元/顯微單元 234‧‧•Video microscope unit/micro unit

240‧‧‧擴散器 240‧‧‧Diffuser

Claims (106)

一種用於讀取具有第一及第二相對表面之一基板內之一二維識別碼之方法,該方法包括:將光朝著該基板之一第一表面導向,其中該光具有一波長,且其中該基板對該波長透明,其中該二維碼由該基板內之一點散佈表示,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點,其中該光之一第一部分由該等點阻擋,且其中該光之一第二部分穿過超出該等點且傳播通過該基板之該第二表面;放大傳播通過該基板之該第二表面之該光之該第二部分;利用一成像器使傳播通過該基板之該第二表面且放大之該光之該第二部分成像;分析該光之該第二部分之一影像及由該光之該第一部分之阻擋引起之陰影以決定該等點之該散佈;及基於由該成像器成像之該等點之該散佈決定該二維碼。 A method for reading a two-dimensional identification code in a substrate having one of first and second opposing surfaces, the method comprising: directing light toward a first surface of the substrate, wherein the light has a wavelength, And wherein the substrate is transparent to the wavelength, wherein the two-dimensional code is represented by a dot spread in the substrate, wherein the dot spreads a plurality of points including a group, the points of the groups include the first group and the second group a point, wherein each of the points of the first and second groups represents a geometric shape such that the points are interspersed to form an array of multiple columns and a plurality of rows of geometric regions, wherein some of the geometric regions comprise a group Point and some of the geometric regions lack points, wherein a first portion of the light is blocked by the dots, and wherein a second portion of the light passes through the second surface beyond the points and propagates through the substrate; Amplifying the second portion of the light propagating through the second surface of the substrate; imaging the second portion of the light propagating through the second surface of the substrate and amplifying the image by an imager; analyzing the light One of the second part of the image and The first portion of the barrier of light causes the shadow to determine the spread of such point; and the two-dimensional code is determined based on the spread of such a point of the image of the imager. 如申請專利範圍第1項之方法,其中該代表性幾何形狀係一矩形幾何形狀,且其中該等第一及第二群組之點經定位以表示該矩形幾何形狀之隅角。 The method of claim 1, wherein the representative geometry is a rectangular geometry, and wherein the points of the first and second groups are positioned to represent a corner of the rectangular geometry. 如申請專利範圍第1項之方法,其中該等第一及第二群組之點各包含一奇數數量之點。 The method of claim 1, wherein the points of the first and second groups each comprise an odd number of points. 如申請專利範圍第1項之方法,其中表示該二維碼之該點散佈在離一人眼之大於或等於25mm之一距離下對該人眼不可見。 The method of claim 1, wherein the point indicating the two-dimensional code is invisible to the human eye at a distance greater than or equal to 25 mm from a human eye. 如申請專利範圍第1項之方法,其中該陣列具有大於50微米之一陣列尺寸。 The method of claim 1, wherein the array has an array size of greater than 50 microns. 如申請專利範圍第1項之方法,其中該陣列具有小於500微米之一陣列尺寸。 The method of claim 1, wherein the array has an array size of less than 500 microns. 如申請專利範圍第1項之方法,其中該陣列具有小於或等於250微米之一陣列尺寸。 The method of claim 1, wherein the array has an array size of less than or equal to 250 microns. 如申請專利範圍第1項之方法,其中該等第一及第二群組之點在離該人眼之大於或等於25mm之一距離下對該人眼不可見。 The method of claim 1, wherein the points of the first and second groups are invisible to the human eye at a distance greater than or equal to 25 mm from the human eye. 如申請專利範圍第1項之方法,其中該等第一及第二群組之各點在離該人眼之大於或等於25mm之一距離下對該人眼不可見。 The method of claim 1, wherein the points of the first and second groups are invisible to the human eye at a distance greater than or equal to 25 mm from the human eye. 如申請專利範圍第1項之方法,其中該等第一及第二群組之該等點各具有小於35微米之一主空間軸之一尺寸。 The method of claim 1, wherein the points of the first and second groups each have a size of one of the main spatial axes of less than 35 microns. 如申請專利範圍第1項之方法,其中該等點各具有一主空間軸之一尺寸,且其中該等點分離達大於或等於該主空間軸之該尺寸之四倍的一距離。 The method of claim 1, wherein the points each have a size of one of the main spatial axes, and wherein the points are separated by a distance greater than or equal to four times the size of the main spatial axis. 如申請專利範圍第1項之方法,其中該等幾何區域表示一QR碼中之正方形。 The method of claim 1, wherein the geometric regions represent squares in a QR code. 如申請專利範圍第1項之方法,其中各點由一雷射脈衝形成。 The method of claim 1, wherein each point is formed by a laser pulse. 如申請專利範圍第1項之方法,其中該等點係黑色且該基板係淺色。 The method of claim 1, wherein the dots are black and the substrate is light colored. 如申請專利範圍第1項之方法,其中該等點係黑色且其中該基板大體 上對可見光透明。 The method of claim 1, wherein the dots are black and wherein the substrate is substantially It is transparent to visible light. 如申請專利範圍第1項之方法,其中該基板包括一結晶材料。 The method of claim 1, wherein the substrate comprises a crystalline material. 如申請專利範圍第1項之方法,其中該基板包括藍寶石。 The method of claim 1, wherein the substrate comprises sapphire. 如申請專利範圍第1項之方法,其中該基板包括玻璃。 The method of claim 1, wherein the substrate comprises glass. 如申請專利範圍第1項之方法,其中該基板包括一塑膠。 The method of claim 1, wherein the substrate comprises a plastic. 如申請專利範圍第1項之方法,其中該基板包括鋁。 The method of claim 1, wherein the substrate comprises aluminum. 如申請專利範圍第1項之方法,其中該基板包括一非結晶材料。 The method of claim 1, wherein the substrate comprises an amorphous material. 如申請專利範圍第1項之方法,其中一束定位系統及一基板支撐系統協作以相對於該基板上之位置定位該等雷射脈衝之該等點,且其中該等點至位置之定位準確性比5微米更佳。 The method of claim 1, wherein a beam positioning system and a substrate support system cooperate to position the laser pulses relative to a position on the substrate, and wherein the points are positioned accurately Sex is better than 5 microns. 如申請專利範圍第1項之方法,其中一束定位系統及一基板支撐系統協作以相對於該基板上之位置定位該等雷射脈衝之該等點,且其中該等點至位置之定位準確性比5微米更差。 The method of claim 1, wherein a beam positioning system and a substrate support system cooperate to position the laser pulses relative to a position on the substrate, and wherein the points are positioned accurately Sex is worse than 5 microns. 如申請專利範圍第23項之方法,其中一束定位系統及一基板支撐系統協作以相對於該基板上之位置定位該等雷射脈衝之該等點,且其中該等點至位置之定位準確性比10微米更差。 The method of claim 23, wherein a beam positioning system and a substrate support system cooperate to position the points of the laser pulses relative to a position on the substrate, and wherein the points are positioned accurately Sex is worse than 10 microns. 如申請專利範圍第1項之方法,其中該群組之點提供大於或等於5之一信雜比。 The method of claim 1, wherein the point of the group provides a signal to noise ratio greater than or equal to 5. 如申請專利範圍第1項之方法,其中該群組之點提供大於或等於10之一信雜比。 The method of claim 1, wherein the point of the group provides a signal-to-noise ratio greater than or equal to 10. 如申請專利範圍第1項之方法,其中該群組之點提供大於或等於100之一信雜比。 The method of claim 1, wherein the point of the group provides a signal-to-noise ratio greater than or equal to 100. 如申請專利範圍第1項之方法,其中採用軟體以將該等群組之點轉換為該二維碼之黑色正方形。 The method of claim 1, wherein the software is used to convert the points of the groups into black squares of the two-dimensional code. 如申請專利範圍第1項之方法,其中該陣列在一列或一行中包括至少50個幾何區域。 The method of claim 1, wherein the array comprises at least 50 geometric regions in a column or row. 如申請專利範圍第1項之方法,其中各點具有一點面積,其中一累積點面積表示一群組之點內之該等點之點面積,其中一群組中之該點散佈在一群組面積上展開,其中該累積點面積小於或等於少於該群組面積之5%。 The method of claim 1, wherein each point has a point area, wherein a cumulative point area represents a point area of the points within a group of points, wherein the points in a group are scattered in a group The area is expanded, wherein the cumulative point area is less than or equal to less than 5% of the group area. 如任何前述申請專利範圍之方法,其中放大步驟採用一光學系統,其能夠達成大於80個線對/毫米之一調變傳送函數。 A method as claimed in any of the preceding claims, wherein the step of amplifying employs an optical system capable of achieving a modulation transfer function of greater than 80 line pairs/mm. 如附屬於申請專利範圍第2項至申請專利範圍第31項中任一項,不具有互斥之標的之申請專利範圍第2項至申請專利範圍第31項中任一項之方法。 The method of claim 2, wherein the method of claim 2, and the method of claim 31, which are subject to the exclusion of the subject matter. 一種光碼讀取器,其包括:一光源,其用於照亮具有一基板之一工件,其中該光具有一波長,其中該光可操作以用於在該基板處之導向,其中該基板對該光之該波長透明,且其中該基板具有彼此遠離之第一及第二表面;一光學系統;一成像器,其用於接收傳播通過該基板之光或用於接收由在該等第一與第二表面之間嵌入於該基板內之一個或多個點反射之光;第一電子電路,其用於分析該光之一影像以決定該等點之該散佈;及第二電子電路,其用於基於由該成像器成像之該等點之該散佈決定該二 維碼。 An optical code reader comprising: a light source for illuminating a workpiece having a substrate, wherein the light has a wavelength, wherein the light is operable for guiding at the substrate, wherein the substrate Transparent to the wavelength of the light, and wherein the substrate has first and second surfaces remote from each other; an optical system; an imager for receiving light propagating through the substrate or for receiving by the a light reflected between one or a second surface embedded in the substrate; a first electronic circuit for analyzing an image of the light to determine the spread of the dots; and a second electronic circuit Determining the two based on the dispersion of the points imaged by the imager Dimension code. 如申請專利範圍第33項之光碼讀取器,其中該光源經定位以沿著橫穿該第一表面之一照明路徑傳播該光,且其中該成像器及該光學系統沿著可操作以接收從該第二表面反射之該光之一成像路徑定位。 An optical code reader as claimed in claim 33, wherein the light source is positioned to propagate the light along an illumination path traversing the first surface, and wherein the imager and the optical system are operable to An imaging path location of the light reflected from the second surface is received. 如申請專利範圍第34項之光碼讀取器,其中該第一電子電路分析由藉由點阻擋該光引起之陰影。 An optical code reader as claimed in claim 34, wherein the first electronic circuit analyzes a shadow caused by blocking the light by a dot. 如申請專利範圍第33項之光碼讀取器,其中該光源經定位以沿著橫穿該第一表面之一照明路徑傳播該光,且其中該等成像器及光學系統沿著橫穿該第一表面且可操作以接收傳播通過該第一表面之該光之一成像路徑定位。 An optical code reader as claimed in claim 33, wherein the light source is positioned to propagate the light along an illumination path traversing the first surface, and wherein the imagers and optical systems traverse the The first surface is operative to receive an imaging path of the light propagating through the first surface. 如申請專利範圍第36項之光碼讀取器,其中該等點至少部分對該光具反射性,其中該第二表面或其上之一層至少部分對該光具吸收性,且其中第一電子電路分析從該等點反射之該光。 The optical code reader of claim 36, wherein the points are at least partially reflective to the light, wherein the second surface or a layer thereon is at least partially absorptive to the light, and wherein the first An electronic circuit analyzes the light reflected from the points. 如申請專利範圍第36項之光碼讀取器,其中該等點至少部分對該光具吸收性,其中該第二表面或其上之一層至少部分對該光具反射性,且其中該第一電子電路分析由藉由該等點阻擋該光引起之陰影。 The optical code reader of claim 36, wherein the points are at least partially absorbable to the light, wherein the second surface or a layer thereon is at least partially reflective to the light, and wherein the An electronic circuit analyzes the shadow caused by blocking the light by the points. 如申請專利範圍第33項之光碼讀取器,其中該二維碼由該基板內之一點散佈表示,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點。 The optical code reader of claim 33, wherein the two-dimensional code is represented by a dot spread in the substrate, wherein the dot spreads a plurality of points including a group, and the points of the groups include the first a point of the second group, wherein each of the points of the first and second groups represents a geometric shape such that the points are interspersed to form an array of multiple columns and rows of geometric regions, wherein some of the geometric regions A point containing a group and some of the geometric regions are missing points. 如申請專利範圍第33項之光碼讀取器,其中該照明路徑以一垂直角橫 穿該第一表面。 An optical code reader as claimed in claim 33, wherein the illumination path is transverse to a vertical angle Wear the first surface. 如申請專利範圍第33項之光碼讀取器,其中該光源沿著大致上垂直於該基板之該第一表面之一照明軸定位。 The optical code reader of claim 33, wherein the light source is positioned along an illumination axis that is substantially perpendicular to the first surface of the substrate. 如申請專利範圍第33項之光碼讀取器,其中該成像器沿著該照明軸定位。 An optical code reader as claimed in claim 33, wherein the imager is positioned along the illumination axis. 如申請專利範圍第33項之光碼讀取器,其中該光源沿著具有並非垂直於該基板之該第一表面之一入射角之一照明軸定位。 An optical code reader as in claim 33, wherein the light source is positioned along an illumination axis having an incidence angle that is not perpendicular to the first surface of the substrate. 如申請專利範圍第43項之光碼讀取器,其中該照明軸具有1度與70度之間之一入射角。 An optical code reader as claimed in claim 43 wherein the illumination axis has an angle of incidence between 1 and 70 degrees. 如申請專利範圍第43項之光碼讀取器,其中該照明軸具有10度與65度之間之一入射角。 An optical code reader as claimed in claim 43 wherein the illumination axis has an angle of incidence between 10 and 65 degrees. 如申請專利範圍第43項之光碼讀取器,其中該照明軸具有小於或等於60度之一入射角。 The optical code reader of claim 43, wherein the illumination axis has an incident angle of less than or equal to 60 degrees. 如申請專利範圍第33項之光碼讀取器,其中該成像器沿著垂直於該第一表面之一成像軸定位。 An optical code reader as in claim 33, wherein the imager is positioned along an imaging axis that is perpendicular to the first surface. 如申請專利範圍第33項之光碼讀取器,其中該光源包括一LED。 An optical code reader as claimed in claim 33, wherein the light source comprises an LED. 如申請專利範圍第33項之光碼讀取器,其中該光源提供一可見波長。 An optical code reader as claimed in claim 33, wherein the light source provides a visible wavelength. 如申請專利範圍第33項之光碼讀取器,其中該光源提供以下波長之一者或多者:660nm、635nm、633nm、623nm、612nm、592nm、585nm、574nm、570nm、565nm、560nm、555nm、525nm、505nm、470nm及430nm。 The optical code reader of claim 33, wherein the light source provides one or more of the following wavelengths: 660 nm, 635 nm, 633 nm, 623 nm, 612 nm, 592 nm, 585 nm, 574 nm, 570 nm, 565 nm, 560 nm, 555 nm , 525 nm, 505 nm, 470 nm, and 430 nm. 如申請專利範圍第33項之光碼讀取器,其中該光源提供一紅色波長。 An optical code reader as claimed in claim 33, wherein the light source provides a red wavelength. 如申請專利範圍第33項之光碼讀取器,其中該成像器係單色。 An optical code reader as claimed in claim 33, wherein the imager is monochrome. 如申請專利範圍第33項之光碼讀取器,其中該成像器係全彩色。 An optical code reader as claimed in claim 33, wherein the imager is full color. 如申請專利範圍第33項之光碼讀取器,其中該光學系統採用提供從2倍至50倍放大之光學器件。 An optical code reader as claimed in claim 33, wherein the optical system employs an optical device that provides a magnification from 2 to 50 times. 如申請專利範圍第33項之光碼讀取器,其中該光學系統採用提供大於5倍放大之光學器件。 An optical code reader as claimed in claim 33, wherein the optical system employs an optical device that provides greater than 5 times magnification. 如申請專利範圍第33項之光碼讀取器,其中該光學系統採用提供大於10倍放大之光學器件。 An optical code reader as claimed in claim 33, wherein the optical system employs an optical device that provides greater than 10 times magnification. 如申請專利範圍第33項之光碼讀取器,其中該光學系統採用小於20倍放大之光學器件。 An optical code reader as claimed in claim 33, wherein the optical system employs an optical device that is less than 20 times magnified. 如申請專利範圍第33項之光碼讀取器,其中該光碼讀取器具有大於50個線對/毫米之一調變傳送函數。 An optical code reader as claimed in claim 33, wherein the optical code reader has a modulation transfer function of greater than 50 line pairs/mm. 如申請專利範圍第33項之光碼讀取器,其中該光碼讀取器具有大於75個線對/毫米之一調變傳送函數。 An optical code reader as claimed in claim 33, wherein the optical code reader has a modulation transfer function of greater than 75 line pairs/mm. 如申請專利範圍第33項之光碼讀取器,其中該光碼讀取器具有大於80個線對/毫米之一調變傳送函數。 An optical code reader as claimed in claim 33, wherein the optical code reader has a modulation transfer function of greater than 80 line pairs/mm. 如申請專利範圍第33項之光碼讀取器,其中該光學系統提供大約+/- 50μm之一景深。 An optical code reader as claimed in claim 33, wherein the optical system provides a depth of field of about +/- 50 μm. 如申請專利範圍第33項之光碼讀取器,其中該光學系統提供大約+/- 10μm之一景深。 An optical code reader as claimed in claim 33, wherein the optical system provides a depth of field of about +/- 10 μm. 如申請專利範圍第33項之光碼讀取器,其中該光學系統提供大約+/- 2.5μm之一景深。 An optical code reader as claimed in claim 33, wherein the optical system provides a depth of field of about +/- 2.5 μm. 如申請專利範圍第33項之光碼讀取器,其中該光學系統提供大於或等於大約500μm之一視場。 An optical code reader as claimed in claim 33, wherein the optical system provides a field of view greater than or equal to about 500 [mu]m. 如申請專利範圍第33項之光碼讀取器,其中該光學系統提供大於或等於大約800μm之一視場。 An optical code reader as claimed in claim 33, wherein the optical system provides a field of view greater than or equal to about 800 μm. 如申請專利範圍第33項之光碼讀取器,其中該光學系統提供小於或等於大約800μm之一視場。 An optical code reader as claimed in claim 33, wherein the optical system provides a field of view less than or equal to about 800 μm. 如申請專利範圍第33項之光碼讀取器,其中該等點形成具有擁有小於500微米之一側尺寸之一場大小的一2DID碼。 An optical code reader as in claim 33, wherein the dots form a 2DID code having a field size having a side dimension of less than 500 microns. 如申請專利範圍第33項之光碼讀取器,其中該等點形成具有擁有小於250微米之一側尺寸之一場大小的一2DID碼。 An optical code reader as claimed in claim 33, wherein the dots form a 2DID code having a field size having a side dimension of less than 250 microns. 如申請專利範圍第33項之光碼讀取器,其中該等點形成具有擁有小於125微米之一側尺寸之一場大小的一GS1 DataMatrix碼。 An optical code reader as in claim 33, wherein the dots form a GS1 DataMatrix code having a field size having a side dimension of less than 125 microns. 如申請專利範圍第33項之光碼讀取器,其中該等點形成具有擁有小於250微米之兩個尺寸之一場大小的一GS1 DataMatrix碼。 An optical code reader as claimed in claim 33, wherein the dots form a GS1 DataMatrix code having a field size of two sizes less than 250 microns. 如申請專利範圍第33項之光碼讀取器,其中該等點形成具有擁有小於125微米之兩個尺寸之一場大小的一GS1 DataMatrix碼。 An optical code reader as in claim 33, wherein the dots form a GS1 DataMatrix code having a field size of two sizes less than 125 microns. 如申請專利範圍第39項之光碼讀取器,其中該代表性幾何形狀係一矩形幾何形狀,且其中該等第一及第二群組之點經定位以表示該矩形幾何形狀之隅角。 The optical code reader of claim 39, wherein the representative geometric shape is a rectangular geometric shape, and wherein the points of the first and second groups are positioned to represent a corner of the rectangular geometric shape . 如申請專利範圍第39項之光碼讀取器,其中該等第一及第二群組之點各包含一奇數數量之點。 An optical code reader as claimed in claim 39, wherein the points of the first and second groups each comprise an odd number of points. 如申請專利範圍第39項之光碼讀取器,其中表示該二維碼之該點散佈 在離一人眼之大於或等於25mm之一距離下對該人眼不可見。 An optical code reader as claimed in claim 39, wherein the point of the two-dimensional code is dispersed It is invisible to the human eye at a distance greater than or equal to 25 mm from one eye. 如申請專利範圍第39項之光碼讀取器,其中該陣列具有大於50微米之一陣列尺寸。 An optical code reader as in claim 39, wherein the array has an array size greater than 50 microns. 如申請專利範圍第39項之光碼讀取器,其中該陣列具有小於500微米之一陣列尺寸。 An optical code reader as in claim 39, wherein the array has an array size of less than 500 microns. 如申請專利範圍第39項之光碼讀取器,其中該陣列具有小於或等於250微米之一陣列尺寸。 An optical code reader as in claim 39, wherein the array has an array size of less than or equal to 250 microns. 如申請專利範圍第39項之光碼讀取器,其中該等第一及第二群組之點在離該人眼之大於或等於25mm之一距離下對該人眼不可見。 An optical code reader as claimed in claim 39, wherein the points of the first and second groups are invisible to the human eye at a distance greater than or equal to 25 mm from the human eye. 如申請專利範圍第39項之光碼讀取器,其中該等第一及第二群組之各點在離該人眼之大於或等於25mm之一距離下對該人眼不可見。 An optical code reader as claimed in claim 39, wherein the points of the first and second groups are invisible to the human eye at a distance greater than or equal to 25 mm from the human eye. 如申請專利範圍第39項之光碼讀取器,其中該等第一及第二群組之該等點各具有小於35微米之一主空間軸之一尺寸。 An optical code reader as claimed in claim 39, wherein the points of the first and second groups each have a size of one of the main spatial axes of less than 35 microns. 如申請專利範圍第39項之光碼讀取器,其中該等點各具有一主空間軸之一尺寸,且其中該等點分離達大於或等於該主空間軸之該尺寸之四倍的一距離。 An optical code reader as claimed in claim 39, wherein the points each have a size of one of the main spatial axes, and wherein the points are separated by a factor greater than or equal to four times the size of the main spatial axis distance. 如申請專利範圍第39項之光碼讀取器,其中該等幾何區域表示一QR碼中之正方形。 An optical code reader as claimed in claim 39, wherein the geometric regions represent squares in a QR code. 如申請專利範圍第33項之光碼讀取器,其中各點由一雷射脈衝形成。 An optical code reader as claimed in claim 33, wherein each point is formed by a laser pulse. 如申請專利範圍第33項之光碼讀取器,其中各點由複數個雷射脈衝形成。 An optical code reader as claimed in claim 33, wherein each point is formed by a plurality of laser pulses. 如申請專利範圍第39項之光碼讀取器,其中該等點係黑色且該基板係 淺色。 An optical code reader as claimed in claim 39, wherein the dots are black and the substrate is Light color. 如申請專利範圍第39項之光碼讀取器,其中該等點係黑色且其中該基板大體上對可見光透明。 An optical code reader as in claim 39, wherein the dots are black and wherein the substrate is substantially transparent to visible light. 如申請專利範圍第33項之光碼讀取器,其中該基板包括一結晶材料。 An optical code reader as claimed in claim 33, wherein the substrate comprises a crystalline material. 如申請專利範圍第33項之光碼讀取器,其中該基板包括藍寶石。 An optical code reader as claimed in claim 33, wherein the substrate comprises sapphire. 如申請專利範圍第33項之光碼讀取器,其中該基板包括玻璃。 An optical code reader as claimed in claim 33, wherein the substrate comprises glass. 如申請專利範圍第33項之光碼讀取器,其中該基板包括一塑膠。 The optical code reader of claim 33, wherein the substrate comprises a plastic. 如申請專利範圍第33項之光碼讀取器,其中該基板包括鋁。 An optical code reader as claimed in claim 33, wherein the substrate comprises aluminum. 如申請專利範圍第33項之光碼讀取器,其中該基板包括一非結晶材料。 An optical code reader as claimed in claim 33, wherein the substrate comprises an amorphous material. 如申請專利範圍第33項之光碼讀取器,其中一束定位系統及一基板支撐系統協作以相對於該基板上之位置定位該等雷射脈衝之該等點,且其中該等點至位置之定位準確性比5微米更佳。 An optical code reader according to claim 33, wherein a beam positioning system and a substrate supporting system cooperate to position the laser pulses with respect to a position on the substrate, and wherein the points are The positioning accuracy of the position is better than 5 microns. 如申請專利範圍第33項之光碼讀取器,其中一束定位系統及一基板支撐系統協作以相對於該基板上之位置定位該等雷射脈衝之該等點,且其中該等點至位置之定位準確性比5微米更差。 An optical code reader according to claim 33, wherein a beam positioning system and a substrate supporting system cooperate to position the laser pulses with respect to a position on the substrate, and wherein the points are The location accuracy of the location is worse than 5 microns. 如申請專利範圍第39項之光碼讀取器,其中一束定位系統及一基板支撐系統協作以相對於該基板上之位置定位該等雷射脈衝之該等點,且其中該等點至位置之定位準確性比10微米更差。 An optical code reader according to claim 39, wherein a beam positioning system and a substrate supporting system cooperate to position the laser pulses with respect to a position on the substrate, and wherein the points are The positioning accuracy of the position is worse than 10 microns. 如申請專利範圍第39項之光碼讀取器,其中該群組之點提供大於或等於5之一信雜比。 An optical code reader as claimed in claim 39, wherein the point of the group provides a signal to noise ratio greater than or equal to 5. 如申請專利範圍第39項之光碼讀取器,其中該群組之點提供大於或等於10之一信雜比。 An optical code reader as claimed in claim 39, wherein the point of the group provides a signal to noise ratio greater than or equal to 10. 如申請專利範圍第39項之光碼讀取器,其中該群組之點提供大於或等於100之一信雜比。 An optical code reader as claimed in claim 39, wherein the point of the group provides a signal to noise ratio greater than or equal to 100. 如申請專利範圍第39項之光碼讀取器,其中採用軟體以將該等群組之點轉換為該二維碼之黑色正方形。 An optical code reader as claimed in claim 39, wherein the software is used to convert the points of the groups into black squares of the two-dimensional code. 如申請專利範圍第39項之光碼讀取器,其中該陣列在一列或一行中包括至少50個幾何區域。 An optical code reader as in claim 39, wherein the array comprises at least 50 geometric regions in a column or row. 如申請專利範圍第39項之光碼讀取器,其中各點具有一點面積,其中一累積點面積表示一群組之點內之該等點之點面積,其中一群組中之該點散佈在一群組面積上展開,其中該累積點面積小於或等於少於該群組面積之5%。 An optical code reader as claimed in claim 39, wherein each point has a point area, wherein a cumulative point area represents a point area of the points within a group of points, wherein the point in a group is dispersed Expanding over a group of areas, wherein the cumulative point area is less than or equal to less than 5% of the group area. 如附屬於申請專利範圍第33項至申請專利範圍第101項中任一項,不具有互斥之標的之申請專利範圍第33項至申請專利範圍第101項中任一項之光碼讀取器。 The optical code reading of any one of the patent application scope No. 33 to the patent application scope No. 101, which is not subject to the mutually exclusive subject matter, is attached to any one of the application patents, the scope of claim 33, Device. 一種用於讀取具有第一及第二相對表面之一基板內之一二維識別碼之方法,該方法包括:將光朝著該基板之該第一表面導向,其中該光具有一波長,且其中該基板及其第一表面對該波長透明,其中該二維碼由該基板內之一點散佈表示,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點,其中該光之一第一部分穿過超出該等點且在該第二表面處吸收,其中該第二表面或施覆於其上之 一塗層對該波長具吸收性,且其中該光之一第二部分穿過超出該等點且通過該第一表面傳播通過該基板之該第二表面;放大傳播通過該第一表面之該光之該第二部分;利用一成像器使傳播通過該第一表面且放大之該光之該第二部分成像;分析該光之該第二部分之一影像及由該光之該第一部分之吸收引起之一黑色背景以決定該等點之該散佈;及基於由該成像器成像之該等點之該散佈決定該二維碼。 A method for reading a two-dimensional identification code in a substrate having one of a first and a second opposing surface, the method comprising: directing light toward the first surface of the substrate, wherein the light has a wavelength, And wherein the substrate and the first surface thereof are transparent to the wavelength, wherein the two-dimensional code is represented by a dot spread in the substrate, wherein the dot spreads a plurality of groups, the points of the group include the first a point of the second group, wherein each of the points of the first and second groups represents a geometric shape such that the points are interspersed to form an array of multiple columns and rows of geometric regions, wherein some of the geometric regions a point comprising a group and some of the geometric regions lacking a point, wherein a first portion of the light passes beyond the point and is absorbed at the second surface, wherein the second surface is applied thereto a coating is absorptive to the wavelength, and wherein a second portion of the light passes through the second surface beyond the point and propagates through the first surface; the amplification propagates through the first surface a second portion of the light; imaging the second portion of the light that propagates through the first surface and magnifying with an imager; analyzing an image of the second portion of the light and the first portion of the light Absorption causes a black background to determine the spread of the points; and the two-dimensional code is determined based on the spread of the points imaged by the imager. 如附屬於申請專利範圍第103項而非申請專利範圍第1項之申請專利範圍第2項至申請專利範圍第32項中任一項之方法。 The method of any one of the claims of claim 103, and the method of claim 2, and the method of claim 32, wherein the method of claim 32 is applied. 一種用於讀取具有第一及第二相對表面之一基板內之一二維識別碼之方法,該方法包括:將光朝著該基板之該第一表面導向,其中該光具有一波長,且其中該基板及其第一表面對該波長透明,其中該二維碼由該基板內之一點散佈表示,其中該點散佈包括多個群組之點,該等群組之點包含第一及第二群組之點,其中該等第一及第二群組之點之各者代表一幾何形狀,使得該點散佈形成一陣列之多列及多行幾何區域,其中該等幾何區域之一些包含一群組之點且該等幾何區域之一些缺少點,其中該光之一些穿過超出該等點且藉由該第二表面變為反射光,其中該第二表面或施覆於其上之一塗層對該波長具吸收性,其中該反射光之一第一部分由該等點阻擋且其中該反射光之一第二部分穿過超出該等點且傳播通過該基板之該第一表面;放大傳播通過該第一表面之該反射光之該第二部分; 利用一成像器使傳播通過該基板之該第二表面且放大之該反射光之該第二部分成像;分析該反射光之該第二部分之一影像及由該反射光之該第一部分之阻擋引起之陰影以決定該等點之該散佈;及基於由該成像器成像之該等點之該散佈決定該二維碼。 A method for reading a two-dimensional identification code in a substrate having one of a first and a second opposing surface, the method comprising: directing light toward the first surface of the substrate, wherein the light has a wavelength, And wherein the substrate and the first surface thereof are transparent to the wavelength, wherein the two-dimensional code is represented by a dot spread in the substrate, wherein the dot spreads a plurality of groups, the points of the group include the first a point of the second group, wherein each of the points of the first and second groups represents a geometric shape such that the points are interspersed to form an array of multiple columns and rows of geometric regions, wherein some of the geometric regions a point comprising a group and some of the geometric regions lacking a point, wherein some of the light passes beyond the points and becomes reflected light by the second surface, wherein the second surface is applied to One of the coatings is absorptive to the wavelength, wherein a first portion of the reflected light is blocked by the points and wherein a second portion of the reflected light passes through the first surface beyond the point and propagates through the substrate Amplifying and propagating through the first surface The second portion of the reflected light; Imaging the second portion of the reflected light through the second surface of the substrate by an imager; analyzing an image of the second portion of the reflected light and blocking the first portion of the reflected light Causing a shadow to determine the spread of the points; and determining the two-dimensional code based on the spread of the points imaged by the imager. 如附屬於申請專利範圍第105項,而非申請專利範圍第1項之申請專利範圍第2項至申請專利範圍第32項中任一項之方法。 For example, the method of claim No. 105 of the scope of the patent application, and the method of claim 2, the scope of claim 2, and the method of claim 32.
TW104106234A 2014-02-28 2015-02-26 Optical mark reader TWI651654B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14/194,455 2014-02-28
US14/194,455 US9269035B2 (en) 2014-02-28 2014-02-28 Modified two-dimensional codes, and laser systems and methods for producing such codes
US201462033989P 2014-08-06 2014-08-06
US62/033,989 2014-08-06

Publications (2)

Publication Number Publication Date
TW201539328A true TW201539328A (en) 2015-10-16
TWI651654B TWI651654B (en) 2019-02-21

Family

ID=54009554

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104106234A TWI651654B (en) 2014-02-28 2015-02-26 Optical mark reader

Country Status (3)

Country Link
EP (1) EP3140776A4 (en)
TW (1) TWI651654B (en)
WO (1) WO2015130702A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657376B (en) * 2016-12-27 2019-04-21 欣技資訊股份有限公司 Can engine capable of forming a special aiming pattern and electronic device having the same
TWI759955B (en) * 2020-11-10 2022-04-01 財團法人工業技術研究院 Communication system and method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021122524A1 (en) * 2019-12-20 2021-06-24 Jt International S.A. An electrically operated smoking device including a system for identifying smoking articles comprising an indicium
JP7083200B1 (en) * 2021-07-16 2022-06-10 株式会社ユーロックテクノパーツ Authenticity Judgment Application and Authenticity Judgment System

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141664A1 (en) * 2001-08-24 2003-03-06 Laser & Med Tech Gmbh Marking of components or containers with security markings, to prevent counterfeiting, with pulsed laser light in such a way that the markings can only be viewed with a viewing apparatus
US20030062422A1 (en) * 2001-09-10 2003-04-03 Fateley William G. System and method for encoded spatio-spectral information processing
JP3923866B2 (en) * 2002-07-19 2007-06-06 株式会社キーエンス Two-dimensional code reading device setting method, two-dimensional code reading setting device, two-dimensional code reading device setting program, and computer-readable recording medium
US20060213994A1 (en) * 2005-03-22 2006-09-28 Faiz Tariq N Barcode reading apparatus and method therefor
DE102006052380B4 (en) * 2006-11-07 2013-04-25 Mühlbauer Ag Device and method for introducing information into a data carrier
JP4525671B2 (en) * 2006-12-08 2010-08-18 ソニー株式会社 Solid-state imaging device
KR100941415B1 (en) * 2007-10-23 2010-02-10 삼성전자주식회사 Liquid barcode and liquid barcode reader
JP2013505491A (en) * 2009-09-17 2013-02-14 エフ.ホフマン−ラ ロシュ アーゲー High density barcode for medical consumables
US8469519B2 (en) * 2010-06-16 2013-06-25 Eastman Kodak Company Projection apparatus providing reduced speckle artifacts
KR101144083B1 (en) * 2011-09-21 2012-05-15 박병호 Product showing qr code, and sales method of qr code and information providing method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657376B (en) * 2016-12-27 2019-04-21 欣技資訊股份有限公司 Can engine capable of forming a special aiming pattern and electronic device having the same
TWI759955B (en) * 2020-11-10 2022-04-01 財團法人工業技術研究院 Communication system and method thereof
US11361178B2 (en) 2020-11-10 2022-06-14 Industrial Technology Research Institute Communication system and method thereof

Also Published As

Publication number Publication date
EP3140776A4 (en) 2018-05-02
EP3140776A1 (en) 2017-03-15
WO2015130702A1 (en) 2015-09-03
TWI651654B (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US9594937B2 (en) Optical mark reader
TWI651654B (en) Optical mark reader
TWI659363B (en) Modified two-dimensional codes, and laser systems and methods for producing such codes
JP6912824B2 (en) Optical inspection equipment
TWI727318B (en) System for wafer inspection
CN201721134U (en) Near wavelength coaxial positioning laser marking system
JPH08503320A (en) Barcode imaging method
JP6474810B2 (en) Laser system and method for marking inside a thin layer and object produced thereby
KR20140025425A (en) Flat field telecentric scanner with diffraction limited performance
CN107111293B (en) It is established via the adaptability parts profile of the dependent side measurement with alignment characteristics
CN103105403A (en) Method and device for detecting surface defect of transparent optical component
EP3140638B1 (en) Illumination system, inspection tool with illumination system, and method of operating an illumination system
CN107824968A (en) The laser soldering device of CCD vision positionings
CN110050184B (en) Method and apparatus for inspecting defect on transparent substrate and method of emitting incident light
KR101245804B1 (en) Laser marking system
KR20190032475A (en) Machine vision systems and alignment devices for substrate alignment
US7945087B2 (en) Alignment of printed circuit board targets
GB2552406A (en) Laser processing
CN109759714B (en) Large-breadth marking system based on femtosecond laser filamentation and marking range calibration method
JP5197712B2 (en) Imaging device
CN112296511B (en) Method and device for processing, reading and detecting miniature marks of precious stones
CN109459419A (en) Fluoroscopic imaging systems and its optic path component
KR101369588B1 (en) Glass Substrate Inside Marking System
KR101928264B1 (en) Laser beam shaping apparatus
JP2024516560A (en) Asset verification system and method of use

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees