TW201509380A - 用於人工胰臟之封閉迴路控制的方法及系統 - Google Patents
用於人工胰臟之封閉迴路控制的方法及系統 Download PDFInfo
- Publication number
- TW201509380A TW201509380A TW103108920A TW103108920A TW201509380A TW 201509380 A TW201509380 A TW 201509380A TW 103108920 A TW103108920 A TW 103108920A TW 103108920 A TW103108920 A TW 103108920A TW 201509380 A TW201509380 A TW 201509380A
- Authority
- TW
- Taiwan
- Prior art keywords
- insulin delivery
- insulin
- glucose
- curve
- amount
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/172—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
- A61M5/1723—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4836—Diagnosis combined with treatment in closed-loop systems or methods
- A61B5/4839—Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/10—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
- G16H20/17—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M2005/14288—Infusion or injection simulation
- A61M2005/14296—Pharmacokinetic models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3546—Range
- A61M2205/3553—Range remote, e.g. between patient's home and doctor's office
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3546—Range
- A61M2205/3561—Range local, e.g. within room or hospital
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
- A61M2205/3584—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
- A61M2205/3592—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/502—User interfaces, e.g. screens or keyboards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/52—General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2209/00—Ancillary equipment
- A61M2209/01—Remote controllers for specific apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/20—Blood composition characteristics
- A61M2230/201—Glucose concentration
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Diabetes (AREA)
- Optics & Photonics (AREA)
- Emergency Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
本發明揭示用於回應於葡萄糖測量值以控制一胰島素泵之方法及系統,該等方法及系統係回應於一基本胰島素輸送曲線及一暫時胰島素輸送曲線。可使用此等曲線以例如使用一持續葡萄糖監測器及一胰島素輸液泵來控制一對象之血液葡萄糖位準。於一選定時間範圍期間,使用該暫時胰島素輸送曲線來決定該泵供應之胰島素量。在彼時間範圍外,使用該基本胰島素輸送曲線來決定該胰島素量。該暫時胰島素輸送曲線可指定:要供應之精確量(「硬式」曲線);要供應之標稱量,若如此做不會使葡萄糖超過所要區帶(「軟式」);或一軟式曲線,其具有要輸送的最少胰島素量(「半軟式」)。
Description
本發明揭示用於回應於葡萄糖測量值以控制一胰島素泵之方法及系統,該等方法及系統係回應於一基本胰島素輸送曲線及一暫時胰島素輸送曲線。
本申請案依據巴黎公約(Paris Convention)主張2013年3月15日申請之先前申請之美國專利申請案第13/834,571號(代理人檔案號碼3061736(ANM5824USNP))之優先權權利,該先前申請之申請案整份內容以引用方式併入本文中。
糖尿病為胰臟無法產生充分荷爾蒙胰島素量導致身體代謝葡萄糖能力降低所引起的代謝相關慢性病。此胰臟機能不足導致高血糖,即血漿中存在極大量葡萄糖。頑固型高血糖及/或低胰島素血症已與各種嚴重症狀及致命性長期併發症相關聯,諸如脫水症、酮酸血症、糖尿病昏迷、心血管疾病、慢性腎衰竭、視網膜受損及神經受損,連帶有四肢截肢的風險。因為內因性胰島素生產尚不可實行,所以需要永久治療,提定糖控制,以使血液葡萄糖位準始終維持在正常限值內。藉由定期自外部供應胰島素給患者身體以藉此降低升高的血液葡萄糖位準而達成此類血糖控制。
外來生物藥劑諸如胰島素通常藉由每日多次注射投予,其經由皮下注射器注射速效型及中效型藥物之混合物。經發現,因為輸送與生理荷爾蒙生產(荷爾蒙據此以較低速度及更長的時期進入血流)不同,所以此注射方式無法達成最佳的血糖控制程度。可藉由所謂的密集荷爾蒙治療來達成改良血糖控制,密集荷爾蒙治療係基於每日多次的胰島素注射,包括每日一或兩次注射提供基準荷爾蒙的
長作用荷爾蒙及在每餐前額外注射與餐量成比例量的迅速作用荷爾蒙。雖然傳統注射器已至少部分被胰島素筆針所取代,但是對於患者而言,尤其對於無法可靠自我管理注射的患者,頻繁注射仍然極為不便利。
已藉由開發藥物輸送裝置,減輕患者所需的注射器與藥品筆及每日多次注射管理,而達成實質上改良糖尿病治療。藥物輸送裝置允許以最類似於生理過程自然發生之方式輸送藥品,並且可控制藥物輸送裝置以遵循標準或個人修改之協定,給予患者更佳的血糖控制。
此外,藥物輸送裝置可實現直接輸送至腹腔內空間或通過靜脈輸送。藥物輸送裝置可建構為用於置入皮下的可植入裝置,或可建構為含有輸液套的外部裝置,用於經由經皮插入導管、插管或經皮藥品傳輸(諸如透過貼劑)皮下注入至患者。外部藥物輸送裝置掛在衣服上、隱藏在衣服下方或內部或掛在身體上,並且通常係經由內建至裝置中或配置在分開的遙控裝置上的使用者介面控制。
達成可接受的血糖控制需要血液或組織間葡萄糖監控。例如,藉由藥物輸送裝置輸送適量胰島素需要患者頻繁地決定本身的血液葡萄糖位準並將此值手動輸入至外部泵的使用者介面。接著,使用者介面或相對應之控制器計算對預設或當前使用中的胰島素輸送協定(即,劑量及定時)的適當修改,並且隨後與藥物輸送裝置通信以據此調整其操作。通常藉由間歇性測量裝置(諸如手持型電子計),經由基於酵素之測試條接收血液樣本並且基於酵素反應計算血液葡萄糖值,來執行血液葡萄糖濃度決定。在整份揭示內容有,互換使用術語「病患」、「對象」及「使用者」(即,藥物輸送裝置使用者)。
在近20年來也利用連續葡萄糖監控(CGM)搭配藥物輸送裝置,而允許胰島素注入至糖尿病患者的封閉迴路控制。為了允許注入胰島素之封閉迴路控制,已利用比例積分微分(「PID」)控制器搭配人類中葡萄糖與胰島素之間代謝相互作用的數學模型。可基於代謝模型之簡單規則來調諧PID控制器。但是,當PID控制器經調諧或組態以積極調節使用者的血液葡萄糖位準時,可發生設定位準超
越,通常接著發生波動,這在調節血液葡萄糖方面極為不樂見。亦已使用模型預設控制器(MPC)。MPC控制器已展現出比PID更穩健,因為MPC考量控制變更的近期效應及決定MPC輸出時的約束限制,而PID在決定未來變更時通常僅需要過去的輸出。因此,鑑於胰島素、高血糖素與血液葡萄糖之間複雜的相互作用,MPC比PID更有效。可在MPC控制器中實施約束限制,使得在已達到控制限值時MPC防止系統失控。例如,一些方案在低血糖波動期間不傳遞任何葡萄糖。MPC控制器之另一優點在於,在一些情況中,MPC中的模型理論上補償動態系統變化,而諸如PID控制的反饋控制不可能有此類動態補償。
在下列文獻中呈現及描寫MPC控制器詳細資訊、MPC變異及表示葡萄糖與胰島素之間複雜相互作用的數學模型:美國專利第7,060,059號;美國專利申請案第2011/0313680號及第2011/0257627號;國際公開案WO 2012/051344;Percival等人「Closed-Loop Control and Advisory Mode Evaluation of an Artificial Pancreatic β Cell:Use of Proportional-Integral-Derivative Equivalent Model-Based Controllers」(《Journal of Diabetes Science and Technology,Vol.2,Issue 4,2008年7月》);Paola Soru等人「MPC Based Artificial Pancreas;Strategies for Individualization and Meal Compensation」(《Annual Reviews in Control 36,p.118-128(2012)》);Cobelli等人「Artificial Pancreas:Past,Present,Future」(《Diabetes Vol.60,2011年11月》);Magni等人「Run-to-Run Tuning of Model Predictive Control for Type 1 Diabetes Subjects:In Silico Trial」(《Journal of Diabetes Science and Technology,Vol.3,Issue 5,2009年9月》);Lee等人「A Closed-Loop Artificial Pancreas Using Model Predictive Control and a Sliding Meal Size Estimator」(《Journal of Diabetes Science and Technology,Vol.3,Issue 5,2009年9月》);Lee等人「A Closed-Loop Artificial Pancreas based on MPC:Human Friendly Identification and Automatic Meal Disturbance Rejection」(《Proceedings of the 17th World Congress,The International Federation of Automatic Control,Seoul
Korea,2008年7月6至11日》);Magni等人「Model Predictive Control of Type 1 Diabetes:An in Silico Trial」(《Journal of Diabetes Science and Technology,Vol.1,Issue 6,2007年11月》);Wang等人「Automatic Bolus and Adaptive Basal Algorithm for the Artificial Pancreatic β-Cell」(《Diabetes Technology and Therapeutics,Vol.12,No.11,2010》);以及Percival等人「Closed-Loop Control of an Artificial Pancreatic β-Cell Using Multi-Parametric Model Predictive Control」(《Diabetes Research 2008》)。
本申請案中列舉之所有文章或文獻特此以引用方式併入本申請案中,如同在此完整闡述。
藥物輸送裝置通常提供以「基準速率」輸送胰島素,即,依預先程式化的每日模式每隔幾分鐘提供一定量胰島素。一些藥物輸送裝置亦准許使用者指定「暫時基準」,其中針對所選時段變更正常每日循環。
一些藥物輸送裝置准許使用者手動要求「給藥」,在指定時間輸送指定量胰島素。例如,餐食前,使用者可要求給藥,輸送額外胰島素以處理因餐食消化而產生的葡萄糖。一些藥物輸送裝置准許在一段時期輸送指定量劑而非一次輸送;延長時間之輸送稱為「延長給藥(extended bolus)」。
但是,在先前方案中,暫時基準及延長給藥是手動請求及手動控制的。為了自此等方案獲得所要優點,需要使用者:(a)測量其血液葡萄糖;(b)知道胰島素對血液葡萄糖的影響(「胰島素靈敏度因子」或「SF」);(c)知道食用的碳水化合物克數;(d)知道針對給定量碳水化合物需要多少胰島素(「胰島素對碳水化合物比率」);(e)知道運動及其他活動對血液葡萄糖的影響;及(f)據此設定泵。此等五項因素僅僅是胰島素治療之使用者必須應對的實例。此等類別中任一項資訊不精確皆會導致葡萄糖波動,例如,若使用者針對給定餐食指定過量或不足給藥。
