TWI594554B - Interleaved high efficiency high-step-up direct current transformer - Google Patents

Interleaved high efficiency high-step-up direct current transformer Download PDF

Info

Publication number
TWI594554B
TWI594554B TW105134581A TW105134581A TWI594554B TW I594554 B TWI594554 B TW I594554B TW 105134581 A TW105134581 A TW 105134581A TW 105134581 A TW105134581 A TW 105134581A TW I594554 B TWI594554 B TW I594554B
Authority
TW
Taiwan
Prior art keywords
voltage
power switch
coupled inductor
switch
auxiliary switch
Prior art date
Application number
TW105134581A
Other languages
Chinese (zh)
Other versions
TW201817144A (en
Inventor
陳信助
楊松霈
楊上億
李欣達
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW105134581A priority Critical patent/TWI594554B/en
Application granted granted Critical
Publication of TWI594554B publication Critical patent/TWI594554B/en
Publication of TW201817144A publication Critical patent/TW201817144A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Description

交錯式高效率高升壓直流轉換器Interleaved high efficiency high boost DC converter

本發明係有關於一種交錯式高效率高升壓直流轉換器,尤其是指一種利用交錯式操作,具有漣波電流相消的效用,可降低漣波電流大小,進而可降低濾波元件大小,且可擴增電壓增益,在較高電壓增益時,不必操作在極大的導通比,並能達到零電壓切換,降低切換損失及導通損失,而在其整體施行使用上更增實用功效特性之交錯式高效率高升壓直流轉換器創新設計者。The invention relates to an interleaved high-efficiency high-boost DC converter, in particular to an interleaved operation, having the utility of chopping current cancellation, which can reduce the chopping current, thereby reducing the size of the filter component, and Amplizable voltage gain, when operating at higher voltage gains, does not have to operate at a very large conduction ratio, and can achieve zero voltage switching, reducing switching loss and conduction loss, and interleaving with more practical utility characteristics in its overall implementation. Innovative designer of high efficiency and high boost DC converters.

按,近年來由於全球性能源危機以及環保意識提升,因此找尋替代能源即成為一個重要的課題,許多替代能源如太陽能、風能、水力、生質能與燃料電池等皆是相當有潛力的綠色能源。在再生能源電力系統應用中,太陽能發電系統及燃料電池發電系統的技術發展越來越成熟,常常在分散式發電系統(distributed generation system)扮演重要的角色,一般而言,太陽能電池模組與燃料電池所產生的輸出電壓是屬於低電壓,一般不超過 ,為了達到併網發電系統或直流微電網的需求,必須先將此低電壓利用高升壓DC-DC轉換器,升壓至一個高直流排電壓,以利全橋換流器(inverter)的DC-AC轉換。理論上,操作在極高導通比的傳統升壓型(boost)轉換器能夠得到高電壓增益,但是實務上受到寄生元件的影響,電壓轉換比受限在約5倍以下,因此當電壓增益超過5倍的需求時,研發嶄新的高效率之電源轉換器拓樸(Topology)是必要的,這也是近幾年電力電子工程領域中常見的研究課題。 According to the recent global energy crisis and environmental awareness, the search for alternative energy sources has become an important issue. Many alternative energy sources such as solar energy, wind energy, hydropower, biomass and fuel cells are quite potential green. energy. In renewable energy power system applications, the technology development of solar power systems and fuel cell power generation systems is becoming more and more mature, often playing an important role in distributed generation systems. In general, solar modules and fuels The output voltage generated by the battery is a low voltage, generally not exceeding In order to meet the requirements of the grid-connected power generation system or the DC microgrid, the low-voltage DC-DC converter must be boosted to a high DC-row voltage to facilitate the full-bridge inverter. DC-AC conversion. In theory, a conventional boost converter operating at very high turn-on ratio can achieve high voltage gain, but in practice it is affected by parasitic components, and the voltage conversion ratio is limited to less than about 5 times, so when the voltage gain exceeds At five times the demand, it is necessary to develop a new high-efficiency power converter topology, which is a common research topic in the field of power electronics engineering in recent years.

其中,就一般常見之交錯式升壓型轉換器而言,請參閱第三十三圖現有之交錯式升壓型轉換器電路圖所示,該交錯式升壓型轉換器(2)具有處理較大功率、降低輸入電流漣波之特性,且能改善動態響應、減少磁性元件尺寸和有利於熱分散等優點;但,該交錯式升壓型轉換器(2)於達到高升壓比時,其需操作在極大的導通比。Among them, as for the commonly used interleaved boost converter, please refer to the circuit diagram of the existing interleaved boost converter of the 33rd diagram, the interleaved boost converter (2) has processing High power, reduced input current chopping characteristics, and improved dynamic response, reduced magnetic component size and favorable heat dispersion; however, the interleaved boost converter (2) achieves a high boost ratio when It needs to operate at a very large conduction ratio.

因此,即有研發改良出一種修正式升壓-返馳式轉換器(3),請再參閱第三十四圖現有之修正式升壓-返馳式轉換器電路圖所示,該修正式升壓-返馳式轉換器(3)利用耦合電感 ,而形成具有電壓倍增模組的高升壓轉換器。 Therefore, the development of a modified boost-return converter (3), please refer to the circuit diagram of the modified correction boost-return converter of the thirty-fourth figure, the modified rise Press-return converter (3) utilizes coupled inductor , And form a high boost converter with a voltage multiplying module.

然而,上述該交錯式升壓型轉換器(2)、該修正式升壓-返馳式轉換器(3)於使用上卻發現,由於其功率開關皆係屬於硬性切換(hard switching),並無柔性切換性能,使得其在高頻切換過程中,切換損失會導致功率開關元件溫度上升,減少功率開關元件之使用壽命,導致無法達到更高的效率。However, the interleaved boost converter (2) and the modified boost-return converter (3) described above are found to be hard switching due to their power switches. There is no flexible switching performance, so that during the high-frequency switching process, the switching loss will cause the temperature of the power switching element to rise, reducing the service life of the power switching element, resulting in failure to achieve higher efficiency.

緣是,發明人有鑑於此,秉持多年該相關行業之豐富設計開發及實際製作經驗,針對現有之結構及缺失再予以研究改良,提供一種交錯式高效率高升壓直流轉換器,以期達到更佳實用價值性之目的者。In view of this, the inventor has provided a kind of interleaved high-efficiency and high-boost DC converter with a view to the rich experience in design, development and actual production of the relevant industry for many years, and to provide an interleaved high-efficiency and high-boost DC converter. The purpose of good practical value.

本發明之主要目的在於提供一種交錯式高效率高升壓直流轉換器,其主要係利用交錯式操作,具有漣波電流相消的效用,可降低漣波電流大小,進而可降低濾波元件大小,且可擴增電壓增益,在較高電壓增益時,不必操作在極大的導通比,並能達到零電壓切換,降低切換損失及導通損失,而在其整體施行使用上更增實用功效特性者。The main object of the present invention is to provide an interleaved high-efficiency high-boost DC converter, which mainly utilizes an interleaved operation and has the utility of chopping current cancellation, which can reduce the chopping current, thereby reducing the size of the filter component. Moreover, the voltage gain can be amplified, and at a higher voltage gain, it is not necessary to operate at a very large conduction ratio, and can achieve zero voltage switching, reduce switching loss and conduction loss, and more practical performance characteristics in its overall implementation.

本發明交錯式高效率高升壓直流轉換器之主要目的與功效,係由以下具體技術手段所達成:The main purpose and effect of the interleaved high efficiency and high-boost DC converter of the present invention are achieved by the following specific technical means:

其主要係令轉換器於輸入電源 之正極並聯有第一耦合電感一次側 之第一端與第二耦合電感一次側 之第一端,於輸入電源 之負極則並聯有第一功率開關 之第二端、第二功率開關 之第二端、第三輸出電容 之第二端及負載阻抗 之第二端,令該第一耦合電感一次側 之第二端與該第一功率開關 之第一端一併連接至第一輔助開關 之第二端,令該第二耦合電感一次側 之第二端與該第二功率開關 之第一端一併連接至第二輔助開關 之第二端,令該第一輔助開關 之第一端與該第二輔助開關 之第一端一併連接至該第三輸出電容 之第一端、第一輸出電容 之第二端、第一倍壓二極體 之正極,令該第一輸出電容 之第一端分別與第二輸出電容 之第二端、第一耦合電感二次側 之第二端相連接,令該第一倍壓二極體 之負極分別與第二倍壓二極體 之正極、第二耦合電感二次側 之第二端相連接,該第一耦合電感二次側 之第一端與該第二耦合電感二次側 之第一端相連接,令該第二輸出電容 之第一端、該第二倍壓二極體 之負極一併連接至該負載阻抗 之第一端。 Mainly to make the converter on the input power The positive pole is connected in parallel with the first coupled inductor primary side First side and second coupled inductor primary side The first end, at the input power The negative pole is connected in parallel with the first power switch Second end, second power switch Second end, third output capacitor Second end and load impedance The second end of the first coupling inductor The second end and the first power switch The first end is connected to the first auxiliary switch The second end of the second coupled inductor The second end and the second power switch The first end is connected to the second auxiliary switch The second end of the first auxiliary switch First end and the second auxiliary switch The first end is connected to the third output capacitor First end, first output capacitor Second end, first voltage doubled body The positive electrode, the first output capacitor First end and second output capacitor Second end, first coupled inductor secondary side The second end is connected to the first voltage doubler The negative pole and the second voltage doubled body The positive side and the second coupled inductor secondary side The second end of the first coupling inductor is connected The first end and the second coupled inductor secondary side The first end is connected to make the second output capacitor First end, the second voltage doubled body The negative pole is connected to the load impedance The first end.

本發明交錯式高效率高升壓直流轉換器,其中,該第一功率開關 及該第二功率開關 係為N通道之金氧場效應電晶體[MOSFET],且該第一功率開關 及該第二功率開關 之第一端為汲極[Drian]、第二端為源極[Sourse]。 The interleaved high efficiency high step-up DC converter of the present invention, wherein the first power switch And the second power switch Is a N-channel gold-oxygen field effect transistor [MOSFET], and the first power switch And the second power switch The first end is the drain [Drian] and the second end is the source [Sourse].

本發明交錯式高效率高升壓直流轉換器,其中,該第一輔助開關 及該第二輔助開關 係為N通道之金氧場效應電晶體[MOSFET],且該第一輔助開關 及該第二輔助開關 之第一端為汲極[Drian]、第二端為源極[Sourse]。 The interleaved high efficiency high-boost DC converter of the present invention, wherein the first auxiliary switch And the second auxiliary switch Is a N-channel gold-oxygen field effect transistor [MOSFET], and the first auxiliary switch And the second auxiliary switch The first end is the drain [Drian] and the second end is the source [Sourse].

本發明交錯式高效率高升壓直流轉換器,其中,該第一耦合電感包含有第一磁化電感 及第一漏電感 ,該第二耦合電感包含有第二磁化電感 及第二漏電感 The interleaved high efficiency high-boost DC converter of the present invention, wherein the first coupled inductor includes a first magnetizing inductance And first leakage inductance The second coupled inductor includes a second magnetizing inductance And second leakage inductance .

本發明交錯式高效率高升壓直流轉換器,其中,該第一耦合電感一次側 與該第一耦合電感二次側 構成第一理想變壓器,該第二耦合電感一次側 與該第二耦合電感二次側 構成第二理想變壓器。 The interleaved high efficiency high-boost DC converter of the present invention, wherein the first coupled inductor is on the primary side Secondary side with the first coupled inductor Forming a first ideal transformer, the second coupled inductor primary side Secondary side with the second coupled inductor Forms a second ideal transformer.

本發明交錯式高效率高升壓直流轉換器,其中,該第一理想變壓器與該第二理想變壓器之匝數比為相同。The interleaved high efficiency high-boost DC converter of the present invention, wherein the first ideal transformer and the second ideal transformer have the same turns ratio.

為令本發明所運用之技術內容、發明目的及其達成之功效有更完整且清楚的揭露,茲於下詳細說明之,並請一併參閱所揭之圖式及圖號:For a more complete and clear disclosure of the technical content, the purpose of the invention and the effects thereof achieved by the present invention, it is explained in detail below, and please refer to the drawings and drawings:

首先,請參閱第一圖本發明之電路圖所示,本發明之轉換器(1)主要係於輸入電源 之正極並聯有第一耦合電感一次側 之第一端與第二耦合電感一次側 之第一端,於輸入電源 之負極則並聯有第一功率開關 之第二端、第二功率開關 之第二端、第三輸出電容 之第二端及負載阻抗 之第二端,該第一功率開關 及該第二功率開關 可為N通道之金氧場效應電晶體[MOSFET],且該第一功率開關 及該第二功率開關 之第一端為汲極[Drian]、第二端為源極[Sourse],令該第一耦合電感一次側 之第二端與該第一功率開關 之第一端一併連接至第一輔助開關 之第二端,令該第二耦合電感一次側 之第二端與該第二功率開關 之第一端一併連接至第二輔助開關 之第二端,該第一輔助開關 及該第二輔助開關 可為N通道之金氧場效應電晶體[MOSFET],且該第一輔助開關 及該第二輔助開關 之第一端為汲極[Drian]、第二端為源極[Sourse],令該第一輔助開關 之第一端與該第二輔助開關 之第一端一併連接至該第三輸出電容 之第一端、第一輸出電容 之第二端、第一倍壓二極體 之正極,令該第一輸出電容 之第一端分別與第二輸出電容 之第二端、第一耦合電感二次側 之第二端相連接,令該第一倍壓二極體 之負極分別與第二倍壓二極體 之正極、第二耦合電感二次側 之第二端相連接,該第一耦合電感二次側 之第一端與該第二耦合電感二次側 之第一端相連接,令該第二輸出電容 之第一端、該第二倍壓二極體 之負極一併連接至該負載阻抗 之第一端。 First, referring to the first diagram of the circuit diagram of the present invention, the converter (1) of the present invention is mainly used for input power. The positive pole is connected in parallel with the first coupled inductor primary side First side and second coupled inductor primary side The first end, at the input power The negative pole is connected in parallel with the first power switch Second end, second power switch Second end, third output capacitor Second end and load impedance The second end, the first power switch And the second power switch Can be an N-channel gold oxide field effect transistor [MOSFET], and the first power switch And the second power switch The first end is a drain [Drian] and the second end is a source [Sourse], so that the first coupled inductor is on the primary side. The second end and the first power switch The first end is connected to the first auxiliary switch The second end of the second coupled inductor The second end and the second power switch The first end is connected to the second auxiliary switch The second end, the first auxiliary switch And the second auxiliary switch Can be an N-channel gold oxide field effect transistor [MOSFET], and the first auxiliary switch And the second auxiliary switch The first end is a drain [Drian] and the second end is a source [Sourse], so that the first auxiliary switch First end and the second auxiliary switch The first end is connected to the third output capacitor First end, first output capacitor Second end, first voltage doubled body The positive electrode, the first output capacitor First end and second output capacitor Second end, first coupled inductor secondary side The second end is connected to the first voltage doubler The negative pole and the second voltage doubled body The positive side and the second coupled inductor secondary side The second end of the first coupling inductor is connected The first end and the second coupled inductor secondary side The first end is connected to make the second output capacitor First end, the second voltage doubled body The negative pole is connected to the load impedance The first end.

請再參照第二圖所示,其為第一圖之轉換器(1)的等效電路示意圖,該第一耦合電感可包含有第一磁化電感 及第一漏電感 ,令該第一耦合電感一次側 與該第一耦合電感二次側 構成第一理想變壓器,而該第二耦合電感可包含有第二磁化電感 及第二漏電感 ,令該第二耦合電感一次側 與該第二耦合電感二次側 構成第二理想變壓器,該第一理想變壓器與該第二理想變壓器之匝數比為相同;而由於該第一耦合電感一次側 與該第二耦合電感一次側 係為並聯,使得能分擔總輸入電流,配合交錯式操作,可減少輸入電流漣波;該第一耦合電感二次側 與該第二耦合電感二次側 係為串聯,使得能增加電壓增益。 Please refer to the second figure, which is an equivalent circuit diagram of the converter (1) of the first figure, the first coupled inductor may include a first magnetizing inductance And first leakage inductance , making the first coupled inductor primary side Secondary side with the first coupled inductor Forming a first ideal transformer, and the second coupled inductor may include a second magnetizing inductance And second leakage inductance , making the second coupled inductor primary side Secondary side with the second coupled inductor Forming a second ideal transformer, the first ideal transformer and the second ideal transformer have the same turns ratio; and because the first coupled inductor is on the primary side Primary side with the second coupled inductor Parallel connection, so that the total input current can be shared, and the interleaved operation can reduce the input current ripple; the first coupled inductor secondary side Secondary side with the second coupled inductor The series is connected so that the voltage gain can be increased.

而該轉換器(1)在使用過程中,係操作於連續導通模式[CCM],導通比大於0.5,而且該第一功率開關 和該第二功率開關 以工作相位相差180∘的交錯式操作該第一輔助開關 及該第二輔助開關 與該第一功率開關 及該第二功率開關 採互補式操作。穩態時,該轉換器(1)根據該第一功率開關 和該第二功率開關 及該第一倍壓二極體 和該第二倍壓二極體 的ON/OFF狀態,在一個切換週期內該轉換器(1)可分成16個操作階段,而由於該轉換器(1)電路的對稱性,以下僅對前8個階段作簡要的電路動作分析,假設: The converter (1) is operated in a continuous conduction mode [CCM] during use, the conduction ratio is greater than 0.5, and the first power switch And the second power switch The first auxiliary switch is operated in an interleaved manner with a working phase difference of 180 ∘ And the second auxiliary switch With the first power switch And the second power switch Complementary operation. At steady state, the converter (1) is based on the first power switch And the second power switch And the first voltage doubled body And the second voltage doubled body In the ON/OFF state, the converter (1) can be divided into 16 operating phases in one switching cycle, and due to the symmetry of the converter (1) circuit, only the first eight phases are briefly analyzed. , assuming:

1.該第一功率開關 和該第二功率開關 及該第一倍壓二極體 和該第二倍壓二極體 的導通壓降皆為零; 1. The first power switch And the second power switch And the first voltage doubled body And the second voltage doubled body The conduction voltage drop is zero;

2.該第三輸出電容 、該第一輸出電容 和該第二輸出電容 夠大,第三輸出電容電壓 、第一輸出電容電壓 和第二輸出電容電壓 可視為定電壓,因此輸出電壓 可視為常數; 2. The third output capacitor The first output capacitor And the second output capacitor Large enough, third output capacitor voltage First output capacitor voltage And second output capacitor voltage Can be regarded as a constant voltage, so the output voltage Can be regarded as a constant;

3.該第一耦合電感與該第二耦合電感的匝數比相等( ),且該第一磁化電感 與該第二磁化電感 相等( ),該第一漏電感 與該第二漏電感 相等( ),該第一磁化電感 與該第二磁化電感 遠大於該第一漏電感 與該第二漏電感 3. The first coupling inductor and the second coupled inductor have the same turns ratio ( And the first magnetizing inductance And the second magnetizing inductance equal( ), the first leakage inductance And the second leakage inductance equal( ), the first magnetizing inductance And the second magnetizing inductance Far greater than the first leakage inductance And the second leakage inductance ;

4.該第一耦合電感之該第一磁化電感 與該第二耦合電感之該第二磁化電感 的電流操作在連續導通模式(Continuous Conduction Mode, CCM)。 4. The first magnetizing inductance of the first coupled inductor The second magnetizing inductance of the second coupled inductor The current is operated in Continuous Conduction Mode (CCM).

其各線性階段線性等效電路以及主要元件波形如下所示,請再一併參閱第三圖本發明之主要元件時序波形圖所示:The linear equivalent circuit and the main component waveforms of each linear phase are as follows. Please refer to the third diagram of the main component timing waveform diagram of the present invention as shown in the following figure:

第一階段[ ]:[第一功率開關 :ON、第二功率開關 :ON、第一輔助開關 :OFF、第二輔助開關 :OFF、第一倍壓二極體 :OFF、第二倍壓二極體 :OFF]:請再一併參閱第四圖本發明之第一操作階段等效電路圖所示,本階段開始於 ,該第一功率開關 與該第二功率開關 皆為ON[導通],該第一輔助開關 與該第二輔助開關 皆為OFF[截止]。該第一倍壓二極體 與該第二倍壓二極體 均為逆向偏壓而截止。輸入電源 跨於該第一、二耦合電感的一次側,即跨於該第一磁化電感 、該第一漏電感 、該第二磁化電感 、該第二漏電感 上,該第一、二耦合電感的一次側電流呈線性上升。當 時,第二功率開關 切換為OFF,進入下一階段。 The first stage[ ]:[First power switch :ON, second power switch :ON, the first auxiliary switch :OFF, second auxiliary switch :OFF, first voltage doubled body :OFF, second voltage doubled body :OFF]: Please refer to the fourth diagram. The equivalent circuit diagram of the first operation stage of the present invention is shown in this figure. The first power switch And the second power switch All are ON [on], the first auxiliary switch And the second auxiliary switch All are OFF [cutoff]. The first voltage doubled body And the second voltage doubled body Both are reverse biased and cut off. Input power Across the first side of the first and second coupled inductors, that is, across the first magnetizing inductance The first leakage inductance The second magnetizing inductance The second leakage inductance The primary side current of the first and second coupled inductors rises linearly. when Second power switch Switch to OFF and proceed to the next stage.

第二階段[ ]:[第一功率開關 :ON、第二功率開關 :OFF、第一輔助開關 :OFF、第二輔助開關 :OFF、第一倍壓二極體 :OFF、第二倍壓二極體 :OFF]:請再一併參閱第五圖本發明之第二操作階段等效電路圖所示,本階段開始於 ,該第一功率開關 保持為ON,該第二功率開關 切換為OFF,該第二漏電感 之電流 對該第二功率開關 的寄生電容 充電,該第二功率開關 的跨壓 由零電壓開始快速上升,因為該寄生電容 很小,所以本階段時間很短。當 時,該第二功率開關 的跨壓 電壓上升至輸出第三輸出電容電壓 ,該第二輔助開關 之本體二極體導通,該第二功率開關 的跨壓 箝位在第三輸出電容電壓 ,本階段結束。 second stage[ ]:[First power switch :ON, second power switch :OFF, first auxiliary switch :OFF, second auxiliary switch :OFF, first voltage doubled body :OFF, second voltage doubled body :OFF]: Please refer to the fifth diagram. The equivalent circuit diagram of the second operation stage of the present invention is shown in this figure. The first power switch Keep ON, the second power switch Switch to OFF, the second leakage inductance Current The second power switch Parasitic capacitance Charging, the second power switch Cross pressure Fast rise from zero voltage because of the parasitic capacitance Very small, so this time is very short. when The second power switch Cross pressure Voltage rises to output third output capacitor voltage The second auxiliary switch The body diode is turned on, the second power switch Cross pressure Clamping at the third output capacitor voltage This phase ends.

第三階段[ ]:[第一功率開關 :ON、第二功率開關 :OFF、第一輔助開關 :OFF、第二輔助開關 :OFF、第一倍壓二極體 :OFF、第二倍壓二極體 :OFF]:請再一併參閱第六圖本發明之第三操作階段等效電路圖所示,本階段開始於 ,該第二輔助開關 的本體二極體導通,該第二漏電感 之電流 經由該第二輔助開關 之本體二極體對第三輸出電容 充電,該第二漏電感 之電流 下降,該第一功率開關 保持為ON。當 時,該第二倍壓二極體 轉變為ON,本階段結束。 The third stage[ ]:[First power switch :ON, second power switch :OFF, first auxiliary switch :OFF, second auxiliary switch :OFF, first voltage doubled body :OFF, second voltage doubled body :OFF]: Please refer to the sixth diagram for the third phase of the invention, as shown in the equivalent circuit diagram. This phase begins at The second auxiliary switch The body diode is turned on, the second leakage inductance Current Via the second auxiliary switch Body diode to third output capacitor Charging, the second leakage inductance Current Falling, the first power switch Keep it ON. when The second voltage doubled body Turned to ON, this phase ends.

第四階段[ ]:[第一功率開關 :ON、第二功率開關 :OFF、第一輔助開關 :OFF、第二輔助開關 :OFF、第一倍壓二極體 :OFF、第二倍壓二極體 :ON]:請再一併參閱第七圖本發明之第四操作階段等效電路圖所示,本階段開始於 ,該第二倍壓二極體 轉變為ON。儲存在該第二磁化電感 的能量藉由第二耦合電感傳送至二次側 ,經由第二倍壓二極體 對第二輸出電容 充電。另一方面,因為第二耦合電感二次側 電流反射至第一耦合電感的理想變壓器一次側 ,使得第一耦合電感的第一漏電感 電流 快速上升。當時,第二輔助開關 切換成ON時,本階段結束。 Fourth stage [ ]:[First power switch :ON, second power switch :OFF, first auxiliary switch :OFF, second auxiliary switch :OFF, first voltage doubled body :OFF, second voltage doubled body :ON]: Please refer to the seventh diagram. The equivalent circuit diagram of the fourth operation stage of the present invention is shown in this stage. The second voltage doubled body Change to ON. Stored in the second magnetizing inductance Energy is transmitted to the secondary side by the second coupled inductor Via the second voltage doubled body Second output capacitor Charging. On the other hand, because of the secondary side of the second coupled inductor Current reflected to the first side of the ideal transformer of the first coupled inductor a first leakage inductance of the first coupled inductor Current , rise rapidly. At that time, the second auxiliary switch When switching to ON, this phase ends.

第五階段[ ]:[第一功率開關 :ON、第二功率開關 :OFF、第一輔助開關 :OFF、第二輔助開關 :ON、第一倍壓二極體 :OFF、第二倍壓二極體 :ON]:請再一併參閱第八圖本發明之第五操作階段等效電路圖所示,本階段開始於 ,該第二輔助開關 切換為ON。由於此時該第二輔助開關 之本體二極體導通,所以該第二輔助開關 之跨壓為零,因此該第二輔助開關 達成零電壓切換[ZVS]性能,此時原本流經本體二極體的電流轉移到該第二輔助開關 對第三輸出電容 充電,該第二漏電感 之電流 持續下降,進而改變電流方向。當時,該第二輔助開關 切換為OFF,本階段結束。 Fifth stage [ ]:[First power switch :ON, second power switch :OFF, first auxiliary switch :OFF, second auxiliary switch :ON, the first voltage doubled body :OFF, second voltage doubled body :ON]: Please refer to the eighth diagram for the fifth phase of the invention, as shown in the equivalent circuit diagram. This phase begins at The second auxiliary switch Switch to ON. Because of this second auxiliary switch The body diode is turned on, so the second auxiliary switch The cross pressure is zero, so the second auxiliary switch Achieving zero voltage switching [ZVS] performance, at which time the current flowing through the body diode is transferred to the second auxiliary switch Third output capacitor Charging, the second leakage inductance Current Continue to drop, which in turn changes the direction of the current. At that time, the second auxiliary switch Switch to OFF and this phase ends.

第六階段[ ]:[第一功率開關 :ON、第二功率開關 :OFF、第一輔助開關 :OFF、第二輔助開關 :OFF、第一倍壓二極體 :OFF、第二倍壓二極體 :ON]:請再一併參閱第九圖本發明之第六操作階段等效電路圖所示,本階段開始於 ,該第二輔助開關 切換為OFF。此時該第二磁化電感 、該第二漏電感 和該第二功率開關 之本體電容 產生共振,第二該功率開關 之跨壓 以共振形式開始下降。當時,第二該功率開關 之跨壓 降到零,第二該功率開關 的本體二極體開始導通,本階段結束。 Sixth stage [ ]:[First power switch :ON, second power switch :OFF, first auxiliary switch :OFF, second auxiliary switch :OFF, first voltage doubled body :OFF, second voltage doubled body :ON]: Please refer to the ninth figure. The equivalent circuit diagram of the sixth operation stage of the present invention is shown in this stage. The second auxiliary switch Switch to OFF. The second magnetizing inductance The second leakage inductance And the second power switch Body capacitance Resonance, second power switch Cross pressure It begins to decline in the form of resonance. At that time, the second power switch Cross pressure Down to zero, the second power switch The body diode begins to conduct and this phase ends.

第七階段[ ]:[第一功率開關 :ON、第二功率開關 :OFF、第一輔助開關 :OFF、第二輔助開關 :OFF、第一倍壓二極體 :OFF、第二倍壓二極體 :ON]:請再一併參閱第十圖本發明之第七操作階段等效電路圖所示,本階段開始於 ,該第二功率開關 的本體二極體導通,第二功率開關 之跨壓 為零,第二功率開關 零電壓切換[ZVS]的條件成立。當時,該第二功率開關 切換為ON,該第二功率開關 達成ZVS性能,本階段結束。 Seventh stage [ ]:[First power switch :ON, second power switch :OFF, first auxiliary switch :OFF, second auxiliary switch :OFF, first voltage doubled body :OFF, second voltage doubled body :ON]: Please refer to the tenth figure. The equivalent circuit diagram of the seventh operation stage of the present invention is shown in this section. The second power switch The body diode is turned on, the second power switch Cross pressure Zero, second power switch The condition of zero voltage switching [ZVS] is established. At that time, the second power switch Switch to ON, the second power switch The ZVS performance is achieved and this phase ends.

第八階段[ ]:[第一功率開關 :ON、第二功率開關 :ON、第一輔助開關 :OFF、第二輔助開關 :OFF、第一倍壓二極體 :OFF、第二倍壓二極體 :ON]:請再一併參閱第十一圖本發明之第八操作階段等效電路圖所示,本階段開始於 ,該第二功率開關 切換成ON,且該第一功率開關 保持ON,此時該第二漏電感 之電流 快速上升,該第二倍壓二極體 仍然保持導通,該第二磁化電感 的能量藉由第二耦合電感傳送至二次側 持續對第二輸出電容 充電。當時,該第二漏電感 之電流 上升至等於該第二磁化電感 之電流 ,該第二倍壓二極體 轉態成OFF,本階段結束,進入下半個切換週期。 The eighth stage [ ]:[First power switch :ON, second power switch :ON, the first auxiliary switch :OFF, second auxiliary switch :OFF, first voltage doubled body :OFF, second voltage doubled body :ON]: Please refer to the eleventh figure. The equivalent circuit diagram of the eighth operation stage of the present invention is shown in this section. The second power switch Switching to ON, and the first power switch Keep ON, this second leakage inductance Current Rapid rise, the second voltage doubled body Still conducting, the second magnetizing inductance Energy is transmitted to the secondary side by the second coupled inductor Continuously on the second output capacitor Charging. At that time, the second leakage inductance Current Rising to equal the second magnetizing inductance Current The second voltage doubled body Turned to OFF, this phase ends and enters the next half of the switching cycle.

而該轉換器(1)之後半切換週期的8個階段,由於電路的對稱性,後8個階段電路動作分析相似[請再一併參閱第十二圖~第十九圖所示],詳細分析在此省略。In the 8 stages of the second half of the switching period of the converter (1), due to the symmetry of the circuit, the analysis of the operation of the last 8 stages is similar [please refer to the twelfth to the nineteenth pictures together], detail The analysis is omitted here.

該轉換器(1)之該第一功率開關 和該第二功率開關 都達到ZVS性能,且該第一輔助開關 和該第二輔助開關 具有ZVS性能,所以該轉換器(1)能改善切換損失。 The first power switch of the converter (1) And the second power switch All achieve ZVS performance, and the first auxiliary switch And the second auxiliary switch It has ZVS performance, so the converter (1) can improve switching losses.

將該轉換器(1)進行穩態特性分析:為了簡化分析,忽略該第一功率開關 和該第二功率開關 及該第一倍壓二極體 和該第二倍壓二極體 的導通壓降及時間極短的暫態特性,同時忽略該第一漏電感 與該第二漏電感 ,該第三輸出電容 、該第一輸出電容 和該第二輸出電容 夠大,忽略電壓漣波使得電容電壓為常數。 Performing a steady-state characteristic analysis of the converter (1): to simplify the analysis, ignoring the first power switch And the second power switch And the first voltage doubled body And the second voltage doubled body Turn-on voltage drop and transient characteristics of very short time while ignoring the first leakage inductance And the second leakage inductance The third output capacitor The first output capacitor And the second output capacitor Large enough to ignore voltage chopping so that the capacitor voltage is constant.

電壓增益:Voltage gain:

由於該第三輸出電容 的電壓可視為傳統升壓型轉換器的輸出電壓,因此該第三輸出電容 的輸出電壓 可推導得 Due to the third output capacitor The voltage can be regarded as the output voltage of the conventional boost converter, so the third output capacitor Output voltage Derivable

(1) (1)

第一、二耦合電感二次側的第一、二輸出電容電壓 ,可藉由第一、二耦合電感一次側電壓反射電壓推導而得到。當第一功率開關 :OFF、第二功率開關 :ON,而且第一倍壓二極體 導通時[第十二階段],電壓 First and second output capacitor voltages on the secondary side of the first and second coupled inductors with It can be obtained by deriving the primary side voltage reflection voltage of the first and second coupled inductors. When the first power switch :OFF, second power switch :ON, and the first voltage doubled body When conducting [Twelfth stage], voltage for

(2) (2)

當第一功率開關 :ON、第二功率開關 :OFF,而且第二倍壓二極體 導通時[第四階段],電壓 When the first power switch :ON, second power switch :OFF, and the second voltage doubled body When conducting [fourth phase], voltage for

(3) (3)

總輸出電壓 Total output voltage for

(4) (4)

因此該轉換器(1)的電壓增益為Therefore the voltage gain of the converter (1) is

(5) (5)

從上式可知電壓增益,具有第一、二耦合電感匝數比 和導通比 兩個設計自由度。該轉換器(1)可藉由適當設計第一、二耦合電感的匝數比,達到高升壓比,且不必操作在極大的導通比。請參閱第二十圖本發明之耦合電感匝數比及導通比的電壓增益曲線示意圖所示,可得知當導通比 時,電壓增益為10倍;當 時,電壓增益為30倍。 From the above formula, the voltage gain is known to have the first and second coupled inductor turns ratio And conduction ratio Two design degrees of freedom. The converter (1) can achieve a high step-up ratio by appropriately designing the turns ratio of the first and second coupled inductors, and does not have to operate at a very large conduction ratio. Referring to the twentieth embodiment of the present invention, the coupled inductor turns ratio and the turn-on ratio of the voltage gain curve are shown in the schematic diagram, and the turn-on ratio is known. , When the voltage gain is 10 times; , At the time, the voltage gain is 30 times.

開關元件的電壓應力:Voltage stress of the switching element:

該第一功率開關 及該第二功率開關 的電壓應力為 The first power switch And the second power switch Voltage stress is

(6) (6)

由於傳統交錯式升壓型轉換器的功率開關應力為 ,而該轉換器(1)之該第一功率開關 及該第二功率開關 的電壓應力比較小,僅為1/(2 n+1)倍,因此可使用低額定耐壓具有較低R ds (ON)的MOSFET,可降低開關導通損失。 Because the power switching stress of the traditional interleaved boost converter is And the first power switch of the converter (1) And the second power switch The voltage stress is small, only 1/(2 n +1) times, so a low rated voltage with a low R ds (ON) MOSFET can be used to reduce the switch conduction loss.

依據上述電路動作分析結果,使用IsSpice模擬軟體及實作結果驗證。設定該轉換器(1)之相關參數為:輸入電源48V、輸出電壓400V、最大輸出功率500W、切換頻率50kHz, ;以下以模擬波形與實作結果檢驗該轉換器(1)的特點[請再一併參閱第二十一圖本發明之模擬電路示意圖所示]: According to the above circuit action analysis results, the IsSpice simulation software and the implementation results are verified. Set the relevant parameters of the converter (1): input power 48V, output voltage 400V, maximum output power 500W, switching frequency 50kHz, The following is an examination of the characteristics of the converter (1) with analog waveforms and actual results [please refer to the twenty-first figure for the schematic diagram of the analog circuit of the present invention]:

A.驗證穩態特性:請再一併參閱第二十二圖本發明之開關驅動信號、輸入電源及輸出電壓的模擬波形圖所示,驗證該轉換器(1)之穩態特性,滿載500W時,可得知 ,導通比大約 ,符合(5)式電壓增益的公式。 A. Verification of steady-state characteristics: Please refer to the twenty-second diagram of the switch waveform driving signal, input power supply and output voltage of the present invention as shown in the analog waveform diagram to verify the steady-state characteristics of the converter (1), full load 500W When you know , , the conduction ratio is approximately , in accordance with the formula of (5) voltage gain.

B.驗證開關電壓應力:請再一併參閱第二十三圖本發明之開關驅動信號及開關跨壓的模擬波形圖所示,當該第一功率開關 及該第二功率開關 皆為OFF時,開關的跨壓最大約為133.3V,僅為輸出電壓400V的三分之一,符合(6)式的分析,該轉換器(1)的開關具有低電壓應力的優點。 B. Verifying the switch voltage stress: Please refer to the twenty-third figure for the switch drive signal and the switch voltage across the analog waveform diagram of the present invention, when the first power switch And the second power switch When all are OFF, the voltage across the switch is about 133.3V, which is only one-third of the output voltage of 400V. According to the analysis of (6), the switch of the converter (1) has the advantage of low voltage stress.

C.驗證功率開關與輔助開關皆能達到ZVS操作:C. Verify that both the power switch and the auxiliary switch can achieve ZVS operation:

C1.請再一併參閱第二十四圖本發明之功率開關的驅動信號與跨壓模擬波形圖、第二十五圖本發明之第一功率開關切換瞬間的模擬波形放大圖、第二十六圖本發明之第二功率開關切換瞬間的模擬波形放大圖所示,於滿載500W時,可得知該第一功率開關 及該第二功率開關 切換為ON之前,該第一功率開關 的跨壓 和該第二功率開關 的跨壓 均已降至零,因此達到ZVS操作。 C1. Please refer to the driving signal and voltage-crossing analog waveform diagram of the power switch of the present invention, and the twenty-fifth figure. The analog waveform of the first power switch switching instant of the present invention is enlarged. FIG. 6 is an enlarged view of the analog waveform of the second power switch switching instant of the present invention, and the first power switch can be known when the load is 500 W at full load. And the second power switch The first power switch before switching to ON Cross pressure And the second power switch Cross pressure Both have dropped to zero, so ZVS operation is achieved.

C2.請再一併參閱第二十七圖本發明之輔助開關的驅動信號與跨壓模擬波形圖、第二十八圖本發明之第一輔助開關切換瞬間的模擬波形放大圖、第二十九圖本發明之第二輔助開關切換瞬間的模擬波形放大圖所示,於滿載500W時,可得知該第一輔助開關 及該第二輔助開關 切換為ON之前,該第一輔助開關 的跨壓 和該第二輔助開關 的跨壓 均已降至零,因此達到ZVS操作。 C2. Please refer to the twenty-seventh figure for the driving signal and the voltage-crossing analog waveform diagram of the auxiliary switch of the present invention, and the twenty-eighth drawing, the analog waveform of the first auxiliary switch of the present invention, and the twentieth In the enlarged view of the analog waveform of the second auxiliary switch switching instant of the present invention, the first auxiliary switch can be known when the load is 500W. And the second auxiliary switch The first auxiliary switch before switching to ON Cross pressure And the second auxiliary switch Cross pressure Both have dropped to zero, so ZVS operation is achieved.

D.驗證具有低輸入漣波電流性能與CCM操作:請再一併參閱第三十圖本發明之漏電感電流及總輸入電流模擬波形圖所示,可得知該第一耦合電感之該第一漏電感 的電流 及該第二耦合電感之該第二漏電感 的電流 的漣波電流大約19A,而輸入電流 的漣波電流僅為約1A,因此交錯式操作具有降低輸入漣波電流作用;請再一併參閱第三十一圖本發明之磁化電感電流模擬波形圖所示,該第一耦合電感之該第一磁化電感 與該第二耦合電感之該第二磁化電感 驗證操作在連續導通模式[CCM]。 D. Verification of low input chopping current performance and CCM operation: Please refer to the thirty-fifth figure of the present invention for the leakage inductor current and total input current analog waveform diagram, which can be known as the first coupled inductor Leakage inductance Current And the second leakage inductance of the second coupled inductor Current The chopping current is about 19A, and the input current The chopping current is only about 1A, so the interleaved operation has the effect of reducing the input chopping current; please refer to the thirty-first figure of the magnetizing inductor current analog waveform diagram of the present invention, the first coupled inductor First magnetizing inductance The second magnetizing inductance of the second coupled inductor Verify that the operation is in continuous conduction mode [CCM].

E.驗證輸出電容電壓:請再一併參閱第三十二圖本發明之輸出電容的電壓波形模擬圖所示,該第三輸出電容 之電壓 、該第一輸出電容 之電壓 和該第二輸出電容 之電壓 大約都等於133.3V,符合(1)(2)(3)式的推導結果。 E. Verifying the output capacitor voltage: Please refer to the voltage waveform diagram of the output capacitor of the present invention as shown in the thirty-second diagram. The third output capacitor is shown. Voltage The first output capacitor Voltage And the second output capacitor Voltage It is approximately equal to 133.3V, which is in accordance with the derivation results of (1)(2)(3).

藉由以上所述,本發明之使用實施說明可知,本發明與現有技術手段相較之下,本發明主要係具有下列優點:From the above, the implementation description of the present invention shows that the present invention has the following advantages in comparison with the prior art means:

1. 交錯式操作:在高功率應用時,將導致高輸入電流,每一組耦合電感僅分擔二分之一的輸入平均電流,而且工作相位相差180∘的交錯式操作,具有漣波電流相消的效用,可降低漣波電流大小,進而可降低濾波元件大小。1. Interleaved operation: In high-power applications, it will result in high input current. Each group of coupled inductors only share one-half of the input average current, and the interleaved operation with 180° operating phase difference has a chopping current phase. The utility of the elimination can reduce the magnitude of the chopping current, thereby reducing the size of the filter component.

2.高電壓增益:該轉換器利用耦合電感及切換式電容形成電壓倍增模組疊加在原交錯式升壓型轉換器的輸出側,擴增電壓增益,在設計時可調整耦合電感的匝數比,使得轉換器在較高電壓增益時,不必操作在極大的導通比。2. High voltage gain: The converter uses a coupled inductor and a switched capacitor to form a voltage multiplying module superimposed on the output side of the original interleaved boost converter, amplifying the voltage gain, and adjusting the turns ratio of the coupled inductor during design. This makes it unnecessary to operate at very high turn-on ratios when the converter is at a higher voltage gain.

3.高效率:將輸出二極體換成輔助開關,使兩個功率開關與輔助開關都能達到零電壓切換,降低切換損失;由於功率開關的電壓應力遠小於輸出電壓,因此可使用具有低導通電阻Rds(ON)的低額定耐壓MOSFET,可降低導通損失;另一方面。因此該轉換器具有高效率之優點。3. High efficiency: The output diode is replaced by an auxiliary switch, so that both power switches and auxiliary switches can achieve zero voltage switching, reducing switching loss; since the voltage stress of the power switch is much smaller than the output voltage, it can be used low. A low-voltage MOSFET with on-resistance Rds(ON) reduces conduction losses; on the other hand. Therefore, the converter has the advantage of high efficiency.

雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇。While the invention has been described in connection with the preferred embodiments described above, it is not intended to limit the scope of the invention. The technical scope protected by the invention.

(1)‧‧‧轉換器(1)‧‧‧ converter

(2)‧‧‧交錯式升壓型轉換器(2) ‧‧‧Interleaved Boost Converter

(3)‧‧‧修正式升壓-返馳式轉換器(3) ‧‧‧Corrected Boost-Return Converter

第一圖:本發明之轉換器電路圖First picture: converter circuit diagram of the present invention

第二圖:本發明之轉換器的等效電路示意圖Second figure: schematic diagram of the equivalent circuit of the converter of the present invention

第三圖:本發明之主要元件時序波形圖Third figure: timing waveform diagram of main components of the present invention

第四圖:本發明之第一操作階段等效電路圖Fourth figure: equivalent circuit diagram of the first operation stage of the present invention

第五圖:本發明之第二操作階段等效電路圖Figure 5: Equivalent circuit diagram of the second operation stage of the present invention

第六圖:本發明之第三操作階段等效電路圖Figure 6: Equivalent circuit diagram of the third operation stage of the present invention

第七圖:本發明之第四操作階段等效電路圖Figure 7: Equivalent circuit diagram of the fourth operation stage of the present invention

第八圖:本發明之第五操作階段等效電路圖Figure 8: Equivalent circuit diagram of the fifth operation stage of the present invention

第九圖:本發明之第六操作階段等效電路圖Ninth diagram: equivalent circuit diagram of the sixth operation stage of the present invention

第十圖:本發明之第七操作階段等效電路圖Figure 11: Equivalent circuit diagram of the seventh operation stage of the present invention

第十一圖:本發明之第八操作階段等效電路圖Eleventh figure: equivalent circuit diagram of the eighth operation stage of the present invention

第十二圖:本發明之第九操作階段等效電路圖Twelfth figure: equivalent circuit diagram of the ninth operation stage of the present invention

第十三圖:本發明之第十操作階段等效電路圖Thirteenth figure: equivalent circuit diagram of the tenth operation stage of the present invention

第十四圖:本發明之第十一操作階段等效電路圖Figure 14: Equivalent circuit diagram of the eleventh operation stage of the present invention

第十五圖:本發明之第十二操作階段等效電路圖Figure 15: Equivalent circuit diagram of the twelfth operation stage of the present invention

第十六圖:本發明之第十三操作階段等效電路圖Figure 16: Equivalent circuit diagram of the thirteenth operation stage of the present invention

第十七圖:本發明之第十四操作階段等效電路圖Figure 17: Equivalent circuit diagram of the fourteenth operation stage of the present invention

第十八圖:本發明之第十五操作階段等效電路圖Figure 18: Equivalent circuit diagram of the fifteenth operation stage of the present invention

第十九圖:本發明之第十六操作階段等效電路圖Figure 19: Equivalent circuit diagram of the sixteenth operation stage of the present invention

第二十圖:本發明之耦合電感匝數比及導通比的電壓增益曲線示意圖Figure 20: Schematic diagram of the voltage gain curve of the coupled inductor turns ratio and the turn-on ratio of the present invention

第二十一圖:本發明之模擬電路示意圖Figure 21: Schematic diagram of the analog circuit of the present invention

第二十二圖:本發明之開關驅動信號、輸入電源及輸出電壓的模擬波形圖Twenty-second graph: analog waveform diagram of the switch drive signal, input power source and output voltage of the present invention

第二十三圖:本發明之開關驅動信號及開關跨壓的模擬波形圖Twenty-third figure: analog waveform diagram of the switch drive signal and the switch across the voltage of the present invention

第二十四圖:本發明之功率開關的驅動信號與跨壓模擬波形圖Figure 24: Driving signal and cross-voltage analog waveform diagram of the power switch of the present invention

第二十五圖:本發明之第一功率開關切換瞬間的模擬波形放大圖Figure 25: enlarged waveform of the analog waveform of the first power switch switching instant of the present invention

第二十六圖:本發明之第二功率開關切換瞬間的模擬波形放大圖Figure 26: enlarged waveform of the analog waveform of the second power switch switching instant of the present invention

第二十七圖:本發明之輔助開關的驅動信號與跨壓模擬波形圖Figure 27: Driving signal and cross-voltage analog waveform diagram of the auxiliary switch of the present invention

第二十八圖:本發明之第一輔助開關切換瞬間的模擬波形放大圖The twenty-eighth figure: an enlarged waveform of the analog waveform of the first auxiliary switch switching instant of the present invention

第二十九圖:本發明之第二輔助開關切換瞬間的模擬波形放大圖Twenty-ninth figure: an enlarged view of the analog waveform of the second auxiliary switch switching instant of the present invention

第三十圖:本發明之漏電感電流及總輸入電流模擬波形圖Figure 30: Analog waveform diagram of leakage inductance current and total input current of the present invention

第三十一圖:本發明之磁化電感電流模擬波形圖The thirty-first figure: the waveform of the magnetizing inductor current of the present invention

第三十二圖:本發明之輸出電容的電壓波形模擬圖Figure 32: Simulation diagram of the voltage waveform of the output capacitor of the present invention

第三十三圖:現有之交錯式升壓型轉換器電路圖Thirty-third picture: existing interleaved boost converter circuit diagram

第三十四圖:現有之修正式升壓-返馳式轉換器電路圖Figure 34: Existing modified boost-return converter circuit diagram

(1)‧‧‧轉換器 (1)‧‧‧ converter

Claims (6)

一種交錯式高效率高升壓直流轉換器,其主要係令轉換器於輸入電源 之正極並聯有第一耦合電感一次側 之第一端與第二耦合電感一次側 之第一端,於輸入電源 之負極則並聯有第一功率開關 之第二端、第二功率開關 之第二端、第三輸出電容 之第二端及負載阻抗 之第二端,令該第一耦合電感一次側 之第二端與該第一功率開關 之第一端一併連接至第一輔助開關 之第二端,令該第二耦合電感一次側 之第二端與該第二功率開關 之第一端一併連接至第二輔助開關 之第二端,令該第一輔助開關 之第一端與該第二輔助開關 之第一端一併連接至該第三輸出電容 之第一端、第一輸出電容 之第二端、第一倍壓二極體 之正極,令該第一輸出電容 之第一端分別與第二輸出電容 之第二端、第一耦合電感二次側 之第二端相連接,令該第一倍壓二極體 之負極分別與第二倍壓二極體 之正極、第二耦合電感二次側 之第二端相連接,該第一耦合電感二次側 之第一端與該第二耦合電感二次側 之第一端相連接,令該第二輸出電容 之第一端、該第二倍壓二極體 之負極一併連接至該負載阻抗 之第一端。 An interleaved high-efficiency, high-boost DC converter that primarily converts the converter to an input power source The positive pole is connected in parallel with the first coupled inductor primary side First side and second coupled inductor primary side The first end, at the input power The negative pole is connected in parallel with the first power switch Second end, second power switch Second end, third output capacitor Second end and load impedance The second end of the first coupling inductor The second end and the first power switch The first end is connected to the first auxiliary switch The second end of the second coupled inductor The second end and the second power switch The first end is connected to the second auxiliary switch The second end of the first auxiliary switch First end and the second auxiliary switch The first end is connected to the third output capacitor First end, first output capacitor Second end, first voltage doubled body The positive electrode, the first output capacitor First end and second output capacitor Second end, first coupled inductor secondary side The second end is connected to the first voltage doubler The negative pole and the second voltage doubled body The positive side and the second coupled inductor secondary side The second end of the first coupling inductor is connected The first end and the second coupled inductor secondary side The first end is connected to make the second output capacitor First end, the second voltage doubled body The negative pole is connected to the load impedance The first end. 如申請專利範圍第1項所述交錯式高效率高升壓直流轉換器,其中,該第一功率開關 及該第二功率開關 係為N通道之金氧場效應電晶體[MOSFET],且該第一功率開關 及該第二功率開關 之第一端為汲極[Drian]、第二端為源極[Sourse]。 The interleaved high efficiency high-boost DC converter according to claim 1, wherein the first power switch And the second power switch Is a N-channel gold-oxygen field effect transistor [MOSFET], and the first power switch And the second power switch The first end is the drain [Drian] and the second end is the source [Sourse]. 如申請專利範圍第1項所述交錯式高效率高升壓直流轉換器,其中,該第一輔助開關 及該第二輔助開關 係為N通道之金氧場效應電晶體[MOSFET],且該第一輔助開關 及該第二輔助開關 之第一端為汲極[Drian]、第二端為源極[Sourse]。 The interleaved high efficiency high-boost DC converter according to claim 1, wherein the first auxiliary switch And the second auxiliary switch Is a N-channel gold-oxygen field effect transistor [MOSFET], and the first auxiliary switch And the second auxiliary switch The first end is the drain [Drian] and the second end is the source [Sourse]. 如申請專利範圍第1項所述交錯式高效率高升壓直流轉換器,其中,該第一耦合電感包含有第一磁化電感 及第一漏電感 ,該第二耦合電感包含有第二磁化電感 及第二漏電感 The interleaved high efficiency high-boost DC converter according to claim 1, wherein the first coupled inductor includes a first magnetizing inductance And first leakage inductance The second coupled inductor includes a second magnetizing inductance And second leakage inductance . 如申請專利範圍第1項所述交錯式高效率高升壓直流轉換器,其中,該第一耦合電感一次側 與該第一耦合電感二次側 構成第一理想變壓器,該第二耦合電感一次側 與該第二耦合電感二次側 構成第二理想變壓器。 The interleaved high efficiency high-boost DC converter according to claim 1, wherein the first coupled inductor is on the primary side Secondary side with the first coupled inductor Forming a first ideal transformer, the second coupled inductor primary side Secondary side with the second coupled inductor Forms a second ideal transformer. 如申請專利範圍第5項所述交錯式高效率高升壓直流轉換器,其中,該第一理想變壓器與該第二理想變壓器之匝數比為相同。The interleaved high efficiency high-boost DC converter according to claim 5, wherein the first ideal transformer and the second ideal transformer have the same turns ratio.
TW105134581A 2016-10-26 2016-10-26 Interleaved high efficiency high-step-up direct current transformer TWI594554B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105134581A TWI594554B (en) 2016-10-26 2016-10-26 Interleaved high efficiency high-step-up direct current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105134581A TWI594554B (en) 2016-10-26 2016-10-26 Interleaved high efficiency high-step-up direct current transformer

Publications (2)

Publication Number Publication Date
TWI594554B true TWI594554B (en) 2017-08-01
TW201817144A TW201817144A (en) 2018-05-01

Family

ID=60188968

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134581A TWI594554B (en) 2016-10-26 2016-10-26 Interleaved high efficiency high-step-up direct current transformer

Country Status (1)

Country Link
TW (1) TWI594554B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665859B (en) * 2017-10-25 2019-07-11 National Chin-Yi University Of Technology Boost converter and boost system
TWI682617B (en) * 2018-06-28 2020-01-11 崑山科技大學 Interleaved ultra-high boost converter
TWI687036B (en) * 2018-06-29 2020-03-01 崑山科技大學 Ultra-high boosting converter
TWI689160B (en) * 2018-02-01 2020-03-21 亞源科技股份有限公司 A high step-up dc converter with power factor correction

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI681616B (en) * 2018-07-31 2020-01-01 陳正一 Input-current ripple complementary circuit and boost converter having the same
TWI694667B (en) * 2019-06-04 2020-05-21 崑山科技大學 High boost converter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445599B1 (en) * 2001-03-29 2002-09-03 Maxim Integrated Products, Inc. Ripple canceling, soft switching isolated DC/DC converters with reduced voltage stress synchronous rectification
US20110110132A1 (en) * 2009-11-12 2011-05-12 Polar Semiconductor, Inc. Time-limiting mode (tlm) for an interleaved power factor correction (pfc) converter
TWM438760U (en) * 2012-04-09 2012-10-01 Sinpro Electronics Co Ltd Power conversion device with control switch
TW201315119A (en) * 2011-09-16 2013-04-01 Univ Hungkuang High efficient interleaved boosting converter
TW201415777A (en) * 2012-10-12 2014-04-16 Nat Univ Tsing Hua Isolated interleaved DC converter
TWI501531B (en) * 2014-03-18 2015-09-21 Univ Kun Shan Interleaved zero voltage switching converter
TWI501527B (en) * 2013-08-09 2015-09-21 Nat Univ Chin Yi Technology High voltage ratio interleaved converter with soft-switching using single auxiliary switch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445599B1 (en) * 2001-03-29 2002-09-03 Maxim Integrated Products, Inc. Ripple canceling, soft switching isolated DC/DC converters with reduced voltage stress synchronous rectification
US20110110132A1 (en) * 2009-11-12 2011-05-12 Polar Semiconductor, Inc. Time-limiting mode (tlm) for an interleaved power factor correction (pfc) converter
TW201315119A (en) * 2011-09-16 2013-04-01 Univ Hungkuang High efficient interleaved boosting converter
TWM438760U (en) * 2012-04-09 2012-10-01 Sinpro Electronics Co Ltd Power conversion device with control switch
TW201415777A (en) * 2012-10-12 2014-04-16 Nat Univ Tsing Hua Isolated interleaved DC converter
TWI501527B (en) * 2013-08-09 2015-09-21 Nat Univ Chin Yi Technology High voltage ratio interleaved converter with soft-switching using single auxiliary switch
TWI501531B (en) * 2014-03-18 2015-09-21 Univ Kun Shan Interleaved zero voltage switching converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665859B (en) * 2017-10-25 2019-07-11 National Chin-Yi University Of Technology Boost converter and boost system
TWI689160B (en) * 2018-02-01 2020-03-21 亞源科技股份有限公司 A high step-up dc converter with power factor correction
TWI682617B (en) * 2018-06-28 2020-01-11 崑山科技大學 Interleaved ultra-high boost converter
TWI687036B (en) * 2018-06-29 2020-03-01 崑山科技大學 Ultra-high boosting converter

Also Published As

Publication number Publication date
TW201817144A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
TWI594554B (en) Interleaved high efficiency high-step-up direct current transformer
CN110932557A (en) High-gain quasi-resonant DC-DC converter based on voltage doubling rectifying circuit
TWI635697B (en) Interleaved high-step-up zero-voltage switching dc-dc converter
TWI682617B (en) Interleaved ultra-high boost converter
CN110224601B (en) High-gain Boost converter based on three-winding coupling inductor and working method thereof
CN202997936U (en) High boost circuit, solar inverter and solar cell system
CN111725993A (en) High-efficiency Sepic soft switch converter and control method thereof
CN102638164B (en) High boost circuit, solar inverter and solar cell system
CN109149945B (en) A kind of three port current transformers suitable for light storage direct-current grid
TWI664797B (en) Dc power converter with high voltage gain
CN103066841B (en) A kind of times die mould DC converter based on charge pump capacitor
TW201733256A (en) Interleaved high step-up DC-DC converter
CN103762839B (en) A kind of magnetic coupling type single-phase high-gain Bridgeless power factor circuit correcting circuit
CN107612349A (en) The common ground type isolation quasi- Z source converters of high-gain of fuel cell and photovoltaic generation
Tseng et al. Interleaved coupled-inductor boost converter with boost type snubber for PV system
TWI663816B (en) Interleaved high step-up dc-dc converter
CN103973118A (en) Efficient isolation converter suitable for low-voltage photovoltaic power generation system and control method of efficient isolation converter
TW201838305A (en) Interleaved direct-current boost device
CN207283412U (en) The common ground type isolation quasi- Z source converters of high-gain of fuel cell and photovoltaic generation
TWI716110B (en) Soft-switching interleaved active clamp high step-up dc converter
TWI721557B (en) High voltage gain dc/dc converter
TWI687036B (en) Ultra-high boosting converter
CN203645545U (en) Magnetic coupling high gain DC/DC converter
TW202207599A (en) Interleaved high voltage conversion ratio dc/dc converter
TWI762396B (en) High voltage conversion ratio dc converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees