TW201418933A - Apparatus and method of controlling clock signals - Google Patents

Apparatus and method of controlling clock signals Download PDF

Info

Publication number
TW201418933A
TW201418933A TW101142212A TW101142212A TW201418933A TW 201418933 A TW201418933 A TW 201418933A TW 101142212 A TW101142212 A TW 101142212A TW 101142212 A TW101142212 A TW 101142212A TW 201418933 A TW201418933 A TW 201418933A
Authority
TW
Taiwan
Prior art keywords
port
control module
logic level
clock signal
control
Prior art date
Application number
TW101142212A
Other languages
Chinese (zh)
Inventor
Chi-Hsu Chen
Yi-Liang Yeh
Yu-Yun Lee
Yuan-Hsiung Sung
Kuo-Jui Yu
Original Assignee
Accton Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Accton Technology Corp filed Critical Accton Technology Corp
Priority to TW101142212A priority Critical patent/TW201418933A/en
Priority to US13/946,048 priority patent/US9195627B2/en
Publication of TW201418933A publication Critical patent/TW201418933A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/08Clock generators with changeable or programmable clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • G06F13/4291Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus using a clocked protocol

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Transfer Systems (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

The invention discloses an apparatus and a method of controlling clock signals for a master device and a slave device. The apparatus includes a first connection port coupled to a first clock line of the master device; a second connection port coupled to a second clock line of the slave device; and a control module receiving a first clock signal from the master device through the first connection port, producing a second clock signal according to the first clock signal, and transmitting the second clock signal to the slave device through the second connection port; wherein when the first clock signal switches from a first logic level to a second logic level, the control module makes the first connection port retain the second logic level in a time interval.

Description

時脈訊號之控制裝置及控制方法 Clock signal control device and control method

本發明係關於一種控制裝置及控制方法,特別是一種時脈訊號之控制裝置及控制方法。 The invention relates to a control device and a control method, in particular to a control device and a control method for a clock signal.

常見的串列匯流排介面,多利用兩條訊號控制線:串列數據線(Serial data line,SDA)及串列時脈線(Serial clock line,SCL)上的時脈訊號,在多個積體電路或晶片之間進行主從裝置的連接及資料傳輸,例如內部積體電路(Inter-Integrated Circuit,I2C)連線的技術。 Common serial bus interface, using two signal control lines: serial data line (SDA) and serial clock line (SCL) clock signal, in multiple products The connection between the master and slave devices and the data transfer between the bulk circuits or the wafers, such as the interconnection of internal integrated circuits (I 2 C).

習知技術中,如內部積體電路連線的主裝置和從裝置皆可控制其直接相互連接之時脈線上的準位,進而產生高低準位變化的時脈訊號來達成主從裝置間資料傳輸等之同步時脈控制。 In the prior art, the master device and the slave device, such as the internal integrated circuit connection, can control the level on the clock line directly connected to each other, thereby generating a clock signal with high and low level changes to achieve data between the master and slave devices. Synchronous clock control for transmission, etc.

惟目前部分電子元件,如電子抹除式可複寫唯讀記憶體(EEPROM),其可用之定址空間常受限制,使得當數個此等電子元件作為從裝置時,可能因定址空間不足而發生定址重複或衝突的錯誤;為了解決此問題,習知作法是透過一介於主裝置與從裝置間的開關裝置進行切換連接的控制,但是額外的開關裝置又產生成本的負擔與設計的複雜度。而且,在主裝置與從裝置之間加入其他控制裝置又可能發生主裝置與從裝置之間時脈控制不同步的問題。 However, some electronic components, such as electronically erasable rewritable read-only memory (EEPROM), are often limited in their available address space, so that when several of these electronic components are used as slave devices, they may occur due to insufficient address space. Addressing repetition or conflicting errors; in order to solve this problem, it is conventional practice to control the switching connection through a switching device between the master device and the slave device, but the additional switching device incurs a cost burden and design complexity. Moreover, the addition of other control means between the master device and the slave device may cause problems in that the clock control between the master device and the slave device is not synchronized.

主從裝置間不同步是因為加入控制裝置設置在主裝置與從裝置間,使得主裝置與從裝置原本直接連接的時脈線被中斷,導致主裝置無法直接自時脈線判斷從裝置是否已完成目前 工作,因此,有必要進一步發展時脈訊號的控制技術。 The master-slave device is not synchronized because the adding control device is disposed between the master device and the slave device, so that the clock line directly connected between the master device and the slave device is interrupted, so that the master device cannot directly judge from the clock line whether the slave device has Complete the current Work, therefore, it is necessary to further develop the control technology of the clock signal.

本發明提供一種控制裝置,適用於一主裝置與一從裝置,控制裝置包含:一第一連接埠,連接於主裝置之一第一時脈線;一第二連接埠,連接於從裝置之一第二時脈線;以及一控制模組,由第一連接埠接收主裝置所發出之一第一時脈訊號,且對應第一時脈訊號產生一第二時脈訊號,並將第二時脈訊號由第二連接埠傳送至從裝置,其中當第一時脈訊號由一第一邏輯準位切換至一第二邏輯準位時,控制模組控制第一連接埠於一時間內維持第二邏輯準位。 The invention provides a control device, which is suitable for a main device and a slave device. The control device comprises: a first connection port connected to one of the first clock lines of the main device; and a second connection port connected to the slave device a second clock line; and a control module, the first port receives a first clock signal sent by the master device, and generates a second clock signal corresponding to the first clock signal, and the second The clock signal is transmitted from the second port to the slave device. When the first clock signal is switched from a first logic level to a second logic level, the control module controls the first port to be maintained for a time. The second logical level.

本發明更提供一種控制方法,適用於一主裝置與一從裝置,包括下列步驟:以一控制模組透過一第一連接埠接收主裝置所發送之一第一時脈訊號;控制模組依據第一時脈訊號對應產生一第二時脈訊號,並透過一第二連接埠發送第二時脈訊號至從裝置;控制模組偵測第一連接埠,當第一時脈訊號由一第一邏輯準位切換至一第二邏輯準位時,控制模組控制第一連接埠以維持第二邏輯準位;以及經過一時間後,控制模組中止控制第一連接埠,令第一連接埠回復第一邏輯準位。 The present invention further provides a control method, which is applicable to a master device and a slave device, and includes the following steps: receiving, by a control module, a first clock signal sent by the master device through a first port; the control module is based on The first clock signal correspondingly generates a second clock signal, and sends a second clock signal to the slave device through a second port; the control module detects the first port, when the first clock signal is When the logic level is switched to a second logic level, the control module controls the first port to maintain the second logic level; and after a lapse of time, the control module stops controlling the first port to make the first connection埠Respond to the first logical level.

一般電子裝置或電子產品中,絕大多數會使用到相關控制裝置或元件進行相關功能的控制與執行,此控制裝置或元件可能是一複雜可程式邏輯元件(CPLD)、一現場可程式閘陣列(FPGA),或一微控器,因此本發明利用此已有的控制裝置加以設計對主從裝置之時脈訊號連帶的進行控 制,如此便可以節省額外設置開關裝置的成本,同時本發明所揭露的控制方法,更解決控制裝置介入主從裝置後所可能產生之時脈控制不同步的問題。 In general, most electronic devices or electronic products use related control devices or components to control and execute related functions. The control device or component may be a complex programmable logic device (CPLD), a field programmable gate array. (FPGA), or a microcontroller, so the present invention uses this existing control device to design and control the clock signal of the master and slave devices. Therefore, the cost of additionally setting the switching device can be saved, and the control method disclosed by the present invention further solves the problem that the clock control may be asynchronous after the control device is involved in the master-slave device.

為了能對本發明之特徵、目的及功能有更進一步的認知與瞭解,茲配合圖式詳細說明如後:圖1為本發明第一實施例之一控制裝置130適用於一內部積體電路(I2C)連線系統100的方塊示意圖,內部積體電路連線系統100包括一主裝置110以及一從裝置120。控制裝置130包含一第一連接埠131、一第二連接埠132、及一控制模組135;其中,第一連接埠131藉由一第一時脈線116而連接主裝置110,第二連接埠132藉由一第二時脈線126而連接從裝置120;藉此令控制裝置130適用於內部積體電路連線系統100的主裝置110及從裝置120。第一時脈線116及第二時脈線126分別是主裝置110與從裝置120進行內部積體電路連線所使用的串列時脈線,至於主裝置110與從裝置120的串列數據線的連接方式,本發明對此則不加以限制。此外,控制裝置130可利用可程式的邏輯元件,例如複雜可程式邏輯元件或現場可程式閘陣列,或者是微控制器來實現,而第一連接埠131與第二連接埠132即為其上所對應的輸入輸出(I/O)埠,而控制模組135即為其具有運算、判斷與控制等處理功能的單元或模組等,但本發明對此不加以限制。 In order to be able to further understand and understand the features, objects and functions of the present invention, the following detailed description will be made in conjunction with the drawings: FIG. 1 is a first embodiment of the present invention, and the control device 130 is applied to an internal integrated circuit (I). 2 C) Block diagram of the wiring system 100, the internal integrated circuit wiring system 100 includes a main device 110 and a slave device 120. The control device 130 includes a first port 131, a second port 132, and a control module 135. The first port 131 is connected to the host device 110 by a first clock line 116. The second connection The 埠132 is connected to the slave device 120 by a second clock line 126; thereby, the control device 130 is adapted to the master device 110 and the slave device 120 of the internal integrated circuit wiring system 100. The first clock line 116 and the second clock line 126 are serial clock lines used by the main device 110 and the slave device 120 for interconnecting the internal integrated circuit, respectively, and the serial data of the master device 110 and the slave device 120. The manner of connecting the wires is not limited in the present invention. In addition, the control device 130 can be implemented by using a programmable logic component, such as a complex programmable logic component or a field programmable gate array, or a microcontroller, and the first port 131 and the second port 132 are The corresponding input/output (I/O) 埠, and the control module 135 is a unit or module having processing functions such as calculation, judgment, and control, but the present invention does not limit this.

請參照圖1,當主裝置110發出一第一時脈訊號(未圖 示)時,控制模組135藉由第一連接埠131及第一時脈線116而接收第一時脈訊號,並依據第一時脈訊號進行時脈訊號處理,而對應地產生一第二時脈訊號(未圖示),此將詳述於後;控制模組135再將第二時脈訊號藉由第二連接埠132及第二時脈線126傳送至從裝置120。 Referring to FIG. 1, when the main device 110 sends a first clock signal (not shown) The control module 135 receives the first clock signal by the first port 131 and the first clock line 116, and performs clock signal processing according to the first clock signal, and correspondingly generates a second The clock signal (not shown) will be described later in detail; the control module 135 transmits the second clock signal to the slave device 120 via the second port 132 and the second clock line 126.

本實施例中,為防止內部積體電路連線之主從裝置間無法同步的問題,本實施例之控制裝置130強制延長主裝置110之第一時脈訊號的邏輯低準位時脈,使得主裝置110的時脈訊號經處理後可以適用於各個具有不同時脈週期長度的從裝置120。因此,當第一連接埠131所接收的第一時脈訊號由一邏輯高準位切換至一邏輯低準位時,控制模組135將會控制第一連接埠116維持於邏輯低準位一段時間,以延長主裝置110之串列時脈線上所處的邏輯低準位狀態,令從裝置120均具有充分的時間完成目前工作,而不致發生不同步。 In this embodiment, the control device 130 of the present embodiment forcibly extends the logical low-level clock of the first clock signal of the main device 110 in order to prevent the problem that the master-slave device of the internal integrated circuit is not synchronized. The clock signal of the master device 110 can be applied to each of the slave devices 120 having different clock cycle lengths. Therefore, when the first clock signal received by the first port 131 is switched from a logic high level to a logic low level, the control module 135 will control the first port 116 to maintain a logic low level. The time is extended to extend the logic low level state of the serial clock line of the master device 110, so that the slave devices 120 have sufficient time to complete the current work without occurrence of out of synchronization.

為延長第一連接埠131的邏輯低準位狀態,本實施例揭示兩種做法。首先,控制裝置130對其作為第一連接埠131的輸出/輸入埠進行設定的更改;例如,控制模組135將第一連接埠131的設定更改為輸出埠,並進而直接設定第一連接埠131之輸出為一邏輯低準位訊號(未圖示)。另一做法為直接接地的方式,參考圖2所示,控制裝置130進一步包含一接地埠133,控制模組135將第一連接埠131連接至接地埠133,而強制第一連接埠131維持於邏輯低準位狀態;值得說明的是,控制模組135對於其第一連接埠131與接地埠133之連接控制可以是在控制裝置130內部直接進行,例如複雜可程式邏輯元件直接連接其兩個腳位,或者 是,控制模組135對於其第一連接埠131與接地埠133之連接控制可以是在控制裝置130外部以其他電路完成,但本發明並不以此為限。 To extend the logic low level state of the first port 131, this embodiment discloses two approaches. First, the control device 130 changes the setting of the output/input port as the first port 131; for example, the control module 135 changes the setting of the first port 131 to the output port, and further directly sets the first port. The output of 131 is a logic low level signal (not shown). Another method of direct grounding, as shown in FIG. 2, the control device 130 further includes a grounding port 133. The control module 135 connects the first port 131 to the grounding port 133 to force the first port 131 to be maintained. The logic low level state; it should be noted that the control connection of the control module 135 to the first port 131 and the ground port 133 may be directly performed inside the control device 130, for example, the complex programmable logic device directly connects the two Feet, or The control of the connection between the first port 131 and the ground port 133 of the control module 135 may be performed by other circuits outside the control device 130, but the invention is not limited thereto.

對於維持第一連接埠131的邏輯低準位狀態的時間長度,可以是長度固定的一預設時間,或藉由偵測各從裝置120而動態調整其所維持的時間長度。若維持的時間長度固定,則控制模組135藉由程式指令直接設定此預設時間,以控制第一連接埠131於預設時間內維持邏輯低準位狀態。至於維持低準位之時間為可動態調整的態樣,將詳述於後。 The length of time for maintaining the logic low level state of the first port 131 may be a preset time of a fixed length or dynamically adjusted by the slave devices 120 to maintain the length of time. If the length of time is fixed, the control module 135 directly sets the preset time by the program command to control the first port 131 to maintain the logic low level state within the preset time. The time to maintain the low level is a dynamically adjustable aspect, which will be detailed later.

在本實施例中,控制模組135經由第一連接埠131接收主裝置110所發出的第一時脈訊號後,並非如習知之開關裝置直接且原封不動地切換連接以傳送至從裝置120,而是由控制模組135經過時脈訊號處理,而依據第一時脈訊號另產生對應的第二時脈訊號,並經由第二連接埠132傳送第二時脈訊號至從裝置120。為了另產生第二時脈訊號給從裝置120,本發明之實施例揭露二種方式,第一種方式是控制模組135可直接將作為第二時脈訊號之輸出訊號寫入至第二連接埠132,以直接設定第二時脈訊號為一邏輯低準位訊號或一邏輯高準位訊號的方式達成,其中邏輯低準位訊號即為邏輯「0」訊號,本實施例中為接地準位,而邏輯高準位訊號即為邏輯「1」訊號,本實施例中為電壓源之準位,但本發明不以此為限。 In this embodiment, after the control module 135 receives the first clock signal sent by the main device 110 via the first port 131, the switching device is not directly and unswitched to transmit to the slave device 120 as is conventional. Instead, the control module 135 processes the clock signal to generate a corresponding second clock signal according to the first clock signal, and transmits the second clock signal to the slave device 120 via the second port 132. In order to generate the second clock signal to the slave device 120, the embodiment of the present invention discloses two modes. The first mode is that the control module 135 can directly write the output signal as the second clock signal to the second connection.埠132, the method directly sets the second clock signal to a logic low level signal or a logic high level signal, wherein the logic low level signal is a logic “0” signal, which is grounded in this embodiment. The bit high, and the logic high level signal is a logic "1" signal, which is the level of the voltage source in this embodiment, but the invention is not limited thereto.

第二種方式,則參考圖2所示,若欲產生一邏輯低準位訊號之第二時脈訊號,則控制模組135可將第二連接埠132連接至接地埠133,在第二連接埠132上產生第二時脈 訊號之邏輯低準位訊號;而若欲產生一邏輯高準位訊號,則控制裝置130可進一步包含一高準位偏壓埠134透過一上拉(pull-high)阻抗138連接至一電壓源Vcc,且控制模組135藉由將第二連接埠132連接至高準位偏壓埠134,而產生第二時脈訊號之邏輯高準位訊號。請注意,控制裝置130對於相關腳位連接的控制技術,則如前述實施例而不再贅述,且本實施例之邏輯低準位訊號與邏輯高準位訊號的產生可以分別藉由上述的第一種方式或第二種方式或是其交互之組合所實現,如以設定輸出訊號產生邏輯高準位訊號且以連接至接地埠的方式產生邏輯低準位訊號,但本發明對此等組合態樣不加以限制。 In the second mode, referring to FIG. 2, if a second clock signal of a logic low level signal is generated, the control module 135 can connect the second port 132 to the ground port 133, and the second connection. Generate a second clock on 埠132 The logic low level signal of the signal; and if a logic high level signal is to be generated, the control device 130 may further include a high level bias voltage 134 connected to a voltage source through a pull-high impedance 138. Vcc, and the control module 135 generates a logic high level signal of the second clock signal by connecting the second port 132 to the high level bias 埠 134. Please note that the control technology of the control device 130 for the related pin connection is not described in detail in the foregoing embodiment, and the logic low level signal and the logic high level signal of the embodiment may be generated by the foregoing One mode or the second mode or a combination of interactions thereof, such as generating a logic high level signal by setting an output signal and generating a logic low level signal by connecting to a ground ,, but the present invention combines the same The situation is not limited.

如圖2所示,當控制裝置130同時包含接地埠133及高準位偏壓埠134時,延長第一連接埠131的邏輯低準位狀態的時間更可以動態調整。當第一連接埠131所接收的第一時脈訊號由邏輯高準位切換至邏輯低準位時,控制模組135對應連接第二連接埠132至接地埠133以對應產生第二時脈訊號之邏輯低準位訊號,此時便由從裝置120控制第二時脈線126,且控制模組135再將第二連接埠132切換連接至高準位偏壓埠134,並偵測第二連接埠132,若從裝置120還在工作中便會控制第二時脈線126上保持低準位狀態,直到從裝置120結束工作後才解除對第二時脈線126的控制,令第二連接埠132會因為已連接至高準位偏壓埠134,而由邏輯低準位回復至邏輯高準位,使控制模組135以此中止控制第一連接埠131,而達成偵測各從裝置120以動態調整第一連接埠131維持於邏輯低準位狀態之時 間長度。 As shown in FIG. 2, when the control device 130 includes both the ground 埠 133 and the high level bias 埠 134, the time for extending the logic low level state of the first port 131 can be dynamically adjusted. When the first clock signal received by the first port 131 is switched from the logic high level to the logic low level, the control module 135 is connected to the second port 132 to the ground port 133 to correspondingly generate the second clock signal. The logic low level signal, the second clock line 126 is controlled by the slave device 120, and the control module 135 switches the second port 132 to the high level bias 埠 134 and detects the second connection.埠132, if the slave device 120 is still in operation, it will control the second clock line 126 to maintain the low level state, until the slave device 120 finishes working, then the control of the second clock line 126 is released, so that the second connection is made. The 埠132 will return to the logic high level by the logic low level because it is connected to the high level 埠134, so that the control module 135 stops the control of the first port 131 by this, and the detection of each slave device 120 is achieved. When the first port 131 is dynamically adjusted to maintain the logic low level Length between.

圖3為根據本發明第二實施例之時脈訊號控制方法300的流程圖,其係針對一內部積體電路連線之一主裝置與一從裝置進行時脈訊號的控制。控制方法300包括下列步驟:(步驟320)以一控制模組透過一第一連接埠接收主裝置所發送之一第一邏輯高準位訊號;(步驟340)控制模組依據第一邏輯高準位訊號對應產生一第二邏輯高準位訊號,並透過一第二連接埠發送第二邏輯高準位訊號至從裝置;(步驟360)控制模組偵測第一連接埠之邏輯準位變化,當主裝置切換發送一第一邏輯低準位訊號時,控制模組控制第一連接埠以維持一邏輯低準位,且依據第一邏輯低準位訊號對應產生並發送一第二邏輯低準位訊號至從裝置;及(步驟380)經過一時間後,控制模組中止控制第一連接埠,令第一連接埠回復接收第一邏輯高準位訊號。 3 is a flow chart of a clock signal control method 300 according to a second embodiment of the present invention, which is directed to controlling the clock signal of a master device and a slave device of an internal integrated circuit. The control method 300 includes the following steps: (step 320) receiving, by a control module, a first logic high level signal sent by the master device through a first port; (step 340) controlling the module according to the first logic level The bit signal correspondingly generates a second logic high level signal, and sends a second logic high level signal to the slave device through a second port; (step 360) the control module detects a logic level change of the first port When the master device switches to send a first logic low level signal, the control module controls the first port to maintain a logic low level, and generates and sends a second logic low according to the first logic low level signal. After the level of the signal to the slave device; and (step 380), the control module stops controlling the first port, and causes the first port to reply to receive the first logic high level signal.

為了更清楚地描述控制方法300的實施方式,參考圖4之針對內部積體電路連線的主裝置410及從裝置420的方塊圖及其中時脈訊號操作的時序圖。本實施例之內部積體電路連線係透過具有第一連接埠431、第二連接埠432與控制模組435的控制裝置430,並使用本實施例的控制方法300對其時脈訊號的操作進行控制。本實施例中,主裝置410發送的時脈訊號預設處於邏輯高準位。當控制模組435透過第一連接埠431接收邏輯高準位訊號(即步驟320所述的第一邏輯高準位訊號)時,對應產生步驟340所述的第二邏輯高準位訊號,並透過第二連接埠432發送給從裝置420。當主裝置410的時脈訊號切換至邏輯低準位 時,控制模組435偵測到此在第一連接埠431上的邏輯準位變化(即步驟360所述的主裝置410發送的第一邏輯低準位訊號),並維持第一連接埠431上的邏輯低準位狀態一段時間;同時,控制模組435對應產生步驟360所述的第二邏輯低準位訊號,並發送給從裝置420。經過一時間長度後,控制模組435會中止對第一連接埠431的控制,使第一連接埠431回到邏輯高準位的狀態(即步驟380所述的經過一時間後,控制模組中止控制第一連接埠),並恢復此內部積體電路連線之時脈訊號於前述的預設狀況。圖4下方的左側時脈圖為第一連接埠431上的時脈訊號,而右側時脈圖為第二連接埠432上的時脈訊號;其中,實線表示此段時間的時脈訊號是受到控制模組435控制,而虛線表示此段時間的訊號係由主裝置410所控制決定。 In order to more clearly describe the embodiment of the control method 300, reference is made to the block diagram of the main device 410 and the slave device 420 for the internal integrated circuit connection of FIG. 4 and the timing diagram of the clock signal operation thereof. The internal integrated circuit connection of the embodiment is transmitted through the control device 430 having the first connection port 431, the second connection port 432, and the control module 435, and the operation of the clock signal is performed by using the control method 300 of the embodiment. Take control. In this embodiment, the clock signal sent by the main device 410 is preset to a logic high level. When the control module 435 receives the logic high level signal (ie, the first logic high level signal described in step 320) through the first port 431, correspondingly generates the second logic high level signal described in step 340, and Transmitted to the slave device 420 through the second port 432. When the clock signal of the main device 410 is switched to a logic low level The control module 435 detects the logic level change on the first port 431 (ie, the first logic low level signal sent by the host device 410 in step 360), and maintains the first port 431. The logic low level state is a period of time; at the same time, the control module 435 correspondingly generates the second logic low level signal described in step 360, and sends the signal to the slave device 420. After a period of time, the control module 435 stops the control of the first port 431, and returns the first port 431 to the logic high level state (ie, after a lapse of time as described in step 380, the control module Suspending the control of the first port 埠) and restoring the clock signal of the internal integrated circuit connection to the aforementioned preset condition. The left clock picture at the bottom of FIG. 4 is the clock signal on the first port 431, and the right clock picture is the clock signal on the second port 432; wherein the solid line indicates that the clock signal of the time is Controlled by the control module 435, the dotted line indicates that the signal for this period of time is determined by the control of the host device 410.

主裝置410產生時脈訊號的方式可以是依據內部積體電路連線的技術,透過一連接至電壓源Vcc的上拉阻抗438而產生邏輯高準位,並透過接地而產生邏輯低準位,但並不以此為限;因此,時脈訊號在被接地成邏輯低準位狀態後所維持的時間長度,係由控制模組435所控制,故主裝置410端即使已將時脈線與接地端的連接分開,但時脈線仍被控制模組435所控制而維持於邏輯低準位狀態。 The manner in which the master device 410 generates the clock signal may be based on a technique of interconnecting the internal integrated circuit, generating a logic high level through a pull-up impedance 438 connected to the voltage source Vcc, and generating a logic low level through the ground. However, it is not limited to this; therefore, the length of time that the clock signal is maintained after being grounded to the logic low level state is controlled by the control module 435, so even if the master device 410 has the clock line and The ground connections are separated, but the clock line is still controlled by the control module 435 and maintained at a logic low level.

本實施例中,控制模組435會對來自主裝置410所發送的時脈訊號進行訊號處理,而更產生並發送另一時脈訊號給從裝置420。控制模組435分別產生邏輯高準位訊號與邏輯低準位訊號之時脈訊號至從裝置420的方式則如前述實施例所說明而不再重述。控制模組435維持或延長主 裝置410所處邏輯低準位狀態的方式則如前述實施例所說明而不再重述。控制模組435對主裝置410的低準位狀態所延長的時間長度,其可以是長短固定的一預設時間,倘若延長時間的長度固定,則如前述實施例所說明而不再重述。 In this embodiment, the control module 435 performs signal processing on the clock signal sent from the host device 410, and generates and transmits another clock signal to the slave device 420. The manner in which the control module 435 generates the clock signals of the logic high level signal and the logic low level signal to the slave device 420 is as described in the foregoing embodiment and will not be repeated. Control module 435 maintains or extends the main The manner in which the device 410 is in the logic low level state is as described in the foregoing embodiment and will not be repeated. The length of time that the control module 435 extends to the low-level state of the main device 410 may be a fixed time length and a fixed time. If the length of the extended time is fixed, it will not be repeated as explained in the foregoing embodiment.

若如前述實施例之控制裝置430同時具有高準位偏壓埠及接地埠時,則延長時間的長度更可以透過動態方式進行調整。參考圖5A至5D為針對內部積體電路連線的主裝置410及從裝置420之方塊圖及其中時脈訊號操作的時序圖,如圖5A所示,時脈訊號上的標號係對應於前述實施例的操作步驟。首先,主裝置410發送一邏輯高準位時脈訊號(步驟320)。當控制模組435透過第一連接埠431而接收邏輯高準位訊號時,會隨即據以將第二連接埠432連接至高準位偏壓埠434,藉以產生邏輯高準位訊號並發送給從裝置420(步驟340)。如圖5B所示,當主裝置410的時脈訊號切換至邏輯低準位時(步驟360之一,如圖標號360-1),控制模組435會偵測到第一連接埠431上的邏輯準位變化,而將第二連接埠432切換連接至接地埠433,藉以產生邏輯低準位訊號並發送給從裝置420(步驟360之二,如圖標號360-2);如圖5C所示,控制模組435維持第一連接埠431上的邏輯低準位狀態(步驟360之三,如圖標號360-3)。由於從裝置420與控制模組435之間的時脈線之邏輯準位,此時已由從裝置420依據內部積體電路連線之規格以連接至接地等方式而控制於邏輯低準位;控制模組435接著將第二連接埠432切換連接至高準位偏壓埠434,並偵測第二連接埠432上的時脈變化(步驟360之四, 如圖標號360-4)。如圖5D所示,當從裝置420解除此時脈線之邏輯準位的控制時(步驟380之一,如圖標號380-1),第二連接埠432亦隨著回復到邏輯高準位狀態(步驟380之二,如圖標號380-2),控制模組435亦偵測到第二連接埠432由邏輯低準位回復至邏輯高準位,而中止控制第一連接埠431,使第一連接埠431回復到邏輯高準位狀態(步驟380-1)。藉此達成藉由偵測各第二連接埠432的邏輯準位狀態而動態調整第一連接埠431之邏輯低準位狀態延長時間長短的功效。 If the control device 430 of the foregoing embodiment has both a high-level bias voltage and a ground 埠, the length of the extended time can be adjusted dynamically. 5A to 5D are timing diagrams of the main device 410 and the slave device 420 connected to the internal integrated circuit and the timing diagram of the clock signal operation thereof. As shown in FIG. 5A, the labels on the clock signal correspond to the foregoing. The operational steps of the examples. First, the master device 410 transmits a logic high level clock signal (step 320). When the control module 435 receives the logic high level signal through the first port 431, the second port 432 is connected to the high level voltage 埠 434 to generate a logic high level signal and send it to the slave. Apparatus 420 (step 340). As shown in FIG. 5B, when the clock signal of the main device 410 is switched to the logic low level (one of the steps 360, as shown in FIG. 360-1), the control module 435 detects the first connection port 431. The logic level changes, and the second port 432 is switched to the ground 埠 433 to generate a logic low level signal and sent to the slave device 420 (step 360 bis, as shown in FIG. 360-2); as shown in FIG. 5C The control module 435 maintains a logic low level state on the first port 431 (step 360, as shown in FIG. 360-3). Due to the logic level of the clock line between the slave device 420 and the control module 435, the slave device 420 has been controlled to the logic low level by way of connection to the ground or the like according to the specifications of the internal integrated circuit connection; The control module 435 then switches the second port 432 to the high level bias 埠 434 and detects the clock change on the second port 432 (step 360, As shown in the figure 360-4). As shown in FIG. 5D, when the slave device 420 releases the control of the logic level of the pulse at this time (one of the steps 380, as shown in FIG. 380-1), the second port 432 also returns to the logic high level. The state (step 380 bis, as shown in FIG. 380-2), the control module 435 also detects that the second port 432 returns from the logic low level to the logic high level, and stops controlling the first port 431, so that The first port 431 returns to the logic high level state (step 380-1). Thereby, the effect of dynamically adjusting the logic low level state of the first port 431 for a length of time by detecting the logic level state of each of the second ports 432 is achieved.

本發明之實施例的控制裝置乃針對串列匯流介面之主從裝置連帶的加以控制,可節省額外設置開關裝置的成本,更解決部分電子元件作為從裝置時,可能因定址空間不足而發生的錯誤,同時本發明之實施例所揭露的控制方法,透過一準位狀態延長時間的設定與控制,更解決控制裝置介入後所可能產生之時脈控制不同步的問題。 The control device of the embodiment of the present invention is controlled for the master-slave device of the serial bus interface, which can save the cost of additionally setting the switch device, and solves the problem that some electronic components may become insufficient due to insufficient address space when acting as a slave device. In the meantime, the control method disclosed in the embodiment of the present invention solves the problem that the clock control may be out of synchronization after the intervention of the control device by setting and controlling the extension time of a level state.

上述各實施例的操作說明,係以串列匯流介面之內部積體電路連線作為例示說明,並以其時脈訊號由邏輯高準位切換至邏輯低準位的情況為例,而將第一邏輯準位設定為高準位,而第二邏輯準位設定為低準位;但本發明並不以此為限,本發明之技術亦可適用於串列匯流介面之其他連接協定或規格,故本發明亦可適用於時脈訊號由邏輯低準位切換至邏輯高準位的情況,或內部積體電路連線以外的通訊技術,本發明所揭露之時脈訊號控制技術均可直接實現高低邏輯準位之控制。此外,對於將內部積體電路連線的時脈訊號逕加以反向處理的各種迴避設計,亦均為本發明的揭露所包含。 The operation description of each of the above embodiments is exemplified by the internal integrated circuit connection of the serial bus interface, and the case where the clock signal is switched from the logic high level to the logic low level is taken as an example. A logic level is set to a high level, and a second logic level is set to a low level; however, the invention is not limited thereto, and the technique of the present invention can also be applied to other connection protocols or specifications of a serial bus interface. Therefore, the present invention can also be applied to the case where the clock signal is switched from the logic low level to the logic high level, or the communication technology other than the internal integrated circuit connection. The clock signal control technology disclosed in the present invention can be directly Realize the control of high and low logic levels. In addition, various avoidance designs for reversing the clock signal path of the internal integrated circuit wiring are also included in the disclosure of the present invention.

唯以上所述者,僅為本發明之較佳實施例,不能以之限制本發明的範圍。即大凡依本發明申請專利範圍所做之均等變化及修飾,仍將不失本發明之要義所在,亦不脫離本發明之精神和範圍,都應視為本發明的進一步實施狀況。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention.

100‧‧‧內部積體電路連線系統 100‧‧‧Internal integrated circuit wiring system

110/410‧‧‧主裝置 110/410‧‧‧Main device

116‧‧‧第一時脈線 116‧‧‧First Timeline

120/420‧‧‧從裝置 120/420‧‧‧ slave device

126‧‧‧第二時脈線 126‧‧‧second clock line

130/430‧‧‧控制裝置 130/430‧‧‧Control device

131/431‧‧‧第一連接埠 131/431‧‧‧First port埠

132/432‧‧‧第二連接埠 132/432‧‧‧Second connection埠

135/435‧‧‧控制模組 135/435‧‧‧Control Module

133/433‧‧‧接地埠 133/433‧‧‧ Grounding埠

134/434‧‧‧高準位偏壓埠 134/434‧‧‧High-level bias voltage埠

138/438‧‧‧上拉阻抗 138/438‧‧‧Upper impedance

圖1為根據本發明第一實施例之內部積體電路連線的方塊示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram showing the wiring of an internal integrated circuit in accordance with a first embodiment of the present invention.

圖2為根據本發明第一實施例之另一內部積體電路連線的方塊示意圖。 2 is a block diagram showing another internal integrated circuit connection according to the first embodiment of the present invention.

圖3為根據本發明第二實施例之內部積體電路連線控制方法的流程圖。 3 is a flow chart showing a method of controlling the wiring of an internal integrated circuit according to a second embodiment of the present invention.

圖4為根據本發明第二實施例之內部積體電路連線方塊圖及其中時脈訊號操作的時序圖。 4 is a timing diagram of a wiring diagram of an internal integrated circuit and a timing signal operation thereof according to a second embodiment of the present invention.

圖5A至5D為根據本發明第二實施例之另一內部積體電路連線方塊圖及其中時脈訊號操作的時序圖。 5A to 5D are timing diagrams showing another internal integrated circuit wiring block diagram and its operation of the clock signal according to the second embodiment of the present invention.

410‧‧‧主裝置 410‧‧‧Main device

420‧‧‧從裝置 420‧‧‧ slave device

430‧‧‧控制裝置 430‧‧‧Control device

431‧‧‧第一連接埠 431‧‧‧First port

432‧‧‧第二連接埠 432‧‧‧Second connection

435‧‧‧控制模組 435‧‧‧Control Module

438‧‧‧上拉阻抗 438‧‧‧Upper impedance

Claims (14)

一種控制裝置,適用於一主裝置與一從裝置,該控制裝置包含:一第一連接埠,連接於該主裝置之一第一時脈線;一第二連接埠,連接於該從裝置之一第二時脈線;以及一控制模組,由該第一連接埠接收該主裝置所發出之一第一時脈訊號,且對應該第一時脈訊號產生一第二時脈訊號,並將該第二時脈訊號由該第二連接埠傳送至該從裝置,其中當該第一時脈訊號由一第一邏輯準位切換至一第二邏輯準位時,該控制模組控制該第一連接埠於一時間內維持該第二邏輯準位。 A control device is applicable to a master device and a slave device, the control device comprising: a first port connected to a first clock line of the main device; and a second port connected to the slave device a second clock line; and a control module, the first port receives a first clock signal sent by the master device, and generates a second clock signal corresponding to the first clock signal, and Transmitting the second clock signal from the second port to the slave device, wherein the control module controls the first clock signal when the first clock signal is switched from a first logic level to a second logic level The first connection maintains the second logic level for a period of time. 如申請專利範圍第1項所述之控制裝置,其中該控制模組控制該第一連接埠維持該第二邏輯準位係以設定該第一連接埠為一輸出埠,並設定該第一連接埠之輸出為一第二邏輯準位訊號。 The control device of claim 1, wherein the control module controls the first port to maintain the second logic level to set the first port as an output port, and sets the first connection The output of 埠 is a second logic level signal. 如申請專利範圍第1項所述之控制裝置,更包含一接地埠與一高準位偏壓埠,該高準位偏壓埠更透過一上拉阻抗連接至一電壓源,其中該控制模組控制該第一連接埠維持該第二邏輯準位係以連接該第一連接埠至該接地埠或該高準位偏壓埠。 The control device of claim 1, further comprising a grounding 埠 and a high-level bias 埠, the high-level bias 连接 being connected to a voltage source through a pull-up impedance, wherein the control mode The group controls the first port to maintain the second logic level to connect the first port to the ground or the high level bias. 如申請專利範圍第1項所述之控制裝置,其中該控制模組產生該第二時脈訊號係以設定該第二時脈訊號為一第一邏輯準位訊號或一第二邏輯準位訊號。 The control device of claim 1, wherein the control module generates the second clock signal to set the second clock signal as a first logic level signal or a second logic level signal. . 如申請專利範圍第1項所述之控制裝置,更包含一接地埠與一高準位偏壓埠,該高準位偏壓埠更透過一上拉阻 抗連接至一電壓源,其中該控制模組產生該第二時脈訊號係以連接該第二連接埠至該接地埠或該高準位偏壓埠。 The control device of claim 1, further comprising a grounding 埠 and a high-level bias 埠, the high-level bias 埠 being transmitted through a pull-up resistor The connection is connected to a voltage source, wherein the control module generates the second clock signal to connect the second port to the ground or the high level bias. 如申請專利範圍第1項所述之控制裝置,其中該控制模組控制該第一連接埠於該時間內維持該第二邏輯準位,該時間為一預設時間。 The control device of claim 1, wherein the control module controls the first connection to maintain the second logic level within the time, the time being a preset time. 如申請專利範圍第5項所述之控制裝置,其中該第一邏輯準位為一高邏輯準位,該第二邏輯準位為一低邏輯準位,且該控制模組連接該第二連接埠至該接地埠以對應產生該第二時脈訊號之一低邏輯準位訊號,該控制模組更切換連接該第二連接埠至該高準位偏壓埠,當該第二連接埠由該低邏輯準位切換至該高邏輯準位時,該控制模組中止控制該第一連接埠。 The control device of claim 5, wherein the first logic level is a high logic level, the second logic level is a low logic level, and the control module is connected to the second connection. The grounding port is configured to generate a low logic level signal of the second clock signal, and the control module further switches to connect the second port to the high level bias port, when the second port is connected When the low logic level is switched to the high logic level, the control module stops controlling the first port. 一種控制方法,適用於一主裝置與一從裝置,包括下列步驟:以一控制模組透過一第一連接埠接收該主裝置所發送之一第一時脈訊號;該控制模組依據該第一時脈訊號對應產生一第二時脈訊號,並透過一第二連接埠發送該第二時脈訊號至該從裝置;該控制模組偵測該第一連接埠,當該第一時脈訊號由一第一邏輯準位切換至一第二邏輯準位時,該控制模組控制該第一連接埠以維持該第二邏輯準位;以及經過一時間後,該控制模組中止控制該第一連接埠,令該第一連接埠回復該第一邏輯準位。 A control method is applicable to a master device and a slave device, comprising the steps of: receiving, by a control module, a first clock signal sent by the master device through a first port; the control module is configured according to the first The first clock signal generates a second clock signal, and the second clock signal is sent to the slave device through a second port; the control module detects the first port, when the first clock When the signal is switched from a first logic level to a second logic level, the control module controls the first port to maintain the second logic level; and after a lapse of time, the control module stops controlling the The first port is configured to cause the first port to reply to the first logic level. 如申請專利範圍第8項所述之控制方法,其中該控制模組依據一預設時間控制該第一連接埠維持該第二邏輯準位。 The control method of claim 8, wherein the control module controls the first port to maintain the second logic level according to a preset time. 如申請專利範圍第8項所述之控制方法,其中該控制模組產生與發送該第二時脈訊號之步驟,係以該控制模組設定該第二連接埠之輸出為一第一邏輯準位訊號或一第二邏輯準位訊號。 The control method of claim 8, wherein the control module generates and transmits the second clock signal, and the control module sets the output of the second port as a first logic Bit signal or a second logic level signal. 如申請專利範圍第8項所述之控制方法,其中該控制模組產生與發送該第二時脈訊號之步驟,係以該控制模組連接該第二連接埠至一高準位偏壓埠或一接地埠,其中該高準位偏壓埠透過一上拉阻抗連接至一電壓源。 The control method of claim 8, wherein the control module generates and transmits the second clock signal, and the control module connects the second port to a high level bias. Or a ground 埠, wherein the high level bias 连接 is connected to a voltage source through a pull-up impedance. 如申請專利範圍第8項所述之控制方法,其中該控制模組控制該第一連接埠以維持該第二邏輯準位之步驟,係以該控制模組設定該第一連接埠為一輸出埠,並設定該第一連接埠之輸出為一第二邏輯準位訊號。 The control method of claim 8, wherein the control module controls the first port to maintain the second logic level, and the control module sets the first port as an output.埠, and set the output of the first port as a second logic level signal. 如申請專利範圍第8項所述之控制方法,其中該控制模組控制該第一連接埠以維持該第二邏輯準位之步驟,係以該控制模組連接該第一連接埠至一接地埠或一高準位偏壓埠,其中該高準位偏壓埠更透過一上拉阻抗連接至一電壓源。 The control method of claim 8, wherein the control module controls the first port to maintain the second logic level, and the control module connects the first port to a ground埠 or a high-level bias 埠, wherein the high-level bias 连接 is connected to a voltage source through a pull-up impedance. 如申請專利範圍第11項所述之控制方法,更包括下列步驟:當第一邏輯準位為一高邏輯準位,且該第二邏輯準位為一低邏輯準位時,該控制模組連接該第二連接埠至該接地埠,以對應產生該第二時脈訊號之一低邏輯準位 訊號;該控制模組更切換該第二連接埠連接至該高準位偏壓埠;以及當該第二連接埠由該低邏輯準位回復至該高邏輯準位時,該控制模組中止控制該第一連接埠。 The control method of claim 11, further comprising the following steps: when the first logic level is a high logic level, and the second logic level is a low logic level, the control module Connecting the second connection port to the ground 埠 to correspondingly generate a low logic level of the second clock signal The control module further switches the second port to the high-level bias voltage; and when the second port returns to the high logic level by the low logic level, the control module stops Controlling the first port.
TW101142212A 2012-11-13 2012-11-13 Apparatus and method of controlling clock signals TW201418933A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101142212A TW201418933A (en) 2012-11-13 2012-11-13 Apparatus and method of controlling clock signals
US13/946,048 US9195627B2 (en) 2012-11-13 2013-07-19 Apparatus and method of controlling clock signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101142212A TW201418933A (en) 2012-11-13 2012-11-13 Apparatus and method of controlling clock signals

Publications (1)

Publication Number Publication Date
TW201418933A true TW201418933A (en) 2014-05-16

Family

ID=50682915

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101142212A TW201418933A (en) 2012-11-13 2012-11-13 Apparatus and method of controlling clock signals

Country Status (2)

Country Link
US (1) US9195627B2 (en)
TW (1) TW201418933A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004327A (en) * 2014-06-13 2016-01-12 富士通株式会社 Transmission device
CN112782569B (en) * 2019-11-11 2023-09-05 圣邦微电子(北京)股份有限公司 Threshold value testing device and method for digital chip pin logic level
CN113656340A (en) * 2021-08-20 2021-11-16 西安易朴通讯技术有限公司 Communication control method, system and device of I2C bus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878234A (en) 1996-09-10 1999-03-02 Sierra Wireless, Inc. Low power serial protocol translator for use in multi-circuit board electronic systems
FR2775091B1 (en) * 1998-02-16 2000-04-28 Matra Communication METHOD FOR TRANSFERRING DATA IN SERIES, AND SYNCHRONOUS SERIAL BUS INTERFACE IMPLEMENTING SUCH A METHOD
US7069476B1 (en) * 2002-08-15 2006-06-27 Network Appliance, Inc. Method and apparatus to release a serial bus from a suspended state
JP2007164765A (en) 2005-11-15 2007-06-28 Matsushita Electric Ind Co Ltd Iic bus communication system, slave device, and iic bus communication control method
JP2009535677A (en) 2006-03-31 2009-10-01 エヌエックスピー ビー ヴィ I2C clock generation method and system
DE102006026914B4 (en) * 2006-06-09 2008-02-28 Atmel Germany Gmbh Method for switching a system clock and clock synchronization device
US20080244129A1 (en) 2007-03-29 2008-10-02 Aten International Co., Ltd. Master device of two-wire bus providing release function for clock line and method thereof
US7865644B2 (en) * 2007-10-30 2011-01-04 International Business Machines Corporation Method and apparatus for attaching multiple slave devices to a single bus controller interface while supporting command pipelining
TWI338227B (en) 2007-11-02 2011-03-01 Inventec Corp Structure compatible with i2c bus and system management bus and timing buffering apparatus therein
US7937520B2 (en) * 2008-01-11 2011-05-03 Mediatek Inc. General purpose interface controller of resoure limited system
CN101499046A (en) * 2008-01-30 2009-08-05 鸿富锦精密工业(深圳)有限公司 SPI equipment communication circuit
TW201123723A (en) * 2009-12-31 2011-07-01 Alcor Micro Corp I2C/SPI control interface circuitry, integrated circuit structure, and bus structure thereof
CN102541783B (en) 2010-11-19 2014-08-20 惠州Tcl移动通信有限公司 Timing simulation system and method
TWI459774B (en) * 2011-04-29 2014-11-01 Ind Tech Res Inst Asynchronous master-slave serial communication systam, data transmission method, and control module using the same thereof
CN102298564B (en) 2011-09-05 2013-11-13 广东欧珀移动通信有限公司 Method for preventing inter-integrated circuit (I2C) read-write error

Also Published As

Publication number Publication date
US20140136875A1 (en) 2014-05-15
US9195627B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
US9953000B2 (en) Connecting multiple slave devices to single master controller in bus system
US8543740B2 (en) Apparatus and method for increased address range of an I2C or I2C compatible bus
US10552366B2 (en) Method of communication for master device and slave device on synchronous data bus wherein master and slave devices are coupled in parallel
US6339806B1 (en) Primary bus to secondary bus multiplexing for I2C and other serial buses
US8103896B2 (en) Method and system for I2C clock generation
JP3782994B2 (en) Computer bus architecture
US20020152340A1 (en) Pseudo-differential parallel source synchronous bus
CN209914114U (en) LED driver circuit and corresponding electronic device
US7868660B2 (en) Serial communications bus with active pullup
CN108920401B (en) Multi-master multi-slave I2C communication method, system and node equipment
CN104991876A (en) Serial bus control method and apparatus
TW201418933A (en) Apparatus and method of controlling clock signals
KR20060114270A (en) Master device, control method thereof and electronic apparatus having master device
US9684619B2 (en) I2C router system
US9197394B2 (en) Clock for serial communication device
CN114911743A (en) SPI slave device, SPI master device and related communication method
CN101685433A (en) Serial bus unit assigned address by primary device
CN102298562A (en) Method, device and system for interconnecting line and arbitration bus
KR101082110B1 (en) Timing controller, apparatus for data sending and receving using timing controller
CN104142905A (en) Method and device for extending inter-integrated circuit (IIC)
JP2003141062A (en) Iic bus control system
CN114070666B (en) Bus communication interface circuit and communication method for enhancing bus communication effect
AU2021103358A4 (en) Method for operating sharing bus of multiple I2C devices
JP7001314B2 (en) Signal transmission equipment and signal transmission system
TW202343270A (en) Usb-c orientation detection