GB2552406A - Laser processing - Google Patents

Laser processing Download PDF

Info

Publication number
GB2552406A
GB2552406A GB1707925.2A GB201707925A GB2552406A GB 2552406 A GB2552406 A GB 2552406A GB 201707925 A GB201707925 A GB 201707925A GB 2552406 A GB2552406 A GB 2552406A
Authority
GB
United Kingdom
Prior art keywords
regions
transparent material
laser
range
smooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1707925.2A
Other versions
GB2552406B (en
GB201707925D0 (en
Inventor
Gerke Timothy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fianium Ltd
Original Assignee
Fianium Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fianium Ltd filed Critical Fianium Ltd
Priority to GB1707925.2A priority Critical patent/GB2552406B/en
Priority claimed from GB1411304.7A external-priority patent/GB2527553B/en
Publication of GB201707925D0 publication Critical patent/GB201707925D0/en
Publication of GB2552406A publication Critical patent/GB2552406A/en
Application granted granted Critical
Publication of GB2552406B publication Critical patent/GB2552406B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/262Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used recording or marking of inorganic surfaces or materials, e.g. glass, metal, or ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/267Marking of plastic artifacts, e.g. with laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A transparent material including an internal mark which is visible when illuminated in an illumination direction (l1, Fig.3) and viewed in a viewing direction (V1, Fig.3). The internal mark comprising a plurality of regions 10 defined by smooth, laser-induced refractive index modification. The plurality of regions comprise neighbouring regions spaced apart by a distance S within the range of 2µm to 100µm. The regions are arranged to cause light propagating in the illumination direction to be redirected such that the internal mark is visible when viewed in the viewing direction. The plurality of regions 10 may define first and second layers, wherein neighbouring regions in the first layer are spaced apart by a distance within the range of 2µm to 100µm and wherein neighbouring regions in the second layer are spaced apart by a distance within the range of 2µm to 100µm. Each region 10 may comprises a specularly-reflecting interface or a diffractive region.

Description

(71) Applicant(s):
Fianium Ltd (Incorporated in the United Kingdom)
Compass Point, Ensign Way, SOUTHAMPTON, SO31 4RA, United Kingdom (56) Documents Cited:
US 20100119808 A1 US 20080304525 A1
US 20070051706 A1 US 20040032566 A1
AMS et al., 14 February 2008, Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics, Available from: https://arxiv.org/pdf/0802.1966.pdf [Accessed 17 November 2017].
(58) Field of Search:
INT CL B23K, B41J, B41M, C03C Other: EPODOC WPI (72) Inventor(s):
Timothy Gerke (74) Agent and/or Address for Service:
Venner Shipley LLP
The Surrey Technology Centre,
The Surrey Research Park, 40 Occam Road, Guildford, Surrey, GU2 7YG, United Kingdom (54) Title of the Invention: Laser processing
Abstract Title: Transparent material including an internal mark defined by smooth laser-induced refractive index modification (57) A transparent material including an internal mark which is visible when illuminated in an illumination direction (h, Fig.3) and viewed in a viewing direction (Vi, Fig.3). The internal mark comprising a plurality of regions 10 defined by smooth, laser-induced refractive index modification. The plurality of regions comprise neighbouring regions spaced apart by a distance S within the range of 2pm to 100pm. The regions are arranged to cause light propagating in the illumination direction to be redirected such that the internal mark is visible when viewed in the viewing direction. The plurality of regions 10 may define first and second layers, wherein neighbouring regions in the first layer are spaced apart by a distance within the range of 2pm to 100pm and wherein neighbouring regions in the second layer are spaced apart by a distance within the range of 2pm to 100pm. Each region 10 may comprises a specularly-reflecting interface or a diffractive region.
input
Figure GB2552406A_D0001
At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.
/7
07 17
Figure GB2552406A_D0002
Figure GB2552406A_D0003
07 17
Figure GB2552406A_D0004
Figure GB2552406A_D0005
Figure GB2552406A_D0006
V
Figure GB2552406A_D0007
Co)
Figure GB2552406A_D0008
Figure GB2552406A_D0009
C0
Figure GB2552406A_D0010
4/7
07 17
Figure GB2552406A_D0011
Figure GB2552406A_D0012
07 17
Figure GB2552406A_D0013
07 17
Figure GB2552406A_D0014
Figure GB2552406A_D0015
07 17
Figure GB2552406A_D0016
Figure GB2552406A_D0017
- 1 Laser processing
Field
This specification relates to a laser processing method to form a smooth material 5 modification inside a transparent material, and to an associated apparatus. It also relates to a transparent material including an internal mark comprising laser-induced refractive index modification.
Background
A method of transparent material processing with an ultrashort pulse laser is described in US patent publication number US2010/0025387, published on 4 February 2010. This patent publication describes producing reflective marks which are difficult to detect with or without edge illumination. As described in paragraph [0168] of US2010/0025387, the reflective marks are produced when a “planar” crack is formed inside the material, the plane of the crack being defined by the axis of the writing laser beam and the direction of translation.
For some applications, the formation of cracks can be undesirable. For instance, in relation to gemstones such as diamond, cracks could devalue the stones. In touch20 screen display materials, cracks could result in decreased strength, thereby increasing the touch screen’s tendency to break.
Summary
According to various embodiments of the present invention, it has been found that with certain laser processing parameters, a smooth material modification is formed inside transparent materials, thereby avoiding the formation of internal cracks.
In various embodiments, a laser processing method comprises generating a laser beam comprising laser pulses having a duration less than looops, focussing the laser beam to form a focal region inside a transparent material, and varying the position of at least one of the focal region and the transparent material so as to provide a pulse-pulse overlap of between 45% and 99%. In embodiments, the method comprises varying the position of at least one of the focal region and the transparent material so as to provide a pulse-pulse overlap of between 45% and 95%. In embodiments, the method comprises varying the position of at least one of the focal region and the transparent material so as to provide a pulse-pulse overlap of between 50% and 90%.
- 2 With a pulse-pulse overlap of between 45% and 99%, or between 45% and 95%, or between 50% and 90%, it has been found that a smooth material modification is formed inside the transparent material.
In an embodiment, the relative speed between the focal region and the transparent material, the repetition rate of the laser pulses and the diameter of the beam in the focal region are chosen so that the pulse-pulse overlap is within the appropriate range.
The term “smooth material modification” means that the region which has been modified remains a continuous mass (ie: it fills the space defined by its’ outer boundaries) after the laser-induced modification. In embodiments, the formation of cracks and other material flaws is thus avoided. The material modification may comprise a modification of refractive index.
In embodiments, the fluence in the focal region is greater than the material modification threshold of the material, but below the bulk damage threshold of the material.
The transparent material may comprise unstrengthened or ion-exchange chemically strengthened alkali-aluminosilicate, sodium aluminosilicate, lithium aluminosilicate, and aluminosilicate glasses, fused silica, borosilicate glasses, including Schott BK7, and soda lime glasses. In the case of Gorilla glass or other chemically strengthened glass, the material modification is preferably made at or near the center of the glass (i.e: in the non ion-exchanged region). Methods according to embodiments of the present invention are also good candidates for forming internal marks in non-glass transparent materials, including crystalline and amorphous transparent materials, e.g: gemstones such as sapphire and diamond (including synthetic diamond), and also polymers.
In an embodiment, the method comprises forming a plurality of regions within the transparent material defined by smooth, laser-induced modification of refractive index. These regions maybe formed with a pulse-pulse overlap between 45% and 99%, or between 45% and 95%, or between 50% and 90%. In this way, the laser processing method forms a mark inside the transparent material, the mark being visible when illuminated in an illumination direction and viewed in a viewing direction.
-3The present invention also provides a transparent material including an internal mark which is visible when illuminated in an illumination direction and viewed in a viewing direction, the internal mark comprising a plurality of regions defined by smooth, laserinduced refractive index modification, neighbouring regions being spaced apart by a distance within the range of 2 pm to 100 pm, and wherein said regions are arranged to cause light propagating in the illumination direction to be redirected such that the internal mark is visible when viewed in the viewing direction.
In various embodiments, the said plurality of regions are arranged so that the visibility io of the internal mark changes if the viewing direction changes.
In various embodiments, the said plurality of regions are arranged so that the visibility of the internal mark changes if the illumination direction changes.
In an embodiment, the said plurality of regions are arranged so that the internal mark is visible when illuminated in a first illumination direction and viewed in a first viewing direction, but is not visible when illuminated in a second illumination direction and/or when viewed in a second viewing direction.
The present specification also provides a laser processing apparatus, comprising a laser source configured to generate a laser beam comprising laser pulses having a duration of less than tooops, a focussing arrangement for forming a focal region inside a transparent material, and a movement device for varying the position of at least one of the focal region and the transparent material, and a controller configured to control the movement device to form a smooth material modification inside the transparent material by varying the position of at least one of the focal region and the transparent material to provide a pulse-to-pulse overlap of between 45% and 99%. In some embodiments, the pulse-pulse overlap is between 45% and 95%, or between 50% and 90%.
In various embodiments, the laser source comprises an ultrafast laser. Advantageously, the laser source may comprise a picosecond laser source. Picosecond laser sources are compact and are less complex than, for example, shorter pulse systems. In various preferred embodiments, the picosecond laser source comprises a passively modelocked
SESAM based Master Oscillator Power Amplifier laser, though other types of
-4modelocking arrangements are possible and within the scope of the invention, as described in more detail below.
Ranges described herein (e.g., “between 1 ps and too ps”) are understood to be 5 inclusive of the endpoints, unless endpoints are specifically excluded.
“Transparent,” as that term is used herein with regard to a material, means that on a macroscopic scale (one where the dimensions are much larger than the wavelength of the photons in question), the photons can be said to substantially follow Snell's Law.
In the embodiments described herein, spot size is given in terms of the radius or diameter of the spot where the spot is circular. However, it is to be understood that the invention is not so limited, and that non circular “spots” can be used, in which case the diameter or radius specified, or ranges thereof, are to be taken to refer to the largest dimension of the spot (e.g: largest radius or diameter), with the 1 /e2 criterion used to define the boundaries of the spot.
Furthermore, the artisan of ordinary skill understands that spot sizes for circular spots can be equivalently translated to an area by simple math, and the invention as described in terms of spot area instead of spot size. For example, a spot having a diameter of 10 pm corresponds to spot area of π * (focused spot size radius)2, where in this instance the radius = 5 pm, and again the 1/e2 criterion is used to evaluate the boundaries of the spot area. Determinations of fluence can also be made for areas and non-circular spots.
Marks are described herein as being “visible”, such as visible at a certain viewing angles. Though “visible” can mean visible to the human eye, “vision” is not so limited in industrial and other processes or interest, and “visible” can mean, in such instances, machine visible, that is, visible in a machine vision process, such as a process using an illumination wavelength not typically visible to the human eye.
Brief description of the drawings
In order that the invention may be more easily understood, embodiments thereof will now be described, byway of example only, with reference to the accompanying drawings, in which:
-5Figure 1 illustrates a laser processing apparatus according to an exemplary embodiment;
Figure 2 illustrates a group of laser modified regions;
Figure 3 schematically illustrates regions inside a transparent material in which the refractive index has been modified;
Figure 4 schematically illustrates a watermark comprising a pattern formed inside the transparent material;
Figure 5 shows an example of a transparent material which includes a watermark;
Figure 6 schematically illustrates an exemplary process for forming regions of modified refractive index that make up a watermark.
Detailed description
Overview
Figure 1 shows a laser processing apparatus 1 according to an exemplary embodiment. As shown, laser processing apparatus 1 includes a laser source 2 configured to generate a beam of laser pulses and a focussing arrangement 3 arranged to focus the beam of laser pulses inside a transparent material workpiece 4. A movement device comprising a translation stage 5 is arranged for varying the position of the transparent material relative to the focal region of the beam. The translation stage is under control of a controller 6, which in the particular embodiment shown in Figure 1 comprises a computer controller that includes one or more of a display device and a manual input device (e.g: pointing and selecting device or keyboard). The controller 6 is configured to control the focussing arrangement 3, translation stage 5 and laser source 2 so as to modify an internal region of the transparent material workpiece 4.
Laser source
The laser source 2 may be selected to generate laser pulses at a wavelength at which the transparent material has a low linear absorption, for example in the near infrared (e.g: 1064 nm), near ultraviolet (e.g: 355 nm) or in the visible spectrum (e.g: 532 nm), depending on the material to be processed.
-6The pulse duration of the generated pulses may be in the range of about o.i ps to 1000 ps, or in the range of 0.2 to 1000 ps, or in the range 1 ps to 1000 ps, or in the range of 1 ps to 100 ps. In some embodiments, the pulse duration is in the range of 2 ps to 30 ps.
The laser pulses may be generated at a repetition rate of between 10 KHz and 2 MHz.
In a preferred embodiment, the pulse repetition rate is 200 kHz.
In one example, the laser source comprises a master oscillator power amplifier (ΜΟΡΑ) laser such as a modelocked ΜΟΡΑ. The modelocking element can be passive or active, such as a saturable absorber, which can be a transmissive device, or a reflective device such as a semiconductor saturable absorber mirror (SESAM). The saturable absorber can, for example, be based on a semiconductor, carbon nanotube, graphene, or any other mechanism known in the art for achieving optical saturable absorption for passive modelocking. As will be appreciated by those skilled in the art, a saturable absorber has specific optical properties which can be optimised for the laser cavity, for example non-saturable loss and relaxation time. It will be understood that the modelocked pulses may be generated in other ways, for example by modelocking based on nonlinear polarization evolution. Modelocking may be external or internal to the cavity, or “hybrid”, that is, a combination of external and internal modelocking.
The ΜΟΡΑ may generate radiation at 1064 nm. A frequency-doubling arrangement maybe provided to harmonically double the generated radiation to 532 nm before it is focussed within the transparent material. The laser source maybe an all-fiber laser. As used herein, the term “all fiber” used in reference to a device refers to a device that employs fiber elements (e.g., elements made in the fiber, such as a fiber Bragg grating) or fiber-pigtailed elements such optical communication within the “all fiber” device does not involve free space communication (except perhaps within a fiber pigtailed device). Optical communication within such an “all fiber” device is typically via fiber splices, connectorized fibers and the like. Alternatively, the laser source may comprise a fiber-bulk hybrid laser, e.g: a hybrid 1064 nm laser.
Operation of the laser source 2 maybe controlled by a laser controller 2a, which in turn may be controlled by computer controller 6. Laser controllers to control operation of laser sources are well known per se and will not be described in any detail herein.
-ΊThe average power (and therefore the energy per pulse) maybe modified by adjusting the amplifier pump current so as to achieve the desired fluence within the transparent material. Other power control schemes are also possible. For example, a manual or motorized half-wave plate and a polarizing beamsplitter maybe provided, or an acousto-optic or electro-optic modulator may be employed.
Focussing arrangement
In the exemplary embodiment of Figure l, the beam emitted by the laser source 1 passes through beam expander 7, and is directed by mirror 8 into focussing device 9. The beam expander 7 may for example comprise a 2-8x beam expander.
Various focussing devices may be employed to achieve, for example, a focussed spot size having a 1/e2 spot size diameter in the range from about 2 pm to about too pm, or within the range from about 5 pm to about too pm, or within the range 5 pm to about 20 pm. In some embodiments, the focussed spot size has a 1/e2 spot size diameter in the range from 5 pm to 10 pm. In other embodiments, the focussed spot size has a 1/e2 spot size diameter in the range from 20 pm to 30 pm.
Those skilled in the art will appreciate that the focussing arrangement may be provided with fine focus control under control of computer controller 6. In various embodiments, the fine focus control may be configured to position the focussed laser beam waist position at any depth within suitable transparent material workpieces. In various embodiments, suitable transparent material workpieces have a thickness greater than the depth of focus (or Rayleigh range) of the laser beam, such that the laser-induced modification is formed inside the glass and not on the surface. In some examples, the transparent material workpiece has a thickness < = 4 mm. Alternatively, the thickness of the transparent material workpiece may be greater than 4 mm.
Movement device
In the example of Figure 1, a computer-controlled translation stage 5 is employed to move the transparent material relative to the focal region of the beam. The translation stage maybe configured to move the transparent material at a speed in the range from 1 mm/s to > 3000 mm/s. The translation stage of Figure 1 is a 3D (x-y-z) translation
-8stage. However, in alternative embodiments a 2D (x-z) translation stage (for one axis field stepping) or a lD translation stage (z only for focus) may be provided.
Instead of, or in addition to, moving the transparent material relative to the focal region 5 of the beam, a 2-D or 3-D galvo scanner could alternatively or in addition be provided to control the location of the focal region, e.g: to provide a linear beam positioning speed in the range from 1 mm/s to > 3000 mm/s.
In some embodiments, the focal region moves relative to the transparent material at a relative speed in the range from 50 mm/s to 1000 mm/s, or in the range from too mm/s to 2000 mm/s, or in the range from 200 mm/s to 400 mm/s.
Pulse-pulse overlap
According to various embodiments of the invention, the relative speed between the focal region and the transparent material, the repetition rate of the laser pulses and the diameter of the beam in the focal region are chosen so that the pulse-pulse overlap is between 45% and 99%. In some embodiments, the pulse-pulse overlap is between 45% and 95%. In some embodiments, the pulse-pulse overlap is between 50% and 90%.
Pulse-pulse overlap refers to overlap between the focal region defined by successive pulses. The spatial separation between successive pulses (in pm) can be calculated as:
Separation [pm] = speed [mm/s]/ Rep Rate [kHz]
Where “speed [mm/s]” is the relative speed in mm/s between the focal region and the transparent material and “Rep Rate (Khz)” is the repetition rate of the laser pulses in Khz.
If the separation is greater than or equal to the diameter of the beam in the focal region, then the pulse-pulse overlap is zero. If the separation is less than the diameter of the beam in the focal region, then the pulse-pulse overlap can be determined by the following expression:
Overlap [%] = (1- (Separation [pm] / Focussed spot size [pm]) ) * 100
-9Where “Focussed spot size [pm]” is the diameter of the beam in the focal region in pm.
It has been found that with a pulse-pulse overlap between 45% and 99%, or between 45% and 95%, or between 50% and 90%, a smooth material modification can be formed inside the transparent material. The output energy per pulse is chosen to produce a fluence value within the transparent material so that the smooth material modification is formed. The smooth material modification thus formed does not exhibit microcracks or microvoids.
In various embodiments, a fluence value is produced within the transparent material that it is greater than the refractive index modification threshold of the transparent material workpiece, such as by appropriate selection of the focused beam diameter together with the output energy per pulse. The fluence can be greater than the refractive index modification threshold but less than the bulk damage threshold of the material. In producing the smooth material modification, the beam can be focused within the transparent workpiece to have sufficient fluence to excite multi-photon absorption.
As noted above, the fluence can be less than the bulk damage threshold of the material.
As will be appreciated by those skilled in the art, the bulk damage threshold of a material refers to the fluence value at which a crack, void or similar damage feature is produced.
Fluence is defined according to the following expression:
Fluence = Energy per pulse (J) / (π * (focused spot size radius)2)
In some examples, e.g: in the case of a transparent material in the form of Corning Gorilla glass (GG2 glass) or close glass type analogues (including borosilicate), the fluence in the focal region may be between 4-20 J/cm2. At fluences of above too J/cm2 it has been found using pulses of 46 ps duration that a line of separated cracks is formed within GG2 glass.
By translating the focal region relative to the transparent material workpiece with the fluence below the bulk damage threshold of the material, a smooth material modification comprising a 2D or 3D pattern maybe built up. Computer controller 1
- 10 controls the output of laser source l, the focussing arrangement 3 and the movement device to create the desired pattern.
Examples
In an embodiment, the laser processing apparatus is capable of producing focused spot sizes in the range from about 2 pm to about too pm and of linear beam positioning speeds in the range from 1 mm/s to >3000 mm/s and capable of being programmed to produce alphanumeric, bar code, raster and vector scanned marks and having fine focus control capable of positioning the focused laser beam waist position at any zposition (depth) within the workpiece. The laser source is selected to have a wavelength in the near infrared, near UV or visible spectrum where the transparent material has very low linear absorption. The laser pulsewidth is selected to have a very short pulse duration, with a preferred range of about 0.1-1000 ps.
In one preferred embodiment of the present invention, the laser source 2 is a passively modelocked SESAM all-fiber ΜΟΡΑ 1064 nm laser, harmonically doubled to 532 nm, and emitting at a pulsewidth within the range of about 0.2 ps to 1000 ps, or about 1 ps to too ps, and more preferably within a range of about 2 ps to 30 ps. The laser 2 is incorporated into a laser processing system apparatus capable of producing focused spot sizes in the range from about 2 pm to about too pm and of linear beam positioning speeds in the range from 1 mm/s to >3000 mm/s and capable of being programmed to produce alphanumeric, bar code, raster and vector scanned marks and having fine focus control capable of positioning the focused laser beam waist position at any z25 position (depth) within the workpiece. The focus of the 532 nm laser output is positioned inside the bulk of the transparent material workpiece and the location of the focus is controlled via a 2D or 3D galvo scanner. The focus can alternatively be fixed while the part is moved in 2D or 3D to build up the full mark. In either case output of laser source 1 can be synchronously controlled with the focus/part movement in order to create arbitrarily shaped marks. In one illustrative example, using a 5 ps laser output pulsewidth, the laser pulse repetition frequency is selected to be about 200 kHz and the linear translation speed focused spot is selected from a range of about 50-1000 mm/s and where the focused spot size diameter is in the range from about 5 to 10 pm, 1/e2.
- 11 In another preferred embodiment of the present invention, the process laser is a hybrid fiber and solid state 1064 nm laser, harmonically doubled to 532 nm, and emitting at a pulsewidth within the range of about 1 ps to 1000 ps, or about 1 ps to 100 ps, and more preferably within a range of about 2 ps to 30 ps.
In another preferred embodiment of the present invention, the laser source 2 is a hybrid 1064 nm laser, emitting at a pulsewidth within the range of about 1 ps to 1000 ps, or about 1 ps to 100 ps, and more preferably within a range of about 2 ps to 30 ps and is incorporated into a 1064 nm version of the laser processing apparatus described above. The laser processing apparatus is capable of producing focused spot sizes in the range from about 5 pm to about 100 pm and of linear beam positioning speeds in the range from 1 mm/s to >3000 mm/s and capable of being programmed to produce alphanumeric, bar code, raster and vector scanned marks and having fine focus control capable of positioning the focused laser beam waist position at any z-position (depth) within the workpiece. In one illustrative example, using about 20 ps laser output pulsewidth, the laser pulse repetition rate is selected to be about 200 kHz and the linear translation speed focused spot is selected from a range of about 100-2000 mm/s and the focused spot size diameter is chosen to be in the range from about 20 to 30 pm, 1/e2.
In another exemplary embodiment, the laser pulse repetition rate is 200kHz and the relative speed between the focal region and the transparent material workpiece is 2004oomm/s. The pulse-to-pulse spacing is around i-2pm, and for a 5-iopm spot size the pulse to pulse overlap is between 50-90%.
In another embodiment, the transparent material is processed with near UV radiation, e.g: at 355 nm, which is above the UV cutoff for sapphire (about 140 nm), diamond, (about 220nm) and for Corning alkali-aluminosilicate glass (about 350 nm).
In various embodiments, the focused beam diameter is selected in combination with the output energy per pulse to produce a fluence value within the transparent material workpiece which is greater than the refractive index modification threshold of the transparent material workpiece and such that the beam as focused within the transparent workpiece has sufficient fluence to produce smooth and variable index of refraction features in the bulk of transparent materials. The fluence can be such so as
- 12 to excite multi-photon absorption and facilitate the production of smooth variation of the refractive index.
Using laser processing parameters as described herein, smooth lines or dots maybe 5 marked in the bulk of transparent materials. These lines or dots can be arranged in arbitrary shapes such as images, text, or logos and the size can be either micro- or macroscopic. The spacing of the lines and dots are larger than the focused spot size, but small enough to cover a significant portion of the bulk and the portion covered can directly relate to the visibility of the mark. The energy per pulse can also be increased to increase the visibility of the mark, and increasing the number of marks replicated in depth can also increase the visibility of the mark. The desired level of visibility can be tailored for the application: for cosmetic marks high visibility is often desirable, whereas for security watermarks and anti-counterfeiting low and virtually invisible marks are often desirable.
Embodiments also allow for the creation of marks that are invisible to the naked eye because of low contrast or small size under certain processing conditions. Under another set of processing conditions more easily visible marks can be made. By writing a number of identical marks at decreasing depths in the material, the visibility can be discretely controlled from virtually invisible to easily identifiable. Thus, in embodiments, the mark can be made invisible to the naked eye both micro- and macroscopically, difficult to see and only visible under certain illumination/viewing conditions, or quite easy to see under specific illumination/viewing conditions.
Advantageously, marks according to various embodiments of the invention are found not to require perpendicular illumination in order to be visible. Advantageously, it is not necessary to provide either a femtosecond laser source or tight focusing to form the marks, and the marks are observed to be free or substantially free of microcracks or microvoids.
Figure 2 illustrates a group of individual smooth laser modified regions in an intraglass watermark produced in a cross-section of a high quality soda lime glass microscope slide. The sample was cleaved to expose the laser modified areas. This particular material modification was formed with a constant focal depth using 20 ps laser output at a 1064 nm wavelength, with a spot size diameter of about 25 pm, 1/e2.
-13The index features may be oriented and ordered such that when viewed with a light source (light, LED, white diffuse surface) off axis in the background they appear as macro or microscopic marks when viewed at a particular angle. The marks can be stacked or multiplexed in a single location but oriented at various angles so that each mark is visible in a particular illumination/viewing condition. In this embodiment, the illumination source could be an array of sources at various angles each of which would result in a single mark of many written in the same location to be visible. Alternatively the illumination source and viewing angle could be singular and fixed so that the various marks appear alternately as the part is rotated in place. Alternatively the illumination source and part are fixed and the viewing angle/location can vary or be multiple fixed viewing devices such as cameras, photodetectors, or human eyes.
Laser processing apparatus according to various embodiments may be used to form marks within transparent materials which are visible in some illumination conditions but not others. Such marks (which are referred to herein as “watermarks”, and which can also be referred to as “stealth marks”) comprise smooth refractive index variations which define a plurality of spaced, laser-modified regions within the transparent material.
Figure 3 (a) schematically illustrates regions 10 in which the refractive index has been modified by laser processing apparatus 1 within a transparent material. For clarity, the transparent material within which the regions 10 are formed is not shown in Figure 3. In the example of Figure 3(a), each region 10 comprises a generally rectangular planar region, but other shapes are possible.
As shown in Figure 3(a), neighbouring regions 10 are spaced from one another. In this way, light is directed into a particular viewing direction when the regions 10 are illuminated by light directed in a corresponding illumination direction. The spacing between neighbouring regions 10 maybe between 10 pm and 100 pm (e.g: 50 pm).
It will be understood that the regions 10 may form part of an overall watermark (not shown) comprising many further generally parallel regions.
As illustrated in Figure 3(a), light directed in an illumination direction II is redirected by the regions 10 and can be viewed by observer O viewing the mark in a viewing direction Vi. Thus, when illuminated in the illumination direction and viewed in the
-14viewing direction, the watermark is visible. However, as illustrated in Figure 3(b), when illuminated by light propagating in a different illumination direction I2, the observer 0 will not receive a substantial amount of the light redirected by the regions
10. Accordingly, the visibility of the watermark depends on the angle of illumination. It will be understood that if the illumination direction is kept the same and the watermark is viewed at different angles, the visibility of the watermark will be different at different Hewing angles.
Redirection of light by the regions 10 may occur by specular reflection. That is, the 10 regions 10 may comprise respective specularly reflecting interfaces 11 arranged so that strong reflection occurs into the viewing direction when the specularly-reflecting interfaces 11 are illuminated by light directed in a corresponding illumination direction. The term “specularly-reflecting” should not be understood to be limited to any particular reflectivity. The fraction of light reflected from each specularly-reflecting interface need not be high and could for example be only a few percent or less.
As illustrated in Figure 4, regions 10 can be arranged to form a watermark comprising a pattern 12 formed inside the transparent material. The visibility of this pattern varies with viewing direction and/or illumination direction, for the reasons described above.
For example, as illustrated in Figure 4, when illuminated in an illumination direction It, the watermark can be seen by observer Oi viewing in a viewing direction Vi. However, observer 02 observes the watermark in a different viewing direction and thus does not receive a substantial amount of the light reflected by the regions 10.
Figure 5(a) and 5(b) show an example of a transparent material in the form of a soda lime glass which includes a watermark comprising the Fianium logo. As shown in
Figure 5(a), when viewed with low angle illumination, the logo is visible. However, as shown in Figure 5(b), when illuminated at larger angles, the visibility of the pattern is greatly reduced. It will be understood that instead of the Fianium logo, any other word, pattern, logo etc could be formed. Also, instead of soda lime glass, the transparent material may comprise unstrengthened or ion-exchange chemically strengthened alkali-aluminosilicate, sodium aluminosilicate, lithium aluminosilicate, and aluminosilicate glasses; fused silica; borosilicate glasses, including Schott BK7, or sapphire, gemstones or polymers.
Watermarks may be formed by selectively modifying the refractive index of the transparent material using the laser processing apparatus 1. Figure 6 schematically
-15illustrates an exemplary process for forming regions of modified refractive index 10 that make up a watermark. As shown, each region 10 of modified refractive index is formed by varying the position of the focal region relative to the transparent material. The relative speed is selected so that the pulse-pulse overlap is in the appropriate range, as described above. The length V of each region 10 depends on the pattern to be formed. The depth D may for example be between 10 pm and 100 pm, or between 30 pm and 50 pm. Once a region 10 is formed, the laser beam is turned off and the focal region is moved in a direction perpendicular to the previously formed region 10, to form a spacing S of between 10 pm and 100 pm (e.g: 50 pm) between neighbouring regions. The beam is then switched on again and the next region 10 is formed. It will be understood that in this example, neighbouring regions 10 are formed by varying the position of the beam in opposite directions, as shown in Figure 6.
Although Figure 6 illustrates forming a single array of planar regions 10, it will be understood that multiple layers of planar regions could be formed, one in front of the other. For example, between 1 and 8 layers could be formed. It has been found that increasing the number of layers generally increases the visibility of the watermark.
In some embodiments, multiple watermarks may be included within the same area of a transparent material. The angle of inclination of the regions 10 may be different for different watermarks within the material, so that different watermarks are visible in the same location at different viewing/illumination angles.
Instead of or in addition to redirection of light by specular reflection, redirection of light may occur due to diffraction or due to smooth phase changes caused by the refractive index modification. For example, each region 10 may comprise a diffracting region, or a region of phase modification that distorts incoming illumination, thereby to redirect light.
In the case of redirection by diffraction, the spacing between regions 10 may be small enough so that the marks act as diffractive bodies similar to volumetric gratings, and diffract the illumination orthogonal to the line or dot orientation and at a particular angle that is defined by the mark line or dot spacing and the illumination wavelength. The mark could be a 2D or 3D diffractive mark that when illuminated with a source a specified pattern is projected in the near-field or in the far-field. The projected pattern
-16can be multiplexed such that when the mark is illuminated at different angles or with different wavelengths, different patterns are projected if the mark is 3D.
Embodiments in which the mark is a 2D or 3D diffractive mark allows a source to project an image or pattern onto a viewing screen or object in the near-field or far-field. This capability may be useful for example in the consumer electronics markets where a small laser, LED, or other suitable light source could be mounted under the mark and used to project a logo or other image in the far-field for the purpose of anticounterfeiting.
As will be understood from the foregoing, in various embodiments of the present invention, subnanosecond pulses are used to form internal modifications to transparent materials, without forming cracks inside the material. Since no cracks are formed, the material modification does not significantly decrease the structural integrity of the material as a substrate, nor does it induce material flaws that could devalue the material. Various embodiments relate to a method for creating semivisible watermarks inside bulk transparent materials using a non-contact picosecond laser direct writing process.
This specification also provides the subject matter of the following clauses:
Clause 1. A laser processing method, comprising:
generating a laser beam comprising laser pulses having a duration less than looops;
focussing the laser beam to form a focal region inside a transparent material;
varying the position of at least one of the focal region and the transparent material so as to provide a pulse-to-pulse overlap of between 45% and 99%, thereby to form a smooth material modification inside the transparent material.
Clause 2. A laser processing method according to clause 1, wherein the fluence in the focal region is less than the bulk damage threshold of the transparent material.
Clause 3. A laser processing method according to clause 1 or clause 2, wherein the laser pulses have a duration of at least 0.1 ps.
-17Clause 4. A laser processing method according to clause 3, wherein the laser pulses have a duration within the range of 2 ps to 30 ps.
Clause 5. A laser processing method according to any preceding clause, wherein 5 the focal region has a 1/e2 spot size diameter within the range of 2 pm to 100 pm.
Clause 6. A laser processing method according to clause 5, wherein the focal region has a 1/e2 spot size diameter within the range of 5 pm to 10 pm.
Clause 7. A laser processing method according to any preceding clause, wherein the laser pulses have a wavelength within the near-infrared, near UV, or visible region of the electromagnetic spectrum.
Clause 8. A laser processing method according to any preceding clause, wherein the smooth material modification comprises a smooth refractive index modification.
Clause 9. A laser processing method according to clause 8, wherein the laser processing method comprises forming a mark inside the transparent material, the mark being visible when illuminated in an illumination direction and viewed in a viewing direction, wherein forming the mark comprises said varying the position of at least one of the focal region and the transparent material to provide a pulse overlap of between 45% and 99%, thereby to form a plurality of regions defined by smooth, laser-induced modification of refractive index, wherein said plurality of regions are arranged to cause light propagating in the illumination direction to be redirected such that the mark is visible when viewed in the viewing direction.
Clause 10. A laser processing method according to clause 9, wherein said plurality of regions define a plurality of layers.
Clause 11. A laser processing method according to any of clauses 1 to 10, wherein the smooth material modification comprises a diffractive area.
Clause 12. A laser processing method as clauseed in any preceding clause, wherein the position of at least one of the focal region and transparent material is varied so as to provide a pulse-pulse overlap of between 50% and 90%.
-18Clause 13. A transparent material which has been processed by the method of any preceding clause so as to form a smooth material modification inside the transparent material.
Clause 14. A laser processing apparatus, comprising:
a laser source configured to generate a laser beam comprising laser pulses having a duration of less than 1000 ps;
a focussing arrangement for forming a focal region inside a transparent material;
a movement device for varying the position of at least one of the focal region and the transparent material; and a controller configured to control the movement device to form a smooth material modification inside the transparent material by varying the position of at least one of the focal region and the transparent material to provide a pulse-to-pulse overlap of between 45% and 99%.
Clause 15. A laser processing apparatus according to clause 14, wherein the laser source comprises a passively modelocked SESAM based Master Oscillator Power Amplifier laser.
Clause 16. A laser processing apparatus according to clause 14 or clause 15, wherein the laser source is configured to generate laser pulses having a duration within the range of 2 ps to 30 ps.
Clause 17. A laser processing apparatus according to any of clauses 14 to 16, wherein the focussing arrangement and laser source are configured so that pulse energy of the pulses generated by the laser source and the 1/e2 spot size diameter in the focal region are such that the fluence in the focal region is in the range between 4 and 20 J/cm2
Clause 18. A laser processing apparatus according to any of clauses 14 to 17, wherein the focussing arrangement is configured to form a focal region having a 1/e2 spot size diameter within the range of 5 pm to 10 pm.
Clause 19. A transparent material including an internal mark which is visible when illuminated in an illumination direction and viewed in a viewing direction, the internal
-19mark comprising a plurality of regions defined by smooth, laser-induced refractive index modification, wherein said plurality of regions comprise neighbouring regions spaced apart by a distance within the range of 2 pm to 100 pm, and wherein said regions are arranged to cause light propagating in the illumination direction to be redirected such that the internal mark is visible when viewed in the viewing direction.
Clause 20. A transparent material according to clause 19, wherein said plurality of regions define first and second layers, wherein neighbouring regions in the first layer are spaced apart by a distance within the range of 2 pm to 100 pm and wherein neighbouring regions in the second layer are spaced apart by a distance within the range of 2 pm to 100 pm.
Clause 21. A transparent material according to clause 19 or clause 20, wherein said plurality of regions comprise a plurality of planar regions.
Clause 22. A transparent material according to clause 21, wherein said plurality of planar regions are parallel to one another and comprise neighbouring planar regions spaced apart by a distance of between 2 pm and too pm in a direction perpendicular to said planar regions.
Clause 23. A transparent material according to any of clauses 19-22, wherein said plurality of regions comprise regions evenly spaced within the transparent material.
Clause 24. A transparent material according to any of clauses 19-23, wherein said plurality regions have a depth of between 10 pm and 100pm.
Clause 25. A transparent material according to any of clauses 19 to 24, comprising:
a first internal mark comprising a first plurality of regions defined by smooth, laser induced modification of refractive index, said first plurality of regions being 30 substantially parallel to one another and comprising neighbouring regions spaced by a distance within the range of 2 pm to 100 pm;
a second internal mark comprising a second plurality of regions defined by smooth, laser-induced modification of refractive index, said second plurality of regions being substantially parallel to one another and comprising neighbouring regions spaced by a distance within the range of 2 pm to too pm,
- 20 wherein the first plurality of regions are oriented differently to the second plurality of regions.
Clause 26. A transparent material according to clause 25, wherein the first and 5 second marks spatially overlap within the transparent material.
Clause 27. A transparent material according to any of clauses 19 to 26, wherein each said region of smooth, laser-induced modification of refractive index comprises a specularly-reflecting interface.
Clause 28. A transparent material according to any of clauses 19 to 26, wherein each said region of smooth, laser-induced modification of refractive index comprises a diffractive region.
Clause 29. A laser processing apparatus substantially as described herein with reference to the accompanying drawings.
Clause 30. A transparent material substantially as described herein with reference to the accompanying drawings.
Many modifications and variations will be evident to those skilled in the art, that fall within the scope of the following claims:

Claims (7)

  1. Claims
    1. A transparent material including an internal mark which is visible when illuminated in an illumination direction and viewed in a viewing direction, the internal
    5 mark comprising a plurality of regions defined by smooth, laser-induced refractive index modification, wherein said plurality of regions comprise neighbouring regions spaced apart by a distance within the range of 2 pm to 100 pm, and wherein said regions are arranged to cause light propagating in the illumination direction to be redirected such that the internal mark is visible when viewed in the viewing direction.
    io
  2. 2. A transparent material as claimed in claim l, wherein said plurality of regions define first and second layers, wherein neighbouring regions in the first layer are spaced apart by a distance within the range of 2 pm to too pm and wherein neighbouring regions in the second layer are spaced apart by a distance within the
    15 range of 2 pm to too pm.
  3. 3. A transparent material as claimed in claim l or claim 2, wherein said plurality of regions comprise a plurality of planar regions.
    20
  4. 4. A transparent material as claimed in claim 3, wherein said plurality of planar regions are parallel to one another and comprise neighbouring planar regions spaced apart by a distance of between 2 pm and too pm in a direction perpendicular to said planar regions.
    25 5. A transparent material as claimed in any of claims 1-4, wherein said plurality of regions comprise regions evenly spaced within the transparent material.
    6. A transparent material as claimed in any of claims 1-5, wherein said plurality regions have a depth of between 10 pm and 100pm.
    7. A transparent material as claimed in any of claims 1 to 6, comprising:
    a first internal mark comprising a first plurality of regions defined by smooth, laser induced modification of refractive index, said first plurality of regions being substantially parallel to one another and comprising neighbouring regions spaced by a
    35 distance within the range of 2 pm to 100 pm;
    - 22 a second internal mark comprising a second plurality of regions defined by smooth, laser-induced modification of refractive index, said second plurality of regions being substantially parallel to one another and comprising neighbouring regions spaced by a distance within the range of 2 pm to too pm,
  5. 5 wherein the first plurality of regions are oriented differently to the second plurality of regions.
  6. 8. A transparent material as claimed in claim 7, wherein the first and second marks spatially overlap within the transparent material.
  7. 9. A transparent material as claimed in any of claims 1 to 8, wherein each said region of smooth, laser-induced modification of refractive index comprises a specularly-reflecting interface.
    15 10. A transparent material as claimed in any of claims 1 to 8, wherein each said region of smooth, laser-induced modification of refractive index comprises a diffractive region.
    Intellectual
    Property
    Office
GB1707925.2A 2014-06-25 2014-06-25 Laser processing Active GB2552406B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1707925.2A GB2552406B (en) 2014-06-25 2014-06-25 Laser processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1411304.7A GB2527553B (en) 2014-06-25 2014-06-25 Laser processing
GB1707925.2A GB2552406B (en) 2014-06-25 2014-06-25 Laser processing

Publications (3)

Publication Number Publication Date
GB201707925D0 GB201707925D0 (en) 2017-06-28
GB2552406A true GB2552406A (en) 2018-01-24
GB2552406B GB2552406B (en) 2019-01-23

Family

ID=59201470

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1707925.2A Active GB2552406B (en) 2014-06-25 2014-06-25 Laser processing

Country Status (1)

Country Link
GB (1) GB2552406B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200206841A1 (en) * 2017-09-01 2020-07-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laser Machining a Transparent Workpiece
USRE48765E1 (en) 2014-06-11 2021-10-05 Apple Inc. Laser marking process
US11200386B2 (en) 2018-09-27 2021-12-14 Apple Inc. Electronic card having an electronic interface
US11299421B2 (en) 2019-05-13 2022-04-12 Apple Inc. Electronic device enclosure with a glass member having an internal encoded marking
US11571766B2 (en) 2018-12-10 2023-02-07 Apple Inc. Laser marking of an electronic device through a cover
US12083623B2 (en) 2013-06-09 2024-09-10 Apple Inc. Laser-formed features

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040032566A1 (en) * 2001-09-17 2004-02-19 Menicon Co., Ltd. Method of marking ophhalmic lens by using laser radiation of femtosecond pulse width
US20070051706A1 (en) * 2005-09-08 2007-03-08 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
US20080304525A1 (en) * 2005-09-22 2008-12-11 Axel Kupisiewicz Method for Internal Laser Marking in Transparent Materials and Device for Implementing Said Method
US20100119808A1 (en) * 2008-11-10 2010-05-13 Xinghua Li Method of making subsurface marks in glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040032566A1 (en) * 2001-09-17 2004-02-19 Menicon Co., Ltd. Method of marking ophhalmic lens by using laser radiation of femtosecond pulse width
US20070051706A1 (en) * 2005-09-08 2007-03-08 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
US20080304525A1 (en) * 2005-09-22 2008-12-11 Axel Kupisiewicz Method for Internal Laser Marking in Transparent Materials and Device for Implementing Said Method
US20100119808A1 (en) * 2008-11-10 2010-05-13 Xinghua Li Method of making subsurface marks in glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMS et al., 14 February 2008, "Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics", Available from: https://arxiv.org/pdf/0802.1966.pdf [Accessed 17 November 2017]. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12083623B2 (en) 2013-06-09 2024-09-10 Apple Inc. Laser-formed features
USRE48765E1 (en) 2014-06-11 2021-10-05 Apple Inc. Laser marking process
US20200206841A1 (en) * 2017-09-01 2020-07-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laser Machining a Transparent Workpiece
US11200386B2 (en) 2018-09-27 2021-12-14 Apple Inc. Electronic card having an electronic interface
US11200385B2 (en) 2018-09-27 2021-12-14 Apple Inc. Electronic card having an electronic interface
US11571766B2 (en) 2018-12-10 2023-02-07 Apple Inc. Laser marking of an electronic device through a cover
US11299421B2 (en) 2019-05-13 2022-04-12 Apple Inc. Electronic device enclosure with a glass member having an internal encoded marking

Also Published As

Publication number Publication date
GB2552406B (en) 2019-01-23
GB201707925D0 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
GB2552406A (en) Laser processing
US11008250B2 (en) Laser processing
KR101904680B1 (en) Micromachining method and system for patterning a material, and method for using one such micromachining system
Weingarten et al. Glass processing with pulsed CO 2 laser radiation
CN105499806A (en) Femtosecond laser direct writing device and femtosecond laser direct writing method for annular waveguide in transparent materials
CN105241857A (en) Super-resolution imaging system
US9594937B2 (en) Optical mark reader
TWI659363B (en) Modified two-dimensional codes, and laser systems and methods for producing such codes
WO2016087393A1 (en) Multi-wavelength generalized phase contrast system and method
Wlodarczyk et al. Direct CO 2 laser-based generation of holographic structures on the surface of glass
JP2006068762A (en) Method and apparatus of laser beam machining
Mills et al. Laser ablation via programmable image projection for submicron dimension machining in diamond
Dudutis et al. Transversal and axial modulation of axicon-generated Bessel beams using amplitude and phase masks for glass processing applications
Ma et al. Laser multi-focus precision cutting of thick sapphire by spherical aberration rectification
Long et al. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams
Liu et al. Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses
Kumkar et al. Throughput scaling by spatial beam shaping and dynamic focusing
Zhang et al. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering
Nacius et al. Spatially displaced and superposed Bessel beams for transparent material laser microprocessing
Kim et al. Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system
McArthur et al. Investigating focus elongation using a spatial light modulator for high-throughput ultrafast-laser-induced selective etching in fused silica
Zhang et al. Evolution of polarization dependent microstructures induced by high repetition rate femtosecond laser irradiation in glass
Cheng et al. Highly uniform parallel scribing inside transparent materials with ultrafast lasers: from 2D to 3D
Zhang et al. The fabrication of circular cross-section waveguide in two dimensions with a dynamical slit
Mauclair et al. Multipoint Focusing of Single Ultrafast Laser Pulses.

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20181018 AND 20181024