TW201413785A - Apparatus of processing substrate - Google Patents

Apparatus of processing substrate Download PDF

Info

Publication number
TW201413785A
TW201413785A TW102124265A TW102124265A TW201413785A TW 201413785 A TW201413785 A TW 201413785A TW 102124265 A TW102124265 A TW 102124265A TW 102124265 A TW102124265 A TW 102124265A TW 201413785 A TW201413785 A TW 201413785A
Authority
TW
Taiwan
Prior art keywords
gas
gas distribution
substrate
substrate holder
ground
Prior art date
Application number
TW102124265A
Other languages
Chinese (zh)
Other versions
TWI594299B (en
Inventor
Jeung-Hoon Han
Chul-Joo Hwang
Do-Hyung Kim
Seung-Hoon Seo
Original Assignee
Jusung Eng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jusung Eng Co Ltd filed Critical Jusung Eng Co Ltd
Publication of TW201413785A publication Critical patent/TW201413785A/en
Application granted granted Critical
Publication of TWI594299B publication Critical patent/TWI594299B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

Disclosed is a substrate processing apparatus comprising a process chamber; a substrate supporter, which rotates at a predetermined direction in the process chamber, for supporting at least one of substrates; a chamber lid confronting the substrate supporter, and covering an upper side of the process chamber; and a gas distributor having a plurality of gas distribution modules, connected to the chamber lid, for distributing gas on the substrate, wherein each of the gas distribution modules includes a ground electrode frame for forming a plasma reaction space, and a power source electrode, formed in the ground electrode frame, for generating a plasma discharge together with the ground electrode frame, wherein the power source electrode is provided in such a manner that a height of a second side being adjacent to the edge of the substrate supporter is greater than a height of a first side being adjacent to the center of the substrate supporter.

Description

基板處理設備 Substrate processing equipment

本發明係關於一種基板處理設備,特別是一種有助於提高基板上的沈積薄膜之沈積均勻度之基板處理設備。 The present invention relates to a substrate processing apparatus, and more particularly to a substrate processing apparatus which contributes to improving deposition uniformity of a deposited film on a substrate.

通常,為了製造太陽能電池、半導體裝置以及平面顯示裝置,有必要在基板的表面上形成預定的薄膜層、薄膜電路圖案或者光學圖案。因此,執行半導體製造製程,例如於基板上沈積預定材料之薄膜之薄膜沈積製程、使用感光材料選擇性地曝光此薄膜之光製程,以及透過選擇性地移除薄膜之暴露部份以形成圖案之蝕刻製程。 In general, in order to manufacture a solar cell, a semiconductor device, and a flat display device, it is necessary to form a predetermined thin film layer, thin film circuit pattern, or optical pattern on the surface of the substrate. Accordingly, a semiconductor fabrication process is performed, such as a thin film deposition process for depositing a thin film of a predetermined material on a substrate, a photolithography process for selectively exposing the thin film using the photosensitive material, and patterning by selectively removing exposed portions of the thin film. Etching process.

於基板處理設備內部完成半導體製造製程,其中此基板處理設備被設計為適合最佳情況。近來,使用電漿之基板處理設備一般用於執行沈積或蝕刻製程。 The semiconductor manufacturing process is completed inside the substrate processing apparatus, wherein the substrate processing apparatus is designed to suit the optimum. Recently, substrate processing equipment using plasma is generally used to perform deposition or etching processes.

使用電漿之半導體製造設備可為用於形成薄膜之電漿增強化學氣相沈積(Plasma Enhanced Chemical Vapor Deposition;PECVD)設備以及用於蝕刻與圖案化此薄膜之電漿蝕刻設備。 The semiconductor manufacturing apparatus using the plasma may be a plasma enhanced chemical vapor deposition (PECVD) apparatus for forming a thin film, and a plasma etching apparatus for etching and patterning the thin film.

第1圖為習知技術之處理基板之設備(基板處理設備)。 Fig. 1 is a device (substrate processing apparatus) for processing a substrate according to a conventional technique.

請參考第1圖,習知技術之基板處理設備包含腔室10、電源電極20、基座30以及氣體分配工具40。 Referring to FIG. 1, a substrate processing apparatus of the prior art includes a chamber 10, a power supply electrode 20, a susceptor 30, and a gas distribution tool 40.

腔室10為基板處理提供反應空間。這種情況下,腔室10 的底面的預定部與排氣埠12相通,排氣埠12用於釋放來自反應空間的氣體。 The chamber 10 provides a reaction space for substrate processing. In this case, the chamber 10 The predetermined portion of the bottom surface communicates with the exhaust port 12, and the exhaust port 12 serves to release the gas from the reaction space.

電源電極20係被提供於腔室10上方以密封反應空間。 A power electrode 20 is provided above the chamber 10 to seal the reaction space.

電源電極20之一側透過匹配組件22電連接射頻電源24。射頻電源24產生射頻功率,以及將產生的射頻功率供應到電源電極20。 One side of the power electrode 20 is electrically connected to the RF power source 24 through the matching component 22. The RF power source 24 generates RF power and supplies the generated RF power to the power electrode 20.

此外,電源電極20之中央部與供氣管26相通,供氣管26供應來源氣體(source gas)以用於基板處理。 Further, the central portion of the power supply electrode 20 communicates with the air supply pipe 26, and the air supply pipe 26 supplies a source gas for substrate processing.

匹配組件22係連接於電源電極20與射頻電源24之間,從而將負載阻抗與射頻電源24供應到電源電極20的射頻功率之電源阻抗匹配。 The matching component 22 is coupled between the power electrode 20 and the RF power source 24 to match the load impedance to the source impedance of the RF power supplied by the RF power source 24 to the power electrode 20.

腔室10內部提供基座30,基座30支撐從外部載入的複數塊基板W。基座30對應與電源電極20相對的相對電極,基座30透過用於提升基座30的提升軸32電接地。提升軸32透過提升設備(圖中未表示)上下移動。這種情況下,提升軸32被伸縮管(bellows)34圍繞以密封提升軸32與腔室10的底面。 A susceptor 30 is provided inside the chamber 10, and the susceptor 30 supports a plurality of substrates W loaded from the outside. The susceptor 30 corresponds to an opposite electrode opposite to the power supply electrode 20, and the susceptor 30 is electrically grounded through a lift shaft 32 for the lift base 30. The lifting shaft 32 is moved up and down through a lifting device (not shown). In this case, the lift shaft 32 is surrounded by bellows 34 to seal the lift shaft 32 and the bottom surface of the chamber 10.

氣體分配工具40被提供於電源電極20的下方,其中氣體分配工具40面對基座30。這種情況下,氣體擴散空間42係形成於氣體分配工具40與電源電極20之間。在氣體擴散空間42內部,穿透電源電極20的供氣管26所供應的來源氣體被擴散。氣體分配工具40透過複數個氣體分配孔44均勻地分配來源氣體到反應空間的整個區域,氣體分配孔44與氣體擴散空間42相通。 A gas distribution tool 40 is provided below the power electrode 20, wherein the gas distribution tool 40 faces the base 30. In this case, the gas diffusion space 42 is formed between the gas distribution tool 40 and the power source electrode 20. Inside the gas diffusion space 42, the source gas supplied from the gas supply pipe 26 penetrating the power source electrode 20 is diffused. The gas distribution tool 40 uniformly distributes the source gas to the entire area of the reaction space through a plurality of gas distribution holes 44, and the gas distribution holes 44 communicate with the gas diffusion space 42.

習知技術之基板處理設備之情況下,基板W被載入到基座 30上以後,預定的來源氣體被分配到腔室10的反應空間,射頻功率被供應到電源電極20以在反應空間中形成電漿,從而在基板W上沈積預定的薄膜。 In the case of a substrate processing apparatus of the prior art, the substrate W is loaded onto the pedestal After 30, the predetermined source gas is distributed to the reaction space of the chamber 10, and the radio frequency power is supplied to the power source electrode 20 to form a plasma in the reaction space, thereby depositing a predetermined film on the substrate W.

然而,習知技術之基板處理設備之情況下,用於分配來源氣體的空間與用於形成電漿的空間相同。因此,電漿放電可能損壞基板W,從而劣化基板W上的薄膜的品質。 However, in the case of the substrate processing apparatus of the prior art, the space for distributing the source gas is the same as the space for forming the plasma. Therefore, the plasma discharge may damage the substrate W, thereby deteriorating the quality of the film on the substrate W.

本發明一方面提供一種基板處理設備,能夠避免基板被電漿放電損壞。 One aspect of the present invention provides a substrate processing apparatus capable of preventing a substrate from being damaged by plasma discharge.

本發明另一方面提供一種基板處理設備,能夠形成具有均勻厚度的薄膜。 Another aspect of the present invention provides a substrate processing apparatus capable of forming a film having a uniform thickness.

為了獲得本發明的這些目的和其他優點,現對本發明作具體化和概括性的描述,本發明提供的一種基板處理設備包含製程腔室;基板支架,用於支撐複數塊基板至少其一,其中基板支架被提供於製程腔室中,以及基板支架依照預定方向旋轉;腔室蓋,面對基板支架,腔室蓋用於覆蓋製程腔室之上側;以及氣體分配器,包含複數個氣體分配模組,用以在基板上分配氣體,其中這些氣體分配模組連接腔室蓋,其中這些氣體分配模組的每一個包含用於形成電漿反應空間的接地電極框以及形成於接地電極框中的電源電極,電源電極連同接地電極框產生電漿放電,其中電源電極的提供方式為鄰近基板支架的邊緣的第二側的高度大於鄰近基板支架的中央的第一側的高度。 The present invention provides a substrate processing apparatus including a process chamber, and a substrate holder for supporting at least one of a plurality of substrates, in order to obtain the objectives and other advantages of the present invention. a substrate holder is provided in the process chamber, and the substrate holder is rotated in a predetermined direction; a chamber cover facing the substrate holder, the chamber cover is for covering the upper side of the process chamber; and a gas distributor including a plurality of gas distribution modes a group for distributing gas on a substrate, wherein the gas distribution modules are coupled to the chamber cover, wherein each of the gas distribution modules includes a ground electrode frame for forming a plasma reaction space and is formed in the ground electrode frame The power electrode, the power electrode, and the ground electrode frame generate a plasma discharge, wherein the power electrode is provided in such a manner that the height of the second side adjacent to the edge of the substrate holder is greater than the height of the first side of the center of the adjacent substrate holder.

本發明之另一方面中,提供的一種基板處理設備包含製程 腔室;基板支架,用於支撐複數塊基板至少其一,其中基板支架被提供於製程腔室中,以及基板支架依照預定方向旋轉;腔室蓋,面對基板支架,腔室蓋用於覆蓋製程腔室之上側;以及氣體分配器,包含複數個氣體分配模組,用以在基板上分配氣體,其中這些氣體分配模組連接腔室蓋,其中這些氣體分配模組的每一個包含用於形成電漿反應空間的接地電極框以及形成於接地電極框中的電源電極,電源電極連同接地電極框產生電漿放電,其中接地電極框包含形成於基板支架的中央的第一接地側壁以及形成於基板支架的邊緣的第二接地側壁,以及第二接地側壁的高度大於第一接地側壁的高度。 In another aspect of the invention, a substrate processing apparatus is provided comprising a process a substrate holder for supporting at least one of the plurality of substrates, wherein the substrate holder is provided in the process chamber, and the substrate holder rotates according to a predetermined direction; the chamber cover faces the substrate holder, and the chamber cover is used for covering An upper side of the process chamber; and a gas distributor comprising a plurality of gas distribution modules for distributing gas on the substrate, wherein the gas distribution modules are coupled to the chamber cover, wherein each of the gas distribution modules is included for Forming a ground electrode frame of the plasma reaction space and a power electrode formed in the ground electrode frame, wherein the power electrode and the ground electrode frame generate a plasma discharge, wherein the ground electrode frame includes a first ground sidewall formed at a center of the substrate holder and formed on the The second ground side wall of the edge of the substrate holder, and the height of the second ground side wall are greater than the height of the first ground side wall.

本發明之另一方面中,提供的一種基板處理設備包含製程 腔室;基板支架,用於支撐複數塊基板至少其一,其中基板支架被提供於製程腔室中,以及基板支架依照預定方向旋轉;腔室蓋,面對基板支架,腔室蓋用於覆蓋製程腔室之上側;以及氣體分配器,包含複數個氣體分配模組,用以在基板上分配氣體,其中這些氣體分配模組連接腔室蓋,其中這些氣體分配模組的每一個包含用於形成電漿反應空間的接地電極框,以及形成於接地電極框中的電源電極,電源電極連同接地電極框產生電漿放電,其中基板支架的邊緣的電漿放電相對大於基板支架的中央的電漿放電。 In another aspect of the invention, a substrate processing apparatus is provided comprising a process a substrate holder for supporting at least one of the plurality of substrates, wherein the substrate holder is provided in the process chamber, and the substrate holder rotates according to a predetermined direction; the chamber cover faces the substrate holder, and the chamber cover is used for covering An upper side of the process chamber; and a gas distributor comprising a plurality of gas distribution modules for distributing gas on the substrate, wherein the gas distribution modules are coupled to the chamber cover, wherein each of the gas distribution modules is included for Forming a ground electrode frame of the plasma reaction space, and a power electrode formed in the ground electrode frame, and the power electrode and the ground electrode frame generate a plasma discharge, wherein the plasma discharge at the edge of the substrate holder is relatively larger than the plasma of the center of the substrate holder Discharge.

依照本發明,電漿放電未出現於電源電極與基板之空間 中,而是出現於氣體分配模組的接地電極框中,從而避免電漿放電損壞基板。 According to the present invention, the plasma discharge does not appear in the space of the power electrode and the substrate However, it appears in the ground electrode frame of the gas distribution module to prevent the plasma discharge from damaging the substrate.

此外,電源電極或接地電極框的形成方式為鄰近基板支架 的邊緣一側的高度大於鄰近基板支架的中央一側的高度,由此能夠補償基 板支架之線速度的差別所導致的薄膜的厚度差,因此可實現在基板W上沈積均勻厚度的薄膜。 In addition, the power electrode or the ground electrode frame is formed in a manner adjacent to the substrate holder The height of one side of the edge is greater than the height of the central side of the adjacent substrate holder, thereby being able to compensate the base The difference in the linear velocity of the plate holder results in a difference in thickness of the film, so that a film having a uniform thickness deposited on the substrate W can be realized.

W‧‧‧基板 W‧‧‧Substrate

10‧‧‧腔室 10‧‧‧ chamber

12‧‧‧排氣埠 12‧‧‧Exhaust gas

20‧‧‧電源電極 20‧‧‧Power electrode

22‧‧‧匹配組件 22‧‧‧Matching components

24‧‧‧射頻電源 24‧‧‧RF power supply

26‧‧‧供氣管 26‧‧‧ gas supply pipe

30‧‧‧基座 30‧‧‧Base

32‧‧‧提升軸 32‧‧‧ Lifting shaft

34‧‧‧伸縮管 34‧‧‧ telescopic tube

40‧‧‧氣體分配工具 40‧‧‧Gas distribution tool

42‧‧‧氣體擴散空間 42‧‧‧ gas diffusion space

44‧‧‧氣體分配孔 44‧‧‧ gas distribution hole

G1‧‧‧第一氣體 G1‧‧‧First gas

RG‧‧‧反應氣體 RG‧‧‧reaction gas

G2‧‧‧第二氣體 G2‧‧‧second gas

SG‧‧‧來源氣體 SG‧‧‧ source gas

S1‧‧‧第一氣體分配空間 S1‧‧‧First gas distribution space

S2‧‧‧第二氣體分配空間 S2‧‧‧Second gas distribution space

110‧‧‧製程腔室 110‧‧‧Processing chamber

115‧‧‧腔室蓋 115‧‧‧Case cover

115a、115b、115c、115d‧‧‧模組接收器 115a, 115b, 115c, 115d‧‧‧ module receiver

115e‧‧‧泵送孔 115e‧‧‧ pumping hole

117‧‧‧泵送管 117‧‧‧ pumping tube

120‧‧‧基板支架 120‧‧‧Substrate support

130‧‧‧氣體分配器 130‧‧‧ gas distributor

130a、130b、130c、130d‧‧‧氣體分配模組 130a, 130b, 130c, 130d‧‧‧ gas distribution module

140‧‧‧電漿功率供應器 140‧‧‧ Plasma Power Supply

210‧‧‧接地電極框 210‧‧‧Ground electrode frame

210a‧‧‧上部板 210a‧‧‧ upper board

210b‧‧‧接地側壁 210b‧‧‧ Grounding side wall

210b1‧‧‧第一接地側壁 210b1‧‧‧First grounding side wall

210b2‧‧‧第二接地側壁 210b2‧‧‧Second grounding side wall

210b3‧‧‧第三接地側壁 210b3‧‧‧ third grounding side wall

210c‧‧‧接地障壁組件 210c‧‧‧ Grounding Barrier Components

212‧‧‧絕緣組件支撐孔 212‧‧‧Insulation assembly support hole

214‧‧‧第一氣體供應孔 214‧‧‧First gas supply hole

216‧‧‧第二氣體供應孔 216‧‧‧Second gas supply hole

230‧‧‧氣體孔圖案組件 230‧‧‧ gas hole pattern assembly

231‧‧‧第一氣體分配部 231‧‧‧First Gas Distribution Department

232‧‧‧第二氣體分配部 232‧‧‧Second Gas Distribution Department

240‧‧‧絕緣組件 240‧‧‧Insulation components

241‧‧‧電極插入孔 241‧‧‧electrode insertion hole

250‧‧‧電源電極 250‧‧‧Power electrode

250a‧‧‧第一側 250a‧‧‧ first side

250b‧‧‧第二側 250b‧‧‧ second side

250c‧‧‧第三側 250c‧‧‧ third side

250d‧‧‧第四側 250d‧‧‧ fourth side

D1、D2‧‧‧高度 D1, D2‧‧‧ height

L1、L2‧‧‧高度 L1, L2‧‧‧ height

第1圖表示習知技術之基板處理設備。 Fig. 1 shows a substrate processing apparatus of the prior art.

第2圖表示本發明一個實施例之基板處理設備。 Fig. 2 shows a substrate processing apparatus according to an embodiment of the present invention.

第3圖為本發明一個實施例之基板支架上排列的複數個氣體分配模組的概念示意圖。 FIG. 3 is a conceptual diagram of a plurality of gas distribution modules arranged on a substrate holder according to an embodiment of the present invention.

第4圖為本發明一個實施例之氣體分配模組的展開透視圖。 Figure 4 is a perspective view showing the gas distribution module of one embodiment of the present invention.

第5圖至第10圖為本發明多個實施例之電源電極之剖面示意圖。 5 to 10 are schematic cross-sectional views of a power supply electrode according to various embodiments of the present invention.

第11圖為本發明一個實施例之氣體分配模組的剖面示意圖。 Figure 11 is a cross-sectional view showing a gas distribution module according to an embodiment of the present invention.

第12圖為本發明另一實施例之氣體分配模組的剖面示意圖。 Figure 12 is a cross-sectional view showing a gas distribution module according to another embodiment of the present invention.

第13圖為本發明另一實施例之氣體分配模組的剖面示意圖。 Figure 13 is a cross-sectional view showing a gas distribution module according to another embodiment of the present invention.

第14圖為本發明另一實施例之氣體分配模組的剖面示意圖。 Figure 14 is a cross-sectional view showing a gas distribution module according to another embodiment of the present invention.

以下結合附圖詳細描述本發明之多個實施例。 Various embodiments of the present invention are described in detail below with reference to the drawings.

第2圖表示本發明一個實施例之基板處理設備。第3圖為本發明一個實施例之基板支架上排列的複數個氣體分配模組的概念示意圖。 Fig. 2 shows a substrate processing apparatus according to an embodiment of the present invention. FIG. 3 is a conceptual diagram of a plurality of gas distribution modules arranged on a substrate holder according to an embodiment of the present invention.

請參考第2圖與第3圖,本發明一個實施例之基板處理設備包含製程腔室110、腔室蓋115、基板支架120以及氣體分配器130。 Referring to FIGS. 2 and 3, a substrate processing apparatus according to an embodiment of the present invention includes a process chamber 110, a chamber cover 115, a substrate holder 120, and a gas distributor 130.

製程腔室110提供反應空間,用於基板處理例如薄膜沈積 製程。製程腔室110的底面與/或側面與排氣管(圖中未表示)相通,排氣管用於釋放來自反應空間的氣體。 Process chamber 110 provides a reaction space for substrate processing such as thin film deposition Process. The bottom and/or sides of the process chamber 110 communicate with an exhaust pipe (not shown) for releasing gas from the reaction space.

腔室蓋115係被提供於製程腔室110上,就是說腔室蓋115 覆蓋製程腔室110,其中腔室蓋115電接地。腔室蓋115支撐氣體分配器130,其中腔室蓋115包含複數個模組接收器115a、115b、115c以及115d,以劃分基板支架120之上側為複數個空間。複數個模組接收器115a、115b、115c以及115d於腔室蓋115中被放置為輻射圖案,就是說,複數個模組接收器115a、115b、115c以及115d相對腔室蓋115的中央點每90°被提供。 A chamber cover 115 is provided on the process chamber 110, that is, the chamber cover 115 The process chamber 110 is covered, wherein the chamber cover 115 is electrically grounded. The chamber cover 115 supports the gas distributor 130, wherein the chamber cover 115 includes a plurality of module receivers 115a, 115b, 115c, and 115d to divide the upper side of the substrate holder 120 into a plurality of spaces. A plurality of module receivers 115a, 115b, 115c, and 115d are placed in a radiation pattern in the chamber cover 115, that is, a plurality of module receivers 115a, 115b, 115c, and 115d are opposed to the center point of the chamber cover 115. 90° is provided.

製程腔室110與腔室蓋115形成為多邊形結構例如圖式所 示的六邊形結構,或者形成為圓形或橢圓形結構。 The process chamber 110 and the chamber cover 115 are formed into a polygonal structure such as a pattern The hexagonal structure shown is either formed into a circular or elliptical structure.

第2圖中,腔室蓋115包含四個模組接收器115a、115b、 115c以及115d,但是並非限制於這個數目。例如,腔室蓋115可包含相對腔室蓋115的中央點對稱提供的「2N」(「N」為大於0的整數)個模組接收器,但是並非限制於這個數目。腔室蓋115可包含奇數個模組接收器。 以下,假設腔室蓋115包含第一至第四模組接收器115a、115b、115c以及115d。 In Fig. 2, the chamber cover 115 includes four module receivers 115a, 115b, 115c and 115d, but not limited to this number. For example, the chamber cover 115 may include "2N" ("N" is an integer greater than 0) module receivers provided symmetrically with respect to the center point of the chamber cover 115, but is not limited to this number. The chamber cover 115 can include an odd number of module receivers. Hereinafter, it is assumed that the chamber cover 115 includes first to fourth module receivers 115a, 115b, 115c, and 115d.

上述腔室蓋115所密封的製程腔室110的反應空間透過腔 室蓋115中提供的泵送管(pumping pipe)117連接一個外部泵送工具(圖中未表示)。 The reaction space of the process chamber 110 sealed by the chamber cover 115 passes through the cavity A pumping pipe 117 provided in the chamber cover 115 is connected to an external pumping tool (not shown).

泵送管117透過腔室蓋115之中央提供的泵送孔115e與製 程腔室110之反應空間相通。因此,透過使用泵送管117依照泵送工具的泵送作業,腔室蓋115的內部可為真空狀態或者大氣狀態。這種情況下, 反應空間的排氣製程可採用藉由泵送管117與泵送孔115e之上部中央排氣方法,但是並非限制於這種方法。可省略泵送管117與泵送孔115e。 The pumping tube 117 is passed through a pumping hole 115e provided in the center of the chamber cover 115. The reaction spaces of the chambers 110 are in communication. Therefore, the interior of the chamber cover 115 can be in a vacuum state or an atmospheric state by using the pumping tube 117 in accordance with the pumping operation of the pumping tool. In this situation, The exhaust process of the reaction space may employ a central exhaust method by means of the pumping pipe 117 and the upper portion of the pumping hole 115e, but is not limited to this method. The pumping tube 117 and the pumping hole 115e can be omitted.

基板支架120可旋轉地提供於製程腔室110的內部,其中 基板支架120可能電浮動或者接地。基板支架120由旋轉軸(圖中未表示)支撐,其中旋轉軸穿透製程腔室110之底表面之中央部。透過驅動一個軸驅動組件(圖中未表示)以旋轉此旋轉軸,基板支架120向預定方向(例如,反時針方向)旋轉。暴露於製程腔室110之底表面之外的旋轉軸透過一個伸縮管(bellows)(圖中未表示)被密封,其中伸縮管係被提供於製程腔室110之底表面中。 The substrate holder 120 is rotatably provided inside the processing chamber 110, wherein The substrate holder 120 may be electrically floating or grounded. The substrate holder 120 is supported by a rotating shaft (not shown) through which the rotating shaft penetrates the central portion of the bottom surface of the processing chamber 110. The substrate holder 120 is rotated in a predetermined direction (for example, a counterclockwise direction) by driving a shaft drive assembly (not shown) to rotate the rotary shaft. The rotating shaft exposed outside the bottom surface of the process chamber 110 is sealed through a bellows (not shown), wherein the bellows is provided in the bottom surface of the process chamber 110.

基板支架120與預定的提升工具連接,可利用提升工具上 下移動。 The substrate holder 120 is connected to a predetermined lifting tool and can be used on the lifting tool Move down.

基板支架120支撐一個外部基板載入設備(圖中未表示) 所載入的至少一塊基板W。基板支架120形成為圓板的形狀。基板支架120可支撐複數塊基板W,例如半導體基板或者晶元。複數個基板W在基板支架120上以固定間隔排列為圓形圖案較佳,從而提高產量。 The substrate holder 120 supports an external substrate loading device (not shown) At least one substrate W loaded. The substrate holder 120 is formed in the shape of a circular plate. The substrate holder 120 can support a plurality of substrates W, such as semiconductor substrates or wafers. It is preferable that a plurality of substrates W are arranged in a circular pattern at a fixed interval on the substrate holder 120, thereby improving throughput.

氣體分配器130包含第一至第四氣體分配模組130a、130b、 130c以及130d,相對基板支架120之中央部在空間上彼此分離以及分別被插入腔室蓋115的第一至第四模組接收器115a、115b、115c以及115d內。 第一至第四氣體分配模組130a、130b、130c以及130d分別分配第一氣體G1與第二氣體G2到基板支架120之氣體分配區域,從而在基板W上形成薄膜層。 The gas distributor 130 includes first to fourth gas distribution modules 130a, 130b, 130c and 130d are spatially separated from each other with respect to the central portion of the substrate holder 120 and inserted into the first to fourth module receivers 115a, 115b, 115c, and 115d of the chamber cover 115, respectively. The first to fourth gas distribution modules 130a, 130b, 130c, and 130d respectively distribute the first gas G1 and the second gas G2 to the gas distribution region of the substrate holder 120, thereby forming a thin film layer on the substrate W.

第一氣體G1被電漿放電活化,並且經活化的第一氣體被分 配到基板W上。第一氣體G1為反應氣體RG,反應氣體RG與以下解釋的來源氣體SG反應而形成薄膜層。例如,反應氣體RG為從氮氣、氧氣、二氧化氮與臭氧中選擇的至少任意一種氣體。 The first gas G1 is activated by the plasma discharge, and the activated first gas is divided It is attached to the substrate W. The first gas G1 is a reaction gas RG, and the reaction gas RG reacts with the source gas SG explained below to form a thin film layer. For example, the reaction gas RG is at least any one selected from the group consisting of nitrogen gas, oxygen gas, nitrogen dioxide, and ozone.

第二氣體G2為來源氣體SG,來源氣體SG包含待被沈積 於基板W上的薄膜材料。來源氣體包含矽、鈦族元素(鈦、鋯、鉿等),或者鋁之薄膜材料。例如,包含矽的薄膜材料的來源氣體SG可為從四乙氧基矽烷(TEOS;Tetraethylorthosilicate)、二氯矽烷(DCS;Dichlorosilane)、六氯二矽甲烷(Hexachlorosilane;HCD)、三(二乙基氨基)矽烷(TriDMAS;Tri-dimethylaminosilane)、三甲矽烷基氨(TSA;Trisilylamine)、SiH2Cl2、矽烷(silane;SiH4)、二矽烷(disilane;Si2H6)氣體、三矽烷(trisilane;Si3H8)、丁矽烷(Si4H10)以及戊矽烷(Si5H12)中選擇的氣體。 The second gas G2 is a source gas SG, and the source gas SG contains a film material to be deposited on the substrate W. The source gas contains bismuth, titanium (titanium, zirconium, hafnium, etc.) or aluminum film materials. For example, the source gas SG of the film material containing ruthenium may be from tetraethoxy decane (TEOS; Tetraethylorthosilicate), dichlorosilane (DCS; Dichlorosilane), Hexachlorosilane (HCD), tris(diethyl). Amino) decane (TriDMAS; Tri-dimethylaminosilane), trimethylsilylamine (TSA; Trisilylamine), SiH 2 Cl 2 , silane (SiH 4 ), disilane (Si 2 H 6 ) gas, trisilane (trisilane) a gas selected from the group consisting of Si 3 H 8 ), butane (Si 4 H 10 ), and pentamane (Si 5 H 12 ).

第4圖為本發明一個實施例之氣體分配模組的展開透視 圖。如第4圖所示,本發明一個實施例之氣體分配模組包含接地電極框210、絕緣組件240以及電源電極250。 Figure 4 is a perspective view of a gas distribution module according to an embodiment of the present invention Figure. As shown in FIG. 4, a gas distribution module according to an embodiment of the present invention includes a ground electrode frame 210, an insulation assembly 240, and a power supply electrode 250.

接地電極框210形成電漿放電空間。因此,在接地電極框 210內部出現電漿放電。此外,接地電極框210用作接地電極,接地電極框210連同電源電極250產生電漿放電。 The ground electrode frame 210 forms a plasma discharge space. Therefore, in the ground electrode frame A plasma discharge occurs inside 210. Further, the ground electrode frame 210 serves as a ground electrode, and the ground electrode frame 210 together with the power source electrode 250 generates a plasma discharge.

接地電極框210包含上部板210a與接地側壁210b。 The ground electrode frame 210 includes an upper plate 210a and a ground side wall 210b.

上部板210a提供接地電極框210之上表面,其中上部板 210a形成矩形形狀,並且連接腔室蓋115之對應的模組接收器(請參考第2圖之115a、115b、115c以及115d)。上部板210a中,存在絕緣組件支撐孔212、第一氣體供應孔214以及第二氣體供應孔216。絕緣組件支撐孔212 使得絕緣組件240能夠插入接地電極框210內部之內。第一氣體供應孔214與第二氣體供應孔216使得來源氣體與反應氣體能夠流入接地電極框210內部之內。 The upper plate 210a provides an upper surface of the ground electrode frame 210, wherein the upper plate The 210a is formed in a rectangular shape and is connected to a corresponding module receiver of the chamber cover 115 (refer to 115a, 115b, 115c, and 115d of FIG. 2). In the upper plate 210a, there are an insulation assembly support hole 212, a first gas supply hole 214, and a second gas supply hole 216. Insulation assembly support hole 212 The insulating component 240 can be inserted into the interior of the ground electrode frame 210. The first gas supply hole 214 and the second gas supply hole 216 enable the source gas and the reaction gas to flow into the inside of the ground electrode frame 210.

接地側壁210b形成接地電極框210的側表面,其中接地側 壁210b係提供於矩形的上部板210a之四個側面之每一個中。就是說,接地側壁210b包含形成於基板支架120(請參考第2圖)之中央之第一接地側壁210b1、形成於基板支架120(請參考第2圖)之邊緣之第二接地側壁210b2,以及連接第一接地側壁210b1與第二接地側壁210b2之第三接地側壁210b3。 The ground side wall 210b forms a side surface of the ground electrode frame 210, wherein the ground side A wall 210b is provided in each of the four sides of the rectangular upper plate 210a. That is, the ground sidewall 210b includes a first ground sidewall 210b1 formed at the center of the substrate holder 120 (refer to FIG. 2), and a second ground sidewall 210b2 formed at the edge of the substrate holder 120 (refer to FIG. 2), and The first ground sidewall 210b1 and the third ground sidewall 210b3 of the second ground sidewall 210b2 are connected.

這種情況下,第二接地側壁210b2的高度D2大於第一接地 側壁210b1的高度D1,有助於保持基板支架120(請參考第2圖)之中央上沈積的薄膜厚度均勻以及基板支架120(請參考第2圖)之邊緣上沈積的薄膜厚度均勻。 In this case, the height D2 of the second ground sidewall 210b2 is greater than the first ground. The height D1 of the side wall 210b1 helps to maintain a uniform thickness of the film deposited on the center of the substrate holder 120 (refer to Fig. 2) and a uniform thickness of the film deposited on the edge of the substrate holder 120 (refer to Fig. 2).

就是說,請參考第2圖,當基板支架120旋轉時,基板支 架120的中央的線速度(linear velocity)低於基板支架120的邊緣的線速度。 因此,基板支架120的中央上沈積的薄膜厚度大於基板支架120的邊緣上沈積的薄膜厚度。為了克服這個問題,依照本發明一個實施例,基板支架120的邊緣中形成的第二接地側壁210b2的高度D2大於基板支架120的中央形成的第一接地側壁210b1的高度D1,由此基板支架120之邊緣中薄膜的沈積大於基板支架120之中央中薄膜的沈積,從而能夠補償基板支架120之線速度的差別所導致的薄膜的厚度差。因此,可在基板W上形成均勻的薄膜。 That is to say, please refer to FIG. 2, when the substrate holder 120 rotates, the substrate support The linear velocity of the center of the frame 120 is lower than the linear velocity of the edge of the substrate holder 120. Therefore, the thickness of the film deposited on the center of the substrate holder 120 is greater than the thickness of the film deposited on the edge of the substrate holder 120. In order to overcome this problem, according to an embodiment of the present invention, the height D2 of the second ground sidewall 210b2 formed in the edge of the substrate holder 120 is greater than the height D1 of the first ground sidewall 210b1 formed at the center of the substrate holder 120, whereby the substrate holder 120 The deposition of the film in the edge is larger than the deposition of the film in the center of the substrate holder 120, so that the difference in thickness of the film caused by the difference in the linear velocity of the substrate holder 120 can be compensated for. Therefore, a uniform film can be formed on the substrate W.

其間,本文中描述的任意元件的高度表示上下方向的高度。 Meanwhile, the height of any of the elements described herein represents the height in the up and down direction.

絕緣組件240將電源電極250與用作接地電極的接地電極 框210絕緣。絕緣組件240被插入接地電極框210中形成的絕緣組件支撐孔內。此外,絕緣組件240具有電極插入孔241,這樣電源電極250透過電極插入孔241被插入接地框210的內部之內。 The insulating component 240 connects the power electrode 250 to a ground electrode used as a ground electrode Block 210 is insulated. The insulation assembly 240 is inserted into the insulation assembly support hole formed in the ground electrode frame 210. Further, the insulating member 240 has the electrode insertion hole 241 such that the power supply electrode 250 is inserted into the inside of the ground frame 210 through the electrode insertion hole 241.

電源電極250透過絕緣組件240之電極插入孔241被插入 接地電極框210的內部之內。因此,在電源電極250與接地電極框210之間出現電荷放電。 The power electrode 250 is inserted through the electrode insertion hole 241 of the insulating member 240 The inside of the ground electrode frame 210 is inside. Therefore, a charge discharge occurs between the power source electrode 250 and the ground electrode frame 210.

電源電極250形成矩陣形狀。電源電極250依照以下方式 被提供,基板支架120之邊緣鄰接的第二側的高度L2大於基板支架120之中央鄰接的第一側的高度L1。電源電極250的第二側的高度L2大於電源電極250的第一側的高度L1的原因與第二接地側壁210b2的高度D2大於第一接地側壁210b1的高度D1的理由相同。就是說,基板支架120之邊緣鄰接的第二側的高度L2大於基板支架120之中央鄰接的第一側的高度L1,基板支架120之邊緣中的電漿放電相對強於基板支架120之中央的電荷放電,從而能夠在基板支架120之邊緣中實現更多的離子解離(ion dissociation)。 The power supply electrodes 250 are formed in a matrix shape. The power electrode 250 is in the following manner Provided, the height L2 of the second side adjacent to the edge of the substrate holder 120 is greater than the height L1 of the first side adjacent to the center of the substrate holder 120. The reason why the height L2 of the second side of the power supply electrode 250 is greater than the height L1 of the first side of the power supply electrode 250 is the same as the reason why the height D2 of the second ground side wall 210b2 is greater than the height D1 of the first ground side wall 210b1. That is, the height L2 of the second side adjacent to the edge of the substrate holder 120 is greater than the height L1 of the first side adjacent to the center of the substrate holder 120, and the plasma discharge in the edge of the substrate holder 120 is relatively stronger than the center of the substrate holder 120. The charge is discharged, thereby enabling more ion dissociation in the edges of the substrate holder 120.

第5圖至第10圖為本發明各種實施例的電源電極250的剖 面示意圖。 5 to 10 are cross-sectional views of a power supply electrode 250 according to various embodiments of the present invention. Schematic diagram.

如第5圖所示,電源電極250的提供方式為鄰接基板支架 120的邊緣的第二側250b的高度L2大於鄰接基板支架120的中央的第一側250a的高度L1。 As shown in FIG. 5, the power electrode 250 is provided in a manner of abutting the substrate holder. The height L2 of the second side 250b of the edge of 120 is greater than the height L1 of the first side 250a of the center of the adjacent substrate holder 120.

這種情況下,用於連接第一側250a的下端與第二側250b 的下端的第三側250c為傾斜的直線。此外,用於連接第一側250a的上端到第二側250b的上端的第四側250d係為相對基板支架120水平的直線。 In this case, the lower end and the second side 250b for connecting the first side 250a The third side 250c of the lower end is a slanted straight line. Further, the fourth side 250d for connecting the upper end of the first side 250a to the upper end of the second side 250b is a straight line horizontal with respect to the substrate holder 120.

如第6圖所示,電源電極250的提供方式為鄰接基板支架 120的邊緣的第二側250b的高度L2大於鄰接基板支架120的中央的第一側250a的高度L1。 As shown in FIG. 6, the power electrode 250 is provided in a manner of abutting the substrate holder. The height L2 of the second side 250b of the edge of 120 is greater than the height L1 of the first side 250a of the center of the adjacent substrate holder 120.

這種情況下,用於連接第一側250a的下端到第二側250b 的下端的第三側250c為階梯線的形狀。此外,用於連接第一側250a的上端到第二側250b的上端的第四側250d係為相對基板支架120水平的直線。 In this case, the lower end for connecting the first side 250a to the second side 250b The third side 250c of the lower end is in the shape of a stepped line. Further, the fourth side 250d for connecting the upper end of the first side 250a to the upper end of the second side 250b is a straight line horizontal with respect to the substrate holder 120.

如第7圖所示,電源電極250的提供方式為鄰接基板支架 120的邊緣的第二側250b的高度L2大於鄰接基板支架120的中央的第一側250a的高度L1。 As shown in FIG. 7, the power electrode 250 is provided in a manner of abutting the substrate holder. The height L2 of the second side 250b of the edge of 120 is greater than the height L1 of the first side 250a of the center of the adjacent substrate holder 120.

這種情況下,用於連接第一側250a的下端到第二側250b 的下端的第三側250c為傾斜的直線。此外,用於連接第一側250a的上端到第二側250b的上端的第四側250d為傾斜的直線。然而,第三側250c的傾斜方向與第四側250d的傾斜方向相對。 In this case, the lower end for connecting the first side 250a to the second side 250b The third side 250c of the lower end is a slanted straight line. Further, the fourth side 250d for connecting the upper end of the first side 250a to the upper end of the second side 250b is an inclined straight line. However, the oblique direction of the third side 250c is opposite to the oblique direction of the fourth side 250d.

如第8圖所示,電源電極250的提供方式為鄰接基板支架 120的邊緣的第二側250b的高度L2大於鄰接基板支架120的中央的第一側250a的高度L1。 As shown in FIG. 8, the power electrode 250 is provided in a manner of abutting the substrate holder. The height L2 of the second side 250b of the edge of 120 is greater than the height L1 of the first side 250a of the center of the adjacent substrate holder 120.

這種情況下,用於連接第一側250a的下端到第二側250b 的下端的第三側250c為相對基板支架120水平的直線。此外,用於連接第一側250a的上端到第二側250b的上端的第四側250d係為傾斜的直線。 In this case, the lower end for connecting the first side 250a to the second side 250b The third side 250c of the lower end is a horizontal straight line with respect to the substrate holder 120. Further, the fourth side 250d for connecting the upper end of the first side 250a to the upper end of the second side 250b is an inclined straight line.

如第9圖所示,電源電極250的提供方式為鄰接基板支架 120的邊緣的第二側250b的高度L2大於鄰接基板支架120的中央的第一側250a的高度L1。 As shown in FIG. 9, the power supply electrode 250 is provided in the form of an adjacent substrate holder. The height L2 of the second side 250b of the edge of 120 is greater than the height L1 of the first side 250a of the center of the adjacent substrate holder 120.

這種情況下,用於連接第一側250a的下端到第二側250b 的下端的第三側250c的一部份(例如,鄰接基板支架120之邊緣的部份)被形成為傾斜的直線,第三側250c的剩餘部份(例如,鄰近基板支架120的中央的部份)形成為相對基板支架120水平的直線。此外,用於連接第一側250a的上端到第二側250b的上端的第四側250d為相對基板支架120水平的直線。 In this case, the lower end for connecting the first side 250a to the second side 250b A portion of the lower end third side 250c (eg, a portion adjacent the edge of the substrate holder 120) is formed as an oblique straight line, and the remaining portion of the third side 250c (eg, adjacent the central portion of the substrate holder 120) The portion is formed as a straight line horizontal to the substrate holder 120. Further, the fourth side 250d for connecting the upper end of the first side 250a to the upper end of the second side 250b is a straight line horizontal with respect to the substrate holder 120.

如第10圖所示,電源電極250的提供方式為鄰接基板支架 120的邊緣的第二側250b的高度L2大於鄰接基板支架120的中央的第一側250a的高度L1。 As shown in FIG. 10, the power electrode 250 is provided in a manner of abutting the substrate holder. The height L2 of the second side 250b of the edge of 120 is greater than the height L1 of the first side 250a of the center of the adjacent substrate holder 120.

這種情況下,用於連接第一側250a的下端到第二側250b 的下端的第三側250c的一部份(例如,鄰接基板支架120之邊緣的部份)形成為階梯線的形狀,第三側250c的剩餘部份(例如,鄰近基板支架120的中央的部份)形成為相對基板支架120水平的直線。此外,用於連接第一側250a的上端到第二側250b的上端的第四側250d為相對基板支架120水平的直線。 In this case, the lower end for connecting the first side 250a to the second side 250b A portion of the lower end third side 250c (eg, a portion adjacent the edge of the substrate holder 120) is formed in the shape of a stepped line, and the remaining portion of the third side 250c (eg, adjacent to the central portion of the substrate holder 120) The portion is formed as a straight line horizontal to the substrate holder 120. Further, the fourth side 250d for connecting the upper end of the first side 250a to the upper end of the second side 250b is a straight line horizontal with respect to the substrate holder 120.

然而,本發明之電源電極250並非限制於上述第5圖至第 10圖所示之實施例。例如,鄰接基板支架120的邊緣的第二側250b的高度L2大於鄰接基板支架120的中央的第一側250a的高度L1的情況下,本發明之電源電極250可形成為多種形狀。雖然圖中未表示,採用與第5圖至 第10圖所示電源電極250相同的方式,第4圖之第三接地側壁210b3的形狀可改變。 However, the power electrode 250 of the present invention is not limited to the above 5th to the above Figure 10 shows an embodiment. For example, in the case where the height L2 of the second side 250b adjacent to the edge of the substrate holder 120 is larger than the height L1 of the first side 250a adjacent to the center of the substrate holder 120, the power supply electrode 250 of the present invention may be formed in various shapes. Although not shown in the figure, it is used with Figure 5 to In the same manner as the power supply electrode 250 shown in Fig. 10, the shape of the third ground side wall 210b3 of Fig. 4 can be changed.

就是說,第三接地側壁210b3可排列為與電源電極250平 行。第三接地側壁210b3的提供方式為鄰近基板支架120之邊緣之第二側的高度大於鄰近基板支架120的中央的第一側的高度。這種情況下,用於連接第一側的下端到第二側的下端的第三側形狀可變,以及用於連接第一側的上端到第二側的上端的第四側形狀可變。 That is, the third ground sidewall 210b3 can be arranged to be flush with the power electrode 250 Row. The third ground sidewall 210b3 is provided in such a manner that the height of the second side adjacent to the edge of the substrate holder 120 is greater than the height of the first side of the center of the adjacent substrate holder 120. In this case, the shape of the third side for connecting the lower end of the first side to the lower end of the second side is variable, and the shape of the fourth side for connecting the upper end of the first side to the upper end of the second side is variable.

第11圖為本發明一個實施例之氣體分配模組之剖面示意 圖,係為沿第4圖之A-A'之剖面示意圖。以下,將參考第11圖詳細描述本發明一個實施例之氣體分配模組。 11 is a schematic cross-sectional view of a gas distribution module according to an embodiment of the present invention. The figure is a schematic cross-sectional view taken along line A-A' of Fig. 4. Hereinafter, a gas distribution module according to an embodiment of the present invention will be described in detail with reference to FIG.

如第11圖所示,第一至第四氣體分配模組130a、130b、130c 以及130d的每一個包含接地電極框210、氣體孔圖案組件230、絕緣組件240以及電源電極250。 As shown in FIG. 11, the first to fourth gas distribution modules 130a, 130b, 130c And each of 130d includes a ground electrode frame 210, a gas hole pattern assembly 230, an insulation assembly 240, and a power supply electrode 250.

接地電極框210被提供以包含第一氣體分配空間S1以及第 二氣體分配空間S2兩者,其中第一氣體分配空間S1用於分配第一氣體G1,第二氣體分配空間S2用於分配第二氣體G2。接地電極框210被插入腔室蓋115的每一模組接收器115a、115b、115c以及115d內,並且透過腔室蓋115電接地。為此,接地電極框210包含上部板210a、接地側壁210b以及接地障壁組件210c。 The ground electrode frame 210 is provided to include the first gas distribution space S1 and the first Both of the gas distribution spaces S2, wherein the first gas distribution space S1 is for distributing the first gas G1 and the second gas distribution space S2 is for distributing the second gas G2. The ground electrode frame 210 is inserted into each of the module receivers 115a, 115b, 115c, and 115d of the chamber cover 115, and is electrically grounded through the chamber cover 115. To this end, the ground electrode frame 210 includes an upper plate 210a, a ground side wall 210b, and a ground barrier assembly 210c.

上部板210a形成為矩形形狀,連接腔室蓋115的對應的模 組接收器115a、115b、115c以及115d。上部板210a中,存在絕緣組件支撐孔212、第一氣體供應孔214以及第二氣體供應孔216。 The upper plate 210a is formed in a rectangular shape to connect the corresponding mold of the chamber cover 115 Group receivers 115a, 115b, 115c, and 115d. In the upper plate 210a, there are an insulation assembly support hole 212, a first gas supply hole 214, and a second gas supply hole 216.

絕緣組件支撐孔212穿透上部板210a,這樣絕緣組件支撐 孔212與第一氣體分配空間S1相通。絕緣組件支撐孔212被形成以具有矩形形狀的平面。 The insulating component support hole 212 penetrates the upper plate 210a, so that the insulating component supports The hole 212 is in communication with the first gas distribution space S1. The insulating member support hole 212 is formed to have a plane of a rectangular shape.

第一氣體供應孔214穿透上部板210a,這樣第一氣體供應 孔214與第一氣體分配空間S1相通。因為第一氣體供應孔214透過供氣管(圖中未表示)連接外部提供的第一氣體供應工具(圖中未表示),第一氣體供應孔214透過供氣管(圖中未表示)被供應來自第一氣體供應工具(圖中未表示)的第一氣體G1,即反應氣體RG。第一氣體供應孔214可形成於絕緣組件支撐孔212之兩側處,其中依照固定間隔提供複數個第一氣體供應孔214,以及複數個第一氣體供應孔214與第一氣體分配空間S1相通。 被供應至第一氣體供應孔214的第一氣體G1被供應到第一氣體分配空間S1,被第一氣體分配空間S1內部的電漿放電活化,然後向基板W方向依照第一壓力向下分配。為此,第一氣體分配空間S1的下表面用作具有完全開放形狀的第一氣體分配部231,這樣第一氣體G1朝向基板W方向向下分配,未形成額外的氣體分配孔圖案。 The first gas supply hole 214 penetrates the upper plate 210a such that the first gas supply The hole 214 is in communication with the first gas distribution space S1. Since the first gas supply hole 214 is connected to the externally supplied first gas supply means (not shown) through the air supply pipe (not shown), the first gas supply hole 214 is supplied through the air supply pipe (not shown) from the supply. The first gas G1 of the first gas supply means (not shown), that is, the reaction gas RG. The first gas supply holes 214 may be formed at both sides of the insulation assembly support hole 212, wherein a plurality of first gas supply holes 214 are provided in accordance with the fixed intervals, and the plurality of first gas supply holes 214 are in communication with the first gas distribution space S1. . The first gas G1 supplied to the first gas supply hole 214 is supplied to the first gas distribution space S1, activated by the plasma discharge inside the first gas distribution space S1, and then distributed downward in the direction of the substrate W according to the first pressure. . To this end, the lower surface of the first gas distribution space S1 functions as the first gas distribution portion 231 having a completely open shape such that the first gas G1 is distributed downward toward the substrate W direction, and an additional gas distribution hole pattern is not formed.

第二氣體供應孔216穿透上部板210a,這樣第二氣體供應 孔216與第二氣體分配空間S2相通。因為第二氣體供應孔216透過供氣管(圖中未表示)與外部提供的第二氣體供應工具(圖中未表示)連接,第二氣體供應孔216透過供氣管(圖中未表示)被供應來自第二氣體供應工具(圖中未表示)的第二氣體G2,即來源氣體SG。依照固定間隔在上部板210a中提供複數個第二氣體供應孔216,複數個第二氣體供應孔216與第二氣體分配空間S2相通。 The second gas supply hole 216 penetrates the upper plate 210a such that the second gas supply The hole 216 is in communication with the second gas distribution space S2. Since the second gas supply hole 216 is connected to the externally supplied second gas supply means (not shown) through the air supply pipe (not shown), the second gas supply hole 216 is supplied through the air supply pipe (not shown). The second gas G2 from the second gas supply means (not shown), that is, the source gas SG. A plurality of second gas supply holes 216 are provided in the upper plate 210a at regular intervals, and the plurality of second gas supply holes 216 are in communication with the second gas distribution space S2.

具有預定高度的複數個接地側壁210b的每一個從上部板 210a的每一長短邊的下表面垂直突出,從而在上部板的下側準備一個矩形形狀的開口。每一接地側壁210b透過腔室蓋115電接地,由此每一接地側壁210b用作接地電極。 Each of the plurality of ground side walls 210b having a predetermined height is from the upper plate The lower surface of each of the long and short sides of the 210a is vertically protruded, thereby preparing a rectangular-shaped opening on the lower side of the upper plate. Each of the ground side walls 210b is electrically grounded through the chamber cover 115, whereby each of the ground side walls 210b serves as a ground electrode.

具有預定高度的接地障壁組件210c從上部板210a的中央 部的下表面垂直突出,其中接地障壁組件210c與接地側壁210b的長邊平行排列。第一氣體分配空間S1與第二氣體分配空間S2藉由接地障壁組件210c彼此分隔。接地障壁組件210c可與接地電極框210形成為一體,或者與接地電極框210電連接,並且透過接地電極框210電接地,由此接地障壁組件210c用作接地電極。 A ground barrier rib assembly 210c having a predetermined height from the center of the upper plate 210a The lower surface of the portion protrudes vertically, wherein the ground barrier assembly 210c is arranged in parallel with the long sides of the ground sidewall 210b. The first gas distribution space S1 and the second gas distribution space S2 are separated from each other by the ground barrier assembly 210c. The ground barrier rib assembly 210c may be formed integrally with the ground electrode frame 210, or electrically connected to the ground electrode frame 210, and electrically grounded through the ground electrode frame 210, whereby the ground barrier rib assembly 210c functions as a ground electrode.

接地障壁組件210c與以上第三接地側壁210b3形狀相同。 The ground barrier rib assembly 210c is identical in shape to the third ground sidewall 210b3 above.

以上描述中,接地電極框210包含上部板210a、接地側壁 210b以及接地障壁組件210c,但是並非限制於這種結構。例如,接地電極框210中包含的上部板210a、接地側壁210b以及接地障壁組件210c可形成一體。 In the above description, the ground electrode frame 210 includes an upper plate 210a and a ground side wall. 210b and the ground barrier assembly 210c, but are not limited to this configuration. For example, the upper plate 210a, the ground side wall 210b, and the ground barrier assembly 210c included in the ground electrode frame 210 may be integrally formed.

其間,可改變接地電極框210中第一與第二氣體分配空間 S1與S2的位置。就是說,第一與第二氣體分配空間S1與S2被放置以暴露基板W,基板W透過基板支架120的旋轉而被旋轉,首先基板被暴露給第二氣體G2,然後接下來暴露給第一氣體G1,或者第一與第二氣體分配空間S1與S2被放置以暴露基板W,基板W透過基板支架120的旋轉而被旋轉,首先暴露給第一氣體G1,然後接下來暴露給第二氣體G2。 Meanwhile, the first and second gas distribution spaces in the ground electrode frame 210 may be changed. The position of S1 and S2. That is, the first and second gas distribution spaces S1 and S2 are placed to expose the substrate W, and the substrate W is rotated by the rotation of the substrate holder 120, first the substrate is exposed to the second gas G2, and then exposed to the first The gas G1, or the first and second gas distribution spaces S1 and S2, are placed to expose the substrate W, and the substrate W is rotated by the rotation of the substrate holder 120, first exposed to the first gas G1, and then exposed to the second gas. G2.

第二氣體分配空間S2中提供氣體孔圖案組件230,其中氣 體孔圖案組件230避免鄰接第二氣體分配空間S2放置的第一氣體分配空間S1所分配的第一氣體G1被擴散、回流或者滲透到第二氣體分配空間S2內,接地障壁組件210c係被提供於第一氣體分配空間S1與第二氣體分配空間S2之間。就是說,如果第一氣體G1被擴散、回流或者滲透到第二氣體分配空間S2內,則第一氣體G1與第二氣體分配空間S2內的第二氣體G2反應,由此薄膜被沈積到第二氣體分配空間S2的內部側壁上,或者粉末材料的薄膜被形成於第二氣體分配空間S2的內部側壁上,由此顆粒可能落到基板W上。因此,氣體孔圖案組件230避免在第二氣體分配空間S2的內部側壁上沈積薄膜,或者避免在第二氣體分配空間S2的內部側壁上形成粉末材料的薄膜。 a gas hole pattern assembly 230 is provided in the second gas distribution space S2, wherein the gas The body hole pattern assembly 230 prevents the first gas G1 distributed by the first gas distribution space S1 placed adjacent to the second gas distribution space S2 from being diffused, recirculated, or infiltrated into the second gas distribution space S2, and the ground barrier assembly 210c is provided Between the first gas distribution space S1 and the second gas distribution space S2. That is, if the first gas G1 is diffused, recirculated, or infiltrated into the second gas distribution space S2, the first gas G1 reacts with the second gas G2 in the second gas distribution space S2, whereby the film is deposited to the first On the inner side wall of the second gas distribution space S2, or a thin film of powder material is formed on the inner side wall of the second gas distribution space S2, whereby the particles may fall onto the substrate W. Therefore, the gas hole pattern assembly 230 avoids depositing a film on the inner side wall of the second gas distribution space S2 or avoiding formation of a thin film of powder material on the inner side wall of the second gas distribution space S2.

氣體孔圖案組件230與用於形成第二氣體分配空間S2的各 個接地側壁210b與接地障壁組件210c的下表面形成一體,從而覆蓋第二氣體分配空間S2的的下表面,或者形成為無極性的絕緣材料的絕緣板(或者蓮蓬頭)並且連接第二氣體分配空間S2的下表面。因此,在接地電極框210之上部板210a與氣體孔圖案組件230之間的第二氣體分配空間S2中準備預定的氣體擴散空間或者氣體緩衝空間。 The gas hole pattern assembly 230 and each of the portions for forming the second gas distribution space S2 The grounding sidewall 210b is formed integrally with the lower surface of the ground barrier assembly 210c to cover the lower surface of the second gas distribution space S2, or is formed as an insulating plate (or showerhead) of a non-polar insulating material and is connected to the second gas distribution space. The lower surface of S2. Therefore, a predetermined gas diffusion space or gas buffer space is prepared in the second gas distribution space S2 between the upper plate 210a of the ground electrode frame 210 and the gas hole pattern assembly 230.

氣體孔圖案組件230包含複數個第二氣體分配部232,從而 向基板W方向向下分配第二氣體G2,其中第二氣體G2係透過第二氣體供應孔216被供應到第二氣體分配空間S2。 The gas hole pattern assembly 230 includes a plurality of second gas distribution portions 232, thereby The second gas G2 is distributed downward toward the substrate W, wherein the second gas G2 is supplied to the second gas distribution space S2 through the second gas supply hole 216.

形成孔洞圖案形狀的複數個第二氣體分配部232,以與其中 擴散第二氣體G2的第二氣體分配空間S2相通。因此,依照第二壓力向基板W方向向下分配第二氣體G2,其中第二氣體G2的第二壓力高於第一氣 體G1的分配壓力。氣體孔圖案組件230增加了向基板W方向分配第二氣體G2的分配壓力,從而避免被分配到第一氣體分配空間S1的第一氣體G1被擴散、回流以及滲透進入第二氣體分配空間S2內。 Forming a plurality of second gas distribution portions 232 in the shape of a hole pattern to The second gas distribution space S2 of the diffusion second gas G2 is in communication. Therefore, the second gas G2 is distributed downward in the direction of the substrate W according to the second pressure, wherein the second pressure of the second gas G2 is higher than the first gas The distribution pressure of the body G1. The gas hole pattern assembly 230 increases the distribution pressure of the second gas G2 to the substrate W direction, thereby preventing the first gas G1 distributed to the first gas distribution space S1 from being diffused, recirculated, and infiltrated into the second gas distribution space S2. .

此外,氣體孔圖案組件230透過第二氣體分配部232向下 分配第二氣體G2,氣體孔圖案組件230形成為具有孔洞的板狀,從而延遲或者減緩第二氣體G2的流動,從而減少第二氣體G2的氣體消耗。另外,透過改變第二氣體分配部232的孔洞圖案形狀,可調整氣體流量,從而提高第二氣體G2的使用效率。 In addition, the gas hole pattern assembly 230 passes through the second gas distribution portion 232 downward The second gas G2 is dispensed, and the gas hole pattern assembly 230 is formed in a plate shape having holes, thereby delaying or slowing the flow of the second gas G2, thereby reducing the gas consumption of the second gas G2. Further, by changing the shape of the hole pattern of the second gas distributing portion 232, the gas flow rate can be adjusted, thereby improving the use efficiency of the second gas G2.

絕緣組件240由絕緣材料形成。絕緣組件240被插入接地 電極框210中形成的絕緣組件支撐孔212內,並且利用接合組件(圖中未表示)與接地電極框210的上表面接合。絕緣組件240包含與第一氣體分配空間S1相通的電極插入孔。 The insulation assembly 240 is formed of an insulating material. Insulation assembly 240 is inserted into ground The insulating member formed in the electrode frame 210 supports the hole 212 and is joined to the upper surface of the ground electrode frame 210 by a joint assembly (not shown). The insulation assembly 240 includes an electrode insertion hole that communicates with the first gas distribution space S1.

電源電極250由導電材料形成。穿透絕緣組件240的電極 插入孔的電源電極250從接地電極框210的下表面突出,由此具有預定高度的電源電極250係位於第一氣體分配空間S1中。這種情況下,電源電極250的突出高度與用作接地電極的接地電極框210的接地側壁210b與接地障壁組件210c的突出高度相同。 The power supply electrode 250 is formed of a conductive material. Passing through the electrode of the insulating assembly 240 The power supply electrode 250 of the insertion hole protrudes from the lower surface of the ground electrode frame 210, whereby the power supply electrode 250 having a predetermined height is located in the first gas distribution space S1. In this case, the protruding height of the power supply electrode 250 is the same as the protruding height of the ground side wall 210b of the ground electrode frame 210 serving as the ground electrode and the ground barrier rib assembly 210c.

電源電極250採用回饋電纜電連接電漿功率供應器140,從 而依照電漿功率供應器140所供應的電極功率在第一氣體分配空間S1中產生電漿放電。就是說,在用作接地電極之接地側壁210b與接地障壁組件210c中的每一個與被供應電極功率的電源電極250之間出現電漿放電,從而將被供應至第一氣體分配空間S1的第一氣體G1活化。 The power electrode 250 is electrically connected to the plasma power supply 140 by using a feedback cable. The plasma discharge is generated in the first gas distribution space S1 in accordance with the electrode power supplied from the plasma power supply 140. That is, a plasma discharge occurs between each of the ground side wall 210b serving as a ground electrode and the ground barrier rib assembly 210c and the power supply electrode 250 to which the electrode power is supplied, so that the first to be supplied to the first gas distribution space S1 A gas G1 is activated.

電漿功率供應器140產生具有預定頻率的電漿功率,以及 透過回饋電纜將產生的電漿功率共同或單獨地供應到第一至第四氣體分配模組130a、130b、130c以及130d。這種情況下,電漿功率被供應高頻(HF)功率或者超高頻(VHF)功率。例如,高頻(HF)功率的頻率範圍為3MHz~30MHz,超高頻(VHF)功率的頻率範圍為30MHz~300MHz。 The plasma power supply 140 generates plasma power having a predetermined frequency, and The generated plasma power is supplied to the first to fourth gas distribution modules 130a, 130b, 130c, and 130d collectively or separately through a feedback cable. In this case, the plasma power is supplied with high frequency (HF) power or ultra high frequency (VHF) power. For example, the frequency range of high frequency (HF) power is 3 MHz to 30 MHz, and the frequency range of ultra high frequency (VHF) power is 30 MHz to 300 MHz.

其間,回饋電纜連接阻抗匹配電路(圖中未表示)。阻抗匹 配電路將負載阻抗與從電漿功率供應器140供應到第一至第四氣體分配模組130a、130b、130c以及130d的電漿功率的電源阻抗與匹配。阻抗匹配電路包含可變電容器與可變電感器至少其一形成的阻抗元件(圖中未表示)中的至少兩個。 In the meantime, the feedback cable is connected to an impedance matching circuit (not shown). Impedance The mating circuit matches the load impedance with the source impedance of the plasma power supplied from the plasma power supply 140 to the first to fourth gas distribution modules 130a, 130b, 130c, and 130d. The impedance matching circuit includes at least two of the impedance elements (not shown) formed by at least one of the variable capacitor and the variable inductor.

依照供應到電源電極250的電漿功率,上述第一至第四氣 體分配模組130a、130b、130c以及130d分別在第一氣體分配空間S1中產生電漿放電,透過電漿放電活化第一氣體分配空間S1的第一氣體G1,將經活化的第一氣體G1向下分配。同時,第一至第四氣體分配模組130a、130b、130c以及130d透過氣體孔圖案組件230依照預定壓力分別向下分配第二氣體分配空間S2的第二氣體G2。 According to the plasma power supplied to the power electrode 250, the first to fourth gases described above The body distribution modules 130a, 130b, 130c, and 130d respectively generate a plasma discharge in the first gas distribution space S1, and activate the first gas G1 of the first gas distribution space S1 through the plasma discharge, and activate the first gas G1. Assigned downwards. At the same time, the first to fourth gas distribution modules 130a, 130b, 130c, and 130d respectively distribute the second gas G2 of the second gas distribution space S2 downward through the gas hole pattern assembly 230 in accordance with a predetermined pressure.

其間,無須在各個第一至第四氣體分配模組130a、130b、 130c以及130d中分配相同的氣體(例如,第一氣體G1與/或第二氣體G2)。就是說,第一至第四氣體分配模組130a、130b、130c以及130d各自分配不同的氣體,由此在基板W上沈積複數層。 In the meantime, it is not necessary to be in each of the first to fourth gas distribution modules 130a, 130b, The same gas (for example, the first gas G1 and/or the second gas G2) is distributed in 130c and 130d. That is, the first to fourth gas distribution modules 130a, 130b, 130c, and 130d each dispense a different gas, thereby depositing a plurality of layers on the substrate W.

雖然圖中未表示,第一至第四氣體分配模組130a、130b、 130c以及130d至少其一具有僅僅一個氣體分配空間,以代替第一與第二氣 體分配空間S1與S2。這種情況下,氣體分配模組其中之一分配來源氣體,另一氣體分配模組分配反應氣體,這樣可獲得與原子層沈積(Atomic Layer Deposition;ALD)所沈積的層具有相同特性的層。 Although not shown in the drawings, the first to fourth gas distribution modules 130a, 130b, At least one of 130c and 130d has only one gas distribution space instead of the first and second gas The volume allocates spaces S1 and S2. In this case, one of the gas distribution modules distributes the source gas, and the other gas distribution module distributes the reaction gas, so that a layer having the same characteristics as the layer deposited by Atomic Layer Deposition (ALD) can be obtained.

第一至第四氣體分配模組130a、130b、130c以及130d至 少其一中,第一氣體分配空間S1與第二氣體分配空間S2尺寸相同,但是並非限制於這種結構。就是說,第一氣體分配空間S1可與第二氣體分配空間S2尺寸不同。 First to fourth gas distribution modules 130a, 130b, 130c, and 130d to In the lesser case, the first gas distribution space S1 is the same size as the second gas distribution space S2, but is not limited to this structure. That is, the first gas distribution space S1 may be different in size from the second gas distribution space S2.

以下詳細描述使用本發明一個實施例之基板處理設備之基 板處理方法。 The basis of the substrate processing apparatus using one embodiment of the present invention is described in detail below. Board processing method.

首先,在製程腔室110內部安裝複數個氣體分配模組130a、 130b、130c以及130d,至少一塊基板W被載入基板支架120上。 First, a plurality of gas distribution modules 130a are installed inside the processing chamber 110, 130b, 130c, and 130d, at least one substrate W is loaded onto the substrate holder 120.

其上裝載有基板W的基板支架120旋轉以及出現電漿放電 時,第一氣體G1與第二氣體G2透過複數個氣體分配模組中的至少一個氣體分配模組被向下分配到基板W上,從而執行薄膜沈積製程。因此,在基板W上形成薄膜層。 The substrate holder 120 on which the substrate W is loaded is rotated and a plasma discharge occurs At this time, the first gas G1 and the second gas G2 are distributed downward to the substrate W through at least one gas distribution module of the plurality of gas distribution modules, thereby performing a thin film deposition process. Therefore, a thin film layer is formed on the substrate W.

依照本發明,在空間上彼此分隔的第一氣體分配空間S1與 第二氣體分配空間S2中單獨分配反應氣體RG與來源氣體SG,從而有助於控制薄膜層的品質以及薄膜層的沈積速度。 According to the present invention, the first gas distribution space S1 spatially separated from each other The reaction gas RG and the source gas SG are separately distributed in the second gas distribution space S2, thereby contributing to controlling the quality of the film layer and the deposition speed of the film layer.

依照本發明,電漿放電空間未形成於電源電極與基板之 間,而是形成於彼此面對的電源電極250與接地電極之間,這樣可避免電漿放電損壞基板W。依照本發明之一個實施例,電源電極250與接地電極被提供以垂直於基板W的表面,由此電漿放電產生的正或負離子未朝向基 板W的表面方向移動,而是向電源電極250或接地電極的方向移動,從而最小化基板W上電漿放電的影響。 According to the present invention, the plasma discharge space is not formed in the power supply electrode and the substrate In the meantime, it is formed between the power supply electrode 250 and the ground electrode facing each other, so that the plasma discharge can be prevented from damaging the substrate W. According to an embodiment of the present invention, the power supply electrode 250 and the ground electrode are provided to be perpendicular to the surface of the substrate W, whereby the positive or negative ions generated by the plasma discharge are not oriented toward the base. The surface direction of the board W is moved, but moved in the direction of the power supply electrode 250 or the ground electrode, thereby minimizing the influence of the plasma discharge on the substrate W.

習知技術的情況下,因為來源氣體SG被分配到基板W的 整個區域上,降低了來源氣體SG的使用效率。其間,本發明使用複數個氣體分配模組130a、130b、130c以及130d,從而提高來源氣體SG的使用效率。 In the case of the prior art, since the source gas SG is distributed to the substrate W The use efficiency of the source gas SG is reduced over the entire area. In the meantime, the present invention uses a plurality of gas distribution modules 130a, 130b, 130c, and 130d to increase the efficiency of use of the source gas SG.

第12圖為本發明另一實施例之氣體分配模組的剖面示意 圖。 Figure 12 is a cross-sectional view showing a gas distribution module according to another embodiment of the present invention Figure.

除第二氣體分配空間S2中額外形成的電源電極250以外, 第12圖之氣體分配模組與第11圖的氣體分配模組結構相同,由此省略相同部件的詳細解釋。 In addition to the power electrode 250 additionally formed in the second gas distribution space S2, The gas distribution module of Fig. 12 has the same structure as the gas distribution module of Fig. 11, and thus the detailed explanation of the same components is omitted.

如第12圖所示,依照本發明另一實施例,在第二氣體分配 空間S2中額外形成的電源電極250。為此,絕緣組件支撐孔212的提供方式為絕緣組件支撐孔212穿透上部板210a,絕緣組件支撐孔212與第二氣體分配空間S2相通。此外,絕緣組件240被插入絕緣組件支撐孔212內。 這種情況下,絕緣組件240包含與第二氣體分配空間S2相通的電極插入孔。因此,穿透電極插入孔的電源電極250從上部板210a的下表面突出。 As shown in FIG. 12, in accordance with another embodiment of the present invention, in the second gas distribution An additional power supply electrode 250 is formed in the space S2. To this end, the insulating component support hole 212 is provided in such a manner that the insulating component support hole 212 penetrates the upper plate 210a, and the insulating component support hole 212 communicates with the second gas distribution space S2. Further, the insulation assembly 240 is inserted into the insulation assembly support hole 212. In this case, the insulating member 240 includes an electrode insertion hole that communicates with the second gas distribution space S2. Therefore, the power source electrode 250 penetrating the electrode insertion hole protrudes from the lower surface of the upper plate 210a.

第二氣體分配空間S2中形成電源電極250的結構與第一氣 體分配空間S1中形成的電源電極250結構相同。 The structure of the power electrode 250 and the first gas are formed in the second gas distribution space S2 The power supply electrode 250 formed in the body distribution space S1 has the same structure.

第13圖為本發明另一實施例之氣體分配模組之剖面示意 圖。除從第二氣體分配空間S2中移除氣體孔圖案組件230以外,第13圖的氣體分配模組與第11圖的氣體分配模組相同。氣體孔圖案組件230能夠 實現以上描述的優點,但是可省略氣體孔圖案組件230。 Figure 13 is a cross-sectional view showing a gas distribution module according to another embodiment of the present invention Figure. The gas distribution module of Fig. 13 is the same as the gas distribution module of Fig. 11 except that the gas hole pattern assembly 230 is removed from the second gas distribution space S2. The gas hole pattern component 230 can The advantages described above are achieved, but the gas hole pattern assembly 230 can be omitted.

第14圖為本發明另一實施例之氣體分配模組之剖面示意圖。除從第二氣體分配空間S2中移除氣體孔圖案組件230以外,第14圖的氣體分配模組與第12圖的氣體分配模組相同。 Figure 14 is a cross-sectional view showing a gas distribution module according to another embodiment of the present invention. The gas distribution module of Fig. 14 is the same as the gas distribution module of Fig. 12 except that the gas hole pattern assembly 230 is removed from the second gas distribution space S2.

雖然本發明的實施例揭露如上所述,然並非用以限定本發明,任何熟習相關技藝者,在不脫離本發明的精神和範圍內,舉凡依本發明申請範圍所述的形狀、構造、特徵及數量當可做些許的變更,因此本發明的專利保護範圍須視本說明書所附的申請專利範圍所界定者為準。 Although the embodiments of the present invention are disclosed above, it is not intended to limit the present invention, and those skilled in the art, regardless of the spirit and scope of the present invention, the shapes, configurations, and features described in the scope of the present application. And the number of modifications may be made, and the scope of patent protection of the present invention shall be determined by the scope of the patent application attached to the specification.

W‧‧‧基板 W‧‧‧Substrate

110‧‧‧製程腔室 110‧‧‧Processing chamber

115‧‧‧腔室蓋 115‧‧‧Case cover

115a、115b、115c、115d‧‧‧模組接收器 115a, 115b, 115c, 115d‧‧‧ module receiver

115e‧‧‧泵送孔 115e‧‧‧ pumping hole

117‧‧‧泵送管 117‧‧‧ pumping tube

120‧‧‧基板支架 120‧‧‧Substrate support

130‧‧‧氣體分配器 130‧‧‧ gas distributor

130a、130b、130c、130d‧‧‧氣體分配模組 130a, 130b, 130c, 130d‧‧‧ gas distribution module

Claims (16)

一種基板處理設備,包含:一製程腔室;一基板支架,用於支撐複數塊基板至少其一,其中該基板支架被提供於該製程腔室中,以及該基板支架依照一預定方向旋轉;一腔室蓋,面對該基板支架,該腔室蓋用於覆蓋該製程腔室之上側;以及一氣體分配器,包含複數個氣體分配模組,用以在基板上分配氣體,其中該等氣體分配模組連接該腔室蓋,其中該等氣體分配模組的每一個包含用於形成一電漿反應空間的一接地電極框以及形成於該接地電極框中的一電源電極,該電源電極連同該接地電極框產生一電漿放電,其中該電源電極的提供方式為鄰近該基板支架的邊緣的一第二側的高度大於鄰近該基板支架的中央的一第一側的高度。 A substrate processing apparatus comprising: a processing chamber; a substrate holder for supporting at least one of the plurality of substrates, wherein the substrate holder is provided in the processing chamber, and the substrate holder rotates according to a predetermined direction; a chamber cover facing the substrate holder, the chamber cover for covering an upper side of the process chamber; and a gas distributor including a plurality of gas distribution modules for distributing gas on the substrate, wherein the gas a distribution module is coupled to the chamber cover, wherein each of the gas distribution modules includes a ground electrode frame for forming a plasma reaction space and a power electrode formed in the ground electrode frame, the power electrode The ground electrode frame generates a plasma discharge, wherein the power electrode is provided in such a manner that a height of a second side adjacent to an edge of the substrate holder is greater than a height of a first side adjacent to a center of the substrate holder. 如請求項1所述之基板處理設備,其中該電源電極的一第三側連接該第一側的下端到該第二側的下端,該第三側形成傾斜的直線。 The substrate processing apparatus of claim 1, wherein a third side of the power electrode is connected to a lower end of the first side to a lower end of the second side, the third side forming an inclined straight line. 如請求項1所述之基板處理設備,其中該電源電極的一第三側連接該第一側的下端到該第二側的下端,該第三側形成階梯線的形狀。 The substrate processing apparatus of claim 1, wherein a third side of the power electrode is connected to a lower end of the first side to a lower end of the second side, the third side forming a shape of a step line. 如請求項1所述之基板處理設備,其中該電源電極的一第三側連接該第一側的下端到該第二側的下端,該第三側形成相對該基板支架水平的直線。 The substrate processing apparatus of claim 1, wherein a third side of the power electrode is connected to a lower end of the first side to a lower end of the second side, the third side forming a horizontal line with respect to the substrate holder. 如請求項1所述之基板處理設備,其中該電源電極的一第三側連接該第一側的下端到該第二側的下端,該第三側包含形成為傾斜直線的一部分以及形成為相對基板支架水平的直線的剩餘部份。 The substrate processing apparatus of claim 1, wherein a third side of the power electrode is connected to a lower end of the first side to a lower end of the second side, the third side comprising a portion formed as an oblique straight line and formed to be opposite The remaining portion of the horizontal line of the substrate support. 如請求項1所述之基板處理設備,其中該電源電極的一第三側連接該第一側的下端到該第二側的下端,該第三側包含形成為階梯線形狀的一部分以及形成為相對基板支架水平的直線的剩餘部份。 The substrate processing apparatus of claim 1, wherein a third side of the power electrode is connected to a lower end of the first side to a lower end of the second side, the third side comprising a portion formed into a shape of a stepped line and formed as The remainder of the horizontal line relative to the substrate support. 一種基板處理設備,包含:一製程腔室;一基板支架,用於支撐複數塊基板至少其一,其中該基板支架被提供於該製程腔室中,以及該基板支架依照一預定方向旋轉;一腔室蓋,面對該基板支架,該腔室蓋用於覆蓋該製程腔室之上側;以及一氣體分配器,包含複數個氣體分配模組,用以在基板上分配氣體,其中該等氣體分配模組連接該腔室蓋,其中該等氣體分配模組的每一個包含用於形成一電漿反應空間的一接地電極框以及形成於該接地電極框中的一 電源電極,該電源電極連同該接地電極框產生一電漿放電,其中該接地電極框包含形成於該基板支架的中央的一第一接地側壁以及形成於該基板支架的邊緣的一第二接地側壁,以及該第二接地側壁的高度大於該第一接地側壁的高度。 A substrate processing apparatus comprising: a processing chamber; a substrate holder for supporting at least one of the plurality of substrates, wherein the substrate holder is provided in the processing chamber, and the substrate holder rotates according to a predetermined direction; a chamber cover facing the substrate holder, the chamber cover for covering an upper side of the process chamber; and a gas distributor including a plurality of gas distribution modules for distributing gas on the substrate, wherein the gas a distribution module is coupled to the chamber cover, wherein each of the gas distribution modules includes a ground electrode frame for forming a plasma reaction space and a one formed in the ground electrode frame a power electrode, the power electrode and the ground electrode frame generating a plasma discharge, wherein the ground electrode frame includes a first ground sidewall formed at a center of the substrate holder and a second ground sidewall formed at an edge of the substrate holder And a height of the second ground sidewall is greater than a height of the first ground sidewall. 如請求項7所述之基板處理設備,其中該接地電極框包含連接該第一接地側壁與該第二接地側壁的一第三接地側壁,該第三接地側壁的形成方式為鄰近該基板支架的邊緣的一第二側的高度大於鄰近該基板支架的中央的一第一側的高度。 The substrate processing apparatus of claim 7, wherein the ground electrode frame comprises a third ground sidewall connecting the first ground sidewall and the second ground sidewall, the third ground sidewall being formed adjacent to the substrate holder The height of a second side of the edge is greater than the height of a first side adjacent the center of the substrate holder. 一種基板處理設備,包含:一製程腔室;一基板支架,用於支撐複數塊基板至少其一,其中該基板支架被提供於該製程腔室中,以及該基板支架依照一預定方向旋轉;一腔室蓋,面對該基板支架,該腔室蓋用於覆蓋該製程腔室之上側;以及一氣體分配器,包含複數個氣體分配模組,用以在基板上分配氣體,其中該等氣體分配模組連接該腔室蓋,其中該等氣體分配模組的每一個包含用於形成一電漿反應空間的一接地電極框,以及形成於該接地電極框中的一電源電極,該電源電極連同該接地電極框產生一電漿放 電,其中該基板支架的邊緣的電漿放電相對大於該基板支架的中央的電漿放電。 A substrate processing apparatus comprising: a processing chamber; a substrate holder for supporting at least one of the plurality of substrates, wherein the substrate holder is provided in the processing chamber, and the substrate holder rotates according to a predetermined direction; a chamber cover facing the substrate holder, the chamber cover for covering an upper side of the process chamber; and a gas distributor including a plurality of gas distribution modules for distributing gas on the substrate, wherein the gas a distribution module is coupled to the chamber cover, wherein each of the gas distribution modules includes a ground electrode frame for forming a plasma reaction space, and a power electrode formed in the ground electrode frame, the power electrode Producing a plasma discharge together with the ground electrode frame Electrically, wherein the plasma discharge at the edge of the substrate holder is relatively greater than the plasma discharge at the center of the substrate holder. 如請求項1至9任意其一所述之基板處理設備,其中該氣體分配模組包含用於分配一第一氣體的一第一氣體分配空間以及用於分配一第二氣體的一第二氣體分配空間,其中該第一氣體分配空間在空間上與該第二氣體分配空間分隔。 The substrate processing apparatus according to any one of claims 1 to 9, wherein the gas distribution module comprises a first gas distribution space for distributing a first gas and a second gas for distributing a second gas. A distribution space, wherein the first gas distribution space is spatially separated from the second gas distribution space. 如請求項10所述之基板處理設備,其中該氣體分配模組包含一接地障壁組件,用於在空間上彼此分隔該第一氣體分配空間與該第二氣體分配空間,該接地障壁組件的提供方式為鄰近該基板支架的邊緣的一第二側的高度大於鄰近該基板支架的中央的一第一側的高度。 The substrate processing apparatus of claim 10, wherein the gas distribution module comprises a ground barrier assembly for spatially separating the first gas distribution space from the second gas distribution space, the supply of the ground barrier component The method is such that the height of a second side adjacent to the edge of the substrate holder is greater than the height of a first side adjacent to the center of the substrate holder. 如請求項10所述之基板處理設備,其中該電源電極形成於該第一氣體分配空間與該第二氣體分配空間的每一個中。 The substrate processing apparatus of claim 10, wherein the power supply electrode is formed in each of the first gas distribution space and the second gas distribution space. 如請求項10所述之基板處理設備,其中該第二氣體分配空間額外具有一氣體孔圖案組件,用於避免該第一氣體分配空間所分配的該第一氣體流入該第二氣體分配空間內。 The substrate processing apparatus of claim 10, wherein the second gas distribution space additionally has a gas hole pattern assembly for preventing the first gas distributed by the first gas distribution space from flowing into the second gas distribution space . 如請求項1至9任意其一所述之基板處理設備,其中該電源電極沿與該基板的表面垂直的方向延伸。 The substrate processing apparatus according to any one of claims 1 to 9, wherein the power supply electrode extends in a direction perpendicular to a surface of the substrate. 如請求項1至9任意其一所述之基板處理設備,其中該等 氣體分配模組中任意一個所分配的氣體不同於該等氣體分配模組中另一個所分配的氣體。 The substrate processing apparatus according to any one of claims 1 to 9, wherein The gas dispensed by any one of the gas distribution modules is different from the gas dispensed by the other of the gas distribution modules. 如請求項1至9任意其一所述之基板處理設備,其中該等氣體分配模組至少其一具有一個氣體分配空間。 The substrate processing apparatus according to any one of claims 1 to 9, wherein at least one of the gas distribution modules has a gas distribution space.
TW102124265A 2012-07-06 2013-07-05 Apparatus of processing substrate TWI594299B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120073591A KR101984524B1 (en) 2012-07-06 2012-07-06 Apparatus of processing substrate

Publications (2)

Publication Number Publication Date
TW201413785A true TW201413785A (en) 2014-04-01
TWI594299B TWI594299B (en) 2017-08-01

Family

ID=49882263

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102124265A TWI594299B (en) 2012-07-06 2013-07-05 Apparatus of processing substrate

Country Status (3)

Country Link
KR (1) KR101984524B1 (en)
TW (1) TWI594299B (en)
WO (1) WO2014007572A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016200506B4 (en) * 2016-01-17 2024-05-02 Robert Bosch Gmbh Etching device and etching process
KR102483547B1 (en) * 2016-06-30 2023-01-02 삼성전자주식회사 Gas supply unit and thin film deposition apparatus including the same
KR20210065054A (en) * 2019-11-25 2021-06-03 주식회사 원익아이피에스 Gas supply block and substrate processing apparatus including the same
US20230386796A1 (en) * 2020-10-22 2023-11-30 Jusung Engineering Co., Ltd. Substrate treatment apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3595853B2 (en) * 1999-03-18 2004-12-02 日本エー・エス・エム株式会社 Plasma CVD film forming equipment
CA2471987C (en) * 2002-10-07 2008-09-02 Sekisui Chemical Co., Ltd. Plasma surface processing apparatus
KR100646017B1 (en) * 2006-01-19 2006-11-15 주식회사 아토 A showerhead using multi-hollows cathode of a type of gas separation
KR20070088184A (en) * 2006-02-24 2007-08-29 삼성전자주식회사 Showerhead and atomic layer deposition equipment having the same
KR101339699B1 (en) * 2007-04-02 2013-12-10 (주)소슬 Plasma etching equipment
KR101515149B1 (en) * 2007-12-03 2015-04-24 참엔지니어링(주) Assembly for blocking plasma and apparatus for processing plasma having the same
KR101373746B1 (en) * 2010-08-17 2014-03-14 세메스 주식회사 Apparatus for Processing Substrate Using Plasma

Also Published As

Publication number Publication date
WO2014007572A1 (en) 2014-01-09
KR20140006505A (en) 2014-01-16
TWI594299B (en) 2017-08-01
KR101984524B1 (en) 2019-05-31

Similar Documents

Publication Publication Date Title
US20150140786A1 (en) Substrate processing device and substrate processing method
US11028481B2 (en) Substrate treating apparatus and method
US10504701B2 (en) Substrate processing device and substrate processing method
US9387510B2 (en) Substrate processing apparatus and substrate processing method
TWI639207B (en) Substrate processing apparatus
TWI594299B (en) Apparatus of processing substrate
TW201724340A (en) Substrate processing apparatus and substrate processing method
TWI585825B (en) Substrate processing apparatus and substrate processing method
KR101834984B1 (en) Apparatus for processing substrate and method for processing substrate using the same
KR101854242B1 (en) Apparatus for processing substrate and method for processing substrate using the same
KR101987138B1 (en) Apparatus and Method of processing substrate
KR102046391B1 (en) Substrate processing apparatus and substrate processing method
KR102405776B1 (en) Substrate processing apparatus andsubstrate processing method
KR102029952B1 (en) Apparatus and Method of processing substrate
KR102066414B1 (en) Apparatus of Processing Substrate
KR101943073B1 (en) Apparatus of processing substrate
KR101951861B1 (en) Apparatus for processing substrate
KR101938267B1 (en) Apparatus for processing substrate and method for processing substrate using the same
KR20190015424A (en) Apparatus of Supporting substrate
KR20190134577A (en) Apparatus for processing substrate
KR20190025591A (en) Substrate processing method
KR20130142418A (en) Apparatus of processing substrate