TWI635697B - Interleaved high-step-up zero-voltage switching dc-dc converter - Google Patents

Interleaved high-step-up zero-voltage switching dc-dc converter Download PDF

Info

Publication number
TWI635697B
TWI635697B TW106125894A TW106125894A TWI635697B TW I635697 B TWI635697 B TW I635697B TW 106125894 A TW106125894 A TW 106125894A TW 106125894 A TW106125894 A TW 106125894A TW I635697 B TWI635697 B TW I635697B
Authority
TW
Taiwan
Prior art keywords
voltage
capacitor
diode
main switch
coupled inductor
Prior art date
Application number
TW106125894A
Other languages
Chinese (zh)
Other versions
TW201911719A (en
Inventor
陳信助
楊松霈
蘇偉府
楊上億
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW106125894A priority Critical patent/TWI635697B/en
Application granted granted Critical
Publication of TWI635697B publication Critical patent/TWI635697B/en
Publication of TW201911719A publication Critical patent/TW201911719A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本發明係有關於一種隔離型零電壓切換高升壓DC-DC轉換器,其主要係由兩個耦合電感的次級側串聯連接並導入電容-二極體倍壓電路的架構提升高電壓增益,高電壓增益的達成具有耦合電感匝數比及開關導通比兩個設計自由度,所以高電壓增益的達成,不必操作在極大的導通比;由於兩個耦合電感的初級側加入主動箝位電路,使得所有開關皆能達到零電壓切換的柔切性能,能夠降低切換損失,提升轉換效率;兩個主開關電壓應力遠低於輸出電壓,可以使用較低額定耐壓且導通電阻較小的MOSFET功率開關,可降低導通損失;由於交錯式操作,使得輸入電流漣波相消,可降低輸入電流漣波大小;耦合電感的漏電感的能量能回收再利用,不但能提升效率,也不會造成開關的電壓突波問題;藉此,能適合於高升壓增益、高效率及高功率之應用。 The invention relates to an isolated zero-voltage switching high-boost DC-DC converter, which is mainly connected by a series connection of two coupled inductors and introduced into a capacitor-diode voltage doubler circuit to raise a high voltage. The gain and high voltage gain have two design degrees of freedom of the coupled inductor turns ratio and the switch turn-on ratio, so the high voltage gain is achieved without having to operate at a very large turn-on ratio; since the primary side of the two coupled inductors is added to the active clamp The circuit enables all switches to achieve zero-switching soft-cutting performance, which can reduce switching losses and improve conversion efficiency; the two main switching voltage stresses are much lower than the output voltage, and the lower rated withstand voltage can be used and the on-resistance is smaller. The MOSFET power switch can reduce the conduction loss; due to the interleaved operation, the input current ripple is canceled, which can reduce the input current ripple. The energy of the leakage inductance of the coupled inductor can be recycled and reused, which not only improves efficiency, but also does not improve efficiency. This causes the voltage surge problem of the switch; thereby, it can be suitable for applications with high boost gain, high efficiency, and high power.

Description

隔離型零電壓切換高升壓DC-DC轉換器 Isolated Zero-Voltage Switching High-Boost DC-DC Converter

本發明係有關於一種隔離型零電壓切換高升壓DC-DC轉換器,尤其是指一種不僅能讓所有開關達成零電壓切換性能,減少切換損失,提升效率,且能降低導通損失,同時可降低電路成本,而在其整體施行使用上更增實用功效特性者。 The invention relates to an isolated zero-voltage switching high-boost DC-DC converter, in particular to a function that not only enables all switches to achieve zero voltage switching performance, reduces switching loss, improves efficiency, and can reduce conduction loss, and at the same time Reduce the cost of the circuit, and increase the utility characteristics in its overall implementation.

按,《聯合國氣候變化綱要公約》〔UNFCCC〕第21次締約方會議〔COP21〕簡稱「巴黎氣候峰會」,在2015年12月達成一份接替《京都議定書》〔Kyoto Protocol〕的歷史性《巴黎協定》〔Paris Agreement〕,以因應全球暖化問題。各國將致力於大幅減少溫室氣體〔greenhouse gas〕排放,希望在本世紀結束之前,力保全球均溫上升不超過攝氏2度,進而追求不超過1.5度的更高目標。希望各國透過再生能源,用更有效的方式達成減排目標,追 求經濟的「綠色成長」。爰此,再生能源必定是各國產業發展的重點方向,包含太陽能、風力能、燃料電池、水力能、地熱能、潮汐能及生質能等。 According to the UNFCCC 21st Meeting of the Parties [COP21] referred to as the "Paris Climate Summit", in December 2015, a historic "Paris" to replace the "Kyoto Protocol" was reached. Agreement (Paris Agreement) to respond to global warming issues. Countries will be committed to drastically reducing greenhouse gas emissions. It is hoped that by the end of this century, the global average temperature rise will not exceed 2 degrees Celsius, and the goal of not exceeding 1.5 degrees will be pursued. I hope that countries can achieve emission reduction targets in a more efficient way through renewable energy sources. Seeking "green growth" in the economy. Therefore, renewable energy must be the focus of industrial development in various countries, including solar energy, wind energy, fuel cells, hydropower, geothermal energy, tidal energy and biomass energy.

我國「再生能源發展條例」公佈後,大力推廣太陽光電再生能源利用,2012年推動「陽光屋頂百萬座計畫」;今年行政院已核定「太陽光電二年推動計畫」,目標於2018年完成太陽能裝置1520MW,年發電量達19億度,相當於2085座大安森林公園減碳量,其中屋頂型設置目標量910MW,平面型設置目標量610MW。在日本、歐洲與美國裝設於屋頂的住宅型太陽能併網電力系統,最近也成為成長快速的市場。另外,由於燃料電池是經由利用氫及氧的化學反應,產生電流及水,不但完全無污染,也避免了傳統電池充電耗時的問題,是目前極具發展前景的新能源方式,應用在車輛及發電系統上,將能顯著改善空氣污染及溫室效應。因此,在再生能源電力系統應用中,太陽能發電系統及燃料電池發電系統的技術發展越來越成熟,常在分散式發電系統〔distributed generation system〕,扮演重要的角色。 After the announcement of China's "Renewable Energy Development Regulations", we will vigorously promote the use of solar photovoltaic renewable energy. In 2012, we will promote the "Sunshine Roofing Million Block Project". This year, the Executive Yuan has approved the "Sun Optoelectronics Two-Year Promotion Plan" with the goal of 2018. The solar energy installation is 1520MW, and the annual power generation is 1.9 billion kWh, which is equivalent to the reduction of carbon in 2085 Da'an Forest Park. The roof type has a target volume of 910MW and the plane type targets 610MW. Residential solar-powered grid-connected power systems installed in Japan, Europe, and the United States have recently become fast-growing markets. In addition, since the fuel cell generates current and water through chemical reaction using hydrogen and oxygen, it is not completely pollution-free, and avoids the problem of time-consuming charging of the conventional battery. It is a new energy mode with great development prospects and is applied to vehicles. And power generation systems will significantly improve air pollution and the greenhouse effect. Therefore, in the application of renewable energy power systems, the technological development of solar power generation systems and fuel cell power generation systems is becoming more and more mature, and often plays an important role in distributed generation systems.

一般而言,以太陽能電池或以燃料電池模組為主的再生能源應用之電力系統,由於安全性與可靠性的問題,太陽能電池模組與燃料電池所產生的輸出電壓是屬於低電壓,一般不超過40V,為了達到併網發電系統或直流微電網的需求,必須先將此低電壓利用 高升壓DC-DC轉換器,升壓至一個高電壓直流排。例如:對於一個單相220Vac的電網系統而言,此高電壓直流排常為380-400Vdc,以利全橋式換流器〔full-bridge inverter〕的DC-AC電源轉換。理論上,操作在極高導通比的傳統升壓型〔boost〕轉換器能夠得到高電壓增益,但是實務上受到寄生元件的影響,電壓轉換比受限在約5倍以下,因此當電壓增益高達10倍左右的實務需求時,研發嶄新的高升壓轉換器拓樸是必要的,使得最近幾年高升壓DC-DC轉換器是電力電子工程領域中常見的研究主題之一。 In general, in the power system of solar cells or renewable energy applications based on fuel cell modules, the output voltage generated by the solar cell module and the fuel cell is low voltage due to safety and reliability problems. Not exceeding 40V, in order to meet the requirements of grid-connected power generation systems or DC microgrids, this low-voltage must first be boosted to a high-voltage DC-row using a high-boost DC-DC converter. For example, for a single-phase 220V ac grid system, this high-voltage DC line is often 380-400V dc to facilitate DC-AC power conversion of a full-bridge inverter. In theory, a conventional boost converter operating at very high turn-on ratio can achieve high voltage gain, but in practice it is affected by parasitic components, and the voltage conversion ratio is limited to about 5 times or less, so when the voltage gain is as high as Approximately 10 times the practical demand, the development of a new high-boost converter topology is necessary, making high-boost DC-DC converters one of the most common research topics in the field of power electronics engineering in recent years.

其中,一般常見之高升壓DC-DC轉換器具有下列缺點: Among them, the commonly used high-boost DC-DC converter has the following disadvantages:

1.現有非隔離型升壓式轉換器若要得到高升壓比的結果,該轉換器必須操作在極高的開關導通比;然而,極高的導通比將產生大的電流漣波與嚴重的二極體反向恢復電流問題,產生嚴重功率損失。 1. Existing non-isolated boost converters must achieve high switching ratios in order to achieve high boost ratios; however, very high turn-on ratios will generate large current ripples and severe The diode reverses the recovery current problem and produces severe power loss.

2.為了能夠達到高升壓比,現有的作法也可以採用串接兩級的升壓型轉換器,以得到較佳的升壓效果,但是電能經過二次轉換會造成效率不佳,不符合高效率的實務需求。 2. In order to achieve a high boost ratio, the existing method can also use a two-stage step-up converter to obtain a better boosting effect, but the secondary conversion of the power may cause inefficiency and non-compliance. Efficient practical needs.

3.現有亦利用電壓倍增模組及舉升電容提出交錯式高升壓轉換器;然而,該類轉換器之主開關都屬於硬式切換,導致切換損失。 3. Interleaved high-boost converters are also proposed using voltage multiplying modules and lifting capacitors; however, the main switches of such converters are hard switching, resulting in switching losses.

緣是,發明人有鑑於此,秉持多年該相關行業之豐富設計開 發及實際製作經驗,針對現有之結構及缺失再予以研究改良,提供一種隔離型零電壓切換高升壓DC-DC轉換器,以期達到更佳實用價值性之目的者。 The reason is that the inventor has in view of this, and has been enriching the design of this related industry for many years. Developed and actual production experience, and researched and improved the existing structure and defects, and provided an isolated zero-voltage switching high-boost DC-DC converter for the purpose of achieving better practical value.

本發明之主要目的在於提供一種隔離型零電壓切換高升壓DC-DC轉換器,主要係不僅能讓所有開關達成零電壓切換性能,減少切換損失,提升效率,且能降低導通損失,同時可降低電路成本,而在其整體施行使用上更增實用功效特性者。 The main object of the present invention is to provide an isolated zero-voltage switching high-boost DC-DC converter, which not only enables zero-voltage switching performance of all switches, reduces switching loss, improves efficiency, and can reduce conduction loss, and at the same time Reduce the cost of the circuit, and increase the utility characteristics in its overall implementation.

本發明隔離型零電壓切換高升壓DC-DC轉換器之主要目的與功效,係由以下具體技術手段所達成:其主要係令轉換器於輸入電壓Vin之正極分別連接有第一箝位電容Cc1之第一端、第一耦合電感初級側Np1之第一端、第二箝位電容Cc2之第一端及第二耦合電感初級側Np2之第一端,於該輸入電壓Vin之負極分別連接有第一主開關S1之第二端及第二主開關S2之第二端,該第一箝位電容Cc1之第二端連接有第一輔助開關Sa1之第一端,該第一輔助開關Sa1之第二端與該第一耦合電感初級側Np1之第二端同時連接至該第一主開關S1之第一端,該第二箝位電容Cc2之第二端連接有第二輔助開關Sa2之第一端,該第二輔助開關Sa2之第二端與該第二耦合電感初級側Np2之第二端同時連接至該第二主開關S2之第一端;而第一耦合電感次級側Ns1之第一端分別與第一倍壓二極體Dd1之正極、第二倍壓二極體Dd2之負極、第一輸出電容Co1 之第二端及第二輸出電容Co2之第一端相連接,該第一耦合電感次級側Ns1之第二端與第二耦合電感次級側Ns2之第二端相連接,該第二耦合電感次級側Ns2之第一端分別與第一倍壓電容Cd1之第二端及第二倍壓電容Cd2之第一端相連接,該第一倍壓電容Cd1之第一端分別與該第一倍壓二極體Dd1之負極及第一輸出二極體Do1之正極相連接,該第二倍壓電容Cd2之第二端分別與該第二倍壓二極體Dd2之正極及第二輸出二極體Do2之負極相連接,該第一輸出二極體Do1之負極分別與該第一輸出電容Co1之第一端及負載Ro之正極相連接,該第二輸出二極體Do2之正極分別與該第二輸出電容Co2之第二端及該負載Ro之負極相連接。 The present invention is an isolated zero-voltage switching DC-DC step-up high main purpose and effect of the converter, based reached by the specific technology: it is mainly to make the converter input voltage V in the positive electrode are respectively connected to a first clamp a first end of the capacitor C c1 , a first end of the first coupled inductor primary side N p1 , a first end of the second clamp capacitor C c2 , and a first end of the second coupled inductor primary side N p2 at the input voltage V in the negative electrode are respectively connected to the first main switch S 1 and the second end of the second main terminal of the second switch S 2, the first clamp of the second terminal of the capacitor C c1 is connected to the first auxiliary switch S of A1 a first end, the second end of the first auxiliary switch S a1 and the second end of the first coupled inductor primary side N p1 are simultaneously connected to the first end of the first main switch S 1 , the second clamping capacitor C c2 of the second end having a first end connected to the second auxiliary switch S a2 of the second auxiliary switch S a2 of the second end connected to the second terminal of the second coupling and a second inductance of the primary side while the N p2 a first end of the main switch S 2; and D d1 of the first coupling a first end of the secondary side inductor of the N s1, respectively the first diode cathode voltage doubler D d2 of the second negative voltage doubler diode, a second terminal of the first output capacitor C o1 of the first end and a second output connected to the capacitor C o2, a second terminal of the first inductor coupled to the secondary side of the N s1 a second end connected to a second inductor coupled to the secondary side N s2, the first end of the second inductor coupled to the secondary side of each pressure N s2 and a second end and a second fold of the first voltage doubler capacitor C d1 of The first end of the capacitor C d2 is connected, and the first end of the first voltage doubled capacitor C d1 is respectively opposite to the anode of the first voltage doubled diode D d1 and the anode of the first output diode D o1 Connecting, the second end of the second voltage doubled capacitor C d2 is respectively connected to the positive pole of the second voltage doubled diode D d2 and the negative pole of the second output diode D o2 , the first output diode The anode of D o1 is respectively connected to the first end of the first output capacitor C o1 and the anode of the load R o , and the anode of the second output diode D o2 and the second end of the second output capacitor C o2 respectively And connected to the negative electrode of the load R o .

本發明隔離型零電壓切換高升壓DC-DC轉換器的較佳實施例,其中,該第一主開關S1形成有第一主開關寄生電容CS1The present invention is an isolated high zero-voltage switching DC-DC converter boosting a preferred embodiment, wherein the first main switch S 1 is formed with a first main switch parasitic capacitances C S1.

本發明隔離型零電壓切換高升壓DC-DC轉換器的較佳實施例,其中,該第二主開關S2形成有第二主開關寄生電容CS2A preferred embodiment of the isolated zero voltage switching high step-up DC-DC converter of the present invention, wherein the second main switch S 2 is formed with a second main switching parasitic capacitance C S2 .

本發明隔離型零電壓切換高升壓DC-DC轉換器的較佳實施例,其中,該第一耦合電感包含有第一磁化電感Lm1及第一漏電感Lk1A preferred embodiment of the isolated zero-voltage switching high-boost DC-DC converter of the present invention, wherein the first coupled inductor includes a first magnetizing inductance L m1 and a first leakage inductance L k1 .

本發明隔離型零電壓切換高升壓DC-DC轉換器的較佳實施例,其中,該第二耦合電感包含有第二磁化電感Lm2及第二漏電感Lk2The present invention is an isolated high zero-voltage switching DC-DC converter boosting a preferred embodiment, wherein the second coupling comprises a second inductor L m2 magnetizing inductance and the second leakage inductance L k2.

本發明隔離型零電壓切換高升壓DC-DC轉換器的較佳 實施例,其中,該第一耦合電感初級側Np1與該第一耦合電感次級側Ns1構成第一理想變壓器,該第二耦合電感初級側Np2與該第二耦合電感次級側Ns2構成第二理想變壓器。 A preferred embodiment of the isolated zero-voltage switching high-boost DC-DC converter of the present invention, wherein the first coupled inductor primary side N p1 and the first coupled inductor secondary side N s1 form a first ideal transformer, The second coupled inductor primary side N p2 and the second coupled inductor secondary side N s2 form a second ideal transformer.

本發明隔離型零電壓切換高升壓DC-DC轉換器的較佳實施例,其中,該第一理想變壓器與該第二理想變壓器之匝數比為相同。 A preferred embodiment of the isolated zero voltage switching high step-up DC-DC converter of the present invention, wherein the first ideal transformer and the second ideal transformer have the same turns ratio.

(1)‧‧‧轉換器 (1)‧‧‧ converter

第一圖:本發明之電路圖 First picture: circuit diagram of the invention

第二圖:本發明之等效電路圖 Second figure: equivalent circuit diagram of the present invention

第三圖:本發明之主要元件穩態波形圖 Third figure: Steady-state waveform diagram of the main components of the present invention

第四圖:本發明之第一操作階段等效電路圖 Fourth figure: equivalent circuit diagram of the first operation stage of the present invention

第五圖:本發明之第二操作階段等效電路圖 Figure 5: Equivalent circuit diagram of the second operation stage of the present invention

第六圖:本發明之第三操作階段等效電路圖 Figure 6: Equivalent circuit diagram of the third operation stage of the present invention

第七圖:本發明之第四操作階段等效電路圖 Figure 7: Equivalent circuit diagram of the fourth operation stage of the present invention

第八圖:本發明之第五操作階段等效電路圖 Figure 8: Equivalent circuit diagram of the fifth operation stage of the present invention

第九圖:本發明之第六操作階段等效電路圖 Ninth diagram: equivalent circuit diagram of the sixth operation stage of the present invention

第十圖:本發明之第七操作階段等效電路圖 Figure 11: Equivalent circuit diagram of the seventh operation stage of the present invention

第十一圖:本發明之第八操作階段等效電路圖 Eleventh figure: equivalent circuit diagram of the eighth operation stage of the present invention

第十二圖:本發明之第九操作階段等效電路圖 Twelfth figure: equivalent circuit diagram of the ninth operation stage of the present invention

第十三圖:本發明之第十操作階段等效電路圖 Thirteenth figure: equivalent circuit diagram of the tenth operation stage of the present invention

第十四圖:本發明之第十一操作階段等效電路圖 Figure 14: Equivalent circuit diagram of the eleventh operation stage of the present invention

第十五圖:本發明之第十二操作階段等效電路圖 Figure 15: Equivalent circuit diagram of the twelfth operation stage of the present invention

第十六圖:本發明之第十三操作階段等效電路圖 Figure 16: Equivalent circuit diagram of the thirteenth operation stage of the present invention

第十七圖:本發明之第十四操作階段等效電路圖 Figure 17: Equivalent circuit diagram of the fourteenth operation stage of the present invention

第十八圖:本發明之第十五操作階段等效電路圖 Figure 18: Equivalent circuit diagram of the fifteenth operation stage of the present invention

第十九圖:本發明之第十六操作階段等效電路圖 Figure 19: Equivalent circuit diagram of the sixteenth operation stage of the present invention

第二十圖:本發明之電壓增益與導通比及耦合係數的曲線圖 Figure 20: Graph of voltage gain and conduction ratio and coupling coefficient of the present invention

第二十一圖:本發明之電壓增益與導通比及耦合電感匝數比的曲線圖 Twenty-first graph: graph of voltage gain and conduction ratio and coupled inductor turns ratio of the present invention

第二十二圖:本發明之模擬電路示意圖 Twenty-second diagram: schematic diagram of the analog circuit of the present invention

第二十三圖:本發明之開關驅動信號、輸入電壓及輸出電壓的模擬波形圖 Twenty-third graph: analog waveform diagram of the switch drive signal, input voltage and output voltage of the present invention

第二十四圖:本發明之主開關跨壓的模擬波形圖 Figure 24: Analog waveform diagram of the main switch cross-over voltage of the present invention

第二十五圖:本發明之輔助開關跨壓的模糊波形圖 Figure 25: Fuzzy waveform diagram of the auxiliary switch across the pressure of the present invention

第二十六圖:本發明之主開關的驅動信號與跨壓模擬波形圖 Figure 26: Driving signal and cross-voltage analog waveform diagram of the main switch of the present invention

第二十七圖:本發明之第一主開關切換瞬間的模擬波形放大 圖 Figure 27: Analog waveform amplification of the first main switch switching instant of the present invention Figure

第二十八圖:本發明之第二主開關切換瞬間的模擬波形放大圖 Twenty-eighth drawing: an enlarged view of the analog waveform of the second main switch switching instant of the present invention

第二十九圖:本發明之輔助開關的驅動信號與跨壓模擬波形圖 Twenty-ninth figure: driving signal and cross-voltage analog waveform diagram of the auxiliary switch of the present invention

第三十圖:本發明之第一輔助開關切換瞬間的模擬波形放大圖 Thirty-fifth: enlarged waveform of the analog waveform of the first auxiliary switch switching instant of the present invention

第三十一圖:本發明之第二輔助開關切換瞬間的模擬波形放大圖 The thirty-first figure: an enlarged view of the analog waveform of the second auxiliary switch switching instant of the present invention

第三十二圖:本發明之漏電感電流及總輸入電流模擬波形圖 Figure 32: Analog waveform diagram of leakage inductance current and total input current of the present invention

第三十三圖:本發明之倍壓電容、輸出電容的電壓波形模擬圖 Thirty-third figure: simulation diagram of voltage waveform of double voltage capacitor and output capacitor of the present invention

第三十四圖:本發明之箝位電容的電壓波形模擬圖 Figure 34: Simulation diagram of the voltage waveform of the clamp capacitor of the present invention

為令本發明所運用之技術內容、發明目的及其達成之功效有更完整且清楚的揭露,茲於下詳細說明之,並請一併參閱所揭之圖式及圖號:首先,請參閱第一圖本發明之電路圖所示,本發明之轉換器(1)主要係於輸入電壓Vin之正極分別連接有第一箝位電容Cc1之第 一端、第一耦合電感初級側Np1之第一端、第二箝位電容Cc2之第一端及第二耦合電感初級側Np2之第一端,於該輸入電壓Vin之負極分別連接有第一主開關S1之第二端及第二主開關S2之第二端,該第一主開關S1形成有第一主開關寄生電容CS1,該第二主開關S2形成有第二主開關寄生電容CS2,該第一箝位電容Cc1之第二端連接有第一輔助開關Sa1之第一端,該第一輔助開關Sa1之第二端與該第一耦合電感初級側Np1之第二端同時連接至該第一主開關S1之第一端,該第二箝位電容Cc2之第二端連接有第二輔助開關Sa2之第一端,該第二輔助開關Sa2之第二端與該第二耦合電感初級側Np2之第二端同時連接至該第二主開關S2之第一端;而第一耦合電感次級側Ns1之第一端分別與第一倍壓二極體Dd1之正極、第二倍壓二極體Dd2之負極、第一輸出電容Co1之第二端及第二輸出電容Co2之第一端相連接,該第一耦合電感次級側Ns1之第二端與第二耦合電感次級側Ns2之第二端相連接,該第二耦合電感次級側Ns2之第一端分別與第一倍壓電容Cd1之第二端及第二倍壓電容Cd2之第一端相連接,該第一倍壓電容Cd1之第一端分別與該第一倍壓二極體Dd1之負極及第一輸出二極體Do1之正極相連接,該第二倍壓電容Cd2之第二端分別與該第二倍壓二極體Dd2之正極及第二輸出二極體Do2之負極相連接,該第一輸出二極體Do1之負極分別與該第一輸出電容Co1之第一端及負載Ro之正極相連接,該第二輸出二極體Do2之正極分別與該第二輸出電容Co2之第二端及該負載Ro之負極相連接。 For a more complete and clear disclosure of the technical content, the purpose of the invention and the effects thereof achieved by the present invention, the following is a detailed description, and please refer to the drawings and drawings: First, please refer to a first circuit diagram of the present invention shown in FIG, mainly converter (1) of the present invention to the input voltage V in the positive electrode are respectively connected to a first end of a first clamp capacitance C c1, the inductance of the primary side first coupling N p1 a first end, a first end of the second clamp capacitor C c2 and a first end of the second coupled inductor primary side N p2 , and a second end of the first main switch S 1 is respectively connected to the cathode of the input voltage V in And a second end of the second main switch S 2 , the first main switch S 1 is formed with a first main switch parasitic capacitance C S1 , and the second main switch S 2 is formed with a second main switch parasitic capacitance C S2 , a second terminal of the first capacitor C c1 clamp the first end connected to the first auxiliary switch S a1, the first end of the second auxiliary switch S a1 of a first and a second end coupled to the inductance of the primary side while the N p1 connected to the first main terminal of the first switch S 1, the second end of the second clamp capacitor C c2 is connected to a second auxiliary Off S a2 of the first end, a second end of the second auxiliary switch S a2 is connected to the second end of the second inductor coupled to the primary side of the N p2 while the second to the first end of the main switch S 2; and section a first end of a coupled inductor secondary side N s1 and a positive electrode of the first voltage doubled diode D d1 , a negative electrode of the second voltage doubled diode D d2 , a second end of the first output capacitor C o1 , and a first end the second output capacitor C o2 first end connected to the second terminal of the inductor coupled to a first secondary side connected to the N s1 of the second end of the second secondary-side N s2 coupled inductor, the secondary inductor of the second coupled The first end of the side voltage s2 is respectively connected to the second end of the first voltage doubled capacitor C d1 and the first end of the second voltage doubled capacitor C d2 , and the first end of the first voltage doubled capacitor C d1 Connected to the anode of the first voltage doubled diode D d1 and the anode of the first output diode D o1 , respectively, the second end of the second voltage doubled capacitor C d2 and the second voltage doubled respectively the positive electrode and the negative electrode D d2 of the body D o2 of the second output diode is connected to the negative output D o1 of the first diode and the cathode, respectively, a first terminal of the first output capacitor C o1 and the phase of the load R o Connection, the D o2 bis positive output diode are connected to the load R o and the negative electrode of the second output of the second end of the capacitor C o2.

請再一併參閱第二圖本發明之等效電路圖所示,該第一耦合 電感可包含有第一磁化電感Lm1及第一漏電感Lk1,令該第一耦合電感初級側Np1與該第一耦合電感次級側Ns1構成第一理想變壓器,而該第二耦合電感可包含有第二磁化電感Lm2及第二漏電感Lk2,令該第二耦合電感初級側Np2與該第二耦合電感次級側Ns2構成第二理想變壓器,該第一理想變壓器與該第二理想變壓器之匝數比為相同,並且匝數比n定義為Ns/Np;而由於該第一耦合電感初級側Np1與該第二耦合電感初級側Np2係為並聯,使得能分擔總輸入電流,配合交錯式操作,可減少輸入電流漣波;該第一耦合電感次級側Ns1與該第二耦合電感次級側Ns2係為串聯,使得能增加電壓增益。 Please refer to the second diagram of the equivalent circuit diagram of the present invention. The first coupled inductor may include a first magnetizing inductance L m1 and a first leakage inductance L k1 , such that the first coupled inductor primary side N p1 and The first coupled inductor secondary side N s1 constitutes a first ideal transformer, and the second coupled inductor may include a second magnetizing inductance L m2 and a second leakage inductance L k2 , such that the second coupled inductor primary side N p2 and The second coupled inductor secondary side N s2 constitutes a second ideal transformer, the first ideal transformer and the second ideal transformer have the same turns ratio, and the turns ratio n is defined as N s /N p ; The first coupled inductor primary side N p1 and the second coupled inductor primary side N p2 are connected in parallel so that the total input current can be shared, and the interleaved operation can reduce the input current ripple; the first coupled inductor secondary side N S1 is in series with the second coupled inductor secondary side Ns2 such that the voltage gain can be increased.

而該轉換器(1)在使用過程中,係操作於連續導通模式〔CCM〕,導通比大於0.5,而且該第一主開關S1和該第二主開關S2以工作相位相差180°的交錯式操作,該第一輔助開關Sa1及該第二輔助開關Sa2與該第一主開關S1及該第二主開關S2採互補式操作。穩態時,該轉換器(1)根據各開關及各二極體的ON/OFF狀態,在一個切換週期內該轉換器(1)可分成16個操作階段,而由於該轉換器(1)電路的對稱性,以下僅對前8個階段作簡要的電路動作分析,假設:1.各該開關及各該二極體之導通壓降皆為零;2.各該電容能忽略電壓漣波,使得其電容電壓可視為常數;3.該第一耦合電感與該第二耦合電感的匝數比相等(Ns1/Np1=Ns2/Np2=n),且該第一磁化電感Lm1與該第二磁化電感Lm2之 電感值相等(Lm1=Lm2),該第一漏電感Lk1與該第二漏電感Lk2之電感值相等(Lk1=Lk2),該第一磁化電感Lm1與該第二磁化電感Lm2皆遠大於該第一漏電感Lk1與該第二漏電感Lk2;4.該第一耦合電感之該第一磁化電感Lm1與該第二耦合電感之該第二磁化電感Lm2的電流操作在連續導通模式〔Continuous Conduction Mode,CCM〕。 The converter (1) operates in a continuous conduction mode (CCM) during use, the conduction ratio is greater than 0.5, and the first main switch S 1 and the second main switch S 2 are 180° out of phase with each other. In the interleaved operation, the first auxiliary switch S a1 and the second auxiliary switch S a2 are complementarily operated with the first main switch S 1 and the second main switch S 2 . In steady state, the converter (1) can be divided into 16 operating phases in one switching cycle according to the ON/OFF states of the switches and the diodes, and since the converter (1) The symmetry of the circuit, the following only the first eight stages of brief circuit action analysis, assuming: 1. Each of the switch and each of the two diodes have a zero voltage drop; 2. each of the capacitors can ignore the voltage chopping so that it can be regarded as constant capacitor voltage;. 3 of the first coupled inductor coupled to the second inductor turns ratio is equal to (N s1 / N p1 = N s2 / N p2 = n), and the first magnetizing inductance L M1 is equal to the inductance value of the second magnetizing inductance L m2 (L m1 = L m2 ), and the first leakage inductance L k1 is equal to the inductance value of the second leakage inductance L k2 (L k1 = L k2 ), the first A magnetizing inductance L m1 and the second magnetizing inductance L m2 are both greater than the first leakage inductance L k1 and the second leakage inductance L k2 ; 4. the first magnetizing inductance L m1 of the first coupling inductor and the first The current of the second magnetizing inductance L m2 of the two coupled inductors is operated in a continuous conduction mode (CCM).

其各線性階段線性等效電路以及主要元件波形如下所示,請再一併參閱第三圖本發明之主要元件穩態波形圖所示: The linear equivalent circuit and the main component waveforms of each linear phase are as follows. Please refer to the third diagram for the steady-state waveform diagram of the main components of the present invention as shown in the following figure:

第一階段〔t0~t1〕:〔第一主開關S1:ON、第二主開關S2:ON、第一輔助開關Sa1:OFF、第二輔助開關Sa2:OFF、第一倍壓二極體Dd1:OFF、第二倍壓二極體Dd2:OFF、第一輸出二極體Do1:OFF、第二輸出二極體Do2:OFF〕:請再一併參閱第四圖本發明之第一操作階段等效電路圖所示,第一階段開始於t=t0,該第一主開關S1與該第二主開關S2皆為ON〔導通〕,該第一輔助開關Sa1與該第二輔助開關Sa2皆為OFF〔截止〕。該第一倍壓二極體Dd1、該第二倍壓二極體Dd2與該第一輸出二極體Do1、該第二輸出二極體Do2均為逆向偏壓而OFF。該輸入電壓Vin跨於該第一耦合電感初級側Np1、該第二耦合電感初級側Np2,即跨於該第一磁化電感Lm1和該第一漏電感Lk1以及該第二磁化電感Lm2和該第二漏電感Lk2上,電流呈線性上升。在輸出側,該第一輸出電容Co1和該第二輸出電容Co2對該負載Ro放電。當t=t1,該第一主開關S1切換 為OFF時,本階段結束。 First stage [t 0 ~ t 1 ]: [first main switch S 1 : ON, second main switch S 2 : ON, first auxiliary switch S a1 : OFF, second auxiliary switch S a2 : OFF, first Double voltage diode D d1 :OFF, second voltage doubled diode D d2 :OFF, first output diode D o1 :OFF, second output diode D o2 :OFF]: Please refer to it again Fourth, the first circuit of the present invention shows an equivalent circuit diagram. The first phase starts at t=t 0 , and the first main switch S 1 and the second main switch S 2 are both ON (on). Both the auxiliary switch S a1 and the second auxiliary switch S a2 are OFF [OFF]. The first voltage doubled diode D d1 , the second voltage doubled diode D d2 , the first output diode D o1 , and the second output diode D o2 are both reverse biased and turned OFF. The input voltage V in spans the first coupled inductor primary side N p1 , the second coupled inductor primary side N p2 , that is, across the first magnetizing inductance L m1 and the first leakage inductance L k1 and the second magnetization On the inductor L m2 and the second leakage inductance L k2 , the current rises linearly. On the output side, the first output capacitor C o1 and the second discharge of the output capacitor C o2 load R o. When t=t 1 and the first main switch S 1 is switched OFF, this phase ends.

第二階段〔t1~t2〕:〔第一主開關S1:OFF、第二主開關S2:OFF、第一輔助開關Sa1:OFF、第二輔助開關Sa2:OFF、第一倍壓二極體Dd1:OFF、第二倍壓二極體Dd2:OFF、第一輸出二極體Do1:OFF、第二輸出二極體Do2:OFF〕:請再一併參閱第五圖本發明之第二操作階段等效電路圖所示,第二階段開始於t=t1,該第一主開關S1切換為OFF。該第一漏電感Lk1之電流iLk1對該第一主開關S1的該第一主開關寄生電容CS1充電,該第一主開關S1之跨壓vds1由零電壓開始上升,因為該第一主開關寄生電容CS1很小,所以本階段時間很短。當t=t2,該第一主開關S1之跨壓vds1上升至輸入電壓Vin加上該第一箝位電容Cc1之電壓VCc1時,該第一輔助開關Sa1之本體二極體導通,該第一主開關S1之跨壓vds1箝位在Vin+VCc1,本階段結束。 Second stage [t 1 ~ t 2 ]: [first main switch S 1 : OFF, second main switch S 2 : OFF, first auxiliary switch S a1 : OFF, second auxiliary switch S a2 : OFF, first Double voltage diode D d1 :OFF, second voltage doubled diode D d2 :OFF, first output diode D o1 :OFF, second output diode D o2 :OFF]: Please refer to it again Fig. 5 is a diagram showing an equivalent circuit diagram of the second operational stage of the present invention. The second phase starts at t = t 1 and the first main switch S 1 is switched OFF. L k1 of the first current i Lk1 leakage inductance of the main switch of the first parasitic capacitance C S1 first main charging switch S 1, the voltage across the first main switch S 1 v ds1 the voltage begins to rise from zero, because The first main switch parasitic capacitance C S1 is small, so the time in this phase is very short. When t=t 2 , the voltage across the first main switch S 1 v ds1 rises to the input voltage V in plus the voltage V Cc1 of the first clamp capacitor C c1 , the body of the first auxiliary switch S a1 conducting diode, the voltage across the first main switch S 1 v ds1 of the clamp V in + V Cc1, this phase ends.

第三階段〔t2~t3〕:〔第一主開關S1:ON、第二主開關S2:OFF、第一輔助開關Sa1:OFF、第二輔助開關Sa2:OFF、第一倍壓二極體Dd1:OFF、第二倍壓二極體Dd2:OFF、第一輸出二極體Do1:OFF、第二輸出二極體Do2:OFF〕:請再一併參閱第六圖本發明之第三操作階段等效電路圖所示,第三階段開始於t=t2,第一輔助開關Sa1之本體二極體導通,該第一漏電感Lk1之電流iLk1下降,該第一漏電感Lk1之電流iLk1經由該第一輔助開關Sa1之本體二極體對該第一箝位電容Cc1充電。當t=t3,該第一箝位電容Cc1 之電壓VCc1上升使得該第二倍壓二極體Dd2和該第一輸出二極體Do1的逆向偏壓降成0時,該第二倍壓二極體Dd2與該第一輸出二極體Do1轉態為ON,本階段結束。 Third stage [t 2 ~ t 3 ]: [first main switch S 1 : ON, second main switch S 2 : OFF, first auxiliary switch S a1 : OFF, second auxiliary switch S a2 : OFF, first Double voltage diode D d1 :OFF, second voltage doubled diode D d2 :OFF, first output diode D o1 :OFF, second output diode D o2 :OFF]: Please refer to it again The sixth diagram shows the equivalent circuit diagram of the third operation stage of the present invention. The third stage starts at t=t 2 , the body diode of the first auxiliary switch S a1 is turned on, and the current i Lk1 of the first leakage inductance L k1 As a result, the current i Lk1 of the first leakage inductance L k1 charges the first clamping capacitor C c1 via the body diode of the first auxiliary switch S a1 . When t=t 3 , the voltage V Cc1 of the first clamp capacitor C c1 rises such that the reverse bias voltage of the second voltage doubled diode D d2 and the first output diode D o1 decreases to 0, The second voltage doubled body D d2 and the first output diode D o1 are turned ON, and this stage ends.

第四階段〔t3~t4〕:〔第一主開關S1:OFF、第二主開關S2:ON、第一輔助開關Sa1:OFF、第二輔助開關Sa2:OFF、第一倍壓二極體Dd1:OFF、第二倍壓二極體Dd2:ON、第一輸出二極體Do1:ON、第二輸出二極體Do2:OFF〕:請再一併參閱第七圖本發明之第四操作階段等效電路圖所示,第四階段開始於t=t3,該第二倍壓二極體Dd2與該第一輸出二極體Do1轉態為ON。儲存在該第一磁化電感Lm1的能量傳送至該第一耦合電感次級側Ns1,電流分流至兩條路徑,一條是流經該第二倍壓二極體Dd2和該第二倍壓電容Cd2,另一路徑是經由該第一倍壓電容Cd1、該第一輸出二極體Do1和該第一輸出電容Co1。此時,電流對該第二倍壓電容Cd2充電,對該第一倍壓電容Cd1放電且對該第一輸出電容Co1充電。另一方面,因為次級側電流反射至第二耦合電感的理想變壓器初級側,使得該第二漏電感Lk2之電流iLk2快速上升。當t=t4,該第一輔助開關Sa1切換成ON時,本階段結束。 The fourth stage [t 3 ~ t 4 ]: [first main switch S 1 : OFF, second main switch S 2 : ON, first auxiliary switch S a1 : OFF, second auxiliary switch S a2 : OFF, first Voltage doubled diode D d1 :OFF, second voltage doubled diode D d2 :ON, first output diode D o1 :ON, second output diode D o2 :OFF]: Please refer to it again 7 is a diagram showing an equivalent circuit diagram of the fourth operation stage of the present invention, the fourth stage starts at t=t 3 , and the second voltage doubled body D d2 and the first output diode D o1 are turned ON. . The energy stored in the first magnetizing inductance L m1 is transmitted to the secondary side of the first coupled inductor N s1 , the current is shunted to two paths, one is flowing through the second voltage doubled diode D d2 and the second time The capacitor C d2 , the other path is via the first voltage doubled capacitor C d1 , the first output diode D o1 and the first output capacitor C o1 . At this time, the current charges the second voltage doubled capacitor C d2 , discharges the first voltage doubled capacitor C d1 , and charges the first output capacitor C o1 . On the other hand, since the secondary side current is reflected to the ideal transformer primary side of the second coupled inductor, the current i Lk2 of the second leakage inductance L k2 rises rapidly. When t=t 4 , the first auxiliary switch S a1 is switched to ON, the phase ends.

第五階段〔t4~t5〕:〔第一主開關S1:OFF、第二主開關S2:ON、第一輔助開關Sa1:ON、第二輔助開關Sa2:OFF、第一倍壓二極體Dd1:OFF、第二倍壓二極體Dd2:ON、第一輸出二極體Do1:ON、第二輸出二極體Do2:OFF〕:請再一併參 閱第八圖本發明之第五操作階段等效電路圖所示,第五階段開始於t=t4,該第一輔助開關Sa1切換為ON。由於此時該第一輔助開關Sa1之本體二極體導通,所以該第一輔助開關Sa1之跨壓為零,因此該第一輔助開關Sa1達成零電壓切換〔ZVS〕性能,此時原本流經該第一輔助開關Sa1之本體二極體的電流轉移到第一輔助開關Sa1對第一箝位電容Cc1充電,該第一漏電感Lk1之電流iLk1持續下降,當該第一漏電感Lk1之電流iLk1降至0之後,該第一漏電感Lk1之電流iLk1改變電流方向。當t=t5,該第一輔助開關Sa1切換為OFF時,本階段結束。 The fifth stage [t 4 ~ t 5 ]: [first main switch S 1 : OFF, second main switch S 2 : ON, first auxiliary switch S a1 : ON, second auxiliary switch S a2 : OFF, first Voltage doubled diode D d1 :OFF, second voltage doubled diode D d2 :ON, first output diode D o1 :ON, second output diode D o2 :OFF]: Please refer to it again Figure 8 is a diagram showing an equivalent circuit diagram of the fifth operational phase of the present invention. The fifth phase starts at t = t 4 and the first auxiliary switch S a1 is switched ON. Since the body diode of the first auxiliary switch S a1 is turned on at this time, the voltage across the first auxiliary switch S a1 is zero, so the first auxiliary switch S a1 achieves zero voltage switching [ZVS] performance. transferring the original current flowing through the first auxiliary switch S a1 of the body diode of the first auxiliary switch S a1 to charge the first clamp capacitance C c1, the current leakage inductance L k1 of the first i Lk1 continued to decline, when after the current L k1 of the first reduced leakage inductance i Lk1 0, L k1 of the first leakage inductance current i Lk1 changing the current direction. When t = t 5, the first auxiliary switch S a1 switch is OFF, the end of this phase.

第六階段〔t5~t6〕:〔第一主開關S1:OFF、第二主開關S2:ON、第一輔助開關Sa1:OFF、第二輔助開關Sa2:OFF、第一倍壓二極體Dd1:OFF、第二倍壓二極體Dd2:ON、第一輸出二極體Do1:ON、第二輸出二極體Do2:OFF〕:請再一併參閱第九圖本發明之第六操作階段等效電路圖所示,第六階段開始於t=t5,該第一輔助開關Sa1切換為OFF。此時該第一漏電感Lk1和第一主開關寄生電容CS1開始產生共振,儲存在該第一主開關寄生電容CS1之能量藉由共振方式轉移到該第一漏電感Lk1,該第一主開關S1跨壓vds1開始共振下降,儲存在第一主開關寄生電容CS1之能量轉移到該第一漏電感Lk1上。當t=t6,該第二主開關S2跨壓Vds2降到零,該第一主開關S1的本體二極體開始導通,本階段結束。 The sixth stage [t 5 ~ t 6 ]: [first main switch S 1 : OFF, second main switch S 2 : ON, first auxiliary switch S a1 : OFF, second auxiliary switch S a2 : OFF, first Voltage doubled diode D d1 :OFF, second voltage doubled diode D d2 :ON, first output diode D o1 :ON, second output diode D o2 :OFF]: Please refer to it again Ninth Diagram The sixth circuit of the present invention shows an equivalent circuit diagram. The sixth phase starts at t=t 5 and the first auxiliary switch S a1 is switched OFF. At this time, the first leakage inductance L k1 and the first main switch parasitic capacitance C S1 start to resonate, and the energy stored in the first main switch parasitic capacitance C S1 is transferred to the first leakage inductance L k1 by resonance, The first main switch S 1 begins to resonate across the voltage v ds1 , and the energy stored in the first main switch parasitic capacitance C S1 is transferred to the first leakage inductance L k1 . When t=t 6 , the second main switch S 2 drops to zero across the voltage V ds2 , and the body diode of the first main switch S 1 starts to conduct, and the phase ends.

第七階段〔t6~t7〕:〔第一主開關S1:OFF、第二主開關S2:ON、第一輔助開關Sa1:OFF、第二輔助開關Sa2:OFF、 第一倍壓二極體Dd1:OFF、第二倍壓二極體Dd2:ON、第一輸出二極體Do1:ON、第二輸出二極體Do2:OFF〕:請再一併參閱第十圖本發明之第七操作階段等效電路圖所示,第七階段開始於t=t6,該第一主開關S1的本體二極體導通,該第一主開關S1跨壓vds1為零,該第一主開關S1零電壓切換〔ZVS〕的條件成立。當t=t7,該第一主開關S1切換為ON時,該第一主開關S1達成ZVS性能,本階段結束。 The seventh stage [t 6 ~ t 7 ]: [first main switch S 1 : OFF, second main switch S 2 : ON, first auxiliary switch S a1 : OFF, second auxiliary switch S a2 : OFF, first Voltage doubled diode D d1 :OFF, second voltage doubled diode D d2 :ON, first output diode D o1 :ON, second output diode D o2 :OFF]: Please refer to it again FIG seventh tenth stage of operation of the present invention shown in an equivalent circuit diagram of a seventh stage begins at t = t 6, the first main body switch S 1 conducting diode, the first voltage across the main switch S 1 v ds1 is zero, the first main switch S 1 is zero voltage switching conditions are satisfied] [ZVS. When t = t 7, the first main switch S 1 is switched ON, the first main switch S 1 is reached ZVS performance, the end of the stage.

第八階段〔t7~t8〕:〔第一主開關S1:ON、第二主開關S2:ON、第一輔助開關Sa1:OFF、第二輔助開關Sa2:OFF、第一倍壓二極體Dd1:OFF、第二倍壓二極體Dd2:ON、第一輸出二極體Do1:ON、第二輸出二極體Do2:OFF〕:請再一併參閱第十一圖本發明之第八操作階段等效電路圖所示,第八階段開始於t=t7,該第一主開關S1切換為ON,且該第二主開關S2保持ON,該第一漏電感Lk1之電流iLk1上升,當該第一漏電感Lk1之電流iLk1小於該第一磁化電感Lm1之電流iLm1,即iLk1<iLm1時,該第一磁化電感Lm1所儲存的能量藉由耦合電感傳送至次級側。因此該第二倍壓二極體Dd2與該第一輸出二極體Do1仍然保持導通,該第二倍壓二極體Dd2電流iDd2下降,對該第二倍壓電容Cd2充電,該第一輸出二極體Do1電流iDo1下降,對該第一輸出電容Co1充電。當t=t8,漏電感電流上升至iLk1=iLm1,此時該第二倍壓二極體Dd2電流iDd2與該第一輸出二極體Do1電流iDo1下降至零,該第二倍壓二極體Dd2與該第一輸出二極體Do1以零電流切換〔ZCS〕轉態成OFF,該第一磁化電感Lm1與該第一漏電 感Lk1再次受輸入電壓充電,本階段結束,進入下半個切換週期。 The eighth stage [t 7 ~ t 8 ]: [first main switch S 1 : ON, second main switch S 2 : ON, first auxiliary switch S a1 : OFF, second auxiliary switch S a2 : OFF, first Voltage doubled diode D d1 :OFF, second voltage doubled diode D d2 :ON, first output diode D o1 :ON, second output diode D o2 :OFF]: Please refer to it again 11 is an eighth circuit diagram of the eighth operational phase of the present invention, the eighth phase starts at t=t 7 , the first main switch S 1 is switched ON, and the second main switch S 2 is kept ON. L k1 of a first current i Lk1 increased leakage inductance, L k1 when the leakage inductance of the first current is less than the current i Lk1 i Lm1 L m1 of the first magnetizing inductance, i.e. i Lk1 <i Lm1 when the first magnetizing inductance The energy stored by L m1 is transferred to the secondary side by the coupled inductor. Therefore, the second voltage doubled diode D d2 and the first output diode D o1 remain conductive, and the second voltage doubled diode D d2 current i Dd2 decreases, and the second voltage doubled capacitor C d2 During charging, the first output diode D o1 current i Do1 falls, and the first output capacitor C o1 is charged. When t=t 8 , the leakage inductor current rises to i Lk1 =i Lm1 , at which time the second voltage doubled diode D d2 current i Dd2 and the first output diode D o1 current i Do1 fall to zero, The second voltage doubled body D d2 and the first output diode D o1 are turned OFF by a zero current switching [ZCS], and the first magnetizing inductance L m1 and the first leakage inductance L k1 are again subjected to an input voltage. Charging, the end of this phase, enters the next half of the switching cycle.

而該轉換器(1)之後半切換週期的8個階段,由於電路的對稱性,後8個階段電路動作分析相似〔請再一併參閱第十二圖~第十九圖所示〕,詳細分析在此省略。 In the eight stages of the second half of the switching period of the converter (1), due to the symmetry of the circuit, the analysis of the operation of the last eight stages is similar (please refer to the twelfth to the nineteenth figure together). The analysis is omitted here.

以下進行該轉換器(1)穩態特性分析:而為為了簡化分析,忽略各開關及各二極體導通壓降及時間極短的暫態特性。同時忽略時間極短的暫態階段,包含第二、三、四、六、七、十、十一、十二、十四、十五和十六階段,僅考慮第一、五、八、九、十三階段。所有電容夠大,忽略電容電壓漣波,使得電容電壓可視為常數。 The steady-state characteristic analysis of the converter (1) is performed as follows: In order to simplify the analysis, the transient characteristics of each switch and each of the diodes and the extremely short time are ignored. At the same time, ignore the transient phase with very short time, including the second, third, fourth, sixth, seventh, ten, eleventh, twelfth, fourteenth, fifteenth and sixteenth phases, only considering the first, fifth, eighth and ninth Thirteen stages. All capacitors are large enough to ignore capacitive voltage chopping so that the capacitor voltage can be considered constant.

電壓增益:在第一、八、九、十三階段時,該第一磁化電感Lm1跨壓為 Voltage gain: in the first, eighth, ninth, and thirteenth stages, the first magnetizing inductance L m1 is across the voltage

在第五階段時,該第一磁化電感Lm1跨壓為 In the fifth stage, the first voltage across the magnetizing inductance L m1 is

根據伏秒平衡原理〔principle of volt-second balance〕,即電感電壓在一切換週期內之平均電壓為零,忽略佔週期比例很小的盲時,因此可得kVinDTs+k(-VCc1)(1-D)Ts=0 (3) According to the principle of volt-second balance, the average voltage of the inductor voltage is zero during a switching period, and the blind time with a small proportion of the period is ignored, so kV in DT s +k(-V can be obtained. Cc1 )(1-D)T s =0 (3)

整理(3)式可得 Finishing (3) is available

在交錯式操作模式時,轉換器下半週期的電路動作分析與上述相似,針對該第二磁化電感Lm2,應用伏秒平衡定理同理可得 In an interlaced mode of operation, the next half of the operation of the converter circuit similar to the above analysis, for the second magnetizing inductance L m2, applied volt-second balance Theorem Similarly available

耦合電感次級側的該第二倍壓電容Cd2電壓VCd2,可藉由耦合電感初級側電壓反射至次級側電壓推導而得到。在第五階段,第一主開關S1:OFF、第二主開關S2:ON,該第二倍壓二極體Dd2及該第一輸出二極體Do1導通,該第二倍壓電容Cd2電壓VCd2 The second voltage doubled capacitor C d2 voltage V Cd2 on the secondary side of the coupled inductor can be obtained by decoupling the primary side voltage of the coupled inductor to the secondary side voltage. In the fifth stage, the first main switch S 1 :OFF, the second main switch S 2 :ON, the second voltage doubled diode D d2 and the first output diode D o1 are turned on, the second voltage double Capacitor C d2 voltage V Cd2 is

在第十三階段,第一主開關S1:ON、第二主開關S2:OFF,而且該第一倍壓二極體Dd1與該第二輸出二極體Do2導通,該第一倍壓電容Cd1電壓VCd1 In the thirteenth stage, the first main switch S 1 :ON, the second main switch S 2 :OFF, and the first voltage doubled diode D d1 is electrically connected to the second output diode D o2 , the first Double voltage capacitor C d1 voltage V Cd1 is

該第一輸出電容Co1之電壓VCo1 The voltage V Co1 of the first output capacitor C o1 is

該第二輸出電容Co2之電壓VCo2 The second capacitor C o2 of the output voltage is V Co2

該負載Ro上之總輸出電壓VO The total output voltage V O at the load R o is

因此該轉換器(1)的電壓增益G為 Therefore, the voltage gain G of the converter (1) is

當n=1時,電壓增益G與不同耦合電感的耦合係數k〔k=1、0.95、0.9〕相互間之影響非常小〔請再一併參閱第二十圖本發明之電壓增益與導通比及耦合係數的曲線圖所示〕。若忽略漏電感,則耦合係數k=1,可得理想的電壓增益為 When n=1, the voltage gain G and the coupling coefficient k [k=1, 0.95, 0.9] of different coupled inductors have very little influence on each other (please refer to the voltage gain and conduction ratio of the present invention in the twenty-first embodiment). And the graph of the coupling coefficient is shown]. If the leakage inductance is ignored, the coupling coefficient k=1, the ideal voltage gain is obtained.

從上式可知電壓增益,具有耦合電感匝數比n和導通比D兩個設計自由度。該轉換器(1)可藉由適當設計耦合電感的匝數比,達到高升壓比,而不必操作在極大的導通比。對應於耦合電感匝數比n及導通比D的電壓增益曲線,即如第二十一圖本發明之電壓增益與導通比及耦合電感匝數比的曲線圖所示。當導通比D=0.6、n=1時,電壓增益為10倍;當D=0.6,n=3時,電壓增益為30倍。 From the above formula, the voltage gain is known, and there are two design degrees of freedom of the coupled inductor turns ratio n and the turn-on ratio D. The converter (1) can achieve a high step-up ratio by appropriately designing the turns ratio of the coupled inductor without having to operate at a very large turn-on ratio. Corresponding to the voltage gain curve of the coupled inductor turns ratio n and the turn-on ratio D, that is, the voltage gain and the turn-on ratio and the coupled inductor turns ratio of the present invention as shown in the twenty-first embodiment. When the conduction ratio D=0.6, n=1, the voltage gain is 10 times; when D=0.6, n=3, the voltage gain is 30 times.

開關元件的電壓應力:該第一主開關S1、該第二主開關S2的電壓應力為 Voltage stress of the switching element: the voltage stress of the first main switch S 1 and the second main switch S 2 is

由於傳統交錯式升壓型轉換器的功率開關應力為V o ,而該轉換器(1)的開關電壓應力比較小,僅為輸出電壓之1/4n倍, 因此可使用低額定耐壓具有較低R ds(ON)的MOSFET,可降低開關導通損失。 Since the power switching stress of the conventional interleaved boost converter is V o and the switching voltage stress of the converter (1) is relatively small, only 1/4 n times the output voltage, the low rated withstand voltage can be used. Lower R ds (ON) MOSFETs reduce switch conduction losses.

依據上述電路動作分析結果,使用IsSpice模擬軟體及實作結果驗證。設定該轉換器(1)之相關參數為:輸入電源36V、輸出電壓380V、最大輸出功率1000W、切換頻率50kHz,n=1.2;以下以模擬波形與實作結果檢驗該轉換器(1)的特點〔請再一併參閱第二十二圖本發明之模擬電路示意圖所示〕: According to the above circuit action analysis results, the IsSpice simulation software and the implementation results are verified. Set the relevant parameters of the converter (1): input power supply 36V, output voltage 380V, maximum output power 1000W, switching frequency 50kHz, n=1.2; below test the characteristics of the converter (1) with analog waveform and implementation results [Please refer to the schematic diagram of the analog circuit of the present invention as shown in the twenty-second figure]:

A.驗證穩態特性:請再一併參閱第二十三圖本發明之開關驅動信號、輸入電壓及輸出電壓的模擬波形圖所示,驗證該轉換器(1)之穩態特性,滿載500W時,可得知Vin=36V、Vo=380V,導通比大約D=0.63,符合(12)式電壓增益的公式。 A. Verification of steady-state characteristics: Please refer to the analog waveform diagram of the switch drive signal, input voltage and output voltage of the present invention as shown in the twenty-third figure to verify the steady-state characteristic of the converter (1), full load 500W At this time, it can be known that V in = 36V, V o = 380V, and the conduction ratio is approximately D = 0.63, which is in accordance with the formula of the voltage gain of the formula (12).

B.驗證開關電壓應力:請再一併參閱第二十四圖本發明之主開關跨壓的模擬波形圖及第二十五圖本發明之輔助開關跨壓的模糊波形圖所示,當該轉換器(1)輸出電壓Vo=380V時,該第一主開關S1、該第二主開關S2之電壓應力為100V,該第一輔助開關Sa1、該第二輔助開關Sa2之電壓應力為98V。驗證該轉換器(1)開關具有低電壓應力之優點。 B. Verifying the switch voltage stress: Please refer to the twenty-fourth figure for the analog switch waveform diagram of the main switch across the present invention and the twenty-fifth figure. The fuzzy waveform diagram of the auxiliary switch across the voltage of the present invention is shown in the figure. When the output voltage V o =380V of the converter (1), the voltage stress of the first main switch S 1 and the second main switch S 2 is 100V, and the first auxiliary switch S a1 and the second auxiliary switch S a2 The voltage stress is 98V. Verify that the converter (1) switch has the advantage of low voltage stress.

C.驗證主開關與輔助開關皆能達到ZVS操作:請再一併參閱第二十六圖本發明之主開關的驅動信號與跨壓模擬波形圖、第二十七圖本發明之第一主開關切換瞬間的模擬波形放大圖、第二十八圖本發明之第二主開關切換瞬間的模擬波形放大圖所示,於滿載 1000W時,可得知該第一主開關S1及該第二主開關S2切換為ON之前,該第一主開關S1的跨壓vds1和該該第二主開關S2的跨壓vds2均已降至零,因此達到ZVS操作;請再一併參閱第二十九圖本發明之輔助開關的驅動信號與跨壓模擬波形圖、第三十圖本發明之第一輔助開關切換瞬間的模擬波形放大圖、第三十一圖本發明之第二輔助開關切換瞬間的模擬波形放大圖所示,於滿載1000W時,可得知該第一輔助開關Sa1及該第二輔助開關Sa2切換為ON之前,該第一輔助開關Sa1的跨壓vdsa1和該第二輔助開關Sa2的跨壓vdsa2均已降至零,因此達到ZVS操作。 C. Verify that both the main switch and the auxiliary switch can achieve ZVS operation: Please refer to the twenty-sixth drawing of the main switch of the present invention for driving signals and voltage across the analog waveform diagram, and the twenty-seventh figure. The analog waveform enlarged view of the switch switching instant, the twenty-eighth figure shows the enlarged analog waveform of the second main switch switching instant of the present invention, and the first main switch S 1 and the second are known when the full load is 1000 W the main switch S 2 before switching to ON, the voltage across the first main switch S v ds1 1 and the second main switch S is the voltage across the v ds2 2 have been reduced to zero, thereby achieving ZVS operation; Please together Referring to the twenty-ninth aspect, the driving signal and the voltage-crossing analog waveform diagram of the auxiliary switch of the present invention, the thirty-first figure, the analog waveform of the first auxiliary switch of the present invention, the analog waveform, and the thirty-first figure, the second of the present invention. As shown in the enlarged analog waveform of the auxiliary switch switching moment, when the full load is 1000W, it can be known that the first auxiliary switch S a1 and the second auxiliary switch S a2 are switched ON, and the cross voltage of the first auxiliary switch S a1 is v dsa2 v dsa1 voltage across and the second auxiliary switch S a2 been reduced to And thus achieve ZVS operation.

D.驗證具有低輸入漣波電流性能與CCM操作:請再一併參閱第三十二圖本發明之漏電感電流及總輸入電流模擬波形圖所示,可得知該第一漏電感Lk1之電流iLk1及該第二漏電感Lk2之電流iLk2的漣波電流大約48A,而輸入電流iin的漣波電流僅為約20.8A,因此交錯式操作具有降低輸入漣波電流作用。 D. Verification of low input chopping current performance and CCM operation: Please refer to the thirty-second figure of the leakage inductance current and total input current of the present invention as shown in the analog waveform diagram, and the first leakage inductance L k1 can be known. the current i Lk1 and ripple current of the second current leakage inductance L k2 i Lk2 about 48A, while the input current i in of the ripple current is only about 20.8A, thus interleaved operation with reduced input current ripple effect.

E.驗證輸出電容電壓:請再一併參閱第三十三圖本發明之倍壓電容、輸出電容的電壓波形模擬圖所示,該第一倍壓電容Cd1之電壓VCd1和該第二倍壓電容Cd2之電壓VCd2大約等於95V,該第一輸出電容Co1之電壓VCo1和該第二輸出電容Co2之電壓CCo2大約等於190V,模擬與實作結果與分析結果相符。驗證理論分析的正確性。請再一併參閱第三十四圖本發明之箝位電容的電壓波形模擬圖所示,該第一箝位電容Cc1之電壓VCc1和該第二箝位電容Cc2之電壓VCc2大約等於 55V,符合公式(4)的推導結果。 E. Verifying the output capacitor voltage: Please refer to the voltage waveform diagram of the voltage doubler capacitor and the output capacitor of the present invention as shown in the thirty-third figure. The voltage V Cd1 of the first voltage doubled capacitor C d1 and the The voltage V Cd2 of the second voltage doubled capacitor C d2 is approximately equal to 95V, and the voltage V Co1 of the first output capacitor C o1 and the voltage C Co2 of the second output capacitor C o2 are approximately equal to 190V, simulation and implementation results and analysis The results are consistent. Verify the correctness of the theoretical analysis. Please refer to the voltage waveform diagram of the clamp capacitor of the present invention as shown in the thirty-fourth embodiment. The voltage V Cc1 of the first clamp capacitor C c1 and the voltage V Cc2 of the second clamp capacitor C c2 are approximately Equal to 55V, in accordance with the derivation of formula (4).

藉由以上所述,本發明之使用實施說明可知,本發明與現有技術手段相較之下,本發明主要係具有下列優點: From the above, the implementation description of the present invention shows that the present invention has the following advantages in comparison with the prior art means:

1.本案係利用主動箝位電路,使得所有開關達成零電壓切換性能,減少切換損失,提升效率。 1. This case utilizes the active clamp circuit to achieve zero voltage switching performance for all switches, reducing switching losses and improving efficiency.

2.本案利用耦合電感構成的電壓倍增模組提升電壓增益,開關電壓應力遠低於輸出電壓,可使用導通電阻較小的功率開關,降低導通損失,提升效率。 2. In this case, the voltage multiplying module composed of the coupled inductor is used to increase the voltage gain. The switching voltage stress is much lower than the output voltage. A power switch with a small on-resistance can be used to reduce the conduction loss and improve the efficiency.

3.本案利用交錯式操作,使得輸入電流漣波相消,降低輸入電流漣波,可減少電源端的電容器數量,降低電路成本。 3. This case uses interleaved operation to make the input current ripple cancel and reduce the input current ripple, which can reduce the number of capacitors at the power supply terminal and reduce the circuit cost.

然而前述之實施例或圖式並非限定本發明之產品結構或使用方式,任何所屬技術領域中具有通常知識者之適當變化或修飾,皆應視為不脫離本發明之專利範疇。 However, the above-described embodiments or drawings are not intended to limit the structure or the use of the present invention, and any suitable variations or modifications of the invention will be apparent to those skilled in the art.

綜上所述,本發明實施例確能達到所預期之使用功效,又其所揭露之具體構造,不僅未曾見諸於同類產品中,亦未曾公開於申請前,誠已完全符合專利法之規定與要求,爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。 In summary, the embodiments of the present invention can achieve the expected use efficiency, and the specific structure disclosed therein has not been seen in similar products, nor has it been disclosed before the application, and has completely complied with the provisions of the Patent Law. And the request, the application for the invention of a patent in accordance with the law, please forgive the review, and grant the patent, it is really sensible.

Claims (7)

一種隔離型零電壓切換高升壓DC-DC轉換器,其主要係令轉換器於輸入電壓(Vin)之正極分別連接有第一箝位電容(Cc1)之第一端、第一耦合電感初級側(Np1)之第一端、第二箝位電容(Cc2)之第一端及第二耦合電感初級側(Np2)之第一端,於該輸入電壓(Vin)之負極分別連接有第一主開關(S1)之第二端及第二主開關(S2)之第二端,該第一箝位電容(Cc1)之第二端連接有第一輔助開關(Sa1)之第一端,該第一輔助開關(Sa1)之第二端與該第一耦合電感初級側(Np1)之第二端同時連接至該第一主開關(S1)之第一端,該第二箝位電容(Cc2)之第二端連接有第二輔助開關(Sa2)之第一端,該第二輔助開關(Sa2)之第二端與該第二耦合電感初級側(Np2)之第二端同時連接至該第二主開關(S2)之第一端;而第一耦合電感次級側(Ns1)之第一端分別與第一倍壓二極體(Dd1)之正極、第二倍壓二極體(Dd2)之負極、第一輸出電容(Co1)之第二端及第二輸出電容(Co2)之第一端相連接,該第一耦合電感次級側(Ns1)之第二端與第二耦合電感次級側(Ns2)之第二端相連接,該第二耦合電感次級側(Ns2)之第一端分別與第一倍壓電容(Cd1)之第二端及第二倍壓電容(Cd2)之第一端相連接,該第一倍壓電容(Cd1)之第一端分別與該第一倍壓二極體(Dd1)之負極及第一輸出二極體(Do1)之正極相連接,該第二倍壓電容(Cd2)之第二端分別與該第二倍壓二極體(Dd2)之正極及第二輸出二極體(Do2)之負 極相連接,該第一輸出二極體(Do1)之負極分別與該第一輸出電容(Co1)之第一端及負載(Ro)之正極相連接,該第二輸出二極體(Do2)之正極分別與該第二輸出電容(Co2)之第二端及該負載(Ro)之負極相連接。 An isolated zero-voltage switching high-boost DC-DC converter mainly comprises a first end of a first clamp capacitor (C c1 ) connected to a positive pole of an input voltage (V in ), and a first coupling a first end of the inductor primary side (N p1 ), a first end of the second clamp capacitor (C c2 ), and a first end of the second coupled inductor primary side (N p2 ) at the input voltage (V in ) The second end of the first main switch (S 1 ) and the second end of the second main switch (S 2 ) are respectively connected to the negative pole, and the first auxiliary switch is connected to the second end of the first clamp capacitor (C c1 ) a first end of (S a1 ), a second end of the first auxiliary switch (S a1 ) and a second end of the first coupled inductor primary side (N p1 ) are simultaneously connected to the first main switch (S 1 ) the first end of the second clamp capacitor (C c2) connected to a second end of the second auxiliary switch (S a2) of the first end, the second auxiliary switch (S a2) a second end of the second a second end of the second coupled inductor primary side (N p2 ) is simultaneously connected to the first end of the second main switch (S 2 ); and the first end of the first coupled inductor secondary side (N s1 ) is respectively connected to the first end the positive voltage doubler diode (D d1), the second A negative voltage diode (D d2), the first output capacitor (C o1) and a second output terminal of the second capacitor (C o2) of a first end connected to a first inductor coupled to the secondary side (N s1 The second end of the second coupled inductor secondary side (N s2 ) is connected to the second end of the second coupled inductor secondary side (N s2 ) and the first voltage doubled capacitor (C The first end of d1 ) and the first end of the second voltage doubled capacitor (C d2 ) are connected, and the first end of the first voltage doubled capacitor (C d1 ) and the first voltage doubled diode respectively The negative electrode of D d1 ) is connected to the positive electrode of the first output diode (D o1 ), and the second end of the second voltage doubled capacitor (C d2 ) is respectively connected to the second voltage doubled diode (D d2 ) The anode of the second output diode (D o2 ) is connected to the cathode of the second output diode (D o2 ), and the cathode of the first output diode (D o1 ) and the first end of the first output capacitor (C o1 ) and the load (R) o) the positive electrode is connected to the positive output of the second diode (D o2) respectively of the second output capacitor (C o2) and a second end of the load (R & lt o) is connected to the negative electrode. 如申請專利範圍第1項所述隔離型零電壓切換高升壓DC-DC轉換器,其中,該第一主開關(S1)形成有第一主開關寄生電容(CS1)。 The isolated zero voltage switching high step-up DC-DC converter according to claim 1, wherein the first main switch (S 1 ) is formed with a first main switch parasitic capacitance (C S1 ). 如申請專利範圍第1項所述隔離型零電壓切換高升壓DC-DC轉換器,其中,該第二主開關(S2)形成有第二主開關寄生電容(CS2)。 The scope of the patent application to item 1 isolated zero-voltage switching a high step-up DC-DC converter, wherein the second main switch (S 2) formed on a second main switch parasitic capacitance (C S2). 如申請專利範圍第1項所述隔離型零電壓切換高升壓DC-DC轉換器,其中,該第一耦合電感包含有第一磁化電感(Lm1)及第一漏電感(Lk1)。 The isolated zero voltage switching high-boost DC-DC converter according to claim 1, wherein the first coupled inductor includes a first magnetizing inductance (L m1 ) and a first leakage inductance (L k1 ). 如申請專利範圍第1項所述隔離型零電壓切換高升壓DC-DC轉換器,其中,該第二耦合電感包含有第二磁化電感(Lm2)及第二漏電感(Lk2)。 The isolated zero voltage switching high-boost DC-DC converter according to claim 1, wherein the second coupled inductor includes a second magnetizing inductance (L m2 ) and a second leakage inductance (L k2 ). 如申請專利範圍第1項所述隔離型零電壓切換高升壓DC-DC轉換器,其中,該第一耦合電感初級側(Np1)與該第一耦合電感次級側(Ns1)構成第一理想變壓器,該第二耦合電感初級側(Np2)與該第二耦合電感次級側(Ns2)構成第二理想變壓器。 The isolated zero voltage switching high-boost DC-DC converter according to claim 1, wherein the first coupled inductor primary side (N p1 ) and the first coupled inductor secondary side (N s1 ) constitute The first ideal transformer, the second coupled inductor primary side (N p2 ) and the second coupled inductor secondary side (N s2 ) form a second ideal transformer. 如申請專利範圍第6項所述隔離型零電壓切換高升壓DC-DC轉換器,其中,該第一理想變壓器與該第二理想變壓器之匝數比為相同。 The isolated zero-voltage switching high-boost DC-DC converter according to claim 6, wherein the first ideal transformer and the second ideal transformer have the same turns ratio.
TW106125894A 2017-08-01 2017-08-01 Interleaved high-step-up zero-voltage switching dc-dc converter TWI635697B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106125894A TWI635697B (en) 2017-08-01 2017-08-01 Interleaved high-step-up zero-voltage switching dc-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106125894A TWI635697B (en) 2017-08-01 2017-08-01 Interleaved high-step-up zero-voltage switching dc-dc converter

Publications (2)

Publication Number Publication Date
TWI635697B true TWI635697B (en) 2018-09-11
TW201911719A TW201911719A (en) 2019-03-16

Family

ID=64453173

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125894A TWI635697B (en) 2017-08-01 2017-08-01 Interleaved high-step-up zero-voltage switching dc-dc converter

Country Status (1)

Country Link
TW (1) TWI635697B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716110B (en) * 2019-09-20 2021-01-11 崑山科技大學 Soft-switching interleaved active clamp high step-up dc converter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951072A (en) * 2019-03-26 2019-06-28 哈尔滨工业大学 Novel Soft Switching high step-up ratio converter and its working method based on Sepic circuit
CN110011543A (en) * 2019-04-26 2019-07-12 哈尔滨工业大学 Based on the high step-up ratio DC/DC converter for improving SEPIC circuit
US11081968B2 (en) * 2019-06-12 2021-08-03 Delta Electronics, Inc. Isolated boost converter
CN111064367B (en) * 2019-08-26 2021-02-23 广州金升阳科技有限公司 Control method of flyback converter
CN113765426A (en) 2020-06-01 2021-12-07 台达电子企业管理(上海)有限公司 Control method and control system of modular multilevel converter and power transmission system
CN113765425A (en) 2020-06-01 2021-12-07 台达电子企业管理(上海)有限公司 Control method and control system of modular multilevel converter and power transmission system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353547B1 (en) * 2000-08-31 2002-03-05 Delta Electronics, Inc. Three-level soft-switched converters
US6992902B2 (en) * 2003-08-21 2006-01-31 Delta Electronics, Inc. Full bridge converter with ZVS via AC feedback
TW200737668A (en) * 2006-03-22 2007-10-01 Cincon Electronics Co Ltd Double current phase-shift full-bridge zero-voltage switching converter
CN101272097B (en) * 2008-05-12 2010-11-10 浙江大学 Multifunctional structure-changing type DC convertor
TWM447043U (en) * 2012-05-04 2013-02-11 Allis Electric Co Ltd High efficient high step-up dc converter with interleaved soft switching mechanism
CN103918170B (en) * 2011-10-21 2017-03-08 株式会社村田制作所 Switch mode power supply apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353547B1 (en) * 2000-08-31 2002-03-05 Delta Electronics, Inc. Three-level soft-switched converters
US6992902B2 (en) * 2003-08-21 2006-01-31 Delta Electronics, Inc. Full bridge converter with ZVS via AC feedback
TW200737668A (en) * 2006-03-22 2007-10-01 Cincon Electronics Co Ltd Double current phase-shift full-bridge zero-voltage switching converter
CN101272097B (en) * 2008-05-12 2010-11-10 浙江大学 Multifunctional structure-changing type DC convertor
CN103918170B (en) * 2011-10-21 2017-03-08 株式会社村田制作所 Switch mode power supply apparatus
TWM447043U (en) * 2012-05-04 2013-02-11 Allis Electric Co Ltd High efficient high step-up dc converter with interleaved soft switching mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716110B (en) * 2019-09-20 2021-01-11 崑山科技大學 Soft-switching interleaved active clamp high step-up dc converter

Also Published As

Publication number Publication date
TW201911719A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
TWI635697B (en) Interleaved high-step-up zero-voltage switching dc-dc converter
US11050359B2 (en) Single-stage multi-input buck type low-frequency link&#39;s inverter with an external parallel-timesharing select switch
Hu et al. New modular structure DC–DC converter without electrolytic capacitors for renewable energy applications
CN106026657B (en) non-isolated high-gain DC-DC boost converter
TWI594554B (en) Interleaved high efficiency high-step-up direct current transformer
CN110649805B (en) High-gain Boost converter
Shu et al. A resonant ZVZCS DC–DC converter with two uneven transformers for an MVDC collection system of offshore wind farms
TWI664797B (en) Dc power converter with high voltage gain
TWI581553B (en) Interleaved high step-up? dc-dc converter
TWI625033B (en) Interleaved direct-current boost device
Rathore et al. Novel zero-current switching current-fed half-bridge isolated DC/DC converter for fuel cell based applications
Tseng et al. Interleaved coupled-inductor boost converter with boost type snubber for PV system
TWI663816B (en) Interleaved high step-up dc-dc converter
Cao et al. Non-isolated ultrahigh boost ratio DCDC converter with coupled inductor and charge pump
CN109149933A (en) A kind of high-gain DC/DC converter with coupling inductance
TWI716110B (en) Soft-switching interleaved active clamp high step-up dc converter
TWI687036B (en) Ultra-high boosting converter
CN103973118A (en) Efficient isolation converter suitable for low-voltage photovoltaic power generation system and control method of efficient isolation converter
CN110165915B (en) Novel voltage-multiplying-Z source inverter
TWI762396B (en) High voltage conversion ratio dc converter
TWI765740B (en) Symmetrical switching type high boost dc converter
TWI839223B (en) High-boost dc converter
TWI832074B (en) Interleaved high step-up dc converter
CN204089602U (en) Be applicable to the efficient isolated converters of low pressure photovoltaic generating system
Wai et al. Design of high-efficiency single-input triple-outputs DC-DC converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees