TW201416991A - Capacitive fingerprint sensor and method of manufacturing the same - Google Patents
Capacitive fingerprint sensor and method of manufacturing the same Download PDFInfo
- Publication number
- TW201416991A TW201416991A TW101138173A TW101138173A TW201416991A TW 201416991 A TW201416991 A TW 201416991A TW 101138173 A TW101138173 A TW 101138173A TW 101138173 A TW101138173 A TW 101138173A TW 201416991 A TW201416991 A TW 201416991A
- Authority
- TW
- Taiwan
- Prior art keywords
- processing unit
- sensing
- insulating substrate
- end processing
- fingerprint
- Prior art date
Links
Landscapes
- Image Input (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
本發明是有關於一種電容式指紋感測器及其製造方法,且特別是有關於一種低成本及可耐外在衝擊的電容式指紋感測器及其製造方法。 The invention relates to a capacitive fingerprint sensor and a manufacturing method thereof, and in particular to a capacitive fingerprint sensor with low cost and external shock resistance and a manufacturing method thereof.
電容式指紋辨識晶片相對於傳統光學式辨識光機而言,具有體積小兼具活體辨識功能,不易受假手指欺騙的功能。所以,其應用上跳脫過去僅限在大型政府機構的辨識系統。在近十年來,指紋辨識的應用面在電子消費型市場有慢慢成長的趨勢,包含隨身碟、隨身硬碟盒、筆記型電腦、手機的電子裝置都有安裝指紋辨識晶片來增加消費者資料的安全性。 Compared with the traditional optical identification optical machine, the capacitive fingerprint identification chip has the functions of small volume and living body identification function, and is not easily deceived by fake fingers. Therefore, its application has only been removed from the identification system of large government agencies. In the past ten years, the application of fingerprint identification has been slowly growing in the electronic consumer market. Electronic devices including flash drives, portable hard disk cases, notebook computers, and mobile phones have fingerprint identification chips installed to increase consumer data. Security.
不論是光學式或是電容式指紋晶片,都需要感測待測者手指指紋的圖形。手指與晶片接觸的面積越大,感測的資訊就越完整,辨識率會越精確,且誤判率也會大幅降低。電容式指紋晶片通常是以半導體製程完成,晶片的面積大小決定每片晶圓的產出數量,也決定單位晶片的價格高低。但是,因為電容式指紋晶片最小需要等同於成人手指指紋螺紋面積大小(約0.8*0.8mm2)的面積才能完整感測手指指紋紋路,故按壓式指紋辨識晶片的價格一直居高不下,應用的廣泛度一直受限制。因此大面積的指紋感測系統通常還是以光學式的光機來讀取指紋影像。 Whether it is an optical or capacitive fingerprint chip, it is necessary to sense the fingerprint of the finger of the test subject. The larger the area of contact between the finger and the wafer, the more complete the information is sensed, the more accurate the recognition rate will be, and the false positive rate will be greatly reduced. Capacitive fingerprint wafers are usually completed in a semiconductor process. The size of the wafer determines the number of wafers produced per wafer and the price of the unit wafer. However, since the capacitive fingerprint chip requires a minimum equivalent of the area of the adult finger fingerprint thread area (about 0.8 * 0.8 mm 2 ) to fully sense the finger fingerprint pattern, the price of the press-type fingerprint recognition chip has been high, and the application is Extensiveness has been limited. Therefore, a large-area fingerprint sensing system usually uses an optical illuminator to read a fingerprint image.
因應按壓式指紋辨識晶片價格過高的問題,許多指紋晶片廠商朝向滑動式指紋晶片設計。其將指紋晶片的面積設計成約略符合人手指寬度的尺寸,約192至256畫素(pixels),但長度縮短至只有2至8個畫素,每個畫素的面積約為50*50um2。在使用滑動式晶片感測指紋資訊時,人的手指必須貼於晶片平行滑動。指紋晶片在人的手指滑過晶片表面時,不斷的讀取片段(frame)資訊,並把每個片段連接成完整的指紋圖像,此方法可以達到面積型指紋辨識晶片的功能,並可以大幅降低晶片成本,故滑動式指紋晶片現在已成為消費型電子產品上的主流。 Many fingerprint chip manufacturers are designing towards sliding fingerprint chips in response to the problem of over-the-counter fingerprint identification of wafers. It designs the area of the fingerprint wafer to be approximately the size of the human finger width, about 192 to 256 pixels, but the length is shortened to only 2 to 8 pixels, and the area of each pixel is about 50 * 50um 2 . When using a sliding wafer to sense fingerprint information, a human finger must be slid in parallel to the wafer. The fingerprint chip continuously reads the frame information when the human finger slides over the surface of the wafer, and connects each segment into a complete fingerprint image. This method can achieve the function of the area type fingerprint recognition chip, and can be greatly By reducing wafer costs, sliding fingerprint chips are now mainstream in consumer electronics.
因為滑動式指紋晶片的影像擷取精確度與使用者的滑動行為有很大的關係,滑動速度過快,手指就無法平貼晶片表面或是可能會傾斜式的滑動,這可能造成指紋影像讀取錯誤或是片段圖檔無法接圖,故使用者通常需要滑動數次才有較高機會取得好的指紋圖像。滑動式指紋晶片在降低成本的同時,卻犧牲了使用的方便性與精確性,再者,需要多次滑動才能得到辨識結果,也造成消費者在使用上的不方便性。 Because the image capture accuracy of the sliding fingerprint chip has a great relationship with the user's sliding behavior, the sliding speed is too fast, the finger can not flatten the surface of the wafer or may slide obliquely, which may cause fingerprint image reading. If the error is taken or the clip file cannot be connected, the user usually needs to slide several times to have a higher chance of obtaining a good fingerprint image. Sliding fingerprint chips sacrifice the convenience and accuracy of use while reducing costs. Furthermore, multiple sliding is required to obtain identification results, which also causes inconvenience to consumers.
圖1顯示一種傳統之指紋感測器之結構示意圖。如圖1所示,傳統之滑動式指紋感測器500為一種被封裝完成的感測器。於封裝過程中,指紋晶片513放置於印刷電路板(Printed Circuit Board,PCB)基板510之上,利用金屬打線517連接晶片焊墊515和PCB焊墊516,再利用模塑料(molding compound)512作為保護層來保護金 屬打線517。現在市售的電容式指紋晶片的封裝形式上,幾乎都是類似圖1所示之封裝結構。而其主要感測原理分為電容分壓原理和RF感測原理。但不論哪種方式的表面約只有數微米至十數微米(um)厚度的保護層。因為半導體製程的累積絕緣層厚度約幾微米(um),若晶片表面增加幾十微米以上,保護層就會導致所造成在感測時的參考電容Cref相對於手指與晶片感測元產生的電容Cfinger就會變成過大,導致手指接觸差異過小,讀取電路很難判斷兩者之間的差異。參考US7099497,舉例而言Vsensing=Vdd *(Cref/(Cref+Cfinger)),以一般半導體製程完成之架構,Cref會大於100fF,但因每個感測單元面積最大只有50*50um2,假設保護層厚度約50um,那Cfinger會不到於1Ff,故若Cref>>Cfinger,Vsensing=Vdd而無法判斷手指波峰波谷的差異。 Figure 1 shows a schematic structural view of a conventional fingerprint sensor. As shown in FIG. 1, the conventional sliding fingerprint sensor 500 is a packaged sensor. During the packaging process, the fingerprint chip 513 is placed on a printed circuit board (PCB) substrate 510, and the metal pad 517 is used to connect the wafer pad 515 and the PCB pad 516, and then a molding compound 512 is used as the molding compound. The protective layer protects the metal wire 517. The package form of commercially available capacitive fingerprint wafers is almost all similar to the package structure shown in FIG. The main sensing principle is divided into the principle of capacitive voltage division and the principle of RF sensing. However, the surface of the film is only about a few micrometers to a few tenths of a millimeter (um) thick. Since the cumulative insulating layer thickness of the semiconductor process is about several micrometers (um), if the surface of the wafer is increased by several tens of micrometers or more, the protective layer causes the reference capacitance C ref generated during sensing to be generated with respect to the finger and the wafer sensing element. The capacitance C finger will become too large, causing the finger contact difference to be too small, and it is difficult for the reading circuit to judge the difference between the two. Referring to US7099497, for example, V sensing = V dd * (C ref / (C ref + C finger )), the architecture completed in a general semiconductor process, C ref will be greater than 100fF, but the maximum area of each sensing unit is only 50 * 50um 2 , assuming that the thickness of the protective layer is about 50um, the C finger will be less than 1Ff, so if C ref >>C finger , V sensing =V dd , the difference between the peaks and valleys of the finger cannot be judged.
本發明之一個目的是提供一種以絕緣基板完成電容式指紋晶片的製造方法及其封裝方式。 An object of the present invention is to provide a method of fabricating a capacitive fingerprint wafer with an insulating substrate and a packaging method thereof.
本發明之另一目的,係在利用絕緣基板製程與半導體晶圓製程的個別優點,利用玻璃基版晶片焊接技術(Chip On Glass,COG)或打線接合的方式,達到與單一半導體晶片製造功能相同,但成本極低的方法。 Another object of the present invention is to achieve the same function as a single semiconductor wafer by utilizing the advantages of an insulating substrate process and a semiconductor wafer process, using a chip-on-chip (COG) or wire bonding method. , but the method of extremely low cost.
本發明之又另一目的,係在利用絕緣基板製程的特性,可將參考電極的接地電位設置於絕緣基板的另一側,使得參考電容不唯一利用半導體沈積材料為介電層達到 與單一半導體晶片製造功能相同,但成本極低的方法。 Still another object of the present invention is to set the ground potential of the reference electrode to the other side of the insulating substrate by utilizing the characteristics of the process of the insulating substrate, so that the reference capacitor is not uniquely formed by using the semiconductor deposition material as the dielectric layer. A method that has the same function as a single semiconductor wafer, but at a very low cost.
本發明之再一目的,係在提供封裝的過程中不因為製造結構的限制造成晶片上保護層厚度的限制,進而導致晶片抵抗外在衝擊能力較弱,並同時提供較便宜,簡單又具堅固的封裝形式。 A further object of the present invention is to prevent the thickness of the protective layer on the wafer from being limited due to limitations of the manufacturing structure during the process of providing the package, thereby resulting in a weaker resistance to the external impact of the wafer, and at the same time providing a cheaper, simpler and stronger material. The form of the package.
為達上述目的,本發明提供一種電容式指紋感測器,包含一絕緣基板、一感測及前端處理單元以及一後端處理單元。感測及前端處理單元設置於絕緣基板之一正面上,用以對一手指的紋路進行感測及前端訊號處理以產生多個指紋類比感測訊號。後端處理單元設置於絕緣基板之正面上,透過一異方性導電膠設置於絕緣基板且電連接至感測及前端處理單元,並接收此等指紋類比感測訊號以將各指紋類比感測訊號處理成一結果訊號以供輸出。 To achieve the above objective, the present invention provides a capacitive fingerprint sensor comprising an insulating substrate, a sensing and front end processing unit, and a back end processing unit. The sensing and front-end processing unit is disposed on a front surface of the insulating substrate for sensing the texture of the finger and front-end signal processing to generate a plurality of fingerprint analog sensing signals. The back-end processing unit is disposed on the front surface of the insulating substrate, is disposed on the insulating substrate through an anisotropic conductive adhesive, and is electrically connected to the sensing and front-end processing unit, and receives the fingerprint analog sensing signals to sense the fingerprint analogies. The signal is processed into a result signal for output.
本發明亦提供一種電容式指紋感測器的製造方法,包含以下步驟。首先,形成一感測及前端處理單元於一絕緣基板之一正面上。然後,設置一後端處理單元於絕緣基板之正面上。後端處理單元透過一異方性導電膠設置於絕緣基板且電連接至感測及前端處理單元。感測及前端處理單元對一手指的紋路進行感測及前端訊號處理以產生多個指紋類比感測訊號。後端處理單元接收此等指紋類比感測訊號以將各指紋類比感測訊號處理成一結果訊號以供輸出。 The invention also provides a method for manufacturing a capacitive fingerprint sensor, comprising the following steps. First, a sensing and front-end processing unit is formed on a front side of an insulating substrate. Then, a back end processing unit is disposed on the front surface of the insulating substrate. The back end processing unit is disposed on the insulating substrate through an anisotropic conductive paste and electrically connected to the sensing and front end processing unit. The sensing and front-end processing unit senses the texture of the finger and the front-end signal processing to generate a plurality of fingerprint analog sensing signals. The backend processing unit receives the fingerprint analog sensing signals to process each fingerprint analog sensing signal into a result signal for output.
根據本發明,利用液晶顯示器(Liquid Crystal Display)薄膜電晶體(Thin-Film Transistor,TFT)製程在單層或双 片層絕緣基板上完成包含參考電容及感測電容之感測陣列元件之結構,又或者為具有一訊號發射源Tx和一訊號接收源Rx之感測結構,並在其中一層絕緣基板完成至少一電晶體切換開關、比較器、訊號多工器以及訊號放大器。此部分感測元件電路輸出與另外之以半導體晶圓製程所製造之電路元件相結合,此結合方式係利用COG方式作為訊號端點之導通,此外部電路元件包含類比數位轉換器(Analog-to-Digital Converter,ADC)以及感測電路所需之數位控制電路及影像處理電路、加解密電路、記憶體以及暫存器。經電路處理完之指紋影像資訊。藉由軟性電路板與絕緣基板相連接或是感測之絕緣基板以習知的IC封裝方式,藉由金屬焊墊作為輸出之對外系統之媒介。此外,以絕緣基板完成電容式指紋晶片的封裝方式可以以傳統模塑料完全包覆的方式或是以強化絕緣貼附於表面的方法完成。 According to the present invention, a liquid crystal display (Thin-Film Transistor (TFT) process is used in a single layer or double Forming a sensing array component including a reference capacitor and a sensing capacitor on the chip insulating substrate, or a sensing structure having a signal emitting source Tx and a signal receiving source Rx, and completing at least one of the insulating substrates Transistor switches, comparators, signal multiplexers, and signal amplifiers. The part of the sensing element circuit output is combined with another circuit element manufactured by a semiconductor wafer process, and the combination method uses the COG mode as the conduction end of the signal end, and the external circuit element includes an analog digital converter (Analog-to -Digital Converter, ADC) and the digital control circuit and image processing circuit, encryption and decryption circuit, memory and scratchpad required for the sensing circuit. Fingerprint image information processed by the circuit. The insulating substrate connected or sensed by the flexible circuit board and the insulating substrate is used as a medium for outputting the external system by a conventional IC package in a conventional IC package. In addition, the manner in which the capacitive fingerprint wafer is completed by the insulating substrate can be completed by completely covering the conventional molding compound or by adhering the reinforced insulating film to the surface.
利用此感測架構,可增加晶片上保護層厚度的可能性,可以避免現有電容式指紋晶片的封裝特殊性(因為晶片必須裸露),使其可以使用較便宜的傳統的模塑料完全包覆晶片的封裝方式完成,或是在絕緣表面以約50~150um厚度的強化絕緣做保護。上述的方法,可以改善現有電容式指紋晶片容易受外在敲打或刮傷等,抵抗外在衝擊能力弱的缺點。 With this sensing architecture, the possibility of a protective layer thickness on the wafer can be increased, and the packaging specificity of the existing capacitive fingerprint wafer can be avoided (because the wafer must be exposed), so that the wafer can be completely covered with a relatively inexpensive conventional molding compound. The package is completed or protected by reinforced insulation of about 50~150um thickness on the insulating surface. The above method can improve the disadvantage that the existing capacitive fingerprint chip is susceptible to external knocking or scratching, and is resistant to external impact.
下列敘述藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 The detailed description of the present invention, the technical contents, the features, and the effects achieved by the present invention will become more apparent from the detailed description.
本發明是有關於一種電容式指紋晶片的設計結構及其封裝方式,此方法提供低成本之電容式指紋晶片及可耐外在衝擊之封裝方式。本發明特別是有關於一種利用在絕緣基板上製造感測陣列元件和前端訊號處理電路,及利用COG黏合後端訊號處理晶片的方式完成指紋晶片的架構。此指紋晶片可以利用軟性電路板或是習知之半導體封裝方式對外連結。 The invention relates to a design structure and a packaging method of a capacitive fingerprint chip, which provides a low-cost capacitive fingerprint chip and a packaging method capable of withstanding external impact. More particularly, the present invention relates to an architecture for fabricating a fingerprint wafer by fabricating a sensing array component and a front-end signal processing circuit on an insulating substrate, and processing the wafer using a COG bonding back-end signal. The fingerprint chip can be externally connected by a flexible circuit board or a conventional semiconductor package.
利用目前絕緣基板製程的優點,可將參考電極與接地電極分別完成於絕緣基板上下兩面,因此其可以增加參考電容的兩電極板的距離,藉此方法可以增加表面保護層厚度,也就是讓手指到感測電極的距離增加到數十微米,也不至於導致參考電容與感測電容之間的差距過大,減少讀取指紋訊號上的困難。 By utilizing the advantages of the current insulating substrate process, the reference electrode and the ground electrode can be respectively completed on the upper and lower sides of the insulating substrate, so that the distance between the two electrode plates of the reference capacitor can be increased, thereby increasing the thickness of the surface protective layer, that is, letting the finger The distance to the sensing electrode is increased to several tens of micrometers, and the gap between the reference capacitance and the sensing capacitance is not excessively large, which reduces the difficulty in reading the fingerprint signal.
因此,本發明提出一種電容式指紋晶片的製造方法及其封裝方式,其方法不限於按壓式或滑動式指紋晶片的製造方法。將需較大製造面積的感測陣列和前端訊號處理電路於一絕緣基板上完成,後端訊號處理晶片再由半導體晶圓完成,再利用COG技術將兩者黏合在一起,此方法可以充分利用目前絕緣基板製程與半導體晶圓製程個別的優勢,將按壓式的指紋晶片的成本大幅降低至與滑動式指紋晶片價格相仿,以增加市場的接受度及按壓式指紋晶片的應用性。 Accordingly, the present invention provides a method of fabricating a capacitive fingerprint wafer and a method of packaging the same, the method of which is not limited to a method of manufacturing a push-type or slide-type fingerprint wafer. The sensing array and the front-end signal processing circuit, which require a larger manufacturing area, are completed on an insulating substrate, and the back-end signal processing chip is completed by the semiconductor wafer, and then the COG technology is used to bond the two together. This method can be fully utilized. At present, the advantages of the insulating substrate process and the semiconductor wafer process alone reduce the cost of the push-type fingerprint wafer to be similar to that of the sliding fingerprint chip, thereby increasing the market acceptance and the applicability of the push-type fingerprint wafer.
圖2A顯示依據本發明第一實施例之電容式指紋感測器1之結構示意圖。圖2B顯示依據本發明第一實施例之 電容式指紋感測器1之方塊圖。圖2C顯示圖2A之局部放大圖。如圖2A至2C所示,本實施例提供一種電容式指紋感測器1,此為以標準封裝型態完成之指紋辨識晶片。電容式指紋感測器1包含一絕緣基板10、一感測及前端處理單元20以及一後端處理單元30。 2A is a schematic view showing the structure of a capacitive fingerprint sensor 1 according to a first embodiment of the present invention. 2B shows a first embodiment of the present invention Block diagram of capacitive fingerprint sensor 1. Fig. 2C shows a partial enlarged view of Fig. 2A. As shown in FIG. 2A to FIG. 2C, the embodiment provides a capacitive fingerprint sensor 1, which is a fingerprint identification chip completed in a standard package type. The capacitive fingerprint sensor 1 includes an insulating substrate 10, a sensing and front end processing unit 20, and a back end processing unit 30.
絕緣基板10譬如是一種TFT絕緣基板,材料譬如是玻璃或是可撓折之塑膠。絕緣基板10的厚度介於50微米與200微米之間,較佳是介於100微米與150微米之間。 The insulating substrate 10 is, for example, a TFT insulating substrate, such as glass or a flexible plastic. The thickness of the insulating substrate 10 is between 50 micrometers and 200 micrometers, preferably between 100 micrometers and 150 micrometers.
感測及前端處理單元20設置於絕緣基板10之一正面10A上,用以對一手指F(參見圖4及圖5)的紋路進行感測及前端訊號處理以產生多個指紋類比感測訊號SA。於本實施例中,感測及前端處理單元20包含多個指紋感測元21及一前端訊號處理單元26。指紋感測元21排列成二維陣列,且位於絕緣基板10之正面10A上。各指紋感測元21包含兩電極板21A、21B以形成一電容,並於運作時對手指F的紋路進行感測以產生一電壓或電流感測訊號SR。前端訊號處理單元26位於絕緣基板10之正面10A上,電連接至此等指紋感測元21,並將此電壓或電流感測訊號SR處理成此等指紋類比感測訊號SA。指紋感測元21與前端訊號處理單元26可以在同一系列的製程中同時完成或不同時完成。 The sensing and front-end processing unit 20 is disposed on the front surface 10A of the insulating substrate 10 for sensing the texture of the finger F (see FIG. 4 and FIG. 5) and front-end signal processing to generate a plurality of fingerprint analog sensing signals. SA. In this embodiment, the sensing and front-end processing unit 20 includes a plurality of fingerprint sensing elements 21 and a front-end signal processing unit 26. The fingerprint sensing elements 21 are arranged in a two-dimensional array and are located on the front surface 10A of the insulating substrate 10. Each of the fingerprint sensing elements 21 includes two electrode plates 21A, 21B to form a capacitor, and senses the texture of the finger F during operation to generate a voltage or current sensing signal SR. The front-end signal processing unit 26 is located on the front surface 10A of the insulating substrate 10, is electrically connected to the fingerprint sensing elements 21, and processes the voltage or current sensing signal SR into the fingerprint analog sensing signals SA. The fingerprint sensing element 21 and the front end signal processing unit 26 can be completed simultaneously or at different times in the same series of processes.
後端處理單元30設置於絕緣基板10之正面10A上,透過一異方性導電膠40設置於絕緣基板10且電連接至感測及前端處理單元20,並接收此等指紋類比感測訊號 SA以將各指紋類比感測訊號SA處理成一結果訊號SD,做為灰階影像輸出的依據。 The back end processing unit 30 is disposed on the front surface 10A of the insulating substrate 10, is disposed on the insulating substrate 10 through an anisotropic conductive adhesive 40, and is electrically connected to the sensing and front end processing unit 20, and receives the fingerprint analog sensing signals. The SA processes the fingerprint analog sensing signals SA into a result signal SD as a basis for grayscale image output.
此外,電容式指紋感測器1可更包含多個第一接點50、多個第一焊墊55。第一接點50及第一焊墊55設置於絕緣基板10上,此等第一接點50電連接至前端訊號處理單元26,並透過異方性導電膠40電連接至後端處理單元30的多個輸入接點31,此等第一焊墊55透過異方性導電膠40電連接至後端處理單元30的多個輸出接點32。 In addition, the capacitive fingerprint sensor 1 may further include a plurality of first contacts 50 and a plurality of first pads 55. The first contact 50 and the first pad 55 are disposed on the insulating substrate 10 , and the first contacts 50 are electrically connected to the front end signal processing unit 26 and electrically connected to the back end processing unit 30 through the anisotropic conductive adhesive 40 . The plurality of input contacts 31 are electrically connected to the plurality of output contacts 32 of the back end processing unit 30 via the anisotropic conductive paste 40.
再者,電容式指紋感測器1可以更包含一接地層60、一封裝基板70、多條打線75以及一模塑料層80。 Furthermore, the capacitive fingerprint sensor 1 can further include a ground layer 60, a package substrate 70, a plurality of wires 75, and a mold plastic layer 80.
接地層60設置於絕緣基板10之一背面10B上並連接至接地電位。封裝基板70具有多個第二焊墊72,接地層60係利用導電膠材67連接於封裝基板70上。這些打線75將此等第一焊墊55分別電連接至此等第二焊墊72。模塑料層80覆蓋絕緣基板10、感測及前端處理單元20、後端處理單元30、此等第一焊墊55、此等第二焊墊72、此等打線75及封裝基板70。 The ground layer 60 is disposed on the back surface 10B of one of the insulating substrates 10 and connected to the ground potential. The package substrate 70 has a plurality of second pads 72, and the ground layer 60 is connected to the package substrate 70 by a conductive paste 67. These wires 75 electrically connect the first pads 55 to the second pads 72, respectively. The molding compound layer 80 covers the insulating substrate 10, the sensing and front end processing unit 20, the back end processing unit 30, the first bonding pads 55, the second bonding pads 72, the bonding wires 75, and the package substrate 70.
圖3A顯示依據本發明第二實施例之電容式指紋感測器1'之結構示意圖。此為以軟性印刷電路板-玻璃接合技術(FPC on Glass,FOG)完成之指紋辨識晶片,其實施方式詳述於後。本實施例係類似於第一實施例,不同之處在於電容式指紋感測器1'更包含一接地層60、兩軟性電路板92、94、一第二絕緣基板80'以及一保護膠85。接地層60設置於絕緣基板10之一背面10B上並連接至接 地電位。兩軟性電路板92、94分別連接至此等第一焊墊55及接地層60,此接地層60透過軟性電路板94與軟性電路板92相連接之感測及前端處理單元20和後端處理單元30形成一電性上之共同接地,以形成圖4之一參考電容Cref和一寄生電容Cpar。第二絕緣基板80'覆蓋絕緣基板10及感測及前端處理單元20。保護膠85覆蓋後端處理單元30。 FIG. 3A is a block diagram showing the structure of a capacitive fingerprint sensor 1' according to a second embodiment of the present invention. This is a fingerprint identification wafer completed by FPC on Glass (FOG), the embodiment of which is described in detail later. This embodiment is similar to the first embodiment except that the capacitive fingerprint sensor 1 ′ further includes a ground layer 60 , two flexible circuit boards 92 , 94 , a second insulating substrate 80 ′ and a protective adhesive 85 . . The ground layer 60 is disposed on the back surface 10B of one of the insulating substrates 10 and connected to the ground potential. The two flexible circuit boards 92 and 94 are respectively connected to the first pad 55 and the ground layer 60. The ground layer 60 is connected to the flexible circuit board 92 via the flexible circuit board 94. The front end processing unit 20 and the back end processing unit are connected. 30 forms an electrical common ground to form a reference capacitance C ref and a parasitic capacitance C par of FIG. The second insulating substrate 80 ′ covers the insulating substrate 10 and the sensing and front end processing unit 20 . The protective glue 85 covers the rear end processing unit 30.
圖3B顯示依據本發明第二實施例之變形例之電容式指紋感測器1'A之結構示意圖。此為以軟性印刷電路板-玻璃接合技術(FPC on Glass,FOG)完成之指紋辨識晶片。本實施例係類似於第一實施例,不同之處在於電容式指紋感測器1'A更包含一接地層60、兩軟性電路板92、94以及一第二絕緣基板80'。接地層60設置於絕緣基板10之一背面10B上並連接至接地電位。兩軟性電路板92、94分別連接至此等第一焊墊55及接地層60。第二絕緣基板80'覆蓋絕緣基板10及感測及前端處理單元20。透過將後端處理單元30的焊墊30P與軟性電路板92上的焊墊92P相互接合,來將後端處理單元30設置於軟性電路板92之上,並電連接至感測及前端處理單元20。如此一來,可以整合後端處理單元30與軟性電路板92之製作,然後只要將軟性電路板92電連接至第一焊墊55即可。因此,本例子之電容式指紋感測器1'A包含絕緣基板10、感測及前端處理單元20、軟性電路板92以及後端處理單元40。感測及前端處理單元20設置於絕緣基板10之正面10A上,用以對手指的紋路進行感測及前 端訊號處理以產生多個指紋類比感測訊號。軟性電路板92電連接至絕緣基板10上之多個第一焊墊55,第一焊墊55電連接至感測及前端處理單元20,後端處理單元30係透過將後端處理單元30的焊墊30P和軟性電路板92上的焊墊92P相互接合而被設置於軟性電路板92且電連接至感測及前端處理單元20,並接收此等指紋類比感測訊號SA以將各指紋類比感測訊號SA處理成結果訊號SD以供輸出。 FIG. 3B is a block diagram showing the structure of a capacitive fingerprint sensor 1'A according to a modification of the second embodiment of the present invention. This is a fingerprint identification wafer completed by FPC on Glass (FOG). This embodiment is similar to the first embodiment except that the capacitive fingerprint sensor 1'A further includes a ground layer 60, two flexible circuit boards 92, 94, and a second insulating substrate 80'. The ground layer 60 is disposed on the back surface 10B of one of the insulating substrates 10 and connected to the ground potential. Two flexible circuit boards 92, 94 are connected to the first pads 55 and the ground layer 60, respectively. The second insulating substrate 80 ′ covers the insulating substrate 10 and the sensing and front end processing unit 20 . The back end processing unit 30 is disposed on the flexible circuit board 92 by electrically bonding the pad 30P of the back end processing unit 30 and the pad 92P on the flexible circuit board 92, and is electrically connected to the sensing and front end processing unit. 20. In this way, the fabrication of the back end processing unit 30 and the flexible circuit board 92 can be integrated, and then the flexible circuit board 92 can be electrically connected to the first pad 55. Therefore, the capacitive fingerprint sensor 1'A of the present example includes an insulating substrate 10, a sensing and front end processing unit 20, a flexible circuit board 92, and a back end processing unit 40. The sensing and front-end processing unit 20 is disposed on the front surface 10A of the insulating substrate 10 for sensing the texture of the finger and the front The signal processing is performed to generate a plurality of fingerprint analog sensing signals. The flexible circuit board 92 is electrically connected to the plurality of first pads 55 on the insulating substrate 10, the first pads 55 are electrically connected to the sensing and front end processing unit 20, and the back end processing unit 30 is passed through the back end processing unit 30. The pad 30P and the pad 92P on the flexible circuit board 92 are bonded to each other and disposed on the flexible circuit board 92 and electrically connected to the sensing and front end processing unit 20, and receive the fingerprint analog sensing signals SA to compare the fingerprints. The sensing signal SA is processed into a result signal SD for output.
圖4與5顯示本發明之電容式指紋感測器之兩種感測原理的示意圖。於絕緣基板上完成之感測及前端處理單元20之實施原理係如圖4所示,其為一電容分壓原理之指紋感測單元之示意圖。手指F觸碰於模塑料層80之上,感測電極板21A透過此模塑料層80與手指F形成一感測電容Cfinger,參考電極板21B與感測電路的接地層60形成一參考電容Cref,感測電極板21A與接地層60形成一寄生電容Cpar。一電晶體開關TR連接至感測電極板21A與參考電極板21B,以形成一金屬氧化物半導體(MOS)電容Cud。若指紋晶片需要較厚的模塑料層80(>50um)作為保護層,則半導體式指紋晶片之寄生電容Cpar和參考電容Cref,會因為互補式金屬氧化物半導體(CMOS)製程之絕緣層累積厚度一般只有幾微米(<4um),造成寄生電容Cpar和參考電容Cref會遠大於感測電容Cfinger。這樣會造成感測電容Cfinger之變化不易被感測電路偵測出來,Cref約為一百多fF,Cfinger約小於5fF。但絕緣基板10為一絕緣介電層,厚度可為100~200um,這 會使得相互感應產生的電容值在同一等級1fF左右,這也會使得電路上的設計較容易。於此例子中,兩電極板21A、21B相面對且位於絕緣基板10之正面10A上的不同高度。 4 and 5 are schematic diagrams showing two sensing principles of the capacitive fingerprint sensor of the present invention. The sensing principle of the front end processing unit 20 and the implementation principle of the front end processing unit 20 are shown in FIG. 4 , which is a schematic diagram of a fingerprint sensing unit of a capacitor voltage division principle. The finger F touches the molding compound layer 80, the sensing electrode plate 21A forms a sensing capacitance C finger with the finger F through the molding compound layer 80, and the reference electrode plate 21B forms a reference capacitance with the grounding layer 60 of the sensing circuit. C ref , the sensing electrode plate 21A and the ground layer 60 form a parasitic capacitance C par . A transistor switch TR is connected to the sensing electrode plate 21A and the reference electrode plate 21B to form a metal oxide semiconductor (MOS) capacitor Cud. If the fingerprint wafer requires a thicker molding layer 80 (>50um) as the protective layer, the parasitic capacitance C par and the reference capacitance C ref of the semiconductor fingerprint wafer may be due to the insulating layer of the complementary metal oxide semiconductor (CMOS) process. The cumulative thickness is typically only a few microns (<4um), causing the parasitic capacitance C par and the reference capacitance C ref to be much larger than the sensing capacitance C finger . This will cause the change of the sensing capacitance C finger to be easily detected by the sensing circuit, C ref is about one hundred fF, and the C finger is less than about 5fF. However, the insulating substrate 10 is an insulating dielectric layer having a thickness of 100 to 200 um, which causes mutual inductance to be generated at a level of about 1 fF, which also makes the design on the circuit easier. In this example, the two electrode plates 21A, 21B face each other and are located at different heights on the front surface 10A of the insulating substrate 10.
關於另一應用例子,於絕緣基板10上完成之感測及前端處理單元20,如圖5所示,每個感測單元(含感測電極板21A與參考電極板21B)的感測原理是基於發射訊號及接收訊號。感測電極板21A與參考電極板21B分別電連接至一射頻(RF)發射源Tx與一接收源Rx,於此例子中,感測電極板21A與參考電極板21B被稱為是一組發射與接收單元。手指接觸模塑料層80會產生一電容Cfinger,造成接收源Rx接收RF訊號的變化,藉由接收端的訊號變化,感測出指紋圖形影像。於此例子中,兩電極板21A、21B位於絕緣基板10之正面10A上的同一高度,兩電極板21A、21B分別連接至發射源Tx及接收源Rx,藉由在接收源接收的訊號變化來感測出手指的紋路的影像。值得注意的是,於圖5中,並沒有接地層60的存在。 Regarding another application example, the sensing and front-end processing unit 20 is completed on the insulating substrate 10. As shown in FIG. 5, the sensing principle of each sensing unit (including the sensing electrode plate 21A and the reference electrode plate 21B) is Based on the transmitted signal and the received signal. The sensing electrode plate 21A and the reference electrode plate 21B are electrically connected to a radio frequency (RF) emission source Tx and a receiving source Rx, respectively. In this example, the sensing electrode plate 21A and the reference electrode plate 21B are referred to as a group of emission. With the receiving unit. The finger contact molding layer 80 generates a capacitance Cfinger, which causes the receiving source Rx to receive the change of the RF signal, and the fingerprint image is sensed by the signal change at the receiving end. In this example, the two electrode plates 21A, 21B are located at the same height on the front surface 10A of the insulating substrate 10, and the two electrode plates 21A, 21B are respectively connected to the transmitting source Tx and the receiving source Rx, respectively, by the signal received at the receiving source. An image of the texture of the finger is sensed. It is worth noting that in Figure 5, there is no presence of the ground plane 60.
圖6A至6D顯示依據本發明第一實施例之電容式指紋感測器1之製造方法之各步驟之結構示意圖。本實施例的電容式指紋感測器1的製造方法包含以下步驟。 6A to 6D are structural diagrams showing the steps of a method of manufacturing the capacitive fingerprint sensor 1 according to the first embodiment of the present invention. The manufacturing method of the capacitive fingerprint sensor 1 of the present embodiment includes the following steps.
首先,如圖6A所示,形成感測及前端處理單元20於絕緣基板10之正面10A上。於此步驟中,請配合參見圖2A至2C,形成多個指紋感測元21於絕緣基板10之正面10A上,同時形成前端訊號處理單元26於絕緣基板 10之正面10A上。此外,亦可同時形成多個第一接點50及多個第一焊墊55於絕緣基板10上。因此,可利用TFT或低溫多晶矽(Low Temperature Poly-Silicon,LTPS)製程來完成感測及前端處理單元20、接地層60及第一焊墊55。為了大量生產以降低成本,形成感測及前端處理單元20於絕緣基板10之正面10A上之步驟可以依據下述方式執行。如圖6A所示,首先,形成多個感測及前端處理單元20及多個第一焊墊55於一總體絕緣基板10M之一正面10AM上。接著,形成一總體接地層60M於總體絕緣基板10M之一背面10BM上。值得注意的是,總體接地層60M可以比感測及前端處理單元20及多個第一焊墊55早形成。然後,沿著切割線CT進行切割以將配成一組之感測及前端處理單元20及第一焊墊55分離,同時使將總體接地層60M分離成多個接地層60,各接地層60與感測及前端處理單元20及第一焊墊55配成一組。切割完成後的單一結構如圖6B所示。 First, as shown in FIG. 6A, the sensing and front end processing unit 20 is formed on the front surface 10A of the insulating substrate 10. In this step, together with FIG. 2A to FIG. 2C, a plurality of fingerprint sensing elements 21 are formed on the front surface 10A of the insulating substrate 10, and the front end signal processing unit 26 is formed on the insulating substrate. 10 on the front 10A. In addition, a plurality of first contacts 50 and a plurality of first pads 55 may be simultaneously formed on the insulating substrate 10. Therefore, the sensing and front end processing unit 20, the ground layer 60, and the first pad 55 can be completed by a TFT or Low Temperature Poly-Silicon (LTPS) process. In order to mass-produce to reduce the cost, the step of forming the sensing and front-end processing unit 20 on the front surface 10A of the insulating substrate 10 can be performed in the following manner. As shown in FIG. 6A, first, a plurality of sensing and front end processing units 20 and a plurality of first pads 55 are formed on one front surface 10AM of a general insulating substrate 10M. Next, a bulk ground layer 60M is formed on one of the back faces 10BM of the overall insulating substrate 10M. It should be noted that the overall ground plane 60M may be formed earlier than the sensing and front end processing unit 20 and the plurality of first pads 55. Then, cutting along the cutting line CT to separate the paired sensing and front end processing unit 20 and the first pad 55 while separating the overall ground layer 60M into a plurality of ground layers 60, each ground layer 60 It is combined with the sensing and front end processing unit 20 and the first pad 55. The single structure after the cutting is completed is shown in Fig. 6B.
接著,如圖6C所示,在形成感測及前端處理單元20以後,設置後端處理單元30於絕緣基板10之正面10A上。實施時,可以利用COG黏合方式將後端處理單元30接著於絕緣基板10上。後端處理單元30牽涉到電路設計上可完成比較複雜的功能性,故可以利用半導體製程來完成。請配合參見圖2B至2C,後端處理單元30透過異方性導電膠40設置於絕緣基板10且電連接至感測及前端處理單元20。異方性導電膠40具有垂直導通的特性,可以輕易將上下的兩個元件作電連接,達成信號的 輸入與輸出功能。 Next, as shown in FIG. 6C, after the sensing and front-end processing unit 20 is formed, the back-end processing unit 30 is disposed on the front surface 10A of the insulating substrate 10. In implementation, the back end processing unit 30 can be attached to the insulating substrate 10 by a COG bonding method. The backend processing unit 30 involves relatively complex functionality in circuit design and can be implemented using a semiconductor process. Referring to FIGS. 2B to 2C , the back end processing unit 30 is disposed on the insulating substrate 10 through the anisotropic conductive adhesive 40 and electrically connected to the sensing and front end processing unit 20 . The anisotropic conductive adhesive 40 has a vertical conduction characteristic, and can easily electrically connect two upper and lower components to achieve a signal. Input and output functions.
此外,上述製造方法可以更包含以下步驟。首先,形成接地層60於絕緣基板10之背面10B上。然後,將接地層60利用導電膠材67(參見圖1)設置於具有多個第二焊墊72之封裝基板(譬如是PCB基板)70上。接著,利用多條打線75將此等第一焊墊55分別電連接至此等第二焊墊72。然後,提供一模塑料層80覆蓋絕緣基板10、感測及前端處理單元20、後端處理單元30、此等第一焊墊55、此等第二焊墊72、此等打線75及封裝基板70,形成的電容式指紋感測器1如圖6D所示。因此,可以完成可用標準封裝,類似四方形平面無引腳封裝(Quad Flat No leads,QFN)實施之指紋晶片成品。 Further, the above manufacturing method may further include the following steps. First, the ground layer 60 is formed on the back surface 10B of the insulating substrate 10. Then, the ground layer 60 is disposed on a package substrate (such as a PCB substrate) 70 having a plurality of second pads 72 using a conductive paste 67 (see FIG. 1). Then, the first pads 55 are electrically connected to the second pads 72 by a plurality of wires 75, respectively. Then, a molding plastic layer 80 is provided to cover the insulating substrate 10, the sensing and front end processing unit 20, the back end processing unit 30, the first bonding pads 55, the second bonding pads 72, the wires 75 and the package substrate 70. The formed capacitive fingerprint sensor 1 is as shown in FIG. 6D. Therefore, it is possible to complete a finished standard package, similar to a quad flat no-lead (QFN) implemented fingerprint wafer finished product.
圖7A至7D顯示依據本發明第二實施例之電容式指紋感測器1'之製造方法之各步驟之結構示意圖。本實施例係類於於第一實施例,不同之處在於在形成接地層60於絕緣基板10之背面10B上以後,利用兩軟性電路板92、94分別連接至此等第一焊墊55及接地層60。為了大量生產,如圖7A所示,在總體絕緣基板10M的正面與背面分別形成感測及前端處理單元20及總體接地層60M以後,提供一總體第二絕緣基板80M'覆蓋總體絕緣基板10M及此等感測及前端處理單元20,如圖7B所示。此總體第二絕緣基板80M'當作保護絕緣層,其黏合方式可以非導體之材料黏合,黏合材料的塗佈範圍以感測及前端處理單元20而不影響後端處理單元30的接合處理為限。此保護絕緣層可以選擇適當的厚度為之,或是以 研磨的方式達到適合於設計之指紋晶片電路可處理訊號之厚度。接著,沿著兩條切割線CT進行兩次切割,以完成多個未封裝的感測晶片(稱為雙層絕緣感測陣列單元),其中一個如圖7C所示。然後,利用COG黏合方式將後端處理單元30接著於絕緣基板10上,同時提供一保護膠85覆蓋後端處理單元30,並利用軟性電路板92、94分別連結至第一焊墊55與接地層60,以完成上述的打線連接及完成訊號輸出路徑,而完成電容式指紋感測器1',如圖7D所示。 7A to 7D are structural diagrams showing the steps of a method of manufacturing a capacitive fingerprint sensor 1' according to a second embodiment of the present invention. This embodiment is similar to the first embodiment, except that after the ground layer 60 is formed on the back surface 10B of the insulating substrate 10, the two first flexible pads 92 and 94 are respectively connected to the first pads 55 and connected. Formation 60. For mass production, as shown in FIG. 7A, after the sensing and front end processing unit 20 and the overall ground layer 60M are respectively formed on the front and back surfaces of the overall insulating substrate 10M, an overall second insulating substrate 80M' is provided to cover the entire insulating substrate 10M and These sensing and front end processing units 20 are shown in Figure 7B. The overall second insulating substrate 80M' is used as a protective insulating layer, and the bonding manner thereof can be adhered to the non-conductor material. The coating range of the bonding material is sensed and the front end processing unit 20 does not affect the bonding processing of the back end processing unit 30. limit. The protective insulating layer can be selected to have an appropriate thickness, or The method of grinding reaches the thickness of the signal processing circuit suitable for the design of the fingerprint chip circuit. Next, two cuts are made along the two cut lines CT to complete a plurality of unpackaged sense wafers (referred to as double layer insulation sense array units), one of which is shown in Figure 7C. Then, the back end processing unit 30 is connected to the insulating substrate 10 by the COG bonding method, and a protective adhesive 85 is provided to cover the back end processing unit 30, and is connected to the first bonding pad 55 by the flexible circuit boards 92 and 94, respectively. The formation 60 completes the above-described wire bonding and completes the signal output path to complete the capacitive fingerprint sensor 1', as shown in FIG. 7D.
圖8A至8D顯示依據本發明第三實施例之電容式指紋感測器1"之製造方法之各步驟之結構示意圖。本實施例係類似於第二實施例,不同之處在於本實施例在圖8A的結構形成以後,更形成一總體保護層90M於總體第二絕緣基板80M'上,如圖8B所示。總體保護層90M可以是一種彩色塗料,此用途為配合應用產品外之觀,使其達到美觀的功用,顏色可為任一種可調配之色彩。接著,沿著切割線進行切割以形成圖8C的結構,然後,再進行如圖7D所示的封裝製程,以獲得如圖8D所示的電容式指紋感測器1"。因此,電容式指紋感測器1"包含一保護層90,位於感測及前端處理單元20上,以保護感測及前端處理單元20或為整個產品提供彩色外觀的效果。 8A to 8D are structural diagrams showing the steps of a method of manufacturing a capacitive fingerprint sensor 1" according to a third embodiment of the present invention. This embodiment is similar to the second embodiment except that the embodiment is After the structure of FIG. 8A is formed, a total protective layer 90M is further formed on the overall second insulating substrate 80M', as shown in FIG. 8B. The overall protective layer 90M may be a color coating, which is used in conjunction with the application product. To achieve an aesthetic function, the color can be any color that can be adjusted. Then, cutting along the cutting line to form the structure of FIG. 8C, and then performing the packaging process as shown in FIG. 7D to obtain FIG. 8D. The capacitive fingerprint sensor shown is 1". Thus, the capacitive fingerprint sensor 1" includes a protective layer 90 on the sensing and front end processing unit 20 to protect the sensing and front end processing unit 20 or to provide a color appearance for the entire product.
因此,本發明提供一種電容式指紋晶片的製造方法及其封裝方式,利用LCD TFT製程在單層或双層絕緣基板上完成感測陣列包含參考電容、感測電容之結構,又或者為具有訊號發射源和訊號接收源之感測結構,並在 其中一層絕緣基板完成前端訊號處理電路,此前端訊號處理電路電路可包含至少一電晶體切換開關、比較器、訊號多工器以及訊號放大器或任何可實施有助於訊號處理之電路架構。此部分感測陣列經由前端訊號處理電路處理後之訊號輸出與至少一半導體晶圓製程所製造之後端訊號處理晶片在絕緣基板上相結合,此結合方式係利用COG方式作為訊號端點之導通,此後端訊號處理晶片可包含類比數位轉換器ADC以及感測電路所需之數位控制電路,平行、序列或USB傳輸介面、影像處理電路、加解密電路、記憶體、暫存器和有助於指紋晶片功能性完整之電路元件。經後端訊號處理晶片處理完之指紋影像資訊,藉由軟性電路板與絕緣基板相連接或是該絕緣基板以習知的IC封裝方式作為對外輸出之媒介。以絕緣基板完成電容式指紋晶片的封裝方式,可以以傳統模塑料完全包覆的方式,或是以強化絕緣貼附於表面的方法完成。此方法避免因為習知之半導體電容式指紋感測元件因手指之感測需要極大面積之矽晶圓感測電路造成製造成本過高的問題,以及矽晶圓對外裸露所造成之外在ESD及抗衝擊能力不足的問題。 Therefore, the present invention provides a method for manufacturing a capacitive fingerprint wafer and a package method thereof, and the structure of the sensing array including the reference capacitor and the sensing capacitor is completed on the single-layer or double-layer insulating substrate by using the LCD TFT process, or has a signal Sensing structure of the source and signal receiving source, and One of the insulating substrates completes the front-end signal processing circuit, and the front-end signal processing circuit circuit can include at least one transistor switching switch, a comparator, a signal multiplexer, and a signal amplifier or any circuit architecture that can implement a signal processing. The signal output processed by the front sensing signal processing circuit is combined with the rear end signal processing chip manufactured by at least one semiconductor wafer process on the insulating substrate, and the combination method uses the COG method as the conduction end of the signal end point. The rear signal processing chip can include an analog digital converter ADC and a digital control circuit required for the sensing circuit, a parallel, serial or USB transmission interface, an image processing circuit, an encryption and decryption circuit, a memory, a register, and a fingerprint. A fully functional circuit component of a wafer. The fingerprint image processed by the back-end signal processing chip is connected to the insulating substrate by a flexible circuit board or the insulating substrate is used as a medium for external output by a conventional IC package. The method of encapsulating the capacitive fingerprint wafer by the insulating substrate can be completely covered by a conventional molding compound or attached to the surface by reinforced insulation. The method avoids the problem that the conventional semiconductor capacitive fingerprint sensing component requires a large area due to the sensing of the finger, and the manufacturing cost is too high, and the external exposure of the germanium wafer is caused by ESD and resistance. The problem of insufficient impact capability.
因此,本發明所提供之以絕緣基板完成電容式指紋晶片的設計結構及其封裝方式,是利用一般絕緣基板的面積遠大於晶圓面積的優點。以中世代4.5G面板為730×920mm2,12吋晶圓150×150×π比較而言,其所切割約1cm2的指紋感測陣列,數量相差25倍之多。再者,利用半導體晶圓製程,將需要精細製程的電路微小化,再 利用習知之COG製程黏著於單元絕緣基板之上已完成指紋晶片之架構,確實能夠達到節省按壓式指紋晶片製造成本的功效。值得注意的是,本發明的結構及製造方法,同樣適用於滑動式指紋感測晶片。 Therefore, the design structure and the packaging method of the capacitive fingerprint wafer completed by the insulating substrate provided by the present invention have the advantages that the area of the general insulating substrate is much larger than the area of the wafer. Compared with the middle generation 4.5G panel of 730×920mm 2 and the 12吋 wafer 150×150×π, the fingerprint sensing array cut by about 1cm 2 has a difference of 25 times. Furthermore, by using a semiconductor wafer process, the circuit that requires a fine process is miniaturized, and the structure of the fingerprint chip is completed by using a conventional COG process adhered to the unit insulating substrate, which can effectively save the manufacturing cost of the pressed fingerprint chip. . It should be noted that the structure and manufacturing method of the present invention are equally applicable to a sliding fingerprint sensing wafer.
利用此感測架構,可增加晶片上保護層厚度的可能性,可以避免現有電容式指紋晶片的封裝特殊性(因為晶片必須裸露),使其可以使用較便宜的傳統的模塑料完全包覆晶片的封裝方式完成,或是在絕緣表面以約100~200um厚度的強化絕緣做保護。上述的方法,可以改善現有電容式指紋晶片容易受外在敲打或刮傷等,抵抗外在衝擊能力弱的缺點。 With this sensing architecture, the possibility of a protective layer thickness on the wafer can be increased, and the packaging specificity of the existing capacitive fingerprint wafer can be avoided (because the wafer must be exposed), so that the wafer can be completely covered with a relatively inexpensive conventional molding compound. The package is completed or protected by reinforced insulation of approximately 100~200um thickness on the insulating surface. The above method can improve the disadvantage that the existing capacitive fingerprint chip is susceptible to external knocking or scratching, and is resistant to external impact.
在較佳實施例之詳細說明中所提出之具體實施例僅用以方便說明本發明之技術內容,而非將本發明狹義地限制於上述實施例,在不超出本發明之精神及以下申請專利範圍之情況,所做之種種變化實施,皆屬於本發明之範圍。 The specific embodiments of the present invention are intended to be illustrative only and not to limit the invention to the above embodiments, without departing from the spirit of the invention and the following claims. The scope of the invention and the various changes made are within the scope of the invention.
Cfinger‧‧‧感測電容 C finger ‧‧‧ Sense capacitance
Cpar‧‧‧寄生電容 C par ‧‧‧Parasitic capacitance
Cref‧‧‧參考電容 C ref ‧‧‧reference capacitor
CT‧‧‧切割線 CT‧‧‧ cutting line
Cud‧‧‧電容 C ud ‧‧‧ capacitor
F‧‧‧手指 F‧‧‧ finger
Rx‧‧‧接收源 Rx‧‧‧ receiving source
SA‧‧‧類比感測類比訊號 SA‧‧‧ analog analog signal
SD‧‧‧結果訊號 SD‧‧‧ result signal
SR‧‧‧感測訊號 SR‧‧‧Sensior signal
TR‧‧‧電晶體開關 TR‧‧‧Chip Switch
Tx‧‧‧發射源 Tx‧‧‧ source
1、1'、1'A、1"‧‧‧電容式指紋感測器 1, 1', 1'A, 1"‧‧‧ Capacitive fingerprint sensor
10‧‧‧絕緣基板 10‧‧‧Insert substrate
10A、10AM‧‧‧正面 10A, 10AM‧‧‧ positive
10B、10BM‧‧‧背面 10B, 10BM‧‧‧ back
10M‧‧‧總體絕緣基板 10M‧‧‧General insulating substrate
20‧‧‧感測及前端處理單元 20‧‧‧Sensing and front-end processing unit
21‧‧‧指紋感測元 21‧‧‧Finger sensing element
21A‧‧‧感測電極板 21A‧‧‧Sensor electrode plate
21B‧‧‧參考電極板 21B‧‧‧Reference electrode plate
26‧‧‧前端訊號處理單元 26‧‧‧ Front-end signal processing unit
30‧‧‧後端處理單元 30‧‧‧Back-end processing unit
30P‧‧‧焊墊 30P‧‧‧ solder pads
31‧‧‧輸入接點 31‧‧‧Input contacts
32‧‧‧輸出接點 32‧‧‧Output contacts
40‧‧‧異方性導電膠 40‧‧‧ anisotropic conductive adhesive
50‧‧‧第一接點 50‧‧‧First contact
55‧‧‧第一焊墊 55‧‧‧First pad
60‧‧‧接地層 60‧‧‧ Grounding layer
60M‧‧‧總體接地層 60M‧‧‧ overall ground plane
67‧‧‧導電膠材 67‧‧‧Electrical adhesive
70‧‧‧封裝基板 70‧‧‧Package substrate
72‧‧‧第二焊墊 72‧‧‧Second pad
75‧‧‧打線 75‧‧‧Line
80‧‧‧模塑料層 80‧‧‧Molded plastic layer
80'‧‧‧第二絕緣基板 80'‧‧‧second insulating substrate
80M'‧‧‧總體第二絕緣基板 80M'‧‧‧ overall second insulating substrate
85‧‧‧保護膠 85‧‧‧Protective adhesive
90‧‧‧保護層 90‧‧‧Protective layer
90M‧‧‧總體保護層 90M‧‧‧ overall protective layer
92、94‧‧‧軟性電路板 92, 94‧‧‧Soft circuit board
92P‧‧‧焊墊 92P‧‧‧ pads
500‧‧‧指紋感測器 500‧‧‧Finger sensor
510‧‧‧印刷電路板基板 510‧‧‧Printed circuit board substrate
512‧‧‧模塑料 512‧‧‧Molded plastic
513‧‧‧指紋晶片 513‧‧‧ fingerprint chip
515‧‧‧晶片焊墊 515‧‧‧ wafer pads
516‧‧‧PCB焊墊 516‧‧‧PCB pads
517‧‧‧打線 517‧‧‧Line
圖1顯示一種傳統之滑動式指紋感測器之結構示意圖。 FIG. 1 shows a schematic structural view of a conventional sliding fingerprint sensor.
圖2A顯示依據本發明第一實施例之電容式指紋感測器之結構示意圖。 2A is a schematic view showing the structure of a capacitive fingerprint sensor according to a first embodiment of the present invention.
圖2B顯示依據本發明第一實施例之電容式指紋感測器之方塊圖。 2B is a block diagram showing a capacitive fingerprint sensor in accordance with a first embodiment of the present invention.
圖2C顯示圖2A之局部放大圖。 Fig. 2C shows a partial enlarged view of Fig. 2A.
圖3A顯示依據本發明第二實施例之電容式指紋感測器之結構示意圖。 3A is a block diagram showing the structure of a capacitive fingerprint sensor in accordance with a second embodiment of the present invention.
圖3B顯示依據本發明第二實施例之變形例之電容式指紋感測器之結構示意圖。 3B is a block diagram showing the structure of a capacitive fingerprint sensor according to a modification of the second embodiment of the present invention.
圖4與5顯示本發明之電容式指紋感測器之兩種感測原理的示意圖。 4 and 5 are schematic diagrams showing two sensing principles of the capacitive fingerprint sensor of the present invention.
圖6A至6D顯示依據本發明第一實施例之電容式指紋感測器之製造方法之各步驟之結構示意圖。 6A to 6D are structural diagrams showing the steps of a method of manufacturing a capacitive fingerprint sensor according to a first embodiment of the present invention.
圖7A至7D顯示依據本發明第二實施例之電容式指紋感測器之製造方法之各步驟之結構示意圖。 7A to 7D are structural diagrams showing the steps of a method of manufacturing a capacitive fingerprint sensor according to a second embodiment of the present invention.
圖8A至8D顯示依據本發明第三實施例之電容式指紋感測器之製造方法之各步驟之結構示意圖。 8A to 8D are structural diagrams showing the steps of a method of manufacturing a capacitive fingerprint sensor according to a third embodiment of the present invention.
1‧‧‧電容式指紋感測器 1‧‧‧Capacitive fingerprint sensor
10‧‧‧絕緣基板 10‧‧‧Insert substrate
10A‧‧‧正面 10A‧‧‧ positive
10B‧‧‧背面 10B‧‧‧Back
20‧‧‧感測及前端處理單元 20‧‧‧Sensing and front-end processing unit
30‧‧‧後端處理單元 30‧‧‧Back-end processing unit
40‧‧‧異方性導電膠 40‧‧‧ anisotropic conductive adhesive
55‧‧‧第一焊墊 55‧‧‧First pad
60‧‧‧接地層 60‧‧‧ Grounding layer
67‧‧‧導電膠材 67‧‧‧Electrical adhesive
70‧‧‧封裝基板 70‧‧‧Package substrate
72‧‧‧第二焊墊 72‧‧‧Second pad
75‧‧‧打線 75‧‧‧Line
80‧‧‧模塑料層 80‧‧‧Molded plastic layer
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101138173A TW201416991A (en) | 2012-10-16 | 2012-10-16 | Capacitive fingerprint sensor and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101138173A TW201416991A (en) | 2012-10-16 | 2012-10-16 | Capacitive fingerprint sensor and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201416991A true TW201416991A (en) | 2014-05-01 |
Family
ID=51293856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101138173A TW201416991A (en) | 2012-10-16 | 2012-10-16 | Capacitive fingerprint sensor and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201416991A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105205483A (en) * | 2014-06-13 | 2015-12-30 | 奇景光电股份有限公司 | Fingerprint sensing device |
US9400912B2 (en) | 2014-08-26 | 2016-07-26 | Egis Technology Inc. | Capacitive fingerprint sensor and fingerprint sensing method thereof |
US9792481B2 (en) | 2015-10-16 | 2017-10-17 | Egis Technology Inc. | Fingerprint sensor and method thereof |
CN107944331A (en) * | 2017-01-16 | 2018-04-20 | 深圳广积盛泰光电技术有限公司 | A kind of fingerprint identification module of multi-layer bonded formation |
TWI627720B (en) * | 2017-08-25 | 2018-06-21 | 致伸科技股份有限公司 | Package structure of fingerprint identification chip |
TWI714569B (en) * | 2015-04-07 | 2021-01-01 | 美商艾馬克科技公司 | Fingerprint sensor |
-
2012
- 2012-10-16 TW TW101138173A patent/TW201416991A/en unknown
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105205483A (en) * | 2014-06-13 | 2015-12-30 | 奇景光电股份有限公司 | Fingerprint sensing device |
US9400912B2 (en) | 2014-08-26 | 2016-07-26 | Egis Technology Inc. | Capacitive fingerprint sensor and fingerprint sensing method thereof |
TWI714569B (en) * | 2015-04-07 | 2021-01-01 | 美商艾馬克科技公司 | Fingerprint sensor |
TWI781491B (en) * | 2015-04-07 | 2022-10-21 | 美商艾馬克科技公司 | Fingerprint sensor and method of manufacturing a fingerprint sensor |
US9792481B2 (en) | 2015-10-16 | 2017-10-17 | Egis Technology Inc. | Fingerprint sensor and method thereof |
CN107944331A (en) * | 2017-01-16 | 2018-04-20 | 深圳广积盛泰光电技术有限公司 | A kind of fingerprint identification module of multi-layer bonded formation |
CN107944331B (en) * | 2017-01-16 | 2023-06-13 | 深圳广积盛泰光电技术有限公司 | Fingerprint identification module formed by multi-layer bonding |
TWI627720B (en) * | 2017-08-25 | 2018-06-21 | 致伸科技股份有限公司 | Package structure of fingerprint identification chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8803258B2 (en) | Finger sensor including capacitive lens and associated methods | |
TWI529390B (en) | Biometrics sensor module, assembly, manufacturing method and electronic apparatus using such biometrics sensor module | |
TWI630532B (en) | Fingerprint sensing device | |
US10108837B2 (en) | Fingerprint recognition chip packaging structure and packaging method | |
TW201416991A (en) | Capacitive fingerprint sensor and method of manufacturing the same | |
US10061966B2 (en) | Fingerprint identification apparatus | |
TWI534962B (en) | Proximity sensor with hidden couple electrode and method of manufacturing such sensor | |
US20170287797A1 (en) | Chip packaging method and package structure | |
US10289893B2 (en) | Fingerprint identification apparatus | |
KR20160114595A (en) | Biometric feature recognition device and electronic equipment | |
TW201439865A (en) | Fingerprint sensor device and method of manufacturing the same | |
KR101448102B1 (en) | Touch sensing apparatus using touch pattern without insulation and method for manufacturing the same | |
CN108073892B (en) | Fingerprint sensor and manufacturing method thereof | |
CN106249973A (en) | A kind of In-cell touch panel, its driving method and display device | |
US20180061747A1 (en) | Package structure and method for fabricating the same | |
US20090283845A1 (en) | Sensing apparatus with packaging material as sensing protection layer and method of manufacturing the same | |
TWI531978B (en) | Sensing device | |
TWM522419U (en) | Fingerprint recognition sensor | |
US10325140B2 (en) | Fingerprint identification apparatus | |
US11288476B2 (en) | Fingerprint sensor package | |
CN206741579U (en) | Fingerprint sensor module | |
CN116997905A (en) | Fingerprint sensor module and method for producing a fingerprint sensor module | |
TW201636605A (en) | Composite substrate sensor device and method of manufacturing such sensor device | |
KR20150050360A (en) | Fingerprint sensor package and portable electronic device having the same | |
CN108021850B (en) | Fingerprint sensing device and electronic equipment |