另外,體內葡萄糖測量因葡萄糖位準頻繁變化及測量儀器中之變異性而展現顯著變異性。經調諧以適當回應此變異性的控制技術可能無法正確回應起因於暫時基準或延長給藥而存在的葡萄糖瞬變(高或低)。據此,持續需要一種基於持續的葡萄糖測量來輸送適量胰島素並且提供暫時基準及延長給藥功能之方法,在維持關於血液葡萄糖位準的防護措施時不會不利地影響控制器。
因此,在一態樣中,申請人已設計一種回應於接收來自一葡萄糖感測器之資料之一控制器以控制一輸液泵之方法。可達成該方法方式為,用該葡萄糖感測器測量來自一使用者之一生理流體之一葡萄糖位準及使用該控制器自動執行以下步驟:針對一系列離散時間間隔之各時間間隔,自該葡萄糖感測器接收各自葡萄糖位準測量值;接收延伸於時間間隔之一選定時間範圍之一暫時胰島素輸送曲線;基於一模型預測控制器針對該等時間間隔之一選定者計算一認可胰島素輸送量,該模型預測控制器:使用該等葡萄糖測量值之至少一些者自一選定目標葡萄糖範圍預測該葡萄糖位準之一波動;運算一估計胰島素輸送量;以及調整該估計胰島素輸送量以提供該認可胰島素輸送量,該調整根據該預測波動、一基本胰島素輸送曲線、或若該選定時間間隔係在該選定範圍內則根據該暫時胰島素輸送曲線而執行;自該認可胰島素輸送量決定一經核准胰島素輸送量;以及命令該輸液泵輸送該經核准胰島素輸送量。
在其他態樣中,申請人亦已設計一種回應於接收來自一葡萄糖感測器之資料之一控制器以控制一輸液泵之方法。可達成該方法方式為,用該葡萄糖感測器測量來自一使用者之一生理流體之一葡萄糖位準及使用該控制器執行以下步驟:針對一系列離散時間間隔之各時間間隔,自該葡萄糖感測器接收各自葡萄糖位準測量值;
接收延伸於時間間隔之一選定時間範圍之一暫時胰島素輸送曲線;基於一模型預測控制器針對該等時間間隔之一選定者計算一認可胰島素輸送量,該模型預測控制器:若該選定時間間隔係在該選定範圍外,則使用該等葡萄糖測量值之至少一些者自一選定目標葡萄糖範圍預測該葡萄糖位準之一波動;運算一估計胰島素輸送量;以及調整該估計胰島素輸送量以提供該認可胰島素輸送量,根據該預測波動及基本胰島素輸送曲線來執行該調整;以及若該選定時間間隔係在該選定範圍內,則自該暫時胰島素輸送曲線擷取該選定時間間隔之該認可胰島素輸送量;自該認可胰島素輸送量決定一經核准胰島素輸送量;以及命令該輸液泵輸送該經核准胰島素輸送量。
在另一進一步態樣中,申請人亦已設計一種用於輸送胰島素之設備。該設備可包含以下組件:a)一葡萄糖監測器,其經調適以在離散時間間隔測量一對象之各自葡萄糖位準並且提供指示各經測量葡萄糖位準之各自葡萄糖測量資料;b)一胰島素輸液泵,其經組態以回應於一輸送控制信號而輸送胰島素;c)一記憶體,其經組態以儲存一基本胰島素輸送曲線;d)一介面,其經調適以選擇性接收延伸於該等時間間隔之一選定時間範圍之一暫時胰島素輸送曲線,並且提供指示是否接收到該暫時胰島素輸送曲線之一第一信號;以及e)一控制器,其經調適以針對複數個該等離散時間間隔之各者:i)自該葡萄糖監測器接收彼時間間隔之該葡萄糖測量資料;ii)基於一選定目標葡萄糖濃度範圍、該接收之葡萄糖測量資料、該儲存之基本胰島素輸送曲線或回應於該第一信號及若彼時間間隔
係在該選定時間範圍內則基於該接收之暫時胰島素輸送曲線,使用模型預測控制來決定彼時間間隔之一胰島素輸送量;以及iii)提供對應於該決定之胰島素輸送量之一輸送控制信號至該胰島素輸液泵,藉此輸送相對應量之胰島素。
在其他態樣中,提供一種用於輸送胰島素之設備。該設備可包含以下組件:a)一葡萄糖監測器,其經調適以在離散時間間隔測量一對象之各自葡萄糖位準並且提供指示各經測量葡萄糖位準之各自葡萄糖測量資料;b)一胰島素輸液泵,其經組態以回應於一輸送控制信號而輸送胰島素;c)一記憶體,其經組態以儲存一基本胰島素輸送曲線;d)一介面,其經調適以接收延伸於該等時間間隔之一選定時間範圍之一暫時胰島素輸送曲線;以及e)一控制器,其經調適以針對複數個該等離散時間間隔之各者:i)自該葡萄糖監測器接收彼時間間隔之該葡萄糖測量資料;ii)若彼時間間隔係在該選定時間範圍內,則自該暫時胰島素輸送曲線擷取一相對應之胰島素輸送量,或否則基於一選定目標葡萄糖濃度範圍、該接收之葡萄糖測量資料及該基本胰島素輸送曲線,使用模型預測控制來決定彼時間間隔之一胰島素輸送量;以及iii)提供對應於該胰島素輸送量之一輸送控制信號至該胰島素輸液泵,藉此輸送相對應量之胰島素。
此等態樣藉由准許指定暫時基準及延長給藥而增加使用者對胰島素位準的控制,而無需複雜的胰島素計算及葡萄糖位準計算。在各項態樣中,藉由一模型預測控制器來處置暫時基準及延長給藥,就如同標準基準一樣,減少模型引發胰島素瞬變的可能性。
據此,在前文所述之任何態樣中,下面的特徵也可與先前揭露之態樣以各種組合來利用。例如,接收一暫時胰島素輸送曲線之該步驟可包含:接收一曲線修改項,並且應用該曲線修改項至該基本胰島素輸送曲線以產生該暫時胰島素輸送曲線;該調整可包
含:若該選定時間間隔係在該選定範圍內,則根據該預測波動及該暫時胰島素輸送曲線調整該估計輸送量;及若該選定時間間隔非在該選定範圍內,則根據該預測波動及該基本胰島素輸送曲線調整該估計輸送量;替代地,該調整可包含:若該選定時間間隔係在該選定範圍內,則根據該預測波動及該暫時胰島素輸送曲線調整該估計輸送量,並且強制使該計算胰島素輸送量至少為在該選定時間間隔中該暫時胰島素輸送曲線與該基本胰島素輸送曲線之間之一差值;及若該選定時間間隔非在該選定範圍內,則根據該預測波動及該基本胰島素輸送曲線調整該估計輸送量;該決定經核准量步驟可包含提供該認可胰島素輸送量作為該經核准胰島素輸送量;替代地,該決定經核准量步驟可包含:根據一安全模型減少該認可輸送量,以提供該經核准胰島素輸送量;該暫時胰島素輸送曲線可包含該選定時間範圍之前段及後段子範圍,並且指定該前段子範圍中的胰島素輸送或速率高於該後段子範圍胰島素輸送或速率;該決定經核准量步驟可包含:使用一安全模型以決定是否預測到一低血糖波動,且若為肯定,則減少該認可輸送量以提供該經核准胰島素輸送量。另外,該介面可經調適以藉由接收變更資訊並且根據該變更資訊在該選定時間範圍內修改該儲存之基本胰島素輸送曲線而接收該暫時胰島素輸送曲線,以提供該暫時胰島素輸送曲線;該控制器可經調適以用以下者決定一選定時間間隔之該胰島素輸送量:(a)若未接收到該暫時胰島素輸送曲線或該選定時間間隔係在該選定時間範圍外,則使用該選定目標葡萄糖濃度範圍、該接收之葡萄糖測量資料、該儲存之基本胰島素輸送曲線;(b)否則,使用該選定目標葡萄糖濃度範圍、該接收之葡萄糖測量資料及該接收之暫時胰島素輸送曲線;該控制器可進一步經調適以回應於該第一信號且若一選定時間間隔係在該選定時間範圍內,則強制使針對該選定時間間隔的該決定之胰島素輸送量至少為在該選定時間間隔中該暫時胰島素輸送曲線與該儲存之基本胰島素輸送曲線之各自值之間之一差值;該控制器可進一步經調適以:a)用一安全模型及針對複數個該等時間間隔之該葡萄糖測量資料之至少一些者,自該選定目標葡萄糖範圍預測對象之一葡萄糖位準之一波動;及b)根據該預測之波動減少該決定之
胰島素輸送量;該暫時胰島素輸送曲線可包含該選定時間範圍之前段及後段子範圍,並且指定該前段子範圍中的胰島素輸送或速率高於該後段子範圍胰島素輸送或速率;該葡萄糖監測器可包含複數個葡萄糖感測器;該介面可進一步經調適以提供一啟動信號,並且該控制器回應於該啟動信號,擷取該儲存之基本胰島素輸送曲線並且擷取或決定該胰島素輸送量;該控制器可進一步經調適以:a)用一安全模型及針對複數個該等時間間隔之該葡萄糖測量資料之至少一些者,自該選定目標葡萄糖範圍預測對象之一葡萄糖位準之一波動;及b)根據該預測之波動減少該決定之胰島素輸送量;該葡萄糖監測器可包含複數個葡萄糖感測器;及該介面可進一步經調適以提供一啟動信號,並且該控制器回應於該接收之啟動信號,擷取該儲存之基本胰島素輸送曲線並且擷取或決定該胰島素輸送量。
當參考下列本發明例示性實施例中更詳細的敘述,並結合第一個簡述之附圖時,熟悉此項領域技術者將清楚可知這些和其它的實施例、特徵及優點。
10‧‧‧控制邏輯模組/MPC邏輯模組/控制邏輯(圖2)/模型預測控制器
(MPC)控制器
12‧‧‧葡萄糖濃度或葡萄糖濃度範圍/所要葡萄糖濃度
14‧‧‧第一輸出
15‧‧‧預測葡萄糖值
16‧‧‧胰島素泵
18‧‧‧胰島素
20‧‧‧對象
22‧‧‧葡萄糖感測器
24‧‧‧實際或所測量葡萄糖位準之信號/所測量葡萄糖濃度
26‧‧‧輸入/差值
28‧‧‧更新或遞廻過濾器
100‧‧‧藥物輸送系統
102‧‧‧藥物輸送裝置
104‧‧‧遙控器
106‧‧‧輸液套
108‧‧‧撓性管/輸液套
112‧‧‧射頻通信/連續分析物監控(CGM)感測器
114‧‧‧間歇性血液葡萄糖計
116‧‧‧遠端健康監測台/射頻模組
118‧‧‧無線通信網路
126‧‧‧個人電腦或網路電腦
128‧‧‧伺服器
210‧‧‧介面
310‧‧‧基本胰島素輸送曲線
320‧‧‧暫時胰島素輸送曲線
330‧‧‧時間範圍
410‧‧‧基本胰島素輸送曲線
415‧‧‧胰島素量/黑色箭頭
420‧‧‧暫時胰島素輸送曲線
425‧‧‧I D 值的可能範圍/黑色箭頭
430‧‧‧時間範圍
440‧‧‧區域
610‧‧‧基本胰島素輸送曲線
615‧‧‧血液葡萄糖位準保持在區帶/黑色箭頭
620‧‧‧硬式暫時胰島素輸送曲線
630‧‧‧時間範圍
1110‧‧‧資料處理系統
1115‧‧‧通信介面
1116‧‧‧網路鏈路
1120‧‧‧周邊系統
1121‧‧‧葡萄糖監測器
1122‧‧‧葡萄糖感測器
1125‧‧‧胰島素輸液泵
1130‧‧‧使用者介面系統
1131‧‧‧介面
1138‧‧‧對象
1141‧‧‧記憶體
1142‧‧‧磁碟
1140‧‧‧資料處理系統
1150‧‧‧網路
A‧‧‧控制接合點
B‧‧‧控制接合點
k‧‧‧時間間隔索引
併入本文且構成此說明書之一部分的附圖說明本發明之目前較佳的實施例,並連同上文給定的先前技術及下文給定的實施方式共同用於解釋本發明的特徵(其中相同數字表示相同元件)。
圖1說明系統,其中用於泵或葡萄糖監測器之控制器與輸液泵及葡萄糖監測器兩者分開,並且其中網路可耦合至該控制器,以提供近即時監測。
圖2為用於使用胰島素泵管理血液葡萄糖之控制系統之圖式。
圖3及圖4為根據各項態樣之胰島素輸送曲線之實例。
圖5為說明控制輸液泵之例示性方法之流程圖。
圖6為根據各項態樣之胰島素輸送曲線之實例。
圖7為根據各項態樣控制輸液泵之方式之流程圖。
圖8展示用於輸送胰島素之設備之各項實施例。
必須參考圖式來閱讀以下的詳細說明,其中不同圖式中的類似元件係以相同方式編號。圖式不一定按比例繪製,描繪選定的實施例且不打算限制本發明或隨附申請專利範圍的範疇。
如本說明書中所用者,用於任何數值或範圍上之用語「約」或「約略」係指合適的尺度容差,而讓部分或組件集合能夠針對其所欲之目的(如本說明書中所述者)發揮作用。此外,如本文所述,「病患」、「宿主」、「使用者」及「對象」的詞係指任何人類或動物對象,且並未打算將這些系統及方法限制於人類用途而已,即使將本發明用於人類病患中代表一較佳的實施例。此外,用語「使用者」不僅包括使用藥品注入泵裝置的病患,也包括照顧者(例如父母或監護人、護理人員或家庭照顧員工)。用語「藥品」可包含荷爾蒙、生物活性材料、醫藥或引起使用者或患者身體中生物反應(例如,血糖反應)的化學品。
圖1說明利用本發明原理之根據一例示性實施例之藥物輸送系統100。藥物輸送系統100包括一藥物輸送裝置102以及一遙控器104。藥物輸送裝置102係經由一撓性管108連接至一輸液套106。
藥物輸送裝置102經組態以藉由(例如)射頻通信112傳輸資料至遙控器104及接收來自遙控器104之資料。藥物輸送裝置102亦可運作為獨立裝置且具有自己的內建控制器。在一實施例中,藥物輸送裝置102為胰島素輸液裝置,及遙控器104為手持攜帶型控制器。在此一實施例中,自藥物輸送裝置102傳輸至遙控器104之資料可包括諸如(例如)胰島素輸送資料、血液葡萄糖資訊、基準、給藥、胰島素對碳水化合物比率或胰島素敏感性因子等等資訊。該控制器104經組態以包括MPC控制器10,其經程式化以接收來自CGM感測器112的連續葡萄糖讀數。自遙控器104傳輸至胰島素輸送裝置102的資料可包含葡萄糖測試結果及食品資料庫,以允許藥物輸送裝置102計算待由藥物輸送裝置102輸送的胰島素量。或者,遙控器104可實施基準用劑或給藥計算,並將此類計算的結果送至藥物輸送裝置。在替代實施例中,可單獨使用間歇性血液葡萄糖儀114或結合
CGM感測器112,以提供資料給控制器104及藥物輸送裝置102之任一者或兩者。替代地,可將遙控器104與分析儀114組合成(a)整合式單體裝置;或(b)互相銜接以形成整合式裝置的兩個分開裝置。裝置102、104及114各具有經程式化以實行各種功能的適合微控制器(為了簡潔圖中未顯示)。可使用的微控制器實例於下文參考資料處理系統1110(圖8)論述。
藥物輸送裝置102亦可經組態以透過(例如)無線通信網路118來與遠端健康監測台116進行雙向無線通信。遙控器104及遠端監測台116可經組態以透過(例如)電話固接式通信網路進行雙向有線通信。遠端監測台116可用來例如下下載升級軟體至至藥物輸送裝置102並處理來自藥物輸送裝置102的資訊。遠端監測站116之實例可包含(但不限於)個人電腦或網路電腦126、至記憶體儲存器之伺服器128、個人數位助理、其他行動電話、醫院基礎(hospital base)監測台或專用遠端診所監測台。
藥物輸送裝置102包括電子信號處理組件,包括中央處理單元及用於儲存控制程式及操作資料的記憶體元件、用於傳送通信信號(即,訊息)至遙控器104及接收來自遙控器104之通信信號(即,訊息)之射頻模組116、用於提供操作資訊給使用者的顯示器、用於供使用者輸入資訊的複數個瀏覽按鈕、用於提供電力給系統的電池、用於提供反饋給使用者的警報器(例如,視覺、聴覺或觸覺)、用於提供反饋給使用者的震動器、用於強制來自胰島素貯器(例如,胰島素匣)的胰島素通過連接至輸液套108/106的側端口並且進入使用者身體的藥物輸送機構(例如,藥品泵及驅動機構)。
可藉由使用CGM感測器112來決定使用者的生理流體(例如,血液、唾液或組織間液流體)中的葡萄糖位準或濃度。CGM感測器112利用安培電化學感測器技術用操作上連接至感測器電子器件的三個電極來測量葡萄糖並且被藉由夾子附接的感測膜及生物介面膜所覆蓋。
電極的頂端接觸電解質相(圖中未顯示),電解質相係佈置在感測膜與電極之間的自由流動流體相。感測膜可包含覆蓋電
解質相的酵素,例如,葡萄糖氧化酶。在此例示性感測器中,提供相對電極以平衡在工作電極測量之物種所產生的電流。對於基於葡萄糖氧化酶的葡萄糖感測器,在工作電極測量之物種為H2O2。在工作電極產生的電流(並且流動通過電路至相對電極)係與H2O2的擴散通量成比例。據此,可產生表示使用者身體的葡萄糖濃度之原始信號,因此可利用原始信號來估計有意義的葡萄糖值。美國專利第7,276,029號中展示及描述感測器及相關聯組件的詳細資訊,該案以引用方式併入本申請案中,並完全以其為參照依據。在一實施例中,本文描述之例示性實施例亦可利用來自Dexcom Seven System®(由Dexcom Inc.製造)之連續葡萄糖感測器。
在本發明之一實施例中,可利用下列組件作為近似人工胰臟的糖尿病管理系統:Animas Corporation的OneTouch Ping®葡萄糖管理系統,其包括至少一輸液泵及一間歇性葡萄糖感測器;及DexCom Corporation之DexCom® SEVEN PLUS® CGM,其具有連接這些組件且係用MATLAB®語言程式設計之介面及將這些組件連接在一起的配件硬體;及MPC形式之控制演算法,其基於患者之葡萄糖位準、歷史葡萄糖量測值及預測未來葡萄糖趨勢以及患者特定資訊自動調節胰島素輸送速率。
圖2為用於使用一胰島素泵圖解管理血液葡萄糖之根據各項實施例之控制系統的示意圖。特別是,圖2提供經程式化至一控制邏輯模組10中之MPC,以供在遙控器104(圖1)中利用。MPC邏輯模組10接收所要的葡萄糖濃度或葡萄糖濃度12的範圍(連同來自更新過濾器28的任何修改以便能夠維持對象之葡萄糖位準的輸出在所要範圍內)。
請參考圖2,MPC啟用之控制邏輯10之第一輸出14可為至胰島素泵16之控制信號,以依預先決定時間間隔輸送所要量胰島素18至對象20,時間間隔可使用時間間隔索引k編索引,例如,每隔5分鐘。可在控制接合點B中利用為預測葡萄糖值15形式的第二輸出。葡萄糖感測器22(或圖1的112)測量該對象20的葡萄糖位準,以提供表示實際或所測量葡萄糖位準之信號24至控制接合點
B,控制接合點B取用介於所測量葡萄糖濃度24與MPC對所測量葡萄糖濃度之預測之間的差值。此差值提供用於模型狀態變數之更新過濾器之輸入26。將差值26提供給估計器(亦名為更新過濾器28),其提供無法直接測量的模型狀態變數估計。更新過濾器28較佳為遞廻過濾器,其形式為含模型調諧參數的Kalman過濾器。更新或遞廻過濾器28的輸出提供至控制接合點A,控制邏輯10中的MPC利用控制接合點A之輸出以進一步使至泵16(或圖1的102)的控制信號14更精確。MPC控制器10可搭配調諧因子使用,以「調諧」控制器之胰島素輸送,如下文所論述。在各項態樣中,MPC控制器10使用來自介面210的信號,如所論述。介面210可包含一或多個觸控螢幕、按鈕、網路連接、鍵盤、指標裝置或用於接收來自人(例如,對象或醫療專業人員)或其他電腦系統之資料或指令的其他裝置。
控制器10中使用的MPC邏輯控制對象葡萄糖位準至安全葡萄糖區帶,血液葡萄糖下限值在80至100mg/dL之間變化或設為90mg/dL,及上限值在約140至180mg/dL之間變化或設為180mg/dL;此演算法之後稱為「區帶MPC」。控制至目標區帶一般而言係用於缺少特定設定點之控制系統,以及控制器的目的為保持受控制變數(CV)例如葡萄糖值於預定義區帶。相對於單一目標位準,控制至所要正常血糖(「正常血糖」)區帶更適合人工胰臟,此係因為無天然血糖設定點存在。另外,控制至區帶之固有優點為限制泵致動/活動的能力,使得若葡萄糖位準係在區帶內,則無需建議額外校正。
藉由在每取樣時間估計下一胰島素輸送速率的線上數學最適化(例如,求得函數最小值或最大值之運算),自區帶MPC定律即時計算胰島素輸送速率I D 。在每取樣時間最適化係基於儲存於模組10之自動態模型所獲得的估計之代謝狀態(血漿葡萄糖、皮下胰島素)。
控制邏輯10之MPC併入人類T1DM葡萄糖-胰島素動態之明確模型。使用模型以預測未來葡萄糖值及計算將使葡萄糖變化落在所要範圍內的未來控制器移動。可針對離散時間系統及連續時間系統二者來制定控制器的MPC;依離散時間設定控制器,離散
時間(階段)索引k係指發生在連續時間t=k.T s 之第k th 取樣時間點,其中T s =5分鐘為取樣期。軟體約束確保胰島素輸送速率被限制在最小值(即,零)與最大值之間。接著實施第一胰島素輸液(出自N個步驟)。在下一時間步驟k+1,基於新測量葡萄糖值及上個胰島素速率,重複程序。
具體而言,吾人以用於區帶MPC的原始線性差異模型開始:G'(k)=a 1 G'(k-1)+a 2 G'(k-2)+a 3 G'(k-3)+a 4 G'(k-4)+a 5 G'(k-5)+bI M (k-4)I M (k)=c 1 I M (k-1)+c 2 I M (k-2)+d 1 I' D (k-1)+d 2 I' D (k-2) (1)
其中:
●k為具有一系列索引計數器之離散時間間隔索引,其中k=1、2、3...
●G’為經測量葡萄糖濃度
●IM為「映射之胰島素」,而非為經測量之量
●I’D為輸送胰島素或操縱之變數
●及係數a1~2.993;a2~(-3.775);a3~2.568;a4~(-0.886);a5~0.09776;b~(-1.5);c1~1.665;c2~(-0.693);d1~0.01476;d2~0.01306。
使用FDA接受之代謝模擬器,如熟悉此項技術者所知,方程式(1)可簡化為下列式(2)線性差異模型:
(a)G'(k)=2.993G'(k-1)-3.775G'(k-2)+2.568G'(k-3)-0.886G'(k-4)+0.09776G'(k-5)-1.5I M (k-4)+0.1401Meal M (k-2)+1.933Meal M (k-3)
(b)I M (k)=1.665I M (k-1)-0.693I M (k-2)+0.01476I D '(k-1)+0.01306I D '(k-2)
(c)Meal M (k)=1.501Meal M (k-1)+0.5427Meal M (k-2)+0.02279Meal(k-1)+0.01859Meal(k-2)(2)
其中:
G' 為葡萄糖濃度輸出(G)偏差變數(mg/dL),亦即G'≡G-110mg/dL,I D ' 為胰島素輸液速率輸入(I D )偏差變數(U/h),即,I D '≡I D -basal U/h,Meal 為CHO攝取輸入(克-CHO),I M 為映射之皮下胰島素輸液速率(U/h),及Meal M 為映射之CHO攝取輸入(克-CHO)。
方程式(2)中的動態模型聯繫胰島素輸液速率(I D )及血漿葡萄糖之CHO攝取輸入(Meal)之作用。該模型表示總族群對象的單一平均模型。該模型及其參數為固定。
使用方程式(2)中部分(b)及(c)所描述第二階輸入傳遞函數以在區帶MPC架構中產生人工輸入記憶,以防止胰島素用劑過量並且據此防止低血糖。為了防止過量輸送胰島素,任何後續胰島素輸送之估計必須考量先前投予的胰島素與胰島素作用時效。但是,相對低階的單狀態線性差值模型使用輸出(血糖)作為先前投予輸入(胰島素)「記憶」的主要來源。由於模型不相符、雜訊或對象對胰島素的敏感性改變,此可能導致胰島素輸送不足或過量。此藉由增加用於映射胰島素及攜帶較長胰島素記憶的餐食輸入的兩個額外狀態(I M 及Meal M )而減緩。
當與由上界限與下界限定義的區帶相比較受控制變數(CV)之特定設定點值屬低相關時,應用區帶MPC。另外,在存在雜訊及模型不相符時,使用固定設定點並不實際。區帶MPC技術之其他衍生細節展示且描述於Benyamin Grosman、Ph.D.、Eyal Dassau、Ph.D.、Howard C.Zisser、M.D.、Lois Jovanovi、M.D.及Francis J.Doyle III、Ph.D.「Zone Model Predictive Control:A Strategy to Minimize Hyper and Hypoglycemic Events」(《Journal of Diabetes Science and Technology,Vol.2,Issue 4,2010年7月》)及頒予給Doyle等人美國專利申請案公開案第2011/0208156號題為「Systems,Devices,and Methods to Deliver Biological Factors or Drugs to a Subject」(公開日期為2011年8月25日)中,該等文獻特此以引用方式併入本申請案中,
如同在此完整闡述。區帶MPC之其他細節展示且描述於美國專利申請案公開案第20110208156號中,該案以引用方式併入本文中。於Maciejowski JM.「Predictive Control with Constraints」(Harlow,UK:Prentice-Hall,Pearson Education Limited,2002)中提出相關之區帶MPC衍生。
區帶MPC通常將控制變數範圍劃分成三個不同區帶。准許之範圍為控制目標並且係由上界限與下界限定義。高血糖區帶上區帶表示非所要之高預測葡萄糖位準。低血糖或低警報區帶下區帶表示非所要之低預測血糖值。下區帶可為低血糖區帶或低警報區帶,其為前置低血糖保護區。區帶MPC藉由依據指定之約束限制來操控近期胰島素控制移動以保持在准許之區帶中來使預測糖血症最適化。預測的殘值通常定義為介於超出所要區帶之受控制變數(CV)與最近界限之間的差值。
在各項態樣中,區帶MPC係藉由定義固定之上界限與下界限作為軟式約束限制予以實施。當預測之CV係在所要區帶內或外時,數學最適化程序使用權值,分別在零與一些最終值之間切換。
模型預測控制藉由數學上最小化成本函數(cost function)而操作。例如,使用例如胰島素-葡萄糖動態之線性差分模型,自過去葡萄糖位準及胰島素量及自未來待輸送之認可胰島素來預測未來葡萄糖位準。成本被指派至此等預測之葡萄糖位準。對於區帶MPC,成本函數藉由將區帶內的成本設定為比區帶外的成本更低(例如,0)來定義控制區帶。因此,未來葡萄糖位準的成本致使最適化選擇傾向於將預測之輸出保持在控制區帶(例如,上界限與下界限定義的區帶)內的未來值,而非將預測之輸出移動朝向特定設定點的未來值。使用此成本函數的最適化可減少脫離控制區帶的低血糖及高血糖波動。控制器減少波動的積極度受到本文內含的成本函數(例如,權值)影響。
區帶MPC成本函數J為:
在各項實施例中,展開:
其中:Q為在預測的葡萄糖項的加權因子;R為在價值函數在未來建議的輸入的調諧因子;f為預測函數(於式(2)中);向量I D 含有該組建議的近期胰島素注入量。此為「受控變數」,因為此向量受到操縱以求得J中的最小值;basal(t)為在時間間隔t的基準輸送速率;以及G 區帶 為變數,用以量化指定血糖區帶外之未來模型預測CGM值G的偏差。在各項實施例中,G 區帶 為:
其中血糖區帶係由上限G ZH 及下限G ZL 定義。
因此,若所有預測之葡萄糖值皆在區帶內,則G 區帶 的所有元素等於0,並且因此I D =basal(即,演算法默認至患者目前基準胰島素輸液速率)而使J最小化。另一方面,如果任一預測的葡萄糖值在區帶外,則G 區帶 >0,並且因此成為成本函數的來源。在這種情況下,近期建議的胰島素注入量I D 將從基準導出以預防曾經發生之G 區帶 超出區帶之偏差,其亦將「貢獻」給價值函數。然後基於加權因子R在最適化中發現數量平衡。
為了解決方程式(2)至(5)的最適化問題,可使用市售軟體(例如,MATLAB的「fmincon.m」函式)。針對此函數,下列參數用於各最適化:
●胰島素輸送速率之最初推測I D ’(0)為空值向量,例如,若M=5,則針對各最適化之最初推測為I D ’=[0 0 0 0 0]。此意味著初始猜測等於基準速率。
●允許的最大函數估計數目為Max_f=100M,其中M為控制層位,如前文所描述。
●最大反覆次數為Max_i=400,其為定值。
●成本函數值之終值Term_cost=1e-6,其為定值。
●受控變數I D ’之終值公差Term_tol為1e-6。
對受控變數I D ’(t)實施以下硬式約束限制:
其中basal為對象或其醫師設定的對象之基準速率,例如,在範圍0.6至1.8U/hr範圍內。
雖然控制水平參數M的值與預測水平參數P的值對控制器性能有顯著效應且一般用於調諧基於MPC之控制器,但其可根據系統知識被試探地調諧。調諧規則對此領域技藝人士是已知的。根據這些規則M及P可在下列範圍間變化:
在各項實施例中,M=5及P=108。
輸出誤差加權因子Q及輸入變化加權矩陣或調諧因子R的比例可在下列範圍間變化:
在各項實施例中,R/Q=500或250。
一旦初始化及開啟控制器,每五分鐘(對應於葡萄糖感測器取樣時間)發生即時計算。I D 的第一成分透過胰島素泵以胰島素劑輸送給病患,五分鐘過去,可讀到新的CGM及使該程序重複。在各項態樣中,控制器依基準速率輸送直到已取得M個樣本;此有時候稱為「試運轉」(burn-in)時期。注意到未來控制移動受嚴格約束限制,其係由胰島素泵的輸送胰島素最大速率的能力及無法輸送負胰島素值的能力所設定。包括狀態估計器之相關主題的其他詳細資訊及其他MPC由Rachel Gillis等人「Glucose Estimation and Prediction through Meal Responses Using Ambulatory Subject Data for Advisory Mode Model Predictive Control」(《Journal of Diabetes Science及Technology Vol.1,Issue 6,2007年11月》)及Youqing Wang等人「Closed-Loop Control of Artificial Pancreatic β-Cell in Type 1 Diabetes Mellitus Using Model Predictive Iterative Learning Control」(《IEEE Transactions on Biomedical Engineering,Vol.57,No.2,2010年2月》)提供,該等文獻特此以引用方式併入本申請案中,如同在此完整闡述。
已知調諧參數(此處指定為「R」)可對葡萄糖控制的品質具有顯著的效應。參數-稱為激進因子、收益及其他名稱-決定演算法回應葡萄糖濃度變化的速度。R的相對保守值造成控制器慢於調整回應葡萄糖的變化之胰島素注入量(相對於基準);在另一方面,R的相對激進值造成控制器快速回應葡萄糖的變化。原則上,激進的控制器會造成最佳葡萄糖控制,如果1)可得的葡萄糖測量值是準確的而且2)未來葡萄糖趨勢的模型預測是準確的。如果這些條件不成立,則使用保守的控制器較安全。
在各項態樣中,基準速率basal(t)隨時間變更。例如,在代謝為低的晚上時基準速率可為較低(例如,0.5U/h)且在白天為較高。以上成本函數J包含I D -basal項,所以有成本偏離基準。驅動區帶MPC控制器以使I D 保持接近basal,除非此會造成J中的G 區帶 項更偏離基準。
通常,受MPC控制之胰島素泵根據基本胰島素輸送曲線(basal(t)輸送胰島素),經適當調整以使葡萄糖保持在正常血糖
區帶內,如上文所描述。本文描述三個暫時胰島素輸送曲線實例。患者可使用這些曲線來調諧其胰島素供應,而不需要大量的人力運算且不需要考量低血糖波動或高血糖波動。此等實例稱為「軟式」、「半軟式」及「硬式」。可一起使用或個別使用這等實例,並且可組合各項實施例之特徵。可使用此等態樣以提供暫時基準或延長給藥,或同時提供延長給藥與暫時基準。在各項態樣中,胰島素泵控制器在給定時間搭配基本、軟式、半軟式或硬式胰島素輸送曲線運作;此等態樣中未同時使用該等曲線。
圖3展示軟式暫時胰島素輸送曲線之實例。橫座標為時間,例如,以小時為單位,自暫時胰島素輸送曲線開始(t=0)。縱座標為胰島素輸送速率,以U/h為單位。請注意,縱座標為以U/h為單位的物理單位,並且因此縱座標上的0表示無胰島素(相對於偏差單位,0表示實際上基準速率)。對於任意軸可使用其他單位,並且各軸上的值範圍無限制。對於圖4及6亦為如此。
基本胰島素輸送曲線310為指定恆定胰島素輸送之basal函數之實例。在此實例中,患者的基本胰島素輸送速率為1.2U/h。暫時胰島素輸送曲線320(虛線)指定該基本胰島素輸送曲線加上50%或1.8U/h,從時間0開始持續1h。因此,在此圖上,在介於時間0與1h之間的時間範圍330中,basal為1.8U/h。在時間範圍330外,basal為1.2U/h。在時間間隔k之basal值為在時間範圍330外之時間k之基本胰島素輸送曲線值,或暫時胰島素輸送曲線值係在時間範圍330內。可直接接收暫時胰島素輸送曲線,或可藉由根據接收之曲線修改項來修改基本胰島素輸送曲線值,而產生暫時胰島素輸送曲線。
繼續此實例,雖然在介於時間0與1h之間的時間範圍330中basal高於時間範圍330外之值,但是不需要區帶MPC控制器模組在時間範圍330內增加輸送。運算之I D 量取決於成本函數J之值。一般而言,只要預測之葡萄糖位準係在MPC區帶[G ZL ,G ZH ]內,當I D 遵循basal時(此為暫時胰島素輸送曲線在時間範圍330內),J將為最低。因此,暫時胰島素輸送曲線很可能在時間範圍330之至少
部分內建議高於基本胰島素之量。但是,若預測之葡萄糖位準離開區帶,MPC演算法將選擇任何使葡萄糖回到區帶內之I D 值。此藉由黑色箭頭以圖形表示:控制器具有可用的全範圍可能的I D 值,無論在時間範圍330內或外。
例如,若患者認為近期需要非典型胰島素量但不確定需求量,則患者可設定軟式暫時基準或軟式延長給藥。軟式輸送曲線提供區帶控制器仍然有作用以防止患者發生血糖波動之信心。
圖4展示之實例「半軟式」或「混合」暫時胰島素輸送曲線。在此實例中,基本胰島素輸送曲線410為1.2U/h。如同圖3之實例,相對應於本申請案之暫時基準或延長給藥的暫時胰島素輸送曲線420(虛線)指定比基本曲線410高50%,或1.8U/h,在時間範圍430(0-1h)中。在時間範圍430外,控制器可指定任何胰島素量I D ,向下至0,如黑色箭頭415所表示。在時間範圍430內,強制使控制器模組建議至少額外的程式化胰島素(暫時減基本),但若適當可輸送更多。I D 值的可能範圍係藉由黑色箭頭425表示。區域440為空,指示區帶控制器在此時間無法選擇在此範圍內之I D 值。藉由強制使當前時間間隔的I D 不小於暫時減基本,區域440可保持為空,此可藉由適當調整方程式(6)來實施。
在各項態樣中,若額外程式化之量△(t)=(暫時-基本)
為太多胰島素,而驅使血液葡萄糖向下,則安全模組可減少此劑量,以減少低血糖波動的可能性或嚴重度。在其他態樣中,因為患者生物化學或其他因素,而不需要安全模組。下文進一步論述安全模組。
在一實例中,若患者認為將需要額外胰島素以抵消預期之碳水化合物攝取(例如,在雞尾酒會),可設定半軟式暫時基準或半軟式延長給藥。MPC控制器仍然會按需要提供更多胰島素,以減少高血糖波動的可能性,並且可減少胰島素對象至(t)限值,以減少低血糖波動的可能性。
在各項實例中,使用暫時胰島素輸送曲線以提供延長給藥。暫時胰島素輸送曲線包含選定時間範圍之前段及後段子範圍,並且指定前段子範圍中的胰島素輸送量或速率高於後段子範圍胰島素輸送量或速率。例如,取代在t=0投予10U給藥,而是可立即投予5U並且在1小時之其餘時間投予5U。從t=0開始投予第一次5U直到泵輸送完5U為止。若泵被限制至1U/min之最大輸送速率,則第一次5U將花費5分鐘。自t=0至5分鐘之時期為前段子範圍。在1小時之其餘時間投予給藥之其餘5U,即,從t=5分鐘至60分鐘。此時間範圍為後段子範圍。因此,後段子範圍的輸送速率為0.091U/min,比第一子範圍中的1U/min速率慢。各子範圍可持續或包含多個分開之時間段。
圖5為說明控制輸液泵之例示性方法之流程圖。此處所示之各項態樣實施軟式或半軟式控制方案。實心箭頭連接後續步驟及虛線箭頭連接步驟至其子步驟。輸液泵(例如,胰島素泵16,圖2)回應於控制器(例如,控制器10,圖2),控制器接收來自至少一葡萄糖感測器(例如,葡萄糖感測器22)之資料。在各項實施例中,使用該控制器自動執行方法之步驟。處理起始於步驟510。
在步驟510,接收一基本胰島素輸送曲線。如上文所述,基本曲線(例如,曲線410,圖4)非始終為如區帶MPC演算法中使用的basal(k)。步驟510後續接著步驟520,但是可與步驟520同時執行或在步驟520之後。
在步驟520,控制器接收針對一系列離散時間間隔之各時間間隔的一或多個各自葡萄糖位準測量值。測量值係接收自葡萄糖感測器。測量值可為對患者或對象(例如,人)之測量值。時間間隔可均等或不均等間隔或可在中間略過。步驟520之後,緊接著步驟530。
在步驟530,接收一暫時胰島素輸送曲線。暫時曲線延伸於該等時間間隔之一選定時間範圍。範圍非必須為連續並且可包含分開之子範圍。步驟530之後,緊接著步驟540。
在步驟540,控制器針對該等時間間隔之一選定者基於一模型預測控制器計算一認可胰島素輸送量。例如,如上文所述,模型預測控制器自一選定目標葡萄糖範圍預測葡萄糖位準之波動(例如,G 區帶 (k+j))使用該等葡萄糖測量值之至少一些者,並且選擇性地使用對象代謝狀態之估計。接著,模型預測控制器運算一估計胰島素輸送量(例如,I D )。在各項實例中,決定估計胰島素輸送量包含進行I D :=basal之最初推測,如上文所述。接著,模型預測控制器例如藉由數學上最小化J來調整估計胰島素輸送量,以提供認可胰島素輸送量。根據預測波動、基本胰島素輸送曲線或若選定時間間隔係在該選定範圍內則根據暫時胰島素輸送曲線執行調整。步驟540之後,緊接著步驟550。
在步驟550,自認可胰島素輸送量決定經核准胰島素輸送量。在一實例中,經核准量設定為等於該認可量。在其他實例中,安全模組決定該經核准量。具體而言,在此實例中,根據低血糖安全模型減少認可輸送量以提供該經核准胰島素輸送量。低血糖安全模型可為模型預測控制器使用之葡萄糖模型,或可為不同模型。若低血糖安全模型指示認可胰島素輸送量不會導致低血糖,則認可胰島素輸送量經核准且未變更,即,用一個為零(0)之縮減。若低血糖安全模型指示認可胰島素輸送量會導致低血糖,則根據低血糖安全模型將認可胰島素輸送量減少至不會導致低血糖之量。在各項態樣中,可使用來自University of Virginia的Safety Supervision Model(安全監督模型)。步驟550之後,緊接著步驟560。
在步驟560,控制器命令該輸液泵輸送該經核准胰島素輸送量。以此方式,可將胰島素輸送至患者以使患者的血液葡萄糖維持在所要血糖區帶。
可提供暫時胰島素曲線作為新量,或作為對基本胰島素輸送曲線中現有量之變更。例如,在各項實施例中,接收一暫時胰島素輸送曲線之步驟530包含接收一曲線修改項之步驟533。例如,曲線修改項可為+1U/h或+50%。步驟533後續接著步驟536,其中將曲線修改項應用至基本胰島素輸送曲線以產生暫時胰島素輸送
曲線。應用可包含將曲線修改項與基本胰島素輸送曲線之值相加或相乘(例如,1U/h+0.5U/h或1U/h * 150%)。亦可提供暫時胰島素曲線作為對基本胰島素輸送曲線中現有量之變更,如先前應用之暫時胰島素輸送曲線的修改。例如,在給定時間間隔k中,一第一應用之暫時胰島素輸送曲線可指定+50%胰島素。此外,,一第二應用之暫時胰島素輸送曲線(例如,針對延長給藥)可指定+0.5U/h。於是,針對時間間隔k之胰島素輸送為用於基本胰島素輸送曲線base(k)之(base(k)×1.5)+0.5。
在各項態樣中,使用一軟式曲線。具體而言,步驟540包含步驟543。在步驟543,若該選定時間間隔係在選定範圍(例如,時間範圍330,圖3)內,則根據預測波動及暫時胰島素輸送曲線來調整所估計輸送量。若選定時間間隔非在選定範圍內,則根據預測波動及基本胰島素輸送曲線來調整所估計輸送量。控制器可具有全範圍調整變數,但針對選定時間範圍內與選定時間範圍外,使用不同曲線,即,不同basal(k)值。
在其他態樣中,使用一半軟式曲線,並且步驟540包含步驟546。在步驟546,若該選定時間間隔係在選定範圍(例如,時間範圍430,圖4)內,則根據預測波動及暫時胰島素輸送曲線來調整所估計輸送量。強制使在時間t計算之胰島素輸送量至少為在選定時間間隔中暫時胰島素輸送曲線與基本胰島素輸送曲線之間之差值△(t),例如,estimated:=max(estimated,△(t))。
若選定時間間隔非在選定範圍內,則根據預測波動及基本胰島素輸送曲線來調整所估計輸送量。
圖6展示「硬式」暫時基準或延長給藥之實例。基本胰島素輸送曲線610指定1.2U/h之速率。硬式暫時胰島素輸送曲線620為50%以上或1.8U/h針對在時間0開始之1h(時間範圍630)。時間範圍630前後,控制器模組可視需要建議輸送偏離基本胰島素輸送曲線610,以使血液葡萄糖位準保持在區帶內。此藉由黑色箭頭615
以圖形表示。在時間範圍630期間,控制器模組簡單地提供暫時胰島素輸送曲線620中指定之胰島素量。如上文所述,在一些實施例中,一安全模組可視需要減少胰島素劑量。非所有組態皆需要安全模組。
在一實例中,若患者或醫生已決定需要特定胰島素量,則可應用硬式暫時基準或延長給藥。在硬式暫時胰島素輸送曲線620期間,控制器仍然測量葡萄糖位準G(k-1,k-2...)並且記錄測量值,但控制器不需要預測葡萄糖位準G(k),除非安全模組或其他處理功能需要此類預測。由於所有資料皆可取得,所以在時間範圍630結束時,可繼續I D 之正常MPC控制,而不需M循環延遲。
圖7為說明控制輸液泵之例示性方法之流程圖。此處所示之各項態樣實施軟式或半軟式控制方案。實心箭頭連接後續步驟及虛線箭頭連接步驟至其子步驟。輸液泵(例如,胰島素泵16,圖2)回應於控制器(例如,控制器10,圖2),控制器接收來自至少一葡萄糖感測器(例如,葡萄糖感測器22)之資料。在各項實施例中,使用該控制器自動執行方法之步驟。處理起始於步驟510。步驟510、520、530、533及536可為如圖5所示。硬式曲線之應用與軟式或半軟式曲線極為不同。步驟530之後,緊接著步驟740。
在步驟740,針對該等時間間隔之一選定者計算一認可胰島素輸送量。一模型預測控制器決定選定時間間隔是否係在選定範圍(例如,時間範圍630,圖6)外。若為肯定,則模型預測控制器使用該等葡萄糖測量值之至少一些者自一選定目標葡萄糖範圍預測該葡萄糖位準之一波動,如上文所述。模型預測控制器運算一估計胰島素輸送量並且調整該估計胰島素輸送量以提供該認可胰島素輸送量。根據預測波動及基本胰島素輸送曲線執行調整。此藉由子步驟743表示。
但是,若選定時間間隔係在該定範圍內,則該制器或模型預測控制器自暫時胰島素輸送曲線擷取選定時間間隔之認可胰島素輸送量(I D (k):=basal(k),其中basal為暫時胰島素輸送曲線或依一曲線修改項修改之基本胰島素輸送曲線,如上文所述)。此藉由子步驟746表示。步驟740之後,緊接著步驟550。
步驟550及560為如圖5所示:決定一經核准胰島素輸送量並且命令輸液泵輸送經核准胰島素輸送量。在步驟550之各項實施例中,如上文所述,使用一低血糖安全模型以決定是否預測到一低血糖波動,且若為肯定,則減少該認可輸送量以提供該經核准胰島素輸送量。
為了重述要點,提供圖2之系統以管理對象之糖尿病。在此系統,利用下列組件:持續葡萄糖感測器22、泵16及控制器10。該持續葡萄糖監測器在離散通常均勻之時間間隔(索引「k」,例如,約每30秒或每分鐘或每5分鐘)持續測量對象之葡萄糖位準並且在各時間間隔提供葡萄糖測量資料形式之葡萄糖位準。胰島素注入泵係藉由控制器10控制以輸送胰島素至對象20。控制器10係以適當的MPC程式而程式化以控制泵及與葡萄糖儀和葡萄糖監控器通信。在此態樣中,控制器針對時間間隔索引(k)之各時間間隔,基於所要葡萄糖濃度12及在時間間隔索引(k)之各時間間隔由監測器22所測量之葡萄糖濃度24,自模型預測控制決定胰島素輸送速率。
圖8展示用於輸送胰島素之設備之各項實施例,其包含用於分析資料並且執行其他分析及本文描述之功能之資料處理組件以及相關組件。對象1138不是設備之部分,但為了上下文而展示。葡萄糖監測器1121經調適以持續測量對象1138在離散時間間隔之各自葡萄糖位準並且提供指示各經測量葡萄糖位準之各自葡萄糖測量資料。葡萄糖監測器1121可包含一或多個葡萄糖感測器1122,例如,包含葡萄糖氧化脢或葡萄糖脫氫脢,以將葡萄糖濃度變換成可電化學測量之信號。葡萄糖感測器之實例已於上文論述。胰島素輸液泵1125經組態以回應於一輸送控制信號而輸送胰島素例如至對象1138。該裝置包含一控制器,例如,資料處理系統1110,其接收來自葡萄糖監測器1121之葡萄糖測量資料並且命令泵1125輸送胰島素。
周邊系統1120、使用者介面系統1130及資料儲存系統1140可通訊地連接至資料處理系統1110。資料處理系統1110可通訊地連接至網路1150,例如,網際網路或X.25網路,如下文所論述。
資料處理系統1110包含一或多個資料處理器,其實施本文描述之各項態樣之處理。「資料處理器」為用於處理資料之裝置,並且可包含中央處理單元(「CPU」)、桌上型電腦、筆記本電腦、大型主機電腦、個人數位助理、數位相機、蜂巢式電話、智慧電話或用來處理資料、管理資料或操縱資料的任何其他裝置,不管是否以電、磁、光學、生物組件或以其它方式來實施。
詞「可通訊地連接」包括在裝置、資料處理器或程式之間任何類型的連接,不管有線或無線,其中可傳達資料。諸如周邊系統1120、使用者介面系統1130及資料儲存系統1140之子系統被展示為與資料處理系統1110分開,但是可完全或部分儲存在資料處理系統1110內。
資料儲存系統1140包含或可通訊地連接一或多個有形非暫時性電腦可讀儲存媒體,其經組態以儲存資訊,含根據各項態樣執行處理程序所需之資訊。本文中所用之「有形非暫時性電腦可讀儲存媒體」指代任何非暫時性裝置或製品,其參與儲存可提供至資料處理系統1110以供執行之指令。此類非暫時性媒體可為非揮發性或揮發性。非揮發性媒體之實例包含軟碟、可撓軟式磁碟或其他攜帶型電腦碟片、硬碟、磁帶機或其他磁性媒體、光碟片及光碟唯讀記憶體(CD-ROM)、DVD、藍光光碟、HD-DVD光碟、其他光學儲存媒體、快閃記憶體、唯讀記憶體(ROM)及可拭除可程式化唯讀記憶體(EPROM或EEPROM)。揮發性媒體之實例包含動態記憶體,諸如暫存器及隨機記憶體(RAM)。儲存媒體可電子、磁性、光學、化學、機械或以其他方式儲存資料,並且可包含電子、磁性、光學、電磁、紅外線或半導體組件。
本發明之態樣可採用體現於一或多個有形非暫時性電腦可讀媒體之電腦程式產品形式,其上具有體現之電腦可讀程式碼。可製造此類媒體如同此類製品所習知,例如,藉由壓製CD-ROM。媒體中體現的程式包含電腦程式指令,其可在載入時指示資料處理系統1110執行一系列特定操作步驟,藉此實施本文中指定之功能或動作。
在一實例中,資料儲存系統1140包含記憶體1141(例如,隨機記憶體)及磁碟1142,例如,有形電腦可讀儲存裝置,諸如硬碟或固態快閃磁碟。自磁碟1142或無線、有線、光纖或其他連接讀取電腦程式指令至記憶體1141中。接著,資料處理系統1110執行載入至記憶體1141中的一或多序列電腦程式指令,結果執行本文描述之處理步驟。以此方式,資料處理系統1110實行電腦實施之處理程序,其提供基於至生物系統模型之輸入控制胰島素輸出之技術效果。例如,可藉由電腦程式指令來實施本文流程圖組塊或方塊圖及其等之組合。記憶體1141亦可儲存執行中程式使用之資料。在此實例中,記憶體1141(或資料儲存系統1140中的其他組件)儲存基本胰島素輸送曲線。
可用一或多個程式設計語言(例如,Java、Smalltalk、C++、C或適合的組合語言)之組合來撰寫電腦程式碼。實行本文描述之方法之程式碼可完全在單一資料處理系統1110上執行或在多個可通訊地連接資料處理系統1110上執行。例如,程式碼可完全或部分在使用者電腦上執行及完全或部分在遠端電腦(例如,伺服器)上執行。可透過網路1150將遠端電腦連接至使用者電腦。使用者電腦或遠端電腦可為非攜帶型電腦(諸如桌上型個人腦(PC)),或可為攜帶型電腦(諸如平板電腦、蜂巢式電話、智慧電話或筆記本電腦。
周邊系統1120可包含經組態以提供數位內容記錄或其他資料至資料處理系統1110之一或多個裝置。在此實例中,葡萄糖監測器1121及葡萄糖泵1125經由周邊系統1120連接至資料處理系統1110。監測器1121及泵1125亦可直接連接至資料處理系統1110。周邊系統1120亦可包含數位靜物相機、數位視訊攝影機、蜂巢式電話、生物感測器(諸如活動感測器、心跳速率監測器、脈動血氧濃度計)或其他資料處理器。周邊系統1120亦可包含一或多個匯流排穚接器,例如,用以操作上連接具有USB、FIREWIRE、RS-232或其他介面之裝置至資料處理系統1110。資料處理系統1110當收到來自周邊系統1120中之裝置之資料時,可將那些資料儲存至資料儲存系統1140中。
資料處理系統1110可通訊地連接至介面1131,其可包含使用者介面系統1130或網路1150。例如,介面1131可包含一或多個觸控螢幕、按鈕、開關或網路連接。介面1131選擇性延長接收暫時胰島素輸送曲線達時間間隔之一選定時間範圍並且提供一第一信號至資料處理系統1110,指示是否接收到該暫時胰島素輸送曲線。此信號可為資料儲存系統1140中之記憶體中之旗標設定或介於介面1131與資料處理系統1110間之電線或其他電連接上的特定邏輯位準或電壓。信號可使用信號之各自不同值(例如,邏輯低或邏輯高),或藉由信號之存在或不存在(例如,接收到曲線時傳輸一脈衝,所以若未接收到曲線時不傳輸脈衝),來指示是否有接收到暫時胰島素輸送曲線。在至少一實施例中,可由對象1138來操作介面1131,如虛線之圖形表示。
使用者介面系統1130可包含滑鼠、鍵盤、另一電腦(例如,經由網路或利用序列纜線(null-modem cable)連接)、麥克風及語音處理器或用於接收語音命令之其他裝置、相機及影像處理器或接收可見命令(例如,手勢)之其他裝置,或用於輸入資料至資料處理系統1110的裝置或裝置組合。在此方面,雖然周邊系統1120與該使用者介面系統1130分開地展示,但是周邊系統1120可被包括當作使用者介面系統1130的一部分。
使用者介面系統1130亦包括顯示裝置、處理器可存取記憶體、或者藉由資料處理系統1110輸出資料到的任何裝置或裝置組合。在此方面,若使用者介面系統1130包括處理器可存取記憶體,此記憶體可為資料儲存系統1140之一部分,縱使於圖8中分開展示使用者介面系統1130與資料儲存系統1140。
在各項態樣中,介面1131包含通信介面1115,其經由網路鏈路1116耦合至網路1150。例如,通信介面1115可為整合式服務數位1網路(ISDN)卡或數據機,以提供至相對應類型電話線之資料通信連接。作為其他實例,通信介面1115可為網路卡以提供至相容區域網路(LAN)(例如,乙太網路LAN)或廣域網路(WAN)之資料通信連接。亦可使用無線鏈路,例如,WiFi或GSM。通信介面1115
經由網路鏈路1116傳送及接收電、電磁或光學信號至網路1150,此等信號攜載表示各種類型資訊之數位資料串流。網路鏈路1116可經由交換器、閘道、集線器、路由器或其他網路裝置連接至網路1150。
網路鏈路1116可透過一或多個網路提供對其他資料裝置之資料通信。例如,網路鏈路1116可透過區域網路提供至由網際網路服務提供商(ISP)操作之主機電腦或至資料設備之連接。
資料處理系統1110可透過網路1150、網路鏈路1116及通信介面1115傳送訊息及接收資料,包含程式碼。例如,伺服器可在其所連接之有形非揮發性電腦可讀儲存媒體上儲存所請求之應用程式之程式碼(例如,a JAVA applet)。伺服器可自媒體擷取程式碼並且透過網際網路、因此當地ISP、區域網路、通信介面1115傳輸程式碼。資料處理系統1110可在接收到程式碼時執行所接收之程式碼,或所接收之程式碼可儲存在資料儲存系統1140中以供稍後執行。
控制器(例如,資料處理系統1110)經調適以針對複數個該等離散時間間隔之各者執行特定處理。記憶體1141可儲存使資料處理系統1110至執行此等處理程序之程式指令。資料處理系統1110在彼時間間隔經由周邊系統1120自葡萄糖監測器1121接收葡萄糖測量資料。接著,資料處理系統1110基於選定目標葡萄糖濃度範圍、接收之葡萄糖測量資料、儲存之基本胰島素輸送曲線或回應於第一信號及若彼時間間隔係在選定時間範圍內則基於接收之暫時胰島素輸送曲線,使用模型預測控制決定彼時間間隔之一胰島素輸送量。此於上文例如參考圖3至圖5(軟式及半軟式曲線)論述。接著,資料處理系統1110提供對應於該決定之胰島素輸送量之一輸送控制信號至該胰島素輸液泵1125。接著,胰島素輸液泵1125輸送相對應量之胰島素例如至對象1138。
根據至少一態樣,介面1131經調適藉由接收變更資訊(例如,+1U/h)並且根據變更資訊在選定時間範圍內修改儲存之基本胰島素輸送曲線(在資料儲存系統1140中)而接收暫時胰島素輸送曲線,以提供暫時胰島素輸送曲線。介面1131可藉由向資料處理系
統1110通知待執行之修改、回答由那一個資料處理系統1110來執行進行修改之指令,而執行修改。
在各項實施例中,介面1131進一步經調適以提供啟動信號,例如,當對象1138按住介面1131上之按鈕時。資料處理系統1110回應於啟動信號而擷取該儲存之基本胰島素輸送曲線並且擷取或決定該胰島素輸送量。
在使用軟式曲線之實例中,資料處理系統1110經程式化以使用選定目標葡萄糖濃度範圍、接收之葡萄糖測量資料、儲存之基本胰島素輸送曲線、若未接收到暫時胰島素輸送曲線(如由來自介面1131之信號所指示或無信號)或選定時間間隔係在選定時間範圍外,而決定選定時間間隔之胰島素輸送量。否則,資料處理系統使用選定目標葡萄糖濃度範圍、接收之葡萄糖測量資料及接收之暫時胰島素輸送曲線。
在使用半軟式曲線之實例中,回應於第一信號且若選定時間間隔係在選定時間範圍內,則資料處理系統1110強制使針對該選定時間間隔的該決定之胰島素輸送量至少為在選定時間間隔中暫時胰島素輸送曲線與儲存之基本胰島素輸送曲線之各自值之間之一差值。
在使用硬式曲線之實例中,資料處理系統1110經程式化以針對複數個該等離散時間間隔之各者,在彼時間間隔自葡萄糖監測器接收葡萄糖測量資料。若彼時間間隔係在選定時間範圍內,則資料處理系統110自暫時胰島素輸送曲線擷取相對應之胰島素輸送量。此為「硬式」動作,如上文參考圖6及圖7所述。若時間間隔不在選定時間範圍內,則資料處理系統1110基於選定目標葡萄糖濃度範圍、接收之葡萄糖測量資料及基本胰島素輸送曲線,使用模型預測控制決定彼時間間隔之胰島素輸送量。接著,資料處理系統1110提供對應於胰島素輸送量之一輸送控制信號至該胰島素輸液泵1125,並且泵1125輸送相對應量之胰島素。模型預測控制器可(但非必須)操作以在選定時間範圍期間進行預測。最佳在選定時間範圍期間仍然進行
葡萄糖測量並且記錄在資料儲存系統1140中,使得在選定時間範圍結束時模型預測控制器不具有試運轉時期(上文已論述)。
在一些實施例中,資料處理系統1110或其安全子系統或附接至其之安全組件,其係經程式化以預測對象1138在該選定目標葡萄糖範圍中的葡萄糖位準之波動。此完成方式為使用安全模型(例如,低血糖安全模型)及針對複數個時間間隔之葡萄糖測量資料之至少一些者。接著,系統或組件根據預測之波動減少決定之胰島素輸送量。
在使用延長給藥之實例中,暫時胰島素輸送曲線(其可儲存在資料儲存系統1140中)包含選定時間範圍之前段及後段子範圍。暫時胰島素輸送曲線指定前段子範圍中的胰島素輸送或速率高於後段子範圍胰島素輸送或速率,如上文所述。
鑑於前文,本發明之實施例提供改良葡萄糖泵系統中之暫時基準及延長給藥控制。軟式及半軟式曲線之技術效果是提供對泵操作之增加控制,同時仍維持校正血液葡萄糖超出所要葡萄糖區帶之一些偏差的能力。硬式曲線之技術效果提供在有限時間決定胰島素量,而在彼等時間外不會干擾胰島素輸送。
雖已藉由特定變化例及例示圖來說明本發明,此技藝中具有通常知識者可理解本發明不限於所述之變化例或圖形。例如,封閉迴路控制器非必須為MPC控制器但可是,而是在熟悉此項技術者可進行適當修改情況下,封閉迴路控制器可為PID控制器、具有內部模型控制(IMC)之PID控制器、模型演算法控制(MAC),彼等由Percival等人論述於「Closed-Loop Control and Advisory Mode Evaluation of an Artificial Pancreatic β Cell:Use of Proportional-Integral-Derivative Equivalent Model-Based Controllers」(《Journal of Diabetes Science及Technology,Vol.2,Issue 4,2008年7月》);此外,在上述方法及步驟指示以某種順序發生之特定事件之處,此技藝中具有通常知識者可理解可修改某些步驟的順序且這類修改係根據本發明之變化例。另外,當可行時,可以在平行程序中共同
地執行,還有如上述般相繼地執行其中一些步驟。因此,本專利意圖涵蓋落在揭示內容之精神內或與申請專利範圍中出現之等效變化例。
100‧‧‧藥物輸送系統
102‧‧‧藥物輸送裝置
104‧‧‧遙控器
106‧‧‧輸液套
108‧‧‧撓性管/輸液套
112‧‧‧射頻通信/連續分析物監控(CGM)感測器
114‧‧‧間歇性血液葡萄糖計
116‧‧‧遠端健康監測台/射頻模組
118‧‧‧無線通信網路
126‧‧‧個人電腦或網路電腦
128‧‧‧伺服器
Claims (21)
- 一種回應於接收來自一葡萄糖感測器之資料之一控制器以控制一輸液泵之方法,該方法包括:用該葡萄糖感測器測量來自一使用者之一生理流體之一葡萄糖位準;以及使用該控制器自動執行以下步驟:針對一系列離散時間間隔之各時間間隔,自該葡萄糖感測器接收各自葡萄糖位準測量值;接收延伸於時間間隔之一選定時間範圍之一暫時胰島素輸送曲線;基於一模型預測控制器針對該等時間間隔之一選定者計算一認可胰島素輸送量,其:使用該等葡萄糖測量值之至少一些者自一選定目標葡萄糖範圍預測該葡萄糖位準之一波動;運算一估計胰島素輸送量;以及調整該估計胰島素輸送量以提供該認可胰島素輸送量,根據該預測波動、一基本胰島素輸送曲線、或若該選定時間間隔係在該選定範圍內則根據該暫時胰島素輸送曲線,來執行該調整;自該認可胰島素輸送量決定一經核准胰島素輸送量;以及命令該輸液泵輸送該經核准胰島素輸送量。
- 如申請專利範圍第1項之方法,其中接收一暫時胰島素輸送曲線之該步驟包含:接收一曲線修改項;及應用該曲線修改項至該基本胰島素輸送曲線以產生該暫時胰島素輸送曲線。
- 如申請專利範圍第1項之方法,其中該調整包含:若該選定時間間隔係在該選定範圍內,則根據該預測波動及該暫時胰島素輸送曲線調整該估計輸送量;以及若該選定時間間隔非在該選定範圍內,則根據該預測波動及該基本胰島素輸送曲線調整該估計輸送量。
- 如申請專利範圍第1項之方法,其中該調整包含:若該選定時間間隔係在該選定範圍內,則根據該預測波動及該暫時胰島素輸送曲線調整該估計輸送量,並且強制使該計算胰島素輸送 量至少為在該選定時間間隔中該暫時胰島素輸送曲線與該基本胰島素輸送曲線之間之一差值;以及若該選定時間間隔非在該選定範圍內,則根據該預測波動及該基本胰島素輸送曲線調整該估計輸送量。
- 如申請專利範圍第1項之方法,其中該決定經核准量步驟包含:提供該認可胰島素輸送量作為該經核准胰島素輸送量。
- 如申請專利範圍第1項之方法,其中該決定經核准量步驟包含:根據一安全模型減少該認可輸送量,以提供該經核准胰島素輸送量。
- 如申請專利範圍第1項之方法,其中該暫時胰島素輸送曲線包含該選定時間範圍之前段及後段子範圍,並且指定該前段子範圍中的胰島素輸送量或速率高於該後段子範圍胰島素輸送量或速率。
- 一種回應於接收來自一葡萄糖感測器之資料之一控制器以控制一輸液泵之方法,該方法包括:用該葡萄糖感測器測量來自一使用者之一生理流體之一葡萄糖位準;以及使用該控制器自動執行以下步驟:針對一系列離散時間間隔之各時間間隔,自該葡萄糖感測器接收各自葡萄糖位準測量值;接收延伸於時間間隔之一選定時間範圍之一暫時胰島素輸送曲線;基於一模型預測控制器針對該等時間間隔之一選定者計算一認可胰島素輸送量,該模型預測控制器:若該選定時間間隔係在該選定範圍外,則使用該等葡萄糖測量值之至少一些者自一選定目標葡萄糖範圍預測該葡萄糖位準之一波動;運算一估計胰島素輸送量;以及調整該估計胰島素輸送量以提供該認可胰島素輸送量,根據該預測波動及一基本胰島素輸送曲線來執行該調整;以及若該選定時間間隔係在該選定範圍內,則自該暫時胰島素輸送曲線擷取該選定時間間隔之該認可胰島素輸送量; 自該認可胰島素輸送量決定一經核准胰島素輸送量;以及命令該輸液泵輸送該經核准胰島素輸送量。
- 如申請專利範圍第8項之方法,其中該決定經核准量步驟包含:使用一安全模型以決定是否預測到一低血糖波動,且若為肯定,則減少該認可輸送量以提供該經核准胰島素輸送量。
- 一種用於輸送胰島素之設備,該設備包括:a)一葡萄糖監測器,其經調適以在離散時間間隔測量一對象之各自葡萄糖位準並且提供指示各經測量葡萄糖位準之各自葡萄糖測量資料;b)一胰島素輸液泵,其經組態以回應於一輸送控制信號而輸送胰島素;c)一記憶體,其經組態以儲存一基本胰島素輸送曲線;d)一介面,其經調適以選擇性地接收延伸於該等時間間隔之一選定時間範圍之一暫時胰島素輸送曲線,並且提供指示是否接收到該暫時胰島素輸送曲線之一第一信號;以及e)一控制器,其經調適以針對複數個該等離散時間間隔之各者:i)自該葡萄糖監測器接收彼時間間隔之該葡萄糖測量資料;ii)基於一選定目標葡萄糖濃度範圍、該接收之葡萄糖測量資料、該儲存之基本胰島素輸送曲線或回應於該第一信號及若彼時間間隔係在該選定時間範圍內則基於該接收之暫時胰島素輸送曲線,使用模型預測控制來決定彼時間間隔之一胰島素輸送量;以及iii)提供對應於該決定之胰島素輸送量之一輸送控制信號至該胰島素輸液泵,藉此輸送相對應量之胰島素。
- 如申請專利範圍第10項之設備,其中該介面經調適以藉由接收變更資訊並且根據該變更資訊修改在該選定時間範圍內之該儲存之基本胰島素輸送曲線而接收該暫時胰島素輸送曲線,以提供該暫時胰島素輸送曲線。
- 如申請專利範圍第10項之設備,其中該控制器經調適以使用以下者決定一選定時間間隔之該胰島素輸送量: a)若未接收到該暫時胰島素輸送曲線或該選定時間間隔係在該選定時間範圍外,則使用該選定目標葡萄糖濃度範圍、該接收之葡萄糖測量資料、該儲存之基本胰島素輸送曲線;b)否則,使用該選定目標葡萄糖濃度範圍、該接收之葡萄糖測量資料、及該接收之暫時胰島素輸送曲線。
- 如申請專利範圍第10項之設備,其中該控制器進一步經調適以回應於該第一信號且若一選定時間間隔係在該選定時間範圍內,則強制使針對該選定時間間隔的該決定之胰島素輸送量至少為在該選定時間間隔中該暫時胰島素輸送曲線與該儲存之基本胰島素輸送曲線之各自值之間之一差值。
- 如申請專利範圍第10項之設備,其中該控制器進一步經調適以:a)用一安全模型及針對複數個該等時間間隔之該葡萄糖測量資料之至少一些者,自該選定目標葡萄糖範圍預測該對象之一葡萄糖位準之一波動;以及b)根據該預測之波動減少該決定之胰島素輸送量。
- 如申請專利範圍第10項之設備,其中該暫時胰島素輸送曲線包含該選定時間範圍之前段及後段子範圍,並且指定該前段子範圍中的胰島素輸送量或速率高於該後段子範圍中的胰島素輸送量或速率。
- 如申請專利範圍第10項之設備,其中該葡萄糖監測器包含複數個葡萄糖感測器。
- 如申請專利範圍第10項之設備,其中該介面進一步經調適以提供一啟動信號,並且該控制器回應於該啟動信號,擷取該儲存之基本胰島素輸送曲線並且擷取或決定該胰島素輸送量。
- 一種用於輸送胰島素之設備,該設備包括:a)一葡萄糖監測器,其經調適以在離散時間間隔測量一對象之各自葡萄糖位準並且提供指示各經測量葡萄糖位準之各自葡萄糖測量資料;b)一胰島素輸液泵,其經組態以回應於一輸送控制信號而輸送胰島素; c)一記憶體,其經組態以儲存一基本胰島素輸送曲線;d)一介面,其經調適以接收延伸於該等時間間隔之一選定時間範圍之一暫時胰島素輸送曲線;以及一控制器,其經調適以針對複數個該等離散時間間隔之各者:i)自該葡萄糖監測器接收彼時間間隔之該葡萄糖測量資料;ii)若彼時間間隔係在該選定時間範圍內,則自該暫時胰島素輸送曲線擷取一相對應之胰島素輸送量,或否則基於一選定目標葡萄糖濃度範圍、該接收之葡萄糖測量資料、及該基本胰島素輸送曲線,使用模型預測控制來決定彼時間間隔之一胰島素輸送量;以及iii)提供對應於該胰島素輸送量之一輸送控制信號至該胰島素輸液泵,藉此輸送相對應量之胰島素。
- 如申請專利範圍第18項之設備,其中該控制器進一步經調適以:a)用一安全模型及針對複數個該等時間間隔之該葡萄糖測量資料之至少一些者,自該選定目標葡萄糖範圍預測該對象之一葡萄糖位準之一波動;以及b)根據該預測之波動減少該決定之胰島素輸送量。
- 如申請專利範圍第18項之設備,其中該葡萄糖監測器包含複數個葡萄糖感測器。
- 如申請專利範圍第18項之設備,其中該介面進一步經調適以提供一啟動信號,並且該控制器回應於該接收之啟動信號,擷取該儲存之基本胰島素輸送曲線並且擷取或決定該胰島素輸送量。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/834,571 US9795737B2 (en) | 2013-03-15 | 2013-03-15 | Method and system for closed-loop control of an artificial pancreas |
US13/834,571 | 2013-03-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201509380A true TW201509380A (zh) | 2015-03-16 |
TWI643600B TWI643600B (zh) | 2018-12-11 |
Family
ID=50473758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103108920A TWI643600B (zh) | 2013-03-15 | 2014-03-13 | 用於人工胰臟之封閉迴路控制的方法及系統 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9795737B2 (zh) |
EP (1) | EP2967450B1 (zh) |
ES (1) | ES2663302T3 (zh) |
HK (1) | HK1218503A1 (zh) |
TW (1) | TWI643600B (zh) |
WO (1) | WO2014149535A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110088842A (zh) * | 2016-12-15 | 2019-08-02 | 威里利生命科学有限责任公司 | 闭环胰岛素输送系统 |
CN110517748A (zh) * | 2019-08-29 | 2019-11-29 | 燕山大学 | 一种基于三支决策的双激素人工胰脏模型预测控制算法 |
Families Citing this family (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7959598B2 (en) | 2008-08-20 | 2011-06-14 | Asante Solutions, Inc. | Infusion pump systems and methods |
US10852069B2 (en) | 2010-05-04 | 2020-12-01 | Fractal Heatsink Technologies, LLC | System and method for maintaining efficiency of a fractal heat sink |
US9897565B1 (en) | 2012-09-11 | 2018-02-20 | Aseko, Inc. | System and method for optimizing insulin dosages for diabetic subjects |
US9171343B1 (en) | 2012-09-11 | 2015-10-27 | Aseko, Inc. | Means and method for improved glycemic control for diabetic patients |
WO2015003124A2 (en) * | 2013-07-03 | 2015-01-08 | University Of Virginia Patent Foundation | Simulation of endogenous and exogenous glucose/insulin/glucagon interplay in type 1 diabetic patients |
US9561324B2 (en) | 2013-07-19 | 2017-02-07 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
US10569015B2 (en) | 2013-12-02 | 2020-02-25 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
GB2523989B (en) | 2014-01-30 | 2020-07-29 | Insulet Netherlands B V | Therapeutic product delivery system and method of pairing |
US9486580B2 (en) | 2014-01-31 | 2016-11-08 | Aseko, Inc. | Insulin management |
US9898585B2 (en) | 2014-01-31 | 2018-02-20 | Aseko, Inc. | Method and system for insulin management |
US20160082187A1 (en) * | 2014-09-23 | 2016-03-24 | Animas Corporation | Decisions support for patients with diabetes |
US9892234B2 (en) | 2014-10-27 | 2018-02-13 | Aseko, Inc. | Subcutaneous outpatient management |
US11081226B2 (en) | 2014-10-27 | 2021-08-03 | Aseko, Inc. | Method and controller for administering recommended insulin dosages to a patient |
US9943645B2 (en) * | 2014-12-04 | 2018-04-17 | Medtronic Minimed, Inc. | Methods for operating mode transitions and related infusion devices and systems |
EP3236850A4 (en) * | 2014-12-23 | 2018-07-18 | Ent. Services Development Corporation LP | Detection of allergen exposure |
EP3258991B1 (en) | 2015-02-18 | 2020-10-21 | Insulet Corporation | Fluid delivery and infusion devices, and methods of use thereof |
US9878097B2 (en) | 2015-04-29 | 2018-01-30 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
CA2991047C (en) * | 2015-06-28 | 2020-04-14 | The Regents Of The University Of California | Velocity-weighting model predictive control of an artificial pancreas for type 1 diabetes applications |
JP6858751B2 (ja) | 2015-08-20 | 2021-04-14 | アセコー インコーポレイテッド | 糖尿病管理療法アドバイザ |
US10449294B1 (en) | 2016-01-05 | 2019-10-22 | Bigfoot Biomedical, Inc. | Operating an infusion pump system |
JP2019509770A (ja) | 2016-01-05 | 2019-04-11 | ビッグフット バイオメディカル インコーポレイテッドBigfoot Biomedical, Inc. | 動作するマルチモーダル薬剤デリバリ・システム |
CN108883227B (zh) * | 2016-01-12 | 2022-10-25 | 哈佛大学校董委员会 | 使用过去的预测的用于人工胰腺的预测控制模型 |
WO2017123525A1 (en) | 2016-01-13 | 2017-07-20 | Bigfoot Biomedical, Inc. | User interface for diabetes management system |
US10610643B2 (en) | 2016-01-14 | 2020-04-07 | Bigfoot Biomedical, Inc. | Occlusion resolution in medication delivery devices, systems, and methods |
CN112933333B (zh) * | 2016-01-14 | 2023-03-28 | 比格福特生物医药公司 | 调整胰岛素输送速率 |
US20170332952A1 (en) * | 2016-05-23 | 2017-11-23 | Bigfoot Biomedical, Inc. | Insulin delivery system and methods with risk based set points |
WO2018009614A1 (en) * | 2016-07-06 | 2018-01-11 | President And Fellows Of Harvard College | Event-triggered model predictive control for embedded artificial pancreas systems |
US11617832B2 (en) | 2016-08-17 | 2023-04-04 | International Business Machines Corporation | Portal system-based bionic pancreas |
GB201614676D0 (en) * | 2016-08-30 | 2016-10-12 | Imp Innovations | Automatic closed-loop glucose control with an adaptive meal bolus calculator |
EP3515535A1 (en) | 2016-09-23 | 2019-07-31 | Insulet Corporation | Fluid delivery device with sensor |
US11096624B2 (en) | 2016-12-12 | 2021-08-24 | Bigfoot Biomedical, Inc. | Alarms and alerts for medication delivery devices and systems |
US10881792B2 (en) | 2017-01-13 | 2021-01-05 | Bigfoot Biomedical, Inc. | System and method for adjusting insulin delivery |
US10758675B2 (en) | 2017-01-13 | 2020-09-01 | Bigfoot Biomedical, Inc. | System and method for adjusting insulin delivery |
EP3568860A1 (en) | 2017-01-13 | 2019-11-20 | Bigfoot Biomedical, Inc. | Insulin delivery methods, systems and devices |
US10583250B2 (en) | 2017-01-13 | 2020-03-10 | Bigfoot Biomedical, Inc. | System and method for adjusting insulin delivery |
US11027063B2 (en) | 2017-01-13 | 2021-06-08 | Bigfoot Biomedical, Inc. | Insulin delivery methods, systems and devices |
US10500334B2 (en) | 2017-01-13 | 2019-12-10 | Bigfoot Biomedical, Inc. | System and method for adjusting insulin delivery |
WO2018167543A1 (en) | 2017-03-17 | 2018-09-20 | Universität Bern | System and method for drug therapy management |
US11497851B2 (en) * | 2017-03-31 | 2022-11-15 | Lifescan Ip Holdings, Llc | Maintaining maximum dosing limits for closed loop insulin management systems |
EP4290320A3 (en) | 2017-05-05 | 2024-02-21 | Ypsomed AG | Closed loop control of physiological glucose |
EP3438858A1 (en) | 2017-08-02 | 2019-02-06 | Diabeloop | Closed-loop blood glucose control systems and methods |
US11901060B2 (en) | 2017-12-21 | 2024-02-13 | Ypsomed Ag | Closed loop control of physiological glucose |
JP6930009B2 (ja) * | 2018-02-22 | 2021-09-01 | 京セラ株式会社 | 電子機器、推定システム、推定方法及び推定プログラム |
USD928199S1 (en) | 2018-04-02 | 2021-08-17 | Bigfoot Biomedical, Inc. | Medication delivery device with icons |
US11158413B2 (en) | 2018-04-23 | 2021-10-26 | Medtronic Minimed, Inc. | Personalized closed loop medication delivery system that utilizes a digital twin of the patient |
CN112236826B (zh) | 2018-05-04 | 2024-08-13 | 英赛罗公司 | 基于控制算法的药物输送系统的安全约束 |
WO2019246213A1 (en) | 2018-06-19 | 2019-12-26 | President And Fellows Of Harvard College | Adaptive zone model predictive control with a glucose and velocity dependent dynamic cost function for an artificial pancreas |
US12020797B2 (en) | 2018-06-22 | 2024-06-25 | Ypsomed Ag | Insulin and pramlintide delivery systems, methods, and devices |
EP3853860A1 (en) * | 2018-09-20 | 2021-07-28 | Medtronic MiniMed, Inc. | Patient monitoring systems and related recommendation methods |
US11547799B2 (en) | 2018-09-20 | 2023-01-10 | Medtronic Minimed, Inc. | Patient day planning systems and methods |
CA3112209C (en) | 2018-09-28 | 2023-08-29 | Insulet Corporation | Activity mode for artificial pancreas system |
US11565039B2 (en) | 2018-10-11 | 2023-01-31 | Insulet Corporation | Event detection for drug delivery system |
USD920343S1 (en) | 2019-01-09 | 2021-05-25 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
US11986629B2 (en) * | 2019-06-11 | 2024-05-21 | Medtronic Minimed, Inc. | Personalized closed loop optimization systems and methods |
US11801344B2 (en) | 2019-09-13 | 2023-10-31 | Insulet Corporation | Blood glucose rate of change modulation of meal and correction insulin bolus quantity |
US11935637B2 (en) | 2019-09-27 | 2024-03-19 | Insulet Corporation | Onboarding and total daily insulin adaptivity |
CN110680994B (zh) * | 2019-11-18 | 2024-01-26 | 超阈智能科技(杭州)有限公司 | 基于物联网的智能输液监护系统及其控制方法 |
EP4069082B1 (en) | 2019-12-06 | 2024-06-05 | Insulet Corporation | Techniques and devices providing adaptivity and personalization in diabetes treatment |
US11833329B2 (en) | 2019-12-20 | 2023-12-05 | Insulet Corporation | Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns |
JP7512395B2 (ja) | 2020-01-06 | 2024-07-08 | インスレット コーポレイション | 持続する残差に基づく食事および/または運動行為の予測 |
US11551802B2 (en) | 2020-02-11 | 2023-01-10 | Insulet Corporation | Early meal detection and calorie intake detection |
US11547800B2 (en) * | 2020-02-12 | 2023-01-10 | Insulet Corporation | User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system |
US11986630B2 (en) | 2020-02-12 | 2024-05-21 | Insulet Corporation | Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk |
US11324889B2 (en) | 2020-02-14 | 2022-05-10 | Insulet Corporation | Compensation for missing readings from a glucose monitor in an automated insulin delivery system |
US11607493B2 (en) | 2020-04-06 | 2023-03-21 | Insulet Corporation | Initial total daily insulin setting for user onboarding |
US12121700B2 (en) | 2020-07-22 | 2024-10-22 | Insulet Corporation | Open-loop insulin delivery basal parameters based on insulin delivery records |
US11684716B2 (en) | 2020-07-31 | 2023-06-27 | Insulet Corporation | Techniques to reduce risk of occlusions in drug delivery systems |
US20220061706A1 (en) * | 2020-08-26 | 2022-03-03 | Insulet Corporation | Techniques for image-based monitoring of blood glucose status |
US12115351B2 (en) | 2020-09-30 | 2024-10-15 | Insulet Corporation | Secure wireless communications between a glucose monitor and other devices |
WO2022072332A1 (en) | 2020-09-30 | 2022-04-07 | Insulet Corporation | Drug delivery device with integrated optical-based glucose monitor |
US11160925B1 (en) | 2021-01-29 | 2021-11-02 | Insulet Corporation | Automatic drug delivery system for delivery of a GLP-1 therapeutic |
US11904140B2 (en) * | 2021-03-10 | 2024-02-20 | Insulet Corporation | Adaptable asymmetric medicament cost component in a control system for medicament delivery |
US20220293234A1 (en) * | 2021-03-10 | 2022-09-15 | Insulet Corporation | Medicament delivery device with an adjustable and piecewise analyte level cost component to address persistent positive analyte level excursions |
EP4409581A1 (en) | 2021-09-27 | 2024-08-07 | Insulet Corporation | Techniques enabling adaptation of parameters in aid systems by user input |
US11439754B1 (en) | 2021-12-01 | 2022-09-13 | Insulet Corporation | Optimizing embedded formulations for drug delivery |
US11619220B1 (en) | 2022-07-05 | 2023-04-04 | Wayne Richard Anderson | Continuous flow infusion pump utilizing angular aligned fingers |
WO2024147928A1 (en) | 2023-01-06 | 2024-07-11 | Insulet Corporation | Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6088608A (en) * | 1997-10-20 | 2000-07-11 | Alfred E. Mann Foundation | Electrochemical sensor and integrity tests therefor |
CA2505639C (en) | 2002-10-11 | 2012-07-03 | Becton, Dickinson And Company | System and method for initiating and maintaining continuous, long-term control of a concentration of a substance in a patient using a feedback or model-based controller coupled to a single-needle or multi-needle intradermal (id) delivery device |
US7778680B2 (en) | 2003-08-01 | 2010-08-17 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US8548544B2 (en) | 2006-06-19 | 2013-10-01 | Dose Safety | System, method and article for controlling the dispensing of insulin |
US10154804B2 (en) * | 2007-01-31 | 2018-12-18 | Medtronic Minimed, Inc. | Model predictive method and system for controlling and supervising insulin infusion |
GB2466183A (en) | 2008-12-09 | 2010-06-16 | Cambridge Entpr Ltd | Closed loop diabetes management system |
EP2413781B1 (en) | 2009-03-31 | 2019-07-24 | Abbott Diabetes Care Inc. | Overnight closed-loop insulin delivery with model predictive control and glucose measurement error model |
US8398616B2 (en) | 2009-05-22 | 2013-03-19 | Abbott Diabetes Care Inc. | Safety layer for integrated insulin delivery system |
WO2010135646A1 (en) | 2009-05-22 | 2010-11-25 | Abbott Diabetes Care Inc. | Usability features for integrated insulin delivery system |
CA2789630C (en) | 2010-02-11 | 2016-12-13 | The Regents Of The University Of California | Systems, devices and methods to deliver biological factors or drugs to a subject |
US20110313680A1 (en) | 2010-06-22 | 2011-12-22 | Doyle Iii Francis J | Health Monitoring System |
CA2816388C (en) | 2010-10-12 | 2016-12-06 | The Regents Of The University Of California | Maintaining multiple defined physiological zones using model predictive control |
WO2012058694A2 (en) | 2010-10-31 | 2012-05-03 | Trustees Of Boston University | Blood glucose control system |
-
2013
- 2013-03-15 US US13/834,571 patent/US9795737B2/en not_active Expired - Fee Related
-
2014
- 2014-02-28 EP EP14716450.3A patent/EP2967450B1/en not_active Not-in-force
- 2014-02-28 WO PCT/US2014/019365 patent/WO2014149535A1/en active Application Filing
- 2014-02-28 ES ES14716450.3T patent/ES2663302T3/es active Active
- 2014-03-13 TW TW103108920A patent/TWI643600B/zh not_active IP Right Cessation
-
2016
- 2016-06-07 HK HK16106549.5A patent/HK1218503A1/zh not_active IP Right Cessation
-
2017
- 2017-10-03 US US15/723,231 patent/US20180043095A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110088842A (zh) * | 2016-12-15 | 2019-08-02 | 威里利生命科学有限责任公司 | 闭环胰岛素输送系统 |
CN110517748A (zh) * | 2019-08-29 | 2019-11-29 | 燕山大学 | 一种基于三支决策的双激素人工胰脏模型预测控制算法 |
Also Published As
Publication number | Publication date |
---|---|
US20180043095A1 (en) | 2018-02-15 |
US20140276554A1 (en) | 2014-09-18 |
ES2663302T3 (es) | 2018-04-11 |
HK1218503A1 (zh) | 2017-02-24 |
EP2967450B1 (en) | 2018-01-31 |
TWI643600B (zh) | 2018-12-11 |
US9795737B2 (en) | 2017-10-24 |
WO2014149535A1 (en) | 2014-09-25 |
EP2967450A1 (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI643600B (zh) | 用於人工胰臟之封閉迴路控制的方法及系統 | |
JP7153668B2 (ja) | 自動基礎インスリン制御及び手動ボーラスインスリン制御を有する糖尿病管理システム | |
TWI601547B (zh) | 用於閉路控制器之處置手動給藥或餐食事件之方法及系統 | |
TWI671094B (zh) | 用於控制人工胰臟中之封閉迴路控制器因感測器更換後之調諧因子的系統 | |
TWI619481B (zh) | 用於調諧人工胰臟之閉迴路控制器的方法及系統 | |
TWI639131B (zh) | 以葡萄糖監控器與輸入幫浦來提供快速給藥上之反饋的糖尿病管理方法及系統 | |
TW201503921A (zh) | 用於人工胰臟之混合式控制至目標及控制至範圍模型預測控制的方法及系統 | |
TW201832788A (zh) | 使用於藥物遞送系統中之具有經改良安全性的音頻投藥 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |