TW201507336A - High voltage ratio interleaved converter with soft-switching using single auxiliary switch - Google Patents

High voltage ratio interleaved converter with soft-switching using single auxiliary switch Download PDF

Info

Publication number
TW201507336A
TW201507336A TW102128671A TW102128671A TW201507336A TW 201507336 A TW201507336 A TW 201507336A TW 102128671 A TW102128671 A TW 102128671A TW 102128671 A TW102128671 A TW 102128671A TW 201507336 A TW201507336 A TW 201507336A
Authority
TW
Taiwan
Prior art keywords
main switch
auxiliary
switch
diode
capacitor
Prior art date
Application number
TW102128671A
Other languages
Chinese (zh)
Other versions
TWI501527B (en
Inventor
Kuei-Hsiang Chao
Min-Sen Yang
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW102128671A priority Critical patent/TWI501527B/en
Publication of TW201507336A publication Critical patent/TW201507336A/en
Application granted granted Critical
Publication of TWI501527B publication Critical patent/TWI501527B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

A high voltage ratio interleaved converter with soft-switching using single auxiliary switch is disclosed. The converter includes a first boost circuit, a second boost circuit, a first block diode, a second block diode, a resonant inductor, an auxiliary switch, a resonant capacitor, an auxiliary switch diode, and an auxiliary diode. The first boost circuit includes a first main switch. The second boost circuit includes a second main switch, the second boost circuit is electrically connected to the first boost circuit. The first block diode is electrically connected to the first main switch. The second block diode is electrically connected to the second main switch. The auxiliary switch electrically connects the first and the second block diode through the resonate inductor. The auxiliary switch diode, the resonate capacitor, and the auxiliary diode respectively are electrically connected to the auxiliary switch for completing soft-switching.

Description

單輔助開關之交錯式高升壓比柔切式轉換器 Interleaved high boost ratio soft-cut converter with single auxiliary switch

本發明是有關於一種交錯式高升壓比柔切式轉換器,且特別是有關於一種僅採用單輔助開關之交錯式高升壓比柔切式轉換器。 This invention relates to an interleaved high step-up ratio soft-cut converter, and more particularly to an interleaved high step-up ratio soft-cut converter that employs only a single auxiliary switch.

近年來,再生能源及潔淨能源越來越受到重視,但燃料電池(fuel cell,FC)或太陽光電模組(photovoltaic module)等潔淨能源的輸出電壓卻往往並不穩定,其輸出電壓會隨實際運轉情況變動,又一般燃料電池的輸出電壓值偏低,綜合各種缺失與需求,因此發展出電能轉換器(converter)用以將輸出電壓提升至穩定電壓,以供負載或作為其他應用。 In recent years, renewable energy and clean energy have received more and more attention, but the output voltage of clean energy such as fuel cell (FC) or photovoltaic module is often unstable, and its output voltage will be actual. The operating conditions change, and the output voltage of the fuel cell is generally low, and various defects and demands are integrated. Therefore, a power converter is developed to boost the output voltage to a stable voltage for load or other applications.

一般常見的升壓型轉換器(boost converter)具有架構簡單及控制容易等優點。後來又發展出交錯式升壓型轉換器,交錯式升壓型轉換器不但具有升壓型轉換器之優點外,並可藉由交錯式之電路架構降低開關元件與電感 (inductor)之電流應力(current stress),因此更具備可降低輸入電流漣波等優點。 The commonly used boost converter has the advantages of simple structure and easy control. Later, an interleaved boost converter was developed. The interleaved boost converter not only has the advantages of a boost converter, but also reduces switching components and inductors by an interleaved circuit architecture. (Inductor) current stress, so it has the advantage of reducing input current ripple.

而由於交錯式升壓型轉換器的電壓增益比(voltage gain ratio)與升壓型轉換器相同,因此又有交錯倍壓式高升壓比轉換器等電路架構的提出。交錯倍壓式高升壓比轉換器能以較低之責任周期達到相同之升壓效果,因此更可降低開關之導通損失(conduction loss)及切換損失(switching loss)。 Since the voltage gain ratio of the interleaved boost converter is the same as that of the boost converter, a circuit architecture such as a staggered double-voltage high boost ratio converter is proposed. The staggered doubling-type high step-up ratio converter achieves the same boosting effect with a lower duty cycle, thereby further reducing the conduction loss and switching loss of the switch.

但上述種類的轉換器於傳統上皆採用硬性切換方式(hard switching),而無法立即使開關兩端之電壓或電流降為零,因此產生較大之切換損失(switching loss),導致轉換器轉換效率(conversion efficiency)降低。此外,硬性切換式的開關元件於切換過程中所引起之高頻切換,還會產生嚴重的電磁干擾(electromagnetic interference,EMI),進而影響系統的穩定性。 However, the above-mentioned types of converters have traditionally used hard switching, and cannot immediately reduce the voltage or current across the switch to zero, thus causing a large switching loss, resulting in converter switching. The conversion efficiency is reduced. In addition, the high-frequency switching caused by the hard-switching switching element during the switching process also causes severe electromagnetic interference (EMI), which in turn affects the stability of the system.

因此為了提升轉換器的整體效率,又發展出柔性切換技術,以降低開關元件的切換損失(switching loss)及切換應力(switching stress)。現今已有多種柔性切換技術的架構被提出,例如Y.C.Hsieh、T.C.Hsueh及H.C.Yen於2009年提出的架構(“An Interleaved Boost Converter with Zero-Voltage Transition,”IEEE Transaction on Power Electronics,Vol.24,No.4,pp.973-978,2009.),還有S.Park及S.Choi於2010年提出的架構(“Soft-Switched CCM Boost Converters with High Voltage Gain for High-Power Applications,”IEEE Transaction on Power Electronics,Vol.25,No.5,pp.1211-1217,2010.),但這二種架構的開關元件僅具零電壓切換,而無法進一步降低開關元件之切換損失。 Therefore, in order to improve the overall efficiency of the converter, a flexible switching technique has been developed to reduce the switching loss and switching stress of the switching elements. A variety of flexible switching technology architectures have been proposed, such as the architecture proposed by YCHsieh, TCHsueh, and HCYen in 2009 ("An Interleaved Boost Converter with Zero-Voltage Transition," IEEE Transaction on Power Electronics, Vol. No.4, pp.973-978, 2009.), and the architecture proposed by S. Park and S. Choi in 2010 ("Soft-Switched CCM Boost Converters with High Voltage Gain for High-Power Applications," IEEE Transaction on Power Electronics, Vol. 25, No. 5, pp. 1211-1217, 2010.), but the switching elements of these two architectures only have zero voltage switching, and cannot further reduce the switching loss of switching elements. .

另外如C.M.de Oliveira Stein、J.R.Pinheiro及H.L.Hey於2002提出的架構(“A ZCT Auxiliary Commutation Circuit for Interleaved Boost Converters Operating in Critical Conduction Mode,”IEEE Transaction on Power Electronics,Vol.17,No.6,pp.954-962,2002.)雖具有零電流切換,卻不具有零電壓切換,也不具有高升壓比,因此開關的切換損失仍無法有效降低。 In addition, the architecture proposed by CMde Oliveira Stein, JR Pinheiro and HL Hey in 2002 ("A ZCT Auxiliary Commutation Circuit for Interleaved Boost Converters Operating in Critical Conduction Mode," IEEE Transaction on Power Electronics, Vol. 17, No. 6, pp .954-962, 2002.) Although there is zero current switching, it does not have zero voltage switching and does not have a high boost ratio, so the switching loss of the switch cannot be effectively reduced.

又如G.Yao、A.Chen及X.He於2007年提出的架構(“Soft Switching Circuit for Interleaved Boost Converters,”IEEE Transaction on Power Electronics,Vol.22,No.1,pp.80-86,2007.)雖具有零電壓及零電流切換,但此架構需使用多個開關,因此控制電路複雜,且各開關元件的耐壓值(voltage rating)都至少須為轉換器的輸出電壓額定值。 Another example is the architecture proposed by G. Yao, A. Chen and X. He in 2007 ("Soft Switching Circuit for Interleaved Boost Converters," IEEE Transaction on Power Electronics, Vol. 22, No. 1, pp. 80-86, 2007.) Although there are zero voltage and zero current switching, this architecture requires multiple switches, so the control circuit is complicated, and the voltage rating of each switching element must be at least the output voltage rating of the converter. .

再如Y.T.Chen、S.M.Shiu及R.H.Liang於2012年提出的架構(“Analysis and Design of a Zero-Voltage-Switching and Zero-Current-Switching Interleaved Boost Converter,”IEEE Transaction on Power Electronics,Vol.27,No.1,pp.161-173,2012.)雖只使用單輔助開關即可達成零電壓及零電流,但卻不具有高升壓比,且此架構的主開關 (main switch)、輔助開關(auxiliary switch)及電容(capacitor)等元件之耐壓都需大於輸出電壓之額定值。 Another example is the architecture proposed by YTChen, SMShiu and RHLiang in 2012 ("Analysis and Design of a Zero-Voltage-Switching and Zero-Current-Switching Interleaved Boost Converter," IEEE Transaction on Power Electronics, Vol. 27, No. .1, pp.161-173, 2012.) Although only a single auxiliary switch can be used to achieve zero voltage and zero current, but does not have a high boost ratio, and the main switch of this architecture The withstand voltage of components such as (main switch), auxiliary switch, and capacitor must be greater than the rated value of the output voltage.

因此如何採用簡單的電路有效提升轉換器的效率,並且具備高升壓比的特性,達到升壓、穩壓、高效率、低電磁干擾而高系統穩定性的轉換器,成為目前重要而極需解決的問題。 Therefore, how to use a simple circuit to effectively improve the efficiency of the converter, and has a high step-up ratio, the converter that achieves boost, regulation, high efficiency, low electromagnetic interference and high system stability has become an important and extremely important solved problem.

因此,本發明之目的是在提供一種單輔助開關之交錯式高升壓比柔切式轉換器,僅需使用單一輔助開關,即可使轉換器的主開關元件達到零電壓切換(zero voltage switch,ZVS)及零電流切換(zero current switch,ZCS)的柔性切換(柔切)特性,不但提升轉換器之效率,並降低電磁干擾程度,且不需複雜電路,又可達到高升壓比。 Accordingly, it is an object of the present invention to provide an interleaved high step-up ratio soft-cut converter with a single auxiliary switch that can achieve zero voltage switching of the main switching element of the converter using only a single auxiliary switch. , ZVS) and zero current switch (ZCS) flexible switching (flexible) characteristics, not only improve the efficiency of the converter, but also reduce the degree of electromagnetic interference, and without the need for complex circuits, can achieve high boost ratio.

依據本發明一實施方式,單輔助開關之交錯式高升壓比柔切式轉換器包含一第一升壓電路、一第二升壓電路、一第一阻絕二極體(blocking diode)、一第二阻絕二極體、一共振電感、一輔助開關、一共振電容、一輔助開關二極體及一輔助二極體,其中第一升壓電路包含一第一主開關,第二升壓電路與第一升壓電路電性連接,第二升壓電路包含一第二主開關,第一阻絕二極體之一端與第一主開關之一第一端電性連接,第二阻絕二極體之一端與第二主開關之一第一端電性連接,共振電感之一第一端與第一阻絕二極體之另一端及第二阻絕二極體之另一端電性連 接,輔助開關之一第一端與共振電感之另一端電性連接,共振電容之二端分別與共振電感之第一端及輔助開關之一第二端電性連接,輔助開關二極體與輔助開關並聯,輔助二極體之一端與輔助開關之第一端電性連接,輔助二極體之另一端與第二升壓電路電性連接。 According to an embodiment of the invention, the interleaved high step-up ratio flexible-cut converter of the single auxiliary switch comprises a first boosting circuit, a second boosting circuit, a first blocking diode, and a blocking diode. a second blocking diode, a resonant inductor, an auxiliary switch, a resonant capacitor, an auxiliary switching diode and an auxiliary diode, wherein the first boosting circuit comprises a first main switch and a second boosting circuit The second boosting circuit is electrically connected to the first boosting circuit, and the second boosting circuit includes a second main switch. One end of the first blocking diode is electrically connected to the first end of the first main switch, and the second blocking diode is electrically connected. One end is electrically connected to the first end of the second main switch, and the first end of the resonant inductor is electrically connected to the other end of the first blocking diode and the other end of the second blocking diode The first end of the auxiliary switch is electrically connected to the other end of the resonant inductor, and the two ends of the resonant capacitor are respectively electrically connected to the first end of the resonant inductor and the second end of the auxiliary switch, and the auxiliary switch diode and The auxiliary switch is connected in parallel, one end of the auxiliary diode is electrically connected to the first end of the auxiliary switch, and the other end of the auxiliary diode is electrically connected to the second boosting circuit.

依據上述單輔助開關之交錯式高升壓比柔切式轉換器,其中第一升壓電路更可包含一第一電感、一第一主開關二極體、一第一輔助電容及一第一二極體,其中第一電感之一端與第一主開關之第一端電性連接,第一主開關二極體與第一主開關並聯,第一輔助電容與第一主開關並聯,第一二極體之一端與第一主開關之第一端電性連接。上述第二升壓電路更可包含一第二電感、一第二主開關二極體、一第二輔助電容、一箝位電容(clamp capacitor)及一第二二極體,第二電感之一端與第二主開關之第一端電性連接,第二主開關二極體與第二主開關並聯,第二輔助電容與第二主開關並聯,箝位電容之一端與第二主開關之第一端電性連接,第二二極體之一第一端與箝位電容之另一端電性連接,其中第一二極體之另一端與第二二極體之第一端電性連接,第二二極體之一第二端用以與輔助二極體電性連接。 The first step-up circuit further includes a first inductor, a first main switch diode, a first auxiliary capacitor, and a first a diode, wherein one end of the first inductor is electrically connected to the first end of the first main switch, the first main switch diode is connected in parallel with the first main switch, and the first auxiliary capacitor is connected in parallel with the first main switch, first One end of the diode is electrically connected to the first end of the first main switch. The second boosting circuit may further include a second inductor, a second main switch diode, a second auxiliary capacitor, a clamp capacitor, and a second diode. Electrically connected to the first end of the second main switch, the second main switch diode is connected in parallel with the second main switch, the second auxiliary capacitor is connected in parallel with the second main switch, and one end of the clamp capacitor and the second main switch The first end of the second diode is electrically connected to the other end of the second diode, and the other end of the first diode is electrically connected to the first end of the second diode. The second end of one of the second diodes is electrically connected to the auxiliary diode.

其中共振電容可為外加式電容或輔助開關之寄生電容,第一輔助電容可為外加式電容或第一主開關之寄生電容,第二輔助電容可為外加式電容或第二主開關之寄生電容。 The resonant capacitor may be an external capacitor or an auxiliary switch parasitic capacitor. The first auxiliary capacitor may be an external capacitor or a parasitic capacitor of the first main switch, and the second auxiliary capacitor may be an external capacitor or a parasitic capacitor of the second main switch. .

依據上述單輔助開關之交錯式高升壓比柔切式轉換器,其中第一電感之另一端與第一主開關之一第二端之間可用以電性連接一輸入電壓,且第二二極體之第二端與第二主開關之一第二端之間可用以電性連接一輸出電容及一輸出電阻,其中第一主開關與第二主開關可為相同開關元件。 According to the above-mentioned single auxiliary switch, the interleaved high step-up ratio flexible switching converter, wherein the other end of the first inductor and the second end of the first main switch can be electrically connected to an input voltage, and the second An output capacitor and an output resistor are electrically connected between the second end of the pole body and the second end of the second main switch, wherein the first main switch and the second main switch may be the same switching element.

依據上述單輔助開關之交錯式高升壓比柔切式轉換器,更可包含一觸發信號產生器,觸發信號產生器電性連接第一主開關、第二主開關及輔助開關,且觸發信號產生器用以延遲導通第一主開關之一第一延遲時間,而在第一延遲時間導通輔助開關,觸發信號產生器並可用以延遲導通第二主開關之一第二延遲時間,而在第二延遲時間導通輔助開關。其中觸發信號產生器可在第一主開關導通及第二主開關導通前,先導通輔助開關。 The interleaved high-boost ratio soft-cut converter according to the above single auxiliary switch may further include a trigger signal generator, and the trigger signal generator is electrically connected to the first main switch, the second main switch and the auxiliary switch, and the trigger signal The generator is configured to delay turning on a first delay time of the first main switch, and turn on the auxiliary switch at the first delay time, the trigger signal generator can be used to delay turning on a second delay time of the second main switch, and in the second The delay time turns on the auxiliary switch. The trigger signal generator can turn on the auxiliary switch before the first main switch is turned on and the second main switch is turned on.

100‧‧‧第一升壓電路 100‧‧‧First booster circuit

200‧‧‧第二升壓電路 200‧‧‧second boost circuit

310‧‧‧第一主開關原始信號產生器 310‧‧‧First main switch original signal generator

320‧‧‧第二主開關原始信號產生器 320‧‧‧Second main switch original signal generator

410‧‧‧第一延遲器 410‧‧‧First retarder

420‧‧‧第二延遲器 420‧‧‧second retarder

510‧‧‧第一反相閘 510‧‧‧First reverse brake

520‧‧‧第二反相閘 520‧‧‧second reverse gate

610‧‧‧第一及閘 610‧‧‧First Gate

620‧‧‧第二及閘 620‧‧‧Second Gate

621‧‧‧第一主開關控制信號接點 621‧‧‧First main switch control signal contact

630‧‧‧第三及閘 630‧‧‧ Third Gate

640‧‧‧第四及閘 640‧‧‧fourth gate

641‧‧‧第二主開關控制信號接點 641‧‧‧Second main switch control signal contact

650‧‧‧第五及閘 650‧‧‧ fifth gate

700‧‧‧或閘 700‧‧‧ or gate

701‧‧‧輔助開關控制信號接點 701‧‧‧Auxiliary switch control signal contact

C 1 ‧‧‧箝位電容 C 1 ‧‧‧Clamp Capacitor

C o ‧‧‧輸出電容 C o ‧‧‧output capacitor

C r ‧‧‧共振電容 C r ‧‧‧resonance capacitor

C r1 ‧‧‧第一輔助電容 C r1 ‧‧‧First auxiliary capacitor

C r2 ‧‧‧第二輔助電容 C r2 ‧‧‧Second auxiliary capacitor

D 1 ‧‧‧第一二極體 D 1 ‧‧‧First Diode

D 2 ‧‧‧第二二極體 D 2 ‧‧‧Secondary

D r ‧‧‧輔助二極體 D r ‧‧‧Auxiliary diode

D r1 ‧‧‧第一阻絕二極體 D r1 ‧‧‧first blocking diode

D r2 ‧‧‧第二阻絕二極體 D r2 ‧‧‧Second blocking diode

D S1 ‧‧‧第一主開關二極體 D S1 ‧‧‧First main switch diode

D S2 ‧‧‧第二主開關二極體 D S2 ‧‧‧Second main switch diode

D Sr ‧‧‧輔助開關二極體 D Sr ‧‧‧Auxiliary Switch Diode

I i ‧‧‧輸入電流 I i ‧‧‧Input current

i C1 ‧‧‧箝位電容電流 i C1 ‧‧‧Clamp Capacitor Current

i D1 ‧‧‧第一二極體電流 i D1 ‧‧‧first diode current

i D2 ‧‧‧第二二極體電流 i D2 ‧‧‧Second diode current

i Dr ‧‧‧輔助二極體電流 i Dr ‧‧‧Auxiliary Diode Current

i L1 ‧‧‧第一電感電流 i L1 ‧‧‧first inductor current

i L2 ‧‧‧第二電感電流 i L2 ‧‧‧second inductor current

i Lr ‧‧‧共振電感電流 i Lr ‧‧‧Resonance inductor current

i S1 ‧‧‧第一主開關電流 i S1 ‧‧‧first main switch current

i S2 ‧‧‧第二主開關電流 i S2 ‧‧‧second main switch current

i Sr ‧‧‧輔助開關電流 i Sr ‧‧‧Auxiliary Switch Current

L 1 ‧‧‧第一電感 L 1 ‧‧‧first inductance

L 2 ‧‧‧第二電感 L 2 ‧‧‧second inductance

L r ‧‧‧共振電感 L r ‧‧‧Resonance inductance

R o ‧‧‧輸出電阻 R o ‧‧‧ output resistance

S 1 ‧‧‧第一主開關 S 1 ‧‧‧first main switch

S 1c ‧‧‧第一主開關控制信號 S 1c ‧‧‧First main switch control signal

S 2 ‧‧‧第二主開關 S 2 ‧‧‧second main switch

S 2c ‧‧‧第二主開關控制信號 S 2c ‧‧‧Second main switch control signal

S r ‧‧‧輔助開關 S r ‧‧‧Auxiliary switch

S rc ‧‧‧輔助開關控制信號 S rc ‧‧‧Auxiliary switch control signal

V i ‧‧‧輸入電壓 V i ‧‧‧ input voltage

v C1 ‧‧‧箝位電容電壓 v C1 ‧‧‧Clamp Capacitor Voltage

v Cr ‧‧‧共振電容電壓 v Cr ‧‧‧resonant capacitor voltage

v Cr1 ‧‧‧第一輔助電容電壓 v Cr1 ‧‧‧First auxiliary capacitor voltage

v Cr2 ‧‧‧第二輔助電容電壓 v Cr2 ‧‧‧Second auxiliary capacitor voltage

v D1 ‧‧‧第一二極體電壓 v D1 ‧‧‧first diode voltage

v D2 ‧‧‧第二二極體電壓 v D2 ‧‧‧second diode voltage

v Lr ‧‧‧共振電感電壓 v Lr ‧‧‧Resonance inductor voltage

v dS1 ‧‧‧第一主開關二極體電壓 v dS1 ‧‧‧First main switch diode voltage

v dS2 ‧‧‧第二主開關二極體電壓 v dS2 ‧‧‧Second main switch diode voltage

v o ‧‧‧輸出電壓 v o ‧‧‧output voltage

v Sr ‧‧‧輔助開關電壓 v Sr ‧‧‧Auxiliary Switch Voltage

第1圖係繪示依照本發明一實施方式的一種單輔助開關之交錯式高升壓比柔切式轉換器的電路圖。 1 is a circuit diagram of an interleaved high step-up ratio soft-cut converter of a single auxiliary switch in accordance with an embodiment of the present invention.

第2圖係繪示用於第1圖之觸發信號產生器的電路示意圖。 Fig. 2 is a circuit diagram showing the trigger signal generator used in Fig. 1.

第3圖係繪示第1圖於模式1的導通情形示意圖。 Fig. 3 is a schematic view showing the conduction state of the first mode in the first mode.

第4圖係繪示第1圖於模式2的導通情形示意圖。 Fig. 4 is a view showing the conduction state of the first mode in the second mode.

第5圖係繪示第1圖於模式3的導通情形示意圖。 Fig. 5 is a schematic view showing the conduction state of the first mode in the mode 3.

第6圖係繪示第1圖於模式4的導通情形示意圖。 Fig. 6 is a schematic view showing the conduction state of the first mode in the mode 4.

第7圖係繪示第1圖於模式5的導通情形示意圖。 Fig. 7 is a schematic view showing the conduction state of the first mode in the mode 5.

第8圖係繪示第1圖於模式6的導通情形示意圖。 Fig. 8 is a schematic view showing the conduction state of the first mode in the mode 6.

第9圖係繪示第1圖於模式7的導通情形示意圖。 Fig. 9 is a schematic view showing the conduction state of the first mode in the mode 7.

第10圖係繪示第1圖於模式8的導通情形示意圖。 Fig. 10 is a schematic view showing the conduction state of the first mode in the mode 8.

第11圖係繪示第1圖於模式9的導通情形示意圖。 Fig. 11 is a view showing the conduction state of the first mode in the mode 9.

第12圖係繪示第1圖於模式10的導通情形示意圖。 Fig. 12 is a view showing the conduction state of the first mode in the first mode.

第13圖係繪示第1圖於模式11的導通情形示意圖。 Fig. 13 is a view showing the conduction state of the first mode in the mode 11.

第14圖係繪示第1圖於模式12的導通情形示意圖。 Fig. 14 is a view showing the conduction state of the first mode in the mode 12.

第15圖係繪示第1圖中各主要元件於模式1~12的波形圖。 Fig. 15 is a waveform diagram showing the main elements in Fig. 1 in modes 1 to 12.

第16圖係繪示依照第1圖之單輔助開關之交錯式高升壓比柔切式轉換器的一實施例,操作於300W時,第一主開關控制信號、第一主開關的電壓及第一主開關的電流的模擬波形圖。 Figure 16 is a diagram showing an embodiment of the interleaved high-boost ratio flexible-cut converter of the single auxiliary switch according to Figure 1, operating at 300 W, the first main switch control signal, the voltage of the first main switch, and An analog waveform of the current of the first main switch.

第17圖係繪示上述實施例,操作於300W時,第二主開關控制信號、第二主開關的電壓及第二主開關的電流的模擬波形圖。 Figure 17 is a diagram showing the analog waveforms of the second main switch control signal, the voltage of the second main switch, and the current of the second main switch when operating at 300 W in the above embodiment.

第18圖係繪示上述實施例,操作於300W時,輔助開關控制信號、輔助開關的電壓及輔助開關的電流的模擬波形圖。 Figure 18 is a diagram showing the analog waveforms of the auxiliary switch control signal, the voltage of the auxiliary switch, and the current of the auxiliary switch when operating at 300 W in the above embodiment.

一、基本架構First, the basic structure

請參照第1圖,其繪示依照本發明一實施方式的一種單輔助開關(single auxiliary switch)之交錯式高升壓比柔切式轉換器的電路圖。單輔助開關之交錯式高升壓比柔切式轉換器包含一第一升壓電路100、一第二升壓電路200、一第一阻絕二極體Dr 1 、一第二阻絕二極體Dr 2 、一共振電感Lr、一輔助開關S r 、一共振電容Cr、一輔助開關二極體D Sr 及一輔助二極體D r 。其中輔助開關S r 具有一接點701用以接收一輔助開關控制信號,輔助開關控制信號用以控制輔助開關S r 的開或關。 Please refer to FIG. 1 , which is a circuit diagram of an interleaved high boost ratio flexible cut converter of a single auxiliary switch according to an embodiment of the invention. Single auxiliary switch high boosting ratio of the interleaved soft-cut comprises a first boost converter circuit 100, a second boost circuit 200, a first block the diode Dr. 1, a second block the diode Dr 2 , a resonant inductor Lr , an auxiliary switch S r , a resonant capacitor Cr , an auxiliary switching diode D Sr and an auxiliary diode D r . The auxiliary switch S r has a contact 701 for receiving an auxiliary switch control signal, and the auxiliary switch control signal is used for controlling the opening or closing of the auxiliary switch S r .

上述第一升壓電路100包含一第一主開關S 1 、一第一電感L 1 、一第一主開關二極體D S1 、一第一輔助電容C r1 及一第一二極體D 1 。其中第一主開關S 1 具有一接點621用以接收一第一主開關控制信號,第一主開關控制信號用以控制第一主開關S 1 的開或關。第一電感L 1 之一端與第一主開關S 1 之第一端電性連接,第一主開關二極體D S1 與第一主開關S 1 並聯,第一輔助電容C r1 與第一主開關S 1 並聯,第一二極體D 1 之一端與第一主開關S 1 之第一端電性連接。 The first booster circuit 100 includes a first main switch S 1 , a first inductor L 1 , a first main switch diode D S1 , a first auxiliary capacitor C r1 and a first diode D 1 . . The first main switch S 1 has a contact 621 for receiving a first main switch control signal, and the first main switch control signal is used for controlling the opening or closing of the first main switch S 1 . One end of the first inductor L 1 is electrically connected to the first end of the first main switch S 1 , and the first main switch diode D S1 is connected in parallel with the first main switch S 1 , and the first auxiliary capacitor C r1 and the first main The switch S 1 is connected in parallel, and one end of the first diode D 1 is electrically connected to the first end of the first main switch S 1 .

上述第二升壓電路200與第一升壓電路100電性連接,第二升壓電路200包含一第二主開關S 2 、一第二電感L 2 、一第二主開關二極體D S2 、一第二輔助電容C r2 、一箝位電容C 1 及一第二二極體D 2 。其中第二主開關S 2 具有一接點641用以接收一第二主開關控制信號,第二主開關控制信號用以控制第二主開關S 2 的開或關。第二電感L 2 之一端與第二主開關S 2 之第一端電性連接,第二主開關二極體 D S2 與第二主開關S 2 並聯,第二輔助電容C r2 與第二主開關S 2 並聯,箝位電容C 1 之一端與第二主開關S 2 之第一端電性連接,第二二極體D 2 之一第一端與箝位電容C 1 之另一端電性連接,其中第一二極體D 1 之另一端與第二二極體D 2 之第一端電性連接。 The second booster circuit 200 is electrically connected to the first booster circuit 100. The second booster circuit 200 includes a second main switch S 2 , a second inductor L 2 , and a second main switch diode D S2 . a second auxiliary capacitor C r2 , a clamp capacitor C 1 and a second diode D 2 . The second main switch S 2 has a contact 641 for receiving a second main switch control signal, and the second main switch control signal is for controlling the opening or closing of the second main switch S 2 . One end of the second inductor L 2 is electrically connected to the first end of the second main switch S 2 , the second main switch diode D S2 is connected in parallel with the second main switch S 2 , and the second auxiliary capacitor C r2 and the second main The switch S 2 is connected in parallel, one end of the clamp capacitor C 1 is electrically connected to the first end of the second main switch S 2 , and the first end of the second diode D 2 and the other end of the clamp capacitor C 1 are electrically connected. The other end of the first diode D 1 is electrically connected to the first end of the second diode D 2 .

其中第一阻絕二極體D r1 之一端與第一主開關S 1 之一第一端電性連接,第二阻絕二極體Dr 2 之一端與第二主開關S 2 之一第一端電性連接,共振電感L r 之一第一端與第一阻絕二極體D r1 之另一端及第二阻絕二極體Dr 2 之另一端電性連接,輔助開關S r 之一第一端與共振電感L r 之另一端電性連接,共振電容C r 之二端分別與共振電感L r 之第一端及輔助開關S r 之一第二端電性連接,輔助開關二極體D Sr 與輔助開關S r 並聯,輔助二極體D r 之一端與輔助開關S r 之第一端電性連接,輔助二極體D r 之另一端與第二升壓電路200的第二二極體D 2 之一第二端電性連接。 Wherein one end of the first D r1 block the diode and the first one of the primary switch S 1 is electrically connected to a first end, a second block the diode Dr and the second end 2 of the main switch S 2, one end of a first electrically The first end of the resonant inductor L r is electrically connected to the other end of the first blocking diode D r1 and the other end of the second blocking diode Dr 2 , and the first end of the auxiliary switch S r is The other end of the resonant inductor L r is electrically connected, and the two ends of the resonant capacitor C r are electrically connected to the first end of the resonant inductor L r and the second end of the auxiliary switch S r respectively, and the auxiliary switch diode D Sr and auxiliary switch S r in parallel, a first terminal electrically connected to an end of D r and the auxiliary diode of the auxiliary switch S r, D r other end of the second auxiliary diode and a second boost circuit of the diode D 200 2 one of the second ends is electrically connected.

其中第一電感L 1 之另一端與第一主開關S 1 之一第二端之間可用以電性連接一輸入電壓V i ,且第二二極體D 2 之第二端與第二主開關S 2 之一第二端之間可用以電性連接一輸出電容C o 及一輸出電阻R o ,輸出電容C o 與輸出電阻R o 並聯,又第一主開關S 1 與第二主開關S 2 可為相同的開關元件。 The other end of the first inductor L 1 and the second end of the first main switch S 1 may be electrically connected to an input voltage V i , and the second end and the second main body of the second diode D 2 between one end of the second switch S 2 may be used to electrically connect an output capacitor C o and an output resistor R o, the output capacitor C o to the output resistor R o connected in parallel, and the first main switch S 1 is the second main switch and S 2 can be the same switching element.

其中第一主開關S 1 、第二主開關S 2 及輔助開關S r 皆可採用金屬氧化物半導體場效電晶體(MOSFET),如增強型(enhancement mode)MOSFET,但第一主開關S 1 、第 二主開關S 2 及輔助開關S r 並不限於使用MOSFET,一般開關元件,如絕緣柵雙極電晶體(IGBT)、雙極性電晶體(BJT)或其它開關元件等,也可視需要採用。 The first main switch S 1 , the second main switch S 2 and the auxiliary switch S r can all adopt a metal oxide semiconductor field effect transistor (MOSFET), such as an enhancement mode MOSFET, but the first main switch S 1 The second main switch S 2 and the auxiliary switch S r are not limited to use MOSFETs, and general switching elements such as insulated gate bipolar transistors (IGBT), bipolar transistors (BJT) or other switching elements may also be used as needed. .

依據上述單輔助開關之交錯式高升壓比柔切式轉換器,其中共振電容C r 可為輔助開關S r 之寄生電容(stray capacitor),共振電容C r 也可為外加式電容,則整體有效的共振電容值為輔助開關S r 之寄生電容值加上外加式共振電容的電容值。同理,第一輔助電容C r1 可為第一主開關S 1 之寄生電容,或第一輔助電容C r1 可為外加式電容,則整體有效的第一輔助電容值為第一主開關S 1 之寄生電容值加上外加式第一輔助電容的電容值。同理,第二輔助電容C r2 可為第二主開關S 2 之寄生電容,或第二輔助電容C r2 可為外加式電容,則整體有效的第二輔助電容值為第二主開關S 2 之寄生電容值加上外加式第二輔助電容的電容值。 According to the above-mentioned single auxiliary switch, the interleaved high step-up ratio flexible switching converter, wherein the resonant capacitor C r can be a stray capacitor of the auxiliary switch S r , and the resonant capacitor C r can also be an external capacitor, the whole The effective resonant capacitance value is the parasitic capacitance value of the auxiliary switch S r plus the capacitance value of the external resonant capacitor. Similarly, the first auxiliary capacitor C r1 may be the parasitic capacitance of the first main switch S 1 , or the first auxiliary capacitor C r1 may be an external capacitor, and the overall effective first auxiliary capacitor value is the first main switch S 1 . The parasitic capacitance value plus the capacitance value of the external first auxiliary capacitor. Similarly, the second auxiliary capacitor C r2 may be the parasitic capacitance of the second main switch S 2 , or the second auxiliary capacitor C r2 may be an external capacitor, and the overall effective second auxiliary capacitor value is the second main switch S 2 . The parasitic capacitance value plus the capacitance value of the external second auxiliary capacitor.

因此如第1圖的實施方式可形成一共振支路(resonant branch)以實現柔性切換,其中共振支路包含輔助開關S r 、共振電感(resonant inductor)L r 、第一輔助電容C r1 及第二輔助電容C r2 、共振電容C r 及輔助二極體D r ,又其中第一輔助電容C r1 可採用第一主開關S 1 之寄生電容,第二輔助電容C r2 可採用第二主開關S 2 之寄生電容。上述共振支路之工作原理係利用輔助開關S r 之導通(turn-on)與截止(turn-off),使共振支路形成瞬態共振後,再執行主開關元件(第一主開關S 1 或第二主開關S 2 )之切換,使交錯式高升壓比柔切式轉換器之輔助開關S r 具 有零電壓及零電流切換特性,進而減少主開關元件之切換損失(switching loss),同時又可將輔助支路元件上多餘之儲能(energy storage)釋放至負載,達到能量回收再利用之優點,而提升轉換器之整體效率。 Therefore, the embodiment of FIG. 1 can form a resonant branch for implementing flexible switching, wherein the resonant branch includes an auxiliary switch S r , a resonant inductor L r , a first auxiliary capacitor C r1 , and a first The second auxiliary capacitor C r2 , the resonant capacitor C r and the auxiliary diode D r , wherein the first auxiliary capacitor C r1 can adopt the parasitic capacitance of the first main switch S 1 , and the second auxiliary capacitor C r2 can adopt the second main switch Parasitic capacitance of S 2 . The working principle of the above-mentioned resonant branch is to perform the transient resonance after the resonant branch is transiently resonated by the turn-on and turn-off of the auxiliary switch S r (the first main switch S 1 Or switching of the second main switch S 2 ), the auxiliary switch S r of the interleaved high-boost ratio flexible-cut converter has zero voltage and zero current switching characteristics, thereby reducing the switching loss of the main switching element, At the same time, the excess energy storage on the auxiliary branch components can be released to the load to achieve the advantages of energy recovery and reuse, and improve the overall efficiency of the converter.

二、觸發信號產生器Second, the trigger signal generator

請同時參照第2圖,其繪示用於第1圖之各開關元件(第一主開關S 1 、第二主開關S 2 及輔助開關S r )的觸發信號產生器的電路示意圖。觸發信號產生器電性連接第一主開關S 1 之接點621、第二主開關S 2 之接點641及輔助開關S r 之接點701,當第一主開關S 1 、第二主開關S 2 及輔助開關S r 採用MOSFET,接點621、641、701分別可位於第一主開關S 1 、第二主開關S 2 及輔助開關S r 的閘極。 Referring to FIG. 2 at the same time, a circuit diagram of a trigger signal generator for each of the switching elements (the first main switch S 1 , the second main switch S 2 , and the auxiliary switch S r ) of FIG. 1 is shown. A trigger signal generator electrically connected to the first main contacts 621 of the switch S 1, the second main contact point 701 contacts 641 of switch S 2 and S R & lt auxiliary switch, the main switch S 1 when the first, the second main switch S 2 and the auxiliary switch S r are MOSFETs, and the contacts 621, 641, and 701 are respectively located at the gates of the first main switch S 1 , the second main switch S 2 , and the auxiliary switch S r .

其中觸發信號產生器用以產生一第一主開關控制信號S 1c 至第一主開關S 1 的接點621、一第二主開關控制信號S 2c 至第二主開關S 2 之接點641、及輔助開關控制信號S rc 至輔助開關S r 之接點701。其中第一主開關控制信號S 1c 用以延遲導通第一主開關S 1 之一第一延遲時間,第二主開關控制信號S 2c 用以延遲導通第二主開關S 2 之一第二延遲時間。輔助開關控制信號S rc 用以在第一延遲時間導通輔助開關S r 且在第二延遲時間導通輔助開關S r ,輔助開關控制信號S rc 並可在第一主開關S 1 導通及第二主開關S 2 導通前,先導通輔助開關S r 。其中第一延遲時間可等於第二延遲時間,而同為一延遲時間t d The trigger signal generator is configured to generate a first main switch control signal S 1c to the contact 621 of the first main switch S 1 , a contact point 641 of the second main switch control signal S 2c to the second main switch S 2 , and The auxiliary switch controls the signal S rc to the junction 701 of the auxiliary switch S r . The first main switch control signal S 1c is used to delay the first delay time of the first main switch S 1 , and the second main switch control signal S 2c is used to delay the second delay time of the second main switch S 2 . . Auxiliary switching control signal S rc delay time for the first auxiliary switch S r is turned on and the second delay time conducting auxiliary switch S r, the auxiliary switching control signal S rc and the first main switch S 1 is turned on and the second main before the switch S 2 is turned on, the pilot on the auxiliary switch S r. The first delay time may be equal to the second delay time, and the same is a delay time t d .

觸發信號產生器可有多種可能實施方式皆可達成 上述的第一主開關控制信號S 1c 、第二主開關控制信號S 2c 及輔助開關控制信號S rc ,所屬領域之通常知識者可自行設計,以下舉第2圖為其中一種可能實施例,詳述如下。第2圖中觸發信號產生器可包含一第一主開關原始信號產生器310、一第二主開關原始信號產生器320、一第一延遲器410、一第二延遲器420、一第一反相閘510、一第二反相閘520、一第一及閘610、一第二及閘620、一第三及閘630、一第四及閘640、一第五及閘650及一或閘700。 The trigger signal generator can have the first main switch control signal S 1c , the second main switch control signal S 2c and the auxiliary switch control signal S rc in various possible implementation manners, and can be designed by a person skilled in the art. Figure 2 below is one of the possible embodiments, which is described in detail below. The trigger signal generator in FIG. 2 may include a first main switch original signal generator 310, a second main switch original signal generator 320, a first delay unit 410, a second delay unit 420, and a first counter. Phase gate 510, a second reverse gate 520, a first gate 610, a second gate 620, a third gate 630, a fourth gate 640, a fifth gate 650 and a gate 700.

其中第一主開關原始信號產生器310用以產生一第一主開關原始信號S 1o ,第一延遲器410之一輸入端與第一主開關原始信號產生器310電性連接並用以將第一主開關原始信號S 1o 延遲一延遲時間t d ,第二主開關原始信號產生器320用以產生一第二主開關原始信號S 2o ,第二延遲器420之一輸入端與第二主開關原始信號產生器320電性連接並用以將第二主開關原始信號S 2o 延遲一延遲時間t d 。第一反相閘510之一輸入端與第一延遲器410之一輸出端電性連接,第二反相閘520之一輸入端與第二延遲器420之一輸出端電性連接。 The first main switch original signal generator 310 is configured to generate a first main switch original signal S 1o , and one input end of the first delay unit 410 is electrically connected to the first main switch original signal generator 310 and used to be the first The main switch original signal S 1o is delayed by a delay time t d , the second main switch original signal generator 320 is used to generate a second main switch original signal S 2o , and the input of one of the second delay 420 and the second main switch is original The signal generator 320 is electrically connected and used to delay the second main switch original signal S 2o by a delay time t d . An input end of the first inverting gate 510 is electrically connected to an output end of the first retarder 410, and an input end of the second inverting gate 520 is electrically connected to an output end of the second retarder 420.

其中第一及閘610之二輸入端分別電性連接第一主開關原始信號產生器310及第一反相閘510之一輸出端,第二及閘620之二輸入端分別電性連接第一主開關原始信號產生器310及第一延遲器410之輸出端。第三及閘630之一輸入端電性連接第二及閘620之一輸出端,第四及閘640之二輸入端分別電性連接第二主開關原始信號產生 器320及第二延遲器420之輸出端,第四及閘640之一輸出端電性連接第三及閘630之另一輸入端。第五及閘650之二輸入端分別電性連接第二主開關原始信號產生器320及第二反相閘520之一輸出端。或閘700之三輸入端分別電性連接第一及閘610之一輸出端、第三及閘630之一輸出端及第五及閘650之一輸出端,或閘700之一輸出端輸出輔助開關控制信號S rc 並電性連接至輔助開關S r 之接點701。其中第二及閘620之一輸出端輸出第一主開關控制信號S 1c 並電性連接至第一主開關S 1 之接點621,第四及閘640之一輸出端輸出第二主開關控制信號S 2c 並電性連接至第二主開關S 2 之接點641。 The input terminals of the first and the gates 610 are electrically connected to the output ends of the first main switch original signal generator 310 and the first inverting gate 510, respectively, and the second input ends of the second and second gates 620 are respectively electrically connected to the first end. The main switch is the output of the original signal generator 310 and the first delay 410. One input end of the third sum gate 630 is electrically connected to one output end of the second and second gates 620, and the two input ends of the fourth and second gates 640 are electrically connected to the second main switch original signal generator 320 and the second retarder 420, respectively. The output end of the fourth and gate 640 is electrically connected to the other input terminal of the third and gate 630. The input terminals of the fifth and second gates 650 are electrically connected to the output ends of the second main switch original signal generator 320 and the second inverting gate 520, respectively. Or the input terminals of the gate 700 are electrically connected to one of the output terminals of the first and the gates 610, the output of one of the third and third gates 630, and the output of one of the fifth and the gates 650, or one of the outputs of the gate 700. The switch control signal S rc is electrically connected to the contact 701 of the auxiliary switch S r . The output of one of the second gate 620 outputs a first main switch control signal S 1c and is electrically connected to the contact 621 of the first main switch S 1 , and the output of one of the fourth and gate 640 outputs a second main switch control The signal S 2c is electrically connected to the contact 641 of the second main switch S 2 .

因此如第2圖所示之控制信號產生器可將原始的控制信號,包含第一主開關原始信號S 1o 及第二主開關原始信號S 2o ,延遲一延遲時間t d 再觸發,而由輔助開關S r 先行導通,使得共振電感L r 、第一輔助電容C r1 、第二輔助電容C r2 、共振電容C r 形成共振迴路(resonant circuit loop),進而可使主開關(包含第一主開關S 1 及第二主開關S 2) 達到零電壓及零電流切換。 Therefore, the control signal generator as shown in FIG. 2 can re-trigger the original control signal including the first main switch original signal S 1o and the second main switch original signal S 2o by a delay time t d , and assist The switch S r is turned on first, so that the resonant inductor L r , the first auxiliary capacitor C r1 , the second auxiliary capacitor C r2 , and the resonant capacitor C r form a resonant circuit loop, thereby enabling the main switch (including the first main switch) S 1 and the second main switch S 2) reach zero voltage and zero current switching.

三、工作模式分析Third, the work mode analysis

如第1圖及第2圖所示之單輔助開關之交錯式高升壓比柔切式轉換器,依據各開關元件的切換與二極體(diode)導通及截止狀態,可細分成數個模式(mode)來做分析,又為使各模式的分析說明更清楚易懂,因此簡化分析過程,以下分析係基於下列幾點假設: The interleaved high-boost ratio soft-cut converter of the single auxiliary switch as shown in Fig. 1 and Fig. 2 can be subdivided into several modes according to the switching of each switching element and the diode on and off states. (mode) for analysis, and to make the analysis of each mode clearer and easier to understand, thus simplifying the analysis process, the following analysis is based on the following assumptions:

(1)各開關元件與各二極體元件皆為理想元件,而無導通壓降。 (1) Each of the switching elements and each of the diode elements is an ideal element without a conduction voltage drop.

(2)各開關切換時間與發生共振之時間極為短暫,故用以儲能的第一電感L 1 及第二電感L 2 上的電流可視為一定電流源,即i L1 =I L1 i L2 =I L2 。其中i L1 為流經第一電感L 1 的電流,I L1 為視為定電流源流經第一電感L 1 的定電流,i L2 為流經第二電感L 2 的電流,I L2 為視為定電流源流經第二電感L 2 的定電流。 (2) The switching time and the time of resonance are extremely short, so the current on the first inductor L 1 and the second inductor L 2 used for energy storage can be regarded as a certain current source, that is, i L1 = I L1 , i L2 = I L2 . Wherein i L1 is the current flowing through the first inductor L 1, I L1 is regarded as a constant current source, through a first constant current inductor L 1, i L2 of a current flowing through the second inductor L 2, I L2 is considered The constant current source flows through the constant current of the second inductor L 2 .

(3)假設箝位電容C 1 及輸出電容C o 皆相當大,而使箝位電容C 1 的電壓及輸出電容C o 的電壓維持定值,即v C1 =V C1 v o =V o 。其中v C1 為跨於箝位電容C 1 的電壓,V C1 為維持定值的跨於箝位電容C 1 的電壓,v o 為跨於輸出電容C o 的電壓,V o 為維持定值的跨於輸出電容C o 的電壓。 (3) It is assumed that both the clamp capacitor C 1 and the output capacitor C o are relatively large, and the voltage of the clamp capacitor C 1 and the output capacitor C o are maintained at a constant value, that is, v C1 = V C1 , v o = V o . Wherein v C1 is the voltage across the clamp capacitor C 1, V C1 to maintain the voltage across the clamp capacitor C 1 to a given value, v o output capacitor C o is the voltage across, V o to maintain the set value A voltage across the output capacitor C o .

(4)第一輔助電容C r1 為第一主開關S 1 的寄生電容,第二輔助電容C r2 為第二主開關S 2 的寄生電容,並採C r1 =C r2 (4) The first auxiliary capacitor C r1 is the parasitic capacitance of the first main switch S 1 , and the second auxiliary capacitor C r2 is the parasitic capacitance of the second main switch S 2 , and adopts C r1 = C r2 .

(5)共振電容的整體效值C rs 為輔助開關S r 之寄生電容及外加式的共振電容C r 之和,即C rs =C r +C r1 =C r +C r2 (5) The overall effective value C rs of the resonant capacitor is the sum of the parasitic capacitance of the auxiliary switch S r and the external resonant capacitor C r , that is, C rs = C r + C r1 = C r + C r2 .

模式1(時間t Mode 1 (time t 00 ~t ~ t 11 ))

請參照第3圖,其繪示第1圖於模式1的導通情形示意圖。在進入此模式之前,第一主開關S 1 與輔助開關S r 皆為截止(turn-off)狀態,而第二主開關S 2 與第一二極體D 1 為導通(turn-on)狀態,此時第一主開關S 1 與輔助開關S r 上之跨壓分別為V o /2Please refer to FIG. 3, which is a schematic diagram of the conduction state of the first mode in the first mode. Before entering this mode, the first main switch S 1 and the auxiliary switch S r are both in a turn-off state, and the second main switch S 2 and the first diode D 1 are in a turn-on state. At this time, the voltage across the first main switch S 1 and the auxiliary switch S r is V o /2 , respectively.

當時間t=t 0 時,進入模式1,此時第一主開關S 1 延遲導通,由輔助開關S r 先行導通,而第二主開關S 2 則維持導通狀態,此時共振電感L r 上之跨壓為V o /2,且流經共振電感L r 的電流由零呈直線上升。 When the time t = t 0 , the mode 1 is entered, at which time the first main switch S 1 is delayed in conduction, the auxiliary switch S r is turned on first, and the second main switch S 2 is maintained in the on state, at which time the resonant inductor L r is on. The voltage across the voltage is V o /2 and the current flowing through the resonant inductor L r rises linearly from zero.

於模式1時的主導方程式(governing equation)如式(1)。 The governing equation at mode 1 is as shown in equation (1).

當共振電感L r 的電流i Lr 上升至I L1,第一二極體D 1之電流i D1降為0時,則模式1結束,此時共振電容C r 之跨壓仍維持V o /2。模式1的時間間距可由式(1)解得如式(2)。 When the resonant inductor L r i Lr current rises to I L 1, a first diode D 1 of the current I D 1 drops to 0, then mode 1 ends, when the voltage across the resonant capacitor C r V o remains of /2. The time interval of mode 1 can be solved by equation (1) as equation (2).

模式2(時間t Mode 2 (time t 11 ~t ~ t 22 ))

請參照第4圖,其繪示第1圖於模式2的導通情形示意圖。當時間t=t 1時,進入模式2,共振電感L r 的電流上升至I L1,共振電容C r 之電壓為V o /2,第一二極體D 1為截止狀態,輔助開關S r 維持導通,共振電感L r 與共振電容C r 形成一迴路。此時共振電感L r 的電流持續上升,而共振電容電壓v Cr 逐漸降至零,當共振電容電壓v Cr 降為零時,即當v Cr (t 2)=0,則此模式結束於時間t 2 Please refer to FIG. 4, which is a schematic diagram of the conduction state of the first mode in the second mode. When time t = t 1 , enter mode 2, the current of the resonant inductor L r rises to I L 1 , the voltage of the resonant capacitor C r is V o /2, the first diode D 1 is off, and the auxiliary switch S r is maintained turned on, the resonant inductor L r and the resonant capacitor C r form a loop. At this time, the current of the resonant inductor L r continues to rise, and the resonant capacitor voltage v Cr gradually decreases to zero. When the resonant capacitor voltage v Cr drops to zero, that is, when v Cr ( t 2 )=0, the mode ends at time. t 2 .

模式2之主導方程式可表成式(3),將式(3)整理後可求得共振電感之電流及共振電容之電壓,如式(4)所示。 The dominant equation of mode 2 can be expressed as equation (3), and the current of the resonant inductor and the voltage of the resonant capacitor can be obtained by arranging equation (3), as shown in equation (4).

其中,共振阻抗(resonant impedance)Z 1 共振頻率(resonant frequency)ω 1 模式2之時間間隔由式(4)可解得如式(5)所示: Wherein, the resonance impedance Z 1 is Resonant frequency ω 1 is The time interval of mode 2 can be solved by equation (4) as shown in equation (5):

模式3(時間t Mode 3 (time t 22 ~t ~ t 33 ))

請參照第5圖,其繪示第1圖於模式3的導通情形示意圖。在時間t=t 2 時,電路進入模式3工作,此時由於共振電容C r 的電壓已降至微小負電壓,又第一主開關二極體D S1 為第一主開關S 1之背接二極體(anti-parallel diodes),此時第一主開關二極體D S1 順向導通,因此跨於第一主開關S 1之電壓為0。若此時令第一主開關S 1導通即可使第一主開關S 1達到零電壓切換。 Please refer to FIG. 5, which is a schematic diagram of the conduction state of the first mode in the mode 3. At time t = t 2 , the circuit enters mode 3 operation. At this time, since the voltage of the resonant capacitor C r has dropped to a small negative voltage, the first main switch diode D S1 is connected to the first main switch S 1 . The anti-parallel diodes, at this time, the first main switching diode D S1 is turned on, so the voltage across the first main switch S 1 is zero. If this seasonal first main switch S 1 is turned on to cause the first main switch S 1 is switched to zero voltage.

模式3之主導方程式如式(6)所示: The dominant equation for Mode 3 is shown in Equation (6):

由式(2)及式(5)可得知,若欲使第一主開關S 1達到零電壓切換,則第一延遲時間t d1至少須滿足式(7)之條件。而為了確保能使第一主開關S 1達到零電壓切換,以第一電感L 1之電流I L1的峰值I L1,max代入式(7)計算t D1。此外,考慮讓第一主開關S 1完全進入導通及輔助開關S r 完全進入截止,因此設一餘裕時間t τ 用以確保滿足上述條件,所以可將式(7)修正為式(8)。 It can be known from equations (2) and (5) that if the first main switch S 1 is to be switched to zero voltage, the first delay time t d 1 must satisfy at least the condition of equation (7). To ensure that the first main switch S 1 can be switched to zero voltage, the peak I L 1,max of the current I L 1 of the first inductor L 1 is substituted into equation (7) to calculate t D 1 . Further, it is considered that the first main switch S 1 is completely turned on and the auxiliary switch S r is completely turned off. Therefore, a margin time t τ is set to ensure that the above condition is satisfied, so that the equation (7) can be corrected to the equation (8).

當時間t=t 3時,可令第二主開關S 2在無電流通過下截止,所以第二主開關S2具有零電流切換,第二主開關S2達成零電流切換之條件如式(9)所示,同時輔助開關S r 由導通進入截止狀態,此時模式3結束。又為了確保能使第二主開關S 2達到零電流切換,因此以第一電感L 1 電流I L1之最小值I L1,min代回式(9),而可將式(9)修正為式(10)。 When the time t = t 3 , the second main switch S 2 can be turned off without current passing, so the second main switch S 2 has zero current switching, and the second main switch S 2 achieves the condition of zero current switching as the formula ( 9), while the auxiliary switch S r is turned on and turned off, and mode 3 ends. In order to ensure that the second main switch S 2 can be switched to zero current, the minimum value I L1,min of the first inductor L 1 current I L 1 is substituted into the equation (9), and the equation (9) can be corrected to Formula (10).

模式4(時間t Mode 4 (time t 33 ~t ~ t 44 ))

請參照第6圖,其繪示第1圖於模式4的導通情形示意圖。當進入模式4時,第一主開關S 1導通,而輔助開關S r 及第二主開關S 2為截止狀態,此時儲存於共振電感L r 之能量,藉由輔助二極體D r 之導通而釋放至負載,故共振電感L r 的電流i Lr 呈線性下降,而共振電容C r 處於儲能狀態,且由於輔助二極體D r 之導通,使輔助開關S r 之跨壓為V o ,而跨於共振電感L r 之電壓為-V o Please refer to FIG. 6 , which is a schematic diagram of the conduction state of FIG. 1 in mode 4. When entering the mode 4, the first main switch S 1 is turned on, the auxiliary switch S r and the second main switch S 2 is turned off, this time is stored in the energy resonant inductor L r, with the secondary of the diode D r It is turned on and released to the load, so the current i Lr of the resonant inductor L r decreases linearly, and the resonant capacitor C r is in the energy storage state, and the voltage across the auxiliary diode S r is V due to the conduction of the auxiliary diode D r . o , and the voltage across the resonant inductor L r is - V o .

當時間t=t 4時,共振電感L r 的電流i Lr 降為0,同時第一主開關S 1之電流i S1 上升至I L1,此時模式4結束。模式4之主導方程式如式(11)所示,將式(11)整理後可求得共振電感L r 之電流i Lr 及共振電容C r 之電壓v Cr ,如式(12)所示。 When time t = t 4 , the current i Lr of the resonant inductor L r drops to 0, while the current i S1 of the first main switch S 1 rises to I L 1 , at which point mode 4 ends. The dominant equation of the mode 4 is as shown in the formula (11), and the current i Lr of the resonant inductor L r and the voltage v Cr of the resonant capacitor C r are obtained by the equation (11), as shown in the formula (12).

其中,共振阻抗(resonant impedance)Z 2 共振頻率(resonant frequency)ω 2 Wherein, the resonance impedance Z 2 is Resonant frequency ω 2 is

此外,由於第一主開關S 1 之寄生電容等於第二主開關S 2 之寄生電容,即C r1=C r2,因此Z=Z 1=Z 2,ω=ω12。模式4之時間間隔可由式(12)解得如式(13): Further, since the parasitic capacitance of the first main switch S 1 is equal to the parasitic capacitance of the second main switch S 2 , that is, C r 1 = C r 2 , Z = Z 1 = Z 2 , ω = ω 1 = ω 2 . The time interval of mode 4 can be solved by equation (12) as equation (13):

模式5(時間t Mode 5 (time t 44 ~t ~ t 55 ))

請參照第7圖,其繪示第1圖於模式5的導通情形示意圖。在模式5期間,第一主開關S 1維持導通,而輔助開關S r 及第二主開關S 2為截止狀態,第二電感L 2 的電流i L2持續對共振電容C r 充電,此時共振電容C r 的電壓v Cr 呈線性上升,而第二二極體D 2之電壓v D2則由V o /2呈線性下降。當共振電容C r 的電壓v Cr 上升至V o /2後,模式5結束,此時時間t=t 5Please refer to FIG. 7 , which is a schematic diagram showing the conduction state of FIG. 1 in mode 5. During mode 5, the first main switch S 1 is turned on is maintained, and the auxiliary switch S r and the second main switch S 2 is turned off, the second inductor L current i 2 L 2 of the resonant capacitor C r of the continuous charging, then The voltage v Cr of the resonant capacitor C r rises linearly, while the voltage v D 2 of the second diode D 2 decreases linearly from V o /2. When the voltage v Cr of the resonant capacitor C r rises to V o /2, mode 5 ends, at which time t = t 5 .

模式5期間之主導方程式如式(14)所示。將式(14)整理後可求得共振電容C r 的電壓v Cr ,如式(15)所示。而此模式5之時間間隔可求得如式(16): The dominant equation during mode 5 is as shown in equation (14). After the equation (14) is arranged, the voltage v Cr of the resonant capacitor C r can be obtained as shown in the formula (15). The time interval of this mode 5 can be obtained as in (16):

模式6(時間t Mode 6 (time t 55 ~t ~ t 66 ))

請參照第8圖,其繪示第1圖於模式6的導通情形示意圖。進入模式6後,各開關元件(包含第一主開關S 1 、第二主開關S 2 及輔助開關S r )之開關狀態與模式5相同,而第二二極體D 2為導通狀態,使得箝位電容C 1與第二電感L 2之能量同時釋放至負載。 Please refer to FIG. 8 , which is a schematic diagram showing the conduction state of FIG. 1 in mode 6. After entering mode 6, the switching states of the respective switching elements (including the first main switch S 1 , the second main switch S 2 and the auxiliary switch S r ) are the same as the mode 5, and the second diode D 2 is in an on state, The energy of the clamp capacitor C 1 and the second inductor L 2 are simultaneously released to the load.

模式6之電路導通狀態方程式可表示為式(17)。當時間t=t 6時,輔助開關S r 由截止進入導通狀態,則模式6結束,電路進入下一工作模式。其中式(17)如下: The circuit conduction state equation of mode 6 can be expressed as equation (17). When the time t = t 6 , the auxiliary switch S r enters the conduction state by the off state, then the mode 6 ends and the circuit enters the next operation mode. Where equation (17) is as follows:

模式7(時間t Mode 7 (time t 66 ~t ~ t 77 ))

請參照第9圖,其繪示第1圖於模式7的導通情形示意圖。在模式7期間,第一主開關S 1及輔助開關S r 導通,第二主開關S 2截止。此時第二主開關S 2,共振電容C r 及箝位電容C 1之跨壓均為V o /2。 Please refer to FIG. 9 , which is a schematic diagram showing the conduction state of FIG. 1 in mode 7. During mode 7, the first main switch S 1 and the auxiliary switch S r are turned on, and the second main switch S 2 is turned off. At this time, the voltage across the second main switch S 2 , the resonant capacitor C r and the clamp capacitor C 1 is V o /2.

當時間t=t 6時,第二主開關S 2延遲導通,而由輔助開關S r 先行導通,而第一主開關S 1維持導通狀態,此時共振電感L r 上之跨壓為V o /2,且共振電感L r 之電流i Lr 由零呈直線上升,模式7之主導方程式如式(18)所示: When the time t = t 6 , the second main switch S 2 is delayed in conduction, and the auxiliary switch S r is turned on first, and the first main switch S 1 is maintained in an on state, at which time the voltage across the resonant inductor L r is V o /2, and the current i Lr of the resonant inductor L r rises linearly from zero, and the dominant equation of mode 7 is as shown in equation (18):

當共振電感L r 之電流i Lr 上升至I L2,而流經第二二極體D 2之電流i D2降為0時,則模式7結束,而共振電容 C r 之跨壓仍維持V o /2。模式7之時間間距由式(18)可解得如式(19)所示: When the resonant inductor L r i Lr current rises to I L 2, flows through the second diode D 2 of the current I D 2 falls to zero, the end of the mode 7, the voltage across the resonant capacitor C r remains V o /2. The time interval of mode 7 can be solved by equation (18) as shown in equation (19):

模式8(時間t Mode 8 (time t 77 ~t ~ t 88 ))

請參照第10圖,其繪示第1圖於模式8的導通情形示意圖。當時間t=t 7時,共振電感L r 之電流i Lr 上升至I L2,共振電容C r 之電壓v Cr V o /2,第二二極體D 2為截止狀態,而輔助開關S r 維持導通,並與共振電感L r 與共振電容C r 形成共振迴路,此時共振電感L r 之電流i Lr 持續上升,而共振電容C r 之電壓v Cr 逐漸降至零。當v Cr 降為零時,則模式8結束,此時為時間t=t 8Please refer to FIG. 10, which is a schematic diagram showing the conduction state of the first mode in the mode 8. When the time t = t 7 , the current i Lr of the resonant inductor L r rises to I L 2 , the voltage v Cr of the resonant capacitor C r is V o /2, the second diode D 2 is off, and the auxiliary switch S r maintains conduction, and forms a resonant circuit with the resonant inductor L r and the resonant capacitor C r . At this time, the current i Lr of the resonant inductor L r continuously rises, and the voltage v Cr of the resonant capacitor C r gradually decreases to zero. When v Cr drops to zero, then mode 8 ends, at this time time t = t 8 .

模式8之主導方程式可表示成式(20),再將式(20)整理後可求得共振電感L r 之電流i Lr 及共振電容C r 之電壓v Cr ,如式(21)所示: 模式8之時間間隔可由式(21)求得如式(22)所示: The dominant equation of mode 8 can be expressed as equation (20), and then the equation (20) can be collated to obtain the current i Lr of the resonant inductor L r and the voltage v Cr of the resonant capacitor C r , as shown in equation (21): The time interval of mode 8 can be obtained by equation (21) as shown in equation (22):

模式9(時間t Mode 9 (time t 88 ~t ~ t 99 ))

請參照第11圖,其繪示第1圖於模式9的導通情 形示意圖。此時由於共振電容C r 之電壓v Cr 已降至微小負電壓,以致於第二主開關S 2之背接二極體(即第二主開關二極體D S2 )順向導通,此時跨於第二主開關S 2之電壓為0,此時第二主開關S 2即可進行零電壓切換。 Please refer to FIG. 11 , which is a schematic diagram showing the conduction state of FIG. 1 in mode 9. At this time, since the voltage v Cr of the resonant capacitor C r has dropped to a small negative voltage, the backing diode of the second main switch S 2 (ie, the second main switching diode D S2 ) is turned on. The voltage across the second main switch S 2 is zero, and the second main switch S 2 can perform zero voltage switching.

模式9之主導方程式如式(23)所示: The dominant equation for Mode 9 is shown in Equation (23):

又由式(19)及式(22)可得知,若欲使第二主開關S 2達到零電壓切換,則第二延遲時間t d2至少須滿足式(24)之條件。而為了確保能使第二主開關S 2達到零電壓切換,故以第二電感L 2之電流I L2的峰值I L2,max代入式(24)計算t D2。此外,考慮讓第二主開關S 2完全進入導通及輔助開關S r 完全進入截止,因此可設一餘裕時間t τ 用以確保滿足上述條件,因此可將式(24)修正為式(25),如下: Further, from equations (19) and (22), if the second main switch S 2 is to be switched to zero voltage, the second delay time t d 2 must satisfy at least the condition of equation (24). To ensure that the second main switch S 2 can be switched to zero voltage, the peak I L 2,max of the current I L 2 of the second inductance L 2 is substituted into equation (24) to calculate t D 2 . In addition, considering that the second main switch S 2 is completely turned on and the auxiliary switch S r is completely turned off, a margin time t τ can be set to ensure that the above conditions are satisfied, so that the equation (24) can be corrected to the equation (25). ,as follows:

當時間t=t 9時,可令第一主開關S 1在無電流通過下截止,故第一主開關S 1具有零電 流切換,第一主開關S 1達成零電流切換之條件如式(25)所示,同時輔助開關S r 由導通進入截止狀態,此時模式9結束。又為了確保使第一主開關S 1能達到零電流切 換,可將第二電感L 2之電流I L2之最小值I L2,min代入式(26),並將式(26)修正為式(27): When the time t = t 9, can make the first main switch S 1 is turned off in the absence of current through, and therefore having a first main switch S 1 is zero current switching, the first main switch S 1 is reached zero current switching condition of the formula ( 25), while the auxiliary switch S r is turned on and turned off, and mode 9 ends. In order to ensure that the first main switch S 1 can achieve zero current switching, the minimum value I L2 , min of the current I L 2 of the second inductor L 2 can be substituted into the equation (26), and the equation (26) can be corrected to (27):

模式10(時間t Mode 10 (time t 99 ~t ~ t 1010 ))

請參照第12圖,其繪示第1圖於模式10的導通情形示意圖。當進入模式10時,第二主開關S 2導通,而輔助開關S r 及第一主開關S 1為截止狀態,此時儲存於共振電感L r 之能量,藉由輔助二極體D r 之導通而釋放至負載,故共振電感L r 之電流i Lr 呈線性下降,而共振電容C r 處於儲能狀態,且由於輔助二極體D r 之導通,使輔助開關S r 之跨壓為V o ,而跨於共振電感L r 之電壓為-V o Please refer to FIG. 12, which is a schematic diagram of the conduction state of the first mode in the mode 10. When entering mode 10, the second main switch S 2 is turned on, and the auxiliary switch S r and the first main switch S 1 are in an off state, and the energy stored in the resonant inductor L r is at this time, by the auxiliary diode D r When it is turned on and released to the load, the current i Lr of the resonant inductor L r decreases linearly, and the resonant capacitor C r is in the energy storage state, and the voltage of the auxiliary switch S r is V due to the conduction of the auxiliary diode D r . o , and the voltage across the resonant inductor L r is - V o .

當時間t=t 10時,共振電感L r 之電流i Lr 降為零,同時第二主開關S 2之電流i S2上升至I L2,此時模式10結束。模式10之主導方程式如式(28)所示,若將式(28)整理後可求得共振電感L r 之電流i Lr 及共振電容C r 之電壓v Cr ,如式(29)所示: 而模式10之時間間隔可由式(29)求得如式(30)所示: When the time t = t 10, the current of the resonant inductor L r i Lr is reduced to zero, while the second main switch S 2 of the current I 2 raised to S I L 2, pattern 10 ends at this time. The dominant equation of mode 10 is as shown in equation (28). If equation (28) is collated, the current i Lr of the resonant inductor L r and the voltage v Cr of the resonant capacitor C r can be obtained as shown in equation (29): The time interval of mode 10 can be obtained by equation (29) as shown in equation (30):

模式11(時間t Mode 11 (time t 1010 ~t ~ t 1111 ))

請參照第13圖,其繪示第1圖於模式11的導通情形示意圖。在模式11期間,第二主開關S 2導通,而第一主開關S 1及輔助開關S r 為截止狀態,第一電感L 1 之電流I L1持續對共振電容C r 充電,此時共振電容C r 之電壓v Cr 呈線性上升,而第一二極體D 1之電壓v D1則由V o /2呈線性下降。當共振電容C r 之電壓v Cr 上升至V o /2後,模式11結束。 Please refer to FIG. 13 , which is a schematic diagram showing the conduction state of the first mode in the mode 11 . During mode 11, the second main switch S 2 is turned on and the first switch S 1 is the main and auxiliary switch S r to the OFF state, the current of the first inductor L 1 I L 1 Length of the resonant capacitor C r charge, of a resonant The voltage v Cr of the capacitor C r rises linearly, and the voltage v D 1 of the first diode D 1 decreases linearly from V o /2. Mode 11 ends when the voltage v Cr of the resonant capacitor C r rises to V o /2.

模式11之主導方程式如式(31)所示。將式(31)整理後可求得共振電容C r 之電壓v Cr ,如式(32)所示。又模式11之時間間隔可求得如式(33): The dominant equation of mode 11 is as shown in equation (31). After the equation (31) is arranged, the voltage v Cr of the resonant capacitor C r can be obtained as shown in the formula (32). The time interval of mode 11 can be obtained as in equation (33):

模式12(時間t Mode 12 (time t 1111 ~t ~ t 1212 ))

請參照第14圖,其繪示第1圖於模式12的導通情形示意圖。進入模式12後,各開關元件(包含第一主開關S 1 、第二主開關S 2 及輔助開關S r )之開關狀態與模式11相 同,而第一二極體D 1為導通狀態,使得第一電感L 1之能量釋放至箝位電容C 1Please refer to FIG. 14 , which is a schematic diagram of the conduction state of FIG. 1 in mode 12. After entering the mode 12, the respective switching elements (including the first main switches S 1, S 2 of the second main switch and auxiliary switch S r) of the same switching state and Mode 11, and a first diode D 1 is conductive state, such that The energy of the first inductor L 1 is released to the clamp capacitor C 1 .

模式12之電路導通狀態方程式可表示為式(34),當時間t=t 12時即完成一切換周期(switching period)之分析。值得注意的是,當時間t=t 12時,單輔助開關之交錯式高升壓比柔切式轉換器的各元件的狀態又回到如同時間t=t 0的狀態,故完成一切換周期。其中式(34)如下: 12 a circuit pattern of the conductive state equation can be expressed as formula (34), when the time t = t 12 Analysis of a complete switching period (switching period) of. It is worth noting that when the time t = t 12 , the state of each component of the interleaved high boost ratio soft-switching converter of the single auxiliary switch returns to the state like time t = t 0 , thus completing a switching cycle. . Where formula (34) is as follows:

四、各開關元件的切換特性Fourth, the switching characteristics of each switching element

請參照第15圖及上述說明,第15圖係繪示第1圖中各主要元件於上述模式1~12的波形圖。由以上各工作模式之分析可得知,依照本實施方式之第一主開關S 1、第二主開關S 2、輔助開關S r 、第一二極體D 1、第二二極體D 2、第一阻絕二極體D r1、第二阻絕二極體D r2與輔助二極體D r 於一切換週期下之切換特性,表列如下表1。 Please refer to Fig. 15 and the above description. Fig. 15 is a waveform diagram showing the main elements in Fig. 1 in the above modes 1 to 12. According to the analysis of the above working modes, the first main switch S 1 , the second main switch S 2 , the auxiliary switch S r , the first diode D 1 , and the second diode D 2 according to the embodiment can be known. The switching characteristics of the first blocking diode D r 1 , the second blocking diode D r 2 and the auxiliary diode D r in a switching cycle are listed in Table 1 below.

五、元件設計之實施例V. Example of component design

依照上述實施方式之一實施例,可設計各元件如下表2。 According to an embodiment of the above embodiment, each component can be designed as shown in Table 2 below.

其中第一電感L 1、第二電感L 2、箝位電容C 1、輸出電容C o 的設計可參考G.R.Walker及P.C.Sernia於2004提出的推導公式(“Cascaded DC-DC Converter Connection of Photovoltaic Modules,”IEEE Transactions on Industrial Electronics,Vol.19,No.4,pp.1130-1139,2004.)而得。又由上述之模式分析可得知,若欲達成第一主開關S 1及第二主開關S 2之零電壓及零電流切換,需滿足式(8)、(10)、(25) 及(27)等式,其中式(8)及(25)之第一延遲時間t D1及第二延遲時間t D2皆相對於切換週期為相當微小,故可令t D1=t D2=t D =0.015T=1us,且t τ =0.015T=1us。而由上述G.R.Walker及P.C.Sernia於2004年所提出式子,可推導出I L,max約為8.5A及I L,min約為3.9A,且令I L,max=I L1,max=I L2,maxI L,min=I L1,min=I L2,min,再將I L,maxI L,min代入式(8)、(10)、(25)及(27),可求得最大共振電感值L r 約為5.8uH,因此共振電感L r 可選用5uH。若再將共振電感L r 的電感值代回原式即可求得共振電容C r 之電容值應為C rs =42.5nF(C rs =C r +C r1=C r +C r2),且第一主開關S 1及第二主開關S 2之寄生電容值皆可為C r1=C r2=870pF,因此C r 可採用0.047uF。其餘元件亦可由上述G.R.Walker及P.C.Sernia於2004年所提文獻求得適合的設計值,於此不再贅述。 The design of the first inductor L 1 , the second inductor L 2 , the clamp capacitor C 1 , and the output capacitor C o can be referred to the derivation formula proposed by GRWalker and PCSernia in 2004 (“Cascaded DC-DC Converter Connection of Photovoltaic Modules,” IEEE Available on Industrial Electronics , Vol.19, No.4, pp.1130-1139, 2004.). It can be seen from the above mode analysis that if the zero voltage and zero current switching of the first main switch S 1 and the second main switch S 2 are to be achieved, the equations (8), (10), (25) and 27) The equation, wherein the first delay time t D 1 and the second delay time t D 2 of the equations (8) and (25) are relatively small with respect to the switching period, so that t D 1 = t D 2 = t D =0.015T=1 u s, and t τ =0.015T=1 u s. From the above formula proposed by GRWalker and PCSernia in 2004, it can be deduced that I L , max is about 8.5A and I L , min is about 3.9A, and let I L ,max = I L 1,max = I L 2,max , I L ,min = I L 1,min = I L 2,min , then I L ,max and I L ,min are substituted into equations (8), (10), (25) and (27), The maximum resonant inductance value L r can be determined to be approximately 5.8 u H, so the resonant inductor L r can be selected to be 5 u H. If the inductance value of the resonant inductor L r is returned to the original equation, the capacitance of the resonant capacitor C r should be C rs = 42.5 n F ( C rs = C r + C r 1 = C r + C r 2 And the parasitic capacitance values of the first main switch S 1 and the second main switch S 2 can be C r 1 = C r 2 = 870 p F, so C r can be 0.047 u F. The remaining components can also be obtained from the literature mentioned in the above-mentioned GRWalker and PCSernia in 2004, and will not be described here.

六、模擬結果Sixth, the simulation results

可再以PSIM模擬軟體進行依照本發明之單輔助開關之交錯式高升壓比柔切式轉換器的模擬,以驗證上述功效。 The simulation of the interleaved high step-up ratio soft-cut converter of the single auxiliary switch according to the present invention can be performed with the PSIM simulation software to verify the above effects.

請參照第16~18圖,第16~18圖繪示依照第1圖之單輔助開關之交錯式高升壓比柔切式轉換器,應用前述元件設計之實施例,並操作於300W時,第16圖繪示第一主開關控制信號S 1c 、第一主開關S 1 的電壓v ds1 及第一主開關S 1 的電流i S1 的模擬波形圖,第17圖繪示第二主開關控制信號S 2c 、第二主開關S 2 的電壓v ds2 及第二主開關S 2 的電 流i S2 的模擬波形圖。第18圖繪示輔助開關控制信號S rc 、輔助開關S r 的電壓v sr 及輔助開關S r 的電流i Sr 的模擬波形圖。 Please refer to FIGS. 16~18, and FIGS. 16-18 illustrate an interleaved high step-up ratio flexible-cut converter according to the single auxiliary switch of FIG. 1 , and apply the foregoing component design embodiment, and operate at 300 W. Figure 16 illustrates a first main switch control signal S 1c, an analog waveform diagram of a current i S1 of the first main voltage v ds1 and the switch S 1 is the first main switch S 1 is in, FIG. 17 shows a second main switch control signal S 2c, the second main switch voltage v ds2 2 S and the second main switch S analog waveform current i S2 in FIG. 2. Figure 18 shows the auxiliary switching control signal S rc, i Sr analog waveform diagram of a current and a voltage v sr auxiliary switch S r S r of the auxiliary switch.

由第16圖及第17圖可知,第一主開關S 1及第二主開關S 2均同時具有零電壓導通及零電流截止特性,且第一主開關S 1及第二主開關S 2之耐壓各亦僅為輸出電壓V o 的一半。由第18圖可觀得輔助開關S r 在導通時具有零電流切換特性,而在截止時具有零電壓切換特性。驗證了依照本發明之實施方式,可達成以單一輔助開關而完成交錯式高升壓比柔切式轉換器。 As can be seen from FIGS. 16 and 17, the first main switch S 1 and the second main switch S 2 both have zero voltage conduction and zero current cutoff characteristics, and the first main switch S 1 and the second main switch S 2 The withstand voltage is also only half of the output voltage V o . It can be seen from Fig. 18 that the auxiliary switch S r has a zero current switching characteristic when turned on and a zero voltage switching characteristic when turned off. It has been verified that in accordance with an embodiment of the present invention, an interleaved high step-up ratio soft-cut converter can be accomplished with a single auxiliary switch.

由上述本發明實施方式可知,應用本發明具有下列優點。 It will be apparent from the above-described embodiments of the present invention that the application of the present invention has the following advantages.

1. 開關切換損失(switching loss)小。依照本發明之單輔助開關之交錯式高升壓比柔切式轉換器,可達成各主開關(即第一主開關及第二主開關)皆具備零電流及零電壓切換特性,因此可改良傳統硬切式之開關切換方式造成的開關切換損失。 1. Switching loss is small. According to the staggered high-boost ratio soft-cut converter of the single auxiliary switch according to the present invention, each of the main switches (ie, the first main switch and the second main switch) has zero current and zero voltage switching characteristics, thereby improving The switching loss caused by the traditional hard-cut switching mode.

2. 切換應力(switching stress)小。同理,依照本發明之單輔助開關之交錯式高升壓比柔切式轉換器,可達成各主開關(即第一主開關及第二主開關)皆具備零電流及零電壓切換特性,因此可改良傳統硬切式之開關切換方式造成的切換應力大的缺點。 2. The switching stress is small. Similarly, according to the staggered high-boost ratio soft-cut converter of the single auxiliary switch of the present invention, each of the main switches (ie, the first main switch and the second main switch) can have zero current and zero voltage switching characteristics. Therefore, the disadvantage of large switching stress caused by the conventional hard-cut switching mode can be improved.

3. 效率高且穩定性佳。由於應用本發明可使得開關切換損失小、切換應力小,因此系統穩定性佳,並降低 開關元件之切換損耗。又可將輔助支路元件上多餘之儲能釋放至負載,達到能量回收再利用,更進一步提升轉換器之整體效率。 3. High efficiency and good stability. Due to the application of the invention, the switching loss is small and the switching stress is small, so the system is stable and reduces Switching loss of switching elements. In addition, the excess energy storage on the auxiliary branch components can be released to the load to achieve energy recovery and reuse, further improving the overall efficiency of the converter.

4. 電路簡單,降低實現成本。只需使用單一個輔助開關,即可實現交錯式高升壓比柔切式轉換器的柔性切換,同時具備高升壓比的特性,節省電路元件,也降低實務應用的成本,因而具備卓越商業價值。 4. The circuit is simple and reduces the implementation cost. The flexible switching of the interleaved high-boost ratio soft-cut converter can be achieved with a single auxiliary switch, while featuring high boost ratio, saving circuit components and reducing the cost of practical applications, resulting in superior business value.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100‧‧‧第一升壓電路 100‧‧‧First booster circuit

200‧‧‧第二升壓電路 200‧‧‧second boost circuit

621‧‧‧第一主開關控制信號接點 621‧‧‧First main switch control signal contact

641‧‧‧第二主開關控制信號接點 641‧‧‧Second main switch control signal contact

701‧‧‧輔助開關控制信號接點 701‧‧‧Auxiliary switch control signal contact

C 1 ‧‧‧箝位電容 C 1 ‧‧‧Clamp Capacitor

C r ‧‧‧共振電容 C r ‧‧‧resonance capacitor

C r2 ‧‧‧第二輔助電容 C r2 ‧‧‧Second auxiliary capacitor

C r1 ‧‧‧第一輔助電容 C r1 ‧‧‧First auxiliary capacitor

C o ‧‧‧輸出電容 C o ‧‧‧output capacitor

D 1 ‧‧‧第一二極體 D 1 ‧‧‧First Diode

D 2 ‧‧‧第二二極體 D 2 ‧‧‧Secondary

D r ‧‧‧輔助二極體 D r ‧‧‧Auxiliary diode

D r1 ‧‧‧第一阻絕二極體 D r1 ‧‧‧first blocking diode

D r2 ‧‧‧第二阻絕二極體 D r2 ‧‧‧Second blocking diode

D S1 ‧‧‧第一主開關二極體 D S1 ‧‧‧First main switch diode

D S2 ‧‧‧第二主開關二極體 D S2 ‧‧‧Second main switch diode

D Sr ‧‧‧輔助開關二極體 D Sr ‧‧‧Auxiliary Switch Diode

L 1 ‧‧‧第一電感 L 1 ‧‧‧first inductance

L 2 ‧‧‧第二電感 L 2 ‧‧‧second inductance

L r ‧‧‧共振電感 L r ‧‧‧Resonance inductance

R o ‧‧‧輸出電阻 R o ‧‧‧ output resistance

S 1 ‧‧‧第一主開關 S 1 ‧‧‧first main switch

S 2 ‧‧‧第二主開關 S 2 ‧‧‧second main switch

S r ‧‧‧輔助開關 S r ‧‧‧Auxiliary switch

V i ‧‧‧輸入電壓 V i ‧‧‧ input voltage

Claims (10)

一種單輔助開關之交錯式高升壓比柔切式轉換器,包含:一第一升壓電路,其包含一第一主開關;一第二升壓電路,其包含一第二主開關,該第二升壓電路與該第一升壓電路電性連接;一第一阻絕二極體,其一端與該第一主開關之一第一端電性連接;一第二阻絕二極體,其一端與該第二主開關之一第一端電性連接;一共振電感,該共振電感之一第一端與該第一阻絕二極體之另一端及該第二阻絕二極體之另一端電性連接;一輔助開關,該輔助開關之一第一端與該共振電感之另一端電性連接;一共振電容,其二端分別與該共振電感之該第一端及該輔助開關之一第二端電性連接;一輔助開關二極體,其與該輔助開關並聯;及一輔助二極體,其一端與該輔助開關之該第一端電性連接,該輔助二極體之另一端與該第二升壓電路電性連接。 An interleaved high step-up ratio soft-cut converter for a single auxiliary switch, comprising: a first boosting circuit comprising a first main switch; and a second boosting circuit comprising a second main switch, The second boosting circuit is electrically connected to the first boosting circuit; a first blocking diode is electrically connected to one end of the first main switch; and a second blocking diode is One end is electrically connected to the first end of the second main switch; a resonant inductor, the first end of the resonant inductor and the other end of the first blocking diode and the other end of the second blocking diode Electrically connected; an auxiliary switch, a first end of the auxiliary switch is electrically connected to the other end of the resonant inductor; a resonant capacitor, the two ends of which are respectively connected to the first end of the resonant inductor and one of the auxiliary switches The second end is electrically connected; an auxiliary switch diode is connected in parallel with the auxiliary switch; and an auxiliary diode has one end electrically connected to the first end of the auxiliary switch, and the auxiliary diode is another One end is electrically connected to the second boosting circuit. 如請求項1之單輔助開關之交錯式高升壓比柔切式轉換器,其中該共振電容為外加式電容或該輔助開關之寄生電容。 An interleaved high step-up ratio soft-cut converter of the single auxiliary switch of claim 1, wherein the resonant capacitor is an external capacitor or a parasitic capacitance of the auxiliary switch. 如請求項1之單輔助開關之交錯式高升壓比柔切式轉換器,其中該第一升壓電路更包含:一第一電感,其一端與該第一主開關之該第一端電性連接;一第一主開關二極體,其與該第一主開關並聯;一第一輔助電容,其與該第一主開關並聯;及一第一二極體,其一端與該第一主開關之該第一端電性連接。 The interleaved high-boost ratio flexible-cut converter of claim 1, wherein the first boosting circuit further comprises: a first inductor, one end of which is electrically connected to the first end of the first main switch a first main switch diode connected in parallel with the first main switch; a first auxiliary capacitor connected in parallel with the first main switch; and a first diode, one end and the first The first end of the main switch is electrically connected. 如請求項3之單輔助開關之交錯式高升壓比柔切式轉換器,其中該第一輔助電容為外加式電容或該第一主開關之寄生電容。 An interleaved high step-up ratio soft-cut converter as claimed in claim 3, wherein the first auxiliary capacitor is an external capacitor or a parasitic capacitance of the first main switch. 如請求項3之單輔助開關之交錯式高升壓比柔切式轉換器,其中該第二升壓電路更包含:一第二電感,其一端與該第二主開關之該第一端電性連接;一第二主開關二極體,其與該第二主開關並聯;一第二輔助電容,其與該第二主開關並聯;一箝位電容,其一端與該第二主開關之該第一端電性連接;及一第二二極體,該第二二極體之一第一端與該箝位電容之另一端電性連接;其中該第一二極體之另一端與該第二二極體之該第一 端電性連接,該第二二極體之一第二端用以與該輔助二極體電性連接。 The interleaved high-boost ratio flexible-cut converter of claim 3, wherein the second boosting circuit further comprises: a second inductor, one end of which is electrically connected to the first end of the second main switch a second main switch diode, which is connected in parallel with the second main switch; a second auxiliary capacitor connected in parallel with the second main switch; a clamp capacitor, one end of which is connected to the second main switch The first end is electrically connected to the other end; and the second end of the second diode is electrically connected to the other end of the clamping capacitor; wherein the other end of the first diode is The first of the second diode The second end of the second diode is electrically connected to the auxiliary diode. 如請求項5之單輔助開關之交錯式高升壓比柔切式轉換器,其中該第二輔助電容為外加式電容或該第二主開關之寄生電容。 An interleaved high step-up ratio soft-cut converter of the single auxiliary switch of claim 5, wherein the second auxiliary capacitor is an external capacitor or a parasitic capacitance of the second main switch. 如請求項5之單輔助開關之交錯式高升壓比柔切式轉換器,其中該第一電感之另一端與該第一主開關之一第二端之間係用以電性連接一輸入電壓,且該第二二極體之該第二端與該第二主開關之一第二端之間係用以電性連接一輸出電容及一輸出電阻。 The interleaved high-boost ratio flexible-cut converter of the single auxiliary switch of claim 5, wherein the other end of the first inductor and the second end of the first main switch are electrically connected to an input The voltage is connected between the second end of the second diode and the second end of the second main switch to electrically connect an output capacitor and an output resistor. 如請求項1之單輔助開關之交錯式高升壓比柔切式轉換器,其中該第一主開關與該第二主開關為相同開關元件。 An interleaved high step-up ratio soft-cut converter of the single auxiliary switch of claim 1, wherein the first main switch and the second main switch are the same switching element. 如請求項1之單輔助開關之交錯式高升壓比柔切式轉換器,更包含一觸發信號產生器,該觸發信號產生器電性連接該第一主開關、該第二主開關及該輔助開關,且該觸發信號產生器用以延遲導通該第一主開關之一第一延遲時間,而在該第一延遲時間導通該輔助開關,該觸發信號產生器並用以延遲導通該第二主開關之一第二延遲時間,而在該第二延遲時間導通該輔助開關。 The interleaved high-boost ratio soft-switching converter of the single auxiliary switch of claim 1 further includes a trigger signal generator electrically connected to the first main switch, the second main switch, and the An auxiliary switch, wherein the trigger signal generator is configured to delay turning on a first delay time of the first main switch, and turn on the auxiliary switch at the first delay time, the trigger signal generator is configured to delay turn on the second main switch One of the second delay times, and the auxiliary switch is turned on during the second delay time. 如請求項9之單輔助開關之交錯式高升壓比柔切式轉換器,其中該觸發信號產生器用以在該第一主開關導通及該第二主開關導通前,先導通該輔助開關。 The interleaved high step-up ratio soft-cut converter of claim 9, wherein the trigger signal generator is configured to turn on the auxiliary switch before the first main switch is turned on and the second main switch is turned on.
TW102128671A 2013-08-09 2013-08-09 High voltage ratio interleaved converter with soft-switching using single auxiliary switch TWI501527B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102128671A TWI501527B (en) 2013-08-09 2013-08-09 High voltage ratio interleaved converter with soft-switching using single auxiliary switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102128671A TWI501527B (en) 2013-08-09 2013-08-09 High voltage ratio interleaved converter with soft-switching using single auxiliary switch

Publications (2)

Publication Number Publication Date
TW201507336A true TW201507336A (en) 2015-02-16
TWI501527B TWI501527B (en) 2015-09-21

Family

ID=53019549

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102128671A TWI501527B (en) 2013-08-09 2013-08-09 High voltage ratio interleaved converter with soft-switching using single auxiliary switch

Country Status (1)

Country Link
TW (1) TWI501527B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI569565B (en) * 2016-03-01 2017-02-01 崑山科技大學 Staggered high boost DC converter
TWI752579B (en) * 2020-08-05 2022-01-11 崑山科技大學 Interleaved high voltage conversion ratio dc/dc converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594554B (en) * 2016-10-26 2017-08-01 崑山科技大學 Interleaved high efficiency high-step-up direct current transformer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451678B (en) * 2011-08-12 2014-09-01 Lite On Electronics Guangzhou A voltage-boosting device and a voltage-boosting circuit
TWM426947U (en) * 2011-12-08 2012-04-11 Nat Univ Chin Yi Technology Interleaved dc-dc converter
CN202840948U (en) * 2012-07-20 2013-03-27 上海交通大学 Direct-current power supply with high step-up ratio

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI569565B (en) * 2016-03-01 2017-02-01 崑山科技大學 Staggered high boost DC converter
TWI752579B (en) * 2020-08-05 2022-01-11 崑山科技大學 Interleaved high voltage conversion ratio dc/dc converter

Also Published As

Publication number Publication date
TWI501527B (en) 2015-09-21

Similar Documents

Publication Publication Date Title
US9774271B2 (en) Apparatus and method for multiple primary bridge resonant converters
Kim et al. An improved current-fed ZVS isolated boost converter for fuel cell applications
TWI517545B (en) Bi-directional dc converter
US9190911B2 (en) Auxiliary resonant apparatus for LLC converters
Gui et al. A high voltage-gain LLC micro-converter with high efficiency in wide input range for PV applications
US10243455B2 (en) Bidirectional DC-DC converter
Choe et al. Passive snubber for reducing switching-power losses of an IGBT in a DC–DC boost converter
TWI513164B (en) Flyback active clamping power converter
CN103780086A (en) Dual-output bus type high-gain converter based on coupling inductor voltage-multiplying structure
CN108199579B (en) High-transformation-ratio soft-switching DC-DC buck converter with coupling inductor
TWI501527B (en) High voltage ratio interleaved converter with soft-switching using single auxiliary switch
KR101140336B1 (en) Isolated buck-boost dc-dc converter
TWI455464B (en) Dc-dc voltage booster circuit and control method thereof
JP6452226B2 (en) DC-DC converter auxiliary circuit and bidirectional buck-boost DC-DC converter using the auxiliary circuit
US8937463B2 (en) Common-core power factor correction resonant converter
CN108347174B (en) Boost full-bridge isolated converter and composite active clamping circuit thereof
Xue et al. A 130 W 95%-efficiency 1 MHz non-isolated boost converter using PWM zero-voltage switching and enhancement-mode GaN FETs
TW202011679A (en) Three-phase multi-level series-series resonant converter
CN115149809A (en) Non-isolated full-bridge cascaded converter circuit and control method thereof
Choi et al. A Novel Switching Algorithm to improve Efficiency at light load conditions for Three-Phase DAB Converter in LVDC Application
Sha et al. Unequal PWM control for a current-fed dc-dc converter for battery application
Lin et al. Analysis and implementation of ZVS forward converter with centre-tapped rectifier
Brahmendra et al. A new active soft-switching circuit for full bridge converters
Mousavian et al. A novel ZVT/ZCT PWM converter used for solar battery chargers with reduced conduction loss
Veerachary et al. Design and analysis of zero-voltage transition low current ripple fifth-order boost converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees