TWM426947U - Interleaved dc-dc converter - Google Patents

Interleaved dc-dc converter Download PDF

Info

Publication number
TWM426947U
TWM426947U TW100223178U TW100223178U TWM426947U TW M426947 U TWM426947 U TW M426947U TW 100223178 U TW100223178 U TW 100223178U TW 100223178 U TW100223178 U TW 100223178U TW M426947 U TWM426947 U TW M426947U
Authority
TW
Taiwan
Prior art keywords
voltage
switch
converter
electrically connected
control signal
Prior art date
Application number
TW100223178U
Other languages
Chinese (zh)
Inventor
Kuei-Hsiang Chao
Long-Yi Chang
Tsang-Chih Chang
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW100223178U priority Critical patent/TWM426947U/en
Publication of TWM426947U publication Critical patent/TWM426947U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

An interleaved DC-DC converter for fuel cells is disclosed. The interleaved DC-DC converter comprises an input capacitor, a first converter unit, a second converter unit, and an output capacitor. A high voltage ratio and low ripple DC power can be provided for a load by using the interleaved structure of the first converter unit and the second converter unit.

Description

M426947 五、新型說明: 【新型所屬之技術領域】 本新型是有關於一種交錯式直流對直流轉換器,且特 別是有關於一種可以產生用在燃料電池之交錯式直流對直 流轉換器。 【先前技術】 近年來由於全球性能源危機以及環保意識提升,因此 • 替代能源之一.的燃料電池在近期愈發受到重視。燃料電池 是一種乾淨無污染的能源,其能源是經由電解水的逆反應 而產生動力,反應後只會產生水,因而對環境污染的程度 相當的低,而燃料電池作為動力源通常使用在混合電力電 動車、分佈式發電系統、攜帶式電源及固定式電源等應用 其中質子交換膜燃料電池最常被採用,乃因其具有以 下幾點優點:(1)具有較低的操作溫度,因而能夠快速的啟 • 動與關閉,並且對於負載的改變能迅速反應;(2)具有較低 的操作壓力,因而較為安全;(3)可以輕易的模組化;(4) 具有較低的排放比(Emission Ratio)與較高的轉換比 (Conversion Ratio) ° 雖然質子交換膜燃料電池有以上幾點優點,但由於本 身有活化損失、歐姆極化以及濃度損失的影響,導致輸出 電壓隨負載增加而使得輸出電壓下降,即燃料電池隨著加 載時輸出功率增加,而使輸出電壓逐漸下降,但輸出電流 却逐漸上升,故其屬於低電壓、高電流輸出之裝置。若能 3 M426947 將燃料電池所輸出之低電壓升壓至高電壓送至直流鏈(DC Link),則能夠有更廣泛之應用範圍。為了使燃料電池電壓 輸出提升至所需電位以及不會隨著負載變動而造成輸出電 壓的不穩定,因此需利用技術調節燃料電池能量,使輸出 電壓可以維持在穩定值。也就是說,一個良好的直流對直 流轉換器可以強化燃料電池的各項應用,因此對替代能源 的發展有相當大的助益。 φ 【新型内容】 因此,本新型之一態樣是在提供一種交錯式直流對直 流轉換器。此交錯式直流對直流轉換器包含輸入電容、第 一轉換器單元、第二轉換器單元及輸出電容。藉由交錯的 第一轉換器單元與第二轉換器單元之結構可以產生高升壓 比及低漣波之直流電力輸出給負載。 上述輸入電容之兩端分別與電壓輸入點及電壓參考點 電性連接。上述輸出電容之兩端分別與電壓輸出點及電壓 φ 參考點電性連接。 上述第一轉換器單元包含第一開關與第二開關。第一 開關係受控於第一控制訊號,第一開關之一端藉由第一電 感與電壓輸入點電性連接,第一開關之另一端與電壓參考 點電性連接,且第一開關與第一電感之間與第一二極體之 正極電性連接。第二開關係受控於第二控制訊號,第二開 關之一端藉由第二電感與電壓輸入點電性連接,第二開關 之另一端與電壓參考點電性連接,且第二開關與第二電感 之間藉由第一電容與第一二極體之負極和第二二極體之正 4 M426947 極電性連接,其中第二二極體之負極與電壓輸出點電性連 接。 而上述第二轉換器單元包含第三開關與第四開關。第 三開關係受控於第三控制訊號,第三開關之一端藉由第三 電感與電壓輸入點電性連接,第三開關之另一端與電壓參 考點電性連接,且第三開關與第三電感之間與第三二極體 之正極電性連接。而第四開關係受控於第四控制訊號,第 ' 四開關之一端藉由第四電感與電壓輸入點電性連接,第四 φ 開關之另一端與電壓參考點電性連接,且第四開關與第四 電感之間藉由第二電容與第三二極體之負極和第四二極體 之正極電性連接,其中第四二極體之負極與電壓輸出點電 性連接。 依據本新型一實施例,其中第一控制訊號可以與第四 控制訊號同相位,且第二控制訊號可以與第三控制訊號同 相位。此外,只要第二轉換器單元電壓漣波相位移移至適 當相位與第一轉換器單元輸出電壓漣波波形交錯進而產出 Φ 降低輸出電壓漣波效果,相關控制訊號可不限於同相位。 依據本新型另一實施例,其中電壓輸入點與電壓參考 點可以與燃料電池並聯,且電壓輸出點與電壓參考點可以 與負載並聯。 依據本新型又一實施例,其中第一控制訊號、第二控 制訊號、第三控制訊號與第四控制訊號由微處理器產生。 因此,本文提出之交錯式直流對直流轉換器,藉由兩 組轉換器單元並聯再交錯,而可以降低輸出電壓之漣波, 提供高升壓比的輸出電壓。再者,由於兩組轉換器單元的 5 M426947 並聯結構使得電流分散在四個分路’故可降低開關與電感 之電流應力,如此一來更可承受重載時燃料電池之高輸出 電流。 【實施方式】 本新型於是提出一種用於燃料電池之交錯式直流對直 流轉換器,包含輸入電容、第一轉換器單元、第二轉換器 單元及輸出電容。藉由交錯的第一轉換器單元與第二轉換 • 器單元之結構可以產生高升壓比及低漣波之直流電力輸出 給負載。 如第1圖所示,此種交錯式直流對直流轉換器120可 用於提升燃料電池110之輸出電壓,而供給負載130 —種 高升壓比及低漣波之直流電力輸出,以使得燃料電池的各 項應用更加完整。而交錯式直流對直流轉換器120可以利 用微處理器140之各種控制訊號sl-s4來控制。舉例而言, 微處理器140可利用PIC18F8720來進行閉迴路控制。 • 進一步言之,第2圖係繪示第1圖之交錯式直流對直 流轉換器的電路圖。此交錯式直流對直流轉換器120包含 輸入電容Ci、第一轉換器單元121、第二轉換器單元122 及輸出電容Co。藉由交錯的第一轉換器單元121與第二轉 換器單元122之結構可以產生高升壓比及低漣波之輸出電 厘Vo給負載。 上述輸入電容Ci之兩端分別與電壓輸入點P及電壓參 考點G電性連接。而輸入電容Ci與燃料電池110並聯以得 到輸入電壓Vi,也就是說輸入電壓Vi為電壓輸入點P及電 6 M426947 壓參考點G間的電位差。 上述輸出電容Co之兩端分別與電壓輸出點Q及電壓 參考點G電性連接。而輸出電容Co與負載130並聯以提 供輸出電壓Vo,也就是說輸出電壓Vo為電壓輸出點Q及 電壓參考點G間的電位差。 上述第一轉換器單元121包含第一開關S1與第二開關 S2。第一開關S1係受控於第一控制訊號si,第一開關S1 ' 之一端藉由第一電感L1與電壓輸入點P電性連接,第一開 • 關S1之另一端與電壓參考點G電性連接,且第一開關S1 與第一電感L1之間與第一二極體D1之正極電性連接。第 二開關S2係受控於第二控制訊號s2,第二開關S2之一端 藉由第二電感L2與電壓輸入點P電性連接,第二開關S2 之另一端與電壓參考點G電性連接,且第二開關S2與第 二電感L2之間藉由第一電容C1與第一二極體D1之負極 和第二二極體D2之正極電性連接,其中第二二極體D2之 負極與電壓輸出點Q電性連接。 φ 而上述第二轉換器單元122包含第三開關S3與第四開 關S4。第三開關S3係受控於第三控制訊號S3,第三開關 S3之一端藉由第三電感L3與電壓輸入點P電性連接,第 三開關S3之另一端與電壓參考點G電性連接,且第三開 關S3與第三電感L3之間與第三二極體D3之正極電性連 接。而第四開關S4係受控於第四控制訊號s4,第四開關 S4之一端藉由第四電感L4與電壓輸入點P電性連接,第 四開關S4之另一端與電壓參考點G電性連接,且第四開 關S4與第四電感L4之間藉由第二電容C2與第三二極體 7 M426947 D3之負極和第四二極體D4之正極電性連接,其中第四二 極體D4之負極與電壓輸出點Q電性連接。 所以,由第2圖可以得知,本新型之交錯式直流對直 流轉換器之電路架構簡單,且能以較低之責任週期即可達 到極高之升壓比,因此可減少各開關之導通損失以及切換 損失,使得整體轉換器效率得到進一步提升。而整個交錯 式直流對直流轉換器的電路中的第一轉換器單元121或第 ' 二轉換器單元122的工作原理可分為四個操作模式,以下 φ 將先以第一轉換器單元121為例,說明其各模式工作下之 等效電路分別如圖3A〜3D所示。 操作模式一與操作模式三之等效電路如圖3A及3C所 示,此時第一開關S1與第二開關S2為導通狀態,輸入電 壓Vi跨壓在第一電感L1與第二電感L2上,使得兩電感之 電流呈線性增加,並進行儲能,而負載電流則由輸出電容 Co提供,其電感電流iL1與iL2之變化可由式(1)表示。 V =L ^hL = L (1) • dt dt 操作模式二之等效電路如圖3B所示,此時第一開關 S1截止、第二開關S2導通,電感電流L1順向導通第一二 極體D1,此時第一電感L1電壓釋放能量給第一電容cn, 對第一電容Cl進行充電,而第二電感L2則繼續進行儲能 動作,此時之電感電流iL1變化可由式(2)表示。 〜=H1 (2) dt Lx 操作模式四之等效電路如圖3D所示,此時第一開關 8 M426947 S1導通、第二開關S2截止,第二電感L2之電流順向導通 第二二極體D2,此時第二電感L2與第一電容C1同時釋放 能量至輸出電容Co與負載,此時之電感電流變化iL2可由 式(3)表示。 diL2 = Κ + Ki ~ V〇 ⑶ dt L2 經由以上四個操作模式分析,僅第一電容Cl之電壓 VC1為未知變數,從電路架構以及KVL定理,第一電感L1、 φ 第二電感L2以及第一二極體D1上的跨壓加上第一電容C1 之電壓VC1應總和為零,而穩態時第一電感L1與第二電感 L2之平均電壓為零,因此可以得知第一二極體D1的平均 電壓即為第一電容C1之電壓VC1,而第一二極體D1跨壓 波形如第4圖所示,故第一電容C1之電壓VC1可以式(4) 表示。 v =^- (4) v c\ r Dl,avg 2 得知第一電容Cl之電壓,接著以電壓伏特-秒 平衡定理整理式(1)至式(3),即可得式(5),再將式(4)代入 整理成式(6),故可推得第一轉換器單元121之電壓增益如 式(7)所示,其中T為切換週期,D為責任週期,f為切換 頻率。M426947 V. New Description: [New Technology Field] The present invention relates to an interleaved DC-to-DC converter, and in particular to an interleaved DC-to-DC converter that can be used in a fuel cell. [Prior Art] In recent years, due to the global energy crisis and environmental awareness, fuel cells, one of the alternative energy sources, have received increasing attention in the near future. A fuel cell is a clean and pollution-free energy source. Its energy is generated by the reverse reaction of electrolyzed water. After the reaction, only water is produced, so the degree of environmental pollution is relatively low, and the fuel cell is used as a power source in hybrid electric power. Among the electric vehicles, distributed power generation systems, portable power supplies and stationary power supplies, proton exchange membrane fuel cells are most commonly used because of their advantages: (1) they have a lower operating temperature and therefore can be quickly Start and shut down, and react quickly to changes in load; (2) have lower operating pressure and therefore are safer; (3) can be easily modularized; (4) have lower emission ratio ( Emission Ratio) and higher conversion ratio ° Although the proton exchange membrane fuel cell has the above advantages, it has the effect of activation loss, ohmic polarization and concentration loss, resulting in an increase in output voltage with load. The output voltage drops, that is, the output power of the fuel cell increases with loading, and the output voltage gradually decreases, but the output Current is gradually increased, so that a low voltage, high current output of the device. If the 3 M426947 boosts the low voltage output from the fuel cell to a high voltage and sends it to the DC link, it can be used in a wider range of applications. In order to raise the fuel cell voltage output to the required potential and the output voltage is not unstable with load fluctuations, it is necessary to use technology to adjust the fuel cell energy so that the output voltage can be maintained at a stable value. In other words, a good DC-to-DC converter can enhance the application of fuel cells, so it is quite helpful for the development of alternative energy. φ [New content] Therefore, one aspect of the present invention is to provide an interleaved DC-to-DC converter. The interleaved DC-to-DC converter includes an input capacitor, a first converter unit, a second converter unit, and an output capacitor. The high boost ratio and low chopped DC power output can be generated to the load by the structure of the interleaved first converter unit and the second converter unit. The two ends of the input capacitor are electrically connected to the voltage input point and the voltage reference point, respectively. Both ends of the output capacitor are electrically connected to a voltage output point and a voltage φ reference point, respectively. The first converter unit includes a first switch and a second switch. The first open relationship is controlled by the first control signal, and one end of the first switch is electrically connected to the voltage input point by the first inductor, and the other end of the first switch is electrically connected to the voltage reference point, and the first switch and the first switch An inductor is electrically connected to the anode of the first diode. The second open relationship is controlled by the second control signal, one end of the second switch is electrically connected to the voltage input point by the second inductor, the other end of the second switch is electrically connected to the voltage reference point, and the second switch and the second switch The two inductors are electrically connected to the positive pole of the first diode and the positive 4 M426947 of the second diode through the first capacitor, wherein the cathode of the second diode is electrically connected to the voltage output point. The second converter unit includes a third switch and a fourth switch. The third open relationship is controlled by the third control signal, and one end of the third switch is electrically connected to the voltage input point through the third inductor, and the other end of the third switch is electrically connected to the voltage reference point, and the third switch and the third switch The three inductors are electrically connected to the anode of the third diode. The fourth open relationship is controlled by the fourth control signal. One end of the fourth switch is electrically connected to the voltage input point by the fourth inductor, and the other end of the fourth φ switch is electrically connected to the voltage reference point, and the fourth The second capacitor is electrically connected to the anode of the third diode and the cathode of the fourth diode, and the cathode of the fourth diode is electrically connected to the voltage output point. According to an embodiment of the invention, the first control signal can be in phase with the fourth control signal, and the second control signal can be in phase with the third control signal. In addition, as long as the second converter unit voltage chopping phase shifts to the appropriate phase and the first converter unit output voltage chopping waveform is interleaved to produce Φ to reduce the output voltage chopping effect, the associated control signals are not limited to the same phase. According to another embodiment of the present invention, the voltage input point and the voltage reference point may be connected in parallel with the fuel cell, and the voltage output point and the voltage reference point may be connected in parallel with the load. According to still another embodiment of the present invention, the first control signal, the second control signal, the third control signal, and the fourth control signal are generated by the microprocessor. Therefore, the interleaved DC-to-DC converter proposed in this paper can reduce the chopping of the output voltage and provide a high boost ratio output voltage by parallelizing and interleaving the two converter units. Furthermore, since the 5 M426947 parallel structure of the two converter units allows the current to be dispersed in four branches', the current stress of the switch and the inductor can be reduced, so that the high output current of the fuel cell at the time of heavy load can be withstood. [Embodiment] The present invention therefore proposes an interleaved DC-to-DC converter for a fuel cell, comprising an input capacitor, a first converter unit, a second converter unit, and an output capacitor. The high boost ratio and low chopped DC power output can be generated by the interleaved first converter unit and the second converter unit structure. As shown in FIG. 1, the interleaved DC-to-DC converter 120 can be used to boost the output voltage of the fuel cell 110, and supply the load 130 to a high boost ratio and a low chopping DC power output to enable the fuel cell. The applications are more complete. The interleaved DC-to-DC converter 120 can be controlled by various control signals sl-s4 of the microprocessor 140. For example, the microprocessor 140 can utilize the PIC18F8720 for closed loop control. • Further, Figure 2 is a circuit diagram of the interleaved DC-to-DC converter of Figure 1. The interleaved DC-to-DC converter 120 includes an input capacitor Ci, a first converter unit 121, a second converter unit 122, and an output capacitor Co. By the configuration of the interleaved first converter unit 121 and the second converter unit 122, a high boost ratio and a low chopping output voltage Vo can be generated for the load. Both ends of the input capacitor Ci are electrically connected to the voltage input point P and the voltage reference point G, respectively. The input capacitor Ci is connected in parallel with the fuel cell 110 to obtain the input voltage Vi, that is, the input voltage Vi is the potential difference between the voltage input point P and the voltage 6 M426947 voltage reference point G. Both ends of the output capacitor Co are electrically connected to the voltage output point Q and the voltage reference point G, respectively. The output capacitor Co is connected in parallel with the load 130 to provide an output voltage Vo, that is, the output voltage Vo is a potential difference between the voltage output point Q and the voltage reference point G. The first converter unit 121 includes a first switch S1 and a second switch S2. The first switch S1 is controlled by the first control signal si, and one end of the first switch S1' is electrically connected to the voltage input point P by the first inductor L1, and the other end of the first switch S1 is connected with the voltage reference point G. The electrical connection is electrically connected, and the first switch S1 and the first inductor L1 are electrically connected to the anode of the first diode D1. The second switch S2 is controlled by the second control signal s2, one end of the second switch S2 is electrically connected to the voltage input point P through the second inductor L2, and the other end of the second switch S2 is electrically connected to the voltage reference point G. And the second switch S2 and the second inductor L2 are electrically connected to the anode of the first diode D1 and the cathode of the second diode D2 by the first capacitor C1, wherein the cathode of the second diode D2 It is electrically connected to the voltage output point Q. φ and the second converter unit 122 includes a third switch S3 and a fourth switch S4. The third switch S3 is controlled by the third control signal S3. One end of the third switch S3 is electrically connected to the voltage input point P through the third inductor L3, and the other end of the third switch S3 is electrically connected to the voltage reference point G. The third switch S3 and the third inductor L3 are electrically connected to the anode of the third diode D3. The fourth switch S4 is controlled by the fourth control signal s4, and one end of the fourth switch S4 is electrically connected to the voltage input point P through the fourth inductor L4, and the other end of the fourth switch S4 is electrically connected to the voltage reference point G. Connected, and the fourth switch S4 and the fourth inductor L4 are electrically connected to the cathode of the third diode 7 M426947 D3 and the anode of the fourth diode D4 by the second capacitor C2, wherein the fourth diode The negative electrode of D4 is electrically connected to the voltage output point Q. Therefore, as can be seen from FIG. 2, the interleaved DC-to-DC converter of the present invention has a simple circuit structure and can achieve a very high boost ratio with a low duty cycle, thereby reducing the conduction of each switch. Loss and switching losses further increase overall converter efficiency. The operation principle of the first converter unit 121 or the second converter unit 122 in the circuit of the entire interleaved DC-DC converter can be divided into four operation modes, and the following φ will be first in the first converter unit 121. For example, the equivalent circuits in the operation of each mode are shown in FIGS. 3A to 3D, respectively. The equivalent circuit of the operation mode 1 and the operation mode 3 is as shown in FIGS. 3A and 3C. At this time, the first switch S1 and the second switch S2 are in an on state, and the input voltage Vi is pressed across the first inductor L1 and the second inductor L2. Therefore, the current of the two inductors increases linearly and stores energy, and the load current is provided by the output capacitor Co. The change of the inductor currents iL1 and iL2 can be expressed by the formula (1). V = L ^hL = L (1) • dt dt The equivalent circuit of operation mode 2 is shown in Fig. 3B. At this time, the first switch S1 is turned off, the second switch S2 is turned on, and the inductor current L1 is turned on the first two poles. Body D1, at this time, the first inductor L1 voltage releases energy to the first capacitor cn, and the first capacitor C1 is charged, and the second inductor L2 continues to perform the energy storage operation. At this time, the inductor current iL1 can be changed by the formula (2) Said. ~=H1 (2) dt Lx The equivalent circuit of operation mode 4 is shown in Figure 3D. At this time, the first switch 8 M426947 S1 is turned on, the second switch S2 is turned off, and the current of the second inductor L2 is turned on to the second diode. The body D2, at this time, the second inductor L2 and the first capacitor C1 simultaneously release energy to the output capacitor Co and the load, and the inductor current change iL2 at this time can be expressed by the formula (3). diL2 = Κ + Ki ~ V〇(3) dt L2 Through the above four modes of operation, only the voltage VC1 of the first capacitor C1 is an unknown variable, from the circuit architecture and KVL theorem, the first inductor L1, φ the second inductor L2 and the The voltage across the diode D1 and the voltage VC1 of the first capacitor C1 should be zero, and the average voltage of the first inductor L1 and the second inductor L2 is zero at steady state, so the first two poles can be known. The average voltage of the body D1 is the voltage VC1 of the first capacitor C1, and the voltage waveform of the first diode D1 is as shown in FIG. 4, so the voltage VC1 of the first capacitor C1 can be expressed by the formula (4). v =^- (4) vc\ r Dl, avg 2 know the voltage of the first capacitor C1, and then formulate (1) to (3) with the voltage volt-second balance theorem, then we can get the formula (5). Then, the equation (4) is substituted into the equation (6), so that the voltage gain of the first converter unit 121 can be derived as shown in the equation (7), where T is the switching period, D is the duty cycle, and f is the switching frequency. .

V -V V 」~~^x(l-D)T + -^DT = 0 (5)V -V V "~~^x(l-D)T + -^DT = 0 (5)

A A ν^ν〇Ι2Κ{ι-ρ)ΤΛρτ = ο ⑹A A ν^ν〇Ι2Κ{ι-ρ)ΤΛρτ = ο (6)

L' L 9 M426947 V〇 =L' L 9 M426947 V〇 =

_2ζ_ l-D ⑺ 由式(7)可得知本新型之交錯式直流對直流轉換器可 以用較低之責任週期達到相同之升壓比,且由於加入第一 電容之關係,可以使得開關之跨壓降低成輸出電壓的一 半,此可由操作模式二與操作模式四時,分別由式(8)與式 (9)之開關跨壓得知。 v =v =— ⑻ (isl,max Cl ^ V -V =^2- (9) dsijmdx Cl ^ ^ 第一轉換器單元121之輸出功率及輸入功率可分別以 式(10)及式(11)表示。 p (10)_2ζ_ lD (7) It can be known from equation (7) that the interleaved DC-DC converter of the present invention can achieve the same boost ratio with a lower duty cycle, and the cross-voltage of the switch can be made due to the relationship of adding the first capacitor. It is reduced to half of the output voltage, which can be known from the operating mode 2 and the operating mode 4, respectively, by the switch crossover of equations (8) and (9). v = v = - (8) (isl, max Cl ^ V - V = ^ 2 - (9) dsijmdx Cl ^ ^ The output power and input power of the first converter unit 121 can be expressed by equations (10) and (11), respectively. Indicates p (10)

〇 R P = ^./. = ^x(/il+/,2) (11) 若L=L1=L2,則得 (12) 假設第一轉換器單元121沒有功率損失,則由Po=Pi 得 (13)M426947 V^2Il =〇 RP = ^./. = ^x(/il+/, 2) (11) If L = L1 = L2, then (12) assumes that the first converter unit 121 has no power loss, then Po = Pi ( 13) M426947 V^2Il =

=l-D R 4V2 _/_=l-D R 4V2 _/_

(\-D)2R (14) 2Vt(\-D)2R (14) 2Vt

(l-D)2R 其中雖然iL1與iL2波形為一個互補關係,但是其最大 及最小之電感電流是相同的,因此以Ili求付之隶大及隶小 之電感電流關係式分別如式(15)與(16)所示。 • T -J 1^1 2Vi VDT 1 1 (15) iLUmax —上人1 _ 2 (\-D)2R 2LX τ - j A’ii VDT l (16) 乂 Zl,min —^ (l-D)2R 2L, 而欲使第一轉換器單元121能操作在連續電流模式之 條件為Iu,min與lL2,min至少要大於零,因此電感電流連續與 不連續之邊界條件為(lD)2R Although the iL1 and iL2 waveforms have a complementary relationship, the maximum and minimum inductor currents are the same, so the relationship between the inductance and the current of the Li and the small is the same as equation (15). (16) is shown. • T -J 1^1 2Vi VDT 1 1 (15) iLUmax - 上人1 _ 2 (\-D)2R 2LX τ - j A'ii VDT l (16) 乂Zl,min —^ (lD)2R 2L And the condition that the first converter unit 121 can operate in the continuous current mode is Iu, min and lL2, min is at least greater than zero, so the boundary condition of the continuous and discontinuous inductor current is

Ll,minLl,min

故得So

AA

2V. VDT (l-D)2R 2LXD(l-D)2R ^4/~ (17) (18) 由於第一電感LI與第二電感L2最大及最小之電感電 流是相同的,因此由II 1及II 2所推得之最小電感值係為相 同的,所以若要轉換器操作在連續電流模式,則電感L1 與L2至少必須大於或等於 由式(18)之數學函式D(1_D)2,可觀得若D值於1/3時, 數學函式D(l-D)2將會有最大值,也意謂式(18)產生最大值 M426947 之D值為i/3,因此在设§}*電感時’ d以ι/g代入式(18), 並且將計算所得的電感值再乘上餘裕值125倍,即可確保 電感電流能夠確實操作在電流連續模式。 依據本新型之一實施例,輕載與重載,其負載電阻值 分別為2,020Ω與450 Ω。故在切換頻率為l5\Hz,重載責 任週期約為0.85,代入式(18)可得,在輕载下欲使電流漣 續,其最小電感值為6.23 mH,而在重載時為179 μΗ,故 依據實施例可選用260 μΗ,使其在重载時可以在連續電流 導通模式。 … 輸出電容電流變化如第5圖之ic。所示,由第5圖可得 知電容電荷變化量為 Δβ2V. VDT (lD)2R 2LXD(lD)2R ^4/~ (17) (18) Since the maximum and minimum inductor currents of the first inductor L1 and the second inductor L2 are the same, they are II 1 and II 2 The minimum inductance value is the same, so if the converter is operated in continuous current mode, the inductors L1 and L2 must be at least equal to or equal to the mathematical function D(1_D)2 of equation (18). When the D value is 1/3, the mathematical function D(lD)2 will have a maximum value, which means that the maximum value M426947 has a D value of i/3 when the value of (18) is generated, so when the §}* inductance is set d substitute ι/g into equation (18), and multiply the calculated inductance value by 125 times the margin value to ensure that the inductor current can actually operate in the current continuous mode. According to an embodiment of the present invention, the light load and the heavy load have load resistance values of 2,020 Ω and 450 Ω, respectively. Therefore, the switching frequency is l5\Hz, the duty cycle of the heavy load is about 0.85, and the substitution type (18) is available. In the light load, the current is required to be continued, and the minimum inductance value is 6.23 mH, and at the time of heavy load, it is 179. μΗ, so 260 μΗ can be selected according to the embodiment, so that it can be in continuous current conduction mode under heavy load. ... The output capacitor current changes as shown in Figure 5 ic. As shown, it can be seen from Fig. 5 that the amount of change in capacitance charge is Δβ.

V〇DTFL =CoAV〇 (19) 則其電壓漣波比可表示為 (20)V〇DTFL =CoAV〇 (19), the voltage chopping ratio can be expressed as (20)

AV0 DT V〇 a 故得 (21) R0f(AV0/V0) 因此可依電壓漣波比大小來決定電容值的大小,由式 (21)可觀得輸出電容c〇與責任週期d成正比,意即設計之 輸出電容C必須大於在責任週期為最大值時所需之電容 值。、故依據本新型之一實施例,設定電壓漣波比為5%,代 入式(21)可得輪出電容c〇為2.5 μΡ ’故可選擇15〇奸,使 其電壓漣波比可低於5%。 藉由以各操作模式之揭露内容描述,可將電路中各開 12 M426947 關之控制訊號、各電感與各電容之電流電壓波形繪於第5 圖,而其輸入電壓漣波與電流漣波則可表示成式(22)與式 (23)。AV0 DT V〇a is therefore (21) R0f (AV0/V0) Therefore, the capacitance value can be determined according to the voltage chopping ratio. From the equation (21), the output capacitance c〇 is proportional to the duty cycle d. That is, the designed output capacitor C must be greater than the capacitor value required when the duty cycle is at its maximum. Therefore, according to an embodiment of the present invention, the set voltage chopping ratio is 5%, and the substituting type (21) can obtain the round-out capacitance c〇 is 2.5 μΡ, so that 15 traits can be selected, so that the voltage chopping ratio can be low. At 5%. By describing the disclosure of each operation mode, the control signals, the inductances and the current and voltage waveforms of the respective capacitors in the circuit can be plotted in Figure 5, and the input voltage chopping and current chopping. It can be expressed as equations (22) and (23).

从=(么ϋ_!)(1-渾 1 L L η η = ^L{l.D)T,LnG{L^L2} (22) • AVC0=IoDT (23) 承上,本新型所提出之交錯式直流對直流轉換器運用 了兩組轉換器電路,且由於兩組轉換器單元的上下交錯並 聯之結構使得電流分散在四個分路,故可降低開關與電感 之電流應力,換句話說,其降低電壓漣波係藉由之控制信 號來控制第一轉換器單元與第二轉換器單元的各開關,使 第一轉換器單元之輸出電壓漣波可與第二轉換器單元之輸 出電壓漣波做抵銷,使兩組電壓漣波輸出產生相位移,進 • 而達到輸出電壓漣波降低之效果。 依據本新型之一實施例,燃料電池之輸出電壓約為26 至43 V左右(此為交錯式直流對直流轉換器的輸入電 壓),而送給負載的輸出電壓則將提升至300 V。而在負載 為在2,020 Ω時,輸出功率約輸出43 W,以及負載為在450 Ω時,輸出功率約200 W。 第6圖係繪示上述實施例之交錯式直流對直流轉換器 的輸出電壓之波形圖。由第6圖可觀得本新型之交錯式直 流對直流轉換器之輸出電壓中漣波波形的改善情形。細言 13 之第6圖中峰對峰電壓約為9.5V,而電壓連波比為3办 因此,由上述本新型實施方式可知,應用本新型= 錯式直流對直流轉換器可提供高升壓比之輪出電壓,交 由交錯的電路架構進而減低輸出電壓之漣波。且由柃,轉 之電路架構,將電流分散為四條分路,因此可使開關=鳍 感之電流應力再降低。於是,本新型之交錯式直流對^電 轉換器可以強化燃料電池的各項應用,因此對替代 發展有相當大的助益。 "、的 值得一提的是,本創作利用前述第一轉換器單元 一控制訊號與第二控制訊號保持不變,第二轉換器單元第 第三控制訊號與第四訊號,以微處理器調整控制使第〜的 換器單元輸出電壓漣波波形產生相位移,進而與第〜轉 器單元輸出電壓漣波波形交錯來降低電壓漣波值,無认, ,相輸出控制或非同相輸出控制,只要第二轉換器單_弋 壓漣波相位移移至適當相伋與第一轉換器單元輸出電=電 波波形交錯,進而產生出降低輸出電壓漣波效果,建 創作範圍保護之可行實施方式。 本 —雖然本新型已以實施方式揭露如上,然其並非用以 型备任何熟習此技藝者’在不脫離本新型之精神ί & §可作各種之更動與潤飾,因此本新型之保護範 圍當視後附之巾請專利範園所界定者為準。 【圖式簡單說明】 為讓本新@ 能更明顯易懷, 之上述和其他目的、特徵、優點與實施例 所附圖式之說明如下: M426947 第1圖是依照本新型一實施方式之交錯式直流對直流 轉換器的功能方塊圖。 第2圖係繪示第1圖之交錯式直流對直流轉換器的電 路圖。 '第3A-3D圖係繪示第2圖之交錯式直流對直流轉換器 中第一轉換器單元之四種模式。 第4圖係繪示第2圖之交錯式直流對直流轉換器中第 一轉換器單元之四種模式時的電壓波形圖。 • 第5圖係繪示第2圖之交錯式直流對直流轉換器的控 制訊號、各電壓及各電流之波形圖。 第6圖係繪示依據本新型之實施例的交錯式直流對直 流轉換器的輸出電壓之波形圖。 【主要元件符號說明】 110 燃料電池 Ci :輸入電容 120 交錯式直流對直流轉換器 Co 輸出電容 121 第一轉換器單元 Cl 第一電容 122 第二轉換器單元 C2 第二電容 130 負載 D1 第一二極體 140 微處理器 D2 第二二極體 S1 : 第一開關 D3 第三二極體 S2 : 第二開關 D4 第四二極體 S3 : 第三開關 LI 第一電感 S4 : 第四開關 L2 第二電感 si * 第一控制訊號 L3 第三電感 15 M426947 L4 :第四電感 Vi :輸入電壓 Vo :輸出電壓 s2 :第二控制訊號 s3 :第三控制訊號 s4 :第四控制訊號 P:電壓輸入點 Q :電壓輸出點 G:電壓參考點From =(么ϋ_!)(1-浑1 LL η η = ^L{lD)T, LnG{L^L2} (22) • AVC0=IoDT (23), the interleaved DC proposed by the present invention Two sets of converter circuits are used for the DC converter, and the current is distributed in four branches due to the upper and lower staggered parallel configuration of the two converter units, so that the current stress of the switch and the inductor can be reduced, in other words, it is lowered. The voltage chopping is controlled by the control signal to control the switches of the first converter unit and the second converter unit, so that the output voltage of the first converter unit can be chopped with the output voltage of the second converter unit. Offset, the two sets of voltage chopping output are phase-shifted, and the output voltage ripple is reduced. According to one embodiment of the present invention, the output voltage of the fuel cell is about 26 to 43 V (this is the input voltage of the interleaved DC-to-DC converter), and the output voltage to the load is raised to 300 V. At a load of 2,020 Ω, the output power is about 43 W, and when the load is 450 Ω, the output power is about 200 W. Fig. 6 is a waveform diagram showing the output voltage of the interleaved DC-DC converter of the above embodiment. From Fig. 6, the improvement of the chopping waveform in the output voltage of the interleaved DC-to-DC converter of the present invention can be seen. In the sixth picture of detail 13, the peak-to-peak voltage is about 9.5V, and the voltage-to-wave ratio is three. Therefore, according to the above-mentioned new embodiment, the present invention can provide a high rise. The voltage ratio of the voltage is divided by the interleaved circuit structure to reduce the ripple of the output voltage. And because of the circuit structure, the current is dispersed into four shunts, so that the current stress of the switch = fins can be reduced. Therefore, the novel interleaved DC-to-electric converter can enhance various applications of the fuel cell, and thus is of considerable benefit to the alternative development. ", it is worth mentioning that the present invention uses the first converter unit, a control signal and a second control signal remain unchanged, and the second converter unit has a third control signal and a fourth signal to the microprocessor. The adjustment control causes phase shift of the output voltage chopping waveform of the first converter unit, and further interleaves with the output voltage chopping waveform of the first to the converter unit to reduce the voltage chopping value, no recognition, phase output control or non-in-phase output control As long as the second converter single 弋 涟 涟 涟 phase shift to the appropriate phase 汲 and the first converter unit output power = wave waveform staggered, thereby producing a reduced output voltage chopping effect, a feasible implementation of the creation scope protection . The present invention has been disclosed in the above embodiments, but it is not intended to be used by any person skilled in the art. The attached towel should be subject to the definition of Patent Park. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the drawings are as follows: M426947 FIG. 1 is an interlaced according to an embodiment of the present invention. Functional block diagram of a DC-to-DC converter. Figure 2 is a circuit diagram of the interleaved DC-to-DC converter of Figure 1. 'The 3A-3D diagram shows the four modes of the first converter unit in the interleaved DC-DC converter of Fig. 2. Fig. 4 is a diagram showing voltage waveforms in four modes of the first converter unit in the interleaved DC-DC converter of Fig. 2. • Figure 5 shows the waveforms of the control signals, voltages, and currents of the interleaved DC-to-DC converter in Figure 2. Figure 6 is a waveform diagram showing the output voltage of an interleaved DC-to-DC converter in accordance with an embodiment of the present invention. [Main component symbol description] 110 Fuel cell Ci: Input capacitor 120 Interleaved DC-to-DC converter Co Output capacitor 121 First converter unit Cl First capacitor 122 Second converter unit C2 Second capacitor 130 Load D1 First two Pole body 140 Microprocessor D2 Second diode S1: First switch D3 Third diode S2: Second switch D4 Fourth diode S3: Third switch LI First inductance S4: Fourth switch L2 Two inductors si * First control signal L3 Third inductance 15 M426947 L4 : Fourth inductance Vi : Input voltage Vo : Output voltage s2 : Second control signal s3 : Third control signal s4 : Fourth control signal P : Voltage input point Q: voltage output point G: voltage reference point

1616

Claims (1)

M426947 六、申請專利範園: 1. 一種交錯式直流對直流轉換器,包含: 一輸入電容,兩端分別與一電壓輸入點及一電壓參考 - 點電性連接; 一第一轉換器單元’包含: 一第一開關,受控於一第一控制訊號,該第 開關之一端藉由一第一電感與該電壓輸入點電 • f生連接’該第一開關之另一端與該電壓參考點電 性連接,且該第一開關與該第一電感之間與一第 一二極體之正極電性連接;及 一 一第二開關,受控於一第二控制訊號,該第 ,一開關之一端藉由一第二電感與該電壓輸入點電 生連接’該第二開關之另一端與該電壓參考點電 t連接’ 第二_與該第二電感之間藉由-第一電容與該第一二極體之負極和-第二二極體 極電性連接’其中該第二二極體之負極與一 電壓輸出點電性連接; —第二轉換器單元,包含: :第三開關’受控於—第三控制訊號,該第 之—端藉由—第三電感_ 輸人點電 性、表技’該第二開關之另—端與該電齡考點電 :_且該第三開關與該第三電感之間與-第 一一極體之正極電性連接;及 四門關,四H ’焚控於一第四控制訊號’該第 四開關之一端藉由一第四電感與該電壓輸入點電 17 M426947 性連接,該第四開關之另一端與該電壓參考點電 性連接,且該第四開關與該第四電感之間藉由一 第二電容與該第三二極體之負極和一第四二極體 之正極電性連接,其中該第四二極體之負極與該 電壓輸出點電性連接; 一輸出電容,兩端分別與該電壓輸出點及該電壓參考 點電性連接。 _ 2. 如請求項1所述之交錯式直流對直流轉換器,其 中該第一控制訊號與該第四控制訊號同相位。 3. 如請求項1所述之交錯式直流對直流轉換器,其 中該第二控制訊號與該第三控制訊號同相位。 4. 如請求項1所述之交錯式直流對直流轉換器,其 中該電壓輸入點與該電壓參考點與一燃料電池並聯。 5. 如請求項1所述之交錯式直流對直流轉換器,其 中該電壓輸出點與該電壓參考點與一負載並聯。 6. 如請求項1所述之交錯式直流對直流轉換器,其 中該第一控制訊號、該第二控制訊號、該第三控制訊號與 該第四控制訊號由一微處理器產生。 18M426947 VI. Application for Patent Park: 1. An interleaved DC-to-DC converter comprising: an input capacitor with two voltage terminals and a voltage reference-point electrically connected; a first converter unit The first switch is controlled by a first control signal, and one end of the first switch is connected to the voltage input point by a first inductor. The other end of the first switch and the voltage reference point Electrically connected, and the first switch and the first inductor are electrically connected to a positive pole of a first diode; and the second switch is controlled by a second control signal, the first switch One end is electrically connected to the voltage input point by a second inductor. The other end of the second switch is electrically connected to the voltage reference point. The second _ and the second inductor are coupled by a first capacitor. The anode of the first diode and the second diode are electrically connected; wherein the cathode of the second diode is electrically connected to a voltage output point; and the second converter unit comprises: The switch is 'controlled' - the third control signal, The first-end by - the third inductance _ input point electrical, the surface technology 'the other end of the second switch and the electrical age test point: _ and the third switch and the third inductance between - The first pole of the first pole is electrically connected; and the four gates are closed, and the four H' is controlled by a fourth control signal. One of the fourth switches is connected to the voltage input point by a fourth inductor. The other end of the fourth switch is electrically connected to the voltage reference point, and the fourth switch and the fourth inductor are connected by a second capacitor and the third and second diodes of the third diode The positive pole of the body is electrically connected, wherein the negative pole of the fourth diode is electrically connected to the voltage output point; and an output capacitor is electrically connected to the voltage output point and the voltage reference point respectively. 2. The interleaved DC-to-DC converter of claim 1, wherein the first control signal is in phase with the fourth control signal. 3. The interleaved DC-to-DC converter of claim 1, wherein the second control signal is in phase with the third control signal. 4. The interleaved DC-to-DC converter of claim 1, wherein the voltage input point is in parallel with the voltage reference point and a fuel cell. 5. The interleaved DC-to-DC converter of claim 1, wherein the voltage output point is in parallel with the voltage reference point and a load. 6. The interleaved DC-to-DC converter of claim 1, wherein the first control signal, the second control signal, the third control signal, and the fourth control signal are generated by a microprocessor. 18
TW100223178U 2011-12-08 2011-12-08 Interleaved dc-dc converter TWM426947U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100223178U TWM426947U (en) 2011-12-08 2011-12-08 Interleaved dc-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100223178U TWM426947U (en) 2011-12-08 2011-12-08 Interleaved dc-dc converter

Publications (1)

Publication Number Publication Date
TWM426947U true TWM426947U (en) 2012-04-11

Family

ID=46464061

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100223178U TWM426947U (en) 2011-12-08 2011-12-08 Interleaved dc-dc converter

Country Status (1)

Country Link
TW (1) TWM426947U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462449B (en) * 2012-09-18 2014-11-21 Nat Univ Chin Yi Technology High voltage ratio interleaved converter with soft-switching
TWI465024B (en) * 2012-09-19 2014-12-11 Nat Univ Chin Yi Technology Bidirectional buck-boost converter with soft-switching
TWI501527B (en) * 2013-08-09 2015-09-21 Nat Univ Chin Yi Technology High voltage ratio interleaved converter with soft-switching using single auxiliary switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462449B (en) * 2012-09-18 2014-11-21 Nat Univ Chin Yi Technology High voltage ratio interleaved converter with soft-switching
TWI465024B (en) * 2012-09-19 2014-12-11 Nat Univ Chin Yi Technology Bidirectional buck-boost converter with soft-switching
TWI501527B (en) * 2013-08-09 2015-09-21 Nat Univ Chin Yi Technology High voltage ratio interleaved converter with soft-switching using single auxiliary switch

Similar Documents

Publication Publication Date Title
Tseng et al. High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system
Son et al. A new buck–boost converter with low-voltage stress and reduced conducting components
Tseng et al. A high step-up converter with a voltage multiplier module for a photovoltaic system
Zhang et al. An impedance network boost converter with a high-voltage gain
Sanjeevikumar et al. A simple MPPT algorithm for novel PV power generation system by high output voltage DC-DC boost converter
Rosas-Caro et al. Quadratic buck–boost converter with positive output voltage and continuous input current for PEMFC systems
CN107919797B (en) Wide input range interleaving parallel connection type high-efficiency boost direct-current converter for fuel cell
Kumar et al. A wide voltage gain bidirectional DC–DC converter based on quasi Z-source and switched capacitor network
TWM426947U (en) Interleaved dc-dc converter
Lai et al. High-efficiency design of multiphase synchronous mode soft-switching converter for wide input and load range
TWI575857B (en) Step up dc converter
Bhaskar et al. Ll converter for fuel cell vehicular power train applications: Hardware implementation of primary member of xy converter family
KR101099790B1 (en) A Power Conversion Device for Fuel Cell
Rana et al. An improved buck-boost converter suitable for PV application
DivyaNavamani et al. Expandable transformer-less high-gain dc–dc converter based on quasi-Z source and multiplier cells
Salary et al. Innovative step‐up direct current converter for fuel cell‐based power source to decrease current ripple and increase voltage gain
Tseng et al. Ultra high step-up converters with reduced diode stresses sharing
Hayano et al. Efficiency characteristics of cascaded multistage boost converter
Jagtap et al. A high gain single switch modified SEPIC converter
Sasi et al. Interleaved bidirectional dc/dc converter topologies for solar based standalone distributed generation systems
Tsotoulidis et al. Comparative study of three types of step–up DC-DC converters for polymer electrolyte membrane fuel cell applications
Tank et al. Performance Evaluation of Differential Mode Zeta Inverter using Various Modulation Schemes
Ozsoy et al. Modified SEPIC DC-to-DC converter 2/(1-k) output gain configuration for renewable power energy and high voltage applications
Liang et al. A Non-Isolated Bidirectional DC-DC Converter with High Conversion Ratio
Wang et al. Study of a coupled inductor converter based active-network

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees