TW201403852A - 對於光致劣化具有改良抗性之矽基太陽能電池 - Google Patents

對於光致劣化具有改良抗性之矽基太陽能電池 Download PDF

Info

Publication number
TW201403852A
TW201403852A TW102116793A TW102116793A TW201403852A TW 201403852 A TW201403852 A TW 201403852A TW 102116793 A TW102116793 A TW 102116793A TW 102116793 A TW102116793 A TW 102116793A TW 201403852 A TW201403852 A TW 201403852A
Authority
TW
Taiwan
Prior art keywords
doped
layer
solar cell
energy gap
semiconductor layer
Prior art date
Application number
TW102116793A
Other languages
English (en)
Inventor
Xavier Multone
Daniel Borrello
Stefano Benagli
Johannes Meier
Ulrich Kroll
Marian Fecioru-Morariu
Original Assignee
Tel Solar Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tel Solar Ag filed Critical Tel Solar Ag
Publication of TW201403852A publication Critical patent/TW201403852A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03765Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System including AIVBIV compounds or alloys, e.g. SiGe, SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System including AIVBIV alloys, e.g. SiGe, SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

描述對於光致劣化具有高抗性的太陽能元件。透過使用含氫電漿的處理,使配置在p摻雜半導體層和本質半導體層之間的一寬光學能隙介面層對於光致劣化具抗性。在一實施例中形成p-i-n結構,具有在p/i介面的介面層。選擇性地,在本質層和n摻雜層間形成以含氫電漿處理的一額外介面層。替代地,在沉積n摻雜半導體層之前使用含氫電漿處理本質層的上部。介面層亦適用於具多個p-i-n結構的多接面太陽能電池。p摻雜和n摻雜層可選擇性包含不同組成物和不同形態的子層(例如微晶形或非晶形)。整體結構顯示對於光致劣化增進的穩定性及改善的效能水準。

Description

對於光致劣化具有改良抗性之矽基太陽能電池
本申請案主張於西元2012年5月10日申請之美國專利暫時申請案第61/645121號的優先權,其內容於此藉由參照納入作為本案揭示內容的一部分。
本發明係關於改良之太陽能電池,且更具體而言,係與由於在太陽能電池結構之內一個以上位置處所配置之薄的寬光學能隙介面膜而對於光致劣化具有改善抗性之改良的太陽能電池相關。
為了產生高效率矽基薄膜太陽能電池,高開路電壓(Voc)、高電流容量、及長期穩定性係高度期望的。在這些太陽能電池之中,一個以上p-i-n(或替代的n-i-p)結構形成將來自入射光源的光子轉換為電動勢之基礎。然而,長期穩定性受持續暴露於入射光源所影響。此暴露的一個後果係太陽能電池的光致劣化。舉例來說,可藉由降低的填充因子(fill factor),亦即是最大可取得功率對開路電壓及短路電流之乘積的比例,對劣化加以量測。
吾人已企圖透過插入阻障層以將介於p-i-n結構的摻雜層和非摻雜層之間的摻質擴散最小化,特別是在元件製造期間,俾以降低太陽能電池光致劣化。美國專利第8,252,624號在p摻雜矽層和本質矽層之間建立非晶形矽和含碳阻障層(a-Sic:H)。特別是,將具有Si-C鍵結的材料描述為捕捉硼原子以防止相鄰本質矽層的汙染。然而,雖然a-SiC:H緩衝層有良好功效,這些層會遭受到光致劣化(Staebler-Wronski效應,SWE)。這是由於所納入的碳所引發之增大的亞穩態缺陷。a-SiC:H層的劣化/穩定程度係直接關聯於碳的濃度。
其他的替代方案已被提出,該等方案增加Voc而維持長期穩定性。美國專利公開案第2011/030853號描述在一非晶形p摻雜矽層和一本質矽層之間形成一奈米結晶含矽層。該層之形成,可透過沉積奈米結晶層,或透過將該非晶形p摻雜矽層的一部分轉換為一奈米結晶材料。雖然該公開申請案描述各種層的Voc上的效果,該公開案並未針對長期穩定性/光致劣化的問題加以處理。
在R.Platz的論文中,利用阻障層增大Voc的機制係「寬能隙緩衝層和本質層(i層)之間於傳導帶邊緣處的能帶偏移,防止電子擴散回到p層以及再結合而不是漂移到n層。」Platz的論文建議使用在p摻雜和本質層之間在高氫稀釋條件下所沉積之薄的非晶形矽層(a-Si:H),以增加最終元件的Voc。然而,氫化非晶形矽亦遭受光致劣化(SWE),且所建議的非晶形矽層不會對太陽能電池的使用期限有所助益。
因此,此技術領域中需要對抗光致劣化的經改良材料,如此確保增進之太陽能電池效能。
本發明提供對於光致劣化具有更大抗性的太陽能元件,確保改善的效能水準。本發明透過使用含氫電漿的處理提供對於光致劣化具有改良抗性的新穎寬光學能隙介面膜。
在一個實施例中,描述製作對於光致劣化具有改良抗性的太陽能電池的方法。將一個以上p摻雜半導體層沉積於一透明基板和電極之上。該p摻雜層由至少一子層構成,該子層包括p摻雜非晶形矽、p摻雜非晶形矽碳、p摻雜非晶形矽氧、p摻雜微晶形矽、p摻雜微晶形氫化矽、p摻雜微晶形矽碳、或p摻雜微晶形矽氧。
在該p摻雜層之上,形成一寬光學能隙介面膜。此寬光學能隙介面膜係實質上由本質氫化非晶形矽膜組成。此膜係利用氫電漿加以處理,產生一光劣化抵抗膜。
將包含矽的一本質半導體層沉積於該寬光學能隙介面膜之上。沉積一個以上n摻雜半導體層於該本質半導體層之上。該n摻雜層係由至少一子層構成,該子層包含n摻雜非晶形矽、n摻雜非晶形矽碳、n摻 雜非晶形矽氧、n摻雜微晶形矽、n摻雜微晶形氫化矽、n摻雜微晶形矽碳、或n摻雜微晶形矽氧。
在n摻雜層之上形成至少一額外的電極層。
本發明發現在具有多個p-i-n結構的串疊型或多接面太陽能電池中進一步的應用,在前述多個p-i-n結構其中若干係以非晶形半導體為基礎的,而其中的其他者係以微晶形半導體為基礎的。
100‧‧‧太陽能電池
10‧‧‧透明基板
20‧‧‧TCO電極層
30‧‧‧p摻雜半導體層
40‧‧‧寬光學能隙介面膜
50‧‧‧本質層
60‧‧‧n摻雜半導體層
70‧‧‧電極層
80‧‧‧反射基板電極
200‧‧‧波長選擇反射層
230‧‧‧p摻雜微晶形矽
250‧‧‧本質微晶形矽
260‧‧‧n摻雜微晶形矽
270‧‧‧電極層
280‧‧‧反射層/反射電極
圖1示意性描繪根據本發明一實施例的非晶形矽基太陽能電池的剖面圖。
圖2示意性描繪根據本發明另一實施例的具有多個p-i-n結構的串疊型太陽能電池的剖面圖。
圖3係非晶形矽、以氫處理的非晶形矽、及非晶形矽碳合金(amorphous silicon-carbon alloy)的光學能隙的圖表。
圖4描繪吸收係數相對於經氫處理的寬光學能隙材料及未處理的寬光學能矽材料之能隙能量。
定義
就本發明的觀點,處理包含作用於基板上的任何化學、物理、或機械性功效。
就本發明的觀點,基板係在一處理設備中受處理的元件、零件、或工作件。基板包含但不僅限於具有矩形、正方形、或圓形形狀的平坦、板狀零件。在一較佳實施例中,本發明係針對具有大於1m2尺寸的實質上平坦基板,例如薄的玻璃板。
一個真空製程或真空處理系統或設備包含在低於環境大氣壓力的壓力下用於待處理基板的至少一封閉空間。CVD化學氣相沉積法係一眾所周知的技術,能夠在經加熱的基板之上進行層的沉積。將通常液態或氣態的先質材料饋入一製程系統,其中該先質的熱反應造成該層的沉積。
TCO表示透明導電氧化物,因而TCO層係透明導電層。
術語層、塗層、沉積物、和膜在此揭露內容中係可互換地用 於在真空處理設備之中所沉積的膜,無論該真空處理設備係關於CVD、LPCVD、電漿輔助CVD(PECVD)、或PVD(物理氣相沉積)。
太陽能電池或光伏打電池(PV電池)係一種電元件,能夠透過光電效應將光(實質上太陽光)直接轉換成電能。在一般意義上薄膜太陽能電池包含在一個支持基板上的至少一個p-i-n接面,其藉由夾設於二個電極或電極層之間的半導體化合物之薄膜沉積而加以建立。一個p-i-n接面或薄膜光電轉換單元包含夾設於p摻雜和n摻雜半導體化合物層之間的一本質半導體化合物層。術語薄膜表示所提及之層係藉由例如PECVD、CVD、PVD、或濺鍍之製程而沉積為薄層或膜。薄層實質上意指具有10μm或更小厚度的層。
光學能隙:光學能隙(E_Tauc)係利用光學透射和反射(亦即是Tauc圖)所測得的能隙。通常將光學能隙以電子伏特表示,而符號Tauc表示其係藉由光學技術加以量測。
根據本發明一個寬光學能隙介面材料係具有一光學能隙的一半導體層,該光學能隙大於在相同太陽能電池元件之中的一本質非晶形半導體層的光學能隙。對於本發明之受氫電漿處理的非晶形矽介面材料,寬光學能隙(E_Tauc)係大於約1.75eV,且更具體而言,大於約1.78eV。吾人注意到本發明之太陽能電池的本質非晶形矽具有大約1.7eV的光學能隙(E_Tauc),而本質晶態矽具有大約1.1eV的光學能隙(E_Tauc)。
詳細觀察圖式,圖1顯示根據本發明之太陽能電池100的剖面圖。在一個真空處理系統中將具有一TCO電極層20的一透明基板10加以製備或形成。TCO電極層通常包含SnO2及/或ZnO或其他已知的透明導電氧化物,例如銦錫氧化物。
通常藉由一種化學氣相沉積法,例如電漿輔助化學氣相沉積法,將p摻雜半導體層30沉積於TCO電極層20之上。當使用於此處,當提及一第二層配置於一第一層「之上」時,術語「之上」包含二種狀況:該第一層和第二層係直接接觸的壯況、以及一個以上中間層配置於該第一和第二層之間的狀況。此外,雖然圖1顯示一p-i-n結構,其中將p摻雜層首先加以沉積,然而本發明亦相同適用於n-i-p結構,其中將n摻雜層首先 加以沉積,通常沉積於一不透明基板。
在一個例示實施例中,至少一部分的p摻雜半導體層30係包含矽的非晶形層。然而,其他含矽半導體層亦可用於p摻雜半導體層30。這包含但不僅限於p摻雜矽鍺合金、非晶形Si:C、非晶形SiOx、矽鍺碳合金、或用於太陽能電池應用的其他已知矽基材料。P摻質通常為硼,雖然基於所欲之該層的電特性可選擇其他摻質。
p摻雜層不需要為單一組成物或單一形態。亦即是,p摻雜半導體層可包含不同組成物及形態的一個以上子層。特別是,可將包含p摻雜微晶形矽(μc-Si)或微晶形氫化矽(μc-Si:H)或其他含有矽的p摻雜微晶形層的一第一子層,在包含非晶形矽的一個以上p摻雜層(如上所述,包含非晶形Si:C、非晶形SiOx、矽鍺碳合金等等)之後加以沉積。
將寬光學能隙介面膜40沉積於p摻雜半導體層30之上。介面膜係形成自本質氫化非晶形矽的薄層,大約5至20奈米。可使用基於含矽先質實例(例如矽烷)和氫的電漿輔助化學氣相沉積法,以形成寬光學能隙介面膜。利用電漿輔助化學氣相沉積法的好處,在於可控制沉積條件以選擇氫化的程度,從而選擇膜的光學特性。要注意到碳係不被包含於寬光學能隙介面膜40之中,這是由於碳呈現光致劣化效應。除了非晶形矽之外,不實質上影響寬光學能隙介面膜40的光學和阻障特性的其他材料,可選擇性地加以包含。特別是,該材料在不影響其整體特性下可選擇性些許地摻雜硼。氧的加入亦可設想成此等膜更能抵抗光致劣化且亦呈現寬光學能隙。特別是,在沒有使用例如CH4或其他烴氣之任何含碳氣體的情況下,執行寬光學能隙介面膜的沉積。因而,寬光學能隙介面膜40係實質上無碳。當使用於此處,術語「實質上無碳」意指碳的量係低於可影響該層的光學或電特性的任何量。
為了實質上增加寬光學能隙介面膜40對於光致劣化的抗性,在沉積膜上執行一含氫電漿處理。該處理通常執行約120秒至600秒的時間。不受限於理論,吾人假定寬能隙a-Si:H主要顯示較少的缺陷(與包含碳之層相較)和相對於SWE增進的穩定性,以及顯示氫電漿處理修改該層的能隙。在該層的可視性研究中,氫電漿處理如圖4可觀察的使該層 的顏色明亮化,其中圖4描繪吸收係數相對於經氫處理的寬光學能隙材料及未經處理的寬光學能隙材料的能隙能量。
將非晶形半導體材料的本質層50沉積於寬光學能隙介面膜40之上。如同p摻雜半導體層30,本質層50可為矽基的且可透過化學氣相沉積法或電漿輔助化學氣相沉積法加以沉積。選用性地,以電漿處理的寬光學能隙介面膜40的另一層可形成於本質層50之上。替代地,可將本質層50的上表面以如上所述的氫電漿處理加以處理。在若干實施例中,在本質層50之內插入複數寬光學能隙介面膜40以增進整個元件的光劣化抗性可能係有益的。
在本質層50(及選用性的額外介面層)之上形成n摻雜半導體層60。如同p摻雜層,n摻雜層可包含不同組成物及/或形態的一個以上子層。特別是,可形成一第一子層,該第一子層包含n摻雜非晶形矽、n摻雜非晶形Si:C、n摻雜非晶形SiOx、n摻雜矽鍺碳合金、或包含非晶形矽的其他n摻雜層。在這個第一子層之上選擇性地沉積n摻雜微晶形矽(μc-Si)或n摻雜微晶形氫化矽(μc-Si:H)或其他含矽的n摻雜微晶形層。通常選擇磷作為n摻質,雖然基於所欲的電特性可選擇其他摻雜材料。
將一電極層70和反射基板電極80形成在n摻雜層之上或接合至該處。
圖2描述具有二個p-i-n結構的串疊型太陽能電池結構。上方p-i-n結構係實質上類似於圖1中所描述的元件。將波長選擇反射層200配置於第一和第二p-i-n結構之間,以選擇性地將入射光的一部分反射回到非晶形p-i-n結構。要注意的是,選擇反射回第一p-i-n結構之入射光部分,將會受到由介面膜40所提供之增加的穩定性所影響。若非晶形p-i-n結構具有改善的光致穩定性,則與波長選擇反射層200的厚度一同,將串疊型元件加以調整以進一步增進穩定效率。
在第二p-i-n結構之中,層230、250、及260分別為藉由電漿輔助CVD所沉積的p摻雜、本質、及n摻雜微晶形矽。
設置第二p-i-n結構之電極層270和反射層/反射電極280。要注意到,有時將圖2的結構稱作「非微晶(micromorph)」結構,這是因 為該結構包含微晶形矽基p-i-n及非晶形矽基p-i-n二者。由於微晶形矽和非晶形矽吸收入射光譜的不同區域,使串疊型p-i-n結構藉由使用可用光譜更大的一部分而增加元件的整體效率。
當然,吾人理解可將該新穎的寬光學能隙介面膜使用於包含各種層結構的各種太陽能電池,且上述元件僅係例示結構而非限定性實施例。此等太陽能電池包含各種層厚度及形態的單接面電池、串疊型電池、及多接面太陽能電池。
範例:
1.光學能隙的量測
為了表現本發明的創新介面膜,製備薄~12nm介面膜的6個多層膜的之堆疊。在將12nm厚的膜每一者沉積於多層膜之中後,施加氫電漿。與個別薄的15-20nm單層膜相較,~70nm的多重膜對於可靠檢定較為適合。
對層的以下製程條件加以探究:CH4=50→具有CH4的a-SiC:H層,在沉積之後無H2電wCH4=0→無CH4的a-Si:H層,在沉積之後無H2電漿 H2.v1→無CH4的a-Si:H層,使用100秒0.8毫巴的H2電漿 H2.v2→無CH4的a-Si:H層,使用100秒2.5毫巴的H2電漿
結果係顯示於圖3之中,圖3將光學能隙描繪為各種組成物及處理條件的函數。與a-SiC:H層比較,無CH4的層具有較低光學能隙能量(較低E_Tauc)但較良好的材料特性(低R因子(R-factor))。在沉積之後施加氫電漿,能隙能量E_Tauc的數值增加至類似於具有CH4的層所取得之數值。同時,與不具有CH4的層比較,層的特性劣化(即R因子增加),但與具有CH4的層相較仍明顯較佳(例如H2.v2)。
2.利用寬光學能隙膜的元件特性的量測
a.單一p-i-n結構
在表單1中概述此創新的寬光學能隙介面膜的製造參數(典型氣體流量、厚度、壓力、功率密度、H2電漿處理)。此真空系統係一PECVD R&D KAI M反應器。將介面膜與由電漿輔助化學氣相沉積法所沉積的非晶形矽/碳(a-SiC:H)阻障層比較。
使用創新的寬光學能隙材料於填充因子和各種其他太陽能電池參數上的有益功效,係在表單2(系列1和系列2)之中加以描述,表單2係針對在初始狀態及在光致劣化之後的a-Si:H單一接面太陽能電池。
b.多重p-i-n結構
對於串疊型接面太陽能電池,在表單3之中所顯示的參數對應以下串疊型結構:
a-Si:H p-i-n結構:250nm
波長選擇反射體:70nm
微晶形Si:H p-i-n:2000nm
將串疊型接面太陽能電池沉積於在紋理化的康寧(Corning)玻璃之上的LPCVD ZnO(~1200nm)之上且係底部受限的。將一矽/碳層與配置於p/i介面和i/n介面之間的創新之經氫電漿處理的介面膜加以比較。此二太陽能電池係各自以相同方式加以沉積、操作、量測、和劣化。
表單3顯示串疊型非晶形/微晶形太陽能電池之創新性的膜所使用的參數。電池二者明白顯示對於包含於此些太陽能電池的新穎的寬光學能隙介面膜(寬(能)隙a-Si:H且暴露於氫電漿),劣化填入因子數值係較佳。由於Voc和Jsc於相同特性,所發明的膜產生改進的太陽能電池效率穩定性。
3.用於形成寬光學能隙膜的製程參數的變化
在表單4之中提供用於製造寬光學能隙介面膜的各種PECVD製程參數。所施加的RF功率變化於250-600瓦,而壓力亦變化於自0.5至4.0毫巴。在較高製程壓力(即2.5毫巴而非0.8毫巴)或較短處理時間(50秒而非100秒)的條件下執行H2電漿處理,導致增進的材料特性以及與參考層相較類似或較低的能隙能量。在製備緩衝層期間降低RF功率,造成於相同能隙能量之顯著增進的材料特性。此外,將緩衝層沉積期間較低的RF功率與較高製程壓力的H2電漿加以結合,造成良好的單一層結果。
雖然已就各種實施例描述上述發明,這些實施例係非限定性的。熟習此技藝者理解多種變化和修改。這些變化和修改被視為包含於以下申請專利範圍的範疇之內。
10‧‧‧透明基板
20‧‧‧TCO電極層
30‧‧‧p摻雜半導體層
40‧‧‧寬光學能隙介面膜
50‧‧‧本質層
60‧‧‧n摻雜半導體層
70‧‧‧電極層
80‧‧‧反射基板電極

Claims (18)

  1. 一種太陽能電池形成方法,用於形成對於光致劣化具有改良抗性的太陽能電池,該方法包含:提供一透明基板,該透明基板具有一透明導電第一電極層形成於其上;沉積一個以上p摻雜半導體層於該透明基板及電極之上,該一個以上p摻雜層包含至少一子層,其包括p摻雜非晶形矽、p摻雜非晶形矽碳、p摻雜非晶形矽氧、p摻雜微晶形矽、p摻雜微晶形氫化矽、p摻雜微晶形矽碳、或p摻雜微晶形矽氧;沉積一寬光學能隙介面膜於該p摻雜半導體層之上,該寬光學能隙介面膜係實質上由本質氫化非晶形矽膜組成;使用氫電漿處理該寬光學能隙介面膜;將包含矽的一本質半導體層沉積於該寬光學能隙介面膜之上;沉積一個以上n摻雜半導體層於該本質半導體層之上,該一個以上n摻雜半導體層包含至少一子層,其包括n摻雜非晶形矽、n摻雜非晶形矽碳、n摻雜非晶形矽氧、n摻雜微晶形矽、n摻雜微晶形氫化矽、n摻雜微晶形矽碳、或n摻雜微晶形矽氧;形成一第二電極於該n摻雜半導體層之上。
  2. 如申請專利範圍第1項的太陽能電池形成方法,更包含:沉積一第二寬光學能隙介面膜於該本質半導體層之上,該第二寬光學能隙介面膜係實質上由本質非晶形矽膜所組成;及使用氫電漿處理該第二寬光學能隙介面膜。
  3. 如申請專利範圍第1項的太陽能電池形成方法,更包含在沉積該n摻雜半導體層之前,使用氫電漿處理經沉積的該本質半導體層。
  4. 如申請專利範圍第1項的太陽能電池形成方法,更包含:形成一波長選擇反射層於該n摻雜半導體層之上;形成一p-i-n半導體結構於該波長選擇反射層之上;形成該第二電極於該p-i-n半導體結構之上。
  5. 如申請專利範圍第4項的太陽能電池形成方法,其中該形成該p-i-n半導體結構的步驟包含:形成包含微晶形矽的一p摻雜微晶形半導體層;形成包含微晶形矽的一本質微晶形半導體層於該p摻雜微晶形半導體層之上;形成包含微晶形矽的一n摻雜微晶形半導體層於該本質微晶形半導體層之上。
  6. 一種對於光致劣化具有改良抗性的太陽能電池,根據申請專利範圍第1項所載之方法形成。
  7. 一種對於光致劣化具有改良抗性的太陽能電池,根據申請專利範圍第1項所載之方法形成,其中該寬光學能隙介面膜係實質上無碳。
  8. 一種對於光致劣化具有改良抗性的太陽能電池,根據申請專利範圍第4項所載之方法形成。
  9. 一種對於光致劣化具有改良抗性的太陽能電池,根據申請專利範圍第5項所載之方法形成。
  10. 如申請專利範圍第5項的太陽能電池形成方法,更包含:沉積實質上由本質非晶形矽膜所組成的一寬光學能隙介面膜於該p摻雜微晶形層之上;使用氫電漿處理沉積於該p摻雜微晶形層之上的寬光學能隙介面膜。
  11. 一種對於光致劣化具有改良抗性的太陽能電池,根據申請專利範圍第10項所載之方法形成。
  12. 一種矽基太陽能電池,具有至少一p-i-n結構,該p-i-n結構的一部分包括非晶形矽,該矽基太陽能電池包含一寬光學能隙介面膜,該寬光學能隙 介面膜實質上由經氫電漿處理的非晶形矽組成,具有1.75eV或更大的光學Tauc能隙。
  13. 如申請專利範圍第12項的矽基太陽能電池,其中該寬光學能隙介面膜係實質上無碳。
  14. 如申請專利範圍第1項的太陽能電池形成方法,其中將該使用氫電漿處理的步驟,執行足以產生1.75eV或更大光學Tauc能隙的時間。
  15. 如申請專利範圍第1項的太陽能電池形成方法,其中該沉積該寬光學能隙介面膜的步驟,係在不使用任何含碳氣體的情況下加以執行。
  16. 如申請專利範圍第1項的太陽能電池形成方法,其中該p摻雜半導體層包含一p摻雜微晶形矽子層及一p摻雜非晶形矽子層。
  17. 如申請專利範圍第1項的太陽能電池形成方法,其中該n摻雜半導體層包含一n摻雜微晶形矽子層及一n摻雜非晶形矽子層。
  18. 如申請專利範圍第1項的太陽能電池形成方法,更包含在該本質半導體層之內沉積一寬光學能隙介面膜。
TW102116793A 2012-05-10 2013-05-10 對於光致劣化具有改良抗性之矽基太陽能電池 TW201403852A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261645121P 2012-05-10 2012-05-10

Publications (1)

Publication Number Publication Date
TW201403852A true TW201403852A (zh) 2014-01-16

Family

ID=48520887

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102116793A TW201403852A (zh) 2012-05-10 2013-05-10 對於光致劣化具有改良抗性之矽基太陽能電池

Country Status (4)

Country Link
US (1) US20150136210A1 (zh)
CN (1) CN104272473A (zh)
TW (1) TW201403852A (zh)
WO (1) WO2013167282A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214577B2 (en) 2012-02-28 2015-12-15 International Business Machines Corporation Reduced light degradation due to low power deposition of buffer layer
US20140217408A1 (en) * 2013-02-06 2014-08-07 International Business Machines Corporaton Buffer layer for high performing and low light degraded solar cells
CN104505427B (zh) * 2014-10-24 2016-07-13 横店集团东磁股份有限公司 改善晶体硅太阳能电池片lid和pid的方法及装置
CN105489669B (zh) * 2015-11-26 2018-10-26 新奥光伏能源有限公司 一种硅异质结太阳能电池及其界面处理方法
CN107017317B (zh) * 2017-06-06 2019-01-29 浙江晶科能源有限公司 一种太阳能电池及其制备方法
CN108922937B (zh) * 2018-07-29 2024-04-05 江苏润阳悦达光伏科技有限公司 Hit太阳电池的硼掺杂发射极结构与制备方法
CN110707182B (zh) * 2019-10-18 2022-07-12 苏州联诺太阳能科技有限公司 一种异质结电池制备方法
CN114171631A (zh) * 2020-08-21 2022-03-11 嘉兴阿特斯技术研究院有限公司 异质结太阳能电池及光伏组件
CN114171630A (zh) * 2020-08-21 2022-03-11 嘉兴阿特斯技术研究院有限公司 异质结太阳能电池及光伏组件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635408A (en) * 1994-04-28 1997-06-03 Canon Kabushiki Kaisha Method of producing a semiconductor device
US6379994B1 (en) * 1995-09-25 2002-04-30 Canon Kabushiki Kaisha Method for manufacturing photovoltaic element
JP2010534938A (ja) * 2007-07-24 2010-11-11 アプライド マテリアルズ インコーポレイテッド 多接合太陽電池および多接合太陽電池を形成するための方法および装置
US20100269896A1 (en) * 2008-09-11 2010-10-28 Applied Materials, Inc. Microcrystalline silicon alloys for thin film and wafer based solar applications
KR20110106889A (ko) * 2008-12-19 2011-09-29 어플라이드 머티어리얼스, 인코포레이티드 박막 및 웨이퍼 기반의 태양 전지 분야용 미세결정질 실리콘 합금
JP4761322B2 (ja) * 2009-04-30 2011-08-31 シャープ株式会社 半導体膜の成膜方法および光電変換装置の製造方法
WO2011087878A2 (en) 2010-01-18 2011-07-21 Applied Materials, Inc. Manufacture of thin film solar cells with high conversion efficiency
US20110308583A1 (en) 2010-06-16 2011-12-22 International Business Machines Corporation Plasma treatment at a p-i junction for increasing open circuit voltage of a photovoltaic device
TW201246588A (en) * 2011-05-06 2012-11-16 Auria Solar Co Ltd Solar cell module and manufacturing method thereof

Also Published As

Publication number Publication date
WO2013167282A1 (en) 2013-11-14
US20150136210A1 (en) 2015-05-21
CN104272473A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
TWI438904B (zh) 薄膜式太陽能電池及其製造方法
EP2110859B1 (en) Laminate type photoelectric converter and method for fabricating the same
TW201403852A (zh) 對於光致劣化具有改良抗性之矽基太陽能電池
Mazzarella et al. Nanocrystalline n-type silicon oxide front contacts for silicon heterojunction solar cells: photocurrent enhancement on planar and textured substrates
WO2013061637A1 (ja) 光電変換装置とその製造方法、および光電変換モジュール
US20090314337A1 (en) Photovoltaic devices
US9917220B2 (en) Buffer layer for high performing and low light degraded solar cells
AU2007209710A1 (en) Solar cell
WO2006057160A1 (ja) 薄膜光電変換装置
AU2008200051A1 (en) Method and apparatus for a semiconductor structure forming at least one via
KR101072472B1 (ko) 광기전력 장치의 제조 방법
US8735210B2 (en) High efficiency solar cells fabricated by inexpensive PECVD
US20100037940A1 (en) Stacked solar cell
KR101484620B1 (ko) 실리콘 태양전지
JP4110718B2 (ja) 多接合型薄膜太陽電池の製造方法
EP2166578A2 (en) Photovoltaic device and method of manufacturing the same
US11670729B2 (en) Solar cell apparatus and method for forming the same for single, tandem and heterojunction systems
KR102093567B1 (ko) 태양 전지 및 이의 제조 방법
US11908963B2 (en) Photovoltaic device with band-stop filter
WO2013024850A1 (ja) 薄膜光電変換素子
KR20100033897A (ko) 광기전력 변환소자 및 제조방법
JP2013008750A (ja) 薄膜シリコン系太陽電池
KR20120096340A (ko) 태양전지 및 그 제조방법
JP2013012593A (ja) 薄膜光電変換装置
JP2013115108A (ja) 光電変換素子およびその製造方法