TW201425887A - Thermoelectric heat flow meter and thermoelectric transformation efficiency measure device - Google Patents

Thermoelectric heat flow meter and thermoelectric transformation efficiency measure device Download PDF

Info

Publication number
TW201425887A
TW201425887A TW101148708A TW101148708A TW201425887A TW 201425887 A TW201425887 A TW 201425887A TW 101148708 A TW101148708 A TW 101148708A TW 101148708 A TW101148708 A TW 101148708A TW 201425887 A TW201425887 A TW 201425887A
Authority
TW
Taiwan
Prior art keywords
heat
thermoelectric
thermoelectric module
module
flow meter
Prior art date
Application number
TW101148708A
Other languages
Chinese (zh)
Other versions
TWI454672B (en
Inventor
Cheng-Ting Hsu
Chun-Mu Chen
Tse-Hsiao Lee
Hong-Bin Wang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW101148708A priority Critical patent/TWI454672B/en
Publication of TW201425887A publication Critical patent/TW201425887A/en
Application granted granted Critical
Publication of TWI454672B publication Critical patent/TWI454672B/en

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A thermoelectric heat flow meter comprises a thermoelectric module and a cooling device. The heat from the thermoelectric module is received from the cooling system and then is dissipated to the environment through a heat dissipation mechanism in the cooling system. A voltage corresponding to the heat flowing through thermoelectric module may be measured from the thermoelectric module. The thermoelectric module comprises a first heat conduction substrate, a second heat conduction substrate, and a plurality of P-type thermoelectric elements and N-type thermoelectric elements disposed between the first heat conduction substrate and the second heat conduction substrate. The plurality of P-type thermoelectric elements and N-type thermoelectric elements are spaced at intervals and electrically connected.

Description

熱電式熱流計與熱電轉換效率量測裝置 Thermoelectric heat flow meter and thermoelectric conversion efficiency measuring device

本發明有關於一種熱電式熱流計,特別是一種具有由P型以及N型熱電材料組成之熱電模組之熱電式熱流計。 The invention relates to a thermoelectric heat flow meter, in particular to a thermoelectric heat flow meter having a thermoelectric module composed of a P-type and an N-type thermoelectric material.

近幾年,有關熱處理的領域中,熱量測量之必要性正逐漸受到重視。由於傳統的溫度計無法精確求得重要的熱訊息,故測量熱傳遞過程中,定義熱遷移量的大小、評價熱傳遞性能的熱流計油然而生。1914年,出現了最早應用於現場直接測量熱流的熱流傳感器。當時德國的Henky教授要測量通過啤酒廠內地板的熱流,用已知熱傳導率λ(W/m.K),厚度d(m)的軟木板覆蓋地板,測出軟木板上下兩面的溫度差,達到穩定狀態後,通過軟木板的熱流密度Q(W/m2)則可用Q=λ/d.△T求出,是現在所用的熱流計的雛型。然而,當待測熱源的面積越來越小,或是上述d的距離越來越短(<1 cm)時,測量溫差用的溫度計,其誤差值將嚴重影響熱流計判讀的結果,故利用熱傳導式的熱流計在某些嚴苛的量測條件下將不適用。 In recent years, the need for heat measurement has been gradually taken into account in the field of heat treatment. Since the conventional thermometer cannot accurately obtain important thermal information, the heat flow meter that defines the magnitude of the heat transfer amount and evaluates the heat transfer performance is generated during the measurement of the heat transfer process. In 1914, the first heat flow sensor that was used to directly measure heat flow in the field appeared. At that time, Professor Henky of Germany was to measure the heat flow through the floor of the brewery. The floor was covered with soft cork with a known thermal conductivity λ (W/m.K) and thickness d (m) to measure the temperature difference between the upper and lower sides of the cork board. After reaching a steady state, the heat flux density Q(W/m 2 ) through the cork board can be Q=λ/d. The value of ΔT is the prototype of the current heat flow meter. However, when the area of the heat source to be tested is getting smaller and smaller, or the distance of the above d is shorter and shorter (<1 cm), the error value of the thermometer for measuring the temperature difference will seriously affect the result of the heat flow meter interpretation, so the use Thermally conductive heat flow meters will not be suitable under certain stringent measurement conditions.

1924年,Schmidt利用繞在橡膠帶上的熱電堆(Thermopile)量熱流密度。一般認為這是第一種實用的熱流計,例如熱電堆的工作原理乃在於當待測物溫度與熱流計本身的溫度有一差異時,熱電堆會產生一電壓輸出訊號,溫度差異越大輸出電壓就越大;此電壓訊號約為數十(μV)至數千(μV)之間,因此一般使用者在使用 上須做一電壓放大處理。如圖1所示,熱電堆是由許多組熱電偶(Thermal couple)串聯所組成,主要原理乃是依據”Seebeck Effect”效應產生。熱電偶一般來說是由兩種不同材質的導體所組成。當電偶的兩端有一溫度差產生時,此一熱電偶便會產生出一電壓訊號,其大小正比於電偶兩端的溫度差。以後這種方法就逐步推廣到製作各種熱流計。 In 1924, Schmidt used a thermopile (Thermopile) wound around a rubber belt to measure the heat flux. It is generally considered to be the first practical heat flow meter. For example, the working principle of the thermopile is that when the temperature of the object to be tested differs from the temperature of the heat flow meter itself, the thermopile generates a voltage output signal, and the temperature difference is larger. The larger the voltage signal is between tens (μV) and thousands (μV), so the average user is using A voltage amplification process must be performed on it. As shown in Figure 1, the thermopile consists of a series of thermocouples connected in series, the main principle is based on the "Seebeck Effect" effect. Thermocouples are generally composed of two conductors of different materials. When a temperature difference is generated at both ends of the galvanic couple, the thermocouple generates a voltage signal whose magnitude is proportional to the temperature difference across the galvanic couple. In the future, this method will be gradually extended to the production of various heat flow meters.

為了得到多點平均的量測結果,Schmidt形式熱流計的一個量測頭所繞經的線圈數高達數十或數百圈,各線圈之間的異質金屬介面需要串連焊接,由於焊點是手工製作,每個焊點狀況各不相同,故結構形式和加工方法決定了各個熱流計性能,當時的熱流計精準度的一致性差異相當大。 In order to obtain the multi-point average measurement results, the number of coils wound by a measuring head of the Schmidt form heat flow meter is up to tens or hundreds of turns, and the heterogeneous metal interface between the coils needs to be connected in series, since the solder joint is Handmade, each solder joint condition is different, so the structure and processing method determine the performance of each heat flow meter. At that time, the consistency of the accuracy of the heat flow meter is quite different.

實施例揭露一種熱電式熱流計,包括有熱電模組與散熱裝置,其中熱電模組由第一熱傳導基板、第二熱傳導基板、複數個P型熱電材料與複數個N型熱電材料所組成,其中,複數P型與複數N型熱電材料皆配置於第一熱傳導基板與第二熱傳導基板之間,複數個P型熱電材料與複數個N型熱電材料互相間隔排列並電性串接;散熱裝置用以收流出熱電模組之熱量,熱量再經由散熱機構散熱至環境中。另外熱電式熱流計還包括有溫度計與電表,溫度計置於熱電模組之第二熱傳導基板與散熱裝置之間,電表,與熱電模組電性連接,用以檢測熱電模組之開路電壓。 Embodiments disclose a thermoelectric heat flow meter including a thermoelectric module and a heat dissipating device, wherein the thermoelectric module is composed of a first heat conducting substrate, a second heat conducting substrate, a plurality of P-type thermoelectric materials, and a plurality of N-type thermoelectric materials, wherein The plurality of P-type and the plurality of N-type thermoelectric materials are disposed between the first heat-conducting substrate and the second heat-conducting substrate, and the plurality of P-type thermoelectric materials and the plurality of N-type thermoelectric materials are spaced apart from each other and electrically connected in series; In order to collect heat from the thermoelectric module, the heat is dissipated to the environment via the heat dissipation mechanism. In addition, the thermoelectric heat flow meter further comprises a thermometer and an electric meter. The thermometer is placed between the second heat conduction substrate of the thermoelectric module and the heat dissipation device, and the electric meter is electrically connected with the thermoelectric module to detect the open circuit voltage of the thermoelectric module.

實施例亦揭露一種熱電轉換效率量測裝置,用以量測一待測 熱電模組之熱電轉換效率,待測熱電模組具有一上端面、一下端面,測量熱電模組之熱電轉換效率的裝置包含:一加熱板,待測熱電模組係配至於加熱板下方;一校正熱電模組,具有前述所述之結構;一散熱裝置,用以收流出校正熱電模組之熱量,熱量再經由散熱機構散熱至環境中;一待測模組熱端溫度計,配置於待測熱電模組的上端面;一校正模組熱端溫度計,配置於待測熱電模組的下端面與校正熱電模組之間;以及一校正模組冷端溫度計,配置於校正熱電模組的下端面與散熱裝置之間。 The embodiment also discloses a thermoelectric conversion efficiency measuring device for measuring a to-be-tested The thermoelectric conversion efficiency of the thermoelectric module, the thermoelectric module to be tested has an upper end face and a lower end face, and the device for measuring the thermoelectric conversion efficiency of the thermoelectric module comprises: a heating plate, the thermoelectric module to be tested is attached to the lower side of the heating plate; The calibrated thermoelectric module has the structure described above; a heat dissipating device is configured to receive heat from the calibrated thermoelectric module, and the heat is dissipated to the environment via the heat dissipating mechanism; a hot end thermometer of the module to be tested is configured to be tested The upper end surface of the thermoelectric module; a calibration module hot end thermometer disposed between the lower end surface of the thermoelectric module to be tested and the calibration thermoelectric module; and a calibration module cold end thermometer disposed under the calibration thermoelectric module Between the end face and the heat sink.

以上之關於本發明內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。 The above description of the present invention and the following description of the embodiments of the present invention are intended to illustrate and explain the spirit and principles of the invention.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。 The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The following examples are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention.

請參考『第1圖』,繪示實施例所揭露之熱電模組,熱電模組100係由第一熱傳導基板101、第二熱傳導基板102以及複數個P型熱電材料103、複數個N型熱電材料組成104。複數個P型熱電材料103以及複數個N型熱電材料組成104配置於第一熱 傳導基板101與第二熱傳導基板102之間。複數個P、N型熱電材料係以P、N型為一對的方式配置,每一對P、N型熱電材料係以上電極105連接,不同對的熱電材料係以下電極106連接,以形成電性串聯。以下為了描述方便,有時會將P型熱電材料103與N型熱電材料104分別簡稱為熱電材料103與熱電材料104。 Referring to FIG. 1 , a thermoelectric module disclosed in the embodiment is shown. The thermoelectric module 100 is composed of a first heat conductive substrate 101 , a second heat conductive substrate 102 , a plurality of P-type thermoelectric materials 103 , and a plurality of N-type thermoelectric devices. Material composition 104. A plurality of P-type thermoelectric materials 103 and a plurality of N-type thermoelectric materials 104 are disposed in the first heat Between the conductive substrate 101 and the second heat conductive substrate 102. A plurality of P and N type thermoelectric materials are arranged in a pair of P and N types, and each pair of P and N type thermoelectric materials is connected to the upper electrode 105, and different pairs of thermoelectric materials are connected by the following electrodes 106 to form electricity. Sexual tandem. Hereinafter, for convenience of description, the P-type thermoelectric material 103 and the N-type thermoelectric material 104 are sometimes simply referred to as the thermoelectric material 103 and the thermoelectric material 104, respectively.

第一熱傳導基板101與第二熱傳導基板102可使用陶瓷材質之基板,例如俗稱為陶瓷板的氧化鋁板。P、N型熱電材料係為熱電晶粒,在本實施例中,係設計成矩形柱體狀。其中P、N型熱電材料係以(Bi,Sb)2Te3基、Bi2(Te,Se)3基為主要成份,並摻雜其他微量元素。第一熱傳導基板101與第二熱傳導基板102除了上述氧化鋁板外,可為其它電絕緣材料,例如:氮化鋁板、雲母片等;熱電材料103、104,也可為其它熱電晶粒,例如PbTe、GeTe、Zn4Sb3、Mg2Si、Fe2Si等其它熱電材料。上電極105與下電極106也可為其它導電性材料,例如Fe、Ag等純金屬或其合金。 As the first heat conduction substrate 101 and the second heat conduction substrate 102, a ceramic substrate such as an alumina plate commonly known as a ceramic plate can be used. The P and N type thermoelectric materials are thermoelectric crystal grains, and in the present embodiment, are designed in a rectangular column shape. The P and N type thermoelectric materials are mainly composed of (Bi, Sb) 2 Te 3 and Bi 2 (Te, Se) 3 groups, and doped with other trace elements. The first heat conduction substrate 101 and the second heat conduction substrate 102 may be other electrically insulating materials other than the above aluminum oxide plate, such as aluminum nitride plate, mica plate, etc.; the thermoelectric materials 103, 104 may also be other thermoelectric crystal grains, such as PbTe. , other thermoelectric materials such as GeTe, Zn 4 Sb 3 , Mg 2 Si, Fe 2 Si. The upper electrode 105 and the lower electrode 106 may also be other conductive materials such as pure metals such as Fe, Ag, or alloys thereof.

上電極105與下電極106除了直接黏著於第一熱傳導基板101、第二熱傳導基板102上面,或兩者只是互相接觸外,在另一實施例中,增加上電極105與下電極106與熱電材料103、104間之鍵結,可先在上電極105與下電極106之接合表面鍍上Ni/Au,然後再以Sn焊連結熱電材料103、104。 The upper electrode 105 and the lower electrode 106 are directly adhered to the first heat conduction substrate 101, the second heat conduction substrate 102, or the two are only in contact with each other. In another embodiment, the upper electrode 105 and the lower electrode 106 and the thermoelectric material are added. For the bonding between 103 and 104, Ni/Au may be first plated on the bonding surface of the upper electrode 105 and the lower electrode 106, and then the thermoelectric materials 103 and 104 may be bonded by Sn bonding.

在一實施例中,為了可以量測熱電模組的輸出電壓,可以在第一對與最後一對熱電材料連接出正負兩條電源線,亦即正極輸 出電源線107、負極輸出電源線108,並以電錶連接正極輸出電源線107、負極輸出電源線108,便可測量熱電模組的輸出電壓VoutIn an embodiment, in order to measure the output voltage of the thermoelectric module, two positive and negative power lines, that is, a positive output power line 107 and a negative output power line 108, may be connected to the first pair and the last pair of thermoelectric materials. The positive output power line 107 and the negative output power line 108 are connected by an electric meter to measure the output voltage V out of the thermoelectric module.

因此,當將實施例之熱電模組用於測量一待測熱源之熱流量時,待測熱源流出的熱量被熱電發電模組的上端面100a吸收後,再從熱電模組100的下端面100b流往散熱元件時,熱電模組100即會產生一開路電壓(Voc)。因此,透過電錶以檢測上述熱電模組100之開路電壓(Voc)。 Therefore, when the thermoelectric module of the embodiment is used to measure the heat flow rate of a heat source to be tested, the heat generated by the heat source to be tested is absorbed by the upper end surface 100a of the thermoelectric power module, and then the lower end surface 100b of the thermoelectric module 100. When flowing to the heat dissipating component, the thermoelectric module 100 generates an open circuit voltage (V oc ). Therefore, the open circuit voltage (V oc ) of the thermoelectric module 100 is detected through an electric meter.

請參考『第2圖』,係為取得熱電模組之校正曲線之熱電式熱流計校正裝置之示意圖。亦即前述實施例之熱電模組,經由本實施例的校正後,當其應用於熱流計時所測量得到的開路電壓(Voc),即可由本實施例的校正曲線,推算出流經其上下兩端面的熱流量。 Please refer to "Fig. 2", which is a schematic diagram of a thermoelectric heat flow meter calibration device for obtaining a calibration curve of a thermoelectric module. That is, after the thermoelectric module of the foregoing embodiment is applied to the open circuit voltage (V oc ) measured by the heat flow timing after being corrected by the embodiment, the calibration curve of the embodiment can be used to calculate the flow through the upper and lower sides. Heat flow at both ends.

本實施例的熱電式熱流計校正裝置,其構造包含:熱電模組100、散熱裝置200、溫度計212、電錶260及已知熱源280。 The thermoelectric heat flow meter calibration device of the present embodiment includes a thermoelectric module 100, a heat sink 200, a thermometer 212, an electric meter 260, and a known heat source 280.

熱電模組100之組成與前述的實施例類似,在此不再贅述。 The composition of the thermoelectric module 100 is similar to the foregoing embodiment, and details are not described herein again.

散熱裝置200包含一集熱材料210及一散熱機構250。 The heat sink 200 includes a heat collecting material 210 and a heat dissipating mechanism 250.

其中,集熱材料210可使用具有一定厚度與一定面積的銅板。集熱材料210的上端面210a置於熱電模組100的下端面100b下方,如此以便吸收熱電模組100的熱量。為了增加集熱材料210的集熱效果,本實施例在集熱材料210的上端面210a與熱電模 組100的下端面100b之間夾有一層高導熱界面材料211,例如SiO2基之高導熱界面材料或者矽油、散熱膏等。集熱材料210除了是銅板外,也可為其它高導熱材料,例如鋁、石墨、石墨/鋁複材、鑽石/鋁複材等等。 Wherein, the heat collecting material 210 can use a copper plate having a certain thickness and a certain area. The upper end surface 210a of the heat collecting material 210 is placed under the lower end surface 100b of the thermoelectric module 100 so as to absorb the heat of the thermoelectric module 100. In order to increase the heat collecting effect of the heat collecting material 210, the present embodiment sandwiches a high thermal conductive interface material 211 between the upper end surface 210a of the heat collecting material 210 and the lower end surface 100b of the thermoelectric module 100, for example, a high thermal conductivity of SiO 2 . Interface materials or oyster sauce, thermal grease, etc. In addition to the copper plate, the heat collecting material 210 can also be other high thermal conductive materials such as aluminum, graphite, graphite/aluminum composite materials, diamond/aluminum composite materials, and the like.

集熱材料210吸收的熱量可藉由一散熱機構250帶離集熱材料210。本實施例中該散熱機構250包含冷卻流體251、水冷座252、進水口253、出水口254以及幫浦255;其中,該水冷座252係由一定厚度與一定面積的銅塊加工而成,在其水冷座252之一側設置進水口253與出水口254,流體通道257配置於水冷座252內部以及外部,以供該冷卻流體流動。水冷座252的上表面與集熱材料210互相接觸。當此散熱機構250運作時,幫浦255將冷卻流體251由進水口253導入水冷座252內,將水冷座252自集熱材料210所吸收的熱量經由出水口254排出,最後,該熱量藉由風扇256或冷氣壓縮機的熱交換機制將之排放至外在環境中。 The heat absorbed by the heat collecting material 210 can be carried away from the heat collecting material 210 by a heat dissipating mechanism 250. In this embodiment, the heat dissipating mechanism 250 includes a cooling fluid 251, a water cooling seat 252, a water inlet 253, a water outlet 254, and a pump 255. The water cooling seat 252 is processed by a certain thickness and a certain area of copper blocks. One side of the water-cooling seat 252 is provided with a water inlet 253 and a water outlet 254, and the fluid passage 257 is disposed inside and outside the water-cooling seat 252 for the cooling fluid to flow. The upper surface of the water cooling seat 252 is in contact with the heat collecting material 210. When the heat dissipating mechanism 250 is in operation, the pump 255 introduces the cooling fluid 251 from the water inlet 253 into the water cooling seat 252, and the heat absorbed by the water cooling seat 252 from the heat collecting material 210 is discharged through the water outlet 254. Finally, the heat is used. The heat exchange mechanism of the fan 256 or the air compressor is discharged to the external environment.

在另一實施例中,水冷座252的主要功用是吸收集熱材料210之熱量,因此水冷座252與集熱材料210除了如上述互相接觸外,兩者也可為結合為一體,亦即將水冷座252之一部分提供作為集熱材料210之用。 In another embodiment, the main function of the water-cooling base 252 is to absorb the heat of the heat-collecting material 210. Therefore, the water-cooling base 252 and the heat-collecting material 210 can be combined into each other, that is, water-cooled. A portion of the seat 252 is provided for use as the heat collecting material 210.

在本實施例中,更設置一溫度計212,埋入上述集熱材料210之中,以測量該熱電模組100的冷端溫度(TL)。當然,在另一實施例中,溫度計212也可設置於熱電模組100的下端面100b與集熱材料210之兩界面中間,而不必埋入上述集熱材料210之中。 In this embodiment, a thermometer 212 is further disposed and buried in the heat collecting material 210 to measure the cold junction temperature (T L ) of the thermoelectric module 100. Of course, in another embodiment, the thermometer 212 can also be disposed between the lower end surface 100b of the thermoelectric module 100 and the interface of the heat collecting material 210 without being buried in the heat collecting material 210.

本實施例中,校正熱電模組100的熱流量曲線之步驟具體說明如下。 In the embodiment, the steps of correcting the heat flux curve of the thermoelectric module 100 are specifically described as follows.

首先,準備一已知熱流量的熱源280,將上述熱電模組100的上端面100a接觸此一已知熱源280。本實施例中,已熱流量的熱源280,係由一電阻式加熱器所構成,其熱流量是由通入加熱器的電功率所控制。當然,為了獲得準確的熱流量,該熱源280除了與熱電模組100接觸之表面以外之周圍表面均加以熱絕緣包覆。 First, a heat source 280 of known heat flux is prepared, and the upper end surface 100a of the thermoelectric module 100 is brought into contact with the known heat source 280. In the present embodiment, the heat source 280 having a heat flow rate is constituted by a resistance heater whose heat flow rate is controlled by the electric power supplied to the heater. Of course, in order to obtain an accurate heat flow rate, the heat source 280 is thermally insulated and coated on the peripheral surface except the surface in contact with the thermoelectric module 100.

接著,開啟散熱裝置250的幫浦255,使冷卻流體251經由進水口253進入水冷座252,並藉由控制散熱裝置250以控制熱電模組100的下端面100b的溫度。本實施例,將熱電模組100的下端面100b的溫度固定為25℃。 Next, the pump 255 of the heat sink 250 is turned on, the cooling fluid 251 enters the water cooling seat 252 via the water inlet 253, and the temperature of the lower end surface 100b of the thermoelectric module 100 is controlled by controlling the heat sink 250. In this embodiment, the temperature of the lower end surface 100b of the thermoelectric module 100 is fixed to 25 °C.

當該已知熱源280的熱流量被熱電模組100的上端面100a吸收後,再從熱電模組的下端面100b流往散熱裝置250時,該熱電模組100因席貝克效應(Seebeck effect),產生一開路電壓(Voc)。 When the heat flux of the known heat source 280 is absorbed by the upper end surface 100a of the thermoelectric module 100 and then flows from the lower end surface 100b of the thermoelectric module to the heat sink 250, the thermoelectric module 100 is subjected to the Seebeck effect. , generating an open circuit voltage (V oc ).

最後,改變已知熱源280的熱流量大小,並由電錶260測量上述熱電模組100的開路電壓(Voc)。 Finally, the heat flow rate of the known heat source 280 is changed, and the open circuit voltage (V oc ) of the thermoelectric module 100 is measured by the electric meter 260.

本實施例中,經過上述的步驟,可測得一熱電模組100之熱流量與開路電壓(Voc)之間的校正曲線,結果如『第3圖』所示。 In this embodiment, after the above steps, a calibration curve between the heat flux of the thermoelectric module 100 and the open circuit voltage (V oc ) can be measured, and the result is shown in FIG. 3 .

如上述,本實施例中的校正曲線係將熱電模組100之下端面100b之冷端溫度固定為25℃。當然,熱電模組100之下端面100b 之冷端溫度不同時,校正曲線會不同。另外,在本實施例中,雖僅對熱電模組100之下端面100b之冷端溫度作為校正基礎;同理,亦可熱電模組100之上端面100a之熱端溫度作為校正基礎。亦即,本實施例的熱流計校正方式,可藉由測量該熱電模組100的開路電壓(Voc)、熱電模組的上(熱)端面100a之溫度(TH)與下(冷)端面100b之溫度(TL),即可得知流經上述熱電模組之熱流量與開路電壓(Voc)、熱電模組的熱端(TH)與冷端溫度(TL)三者的關係校正曲線。取得校正曲線之後的熱電模組,即可將其應用於測量電源之熱流量。 As described above, the calibration curve in this embodiment fixes the cold end temperature of the lower end surface 100b of the thermoelectric module 100 to 25 °C. Of course, when the temperature of the cold end of the lower end surface 100b of the thermoelectric module 100 is different, the calibration curve will be different. In addition, in the present embodiment, only the cold end temperature of the lower end surface 100b of the thermoelectric module 100 is used as a basis for correction; similarly, the hot end temperature of the upper end surface 100a of the thermoelectric module 100 may be used as a basis for correction. That is, the heat flow meter calibration method of the present embodiment can measure the open circuit voltage (V oc ) of the thermoelectric module 100, the temperature (T H ) of the upper (hot) end surface 100a of the thermoelectric module, and the lower (cold). The temperature (T L ) of the end face 100b can be used to know the heat flux and open circuit voltage (V oc ) flowing through the thermoelectric module, the hot end (T H ) and the cold end temperature (T L ) of the thermoelectric module. The relationship correction curve. After obtaining the thermoelectric module after the calibration curve, it can be applied to measure the heat flow of the power supply.

請參考『第4圖』,係為熱電式電流計之示意圖。其架構係與『第2圖』之實施例類似,不同之處在於熱源係為一待測熱源290係為一輻射熱源。 Please refer to Figure 4 for a schematic diagram of a thermoelectric ammeter. The structure is similar to the embodiment of FIG. 2, except that the heat source is a heat source 290 to be measured as a radiant heat source.

待測熱源290的熱量由熱電模組100之第一熱傳導基板101的上端面100a所吸收後,流經熱電模組100之上電極105、熱電材料103與104、下電極106,最後由第二熱傳導基板102的下端面100b,最後透過散熱裝置250,將此熱量散至環境中。 The heat of the heat source 290 to be tested is absorbed by the upper end surface 100a of the first heat conduction substrate 101 of the thermoelectric module 100, and then flows through the upper electrode 105 of the thermoelectric module 100, the thermoelectric materials 103 and 104, the lower electrode 106, and finally by the second The lower end surface 100b of the thermally conductive substrate 102 is finally transmitted through the heat sink 250 to dissipate this heat to the environment.

本實施例將上述熱電模組100的上端面朝向一待測熱源290,本實施例中,待測熱源290可為輻射熱源,不與熱電發電模組100的上端面100a接觸。當然待測熱源290,除了輻射形式以外,也可為如『第1圖』所示之傳導熱源。 In this embodiment, the upper end surface of the thermoelectric module 100 is directed to a heat source 290 to be tested. In this embodiment, the heat source 290 to be tested may be a radiant heat source and is not in contact with the upper end surface 100a of the thermoelectric power module 100. Of course, the heat source 290 to be tested may be a conductive heat source as shown in FIG. 1 in addition to the radiation form.

在本實施中,當待測熱源290流出的熱量被熱電模組100的上端面100a吸收後,再從熱電模組100的下端面100b流往散熱 裝置250時,該熱電模組100即會產生一開路電壓(Voc)。本實施例的裝置具有一電錶260,可用以檢測上述熱電模組100之開路電壓(Voc)。藉由測量該開路電壓(Voc),並藉由溫度計212測量熱電模組100的冷端溫度(TL),可以得知待測熱源290的熱流量。 In the present embodiment, when the heat from the heat source 290 to be tested is absorbed by the upper end surface 100a of the thermoelectric module 100 and then flows from the lower end surface 100b of the thermoelectric module 100 to the heat sink 250, the thermoelectric module 100 is generated. An open circuit voltage (V oc ). The apparatus of this embodiment has an electric meter 260 that can be used to detect the open circuit voltage (V oc ) of the thermoelectric module 100. The heat flux of the heat source 290 to be tested can be known by measuring the open circuit voltage (V oc ) and measuring the cold junction temperature (T L ) of the thermoelectric module 100 by the thermometer 212.

請參考『第5圖』,是另一實施例所揭露之具氣冷套件之熱電式熱流計之示意圖。本實施例具氣冷套件之熱電式熱流計其構造包含熱電模組100、散熱裝置270、溫度計212及電錶260。熱電模組100與溫度計212與前述的實施例類似,在此不再贅述。散熱裝置270則具體說明如下。 Please refer to FIG. 5 , which is a schematic diagram of a thermoelectric heat flow meter with an air cooling kit disclosed in another embodiment. The thermoelectric heat flow meter of the present embodiment having an air cooling kit includes a thermoelectric module 100, a heat sink 270, a thermometer 212, and an electric meter 260. The thermoelectric module 100 and the thermometer 212 are similar to the foregoing embodiments, and are not described herein again. The heat sink 270 is specifically described below.

散熱裝置270包括至少一組散熱鰭片271及至少一組散熱風扇272。實施例中的散熱鰭片271與集熱材料210除了如上述互相接觸外,兩者也可為結合為一體,亦即將散熱鰭片271之一部分提供作為集熱材料210之用。 The heat sink 270 includes at least one set of heat sink fins 271 and at least one set of heat sink fans 272. The heat dissipating fins 271 and the heat collecting material 210 in the embodiment may be integrated into each other in addition to being in contact with each other as described above, that is, a portion of the heat dissipating fins 271 is provided as the heat collecting material 210.

本實施例中,將上述熱電模組100的上端面朝向一待測熱源291,其與熱電模組100的上端面100a接觸。當該待測熱源291流出的熱量被熱電模組100的上端面100a吸收後,再從熱電模組100的下端面100b流往散熱裝置270時,該熱電模組100即會產生一開路電壓(Voc)。本實施例的裝置具有一電錶260,藉由該電錶260測量該開路電壓(Voc),並藉由冷端溫度計212測量熱電模組100的冷端溫度(TL),可以得知待測熱源291的熱流量。當然上述之待測熱源291,除了如圖中所示的傳導熱源以外,也可為輻射形式熱源。 In this embodiment, the upper end surface of the thermoelectric module 100 is directed toward a heat source 291 to be tested, which is in contact with the upper end surface 100a of the thermoelectric module 100. When the heat generated by the heat source 291 to be tested is absorbed by the upper end surface 100a of the thermoelectric module 100 and then flows from the lower end surface 100b of the thermoelectric module 100 to the heat sink 270, the thermoelectric module 100 generates an open circuit voltage ( V oc ). The device of this embodiment has an electric meter 260. The open circuit voltage (V oc ) is measured by the electric meter 260, and the cold end temperature (T L ) of the thermoelectric module 100 is measured by the cold end thermometer 212. The heat flux of the heat source 291. Of course, the above-mentioned heat source 291 to be tested may be a heat source in the form of radiation in addition to the conduction heat source as shown in the figure.

『第6圖』所示係為一種熱電轉換效率量測裝置,用以量測一待測熱電模組之熱電轉換效率。『第6圖』所揭露之實施例係利用『第1圖』之熱電模組來作為測量另一熱電模組之模組效率之測量裝置。如『第6圖』所示,熱電轉換效率量測裝置包括加熱板390、待測熱電模組120、已校正之熱電模組110、散熱裝置250、校正模組熱端溫度計215、待測模組熱端溫度計214與電錶260。 The "figure 6" is a thermoelectric conversion efficiency measuring device for measuring the thermoelectric conversion efficiency of a thermoelectric module to be tested. The embodiment disclosed in "Fig. 6" uses the thermoelectric module of "Fig. 1" as a measuring device for measuring the module efficiency of another thermoelectric module. As shown in FIG. 6, the thermoelectric conversion efficiency measuring device includes a heating plate 390, a thermoelectric module 120 to be tested, a corrected thermoelectric module 110, a heat sink 250, a calibration module hot end thermometer 215, and a mold to be tested. The hot end thermometer 214 is combined with the electric meter 260.

本實施例之裝置主要是利用本發明第一實施例之熱電模組100,作為待測熱電模組之效率測量裝置。因此本實施例之裝置之構造,除了待測熱電模組120、加熱板390、校正模組熱端溫度計215、待測模組熱端溫度計214以外,其餘構造,如已校正之熱電模組110或散熱裝置250係與『第2圖』之實施例相同。 The device of this embodiment mainly utilizes the thermoelectric module 100 of the first embodiment of the present invention as an efficiency measuring device for the thermoelectric module to be tested. Therefore, in addition to the thermoelectric module 120, the heating plate 390, the calibration module hot end thermometer 215, and the module hot end thermometer 214 to be tested, the configuration of the device of the present embodiment, such as the corrected thermoelectric module 110 The heat sink 250 is the same as the embodiment of FIG. 2 .

本實施例中,測量待測熱電模組120的模組效率之步驟具體說明如下。 In this embodiment, the steps of measuring the module efficiency of the thermoelectric module 120 to be tested are specifically described as follows.

準備一可調輸出功率的加熱板390,其係配置於測熱電模組120之上。待測熱電模組120的熱電轉換效率未知,具有一上端面120a、一下端面120b,上端面120a置於上述加熱板390下方,並吸收加熱板390的熱量。已校正熱電模組110的熱電轉換效率已知,具有一上端面110a、一下端面110b,其結構與組成與『第1圖』之實施例類似。待測模組熱端溫度計214,設置於加熱板390中,靠近待測熱電模組120的上端面120a,測量該待測熱電模組120的熱端溫度(TH)。集熱材料218設置於待測熱電模組120 的下端面120a與校正熱電模組110的上端面110a之間,校正模組熱端溫度計215則設置於集熱材料218之中,測量待測熱電模組120的冷端溫度(TH’)。校正熱電模組之冷端溫度計216,配置於校正熱電模組110的下端面110b的集熱材料210之中,測量校正熱電模組110的冷端溫度(TL’)。電錶260、261,分別檢測待測熱電模組120與校正熱電模組110之開路電壓(Voc、Voc’)。 A heating plate 390 of adjustable output power is prepared, which is disposed on the thermoelectric module 120. The thermoelectric conversion efficiency of the thermoelectric module 120 to be tested is unknown, and has an upper end surface 120a and a lower end surface 120b. The upper end surface 120a is placed under the heating plate 390 and absorbs heat of the heating plate 390. The thermoelectric conversion efficiency of the corrected thermoelectric module 110 is known to have an upper end surface 110a and a lower end surface 110b, and its structure and composition are similar to those of the "Fig. 1" embodiment. The module hot end thermometer 214 is disposed in the heating plate 390, adjacent to the upper end surface 120a of the thermoelectric module 120 to be tested, and measures the hot end temperature (T H ) of the thermoelectric module 120 to be tested. The heat collecting material 218 is disposed between the lower end surface 120a of the thermoelectric module 120 to be tested and the upper end surface 110a of the calibration thermoelectric module 110. The calibration module hot end thermometer 215 is disposed in the heat collecting material 218 to measure the thermoelectricity to be tested. The cold junction temperature (T H ') of the module 120. The cold junction thermometer 216 of the calibration thermoelectric module is disposed in the heat collecting material 210 of the lower end surface 110b of the calibration thermoelectric module 110, and the cold junction temperature (T L ') of the calibration thermoelectric module 110 is measured. The electric meters 260 and 261 respectively detect the open circuit voltages (V oc , V oc ') of the thermoelectric module 120 to be tested and the calibration thermoelectric module 110.

藉由量測校正熱電模組110的開路電壓(Voc’),可由上述的方式求得流經待測熱電模組120的熱量(Q);同理,待測熱電模組120的開路電壓(Voc)由電錶260測得後,隨即將待測熱電模組120外接串聯上一可變電阻,調整該電阻值至阻抗匹配條件,此時跨越在外接電阻上的電壓值(VL)為待測熱電模組120的開路電壓之半,即VL=1/2 Voc。接著利用電錶260量測通過該外接電阻值的電流(IL),可得該待測模組的最大發電功率(PMAX),即P MAX =V L ×I L By measuring the open circuit voltage (V oc ') of the thermoelectric module 110, the heat (Q) flowing through the thermoelectric module 120 to be tested can be obtained by the above method; similarly, the open circuit voltage of the thermoelectric module 120 to be tested is determined. After (V oc ) is measured by the electric meter 260, the thermoelectric module 120 to be tested is externally connected to a variable resistor in series, and the resistance value is adjusted to the impedance matching condition, and the voltage value (V L ) across the external resistor is crossed at this time. It is half of the open circuit voltage of the thermoelectric module 120 to be tested, that is, V L = 1/2 V oc . Then, the current (I L ) passing through the external resistance value is measured by the electric meter 260 to obtain the maximum power generation (P MAX ) of the module to be tested, that is, P MAX = V L × I L .

比對與測量待測熱電模組120的最大發電功(PMAX)率與校正熱電模組110所推導之熱流量(Q),可推導出待測熱電模組120 之熱電轉換效率(η),即 Comparing and measuring the maximum power generation (P MAX ) rate of the thermoelectric module 120 to be tested and correcting the heat flow rate (Q) derived by the thermoelectric module 110, the thermoelectric conversion efficiency (η) of the thermoelectric module 120 to be tested can be derived. , which is

實施例揭露利用熱電材料組成的熱電模組,係由多對P型及N型半導體材料組成,相較於金屬材料而言,其具有較大之席貝克常數(Seebeck coefficient),遂當待測物溫度與本熱電式熱流計的溫度有一差異時,產生的電壓訊號為數十(mV)至數(V)之間, 因此無須再做電壓放大處理。利用上述優勢設計一熱電式熱流計,將待測的熱量轉換成開路電壓,直接對開路電壓進行量測,可快速、準確地求得流經待測物之熱量。 The embodiment discloses a thermoelectric module composed of a thermoelectric material, which is composed of a plurality of pairs of P-type and N-type semiconductor materials, and has a larger Seebeck coefficient than a metal material, and is to be tested. When the temperature of the material is different from the temperature of the pyroelectric heat flow meter, the generated voltage signal is between several tens (mV) and several (V). Therefore, there is no need to perform voltage amplification. By using the above advantages, a thermoelectric heat flow meter is designed, and the heat to be measured is converted into an open circuit voltage, and the open circuit voltage is directly measured, and the heat flowing through the object to be tested can be quickly and accurately determined.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

100‧‧‧熱電模組 100‧‧‧Thermal module

100a‧‧‧上端面 100a‧‧‧ upper end

100b‧‧‧下端面 100b‧‧‧ lower end

101‧‧‧第一熱傳導基板 101‧‧‧First heat transfer substrate

102‧‧‧第二熱傳導基板 102‧‧‧Second heat conduction substrate

103‧‧‧P型熱電材料 103‧‧‧P type thermoelectric materials

104‧‧‧N型熱電材料 104‧‧‧N type thermoelectric materials

105‧‧‧上電極 105‧‧‧Upper electrode

106‧‧‧下電極 106‧‧‧lower electrode

107‧‧‧正極輸出電源線 107‧‧‧ positive output power cord

108‧‧‧負極輸出電源線 108‧‧‧Negative output power cord

110‧‧‧已校正熱電模組 110‧‧‧corrected thermoelectric modules

110a‧‧‧校正熱電模組上端面 110a‧‧‧Correct the upper end of the thermoelectric module

110b‧‧‧校正熱電模組下端面 110b‧‧‧Correct the lower end of the thermoelectric module

120‧‧‧待測熱電模組 120‧‧‧Thermal module to be tested

120a‧‧‧待測熱電模組上端面 120a‧‧‧ Upper end face of the thermoelectric module to be tested

120b‧‧‧待測熱電模組下端面 120b‧‧‧The lower end of the thermoelectric module to be tested

200‧‧‧散熱裝置 200‧‧‧ Heat sink

210‧‧‧集熱材料 210‧‧‧ Collecting materials

210a‧‧‧集熱材料上端面 210a‧‧ ‧ upper end of heat collecting material

211‧‧‧高導熱介面材料 211‧‧‧High thermal interface material

212‧‧‧溫度計 212‧‧‧ thermometer

214‧‧‧待測模組熱端溫度計 214‧‧‧Test module hot end thermometer

215‧‧‧校正模組熱端溫度計 215‧‧‧ Calibration Module Hot End Thermometer

216‧‧‧校正模組冷端溫度計 216‧‧‧ Calibration module cold junction thermometer

218‧‧‧集熱材料 218‧‧‧ Collecting materials

250‧‧‧散熱機構 250‧‧‧heating mechanism

251‧‧‧冷卻流體 251‧‧‧Cooling fluid

252‧‧‧水冷座 252‧‧‧Water Cooling Block

253‧‧‧進水口 253‧‧‧ Inlet

254‧‧‧出水口 254‧‧‧Water outlet

255‧‧‧幫浦 255‧‧‧ pump

256‧‧‧風扇 256‧‧‧fan

257‧‧‧流體通道 257‧‧‧ fluid passage

260‧‧‧電錶 260‧‧‧Electric meter

261‧‧‧電錶 261‧‧‧Electric meter

270‧‧‧散熱裝置 270‧‧‧ Heat sink

271‧‧‧散熱鰭片 271‧‧‧ Heat sink fins

272‧‧‧散熱風扇 272‧‧‧ cooling fan

280‧‧‧已知熱源 280‧‧‧known heat source

290‧‧‧待測熱源 290‧‧‧heat source to be tested

291‧‧‧待測熱源 291‧‧‧heat source to be tested

390‧‧‧加熱板 390‧‧‧heating plate

第1圖係實施例所揭露之熱電模組。 Figure 1 is a thermoelectric module disclosed in the embodiment.

第2圖係熱電式熱流計校正裝置之示意圖。 Figure 2 is a schematic diagram of a thermoelectric heat flow meter calibration device.

第3圖係熱電模組之熱流量與開路電壓之校正曲線。 Figure 3 is a calibration curve of the heat flux and open circuit voltage of the thermoelectric module.

第4圖係熱電式熱流計之一實施例,其中係使用輻射熱待測熱源。 Figure 4 is an embodiment of a thermoelectric heat flow meter in which a radiant heat source to be tested is used.

第5圖係具氣冷套件之熱電式熱流計。 Figure 5 is a thermoelectric heat flow meter with an air cooling kit.

第6圖係熱電模組轉換效率量測裝置。 Figure 6 is a thermoelectric module conversion efficiency measuring device.

100‧‧‧熱電模組 100‧‧‧Thermal module

100a‧‧‧上端面 100a‧‧‧ upper end

100b‧‧‧下端面 100b‧‧‧ lower end

101‧‧‧第一熱傳導基板 101‧‧‧First heat transfer substrate

102‧‧‧第二熱傳導基板 102‧‧‧Second heat conduction substrate

103‧‧‧P型熱電材料 103‧‧‧P type thermoelectric materials

104‧‧‧N型熱電材料 104‧‧‧N type thermoelectric materials

105‧‧‧上電極 105‧‧‧Upper electrode

106‧‧‧下電極 106‧‧‧lower electrode

107‧‧‧正極輸出電源線 107‧‧‧ positive output power cord

108‧‧‧負極輸出電源線 108‧‧‧Negative output power cord

Claims (13)

一種熱電式熱流計,包括有:一熱電模組,該熱電模組由一第一熱傳導基板、一第二熱傳導基板、複數個P型熱電材料與複數個N型熱電材料所組成,其中,該複數P型與複數N型熱電材料皆配置於該第一熱傳導基板與該第二熱傳導基板之間,該複數個P型熱電材料與該複數個N型熱電材料互相間隔排列並電性串接;一散熱裝置,配置於該熱電模組之下方,用以收流出該熱電模組之熱量;一溫度計,置於該熱電模組之該第二熱傳導基板與該散熱裝置之間;以及一電錶,與該熱電模組電性連接,用以檢測該熱電模組之開路電壓。 A thermoelectric heat flow meter includes: a thermoelectric module comprising a first heat conductive substrate, a second heat conductive substrate, a plurality of P-type thermoelectric materials, and a plurality of N-type thermoelectric materials, wherein a plurality of P-type and a plurality of N-type thermoelectric materials are disposed between the first heat-conducting substrate and the second heat-conducting substrate, and the plurality of P-type thermoelectric materials and the plurality of N-type thermoelectric materials are spaced apart from each other and electrically connected in series; a heat dissipating device disposed under the thermoelectric module for receiving heat from the thermoelectric module; a thermometer disposed between the second heat conducting substrate of the thermoelectric module and the heat dissipating device; and an electric meter The utility model is electrically connected to the thermoelectric module for detecting an open circuit voltage of the thermoelectric module. 如請求項1所述之熱電式熱流計,其中該熱電模組之該P型熱電材料與該N型熱電材料係以(Bi,Sb)2Te3基或Bi2(Te,Se)3基為主要成份。 The thermoelectric heat flow meter of claim 1, wherein the P-type thermoelectric material of the thermoelectric module and the N-type thermoelectric material are (Bi, Sb) 2 Te 3 or Bi 2 (Te, Se) 3 For the main ingredients. 如請求項1所述之熱電式熱流計,更包括有一集熱材料,其中該集熱材料配置於該熱電模組與該散熱裝置之間。 The thermoelectric heat flow meter of claim 1, further comprising a heat collecting material, wherein the heat collecting material is disposed between the thermoelectric module and the heat sink. 如請求項3所述之熱電式熱流計,其中該集熱材料為具高熱傳導率之材料。 The thermoelectric heat flow meter of claim 3, wherein the heat accumulating material is a material having high thermal conductivity. 如請求項4所述之熱電式熱流計,其中該集熱材料與該熱電模組之下端面之間,配置一層高導熱界面材料。 The pyroelectric heat flow meter of claim 4, wherein a layer of high thermal conductivity interface material is disposed between the heat collecting material and the lower end surface of the thermoelectric module. 如請求項5所述之熱電式熱流計,其中該散熱裝置為一水冷套件。 The thermoelectric heat flow meter of claim 5, wherein the heat sink is a water cooling kit. 如請求項6所述之熱電式熱流計,該水冷套件包括:一冷卻流體;一水冷座;一流體通道,配置於該水冷座之內部與外部,以供該冷卻流體流動;一進水口,配置於該水冷座之一側;一出水口,配置於該水冷座之一側;以及一幫浦,使該冷卻流體由該進水口流入該水冷座,並於該水冷座內吸收該散熱裝置之熱量,然後再經由該出水口流出;其中,該水冷座與該集熱材料互相接觸,或該水冷座與該集熱材料為一體。 The thermoelectric heat flow meter of claim 6, wherein the water cooling kit comprises: a cooling fluid; a water cooling seat; a fluid passage disposed inside and outside the water cooling seat for the cooling fluid to flow; Arranging on one side of the water-cooling seat; a water outlet disposed on one side of the water-cooling seat; and a pump for flowing the cooling fluid from the water inlet into the water-cooling seat, and absorbing the heat-dissipating device in the water-cooling seat The heat is then discharged through the water outlet; wherein the water cooling seat is in contact with the heat collecting material, or the water cooling seat is integrated with the heat collecting material. 如請求項7所述之熱電式熱流計,其中該水冷座內之冷卻流體之熱量藉由一冷氣壓縮機或一風扇,將其熱量散至環境中。 The pyroelectric heat flow meter of claim 7, wherein the heat of the cooling fluid in the water cooling seat is dissipated to the environment by a cold air compressor or a fan. 如請求項5所述之熱電式熱流計,其中該散熱元件之散熱裝置為一氣冷套件。 The thermoelectric heat flow meter of claim 5, wherein the heat dissipating device of the heat dissipating component is an air cooling kit. 如請求項9所述之熱電式熱流計,其中該散熱裝置包括至少一組散熱鰭片及至少一組散熱風扇;其中該散熱鰭片與該集熱材料互相接觸,或該散熱鰭片與該集熱材料為一體。 The thermoelectric heat flow meter of claim 9, wherein the heat dissipating device comprises at least one set of heat dissipating fins and at least one set of heat dissipating fans; wherein the heat dissipating fins are in contact with the heat collecting material, or the heat dissipating fins and the heat dissipating fins The heat collecting material is integrated. 一種熱電轉換效率量測裝置,用以量測一待測熱電模組之熱電轉換效率,該待測熱電模組具有一上端面與一下端面,該熱電 轉換效率量測裝置包括:一加熱板,該待測熱電模組係配置於該加熱板下方;一校正熱電模組,具有如請求項第1項至第12項之任一項所述之結構;一散熱裝置,配至於該校正熱電模組下方,用以收流出該校正熱電模組之熱量;一待測模組熱端溫度計,配置於該待測熱電模組的上端面;一校正模組熱端溫度計,配置於該待測熱電模組與該校正熱電模之間;以及一校正模組冷端溫度計,配置於該校正熱電模組與該散熱裝置之間。 A thermoelectric conversion efficiency measuring device for measuring a thermoelectric conversion efficiency of a thermoelectric module to be tested, the thermoelectric module to be tested having an upper end surface and a lower end surface, the thermoelectric The conversion efficiency measuring device comprises: a heating plate, the thermoelectric module to be tested is disposed under the heating plate; and a calibration thermoelectric module having the structure according to any one of the items 1 to 12 of claim 1 a heat dissipating device is disposed under the calibration thermoelectric module for receiving heat from the calibration thermoelectric module; a hot end thermometer of the module to be tested is disposed on the upper end surface of the thermoelectric module to be tested; The hot-end thermometer is disposed between the thermoelectric module to be tested and the calibration thermoelectric module; and a calibration module cold-end thermometer is disposed between the calibration thermoelectric module and the heat dissipation device. 如請求項11所述之熱電轉換效率量測裝置,更包括有一電錶,與該校正熱電模組電性連接,用以檢測該待測熱電模組之開路電壓。 The thermoelectric conversion efficiency measuring device of claim 11, further comprising an electric meter electrically connected to the calibration thermoelectric module for detecting an open circuit voltage of the thermoelectric module to be tested. 如請求項11所述之熱電轉換效率量測裝置,更包括有一集熱材料,其中該集熱材料配置於該校正熱電模組之下端面下方與該散熱裝置之間。 The thermoelectric conversion efficiency measuring device of claim 11, further comprising a heat collecting material, wherein the heat collecting material is disposed between the lower end surface of the correcting thermoelectric module and the heat sink.
TW101148708A 2012-12-20 2012-12-20 Thermoelectric heat flow meter and thermoelectric transformation efficiency measure device TWI454672B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101148708A TWI454672B (en) 2012-12-20 2012-12-20 Thermoelectric heat flow meter and thermoelectric transformation efficiency measure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101148708A TWI454672B (en) 2012-12-20 2012-12-20 Thermoelectric heat flow meter and thermoelectric transformation efficiency measure device

Publications (2)

Publication Number Publication Date
TW201425887A true TW201425887A (en) 2014-07-01
TWI454672B TWI454672B (en) 2014-10-01

Family

ID=51725391

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101148708A TWI454672B (en) 2012-12-20 2012-12-20 Thermoelectric heat flow meter and thermoelectric transformation efficiency measure device

Country Status (1)

Country Link
TW (1) TWI454672B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960337B2 (en) 2016-08-11 2018-05-01 Industrial Technology Research Institute Thermoelectric converter
CN112985592A (en) * 2021-02-26 2021-06-18 山东芯源光电科技有限公司 Optical power meter based on semiconductor thermoelectric generation piece

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6539725B2 (en) * 2001-02-09 2003-04-01 Bsst Llc Efficiency thermoelectrics utilizing thermal isolation
CN100359305C (en) * 2004-04-19 2008-01-02 重庆大学 Distributing plane winding type thermal flowmeter probe
CN101126729B (en) * 2007-09-18 2010-06-02 南京航空航天大学 Double heat flux gauge steady state method for measuring material heat conductivity
WO2012056411A1 (en) * 2010-10-27 2012-05-03 Basf Se Thermoelectric module and process for production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960337B2 (en) 2016-08-11 2018-05-01 Industrial Technology Research Institute Thermoelectric converter
TWI642212B (en) * 2016-08-11 2018-11-21 財團法人工業技術研究院 A thermal to electricity converter
CN112985592A (en) * 2021-02-26 2021-06-18 山东芯源光电科技有限公司 Optical power meter based on semiconductor thermoelectric generation piece

Also Published As

Publication number Publication date
TWI454672B (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5062753B2 (en) Method and apparatus for measuring the Seebeck coefficient and thermal conductivity of thin film samples
CN106525288B (en) A kind of pure radiant heat flux sensor
JPWO2018174173A1 (en) Thermoelectric generator module, thermoelectric generator using the same, and temperature measuring method
McNamara et al. Infrared imaging microscope as an effective tool for measuring thermal resistance of emerging interface materials
CN109709470A (en) A kind of multi-chip combined power amplifier crust thermo-resistance measurement method
CN109309067A (en) A kind of simulation heat source chip and preparation method thereof
TWI454672B (en) Thermoelectric heat flow meter and thermoelectric transformation efficiency measure device
JP2004296959A (en) Thermoelectric element performance evaluating device and method for evaluating performance of thermoelectric element
CN111771120B (en) Chip for evaluating substrate and substrate evaluating device
CN109103324A (en) A kind of hot induced voltage material and its application
JP2832334B2 (en) Thermoelectric conversion performance evaluation method and apparatus
TWI495868B (en) System and method for measuring properties of thermoelectric module
TWI704354B (en) Probe card, wafer inspection apparatus having the same, and chip probe test flow using the same
CN114459603B (en) High-power laser sensor and laser power meter
CN214843625U (en) Optical power meter based on semiconductor thermoelectric generation piece
JPS5852528A (en) Sensitizing method of thermopile
Immonen et al. Development of a vertically configured mems heat flux sensor
CN206863166U (en) A kind of Multifunction thermoelectric device test system
CN112985592A (en) Optical power meter based on semiconductor thermoelectric generation piece
CN107887291A (en) Connect the electromigration lifetime time tester and its method of testing of through hole
WO2017164104A1 (en) Thermoelectric module power generation evaluation device
CN105021291B (en) LED module calorifics interface measuring system and its measuring method
CN110375871B (en) Surface temperature measuring method based on thermoelectric effect
CN209486178U (en) A kind of power sensor of high conversion efficiency of thermoelectric
Yazawa et al. High-speed transient thermoreflectance imaging of microelectronic devices and circuits