TW201407779A - Lateral diffusion metal oxide semiconductor transistor structure - Google Patents
Lateral diffusion metal oxide semiconductor transistor structure Download PDFInfo
- Publication number
- TW201407779A TW201407779A TW101129427A TW101129427A TW201407779A TW 201407779 A TW201407779 A TW 201407779A TW 101129427 A TW101129427 A TW 101129427A TW 101129427 A TW101129427 A TW 101129427A TW 201407779 A TW201407779 A TW 201407779A
- Authority
- TW
- Taiwan
- Prior art keywords
- electrical
- type
- layer
- region
- metal oxide
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
本發明是有關於一種半導體元件,且特別是有關於一種橫向擴散金屬氧化物半導體(Lateral Diffusion Metal Oxide Semiconductor,LDMOS)電晶體結構。 The present invention relates to a semiconductor device, and more particularly to a Lateral Diffusion Metal Oxide Semiconductor (LDMOS) transistor structure.
橫向擴散金屬氧化物半導體元件,具有低阻抗及高崩潰電壓(breakdown voltage)的特性,因此已被廣泛應用於,例如顯示面板、電信系統、馬達控制器、開關鎖電源供應器或變頻器,等需要高壓操作的產品之中。 The laterally diffused metal oxide semiconductor device has low impedance and high breakdown voltage and has been widely used, for example, in display panels, telecommunication systems, motor controllers, switch lock power supplies, or inverters, etc. Among products that require high pressure operation.
典型的橫向擴散金屬氧化物半導體電晶體元件,基本上是一種建構於基材內之磊晶(或植入)層中的非對稱性功率金屬-氧化物-半導體場效應電晶體(MOSFET)。其具有閘極以及被通道區域所區隔開來,且彼此共平面的汲極及源極區域。其中,汲極形成在藉由輕摻雜汲極(Lightly Doped Drain,LDD)製程所形成的漂移區(drift region)之中,並藉由飄移區使汲極與通道區分隔。閘極和汲極之間,則藉由場氧化層(Field Oxide,FOX),橫向地加以隔離。當元件在高壓操作時,可以利用具有較長橫向空乏區的漂移區以及厚場氧化層,來降低汲極附近的電場強度,增加崩潰電壓,藉以達到耐壓的效果。 A typical laterally diffused metal oxide semiconductor transistor component is essentially an asymmetric power metal-oxide-semiconductor field effect transistor (MOSFET) constructed in an epitaxial (or implant) layer within a substrate. It has a gate and a drain and source region that are separated by the channel region and are coplanar with each other. The drain is formed in a drift region formed by a Lightly Doped Drain (LDD) process, and the drain region is separated from the channel region by a drift region. Between the gate and the drain, it is laterally isolated by Field Oxide (FOX). When the component is operated at high voltage, the drift region with the longer lateral depletion region and the thick field oxide layer can be utilized to reduce the electric field strength near the drain and increase the breakdown voltage, thereby achieving the withstand voltage effect.
然而,隨著元件關鍵尺寸的縮小,易因寄生雙極作用,而發生寄生電晶體擊穿的問題。因此有需要提供一種先進的橫向擴散金屬氧化物半導體電晶體結構,解決習知技術所面臨的問 題,提高半導體元件效能。 However, as the critical dimensions of components shrink, it is prone to parasitic bipolar effects, which causes parasitic transistor breakdown. Therefore, there is a need to provide an advanced laterally diffused metal oxide semiconductor transistor structure to solve the problems faced by the prior art. Problem to improve the performance of semiconductor components.
本發明一方面是在提供一種橫向擴散金屬氧化物半導體電晶體結構,包括:埋藏層、第二電性半導體層、源極、第一汲極以及隔離環。埋藏層,具有第一電性,且位於基材之中。第二電性半導體層位於埋藏層上方。源極,具有形成於第二電性半導體層之中的第一電性區和第二電性區。第一汲極,形成於第二電性半導體層中,且具有第二電性飄移區。隔離環具有第一電性,由第二電性半導體層的上表面向下延伸,而與埋藏層接觸,並環繞源極和第一汲極,且與源極電性接觸。 One aspect of the present invention is to provide a laterally diffused metal oxide semiconductor transistor structure comprising: a buried layer, a second electrical semiconductor layer, a source, a first drain, and an isolation ring. The buried layer has a first electrical property and is located in the substrate. The second electrically conductive semiconductor layer is located above the buried layer. The source has a first electrical region and a second electrical region formed in the second electrical semiconductor layer. The first drain is formed in the second electrical semiconductor layer and has a second electrical drift region. The spacer ring has a first electrical property, and extends downward from the upper surface of the second electrical semiconductor layer to contact the buried layer, and surrounds the source and the first drain, and is in electrical contact with the source.
在本發明的一實施例之中,第一電性為N型,且第二電性為P型。 In an embodiment of the invention, the first electrical property is an N-type and the second electrical property is a P-type.
在本發明的一實施例之中,埋藏層包括一磷/銻/磷(P/Sb/P)三層摻雜結構。 In an embodiment of the invention, the buried layer comprises a phosphorus/germanium/phosphorus (P/Sb/P) three-layer doped structure.
在本發明的一實施例之中,第一電性區和第二電性區位於一N井中,此N井位於第二電性半導體層之中,且和埋藏層接觸。 In an embodiment of the invention, the first electrical region and the second electrical region are located in an N-well located in the second electrical semiconductor layer and in contact with the buried layer.
在本發明的一實施例之中,此N井包含一N型主體及一高壓N型井區;第一電性區和第二電性區位於N型主體中;且N型主體位於高壓N型井區之中。 In an embodiment of the invention, the N well comprises an N-type body and a high-pressure N-type well region; the first electrical region and the second electrical region are located in the N-type body; and the N-type body is located at the high voltage N In the well area.
在本發明的一實施例之中,第二電性飄移區的摻雜濃度,實質高於第二電性半導體層的摻雜濃度。 In an embodiment of the invention, the doping concentration of the second electrical drift region is substantially higher than the doping concentration of the second electrical semiconductor layer.
在本發明的一實施例之中,橫向擴散金屬氧化物半導體電晶體結構,更包括位於第二電性半導體層上方的第一閘極。其 中,第一閘極部份地跨置於第一場氧化層之上,並且藉由第一場氧化層(Field Oxide,FOX)與第一汲極分離。 In an embodiment of the invention, the laterally diffused metal oxide semiconductor transistor structure further includes a first gate over the second electrical semiconductor layer. its The first gate is partially disposed over the first field oxide layer and separated from the first drain by a first field oxide layer (Field Oxide, FOX).
在本發明的一實施例之中,橫向擴散金屬氧化物半導體電晶體結構,更包括形成於第二電性半導體層中的第二汲極,以及位於第二電性半導體層上方的第二閘極。其中,第二閘極部份地跨置於第二場氧化層之上,並且藉由第二場氧化層與第二汲極分離。 In an embodiment of the invention, the laterally diffused metal oxide semiconductor transistor structure further includes a second drain formed in the second electrical semiconductor layer, and a second gate over the second electrical semiconductor layer pole. The second gate is partially disposed over the second field oxide layer and separated from the second drain by the second field oxide layer.
在本發明的一實施例之中,源極係第一汲極和第二汲極的共同源極,且第一汲極與第二汲極互為對稱結構。 In an embodiment of the invention, the source is a common source of the first drain and the second drain, and the first drain and the second drain are symmetric with each other.
在本發明的一實施例之中,第一電性區將第二電性區一分為二。 In an embodiment of the invention, the first electrical region divides the second electrical region into two.
在本發明的一實施例之中,隔離環具有由第二電性半導體層的上表面往埋藏層,遞減的摻雜濃度。 In an embodiment of the invention, the spacer ring has a decreasing doping concentration from the upper surface of the second electrical semiconductor layer to the buried layer.
在本發明的一實施例之中,隔離環係藉由內連線或打線,與源極電性接觸。 In an embodiment of the invention, the isolation ring is in electrical contact with the source by an interconnect or wire.
在本發明的一實施例之中,第一電性為P型,且第二電性為N型。在本發明的一實施例之中,埋藏層包括一個硼/銦/硼(B/In/B)三層摻雜結構。 In an embodiment of the invention, the first electrical property is a P-type and the second electrical property is an N-type. In an embodiment of the invention, the buried layer comprises a boron/indium/boron (B/In/B) three-layer doped structure.
根據上述實施例,本發明的是提供一種橫向擴散金屬氧化物半導體電晶體結構,其係在半導體基材中,形成環繞源極和汲極的隔離環,並且使隔離環與形成在基材中的埋藏層接觸。其中,隔離環與埋藏層具有相同電性,且與源極電性接觸。可藉由隔離環與埋藏層,形成與源極等電位的隔離結構,來環繞橫向擴散金屬氧化物半導體電晶體,以防止元件中的寄生雙極電晶體,與其他積體電路元件產生閉鎖(latch up)現象。解決習知技術,因關鍵尺寸縮小,而易發生寄生電晶體擊穿的問題。 並同時增進橫向擴散金屬氧化物半導體電晶體結構,的崩潰電壓,降低其導通電阻(Ron),提高半導體元件的效能。 According to the above embodiments, the present invention provides a laterally diffused metal oxide semiconductor transistor structure which is formed in a semiconductor substrate, forms an isolation ring surrounding the source and the drain, and forms the spacer ring and the substrate. The buried layer is in contact. Wherein, the isolation ring and the buried layer have the same electrical property and are in electrical contact with the source. The isolation ring and the buried layer can be formed to form an isolation structure with the source equipotential to surround the laterally diffused metal oxide semiconductor transistor to prevent parasitic bipolar transistors in the device from being latched with other integrated circuit components ( Latch up) phenomenon. The conventional technology is solved, and the critical size is reduced, which is prone to parasitic transistor breakdown. At the same time, the breakdown voltage of the laterally diffused metal oxide semiconductor transistor structure is increased, the on-resistance (Ron) is lowered, and the performance of the semiconductor device is improved.
本發明是在提供一種橫向擴散金屬氧化物半導體電晶體結構,解決習知技術因關鍵尺寸縮小,而易發生寄生電晶體擊穿的問題。為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉數種橫向擴散金屬氧化物半導體電晶體結構,作為較佳實施例,並配合所附圖式及比較例,作詳細說明如下。 The present invention is to provide a laterally diffused metal oxide semiconductor transistor structure, which solves the problem that the prior art is prone to parasitic transistor breakdown due to the critical size reduction. The above and other objects, features and advantages of the present invention will become more apparent and understood. A detailed description is as follows.
請參照圖1,圖1係根據本發明的一實施例,所繪示之橫向擴散金屬氧化物半導體電晶體結構100的結構剖面圖。橫向擴散金屬氧化物半導體電晶體結構100,包括:基材101、埋藏層102、P型半導體層103、閘極104、源極105、汲極106、場氧化層107、隔離環108以及閘介電層109。 Please refer to FIG. 1. FIG. 1 is a cross-sectional view showing the structure of a laterally diffused metal oxide semiconductor transistor structure 100 according to an embodiment of the invention. The laterally diffused metal oxide semiconductor transistor structure 100 includes a substrate 101, a buried layer 102, a P-type semiconductor layer 103, a gate 104, a source 105, a drain 106, a field oxide layer 107, an isolation ring 108, and a gate dielectric. Electrical layer 109.
基材101為一半導體基材,較佳係一矽基材。埋藏層102,係形成於基材101之中的一N型摻雜層。在本發明的一些實施例之中,埋藏層102由基材101表面101a向下延伸進入基材101之中,且埋藏層102至少包括磷和銻兩種摻質。在本實施例之中,埋藏層102係由磷/銻/磷三層摻雜結構所構成。其中銻摻雜層102a的摻雜濃度,實質高於另外兩個磷摻雜層102b和102c的摻雜濃度。 The substrate 101 is a semiconductor substrate, preferably a tantalum substrate. The buried layer 102 is an N-type doped layer formed in the substrate 101. In some embodiments of the invention, the buried layer 102 extends downwardly from the surface 101a of the substrate 101 into the substrate 101, and the buried layer 102 includes at least two dopants, phosphorus and germanium. In the present embodiment, the buried layer 102 is composed of a phosphorus/germanium/phosphorus three-layer doped structure. The doping concentration of the germanium doped layer 102a is substantially higher than the doping concentration of the other two phosphorus doped layers 102b and 102c.
在本發明的一些實施例之中,埋藏層102的厚度,實質約為3μm,且磷/銻/磷三層摻雜結構,係藉由至少三次獨立的摻質植入製程,依序將磷/銻/磷摻質植入基材101之中。但在另 外一些實施例之中,是先在基材101之中形成一磷摻雜層,之後再將銻摻質植入磷摻雜層之中,以形成銻摻雜層102a,將此一磷摻雜層一分為二(即區分為磷摻雜層102b和102c)。 In some embodiments of the present invention, the thickness of the buried layer 102 is substantially about 3 μm, and the phosphorus/germanium/phosphorus three-layer doping structure is sequentially deposited by at least three independent dopant implantation processes. /锑/phosphorus dopant is implanted in the substrate 101. But in another In some embodiments, a phosphorus doped layer is first formed in the substrate 101, and then the germanium dopant is implanted into the phosphorus doped layer to form the germanium doped layer 102a. The impurity layer is divided into two (i.e., differentiated into phosphorus doped layers 102b and 102c).
P型半導體層103,係形成於基材101上方的一磊晶層。此磊晶層位於埋藏層102上方,並且與埋藏層102接觸。在本發明的一實施例之中,P型半導體層103摻雜有P型摻質,例如硼(B+)摻雜離子,且厚度實質約為7μm。 The P-type semiconductor layer 103 is an epitaxial layer formed over the substrate 101. The epitaxial layer is above the buried layer 102 and is in contact with the buried layer 102. In an embodiment of the invention, the P-type semiconductor layer 103 is doped with a P-type dopant, such as boron (B+) doped ions, and has a thickness of substantially 7 μm.
源極105具有一P型區105a和一N型區105b,位於P型半導體層103中的一N型井110中。在本發明的一些實施例之中,N型井110包含一N型主體區110a(以N-Body表示)及一高壓N型井區110b(以HVDNW表示)。N型主體110a位於高壓N型井區110b之中;且P型區105a和N型區105b位於N型主體110a之中。在本實施例中,N型區105b為一N型高摻雜區(以N+表示),P型區105a為一P型高摻雜區(以P+表示);N型區105b具有實質高於N型主體110a的摻雜濃度;且N型主體110a具有實質高於高壓N型井區110b的摻雜濃度。 The source 105 has a P-type region 105a and an N-type region 105b, which are located in an N-type well 110 in the P-type semiconductor layer 103. In some embodiments of the invention, the N-type well 110 includes an N-type body region 110a (denoted by N-Body) and a high pressure N-type well region 110b (represented by HVDNW). The N-type body 110a is located in the high-pressure N-type well region 110b; and the P-type region 105a and the N-type region 105b are located in the N-type body 110a. In this embodiment, the N-type region 105b is an N-type highly doped region (represented by N+), the P-type region 105a is a P-type highly doped region (indicated by P+); the N-type region 105b has a substantially higher The doping concentration of the N-type body 110a; and the N-type body 110a has a doping concentration substantially higher than the high-pressure N-type well region 110b.
汲極106亦形成P型半導體層103中,且具有一個P型高摻雜區106a(以P+表示)以及一個P型飄移區106b(以P-Drift表示)。其中,P型高摻雜區106a位於P型飄移區106b之中。此外,P型高摻雜區106a的摻雜濃度,實質高於P型飄移區106b的摻雜濃度;且P型飄移區106b的摻雜濃度,實質高於P型半導體層103的摻雜濃度。 The drain 106 is also formed in the P-type semiconductor layer 103 and has a P-type highly doped region 106a (indicated by P+) and a P-type drift region 106b (indicated by P-Drift). Among them, the P-type highly doped region 106a is located in the P-type drift region 106b. In addition, the doping concentration of the P-type highly doped region 106a is substantially higher than the doping concentration of the P-type drift region 106b; and the doping concentration of the P-type drift region 106b is substantially higher than the doping concentration of the P-type semiconductor layer 103. .
閘介電層109覆蓋於源極105和一部份P型半導體層103上方。場氧化層107,形成於P型半導體層103之中,且部份地突出於P型半導體層103的表面103a。閘極104位於閘介 電層109之上,且部份地跨置於場氧化層107之上,並藉由場氧化層107與汲極106分離。 The gate dielectric layer 109 covers the source 105 and a portion of the P-type semiconductor layer 103. The field oxide layer 107 is formed in the P-type semiconductor layer 103 and partially protrudes from the surface 103a of the P-type semiconductor layer 103. Gate 104 is located in the gate Above the electrical layer 109, and partially over the field oxide layer 107, and separated from the drain 106 by the field oxide layer 107.
隔離環108係一具有N型電性的摻雜區,由P型半導體層103表面103a,向下延伸進入P型半導體層103中,而與埋藏層102接觸,並環繞源極105和汲極106,且透過,例如內連線、打線111或或其他導電結構,與源極106電性接觸。在本發明的一些實施例之中,隔離環108包含一N型高摻雜區108a(以N+表示)、一N型井區108b(以NW表示)、一N型漂移區108c(以N-Drift表示)以及一高壓N型井區108d(以HVDNW表示)。 The isolation ring 108 is a doped region having an N-type electrical conductivity, extending from the surface 103a of the P-type semiconductor layer 103 into the P-type semiconductor layer 103, and in contact with the buried layer 102, and surrounding the source 105 and the drain 106, and is in electrical contact with the source 106 through, for example, an interconnect, a wire 111, or other conductive structure. In some embodiments of the invention, the isolation ring 108 includes an N-type highly doped region 108a (denoted by N+), an N-type well region 108b (denoted by NW), and an N-type drift region 108c (with N- Drift) and a high pressure N-well zone 108d (represented by HVDNW).
其中,N型高摻雜區108a由P型半導體層103的表面103a向下延伸進入N型井區108b;N型井區108b位於N型漂移區108c之中;N型漂移區108c位於高壓N型井區108d之中。N型高摻雜區108a的摻雜濃度,大於N型井區108b的摻雜濃度;N型井區108b的摻雜濃度,大於N型漂移區108c的摻雜濃度;且N型漂移區108c的摻雜濃度,大於高壓N型井區108d的摻雜濃度。也就是說,隔離環108,具有由P型半導體層103的表面103a,往埋藏層102遞減的摻雜濃度。 Wherein, the N-type highly doped region 108a extends downward from the surface 103a of the P-type semiconductor layer 103 into the N-type well region 108b; the N-type well region 108b is located in the N-type drift region 108c; and the N-type drift region 108c is located at the high-voltage N In the well area 108d. The doping concentration of the N-type highly doped region 108a is greater than the doping concentration of the N-type well region 108b; the doping concentration of the N-type well region 108b is greater than the doping concentration of the N-type drift region 108c; and the N-type drift region 108c The doping concentration is greater than the doping concentration of the high pressure N-type well region 108d. That is, the spacer ring 108 has a doping concentration which is decreased by the surface 103a of the P-type semiconductor layer 103 toward the buried layer 102.
由於,隔離環108與埋藏層102皆具有相同的N型電性,且與源極的N型區105b電性接觸。故而,藉由隔離環108與埋藏層102,可在P型半導體層103之中,形成與源極105等電位的隔離結構,用來防止P型半導體層103中的寄生雙極電晶體,與其他積體電路元件(未繪示)產生閉鎖現象。更可增進橫向擴散金屬氧化物半導體電晶體結構100的崩潰電壓,並同時降低其導通電阻,提高半導體元件的效能。 Because the isolation ring 108 and the buried layer 102 both have the same N-type electrical property, and are in electrical contact with the N-type region 105b of the source. Therefore, by the isolation ring 108 and the buried layer 102, an isoelectric isolation structure with the source 105 can be formed in the P-type semiconductor layer 103 to prevent parasitic bipolar transistors in the P-type semiconductor layer 103, and Other integrated circuit components (not shown) create a latch-up phenomenon. The breakdown voltage of the laterally diffused metal oxide semiconductor transistor structure 100 can be further improved, and at the same time, the on-resistance thereof is lowered, and the performance of the semiconductor element is improved.
請參照圖2,圖2據本發明的另一實施例,所繪示之橫向 擴散金屬氧化物半導體電晶體結構200的結構剖面圖。其中,橫向擴散金屬氧化物半導體電晶體結構200的結構,大致與橫向擴散金屬氧化物半導體電晶體結構100相似。差別在於,橫向擴散金屬氧化物半導體電晶體結構200還包括另一個閘極204及汲極206。為了方便說明起見,圖2中與圖1相似的元件,將使用相同的元件符號來進行繪示。 Please refer to FIG. 2, which illustrates a lateral view according to another embodiment of the present invention. A cross-sectional view of the structure of the diffusion metal oxide semiconductor transistor structure 200. The structure of the laterally diffused metal oxide semiconductor transistor structure 200 is substantially similar to the laterally diffused metal oxide semiconductor transistor structure 100. The difference is that the laterally diffused metal oxide semiconductor transistor structure 200 further includes another gate 204 and drain 206. For the sake of convenience of explanation, elements similar to those in FIG. 1 in FIG. 2 will be denoted by the same reference numerals.
在本實施例之中,汲極106與汲極206共用源極205,且汲極106與汲極206互為對稱結構。源極205包含兩個P型區205a和205c以及一個N型區205b,三者皆位於P型半導體層103中的N型井110中;且N型區205b將兩個P型區205a和205c分隔開來。N型區205b為一N型高摻雜區(以N+表示),P型區205a和205c為P型高摻雜區(以P+表示);且N型區205b具有實質高於N型主體110a的摻雜濃度。 In the present embodiment, the drain 106 and the drain 206 share the source 205, and the drain 106 and the drain 206 are symmetric with each other. The source 205 includes two P-type regions 205a and 205c and an N-type region 205b, all of which are located in the N-type well 110 in the P-type semiconductor layer 103; and the N-type region 205b will have two P-type regions 205a and 205c. Separated by. N-type region 205b is an N-type highly doped region (represented by N+), P-type regions 205a and 205c are P-type highly doped regions (represented by P+); and N-type region 205b has substantially higher than N-type body 110a Doping concentration.
汲極206形成於P型半導體層103中,具有一個P型高摻雜區206a(以P+表示)以及一個P型飄移區206b(以P-Drift表示),且P型高摻雜區206a位於P型飄移區206b之中。此外,汲極206之P型高摻雜區206a的摻雜濃度,實質高於P型飄移區206b的摻雜濃度;且P型飄移區206b的摻雜濃度,實質高於P型半導體層103的摻雜濃度。閘極204位於閘介電層109上方,且部份地跨置於場氧化層107之上,並藉由場氧化層107與汲極206分離。 The drain electrode 206 is formed in the P-type semiconductor layer 103, and has a P-type highly doped region 206a (indicated by P+) and a P-type drift region 206b (indicated by P-Drift), and the P-type highly doped region 206a is located. In the P-type drift zone 206b. In addition, the doping concentration of the P-type highly doped region 206a of the drain 206 is substantially higher than the doping concentration of the P-type drift region 206b; and the doping concentration of the P-type drift region 206b is substantially higher than that of the P-type semiconductor layer 103. Doping concentration. The gate 204 is over the gate dielectric layer 109 and partially overlying the field oxide layer 107 and is separated from the drain 206 by the field oxide layer 107.
相同地,由於隔離環108與埋藏層102皆具有相同的N型電性,且與源極205的N型區205b電性接觸,可藉由隔離環108與埋藏層102,在P型半導體層103之中,形成與源極205等電位的隔離結構,用來防止P型半導體層103中的寄生雙極電晶體發生閉鎖現象,可增進橫向擴散金屬氧化物半導體電晶體結構200的崩潰電壓,並同時降低其導通電阻,提高半 導體元件的效能。 Similarly, since the isolation ring 108 and the buried layer 102 both have the same N-type electrical property and are in electrical contact with the N-type region 205b of the source electrode 205, the isolation ring 108 and the buried layer 102 can be used in the P-type semiconductor layer. In 103, an isolation structure having the same potential as the source electrode 205 is formed to prevent the parasitic bipolar transistor in the P-type semiconductor layer 103 from being latched, and the breakdown voltage of the laterally diffused metal oxide semiconductor transistor structure 200 can be improved. And at the same time reduce its on-resistance, increase half The effectiveness of the conductor elements.
值得注意的是,上述實施例僅係以數個具有P型通道的橫向擴散金屬氧化物半導體電晶體結構,來說明本發明的技術特徵。但本發明的應用範圍並不以此為限。本發明的技術特徵,亦可應用於具有N型通道的橫向擴散金屬氧化物半導體電晶體結構之中。 It is to be noted that the above embodiment illustrates the technical features of the present invention only by a plurality of laterally diffused metal oxide semiconductor transistor structures having P-type channels. However, the scope of application of the present invention is not limited thereto. The technical features of the present invention can also be applied to a laterally diffused metal oxide semiconductor transistor structure having an N-type channel.
例如,請參照圖3,圖3據本發明的又一實施例,所繪示之橫向擴散金屬氧化物半導體電晶體結構300的結構剖面圖。其中,橫向擴散金屬氧化物半導體電晶體結構300的結構,大致與橫向擴散金屬氧化物半導體電晶體結構200相似。差別在於,橫向擴散金屬氧化物半導體電晶體結構300具有N型通道。 For example, please refer to FIG. 3. FIG. 3 is a cross-sectional view showing the structure of a laterally diffused metal oxide semiconductor transistor structure 300 according to still another embodiment of the present invention. The structure of the laterally diffused metal oxide semiconductor transistor structure 300 is substantially similar to the laterally diffused metal oxide semiconductor transistor structure 200. The difference is that the laterally diffused metal oxide semiconductor transistor structure 300 has an N-type channel.
橫向擴散金屬氧化物半導體電晶體結構300包括基材301、電性為P型的埋藏層302、N型半導體層303、閘極304和314、源極305、汲極306和316、場氧化層307、隔離環308以及閘介電層309。 The laterally diffused metal oxide semiconductor transistor structure 300 includes a substrate 301, a P-type buried layer 302, an N-type semiconductor layer 303, gates 304 and 314, a source 305, drains 306 and 316, and a field oxide layer. 307, isolation ring 308 and gate dielectric layer 309.
埋藏層302係一P型摻雜層,位於基材301之中。其中,埋藏層302至少包括硼和銦(In)兩種摻質。雖然在本實施例之中,埋藏層302係繪示成一單層結構,但在本發明的一些實施例之中,埋藏層302可以是由硼/銦/硼三層摻雜結構所構成。其中銦摻雜層(未繪示)的摻雜濃度,實質高於另外兩個硼摻雜層(未繪示)的摻雜濃度。 The buried layer 302 is a P-type doped layer located in the substrate 301. The buried layer 302 includes at least two dopants of boron and indium (In). Although in the present embodiment, the buried layer 302 is illustrated as a single layer structure, in some embodiments of the present invention, the buried layer 302 may be composed of a boron/indium/boron three-layer doped structure. The doping concentration of the indium doped layer (not shown) is substantially higher than the doping concentration of the other two boron doped layers (not shown).
N型半導體層303係形成於基材301上方的一磊晶層。此磊晶層位於埋藏層302上方,並且與埋藏層302接觸。 The N-type semiconductor layer 303 is an epitaxial layer formed over the substrate 301. The epitaxial layer is above the buried layer 302 and is in contact with the buried layer 302.
源極305包含兩個N型區305a和305c以及一個P型區305b,位於N型半導體層303中的P型井310中。P型井310,包含一P型 主體310a(以P-Body表示)及一高壓P型井區310b(以HVDPW表示)。P型主體310a,位於高壓P型井區310b之中;N型區305a和305c以及P型區305b,皆位於P型主體310a之中;且P型區305b,將兩個N型區305a和305c分隔開來。P型區305b,為一P型高摻雜區(以P+表示),N型區305a和305,為N型高摻雜區(分別以N+表示);P型區305b具有實質高於P型主體310a的摻雜濃度;且主體310a的摻雜濃度,實質高於高壓P型井區310b的摻雜濃度。 Source 305 includes two N-type regions 305a and 305c and a P-type region 305b located in P-well 310 in N-type semiconductor layer 303. P-well 310, including a P-type The body 310a (indicated by P-Body) and a high pressure P-type well zone 310b (indicated by HVDPW). P-type body 310a is located in high-pressure P-type well region 310b; N-type regions 305a and 305c and P-type region 305b are located in P-type body 310a; and P-type region 305b, two N-type regions 305a and The 305c is separated. P-type region 305b is a P-type highly doped region (represented by P+), N-type regions 305a and 305 are N-type highly doped regions (represented by N+, respectively); P-type region 305b has substantially higher P-type The doping concentration of the body 310a; and the doping concentration of the body 310a is substantially higher than the doping concentration of the high pressure P-type well region 310b.
汲極306形成於N型半導體層303中,且具有一個N型高摻雜區306a(以N+表示)以及一個N型飄移區306b(以N-Drift表示)。其中,N型高摻雜區306a,位於N型飄移區306b之中。N型高摻雜區306a的摻雜濃度,實質高於N型飄移區306b的摻雜濃度;且N型飄移區306b的摻雜濃度,實質高於N型半導體層303的摻雜濃度。 The drain 306 is formed in the N-type semiconductor layer 303 and has an N-type highly doped region 306a (indicated by N+) and an N-type drift region 306b (indicated by N-Drift). The N-type highly doped region 306a is located in the N-type drift region 306b. The doping concentration of the N-type highly doped region 306a is substantially higher than the doping concentration of the N-type drift region 306b; and the doping concentration of the N-type drift region 306b is substantially higher than the doping concentration of the N-type semiconductor layer 303.
汲極316形成於N型半導體層303中,且具有一個N型高摻雜區(以N+表示)316a以及一個N型飄移區316b(以N-Drift表示)。其中,N型高摻雜區316a位於N型飄移區316b之中。N型高摻雜區316a的摻雜濃度,實質高於N型飄移區316b的摻雜濃度;且N型飄移區316b的摻雜濃度,實質高於N型半導體層303的摻雜濃度。 The drain 316 is formed in the N-type semiconductor layer 303 and has an N-type highly doped region (represented by N+) 316a and an N-type drift region 316b (indicated by N-Drift). The N-type highly doped region 316a is located in the N-type drift region 316b. The doping concentration of the N-type highly doped region 316a is substantially higher than the doping concentration of the N-type drift region 316b; and the doping concentration of the N-type drift region 316b is substantially higher than the doping concentration of the N-type semiconductor layer 303.
閘介電層309覆蓋於源極305和一部份的N型半導體層303上方。場氧化層307,形成於N型半導體層303之中,且部份地突出於N型半導體層303表面303a。閘極304和314分別位於閘介電層309之上,且分別部份地跨置於場氧化層307之上,並藉由場氧化層307,分別與汲極306和316分離。 A gate dielectric layer 309 overlies the source 305 and a portion of the N-type semiconductor layer 303. A field oxide layer 307 is formed in the N-type semiconductor layer 303 and partially protrudes from the surface 303a of the N-type semiconductor layer 303. Gates 304 and 314 are respectively disposed over gate dielectric layer 309 and partially overlying field oxide layer 307, respectively, and are separated from drain electrodes 306 and 316 by field oxide layer 307, respectively.
隔離環308係一具有P型電性的摻雜區,由N型半導體 層303表面303a,向下延伸進入N型半導體層303中,而與埋藏層302接觸,並環繞源極305和汲極306,且透過,例如內連線、打線或其他導電結構311,與源極306電性接觸。在本發明的一些實施例之中,隔離環308包含一P型高摻雜區308a(以P+表示)、一P型井區308b(以PW表示)、一P型漂移區308c(以P-Drift表示)以及一高壓P型井區308d(以HVDPW表示)。 The isolation ring 308 is a doped region having a P-type electrical property, and is made of an N-type semiconductor. The surface 303a of the layer 303 extends downward into the N-type semiconductor layer 303, contacts the buried layer 302, and surrounds the source 305 and the drain 306, and is transmitted through, for example, an interconnect, a wire or other conductive structure 311, and a source. The pole 306 is in electrical contact. In some embodiments of the invention, the isolation ring 308 includes a P-type highly doped region 308a (denoted by P+), a P-type well region 308b (denoted by PW), and a P-type drift region 308c (with P-). Drift) and a high pressure P-well 308d (represented by HVDPW).
其中,P型高摻雜區308a由N型半導體層303表面303a,向下延伸進入P型井區308b;P型井區308b位於P型漂移區308c之中;P型漂移區308c位於高壓P型井區308d之中。P型高摻雜區308a的摻雜濃度,大於P型井區308b的摻雜濃度;P型井區308b的摻雜濃度,大於P型漂移區308c的摻雜濃度;且P型漂移區308c的摻雜濃度,大於高壓P型井區308d的摻雜濃度。 Wherein, the P-type highly doped region 308a extends from the surface 303a of the N-type semiconductor layer 303 to the P-type well region 308b; the P-type well region 308b is located in the P-type drift region 308c; and the P-type drift region 308c is located at the high voltage P In the well area 308d. The doping concentration of the P-type highly doped region 308a is greater than the doping concentration of the P-type well region 308b; the doping concentration of the P-type well region 308b is greater than the doping concentration of the P-type drift region 308c; and the P-type drift region 308c The doping concentration is greater than the doping concentration of the high pressure P-type well region 308d.
由於,隔離環308與埋藏層302皆具有相同的P型電性,且與源極的P型區305b電性接觸,可藉由隔離環308與埋藏層302在N型半導體層303之中,形成與源極305等電位的隔離結構,用來防止N型半導體層303中的寄生雙極電晶體產生閉鎖,可增進橫向擴散金屬氧化物半導體電晶體結構300的崩潰電壓,並同時降低其導通電阻,提高半導體元件的效能。 Since the isolation ring 308 and the buried layer 302 both have the same P-type electrical property and are in electrical contact with the P-type region 305b of the source, the isolation ring 308 and the buried layer 302 may be in the N-type semiconductor layer 303. Forming an isolating structure equal to the source 305 for preventing the parasitic bipolar transistor in the N-type semiconductor layer 303 from being latched, which can increase the breakdown voltage of the laterally diffused metal oxide semiconductor transistor structure 300 while reducing its conduction. Resistance to improve the performance of semiconductor components.
根據上述實施例,本發明的是提供一種橫向擴散金屬氧化物半導體電晶體結構,其係在半導體基材中,形成環繞源極和汲極的隔離環,並且使隔離環與形成在基材中的埋藏層接觸。其中,隔離環與埋藏層具有相同電性,且與源極電性接觸。可藉由隔離環與埋藏層,形成與源極等電位的隔離結構,來環繞橫向擴散金屬氧化物半導體電晶體,以防止元件中的寄生雙極 電晶體,與其他積體電路元件產生閉鎖(latch up)現象。解決習知技術,因關鍵尺寸縮小,而易發生寄生電晶體擊穿的問題。並同時增進橫向擴散金屬氧化物半導體電晶體結構,的崩潰電壓,降低其導通電阻(Ron),提高半導體元件的效能。 According to the above embodiments, the present invention provides a laterally diffused metal oxide semiconductor transistor structure which is formed in a semiconductor substrate, forms an isolation ring surrounding the source and the drain, and forms the spacer ring and the substrate. The buried layer is in contact. Wherein, the isolation ring and the buried layer have the same electrical property and are in electrical contact with the source. The isolation ring and the buried layer can be formed to form an isolation structure with the source equipotential to surround the lateral diffusion metal oxide semiconductor transistor to prevent parasitic bipolar in the device. The transistor generates a latch up phenomenon with other integrated circuit components. The conventional technology is solved, and the critical size is reduced, which is prone to parasitic transistor breakdown. At the same time, the breakdown voltage of the laterally diffused metal oxide semiconductor transistor structure is increased, the on-resistance (Ron) is lowered, and the performance of the semiconductor device is improved.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。例如,形成化合物半導體磊晶結構的材料,並不限於矽鍺磊晶材料;而合物半導體磊晶結構的應用範圍,也不以金屬氧化物半導體場效應電晶體元件為限。任何該領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in the preferred embodiments, it is not intended to limit the invention. For example, the material for forming the epitaxial structure of the compound semiconductor is not limited to the germanium epitaxial material; and the application range of the epitaxial structure of the compound semiconductor is not limited to the metal oxide semiconductor field effect transistor element. Anyone having ordinary knowledge in the field can make some changes and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
100‧‧‧橫向擴散金屬氧化物半導體電晶體結構 100‧‧‧Transversely diffused metal oxide semiconductor crystal structure
101‧‧‧基材 101‧‧‧Substrate
101a‧‧‧基材表面 101a‧‧‧Substrate surface
102‧‧‧埋藏層 102‧‧‧buried layer
102a‧‧‧銻摻雜層 102a‧‧‧锑Doped layer
102b‧‧‧磷摻雜層 102b‧‧‧phosphorus doped layer
102c‧‧‧磷摻雜層 102c‧‧‧phosphorus doped layer
103‧‧‧P型半導體層 103‧‧‧P type semiconductor layer
103a‧‧‧P型半導體層的表面 103a‧‧‧ Surface of P-type semiconductor layer
104‧‧‧閘極 104‧‧‧ gate
105‧‧‧源極 105‧‧‧ source
105a‧‧‧P型區 105a‧‧‧P type area
105b‧‧‧N型區 105b‧‧‧N-zone
106‧‧‧汲極 106‧‧‧汲polar
106a‧‧‧P型高摻雜區 106a‧‧‧P type highly doped area
106b‧‧‧P型飄移區 106b‧‧‧P type drift zone
107‧‧‧場氧化層 107‧‧‧Field oxide layer
108‧‧‧隔離環 108‧‧‧Isolation ring
108a‧‧‧N型高摻雜區 108a‧‧‧N type highly doped area
108b‧‧‧N型井區 108b‧‧‧N type well area
108c‧‧‧N型漂移區 108c‧‧‧N type drift zone
108d‧‧‧高壓N型井區 108d‧‧‧High pressure N-type well area
109‧‧‧閘介電層 109‧‧‧gate dielectric layer
110‧‧‧N型井 110‧‧‧N type well
110a‧‧‧N型主體 110a‧‧‧N-type subject
110b‧‧‧高壓N型井區 110b‧‧‧High pressure N-well area
111‧‧‧導電結構 111‧‧‧Electrical structure
200‧‧‧橫向擴散金屬氧化物半導體電晶體結構 200‧‧‧Transversely diffused metal oxide semiconductor crystal structure
204‧‧‧閘極 204‧‧‧ gate
205‧‧‧源極 205‧‧‧ source
205a‧‧‧P型區 205a‧‧‧P type area
205b‧‧‧N型區 205b‧‧‧N-zone
205c‧‧‧P型區 205c‧‧‧P type area
206‧‧‧汲極 206‧‧‧汲polar
206a‧‧‧P型高摻雜區 206a‧‧‧P type highly doped area
206b‧‧‧P型飄移區 206b‧‧‧P type drift zone
300‧‧‧橫向擴散金屬氧化物半導體電晶體結構 300‧‧‧Transversely diffused metal oxide semiconductor crystal structure
301‧‧‧基材 301‧‧‧Substrate
302‧‧‧埋藏層 302‧‧‧buried layer
303‧‧‧N型半導體層 303‧‧‧N type semiconductor layer
303a‧‧‧N型半導體層表面 303a‧‧‧N type semiconductor layer surface
304‧‧‧閘極 304‧‧‧ gate
305‧‧‧源極 305‧‧‧ source
305a‧‧‧N型區 305a‧‧‧N-zone
305b‧‧‧P型區 305b‧‧‧P type area
305c‧‧‧N型區 305c‧‧‧N-zone
306‧‧‧汲極 306‧‧‧汲polar
306a‧‧‧N型高摻雜區 306a‧‧‧N type highly doped area
306b‧‧‧N型飄移區 306b‧‧‧N type drift zone
307‧‧‧場氧化層 307‧‧ ‧ field oxide layer
308‧‧‧隔離環 308‧‧‧Isolation ring
308a‧‧‧P型高摻雜區 308a‧‧‧P type highly doped area
308b‧‧‧P型井區 308b‧‧‧P type well area
308c‧‧‧P型漂移區 308c‧‧‧P type drift zone
308d‧‧‧高壓P型井區 308d‧‧‧High pressure P-well area
309‧‧‧閘介電層 309‧‧‧gate dielectric layer
310‧‧‧P型井 310‧‧‧P type well
310a‧‧‧P型主體 310a‧‧‧P-type subject
310b‧‧‧高壓P型井區 310b‧‧‧High pressure P-well area
311‧‧‧導電結構 311‧‧‧Electrical structure
314‧‧‧閘極 314‧‧‧ gate
316‧‧‧汲極 316‧‧‧汲polar
316a‧‧‧N型高摻雜區 316a‧‧‧N type highly doped area
316b‧‧‧N型飄移區 316b‧‧‧N type drift zone
圖1係根據本發明的一實施例,所繪示之橫向擴散金屬氧化物半導體電晶體結構的結構剖面圖。 1 is a cross-sectional view showing the structure of a laterally diffused metal oxide semiconductor transistor structure according to an embodiment of the present invention.
圖2據本發明的另一實施例,所繪示之橫向擴散金屬氧化物半導體電晶體結構的結構剖面圖。 2 is a cross-sectional view showing the structure of a laterally diffused metal oxide semiconductor transistor structure according to another embodiment of the present invention.
圖3據本發明的又一實施例,所繪示之橫向擴散金屬氧化物半導體電晶體結構的結構剖面圖。 3 is a cross-sectional view showing the structure of a laterally diffused metal oxide semiconductor transistor structure according to still another embodiment of the present invention.
100‧‧‧橫向擴散金屬氧化物半導體電晶體結構 100‧‧‧Transversely diffused metal oxide semiconductor crystal structure
101‧‧‧基材 101‧‧‧Substrate
101a‧‧‧基材表面 101a‧‧‧Substrate surface
102‧‧‧埋藏層 102‧‧‧buried layer
102a‧‧‧銻摻雜層 102a‧‧‧锑Doped layer
102b‧‧‧磷摻雜層 102b‧‧‧phosphorus doped layer
102c‧‧‧磷摻雜層 102c‧‧‧phosphorus doped layer
103‧‧‧P型半導體層 103‧‧‧P type semiconductor layer
103a‧‧‧P型半導體層的表面 103a‧‧‧ Surface of P-type semiconductor layer
104‧‧‧閘極 104‧‧‧ gate
105‧‧‧源極 105‧‧‧ source
105a‧‧‧P型區 105a‧‧‧P type area
105b‧‧‧N型區 105b‧‧‧N-zone
106‧‧‧汲極 106‧‧‧汲polar
106a‧‧‧P型高摻雜區 106a‧‧‧P type highly doped area
106b‧‧‧P型飄移區 106b‧‧‧P type drift zone
107‧‧‧場氧化層 107‧‧‧Field oxide layer
108‧‧‧隔離環 108‧‧‧Isolation ring
108a‧‧‧N型高摻雜區 108a‧‧‧N type highly doped area
108b‧‧‧N型井區 108b‧‧‧N type well area
108c‧‧‧N型漂移區 108c‧‧‧N type drift zone
108d‧‧‧高壓N型井區 108d‧‧‧High pressure N-type well area
109‧‧‧閘介電層 109‧‧‧gate dielectric layer
110‧‧‧N型井 110‧‧‧N type well
110a‧‧‧N型主體 110a‧‧‧N-type subject
110b‧‧‧高壓N型井區 110b‧‧‧High pressure N-well area
111‧‧‧導電結構 111‧‧‧Electrical structure
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101129427A TWI531064B (en) | 2012-08-14 | 2012-08-14 | Lateral diffusion metal oxide semiconductor transistor structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101129427A TWI531064B (en) | 2012-08-14 | 2012-08-14 | Lateral diffusion metal oxide semiconductor transistor structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201407779A true TW201407779A (en) | 2014-02-16 |
TWI531064B TWI531064B (en) | 2016-04-21 |
Family
ID=50550584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101129427A TWI531064B (en) | 2012-08-14 | 2012-08-14 | Lateral diffusion metal oxide semiconductor transistor structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI531064B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI641107B (en) * | 2017-12-25 | 2018-11-11 | 新唐科技股份有限公司 | Lateral diffused metal oxide semiconductor field effect transistor |
TWI646653B (en) * | 2017-12-28 | 2019-01-01 | 新唐科技股份有限公司 | Laterally diffused metal oxide semiconductor field effect transistor |
-
2012
- 2012-08-14 TW TW101129427A patent/TWI531064B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI641107B (en) * | 2017-12-25 | 2018-11-11 | 新唐科技股份有限公司 | Lateral diffused metal oxide semiconductor field effect transistor |
TWI646653B (en) * | 2017-12-28 | 2019-01-01 | 新唐科技股份有限公司 | Laterally diffused metal oxide semiconductor field effect transistor |
Also Published As
Publication number | Publication date |
---|---|
TWI531064B (en) | 2016-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5641131B2 (en) | Semiconductor device and manufacturing method thereof | |
US8541862B2 (en) | Semiconductor device with self-biased isolation | |
CN100334742C (en) | Isolated high-voltage LDMOS transistor having a split well structure | |
US8816476B2 (en) | Through silicon via processing techniques for lateral double-diffused MOSFETS | |
TWI274419B (en) | High-voltage MOS device | |
EP2860762B1 (en) | High voltage junction field effect transistor | |
US9159803B2 (en) | Semiconductor device with HCI protection region | |
WO2016152058A1 (en) | Semiconductor device | |
US7511319B2 (en) | Methods and apparatus for a stepped-drift MOSFET | |
TW201601291A (en) | Forming JFET and LDMOS transistor in monolithic power integrated circuit using deep diffusion regions | |
US20200295150A1 (en) | Semiconductor device | |
CN102856386A (en) | Semiconductor device and its manufacturing method | |
US9859414B2 (en) | Semiconductor device | |
CN109935633B (en) | LDMOS device | |
US8264015B2 (en) | Semiconductor device wherein a first insulated gate field effect transistor is connected in series with a second field effect transistor | |
CN110875310B (en) | Integration of high voltage CMOS devices with shared isolation regions | |
US10256340B2 (en) | High-voltage semiconductor device and method for manufacturing the same | |
KR20110078621A (en) | Semiconductor device, and fabricating method thereof | |
US9153574B2 (en) | Semiconductor device and method of fabricating the same | |
CN107871782B (en) | Double-diffusion metal oxide semiconductor element and manufacturing method thereof | |
TWI531064B (en) | Lateral diffusion metal oxide semiconductor transistor structure | |
US8643104B1 (en) | Lateral diffusion metal oxide semiconductor transistor structure | |
CN107146814B (en) | High voltage semiconductor device and method for manufacturing the same | |
US9356100B2 (en) | Semiconductor device | |
US20220102551A1 (en) | LDMOS transistor having vertical floating field plate and manufacture fhereof |