TW201510529A - Wdrpuh抗原決定位胜肽以及含此胜肽之疫苗 - Google Patents

Wdrpuh抗原決定位胜肽以及含此胜肽之疫苗 Download PDF

Info

Publication number
TW201510529A
TW201510529A TW103140741A TW103140741A TW201510529A TW 201510529 A TW201510529 A TW 201510529A TW 103140741 A TW103140741 A TW 103140741A TW 103140741 A TW103140741 A TW 103140741A TW 201510529 A TW201510529 A TW 201510529A
Authority
TW
Taiwan
Prior art keywords
peptide
wdrpuh
cytotoxic
antigen
cell
Prior art date
Application number
TW103140741A
Other languages
English (en)
Other versions
TWI539160B (zh
Inventor
Takuya Tsunoda
Ryuji Ohsawa
Sachiko Yoshimura
Tomohisa Watanabe
Original Assignee
Oncotherapy Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oncotherapy Science Inc filed Critical Oncotherapy Science Inc
Publication of TW201510529A publication Critical patent/TW201510529A/zh
Application granted granted Critical
Publication of TWI539160B publication Critical patent/TWI539160B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/03Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本發明提供含有序列辨識號:1、2、3、4、16、17、30、31、34、36、37、40、41、45、49、55、57與61之胺基酸序列的胜肽,及含上述胺基酸序列,於其中1、2或數個胺基酸被取代、刪除、插入或加入,但仍具有細胞毒殺性T淋巴球誘發能力之胜肽。本發明也提供治療或避免腫瘤之藥物,藥物包含這些胜肽。本發明之胜肽也可被使用為疫苗。

Description

WDRPUH抗原決定位胜肽以及含此胜肽之疫苗
本發明係關於生物科學領域,更特別對於癌症治療領域。特別是,本發明係關於新穎之胜肽,其當作癌症疫苗及治療與避免腫瘤之藥物為非常有效。
已證實CD8+細胞毒殺性T淋巴球辨認來自建造於主要組織相容性抗原複合體(major histocompatibility complex,MHC)class I分子上之腫瘤相關抗原(tumor-associated antigens,TAAs)的抗原決定位胜肽,且之後殺死腫瘤細胞。自從發現黑色素瘤抗原(melanoma antigen,MAGE)家族為腫瘤相關抗原之第一個例子,主要藉由免疫方法,已發現許多其他腫瘤相關抗原(Boon T,Int J Cancer 1993 May 8,54(2):177-80;Boon T & van der Bruggen P,J Exp Med 1996 Mar 1,183(3):725-9)。一些腫瘤相關抗原目前接受臨床發展當作免疫治療標的。
能誘導有效且專一之抗腫瘤免疫反應的新腫瘤相關抗原的辨認成為多種形式癌症之胜肽疫苗接種策略(vaccination strategies)之更進一步發展與臨床應用的根據(Harris CC,J Natl Cancer Inst 1996 Oct 16,88(20):1442-55; Butterfield LH et al.,Cancer Res 1999 Jul 1,59(13):3134-42;Vissers JL et al.,Cancer Res 1999 Nov 1,59(21):5554-9;van der Burg SH et al.,J Immunol 1996 May 1,156(9):3308-14;Tanaka F et al.,Cancer Res 1997 Oct 15,57(20):4465-8;Fujie T et al.,Int J Cancer 1999 Jan 18,80(2):169-72;Kikuchi M et al.,Int J Cancer 1999 May 5,81(3):459-66;Oiso M et al.,Int J Cancer 1999 May 5,81(3):387-94)。迄今已有使用這些腫瘤相關抗原衍生之胜肽的臨床試驗的許多報導。不幸地,到目前為止,於這些癌症疫苗試驗中,僅觀察到一低的客觀反應率(objective response rate)(Belli F et al.,J Clin Oncol 2002 Oct 15,20(20):4169-80;Coulie PG et al.,Immunol Rev 2002 Oct,188:33-42;Rosenberg SA et al.,Nat Med 2004 Sep,10(9):909-15)。
對於癌症細胞增殖與存活而言為必須之腫瘤相關 抗原作為免疫治療標的為合適的,由於使用此腫瘤相關抗原可將廣為敘述之癌細胞免疫逃脫(immune escape)的風險最小化,而癌細胞免疫逃脫為治療性驅使免疫篩選的結果,歸因於腫瘤相關抗原的刪除、突變或向下調控。
WDRPUH被認定為一新穎的WD重複蛋白質,經 由使用一含23,040個基因之基因體範圍cDNA微陣列的基因表現輪廓,其為被向上調控於肝細胞癌(hepatocellular carcinoma)中(Silva et al.,Neoplasia 2005 Apr;7(4):348-55,WO 2003/104276)。已報導含WD重複之蛋白質在包括訊號傳導、RNA產生(Bjorn et al.,Mol Cell Biol.1989 Sep;9(9):3698-709.)、細胞骨架之重新塑造(Vaisman et al.,Mol Gen Genet.1995 Apr 20;247(2):123-36)、囊泡輸送(vesicular traffic)之調控(Pryer et al.,J Cell Biol.1993 Feb;120(4):865-75)與細胞分裂(Feldman et al.,Cell.1997 Oct 17;91(2):221-30)的生理功能的廣大範圍中,扮演一重要角色。北方墨點分析證明了於大多數肝細胞癌中WDRPUH被過度表現於一顯著高的程度,但不表現於正常器官中,除了睪丸。此外,藉由siRNA之WDRPUH表現的抑制顯示出顯著抑制人類肝細胞癌細胞株的生長(Silva et al.,Neoplasia 2005 Apr;7(4):348-55,WO 2003/104276)。
【引用文獻】
專利文獻(Patent Literature)
[PTL 1] WO 2003/104276
非專利文獻(Non Patent Literature)
[NPL 1] Boon T, Int J Cancer 1993 May 8, 54(2): 177-80
[NPL 2] Boon T & van der Bruggen P, J Exp Med 1996 Mar 1, 183(3): 725-9
[NPL 3] Harris CC, J Natl Cancer Inst 1996 Oct 16, 88(20) 1442-55
[NPL 4] Butterfield LH et al., Cancer Res 1999 Jul 1, 59(13), 3134-42
[NPL 5] Vissers JL et al., Cancer Res 1999 Nov 1, 59(21): 5554-9
[NPL 6] van der Burg SH et al., J Immunol 1996 May 1, 156(9): 3308-14
[NPL 7] Tanaka F et al., Cancer Res 1997 Oct 15, 57(20): 4465-8
[NPL 8] Fujie T et al., Int J Cancer 1999 Jan 18, 80(2): 169-72
[NPL 9] Kikuchi M et al., Int J Cancer 1999 May 5, 81(3): 459-66
[NPL 10] Oiso M et al., Int J Cancer 1999 May 5, 81(3): 387-94
[NPL 11] Belli F et al., J Clin Oncol 2002 Oct 15, 20(20): 4169-80
[NPL 12] Coulie PG et al., Immunol Rev 2002 Oct, 188: 33-42
[NPL 13] Rosenberg SA et al., Nat Med 2004 Sep, 10(9): 909-15
[NPL 14] Silva et al., Neoplasia 2005 Apr;7(4):348-55
[NPL 15] Bjorn et al., Mol Cell Biol. 1989 Sep;9(9):3698-709
[NPL 16] Vaisman et al., Mol Gen Genet. 1995 Apr 20;247(2):123-36)
[NPL 17] Pryer et al., J Cell Biol. 1993 Feb;120(4):865-75
[NPL 18] Feldman et al., Cell. 1997 Oct 17;91(2):221-30
本發明部分基於發現免疫治療之適合標的。由於 腫瘤相關抗原(tumor-associated antigens,TAAs)一般被免疫系統感知為“自身”且因此沒有天生的免疫抗原性(immunogenicity),所以適合標的的發現極度重要。如上所提到,已確認WDRPUH(序列辨識號:64,其藉由GEenBank獲得編號NM_145054(序列辨識號:63)所編碼出)在肝細胞癌的癌症組織中為向上調控,WDRPUH為一免疫治療的候選標的。
本發明至少部分基於具有誘導專一於WDRPUH之 細胞毒殺性T淋巴球能力之WDRPUH之基因產物之特定抗原決定位胜肽的確認。如下所討論,使用HLA(人類白血球組織抗原)-A * 2402或HLA-A * 0201與來自WDRPUH之候選胜肽結合來刺激自健康提供者獲得之周邊血液單核球細胞(peripheral blood mononuclear cells,PBMCs)。之後建立具有專一抗HLA-A24或HLA-A2正之經各候選胜肽脈衝(pulsed)之目標細胞之細胞毒性的細胞毒殺性T淋巴球。結果證明HLA-A24或HLA-A2限制之抗原決定位胜肽可誘導強而專一之抗表現WDRPUH於表面之細胞的免疫反應。此外,其指出WDRPUH具強效致免疫性且其抗原決定位為腫瘤免疫治療之有效目標。
因此,提供與HLA抗原結合,由WDRPUH(序列 辨識號:64)或WDRPUH之片段所組成之經分離的胜肽為本發明之一目標。此種胜肽被預期具有細胞毒殺性T淋巴球誘發能力,且可用於ex vivo誘導細胞毒殺性T淋巴球或用於投予一個體以誘導抗癌症,例如肝細胞癌(hepatocellular carcinoma)的免疫反應。胜肽較佳可為係由擇自序列辨識號:1、2、3、4、 16、17、30、31、34、36、37、40、41、45、49、55、57與61中之胺基酸序列所組成的九胜肽或十胜肽,其顯示強的細胞毒殺性T淋巴球誘發能力。
此外,本發明考慮經修飾之胜肽,具有序列辨識 號:1、2、3、4、16、17、30、31、34、36、37、40、41、45、49、55、57與61之胺基酸序列,其中取代、插入、刪除或加入一、二或多個胺基酸,只要經修飾之胜肽維持最初之細胞毒殺性T淋巴球誘發能力。
提供編碼出本發明之任一胜肽之經分離的多核苷 酸為本發明之另一目標。這些多核苷酸可使用於誘導具有細胞毒殺性T淋巴球誘發能力之抗原呈現細胞或用於投予至一個體以誘導抗本發明胜肽之免疫反應且因此最終抗癌症。
當投予一個體時,本發明胜肽被表現於抗原呈現 細胞之表面,且之後誘導將分別之胜肽做為目標之細胞毒殺性T淋巴球。因此提供含任何本發明胜肽或多核苷酸之試劑以誘導細胞毒殺性T淋巴球為本發明之一目標。這些含任何本發明胜肽或多核苷酸之試劑可用於癌症,例如肝細胞癌之治療及/或預防,及/或其手術後復發之避免。因此,提供用於癌症之治療及/或預防,及/或其手術後復發之避免的藥學試劑為本發明的又另一目標,而藥學試劑包含任何本發明胜肽或多核苷酸。本發明試劑或藥學試劑也可包含表現本發明任何胜肽之抗原呈現細胞或外吐小體取代本發明之胜肽或多核苷酸或除了本發明之胜肽或多核苷酸外作為活性成分。
本發明之胜肽或多核苷酸具有誘導於其表面呈現 HLA抗原與本發明胜肽之複合物的抗原呈現細胞的能力。例如,藉由將來自一個體之抗原呈現細胞與本發明胜肽接觸或將編碼出本發明一胜肽之一多核苷酸引入抗原呈現細胞可達成誘導。此種抗原呈現細胞具有高的抗目標胜肽之細胞毒殺性T淋巴球誘發能力且對於癌症免疫治療為有效。因此,提供誘導具細胞毒殺性T淋巴球誘發能力之抗原呈現細胞的方法與藉由此方法獲得之抗原呈現細胞為本發明之另一目標。
提供包含將CD8+細胞與表現本發明一胜肽於其 表面之抗原呈現細胞或外吐小體共培養之步驟或將編碼出與本發明一胜肽結合之T細胞受體(T cell receptor,TCR)次單元多胜肽之多核苷酸引入一T細胞之步驟的誘導細胞毒殺性T淋巴球的方法為本發明又另一目標。藉由此方法獲得之細胞毒殺性T淋巴球對於治療及/或避免癌症,例如肝細胞癌為有效。 因此,提供藉由本發明任何方法獲得之細胞毒殺性T淋巴球為本發明之另一目標。
提供誘導抗癌症之免疫反應的方法為本發明另一 目標,方法包含投予一含本發明WDRPUH多胜肽、編碼出WDRPUH多胜肽之多核苷酸、呈現WDRPUH多胜肽之外吐小體或抗原呈現細胞之任一之試劑的步驟。
本發明提供任何與WDRPUH過度表現相關之疾病 之應用的用途,與WDRPUH過度表現相關之疾病包括,但不限於癌症,特別是肝細胞癌。
需要瞭解的是,本發明之前述發明內容與下列詳 細敘述兩者為做為例子之實施例,並不限制本發明或本發明之 其他替代實施例。
第1圖包括一系列照片,顯示於以來自WDRPUH之胜肽誘導之細胞毒殺性T淋巴球上之IFN-γ酵素結合免疫斑點分析(ELISPOT)的結果。分別與控制組相較,於孔洞(well)編號#3與#6中之以WDRPUH-A24-9-40(序列辨識號:1)(a)、於孔洞編號#8中以WDRPUH-A24-9-314(序列辨識號:2)(b)、於孔洞編號#2與#6中以WDRPUH-A24-9-509(序列辨識號:3)(c)、於孔洞編號#1、#2與#5中以WDRPUH-A24-9-339(序列辨識號:4)(d)、於孔洞編號#2、#3、#4、#6、#7與#8中以WDRPUH-A24-10-409(序列辨識號:16)(e)及於孔洞編號#5、#6與#8中以WDRPUH-A24-10-40(序列辨識號:17)(f)刺激的細胞毒殺性T淋巴球,顯示強有力之IFN-γ產生。以矩形方塊顯示之於孔洞中的細胞被擴張以建立細胞毒殺性T淋巴球細胞株。於圖中,“+”指出孔洞中之細胞以適合之胜肽脈衝(pulsed),而“-”指出細胞沒有被任何胜肽脈衝。
第2圖包括一系列照片,顯示藉由IFN-γ酵素結合免疫吸附分析以WDRPUH-A24-9-40(序列辨識號:1)(a)、WDRPUH-A24-9-314(序列辨識號:2)(b)、WDRPUH-A24-9-509(序列辨識號:3)(c)、WDRPUH-A24-9-339(序列辨識號:4)(d)、WDRPUH-A24-10-409(序列辨識號:16)(e)及WDRPUH-A24-10-40(序列辨識號:17)(f)刺激之細胞毒殺性T淋巴球細胞株的IFN-γ產生。與控制組相較,藉由以各胜肽刺 激建立之細胞毒殺性T淋巴球細胞株顯示強而有力之IFN-γ產生。於圖中,“+”指出孔洞中之細胞以適合之胜肽脈衝,而“-”指出細胞沒有被任何胜肽脈衝。
第3圖由顯示抗外生表現WDRPUH與HLA-A * 2402之目標細胞的專一細胞毒殺性T淋巴球活性的一線圖所組成。將只以HLA-A * 2402或只以全長之WDRPUH基因轉染之COS7細胞製備為控制組。以WDRPUH-A24-9-314(序列辨識號:2)建立之細胞毒殺性T淋巴球細胞株顯示抗以WDRPUH與HLA-A * 2402兩者轉染之COS7細胞(黑色菱形)的專一細胞毒殺性T淋巴球活性。相對地,沒有偵測到顯著專一之細胞毒殺性T淋巴球活性,其抗表現HLA-A * 2402(三角形)或WDRPUH(圓形)之目標細胞。
第4a-h圖包括一系列照片,顯示於以來自WDRPUH之胜肽誘導之細胞毒殺性T淋巴球上之IFN-γ酵素結合免疫斑點分析(ELISPOT)的結果。分別與控制組相較,於孔洞(well)編號#2與#7中之以WDRPUH-A2-9-39(序列辨識號:30)(a)、於孔洞編號#2中以WDRPUH-A2-9-407(序列辨識號:31)(b)、於孔洞編號#3中以WDRPUH-A2-9-288(序列辨識號:34)(c)、於孔洞編號#6中以WDRPUH-A2-9-237(序列辨識號:36)(d)、於孔洞編號#4中以WDRPUH-A2-9-543(序列辨識號:37)(e)、於孔洞編號#4中以WDRPUH-A2-10-570(序列辨識號:40)(f)、於孔洞編號#2與#8中以WDRPUH-A2-10-263(序列辨識號:41)(g)及於孔洞編號#5中以WDRPUH-A2-10-78(序列辨識號:45)(h)刺激的細胞毒殺性T淋巴球,顯示強有力之IFN-γ產生。以矩形 方塊顯示之於孔洞中的細胞被擴張以建立細胞毒殺性T淋巴球細胞株。於圖中,“+”指出孔洞中之細胞以適合之胜肽脈衝,而“-”指出細胞沒有被任何胜肽脈衝。
第4i-1圖包括一系列照片,顯示於以來自WDRPUH之胜肽誘導之細胞毒殺性T淋巴球上之IFN-γ酵素結合免疫斑點分析(ELISPOT)的結果。分別與控制組相較,於孔洞(well)編號#2之以WDRPUH-A2-10-10(序列辨識號:49)(i)、孔洞編號#6中以WDRPUH-A2-10-411(序列辨識號:55)(j)、於孔洞編號#7中以WDRPUH-A2-10-287(序列辨識號:57)(k)及於孔洞編號#6中以WDRPUH-A2-10-265(序列辨識號:61)(l)刺激的細胞毒殺性T淋巴球,顯示強有力之IFN-γ產生。以矩形方塊顯示之於孔洞中的細胞被擴張以建立細胞毒殺性T淋巴球細胞株。於圖中,“+”指出孔洞中之細胞以適合之胜肽脈衝,而“-”指出細胞沒有被任何胜肽脈衝。
第5a與b圖由顯示藉由IFN-γ酵素結合免疫吸附分析偵測以序列辨識號:30(a)及序列辨識號:34(b)刺激之細胞毒殺性T淋巴球細胞株的IFN-γ產生的線圖所組成。與控制組相較,藉由以各胜肽刺激建立之細胞毒殺性T淋巴球細胞株顯示強而有力之IFN-γ產生。於圖中,“+”指出孔洞中之細胞以適合之胜肽脈衝,而“-”指出細胞沒有被任何胜肽脈衝。第5c與d圖顯示藉由來自以序列辨識號:30(c)與序列辨識號:34(d)刺激之細胞毒殺性T淋巴球細胞株的限制稀釋所建立之細胞毒殺性T淋巴球複製(clone)的IFN-γ產生。此處顯示結果證明與控制組相較,藉由序列辨識號:30(c)與序列辨識號:34(d) 刺激所建立之細胞毒殺性T淋巴球複製顯示強有力之IFN-γ產生。於圖中,“+”指出孔洞中之細胞以序列辨識號:30(c)與序列辨識號:34(d)脈衝,而“-”指出細胞沒有被任何胜肽脈衝。第5e圖由顯示抗外生表現WDRPUH與HLA-A * 0201之目標細胞的專一細胞毒殺性T淋巴球活性的一線圖所組成。將只以HLA-A * 0201或只以全長之WDRPUH基因轉染之COS7細胞製備為控制組。以WDRPUH-A2-9-288(序列辨識號:34)建立之細胞毒殺性T淋巴球細胞複製顯示抗以WDRPUH與HLA-A * 0201兩者轉染之COS7細胞(黑色菱形)的專一細胞毒殺性T淋巴球活性。相對地,沒有偵測到顯著專一之細胞毒殺性T淋巴球活性,其抗表現HLA-A * 0201(三角形)或WDRPUH(圓形)之目標細胞。
雖然於本發明實施例之實施或測試中可使用相似或等同於在此敘述之那些的任何方法與材料,但是現在敘述較佳之方法、元件與材料。然而在敘述本發明材料與方法之前,需瞭解的是,本發明並不限於敘述於此之特定大小、形狀、尺寸、材料、方法學、步驟等,例如按照慣例實驗法與最佳化可將其變更。也需瞭解的是,於此敘述中使用之專門用語僅是為了敘述特別之變化形式或實施例,且不傾向限制僅會受限於所附上之申請專利範圍的本發明範圍。
於本說明書中提及之各刊物、專利或專利公開之揭露特別地於此處引入參考文獻於其內容中。然而,於此並沒有被解釋為承認本發明由於先前發明之效力不被給予先於這 些揭露之權力。
如果發生抵觸,本發明說明書,包括定義,將會控制。此外,材料、方法與實施例僅為說明,並不傾向於限制。
I.定義
於此使用之單字“一”與“該”意指“至少一”除非以別的方式明確指出。
於此可替換使用之用語“多胜肽”、“胜肽”與“蛋白質”意指胺基酸殘基之一聚合物。此用語適用於胺基酸聚合物,於其中一或多個胺基酸殘基為一經修飾之殘基或非自然發生之殘基,例如一對應自然發生胺基酸與自然發生胺基酸聚合物之人工化學模仿物。
於此使用之用語“胺基酸”意指自然發生與合成之胺基酸,及胺基酸類似物與胺基酸模仿物,其與自然發生之胺基酸起相似作用。自然發生胺基酸為基因密碼所編碼的那些與於細胞中在轉譯後被修飾的那些(例如羥脯胺酸(hydroxyproline)、γ-羧基谷胺酸(gamma-carboxyglutamate)與O-磷絲胺酸(O-phosphoserine))。措辭“胺基酸類似物”意指具有與自然發生胺基酸相同之基礎化學結構(一α碳鍵結至一氫、一羧基、一胺基與一R基)的化合物,但具有一經修飾之R基或經修飾之骨架(例如,同絲胺酸(homoserine)、降亮胺酸(norleucine)、甲硫胺酸(methionine)、亞碸(sulfoxide)、甲基硫氨磺(methionine methyl sulfonium))。措辭“胺基酸模仿物”意指化學化合物其與一般胺基酸具有不同結構,但有相似的功能。
可藉由由IUPAC-IUB Biochemical Nomenclature Commission所建議之其一般所知的三字母符號或一字母符號來指出於此處之胺基酸。
於此可替換使用用語“多核苷酸”、“基因”、“核苷酸”與“核酸”,除非以別的特別方式指出。
除非以別的方式定義,用語“癌症”意指過度表現WDRPUH基因之癌症,其例子包括,但不限於肝細胞癌(hepatocellular carcinoma)。
除非以別的方式定義,於此可替換使用且以別的方式特別指出用語“細胞毒殺性T淋巴球”、“細胞毒殺性T細胞”與“CTL”以意指T淋巴球之次族群,且除非以別的方式指出,意指T淋巴球之次群組(sub-group)可辨認非自身細胞(例如,腫瘤細胞、被病毒感染之細胞),且誘導這些細胞死亡。
除非特別定義,用語“HLA(人類白血球組織抗原)-A2”含次型例如HLA-A0201或HLA-A0206。
除非特別定義,於此使用屬與本發明之所有技術或科學用語為與熟悉此技藝人士所通常瞭解之意義相同。
II.胜肽
為了證明來自WDRPUH之胜肽作用如一被細胞毒殺性T淋巴球(CTLs)所辨認之抗原,分析來自WDRPUH之胜肽(序列辨識號:64)以確定是否其為由一般遇到HLA對偶基因(allele)之HLA-24所限制之抗原決定位(Date Y et al.,Tissue Antigens 47:93-101,1996;Kondo A et al.,J Immunol 155:4307-12,1995;Kubo RT et al.,J Immunol 152:3913-24,1994)。確認來自WDRPUH之HLA-A24結合胜肽的候選物,基於其對HLA-A24 之結合親和力。下列胜肽為候選胜肽:WDRPUH-A24-9-40(序列辨識號:1)、WDRPUH-A24-9-314(序列辨識號:2)、WDRPUH-A24-9-509(序列辨識號:3)、WDRPUH-A24-9-339(序列辨識號:4)、WDRPUH-A24-10-409(序列辨識號:16),與WDRPUH-A24-10-40(序列辨識號:17)。
確認來自WDRPUH之HLA-A2結合胜肽的候選物,基於其對HLA-A2之結合親和力。下列胜肽為候選胜肽:WDRPUH-A2-9-39(序列辨識號:30)、WDRPUH-A2-9-407(序列辨識號:31)、WDRPUH-A2-9-288(序列辨識號:34)、WDRPUH-A2-9-237(序列辨識號:36)、WDRPUH-A2-9-543(序列辨識號:37)、WDRPUH-A2-10-570(序列辨識號:40)、WDRPUH-A2-10-263(序列辨識號:41)、WDRPUH-A2-10-78(序列辨識號:45)、WDRPUH-A2-10-10(序列辨識號:49)、WDRPUH-A2-10-411(序列辨識號:55)、WDRPUH-A2-10-287(序列辨識號:57),與WDRPUH-A2-10-265(序列辨識號:61)。
這些被建立的細胞毒殺性T淋巴球顯示強而專一之抗經分別之胜肽脈衝之目標細胞的細胞毒殺性T淋巴球活性。此處這些結果證明WDRPUH為一由細胞毒殺性T淋巴球 所辨認之抗原,且這些胜肽可為由HLA-A24或HLA-A2限制之WDRPUH抗原決定位胜肽。
由於WDRPUH基因於例如肝細胞癌(hepatocellular carcinoma)之癌症細胞中被過度表現,且不在大部分正常器官中,所以其為一良好之免疫治療標的。因此,本發明提供九胜肽(胜肽由九個胺基酸殘基所組成)與十胜肽(胜肽由十個胺基酸殘基所組成)相當於細胞毒殺性T淋巴球辨認之WDRPUH抗原決定位。特別地,本發明胜肽之較佳實施例包括由擇自序列辨識號:1、2、3、4、16、17、30、31、34、36、37、40、41、45、49、55、57與61中之胺基酸序列所組成之那些胜肽。
通常可使用現今於網路可得之軟體程式,例如於Parker KC et al.,J Immunol 1994 Jan 1,152(1):163-75中所敘述的那些,來計算in silico介於各種胜肽與HLA抗原間之結合親和力。例如,如於參考文獻Parker KC et al.,J Immunol 1994 Jan 1,152(1):163-75;與Kuzushima K et al.,Blood 2001,98(6):1872-81中所述可測量與HLA抗原之結合親和力。測量親和力之方法敘述於,例如於Journal of Immunological Methods,1995,185:181-190與Protein Science,2000,9:1838-1846中。所以使用此種軟體程式可選擇WDRPUH的片段,其具有與HLA抗原之高結合親和力。因此本發明包括使用這些已知程式確認與HLA結合之胜肽其係由來自WDRPUH之任何片段所組成。此外,本發明胜肽也可由全長之WDRPUH所組成。
本發明之胜肽可於側面具有額外之胺基酸殘基,只要所產生之胜肽維持其細胞毒殺性T淋巴球誘發能力。位於本發明胜肽兩側之特定胺基酸殘基也可包括任何種類之胺基酸,只它們不減少原始胜肽之細胞毒殺性T淋巴球誘發能力。因此,本發明也提供具有對HLA抗原之結合親和力與包括來自WDRPUH之胺基酸序列的胜肽。此種胜肽典型地小於約40個胺基酸,時常小於約20個胺基酸,通常小於約15個胺基酸
一般而言,於一胜肽中一、二或多個胺基酸之修飾,不會影響胜肽的功能,且在一些例子中,甚至增強原始蛋白質所需之功能。事實上,已知經修飾之胜肽(即,由胺基酸所組成之胜肽,與原始參考序列相較,於其中一、二或數個胺基酸已被修飾(即,取代、刪除、加入或插入))維持原始胜肽的生物活性(Mark et al.,Proc Natl Acad Sci USA 1984,81:5662-6;Zoller and Smith,Nucleic Acids Res 1982,10:6487-500;Dalbadie-McFarland et al.,Proc Natl Acad Sci USA 1982,79:6409-13)。因此,在一實施例中,本發明之胜肽可具有細胞毒殺性T淋巴球誘發能力與擇自序列辨識號:1、2、3、4、16、17、30、31、34、36、37、40、41、45、49、55、57與61之胺基酸序列,其中加入、插入、刪除及/或取代一、二甚至更多個胺基酸。
熟悉此技藝人士認定改變一單一胺基酸或一小百分比之胺基酸的個別取代至一胺基酸序列傾向產生保存原始胺基酸支鏈的特性。因此,它們時常被意指為“保守取代(conservative substitutions)”或“保守修飾(conservative modifications)”,其中一蛋白質之改變形成一具有特性且與原始蛋白質同功之經修飾的蛋白質。保守取代表提供功能相似胺基酸已為本技術領域所熟知。令人滿意以保留之胺基酸支鏈特徵的例子包括,例如疏水胺基酸(A,I,L,M,F,P,W,Y,V)、親水胺基酸(R,D,N,C,E,Q,G,H,K,S,T)與具有下列共同官能基或特徵之支鏈:一脂肪族支鏈(G,A,V,L,I,P);一含羥基支鏈(S,T,Y);含硫原子支鏈(C,M);含羧酸與胺基支鏈(D,N,E,Q);含鹼支鏈(R,K,H);以及含芳香族支鏈(H,F,Y,W)。此外,下列八個族群各包含在本技術領域中被接受為彼此為保守取代之胺基酸:1)丙胺酸(A)、甘胺酸(G);2)天門冬胺酸(D)、麩胺酸(E);3)天門冬醯胺(N)、麩胺醯胺(Q);4)精胺酸(R)、離胺酸(K);5)異白胺酸(I)、白胺酸(L)、甲硫丁胺酸(M)、纈胺酸(V);6)苯丙胺酸(F)、酪胺酸(Y)、色胺酸(W);7)絲胺酸(S)、蘇胺酸(T);以及8)半胱胺酸(C)、甲硫丁胺酸(M)(參見Creighton,Proteins 1984)。
此種經保守修飾胜肽也被視為本發明之胜肽。然而,本發明之胜肽並不限於此,且可包括非保守修飾,只要經修飾之胜肽維持原始胜肽之細胞毒殺性T淋巴球誘發能力。更進一步而言,經修飾之胜肽不應排除多形變體(polymorphic variant)之細胞毒殺性T淋巴球誘發的胜肽、種間同質體 (interspecies homologues)與WDRPUH對偶基因(alleles)。
為了維持必須之細胞毒殺性T淋巴球誘發能力,可修飾(插入、刪除、加入及/或取代)一小數目(例如一、二或數個)或小百分比之胺基酸。此處用語“數個”指5或更少個胺基酸,例如4個、3個或更少。被修飾之胺基酸之百分比較佳為20%或更少,更佳為15%或更少,甚至更佳為10%或更少或1至5%。
此外,胺基酸殘基可被取代、插入、刪除及/或加入於胜肽中以產生一經修飾之胜肽,其具有經改善之親和力。當使用於文中之免疫治療時,本發明之胜肽應被表現於一細胞或外吐小體之表面上,較佳作為一具有HLA抗原之複和物。除了自然表現之胜肽外,由於藉由結合至HLA抗原表現之胜肽序列的規則為已知(J Immunol 1994,152:3913;Immunogenetics 1995,41:178;J Immunol 1994,155:4307),可將基於此規則之修飾引入本發明之致免疫性胜肽。例如,為了增加HLA-A24之結合,可能需要以苯丙胺酸、酪胺酸、甲硫丁胺酸或色胺酸取代N端的第二個胺基酸,及/或以苯丙胺酸、白胺酸、異白胺酸、色胺酸或甲硫丁胺酸取代在C端胺基酸。因此,胜肽具有胺基酸序列擇自由序列辨識號:1、2、3、4、16與17所組成之群組,其中上述序列辨識號之胺基酸序列之N端的第二個胺基酸被苯丙胺酸、酪胺酸、甲硫丁胺酸或色胺酸取代,及/或其中上述序列辨識號之胺基酸序列之C端胺基酸被苯丙胺酸、白胺酸、異白胺酸、色胺酸或甲硫丁胺酸取代。另一方面,產生高HLA-A2結合親和力之胜肽具有經白胺酸或 甲硫胺酸取代之它們的自N端的第二個胺基酸,及/或以纈胺酸或白胺酸取代在C端胺基酸。因此,胜肽具有列辨識號:30、31、34、36、37、40、41、45、49、55、57與61之胺基酸序列,其中N端的第二個胺基酸被白胺酸或甲硫胺酸取代,及/或C端胺基酸被纈胺酸或白胺酸取代也被包含於本發明。可將取代引入不止於末端胺基酸,也可於胜肽之潛在TCR辨認位置。一些研究已證實於一具有胺基酸取代之胜肽可等於或比原來更好,例如CAP1、p53(264-272)、Her-2/neu(369-377)或gp100(209-217)(Zaremba et al.Cancer Res.57,4570-4577,1997,T.K.Hoffmann et al.J Immunol.(2002)Feb 1;168(3):1338-47.,S.O.Dionne et al.Cancer Immunol immunother.(2003)52:199-206 and S.O.Dionne et al.Cancer Immunology,Immunotherapy(2004)53,307-314)。
本發明也考慮一、二個或數個胺基酸加至所述胜肽之N及/或C端。本發明也包括具有高HLA抗原結合親和力且維持細胞毒殺性T淋巴球誘發能力之此種經修飾的胜肽。
然而當胜肽序列與一具有不同功能之外生或內生蛋白質之胺基酸序列的一部份相同時,可能誘導副作用,例如自體免疫疾病及/或抗特定物質之過敏症候群。因此較佳為,首先使用可得之資料庫執行同源搜尋以避免胜肽之胺基酸序列符合其他蛋白質之胺基酸序列的情況。當由與目標胜肽相較不止存在具有一或兩個胺基酸不同之胜肽的同源搜尋變得清楚時,為了增加其與HLA抗原之結合親和力,及/或增加其細胞毒殺性T淋巴球誘發能力而不具副作用之任何危險,可修飾 目標胺基酸。
雖然如上述之具有對HLA抗原高結合親和力的胜肽被預期為高效能,但根據作為指示之高親和表現而被選擇之候選胜肽,更進一步被測試細胞毒殺性T淋巴球誘發能力的表現。此處措辭“細胞毒殺性T淋巴球誘發能力”意指當表現於抗原呈現細胞時,胜肽誘導細胞毒殺性T淋巴球的能力。此外,“細胞毒殺性T淋巴球誘發能力”包括胜肽誘導細胞毒殺性T淋巴球活化、細胞毒殺性T淋巴球增殖、促進細胞毒殺性T淋巴球分解目標細胞與增加細胞毒殺性T淋巴球IFN-γ產生的能力。
藉由誘導攜帶人類MHC抗原之抗原呈現細胞(例如B-淋巴球、巨噬細胞與樹突細胞)或更專一地來自人類周邊血液單核細胞之樹突細胞,並在以胜肽刺激之後與CD8+細胞混合,且之後測量由抗目標細胞之細胞毒殺性T淋巴球產生並釋放之IFN-γ來達成細胞毒殺性T淋巴球誘發能力的確定。如此反應系統,可使用已被產生來表現人類HLA之基因轉殖動物(例如,於BenMohamed L,Krishnan R,Longmate J,Auge C,Low L,Primus J,Diamond DJ,Hum Immunol 2000 Aug,61(8):764-79,Related Articles,Books,Linkout Induction of CTL response by a minimal epitope vaccine in HLA A*0201/DR1 transgenic mice:dependence on HLA class II restricted T(H)response中的描述)。例如可以51Cr放射標示目標細胞,且可從自目標細胞釋放出的放射活性計算細胞毒殺活性。或者在攜帶經固定之胜肽之抗原呈現細胞存在下,藉由測量由細胞毒殺 性T淋巴球產生並釋放的IFN-γ,且使用抗IFN-γ單株抗體來使於培養基上之抑制區可見來評估細胞毒殺性T淋巴球誘發能力。
由於如上述測試胜肽之細胞毒殺性T淋巴球誘發能力,發現具有擇自序列辨識號:1、2、3、4、16、17、30、31、34、36、37、40、41、45、49、55、57與61中之胺基酸序列的九胜肽或十胜肽有特別高之細胞毒殺性T淋巴球誘發能力與對HLA抗原之高結合親和力。因此以這些胜肽做為例子為本發明之較佳實施例。
此外,同源分析之結果顯示這些胜肽不與來自任何其他已知人類基因產物之胜肽有顯著之同源性。此代表由於使用本發明胜肽而提升未知與不期望之免疫反應的可能性是低的。因此,也來自此方面,對於於癌症病患中引起抗WDRPUH免疫反應,這些胜肽為較佳的。因此本發明特別較佳之胜肽包括具有擇自序列辨識號:1、2、3、4、16、17、30、31、34、36、37、40、41、45、49、55、57與61中之胺基酸序列的那些。
除了上述修飾之外,本發明之胜肽也可連接其他胜肽,只要所產生之經連接的胜肽維持原始胜肽之細胞毒殺性T淋巴球誘發能力。適合的胜肽包括,但不限於,本發明來自其他腫瘤相關抗原之細胞毒殺性T淋巴球誘發胜肽。置於兩胜肽間之連結器(linker)為本技術領域所熟知,且包括但不限於,例如AAY(P.M.Daftarian et al.,J Trans Med 2007,5:26)、AAA、NKRK(R.P.M.Sutmuller et al.,J Immunol.2000,165: 7308-7315)與K(S.Ota et al.,Can Res.62,1471-1476,K.S.Kawamura et al.,J Immunol.2002,168:5709-5715)。
此外,本發明之胜肽也可連接其他物質,只要所產生之經連接的胜肽維持原始胜肽之細胞毒殺性T淋巴球誘發能力。適合的物質包括,但不限於,胜肽、脂質、糖與糖鏈、乙醯基,天然與合成之聚合物等,所提供之修飾不損壞原始胜肽之生物活性。胜肽可包括修飾,例如醣基化、支鏈氧化或磷酸化等,所提供之修飾不損壞原始胜肽之生物活性。可執行此修飾以授予額外之功能(例如目標功能與傳送功能)或穩定多胜肽。例如,為了in vivo增加多胜肽之穩定度,本技術領域已知引入D-胺基酸、胺基酸模仿物或非天然胺基酸;此內容也適合本發明之多胜肽。可以一些方法分析一多胜肽的穩定度。例如,可使用肽酶與多種生物培養基,例如人類血漿與血清,來測試穩定度(參見,例如Verhoef et al.,Eur J Drug Metab Pharmacokin 1986,11:291-302)。
如上所提到,篩選或選擇藉由一、二或數個胺基酸殘基取代、插入、刪除及/或加入所修飾但與原始胜肽相較具有相同或較高之活性的胜肽為可能的。因此本發明也提供一篩選或選擇與原始胜肽相較具有相同或較高之活性的經修飾胜肽的方法。例如此方法可包括如下步驟:a:藉由取代、刪除、插入及/或加入修飾於本發明之一胜肽中的至少一胺基酸殘基;b:確定經修飾之胜肽的活性;以及c:選擇已經確定具有與原始胜肽相較具有相同或較高之 活性的胜肽。
此處,於步驟b中要被測定之活性可為MHC結合能力、抗原呈現細胞或細胞毒殺性T淋巴球誘發能力,及/或細胞毒性活性。
此處,本發明之胜肽可被描述為“WDRPUH胜肽”或“WDRPUH多胜肽”。
III.WDRPUH胜肽之製備
使用熟知之技術可製備本發明之胜肽。例如,使用重組DNA技術或化學合成可以合成方法地製備胜肽。本發明胜肽可單獨合成或為由兩或多個胜肽所組成之較長多胜肽。之後可分離此胜肽,即純化或分離,以使其實質上無其他自然發生之宿主細胞蛋白質與其片段或任何其他化學物質。
藉由根據經選擇之胺基酸序列的化學合成可獲得本發明之胜肽。適合此合成之一般胜肽合成方法的例子包括,但不限於:(i)胜肽合成(Peptide Synthesis)Interscience,New York,1966;(ii)蛋白質(The Proteins),Vol.2,Academic Press,New York,1976;(iii)胜肽合成(Peptide Synthesis)(in Japanese),Maruzen Co.,1975;(iv)胜肽合成之基礎與實驗(Basics and Experiment of Peptide Synthesis)(in Japanese),Maruzen Co.,1985;(v)藥學的發展(Development of Pharmaceuticals)(second volume)(in Japanese),Vol.14(peptide synthesis),Hirokawa,1991;(vi)WO99/67288;以及(vii)Barany G.& Merrifield R.B.,Peptides Vol.2,“Solid Phase Peptide Synthesis”,Academic Press,New York,1980,100-118。
或者,藉由適應任何已知產生胜肽之基因工程方法可獲得本發明之胜肽(例如,Morrison J,J Bacteriology 1977,132:349-51;Clark-Curtiss & Curtiss,Methods in Enzymology(eds.Wu et al.)1983,101:347-62)。例如,首先製備一適合之載體,其懷有一多核苷酸其編碼出目標胜肽於一可表達的形式中(例如,調控序列之下游相當於啟動子序列),並將載體轉殖進入適合之宿主細胞。之後培養宿主細胞以產生感興趣之胜肽。使用一in vitro轉譯系統可in vitro產生胜肽。
IV.多核苷酸
本發明也提供一多核苷酸,其編碼出任何本發明上述之胜肽。這些包括來自自然發生之WDRPUH基因(GenBank Accession No.NM_145697(序列辨識號:34))的核苷酸序列與具有其之保守修飾之核苷酸序列的那些。此處措辭“保守修飾之核苷酸序列”指序列其編碼出相同或實質上相同之胺基酸序列。由於基因密碼的退化,一大份之功能相同之核酸編碼出任何已知蛋白質。例如,密碼GCA、GCC、GCG與GCU皆編碼出胺基酸丙胺酸。因此,於藉由一密碼具體指定丙胺酸之每個位置,可改變密碼成為任何上述不會改變編碼出之胜肽的對應 密碼。此核酸變化為“沈默變化(silent variation)”,其為保守修飾變化的一種。此處編碼出一胜肽之每個核酸序列也描述核酸之每種可能的沈默變化。熟悉此技藝人士明白於一核酸中各密碼(除了AUG,其原本為甲硫胺酸之唯一密碼、與TGG其原本為色胺酸之唯一密碼)可被修飾以產生一功能相同分子。因此編碼出一胜肽之核酸的各沈默變化係為於各所揭露之序列中被暗示性描述。
本發明之多核苷酸可由DNA、RNA與其衍生物所組成。DNA由鹼基,例如A、T、C、G所適合地組成,而T於RNA中為U所取代。
本發明之多核苷酸可編碼出本發明之多個胜肽,具有或不具有介於中間之胺基酸序列於其之間。例如介於中間之胺基酸序列可提供多核苷酸或經轉譯之胜肽一裂解位(例如酵素辨認序列)、更進一步而言,多核苷酸可包括任何額外之序列至編碼出本發明胜肽之編碼序列。例如,多核苷酸可為一重組多核苷酸,其包括胜肽表現所需之調控序列,或可為一具有標誌基因與此類之表現載體(質體)。一般而言,可製備此重組多核苷酸,藉由經由使用一般重組技術,例如聚合酶與內切酶之多核苷酸操作。
可使用重組與化學合成技術以產生本發明之多核苷酸。例如,藉由插進入一適合之載體可產生一多核苷酸,當轉染進入一勝任細胞時,其可被表現。或者,使用PCR技術或表現於適合的宿主可將一多核苷酸放大(參見,例如Sambrook et al.,Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Laboratory,New York,198)。或者,使用固態技術如於Beaucage SL & Iyer RP,Tetrahedron 1992,48:2223-311;Matthes et al.,EMBO J 1984,3:801-5中所敘述,可合成多核苷酸。
V.外吐小體(exosomes)
本發明進一步地提供稱為外吐小體的胞間囊泡(intracellular vesicles),其呈現形成於本發明之胜肽與人類白血球抗原表面之間的複合物。利用例如Japanese Patent Application Kohyo Publications Nos.Hei 11-510507與WO99/03499所詳述的方法以及從接受治療和/或預防之病人所得的抗原表現細胞可製備外吐小體。本發明之外吐小體可如疫苗般地接種,在一方式中,類似於本發明的胜肽。
包含在複合物中的人類白血球抗原形式必須與需要治療和/或預防之個體的人類白血球抗原形式相符。例如,對於日本族群來說,HLA-A24與HLA-A2,特別是HLA-A2402與HLA-A0201或HLA-A0206為普遍的且因此適合治療日本人病患。高度表現於日本人與高加索人之中的A-24型或A-2型之使用有助於獲得有效的結果,而亞型例如A2402、A0201或A0206也有其效用。一般在臨床上,需接受治療之病患的人類白血球抗原形式係進行預先的研究,這可適當地選擇對此特別抗原具有高度結合親合力的胜肽或經由抗原表現具有細胞毒性T淋巴細胞誘發性的胜肽。此外,為了獲得具有高度結合親合力與細胞毒性T淋巴細胞誘發性兩者的胜肽,可以天然產生之WDRPUH部分胜肽的胺基酸序列為基礎,然後進行1、2或 數個胺基酸的取代、插入、刪除及/或添加。
當使用A24型人類白血球抗原於本發明的外吐小體,具有擇自序列辨識號:1、2、3、4、16與17之序列的胜肽表現其效用。或者,當使用A2型人類白血球抗原於本發明的外吐小體,具有序列辨識號:30、31、34、36、37、40、41、45、49、55、57與61之任一的序列的胜肽表現其效用。
VI.抗原呈現細胞
本發明也提供抗經分離之原呈現細胞,其表現形成於HLA抗原與本發明胜肽之間的複合物於其表面。抗原呈現細胞可來自受到治療及/或避免之病患,且藉由其本身或與包括本發明之胜肽、外吐小體或細胞毒殺性T淋巴球之其他藥物結合可被投予如一疫苗。
抗原呈現細胞並不限於特定種類之細胞,且包括樹突細胞、蘭格罕細胞(Langerhans cell)、巨嗜細胞、B細胞與活化之T細胞,已知其表現蛋白質(proteinaceous)抗原於其細胞表面以被淋巴球所辨認。由於樹突細胞為一典型抗原呈現細胞,其於抗原呈現細胞中具最強之細胞毒殺性T淋巴球誘導作用,樹突細胞供給使用如本發明之抗原呈現細胞。
例如,藉由誘導來自周邊血液單核細胞之樹突細胞與之後in vitroex vivoin vivo以本發明胜肽接觸(刺激)其可獲得一抗原呈現細胞。措辭“誘導抗原呈現細胞”包括以本發明之胜肽或編碼出本發明胜肽之核苷酸接觸(刺激)一細胞,以表現形成於HLA抗原與本發明胜肽之間的複合物於細胞表面。當本發明之胜肽投予至一個體,於個體身體內誘導表現本 發明胜肽之抗原呈現細胞。因此,藉由在將本發明胜肽投予至一個體後,自此個體收集抗原呈現細胞可獲得本發明之抗原呈現細胞。或者,藉由將自個體收集之抗原呈現細胞與本發明胜肽接觸可獲得本發明之抗原呈現細胞。
可將本發明之抗原呈現細胞投予至一個體以藉由其本身或與包括本發明之胜肽、外吐小體或細胞毒殺性T淋巴球之其他藥物結合來誘導於個體中之抗癌免疫反應。例如,ex vivo投予可包括步驟:a:自一第一個體收集抗原呈現細胞;b:以胜肽接觸步驟a之抗原呈現細胞;以及c:將步驟b之載有胜肽之抗原呈現細胞投予一第二個體。
第一個體與第二個體可為相同個體或可為不同個體。自步驟b獲得之抗原呈現細胞可做為疫苗被投予以治療及/或預防包括肝細胞癌之癌症。此外,本發明提供用以製造誘導抗原呈現細胞之藥學組合物的方法或製程,其中方法包括以藥學上可接受之載體混合或配製本發明胜肽的步驟。
根據本發明一方面,本發明之抗原呈現細胞具高程度細胞毒殺性T淋巴球誘發能力。在用語“高程度細胞毒殺性T淋巴球誘發能力”中,高程度相對於藉由抗原呈現細胞沒有與胜肽接觸或與無法誘導細胞毒殺性T淋巴球之胜肽接觸的程度。藉由包括in vitro將包含本發明多核苷酸的基因轉移至抗原呈現細胞的步驟的方法與藉由上述之方法,可製備此種具高程度細胞毒殺性T淋巴球誘發能力之抗原呈現細胞。此經引入之基因可為DNA或RNA形式。引入方法的例子包括,並 無特別限制,可使用各種於此領域一般被執行的方法,例如脂質體轉染(lipofection)、電穿孔法(electroporation)與磷酸鈣方法。更特別地,可執行其如Cancer Res 1996,56:5672-7;J Immunol 1998,161:5607-13;J Exp Med 1996,184:465-72;Published Japanese Translation of International Publication No.2000-509281中所述。藉由轉移基因進入抗原呈現細胞,基因遭遇轉錄、轉譯與此類於細胞中,且之後經由一呈現途徑藉由MHC Class I或Class II處理與呈現所獲得之蛋白質。
VII.細胞毒殺性T淋巴球
經誘導抗任何本發明胜肽之細胞毒殺性T淋巴球增強in vivo以癌症細胞為標的之免疫反應,且因此可使用如一疫苗,就其本身而言在一方式中相似於胜肽。因此本發明也提供經分離之細胞毒殺性T淋巴球其藉由任何本發明之胜肽專一地被誘導或活化。
可獲得此種細胞毒殺性T淋巴球,藉由(1)將本發明胜肽投予至一個體、自該個體收集細胞毒殺性T淋巴球;(2)將來自個體之抗原呈現細胞與CD8+細胞或周邊血液單核淋巴球與本發明之胜肽in vivo接觸(刺激)且之後分離細胞毒殺性T淋巴球;(3)將CD8+細胞或周邊血液單核淋巴球與表現HLA抗原與本發明胜肽之複合物於其表面上之抗原呈現細胞或外吐小體接觸且之後分離細胞毒殺性T淋巴球;或(4)將編碼出與本發明胜肽結合之T細胞受體次單元多胜肽之基因引入一T細胞。藉由上述方法可製備抗原呈現細胞或外吐小體,且(4)之方法被詳細敘述於以下“VIII.T細胞受體(TCR)”的段落。
已藉由表現本發明胜肽之抗原呈現細胞刺激誘導的細胞毒殺性T淋巴球可來自一受到治療及/或避免之病患,且藉由其或與包括本發明之胜肽或為了調節作用之外吐小體的其他藥物結合可被投予。所獲得之細胞毒殺性T淋巴球起專一抗目標細胞的作用,而目標細胞其表現本發明胜肽,例如用於誘導之相同胜肽。目標細胞可為細胞其內生性表現WDRPUH,例如肝細胞癌,或被以WDRPUH基因轉殖之細胞;且由於藉由胜肽刺激表現本發明胜肽於細胞表面之細胞,也可做為經活化之細胞毒殺性T淋巴球攻擊的目標。
VIII.T細胞受體(TCR)
本發明也提供一組合物其包括由編碼出可形成T細胞受體之次單位之多胜肽的核酸,與其使用方法。T細胞受體之次單位具有能力形成T細胞受體,其授與專一性至抗腫瘤細胞的T細胞,腫瘤細胞表現本發明之特定胜肽。藉由使用本技術領域所知的方法可確認作為細胞毒殺性T淋巴球中之T細胞受體次單位的α-與β-支鏈之核酸,而細胞毒殺性T淋巴球以一或多個本發明之胜肽所誘導(WO2007/032255與Morgan et al.,J Immunol,171,3288(2003))。例如,喜好以聚合酶鏈鎖反應方法來分析T細胞受體。用於分析之聚合酶鏈鎖反應引子可為,例如5’-R引子(5’-gtctaccaggcattcgcttcat-3’)為5’端引子(序列辨識號:65)與3-TRa-C引子(5’-tcagctggaccacagccgcagcgt-3’)專一於T細胞受體alpha鏈C區(序列辨識號:66)、3-TRb-C1引子(5’-tcagaaatcctttctcttgac-3’)專一於T細胞受體beta鏈C1區(序列辨識號:67)或3-TRbeta-C2引子(5’- ctagcctctggaatcctttctctt-3’)專一於T細胞受體beta鏈C2區(序列辨識號:68)為3’端引子,但不被限制。引出之T細胞受體可以高親合力結合表現WDRPUH胜肽之目標細胞,且視需要in vivoin vitro居中有效殺死表現WDRPUH之目標細胞。
編碼出T細胞受體次單位的核酸序列可合併進入適合之載體,例如反轉錄病毒載體。這些載體為本技術領域所熟知。通常包含其之核酸或載體可被轉移至一T細胞,例如一來自一病患之T細胞。有用地,本發明提供一現成(off-the-shelf)的組合物允許快速修飾病人所擁有之T細胞(或其他哺乳動物之那些)以快速簡單產生具有優秀之癌症細胞殺死特性的經修飾T細胞。
特定之T細胞受體可專一地辨認本發明之一胜肽與HLA分子之複合物,當T細胞受體於T細胞表面時,給予T細胞抗目標細胞之專一活性。藉由任何已知方法可確認上述複合物之專一辨認,且較佳方法包括,例如使用HLA分子與本發明胜肽之四聚體(tetramer)分析,與ELISPOT分析。藉由執行ELISPOT分析,其可確認表現T細胞受體於細胞表面上之T細胞藉由T細胞受體辨認一細胞,且訊息傳送於細胞內。藉由已知方法也可執行當複合物存在於T細胞表面時上述複合物可給予一T細胞細胞毒性活性的確認。較佳方法包括,例如,抗HLA+目標細胞之細胞毒性活性測定,例如鉻(chromium)釋放分析。本發明也提供細胞毒殺性T淋巴球,其在HLA-2存在下藉由以編碼出與例如序列辨識號:1、2、3、4、16與17之WDRPUH胜肽,及其在HLA-24存在下藉由以編碼出與 例如序列辨識號:30、31、34、36、37、40、41、45、49、55、57與61之WDRPUH胜肽結合的T細胞受體次單位多胜肽的核酸轉導來製備。經轉導之細胞毒殺性T淋巴球可in vivo自引導至癌症細胞,且可藉由熟知的培養方法in vivo擴張(例如Kawakami et al.,J Immunol.,142,3452-3461(1989))。本發明細胞毒殺性T淋巴球也可用來形成一致免疫組合物,其於一需要治療或保護之病患中治療或預防癌症為有效(WO2006/031221)。
避免與預防包括任何活性,其減少死亡率之負載或來自疾病之死亡率。避免與預防可方生於“初期、第二期與第三期避免層級”。初期避免與預防避免了疾病之發展,而第二期與第三期層級之避免與預防包括藉由恢復功能與減少疾病相關併發症,以疾病之發展與症狀之浮現及減少已建立之疾病之負向發展的避免與預防為目的。或者,治療或避免包括一廣範圍之預防疾病治療,其以減緩特別疾病之嚴重度為目標,例如減少腫瘤之增殖與轉移、減少血管新生(angiogenesis)。
癌症之治療及/或預防,或,及/或其手術後復發的避免包括任何下列步驟,例如癌細胞之手術移除、似癌細胞之生長抑制、腫瘤之衰退或退化、癌發生之減緩與抑制的誘導、腫瘤退化與血管新生抑制的誘導。癌症之有效治療及/或預防減少致死率與改善具有癌症之個體的預後、減低癌症標記於血液中的程度與減緩伴隨著癌症之可偵測症狀。例如,症狀之減少或改善構成有效治療及/或預防,且此種症狀之減少或改善包括10%、20%、30%或更減輕或維持穩定疾病階段。
IX.藥學試劑或組合物
由於與正常組織相較,WDRPUH表現於肝細胞癌中特別被提高(向上調控)(Silva et al.,Neoplasia 2005 Apr;7(4):348-55),本發明之胜肽或多核苷酸可用來癌症或腫瘤之治療或預防,及/或用來避免其手術後之復發。因此,本發明提供一藥學試劑或組合物用來癌症或腫瘤之治療及/或預防,及/或避免其手術後之復發,其包括一或多個本發明胜肽或之多核苷酸作為活性成分。或者,本發明之胜肽可表現於任何前述外吐小體或細胞表面,例如抗原呈現細胞,以用來作為藥學試劑或組合物。此外,上述以本發明任何胜肽為標的之細胞毒殺性T淋巴球也可用來作為本發明藥學試劑或組合物之活性成分。
在另一實施例中,本發明也在製造用以治療或避免癌症或腫瘤之藥學組合物或試劑中提供一活性成分的使用,其擇自:(a)本發明胜肽;(b)於一可表現之形式,編碼出如此處揭露之此種胜肽的核酸;(c)表現本發明一胜肽於其表面上之抗原呈現細胞或外吐小體;以及(d)本發明之細胞毒殺性T淋巴球。
或者,本發明更提供一用以治療或避免癌症或腫瘤的活性成分擇自:(a)本發明胜肽; (b)於一可表現之形式,編碼出如此處揭露之此種胜肽的核酸;(c)表現本發明一胜肽於其表面上之抗原呈現細胞或外吐小體;以及(d)本發明之細胞毒殺性T淋巴球。
或者,本發明更提供一製造用以治療或避免癌症或腫瘤之藥學組合物的方法或製程,其中方法或製程包括將一藥學上或生理上可接受之載體與一活性成分一起配製的步驟,活性成分擇自:(a)本發明胜肽;(b)於一可表現之形式,編碼出如此處揭露之此種胜肽的核酸;(c)表現本發明一胜肽於其表面上之抗原呈現細胞或外吐小體;以及(d)本發明之細胞毒殺性T淋巴球,為活性成分。
在另一實施例中,本發明也提供一製造用以治療或避免癌症或腫瘤之藥學組合物的方法或製程,其中方法或製程包括將一藥學上或生理上可接受之載體與一活性成分一起混合的步驟,其中活性成分擇自:(a)本發明胜肽;(b)於一可表現之形式,編碼出如此處揭露之此種胜肽的核酸;(c)表現本發明一胜肽於其表面上之抗原呈現細胞或外吐 小體;以及(d)本發明之細胞毒殺性T淋巴球。
或者,本發明之藥學組合物或試劑可用於癌症或腫瘤之預防與其手術後復發的避免。
本發明之藥學組合物或試劑提供使用如一疫苗。在本發明全文中,措辭“疫苗”(也指一致免疫組合物)意指一物質,其藉由接種至動物具有誘導抗腫瘤免疫力。
本發明之藥學組合物或試劑可用於治療及/或避免癌症或腫瘤,及/或其手術後復發的避免於一個體或病患中,個體或病患包括人類於任何及他哺乳動物,其包括但,不限於小鼠、大鼠、天竺鼠、兔子、貓、狗、綿羊、山羊、豬、牛、馬、猴子、狒狒與黑猩猩,特別是一商業上重要動物或被馴養了的動物。
根據本發明,已發現具有擇自序列辨識號:1、2、3、4、16、17、30、31、34、36、37、40、41、45、49、55、57與61中之胺基酸序列的胜肽分別為HLA-A24或HLA-A2限制之抗原決定位胜肽或候選物,其可誘導強而專一之免疫反應。因此包括任何具有序列辨識號:1、2、3、4、16、17、30、31、34、36、37、40、41、45、49、55、57與61之胺基酸序列之這些多胜肽的本發明藥學試劑或組合物特別適合投予HLA抗原為HLA-A24或HLA-A2之個體。特別是,包含具有序列辨識號:1、2、3、4、16與17之胺基酸序列之胜肽的試劑適合投予HLA-A24型之個體,而具有序列辨識號:30、31、34、36、37、40、41、45、49、55、57與61之胺基酸序列之 胜肽的那些適合投予HLA-A2型之個體。相同的實施至包含編碼出任何這些胜肽之多核苷酸(即,本發明之多核苷酸)的藥學試劑或組合物。
由本發明藥學試劑或組合物治療之癌症或腫瘤不限於,且包括其中關於WDRPUH之所有種類的癌症或腫瘤,例如肝細胞癌。
本發明藥學試劑或組合物可包括除了上述活性成分外,具有誘導細胞毒殺性T淋巴球抗似癌細胞之能力的其他胜肽、編碼出此其他胜肽之其他多核苷酸、其他表現此其他胜肽之細胞或此類。於此,具有誘導細胞毒殺性T淋巴球抗似癌細胞之能力的其他胜肽由癌症專一抗原所例示(例如,經定義之腫瘤相關抗原),但不限於此。
若需要,本發明之藥學試劑或組合物可視需要包括其他治療物質為一活性成分,只要此物質不抑制活性成分之抗腫瘤功效,活性成分例如任何本發明胜肽。例如,配方可包括抗發炎試劑、止痛劑、化學治療與其類似。除了包括其他治療物質於藥劑其本身中,也可將本發明之藥劑與一或多個其他生理試劑或組合物相繼或同時投予。藥劑與生理試劑的量依照,例如使用何種生理試劑、要治療之疾病與投藥的計畫與方式。
應瞭解的是,除了此處特別提及之成分外,本發明之藥學試劑與組合物可包括本技術領域一般之其他試劑或組合物,其具有關於討論中之配方形式。
在本發明一實施例中,本發明之藥學試劑或組合 物可被包含於製造之商品與套組,其包含對於要被治療之疾病,例如癌症的病理情況有用之材料。製造之商品可包含具有一標籤之任何本發明藥學試劑的容器。適合的容器包括瓶、小瓶(vial)與試管。容器可形成自各種材料,例如玻璃或塑膠。於容器上之標籤需指出試劑或組合物為用來治療或避免疾病之一或多個情況。標籤也可指出投藥指示等。
除了上述容器外,套組包括本發明藥學試劑或組合物可視需要更進一步包括一第二容器,其儲藏一藥學上可接受之稀釋液。其可更包括商業或使用者觀點需要之其他材料,包括其他緩衝溶液、稀釋液、濾器、針、注射器與具有使用說明之包裝插入物。
藥學試劑組合物若需要可被呈現於一包(pack)或一分配器,其可包含含有活性成分之一或多單位劑量形式。包裝可例如包括金屬或塑膠箔,例如一泡棉箱(blister pack)。包或分配器可伴隨著投藥指示。
(1)藥學試劑或組合物包含胜肽作為活性成分
可直接投予本發明胜肽為一藥學試劑或組合物,若需要的話,其已被一般配方方法所配製。在之後的例子,除了本發明胜肽外、若適合可包括載體、賦形劑與原始做為藥物使用之此類而無特別限制。上述載體的例子為滅菌水生理食鹽水、磷酸緩衝溶液與培養液體(culture fluid)與此類。更進一步而言,若必須,藥學試劑或組合物可含安定劑、懸液劑、防腐劑、界面活性劑與此類。本發明之藥學試劑或組合物可用來抗癌目的。
可將本發明之胜肽製備為一組合,其由兩或更多 個本發明之胜肽所組成,以in vivo誘導細胞毒殺性T淋巴球。胜肽組合可以雞尾酒形式或可使用標準技術彼此結合。例如,胜肽可被化學連接或表現如一單一融合多胜肽序列。結合之胜肽可為相同或不同。藉由投予本發明之胜肽,藉由HLA抗原,高密度呈現胜肽於抗原呈現細胞上,之後對形成於呈現胜肽與HLA抗原之間的複合物專一反應之細胞毒殺性T淋巴球被誘導。或者,表現任何本發明之胜肽於其細胞表面之抗原細胞可被投予一個體,且因此於個體中誘導細胞毒殺性T淋巴球,且可增加朝向癌細胞之侵犯,表現任何本發明之胜肽於其細胞表面之抗原細胞可藉由以本發明之胜肽刺激來自一個體之抗原呈現細胞(例如樹突細胞)來獲得。
治療及/或避免癌症或腫瘤之藥學試劑或組合物,其包括本發明之一胜肽為活性成分,也可包含一已知有效建立細胞免疫力之佐劑。或者,藥學試劑或組合物可與其他活性成分一起被投予或可以配製成細粒被投予。佐劑指一化合物,當與具有免疫活性之蛋白質一起投予(或依次)時,其增強抗蛋白質之免疫反應。此處考慮之佐劑,包括於文獻(Clin Microbiol Rev 1994,7:277-89)中所描述的那些。適合之佐劑的例子包括磷酸鋁、氫氧化鋁、明礬、霍亂毒素、沙門氏菌毒素與此類但不限於此。
更進一步而言,於微脂體(liposome)配方與細粒配方中,胜肽連結至幾個微米直徑之小珠,且於配方中,可便利地使用連結至胜肽之脂質。
在一些實施例中,本發明之藥學試劑或組合物可 更包括一成分其啟動細胞毒殺性T淋巴球。已定義脂質為可in vivo啟動抗病毒抗原之細胞毒殺性T淋巴球的試劑或組合物。 例如,可將棕櫚酸殘基黏附至離胺酸殘基之ε-與α-胺基,且之後連結至本發明之一胜肽。之後脂質胜肽可被直接投予於微胞或顆粒中、併入微脂體或乳化於一佐劑中。如脂質啟動細胞毒殺性T淋巴球反應之另一例子,E.coli脂蛋白,例如三軟脂酸-S甘油半胱氨酰-絲氨酰基絲氨酸(tripalmitoyl-S-glycerylcysternyl-seryl-serine)可使用來啟動細胞毒殺性T淋巴球,當共價附加至一合適之胜肽(參見,例如Deres et al.,Nature 1989,342:561-4)。
投藥之方法可為口服、皮膚內、皮下、靜脈內注射或此類,以及全身投藥或局部投藥至標的位置的鄰近區域。可執行單次投藥或藉由多次投藥追加。本發明之胜肽劑量可適合地調整根據要治療之疾病、病患年紀、體重、投藥方法、與此類,且本發明之胜肽劑量一般為0.001mg至1000mg,例如0.001mg至1000mg,例如0.1mg至10mg,且可於數天至數個月投藥一次。熟悉此技藝人士可適合地選擇一合適的劑量。
(2)藥學試劑或組合物包含多核苷酸為活性成分
本發明之藥學試劑或組合物也可包括編碼出此處揭露之胜肽的核酸於一可表達之形式中。此處措辭“於一可表達之形式中”意指多核苷酸,當引入一細胞,in vivo會被表現成一誘導抗腫瘤免疫力之多胜肽。在一代表實施例中,感興趣之多核苷酸的核酸序列包括對於表現多核苷酸而言必須之調控要素。可裝配多核苷酸以達到穩定插入目標細胞之基因體(參 見,例如Thomas KR & Capecchi MR,Cell 1987,51:503-12 for a description of homologous recombination cassette vectors)。 參見,例如Wolff et al.,Science 1990,247:1465-8;U.S.Patent Nos.5,580,859;5,589,466;5,804,566;5,739,118;5,736,524;5,679,647;and WO 98/04720。DNA輸送技術的例子包括“裸DNA”、經促進(bupivacaine、聚合物、胜肽居中之)之輸送、陽離子脂質複合物與顆粒居中之(“基因槍”)或壓力居中之傳送(參見,例如U.S.Patent No.5,922,687)。
本發明之胜肽也可藉由病毒或細菌載體來表現。 表現載體的例子包括減弱病毒宿主,例如牛痘或禽痘。此方法包括使用牛痘病毒,例如為一載體以表現編碼胜肽之核苷酸序列。藉由引入一宿主,此重組之牛痘病毒表現致免疫胜肽且因此引起一免疫反應。於免疫步驟中為有效之牛痘載體與方法敘述於,例如U.S.Patent No.4,722,848。另一載體包括BCG(Bacille Calmette Guerin)。BCG載體敘述於Stover et al.,Nature 1991,351:456-60中。對於治療投藥或免疫有用之其他多種載體,例如腺與腺病毒相關之載體、反轉錄病毒載體、傷寒沙門氏菌(Salmonella typhi)載體、經解毒之炭疽毒素載體與其類似為明顯的。參見,例如Shata et al.,Mol Med Today 2000,6:66-71;Shedlock et al.,J Leukoc Biol 2000,68:793-806;Hipp et al.,In Vivo 2000,14:571-85。
輸送多核苷酸進入一個體可為直接,於其例子中,個體直接暴露於一攜帶多核苷酸之載體,或為間接,於其例子中,細胞首先in vitro以感興趣之多核苷酸轉形,之後將 細胞轉殖進入個體。此兩方法分別為已知,為in vivoex vivo基因治療。
基因治療之方法之大體回顧,參見Goldspiel et al.,Clinical Pharmacy 1993,12:488-505;Wu and Wu,Biotherapy 1991,3:87-95;Tolstoshev,Ann Rev Pharmacol Toxicol 1993,33:573-96;Mulligan,Science 1993,260:926-32;Morgan & Anderson,Ann Rev Biochem 1993,62:191-217;Trends in Biotechnology 1993,11(5):155-215)。也可用於本發明之於重組DNA技術中一般熟知的方法如於eds.Ausubel et al.,Current Protocols in Molecular Biology,John Wiley & Sons,NY,1993;and Krieger,Gene Transfer and Expression,A Laboratory Manual,Stockton Press,NY,1990中所述。
投藥之方法可為口服、皮膚內、皮下、靜脈內注射或此類,以及全身投藥或局部投藥至標的位置的鄰近區域提供使用。可執行單次投藥或藉由多次投藥追加。於適合載體中或於以編碼出本發明之胜肽的多核苷酸轉形之細胞中的多核苷酸的劑量可適合地調整,根據要治療之疾病、病患年紀、體重、投藥方法、與此類,且本發明之胜肽劑量一般為0.001mg至1000mg,例如0.001mg至1000mg,例如0.1mg至10mg,且可於每數天一次至每數個月一次投藥。熟悉此技藝人士可適合地選擇一合適的劑量。
X.使用胜肽、外吐小體、抗原呈現細胞與細胞毒殺性T淋巴球的方法
可使用本發明之胜肽與多核苷酸來誘導抗原呈現細胞與 細胞毒殺性T淋巴球。也可使用本發明之外吐小體與抗原呈現細胞來誘導細胞毒殺性T淋巴球。胜肽、多核苷酸、外吐小體與抗原呈現細胞可與任何其他化合物結合使用,只要化合物不抑制其細胞毒殺性T淋巴球誘發能力。因此,任何上述之本發明藥學試劑或組合物可用來誘導細胞毒殺性T淋巴球,且除此之外,包括胜肽與多核苷酸的那些也可用來誘導抗原呈現細胞,如下所討論。
(1)誘導抗原呈現細胞的方法
本發明提供使用本發明之胜肽或多核苷酸來誘具有高細胞毒殺性T淋巴球誘發能力之抗原呈現細胞的方法。
本發明之方法包含in vitroex vivoin vivo將抗原呈現細胞與本發明胜肽接觸的步驟。例如,ex vivo將抗原呈現細胞與胜肽接觸的方法可包括步驟:a:自一個體收集抗原呈現細胞;以及b:將步驟a之抗原呈現細胞與胜肽接觸。
抗原呈現細胞並不限於特定種類之細胞,且包括樹突細胞、蘭格罕細胞(Langerhans cell)、巨嗜細胞、B細胞與活化之T細胞,已知其表現蛋白質(proteinaceous)抗原於其細胞表面以被淋巴球所辨認。較佳為可使用樹突細胞,由於它們於抗原呈現細胞中具最強之細胞毒殺性T淋巴球誘發能力。可使用本發明任何胜肽藉由它們本身或與本發明其他胜肽一起。
或者,藉由投予本發明一胜肽至一個體以in vivo將胜肽與抗原呈現細胞接觸且因此於個體之體內誘導具有高細胞毒殺性T淋巴球誘發能力之抗原呈現細胞可誘導抗原呈 現細胞。因此,本發明也考慮投予本發明胜肽至一個體以誘導抗原呈現細胞。而另一方法,可將本發明之一多核苷酸投予至一個體於一可表達之形式中以表現本發明一胜肽且胜肽in vivo與抗原呈現細胞接觸。相似於本發明胜肽之投予,具有高細胞毒殺性T淋巴球誘發能力之抗原呈現細胞被誘導於個體之體內。因此,本發明也考慮投予本發明多核苷酸至一個體以誘導抗原呈現細胞。措辭“可表達之形式”之解釋,參見段落“IX.藥學試劑(2)藥學試劑包含多核苷酸為活性成分”。
此外,本發明也考慮將本發明一多核苷酸引入一抗原呈現細胞以誘導具有細胞毒殺性T淋巴球誘發能力之抗原呈現細胞。例如方法可包括步驟:a:自一個體收集抗原呈現細胞;以及b:將編碼出本發明胜肽之一多核苷酸引入所收集之抗原呈現細胞中。
可如前述段落“VI.抗原呈現細胞”中所述來執行步驟b。
(2)誘導細胞毒殺性T淋巴球的方法
更進一步而言,本發明提供使用本發明胜肽、多核苷酸、外吐小體或抗原呈現細胞來誘導細胞毒殺性T淋巴球的方法。
藉由將本發明胜肽、多核苷酸、抗原呈現細或外吐小體投予至一個體於個體之體內誘導細胞毒殺性T淋巴球以增強以癌症細胞為目標之免疫反應。因此提供誘導誘導細胞毒殺性T淋巴球之方法為本發明之另一目標,方法可包括投予本發明胜肽、多核苷酸、抗原呈現細或外吐小體投予至一個體 的步驟。
或者,也可ex vivo誘導細胞毒殺性T淋巴球,且於誘導後,經活化之細胞毒殺性T淋巴球可返回個體。例如,方法可包括步驟:a:自一個體收集抗原呈現細胞;b:將步驟a之抗原呈現細胞與本發明胜肽接觸;以及c:將步驟b之抗原呈現細胞與CD8+細胞共培養。
於上述步驟c中要與CD8+細胞共培養之抗原呈現細胞也可藉由將一編碼出本發明胜肽之多核苷酸轉移進入抗原呈現細胞,如於前述段落“VI.抗原呈現細胞”中所述來製備;但不限於此,且任何有效表現一HLA抗原與本發明胜肽之複合物於其表面的抗原呈現細胞可被使用於本方法。
代替此種抗原呈現細胞,也可使用呈現一HLA抗原與本發明胜肽之複合物於其表面的外吐小體。換句話說,誘導細胞毒殺性T淋巴球之本發明方法可包括與呈現一HLA抗原與本發明胜肽之複合物於其表面的外吐小體共培養的步驟。此種外吐小體可藉由前述於段落“V.外吐小體”中之方法來製備。
此外,藉由將一編碼出與本發明一胜肽結合之T細胞受體次單元的多核苷酸引入CD8+細胞也可誘導細胞毒殺性T淋巴球。如於前述段落“VIII.T細胞受體(TCR)”中所述可執行此轉導。
(3)誘導免疫反應的方法
本發明更提供於一個體中誘導抗癌症之免疫方法。方法包 括投予本發明之疫苗,其包括:(a)一或多個本發明胜肽,或其免疫活性片段;(b)一或多個編碼出(a)之胜肽或其免疫活性片段的多核苷酸;(c)一或多個本發明之經分離的細胞毒殺性T淋巴球;或(d)一或多個本發明之經分離的抗原呈現細胞。
在本發明中,以這些活性成份可治療過度表現WDRPUH之癌症。因此,在包括活性成分之疫苗或藥學組合物的投予前,其較佳為確認與相同器官之正常組織相較,WDRPUH之表現程度於要被治療之癌症細胞或組織中是否被提高。因此,在一實施例中,本發明提供治療表現WDRPUH之癌症的方法,其方法可包括步驟:i)測定獲得自具有癌症要治療之個體的癌症細胞或組織中的WDRPUH表現程度;ii)與正常控制組比較WDRPUH表現程度;以及iii)投予擇自由上述(a)至(d)所組成之群組的至少一成份至與正常控制組相較具有過度表現WDRPUH之癌症的個體。或者,本發明也可提供包括擇自由上述(a)至(d)所組成之群組的至少一成份的疫苗或藥學組合物,於投予至具有過度表現WDRPUH之癌症的個體的用途。換句話說,本發明更提供鑑定要被以本發明WDRPUH多胜肽治療之個體的方法,其方法可包括測定來自個體之癌細胞或組織中的WDRPUH表現程度的步驟,其中與基因之正常控制組相較,此程度增加指出個體具有可以本發明WDRPUH多胜肽治療之癌症。本發明之治療 癌的方法將於以下更詳細敘述。
要藉由本發明治療之個體較佳為一哺乳類動物。示範之哺乳類動物包括,但不限於,例如,人類、非人類靈長類動物、小鼠、大鼠、狗、貓、馬與牛。
根據本發明,測定獲得自一個體之癌症細胞或組織中的WDRPUH表現程度。使用本技術領域已知方法可於轉錄(核酸)產物程度測定表現程度。例如,藉由雜合方法(例如,北方雜合)使用探針可將WDRPUH的mRNA定量。可於一晶片或一陣列執行偵測。陣列之使用較佳為用於偵測WDRPUH表現程度。利用WDRPUH的序列資訊,熟悉此技藝人士可製備此種探針。例如,WDRPUH的cDNA可被使用為探針。若需要,可以是合之標誌來標誌探針,例如染劑、螢光物質與同位素,且基因的表現程度可被偵測為雜合標誌的強度。
此外,藉由擴大偵測方法(amplification-base detectin method)(例如,RT-PCR)使用引子可將WDRPUH(序列辨識號:63)的轉錄產物進行定量。根據基因之可獲得序列資訊可製備此種引子。
特別是,用於本方法之探針或引子於嚴厲(stringent)、適度嚴厲、低嚴厲條件下雜合至WDRPUH的mRNA。如此處使用,措辭“嚴厲(雜合)條件”意指在此在條件下探針或引子會雜合至其目標序列,而不是其他序列。嚴厲條件為序列依賴(sequence-dependent),且在不同環境下會不同。比起較短之序列,於較高溫度下觀察到較長序列之特定雜合。一般而言,在一定義之離子強度與pH下所選擇之嚴格條件的 溫度為低於一特定序列之熔點(Tm)約5℃。Tm為溫度(在一定義之離子強度與pH與核酸濃度下),於其下在平衡下50%之互補至目標序列的探針雜合至目標序列。由於目標序列通常存在過量,所以於Tm,在平衡下50%之探針被佔據。一般而言,嚴苛條件為於其中鹽濃度低於1.0M鈉離子,一般約0.01至1.0M鈉離子(或其他鹽)於pH7.0至8.3,且對於短探針或引子(例如,10至50個核苷酸)而言溫度為至少約30℃,對於較長探針或引子而言溫度為至少約60℃。也可以添加去穩定劑(destabilizing agent),例如甲醯胺(formamide)來達到嚴苛條件。
或者為了本發明之診斷可偵測轉譯產物。例如,可偵測WDRPUH蛋白質(序列辨識號:64)之量。測定作為轉錄產物之蛋白質的量的方法包括免疫分析方法,其使用一抗體專一辨認此蛋白質。抗體可為單株或多株。此外,抗體之任何片段或修飾(例如嵌合型抗體(chimeric antibody)、scFv、Fab、F(ab’)2、Fv等)可被用來偵測,只要片段或經修飾之抗體維持對WDRPUH蛋白質的結合能力。這些用於蛋白質偵測之這些種類的抗體的製備方法為本技術領域所熟知,且任何方法可被使用於本發明中以製備此種抗體與其等同物(equivalent)。
如根據WDRPUH基因轉譯產物偵測WDRPUH基因之表現程度的另一方法,使用抗WDRPUH蛋白質之抗體經由免疫組織化學(immunohistochemical)分析可觀察到染色強度。即,強的染色的觀察指出蛋白質之增加的存在,且同時WDRPUH基因之高表現程度。
可考慮於癌症細胞中包括WDRPUH基因之目標基因的表現程度為被提升,若其相較於相對目標基因之控制組程度增加,例如10%、25%、或50%,或增加大於1.1倍、大於1.5倍、大於2.0倍、大於5倍、大於10倍或更多。
藉由使用先前自一個體/其疾病階段(癌的或非癌的)為已知的個體收集並儲存的樣本控制組織程度可與癌細胞同時測定。此外,獲得自具有癌症要被治療之一器官的非癌區域的正常細胞被使用為正常控制組。或者,根據獲得自分析先前測定之來自其疾病程度已知之個體之樣本中之WDRPUH基因的表現程度的結果,藉由統計方法,可測定控制組之程度。此外,控制組程度可為自先前測試細胞之表現輪廓的資料庫。並且,根據本發明一方面於一生物樣本中之WDRPUH基因的表現程度,可與多個控制組程度比較,其控制組程度被測定自多個參考樣本。較佳為使用一控制組程度測定自一參考樣本,其來自一組織形式相似於源自個體生物樣本之組織形式。此外,較佳為使用具有已知疾病階段之群組中的WDRPUH基因的表現程度的標準值(standard value).。標準值可獲得自本技術領域任何已知的方法。例如,平均值+/-2標準差或平均值+/-3標準差,可被使用為標準值。
本發明之內容中,測定自已知為非癌症之生物樣本的控制組程度被意指為一“正常控制組程度”。另一方面,若控制組程度測定自一癌的生物組織,其意指為一“癌的控制組程度”。
當與正常控制組程度相較WDRPUH基因的表現程 度被增加或相似於癌控制組程度,可診斷個體為具有癌症要被治療。
本發明也提供一套組以測定一個體遭受可被以本發明WDRPUH多胜肽治療之癌症,其也在評估及/或監控癌症之免疫治療的功效中為有用的。特別是,癌症為肝細胞癌。更特別的是,套組較佳包括至少一用以偵測來自個體癌細胞中之WDRPUH基因的表現程度的試劑,其試劑可擇自:(a)一試劑用以偵測WDRPUH基因的mRNA;(b)一試劑用以偵測WDRPUH基因的蛋白質;以及(c)一試劑用以偵測WDRPUH基因之蛋白質的生物活性。
用以偵測WDRPUH基因之mRNA的適合試劑包括核酸其專一結合或辨認WDRPUH mRNA,例如,具有對於WDRPUH mRNA之一部分互補的序列的寡核苷酸。這些種類之寡核苷酸以專一於WDRPUH mRNA之引子與探針為例子。根據本技術領域所熟知的方法可製備這些種類之寡核苷酸。若需要,用以偵測WDRPUH mRNA之試劑可被固定於固體基質(matrix)上。此外,大於一個之用以偵測WDRPUH mRNA的試劑可被包含於套組中。
另一方面,用以偵測WDRPUH蛋白質之適合試劑包括對於WDRPUH蛋白質的抗體。抗體可為單株或多株。此外,抗體之任何片段或修飾(例如嵌合型抗體(chimeric antibody)、scFv、Fab、F(ab’)2、Fv等)可被用來作為試劑,只要片段或經修飾之抗體維持對WDRPUH蛋白質的結合能力。這些用於蛋白質偵測之這些種類的抗體的製備方法為本技術 領域所熟知,且任何方法可被使用於本發明中以製備此種抗體與其等同物(equivalent)。另外,可以訊號產生分子經由直接連接或一間接標誌技術來將抗體進行標誌。標誌與標誌抗體之方法與偵測抗體對其目標的結合為本技術領域所熟知,且任何標誌與方法可被使用於本發明。另外,大於一個之用於偵測WDRPUH蛋白質的試劑可被包括於套組中。
套組可包含大於一個之前述試劑。例如,獲得自遭受癌症或沒有遭受癌症之個體的組織樣本可作為有用的控制組試劑。本發明之套組可更包括商業或使用者角度所需之其他材料,包括緩衝溶液、稀釋液、濾器、注射針、注射器與具有使用之操作指南的包裝插入物(例如,書面、磁帶或CD-ROM等)。這些試劑或此類可保持於一具有標誌之容器。適合之容器包括瓶子、小玻璃瓶(vial)與試驗試管。容器可形成自多樣化之材料,例如玻璃或塑膠。
如本發明之實施例,當試劑為抗WDRPUH mRNA之探針時,試劑可被固定於一固體基質上,例如一多孔條(porous strip)以形成至少一偵測位。多孔條之測量或偵測區可包括複數個位置,各含有一核酸(探針)。一測試條也可含有負及/或正控制組的位置。或者,控制組之位置可位於與測試條分離之一條。視需要而定,不同之偵測位可包含不同量之經固定之核酸,即一較高量於第一偵測位中且一較低含量於隨後之位置中。藉由測試樣本的加入,顯示可偵測訊號之一些位置提供一於樣本中WDRPUH mRNA存在之量的定量指示。偵測位可被設置於任何適合之可偵測形狀且一般為在橫跨一測試條 之寬度的條狀物或點的形狀中。
本發明之套組可更包括一正控制組樣本或WDRPUH標準樣本。藉由收集WDRPUH正之樣本可製備本發明之正控制組樣本且之後分析那些WDRPUH程度。或者,可將經純化之WDRPUH蛋白質或多核苷酸加至不表現WDRPUH之細胞以形成正樣本或WDRPUH標準物。於本發明中,經純化之WDRPUH可為重組蛋白質。正控制組樣本之WDRPUH程度為,例如,大於臨界值(cut off value)。
呈現下列實施例以說明本發明與以協助熟悉此技藝人士製造與使用本發明。實施例並不傾向於在其他方面限制本發明範圍任何方式中。
【實施例】
材料與方法
細胞株
藉由以Epstein-bar病毒轉型進入HLA-A24+人類B細胞以建立A24類淋巴母細胞株(lymphoblastoid cell line,A24LCL)。T2(HLA-A2)、COS7、非洲綠猴腎細胞株為自ATCC所購得。
來自WDRPUH之胜肽的候選物選擇
使用結合預測軟體“BIMAS”(www-bimas.cit.nih.gov/molbio/hla_bind)預測來自WDRPUH之9-員與10員胜肽,其結合至HLA-A * 2402與HLA-A * 0201分子,其演算法已由Parker KC et al.(J Immunol 1994,152(l):163-75)與Kuzushima K et al.(Blood 2001,98(6):1872-81)所敘述。根據一標準固相合成方法且藉由逆相高效能液體層析(reversed phase high performance liquid chromatography,HPLC)之純化由Sigma(Sapporo,Japan)或Biosynthesis Inc.(Lewisville,TX)來合成這些胜肽。分別藉由分析型HLPC與質譜分析確認這些胜肽之純度(>90%)與身份(identity)。將胜肽溶解於DMSO中於20mg/ml且儲存於-80℃。
In vitro細胞毒殺性T淋巴球誘導
使用來自單核白血球之樹突細胞做為抗原呈現細胞以誘導抗表現於人類白血球組織抗原(HLA)上之胜肽的細胞毒殺性T淋巴球反應。In vitro產生樹突細胞如別處所述(Nakahara S et al.,Cancer Res 2003 Jul 15,63(14):4112-8)。特別地,由Ficoll-Plaque(Pharmacia)溶液分離自一正常自願者(HLA-A * 2402+與HLA-A * 0201+)之周邊血液單核細胞,藉由貼附至一塑膠組織培養盤(Becton Dickinson)來分離以豐富其如一單核白血球部分。將經豐富單核白血球之族群培養在1000U/ml之人類顆粒-巨噬細胞群落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)(R&D System)與1000U/ml之白細胞介素(interleukin,IL)-4(R&D System)存在下於含2%之熱去活性自身取得血清(autologous serum,AS)之AIM-V培養基(Invitrogen)中。培養7天後,於AIM-V培養基中,於3μg/ml之β-2微球蛋白(beta 2-microglobulin)存在下以20μg/ml之各合成胜肽脈衝(pulsed)細胞激素誘導之樹突細胞3小時於37℃。所產生之細胞顯示表現樹突細胞相關分子,例如CD80、CD83、CD86與HLA Class II於其細胞表面(資料未顯示)。之後以Mitomycin C(MMC)(30μg/ml,30min)或X-射線(20Gy) 將這些胜肽脈衝之樹突細胞去活性且將其以1:20之比例與自身取得CD8+T細胞混合,CD8+T細胞藉由以CD8 Positive Isolation Kit(Dynal)正選擇獲得。這些培養物設置於48孔盤(Corning);各孔含1.5 x 104胜肽脈衝之樹突細胞、3 x 105 CD8+T細胞與10ng/ml之IL-7(R&D System)於0.5ml之AIM-V/2%自身取得血清培養基中。三天之後,以IL-2(CHIRON)添加至培養物至終濃度為20IU/ml。第7天與第14天更以自身取得胜肽脈衝之樹突細胞進一步刺激T細胞。以與上述相同之方法每次製備樹突細胞。於第21天,第三輪之胜肽刺激後,將細胞毒殺性T淋巴球進行抗胜肽脈衝之A24LCL或T2細胞測試(Tanaka H et al.,Br J Cancer 2001 Jan 5,84(1):94-9;Umano Y et al.,Br J Cancer 2001 Apr 20,84(8):1052-7;Uchida N et al.,Clin Cancer Res 2004 Dec 15,10(24):8577-86;Suda T et al.,Cancer Sci 2006 May,97(5):411-9;Watanabe T et al.,Cancer Sci 2005 Aug,96(8):498-506)。
細胞毒殺性T淋巴球擴張步驟
使用與由Riddell et al.(Walter EA et al.,N Engl J Med 1995 Oct 19,333(16):1038-44;Riddell SR et al.,Nat Med 1996 Feb,2(2):216-23)敘述之相似方法於培養中擴張細胞毒殺性T淋巴球。全部5 x 104細胞毒殺性T淋巴球懸浮於25ml之含有由MMC去活化之兩種人類B類淋巴母細胞株之AIM-V/5%自身取得血清培養基,在40ng/ml之抗-CD3單株抗體(Pharmingen)存在下。在開始培養1天後,120IU/ml之IL-2加入培養中。於第5、8、11天以新鮮之含30IU/ml之IL-2的AIM-V/5%自 身取得血清培養基提供給培養物(Tanaka H et al.,Br J Cancer 2001 Jan 5,84(1):94-9;Umano Y et al.,Br J Cancer 2001 Apr 20,84(8):1052-7;Uchida N et al.,Clin Cancer Res 2004 Dec 15,10(24):8577-86;Suda T et al.,Cancer Sci 2006 May,97(5):411-9;Watanabe T et al.,Cancer Sci 2005 Aug,96(8):498-506)。
細胞毒殺性T淋巴球複製的建立
稀釋以使細胞毒殺性T淋巴球以0.3、1與3細胞毒殺性T淋巴球/孔的含量於96 round-bottomed微效價盤(Nalge Nunc International)中。細胞毒殺性T淋巴球與1 x 104細胞/孔之2種兩種人類B類淋巴母細胞株、30ng/ml之抗-CD抗體與125U/ml之IL-2於全部150μl/孔之含5%自身取得之血清的AIM-V培養基中一起培養。10天後將50μl/孔之IL-2加入培養基中以達到125U/ml IL-2之終濃度。於第14天測試細胞毒殺性T淋巴球之活性,且使用上述相同方法擴張細胞毒殺性T淋巴球複製(Uchida N et al.,Clin Cancer Res 2004 Dec 15,10(24):8577-86;Suda T et al.,Cancer Sci 2006 May,97(5):411-9;Watanabe T et al.,Cancer Sci 2005 Aug,96(8):498-506)。
專一之細胞毒殺性T淋巴球活性
為了測試專一之細胞毒殺性T淋巴球活性,執行IFN-γ酵素結合免疫斑點(ELISPOT)分析與IFN-γ酵素結合免疫吸附(ELISA)分析。特別地,製備胜肽脈衝之A24LCL(1 x 104/well)或T2(1 x 104/well)為刺激細胞。培養之細胞於48孔中做為應答細胞。根據製造商建議步驟執行IFN-γ酵素結合免疫斑點分 析與IFN-γ酵素結合免疫吸附分析。
質體轉染
藉由PCR將編碼出目標基因之開放讀框、HLA-A * 2402與HLA-A * 0201之cDNA放大。將目標基因與HLA-A * 2402或HLA-A * 0201之PCR放大產物複製進pIRES載體(Clontech Laboratories,Inc.,Cat.No.631605)。使用lipofectamine 2000(Invitrogen),根據製造商建議步驟將質體轉染進COS7,其為一目標基因與HLA-A24無效細胞株。於自轉染後2天,以versene(Invitrogen)收集經轉染的細胞且使用為細胞毒殺性T淋巴球活性分析之目標細胞(5 x 104/well)。
結果
來自WDRPUH之HLA-A24與HLA-A2結合胜肽的預測
表1以最高之結合親和力之順序顯示WDRPUH之HLA-A24結合胜肽。總共選擇25個具有潛在HLA-A24結合能力之胜肽且將其試驗以確定抗原決定位胜肽(表1)。表2以最高之結合親和力之順序顯示WDRPUH之HLA-A2結合9員與10員胜肽。總共選擇37個具有潛在HLA-A2結合能力之胜肽且將其試驗以確定抗原決定位胜肽(表2)。
起始位置指自WDRPUH之N端的胺基酸殘基數目。結合分數來自“BIMAS”。
起始位置指自WDRPUH之N端的胺基酸殘基數目。結合分數來自“BIMAS”。
以HLA-A * 2402限制之來自WDRPUH之預測胜肽誘導細胞毒殺性T淋巴球與經以來自WDRPUH之胜肽刺激的細胞毒殺性T淋巴球株的建立
根據敘述於“材料與方法”之步驟產生對於那些來自WDRPUH之胜肽的細胞毒殺性T淋巴球。藉由IFN-γ酵素結合免疫斑點分析測定胜肽專一細胞毒殺性T淋巴球活性(第1a-f圖)。其顯示與控制組孔洞相較,以WDRPUH-A24-9-40(序列辨識號:1)刺激之#3與#6(a)、以WDRPUH-A24-9-314(序列辨識號:2)刺激之#8(b)、以WDRPUH-A24-9-509(序列辨識號:3)刺激之#2與#6(c)、以WDRPUH-A24-9-339(序列辨識號:4)刺激之#1、#2與#5(d)、以WDRPUH-A24-10-409(序列辨識號:16)刺激之#2、#3、#4、#6、#7與#8(e)及以WDRPUH-A24-10-40(序列辨識號:17)刺激之#5、#6與#8(f)顯示強而有力的IFN-γ產生。此外,將以序列辨識號:1刺激之於正孔洞編號#6中之細胞、以序列辨識號:2刺激之於正孔洞編號#8中之細胞、以序列辨識號:3刺激之於正孔洞編號#2中之細胞、以序列辨識號:4刺激之於正孔洞編號#5中之細胞、以序列辨識號:16刺激之於正孔洞編號#4中之細胞及以序列辨識號:17刺激之於正孔洞編號#6中之細胞進行擴張與建立為細胞毒殺性T淋巴球細胞株。藉由IFN-γ酵素結合免疫吸附分析測定這些細胞毒殺性T淋巴球細胞株的細胞毒殺性T淋巴球活性(第2a-f圖)。與無胜肽脈衝之目標細胞相較,所有細胞毒殺性T淋巴球細胞株顯示強的抗對應胜肽脈衝之目標細胞的IFN-γ產生。另一方面,藉由顯示於表1中之其他胜肽的刺 激無法建立細胞毒殺性T淋巴球細胞株,儘管事實為這些被預期胜肽具有與HLA-A * 2402之結合能力(資料未顯示)。因此,篩選來自WDRPUH之6個胜肽為可誘導強而有力之細胞毒殺性T淋巴球細胞株的胜肽。
抗外生表現WDRPUH與HLA-A * 2402之目標細胞的專一細胞毒殺性T淋巴球活性
測試經提升抗本發明胜肽之所建立的細胞毒殺性T淋巴球細胞株其對於辨認外生表現WDRPUH與HLA-A * 2402分子之目標細胞的能力。使用由對應之胜肽提升的細胞毒殺性T淋巴球細胞株做為影響細胞來測試抗COS7細胞的專一細胞毒殺性T淋巴球活性,而COS7細胞經全長之WDRPUH與HLA-A * 2402基因轉染(對於外生表現WDRPUH與HLA-A * 2402基因之目標細胞的特定模式)。COS7細胞以全長WDRPUH或HLA-A * 2402基因轉染製備為控制組。於第3圖中,以序列辨識號:2刺激之細胞毒殺性T淋巴球顯示強的抗表現WDRPUH與HLA-A * 2402兩者之COS7細胞的能力。相對的,沒有偵測到抗控制組之顯著專一之細胞毒殺性T淋巴球活性。因此,這些資料清楚證明WDRPUH-A24-9-314(序列辨識號:2)被自然處理與表現於具有HLA-A * 2402分子之目標細胞的表面上,且由細胞毒殺性T淋巴球所辨認。這些結果顯示此來自WDRPUH之胜肽可合適的做為給具WDRPUH過度表現之腫瘤的病患之癌症疫苗。
以HLA-A * 0201限制之來自WDRPUH之預測胜肽誘導細胞毒殺性T淋巴球
根據敘述於“材料與方法”之步驟產生辨認來自WDRPUH之胜肽的細胞毒殺性T淋巴球。藉由IFN-γ酵素結合免疫斑點分析測定胜肽專一細胞毒殺性T淋巴球活性(第4a-1圖)。與控制組孔洞相較,以WDRPUH-A2-9-39(序列辨識號:30)刺激之孔洞編號#2與#7(a)、以WDRPUH-A2-9-407(序列辨識號:31)刺激之#2(b)、以WDRPUH-A2-9-288(序列辨識號:34)刺激之#3(c)、以WDRPUH-A2-9-237(序列辨識號:36)刺激之#6(d)、以WDRPUH-A2-9-543(序列辨識號:37)刺激之#4(e)、以WDRPUH-A2-10-570(序列辨識號:40)刺激之#4(f)、以WDRPUH-A2-10-263(序列辨識號:41)刺激之#2與#8(g)、以WDRPUH-A2-10-78(序列辨識號:45)刺激之#5(h)、以WDRPUH-A2-10-10(序列辨識號:49)刺激之#2(i)、以WDRPUH-A2-10-411(序列辨識號:55)刺激之#6(j)、以WDRPUH-A2-10-287(序列辨識號:57)刺激之#7(k)及以WDRPUH-A2-10-265(序列辨識號:61)刺激之#6(l)顯示強而有力的IFN-γ產生。另一方面,藉由顯示於表2中之其他胜肽的刺激沒有偵測到強的IFN-γ產生,儘管事實為這些被預期胜肽具有與HLA-A * 0201之結合能力(資料未顯示)。
抗WDRPUH專一胜肽之細胞毒殺性T淋巴球細胞株與複製的建立
於孔洞編號#7中以序列辨識號:30刺激與孔洞編號#中以序列辨識號:34刺激藉由IFN-γ酵素結合免疫斑點分析顯示胜肽專一細胞毒殺性T淋巴球活性的細胞被擴張且建立為細胞毒殺性T淋巴球細胞株。藉由IFN-γ酵素結合免疫吸附分析測 定這些細胞毒殺性T淋巴球細胞株的細胞毒殺性T淋巴球活性(第5a與b圖)。與無胜肽脈衝之目標細胞相較,兩個細胞毒殺性T淋巴球細胞株顯示強的抗對應胜肽脈衝之目標細胞的IFN-γ產生。此外,藉由自細胞毒殺性T淋巴球細胞株限制稀釋來建立細胞毒殺性T淋巴球複製,且藉由IFN-γ酵素結合免疫吸附分析測定來自抗對應胜肽脈衝之目標細胞之細胞毒殺性T淋巴球複製的IFN-γ產生。於第5c與d圖顯示來自以序列辨識號:30與序列辨識號:34刺激之細胞毒殺性T淋巴球複製之強的IFN-γ產生。
抗外生表現WDRPUH與HLA-A * 0201之目標細胞的專一細胞毒殺性T淋巴球活性
測試經提升抗本發明胜肽之所建立的細胞毒殺性T淋巴球複製其對於辨認外生表現WDRPUH與HLA-A * 0201分子之目標細胞的能力。使用由對應之胜肽提升的細胞毒殺性T淋巴球細胞株做為影響細胞來測試抗COS7細胞的專一細胞毒殺性T淋巴球活性,而COS7細胞經全長之WDRPUH與HLA-A * 0201基因轉染(對於外生表現WDRPUH與HLA-A * 0201基因之目標細胞的特定模式)。COS7細胞以全長WDRPUH或HLA-A * 0201基因轉染製備為控制組。於第5e圖中,以序列辨識號:34刺激之細胞毒殺性T淋巴球顯示強的抗表現WDRPUH與HLA-A * 0201兩者之COS7細胞的能力。相對的,抗控制組沒有偵測到顯著專一之細胞毒殺性T淋巴球活性。這些資料清楚證明WDRPUH-A2-9-288(序列辨識號:34)之胜肽被內生地處理與表現於具有HLA-A * 0201分子之目標細胞的表面上,且由 細胞毒殺性T淋巴球所辨認。這些結果顯示WDRPUH-A2-9-288(序列辨識號:34)可合適的做為給具WDRPUH過度表現之腫瘤的病患之癌症疫苗。
抗原胜肽之同源分析
WDRPUH-A24-9-40(序列辨識號:1)、WDRPUH-A24-9-314(序列辨識號:2)、WDRPUH-A24-9-509(序列辨識號:3)、WDRPUH-A24-9-339(序列辨識號:4)、WDRPUH-A24-10-409(序列辨識號:16)、WDRPUH-A24-10-40(序列辨識號:17)、WDRPUH-A2-9-39(序列辨識號:30)、WDRPUH-A2-9-407(序列辨識號:31)、WDRPUH-A2-9-288(序列辨識號:34)、WDRPUH-A2-9-237(序列辨識號:36)、WDRPUH-A2-9-543(序列辨識號:37)、WDRPUH-A2-10-570(序列辨識號:40)、WDRPUH-A2-10-263(序列辨識號:41)、WDRPUH-A2-10-78(序列辨識號:45)、WDRPUH-A2-10-10(序列辨識號:49)、WDRPUH-A2-10-411(序列辨識號:55)、WDRPUH-A2-10-287(序列辨識號:57)及WDRPUH-A2-10-265(序列辨識號:61)刺激之細胞毒殺性T淋巴球顯示顯著且專一之細胞毒殺性T淋巴球活性。此結果可能起因於這些胜肽序列為與源自已知使人類免疫系統敏感之其他分子的胜肽同源的事實。為了排除此可能性,對於使用為關鍵字向BLAST演算法(http://www.ncbi.nlm.nih.gov/blast/blast.cgi)查詢之這些胜肽序列執行同源性分析,而BLAST演算法顯示沒有序列顯示顯著之同源性。同源性分析之結果指出WDRPUH-A24-9-40(序列辨識號:1)、WDRPUH-A24-9-314(序列辨識號:2)、 WDRPUH-A24-9-509(序列辨識號:3)、WDRPUH-A24-9-339(序列辨識號:4)、WDRPUH-A24-10-409(序列辨識號:16)與WDRPUH-A24-10-40(序列辨識號:17)、WDRPUH-A2-9-39(序列辨識號:30)、WDRPUH-A2-9-407(序列辨識號:31)、WDRPUH-A2-9-288(序列辨識號:34)、WDRPUH-A2-9-237(序列辨識號:36)、WDRPUH-A2-9-543(序列辨識號:37)、WDRPUH-A2-10-570(序列辨識號:40)、WDRPUH-A2-10-263(序列辨識號:41)、WDRPUH-A2-10-78(序列辨識號:45)、WDRPUH-A2-10-10(序列辨識號:49)、WDRPUH-A2-10-411(序列辨識號:55)、WDRPUH-A2-10-287(序列辨識號:57)及WDRPUH-A2-10-265(序列辨識號:61)之序列為獨特的,且因此只有很小可能性分子會對於一些非相關分子提高非傾向之免疫反應。
因此,確認新穎之HLA-A24與A2抗原決定位胜肽且證明其適合癌症免疫治療。
產業利用性
本發明敘述新的腫瘤相關抗原,特別是來自WDRPUH的那些,其誘導強且專一的抗腫瘤免疫反應,且對於癌症形式,例如肝細胞癌而言具有應用性。此腫瘤相關抗原准許更進一步發展於癌症中胜肽接種策略之臨床應用。
當於此詳述本發明與提及其特定實施例時,需瞭解的是,前述敘述本質為示範與解釋且意為說明本發明與其較佳實施例。於例行實驗之中,熟悉此技藝人士可立即瞭解在不脫離本發明之精神下其可實行各種改變與修飾。因此本發明不 被前述所定義,而被下列申請專利範圍與其等同物所定義。
<110> 腫瘤療法.科學股份有限公司
<120> WDRPUH抗原決定位胜肽及含此胜肽的疫苗
<130> ONC-A0829-TW
<150> US 61/200,962
<151> 2008-12-05
<150> US 61/209,704
<151> 2009-03-09
<160> 68
<170> PatentIn version 3.5
<210> 1
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 1
<210> 2
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 2
<210> 3
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 3
<210> 4
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 4
<210> 5
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 5
<210> 6
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 6
<210> 7
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 7
<210> 8
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 8
<210> 9
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 9
<210> 10
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 10
<210> 11
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 11
<210> 12
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 12
<210> 13
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 13
<210> 14
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 14
<210> 15
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 15
<210> 16
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 16
<210> 17
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 17
<210> 18
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 18
<210> 19
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 19
<210> 20
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 20
<210> 21
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 21
<210> 22
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 22
<210> 23
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 23
<210> 24
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 24
<210> 25
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 25
<210> 26
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 26
<210> 27
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 27
<210> 28
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 28
<210> 29
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 29
<210> 30
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 30
<210> 31
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 31
<210> 32
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 32
<210> 33
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 33
<210> 34
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 34
<210> 35
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 35
<210> 36
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 36
<210> 37
<211> 9
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 37
<210> 38
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 38
<210> 39
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 39
<210> 40
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 40
<210> 41
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 41
<210> 42
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 42
<210> 43
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 43
<210> 44
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 44
<210> 45
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 45
<210> 46
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 46
<210> 47
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 47
<210> 48
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 48
<210> 49
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 49
<210> 50
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 50
<210> 51
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 51
<210> 52
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 52
<210> 53
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 53
<210> 54
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 54
<210> 55
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 55
<210> 56
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 56
<210> 57
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 57
<210> 58
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 58
<210> 59
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 59
<210> 60
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 60
<210> 61
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 61
<210> 62
<211> 10
<212> PRT
<213> 人工
<220>
<223> 人工合成胜肽
<400> 62
<210> 63
<211> 2207
<212> DNA
<213> 人類
<220>
<221> CDS
<222> (70)..(1932)
<400> 63
<210> 64
<211> 620
<212> PRT
<213> 人類
<400> 64
<210> 65
<211> 22
<212> DNA
<213> 人工
<220>
<223> 人工序列
<400> 65
<210> 66
<211> 24
<212> DNA
<213> 人工
<220>
<223> 人工序列
<400> 66
<210> 67
<211> 21
<212> DNA
<213> 人工
<220>
<223> 人工序列
<400> 67
<210> 68
<211> 24
<212> DNA
<213> 人工
<220>
<223> 人工序列
<400> 68

Claims (15)

  1. 一種經分離的胜肽,係擇自下方(i)至(ii)所組成之群組,其中該胜肽具有細胞毒殺性T淋巴球誘發能力:(i)一經分離的胜肽,小於15個胺基酸,其包括序列辨識號:34之胺基酸序列;(ii)一經分離的胜肽,其係由序列辨識號:34之胺基酸序列所組成,於其中1或2個胺基酸被取代及/或加入,其中該取代為擇自由下列所組成之群組:(a)來自序列辨識號:34之胺基酸序列之N端之第二個胺基酸為或被修飾為甲硫丁胺酸;以及(b)序列辨識號:34之胺基酸序列之C端胺基酸為或被修飾為一胺基酸,其係擇自纈胺酸與白胺酸之群組。
  2. 如申請專利範圍第1項所述之經分離的胜肽,其為九胜肽。
  3. 一種經分離之多核苷酸,其編碼出申請專利範圍第1項之一胜肽。
  4. 一種誘發細胞毒殺性T淋巴球之試劑,其中該試劑包含申請專利範圍第1或2項的一或多個胜肽,或申請專利範圍第3項之一或多個多核苷酸。
  5. 一種藥學試劑,用於癌症之治療及/或預防,及/或其手術後復發的避免,其中該試劑包括申請專利範圍第1或2項的一或多個胜肽,或申請專利範圍第3項之一或多個多核苷酸。
  6. 如申請專利範圍第5項所述之藥學試劑,被配製投予一個體,其人類白血球組織抗原為人類白血球組織抗原-A2。
  7. 一種in vitroex vivo誘導具有細胞毒殺性T淋巴球誘發能 力之抗原呈現細胞的方法,其中該方法包括一步驟擇自:(a)in vitroex vivo將一抗原呈現細胞與申請專利範圍第1之一胜肽接觸;以及(b)將編碼出申請專利範圍第1項之一胜肽的一多核苷酸引入一抗原呈現細胞。
  8. 一種in vitroex vivo誘導細胞毒殺性T淋巴球的方法,其中該方法包括步驟擇自:(a)將一CD8+T細胞與一抗原呈現細胞共培養,抗原呈現細胞表現一人類白血球組織抗原與申請專利範圍第1項之一胜肽的複合物於其表面上;(b)將一CD8+T細胞與一外吐小體共培養,外吐小體表現一人類白血球組織抗原與申請專利範圍第1項之一胜肽的複合物於其表面上;以及(c)將一多核苷酸引入一T細胞,該多核苷酸編碼出一T細胞受體次單元多胜肽其與申請專利範圍第1項之一胜肽結合。
  9. 一種經分離之抗原呈現細胞,其表現一人類白血球組織抗原與申請專利範圍第1項之一胜肽的複合物於其表面上。
  10. 如申請專利範圍第9項所述之經分離之抗原呈現細胞,其藉由申請專利範圍第7項所述之方法來誘導。
  11. 一種經分離之細胞毒殺性T淋巴球,其以申請專利範圍第1項之任一胜肽為標的。
  12. 如申請專利範圍第11項所述之經分離之細胞毒殺性T淋巴球,其藉由申請專利範圍第8項所述之方法來誘導。
  13. 一種申請專利範圍第1或2項之一胜肽或一編碼出該胜肽之多核苷酸於製造用以誘導一抗癌症之免疫反應之試劑中的用途。
  14. 一種下列(a)或(b)於製造用以誘導具有細胞毒殺性T淋巴球誘發能力之一抗原呈現細胞之試劑中的用途:(a)申請專利範圍第1或2項之一胜肽;或(b)編碼出申請專利範圍第1或2項之一胜肽的一多核苷酸。
  15. 一種下列(a)或(b)於製造用以誘導一細胞毒殺性T淋巴球之試劑中的用途:(a)申請專利範圍第1或2項之一胜肽;或(b)編碼出與申請專利範圍第1或2項之一胜肽結合之一T細胞受體次單元多胜肽的一多核苷酸。
TW103140741A 2008-12-05 2009-12-02 Wdrpuh抗原決定位胜肽以及含此胜肽之疫苗 TWI539160B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20096208P 2008-12-05 2008-12-05
US20970409P 2009-03-09 2009-03-09

Publications (2)

Publication Number Publication Date
TW201510529A true TW201510529A (zh) 2015-03-16
TWI539160B TWI539160B (zh) 2016-06-21

Family

ID=42233088

Family Applications (2)

Application Number Title Priority Date Filing Date
TW098141123A TWI500932B (zh) 2008-12-05 2009-12-02 Wdrpuh抗原決定位胜肽以及含此胜肽之疫苗
TW103140741A TWI539160B (zh) 2008-12-05 2009-12-02 Wdrpuh抗原決定位胜肽以及含此胜肽之疫苗

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW098141123A TWI500932B (zh) 2008-12-05 2009-12-02 Wdrpuh抗原決定位胜肽以及含此胜肽之疫苗

Country Status (18)

Country Link
US (3) US8541546B2 (zh)
EP (3) EP4047009A3 (zh)
JP (1) JP5764823B2 (zh)
KR (1) KR101705102B1 (zh)
CN (2) CN104650183B (zh)
AU (1) AU2009323523B2 (zh)
BR (1) BRPI0922844A2 (zh)
CA (2) CA3031126C (zh)
DK (1) DK3219720T3 (zh)
ES (1) ES2913148T3 (zh)
IL (2) IL212945B (zh)
MX (1) MX2011005944A (zh)
NZ (2) NZ605799A (zh)
RU (1) RU2514386C2 (zh)
SG (1) SG171977A1 (zh)
TW (2) TWI500932B (zh)
WO (1) WO2010064430A1 (zh)
ZA (1) ZA201104890B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133405A1 (ja) 2012-03-09 2013-09-12 オンコセラピー・サイエンス株式会社 ペプチドを含む医薬組成物
DK2895600T3 (da) 2012-09-11 2020-04-27 Onco Therapy Science Inc Ube2t-peptider og vacciner, der indeholder disse

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722848A (en) 1982-12-08 1988-02-02 Health Research, Incorporated Method for immunizing animals with synthetically modified vaccinia virus
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US5804566A (en) 1993-08-26 1998-09-08 The Regents Of The University Of California Methods and devices for immunizing a host through administration of naked polynucleotides with encode allergenic peptides
US5679647A (en) 1993-08-26 1997-10-21 The Regents Of The University Of California Methods and devices for immunizing a host against tumor-associated antigens through administration of naked polynucleotides which encode tumor-associated antigenic peptides
US5739118A (en) 1994-04-01 1998-04-14 Apollon, Inc. Compositions and methods for delivery of genetic material
US5736524A (en) 1994-11-14 1998-04-07 Merck & Co.,. Inc. Polynucleotide tuberculosis vaccine
US5922687A (en) 1995-05-04 1999-07-13 Board Of Trustees Of The Leland Stanford Junior University Intracellular delivery of nucleic acids using pressure
WO1997005900A1 (en) 1995-08-03 1997-02-20 Rijksuniversiteit Te Leiden Cell derived antigen presenting vesicles
US5853719A (en) 1996-04-30 1998-12-29 Duke University Methods for treating cancers and pathogen infections using antigen-presenting cells loaded with RNA
WO1998004720A1 (en) 1996-07-26 1998-02-05 Sloan-Kettering Institute For Cancer Research Method and reagents for genetic immunization
FR2766205B1 (fr) 1997-07-16 2002-08-30 Inst Nat Sante Rech Med Nouveau procede de sensibilisation de cellules presentatrices d'antigene et nouveaux moyens pour la mise en oeuvre du procede
US7041297B1 (en) 1998-06-25 2006-05-09 Sumitomo Pharmaceuticals Company Tumor antigen peptides originating in cyclophilin B
CA2488404C (en) 2002-06-06 2012-11-27 Oncotherapy Science, Inc. Genes and polypeptides relating to human colon cancers
CN101613405A (zh) * 2002-06-06 2009-12-30 肿瘤疗法科学股份有限公司 与人结肠癌相关的基因和多肽
EP2267021B1 (en) * 2002-09-12 2015-02-18 Oncotherapy Science, Inc. KDR peptides and vaccines comprising the same
CA2580412A1 (en) 2004-09-13 2006-03-23 Government Of The United States Of America, Represented By The Secretary , Department Of Health And Human Services Compositions comprising t cell receptors and methods of use thereof
ES2364670T3 (es) 2005-02-25 2011-09-12 Oncotherapy Science, Inc. Vacunas de péptidos para cánceres de pulmón que expresan polipéptidos ttk.
KR101130597B1 (ko) 2005-09-13 2012-04-02 다카라 바이오 가부시키가이샤 T 세포 리셉터 및 그 리셉터를 코드하는 핵산
TWI610939B (zh) 2007-02-21 2018-01-11 腫瘤療法 科學股份有限公司 表現腫瘤相關抗原之癌症的胜肽疫苗
TW201425333A (zh) * 2007-04-11 2014-07-01 Oncotherapy Science Inc 腫瘤血管內皮標誌8胜肽及包含此胜肽之疫苗
TW201008574A (en) 2008-08-19 2010-03-01 Oncotherapy Science Inc INHBB epitope peptides and vaccines containing the same

Also Published As

Publication number Publication date
AU2009323523A1 (en) 2010-06-10
KR101705102B1 (ko) 2017-02-22
ZA201104890B (en) 2012-03-28
RU2514386C2 (ru) 2014-04-27
TWI539160B (zh) 2016-06-21
CA3031126A1 (en) 2010-06-10
KR20110099018A (ko) 2011-09-05
CN102307891A (zh) 2012-01-04
BRPI0922844A2 (pt) 2015-12-29
NZ605799A (en) 2014-03-28
CA2745408A1 (en) 2010-06-10
CN102307891B (zh) 2015-02-04
EP2370454A4 (en) 2013-11-20
US9745343B2 (en) 2017-08-29
EP4047009A3 (en) 2022-11-16
TWI500932B (zh) 2015-09-21
US20130315942A1 (en) 2013-11-28
IL212945A0 (en) 2011-07-31
JP2012510794A (ja) 2012-05-17
EP3219720A3 (en) 2018-01-03
EP2370454A1 (en) 2011-10-05
CA2745408C (en) 2019-03-12
NZ593086A (en) 2013-02-22
US20150315239A1 (en) 2015-11-05
US20110293645A1 (en) 2011-12-01
AU2009323523B2 (en) 2016-08-11
RU2011127429A (ru) 2013-01-10
MX2011005944A (es) 2011-07-28
DK3219720T3 (da) 2022-05-09
ES2913148T3 (es) 2022-05-31
CN104650183B (zh) 2018-04-20
IL212945B (en) 2018-03-29
CA3031126C (en) 2022-03-22
SG171977A1 (en) 2011-07-28
EP3219720A2 (en) 2017-09-20
TW201027074A (en) 2010-07-16
US8541546B2 (en) 2013-09-24
JP5764823B2 (ja) 2015-08-19
IL228266A (en) 2016-09-29
EP4047009A2 (en) 2022-08-24
US9115207B2 (en) 2015-08-25
CN104650183A (zh) 2015-05-27
EP3219720B1 (en) 2022-03-09
WO2010064430A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
TWI526219B (zh) Cdca1抗原決定位胜肽及含此胜肽的疫苗
TWI469791B (zh) Foxm1胜肽以及含此胜肽之疫苗
RU2550695C2 (ru) Олигопептиды imp-3 и содержащие их вакцины
US20140199335A1 (en) C1orf59 peptides and vaccines including the same
US9745343B2 (en) Method of inducing an immune response by administering WDRPUH epitope peptides
WO2010070877A1 (en) Elovl7 epitope peptides and vaccines containing the same
AU2010216980B2 (en) FOXM1 peptides and vaccines containing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees