TW201403848A - 包括可獨立控制吸收區及倍增區電場的裝置 - Google Patents

包括可獨立控制吸收區及倍增區電場的裝置 Download PDF

Info

Publication number
TW201403848A
TW201403848A TW102117569A TW102117569A TW201403848A TW 201403848 A TW201403848 A TW 201403848A TW 102117569 A TW102117569 A TW 102117569A TW 102117569 A TW102117569 A TW 102117569A TW 201403848 A TW201403848 A TW 201403848A
Authority
TW
Taiwan
Prior art keywords
region
zone
multiplication
terminal
absorption
Prior art date
Application number
TW102117569A
Other languages
English (en)
Other versions
TWI646696B (zh
Inventor
zhi-hong Huang
Marco Fiorentino
Charles M Santori
Zhen Peng
Di Liang
Raymond G Beausoleil
Original Assignee
Hewlett Packard Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co filed Critical Hewlett Packard Development Co
Publication of TW201403848A publication Critical patent/TW201403848A/zh
Application granted granted Critical
Publication of TWI646696B publication Critical patent/TWI646696B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

一裝置包括一第一區、一倍增區、一第二區、及一吸收區。該第一區係與一第一端子相聯結,及該第二區係與一第二端子相聯結。該第一區係藉該倍增區而與該第二區分開。該吸收區係設置於該倍增區上及與一第三端子相聯結。基於該第一端子、第二端子、及第三端子,倍增區電場可相對於吸收區電場獨立控制。

Description

包括可獨立控制吸收區及倍增區電場的裝置
本發明係有關於包括可獨立控制吸收區及倍增區電場的裝置。
發明背景
光檢測裝置可使用基於高摻雜及高操作電場及電壓的複雜架構。電荷區可使用極高崩潰電壓形成垂直配置串聯過渡層結構的一部分,結果導致高操作電壓的使用。此外,串聯結構的各層係與經界定的且極精密控制相聯結,結果導致需要特化摻雜或其它技術以獲得可用結構。
突崩式二極體(APD)乃高度敏感的光二極體,其透過突崩式倍增具有內部增益。突崩式二極體傳統上用於長程光通訊;針對一給定資料傳輸率,例如其可提供比PIN二極體更佳10x的敏感度。APD可使用法線入射光,及可使用波導結構以耦合入射光。針對具有低吸收效率的材料諸如諸或量子點等,可能需要長的吸收長度/尺寸以提供足夠的量子效率。由於長度長/尺寸大的結果,傳統APD可能體積龐大且具有高暗電流、低量子效率、及低頻寬。此外, 大型裝置大小及高功耗對晶片上光互連體應用特別有害。又復,傳統APD可使用分開吸收電荷倍增(SACM)設計,由於各區的串聯設置可能導致高崩潰電壓(典型對GeSi APD而言大於25V)。
依據本發明之一實施例,係特地提出一種裝置包含與一第一端子相聯結的一第一區;與一第二端子相聯結的且藉一倍增區而與該第一區分開的一第二區;及配置於該倍增區上且與一第三端子相聯結的一吸收區;其中根據該第一端子、該第二端子、及該第三端子,一倍增區電場相對於一吸收區電場係可獨立控制。
100、200、300、400、500A‧‧‧裝置
110、210、310、410、510A‧‧‧第一區
112、212、412‧‧‧第一端子
120、220、320、420、520A‧‧‧第二區
122、222、422‧‧‧第二端子
130、230、330、430‧‧‧倍增區
132、232、332、432、532A‧‧‧吸收區
134、234、434‧‧‧第三端子
140、440‧‧‧倍增區電場
142、442‧‧‧吸收區電場
204、404‧‧‧基體
206‧‧‧PIN接觸
208、408、508A‧‧‧嵌入式氧化物(BOX)層
209、409、509A‧‧‧氧化物
213、223、235‧‧‧通孔
214、314‧‧‧第一區接點
224、324‧‧‧第二區接點
236‧‧‧第一部分
238‧‧‧第二部分
250‧‧‧分開距離
252‧‧‧吸收區厚度
254‧‧‧第一區厚度
256‧‧‧第二區厚度
258‧‧‧氧化物厚度
274‧‧‧重疊
370‧‧‧光吸收路徑
431‧‧‧電荷層
433、533A‧‧‧P+吸收區
500B‧‧‧圖表
505A‧‧‧矽
512A‧‧‧端子
580B-F‧‧‧偏壓
582B‧‧‧暗電流
600‧‧‧流程圖
610-650‧‧‧方塊
圖1為依據一實施例包括一倍增區的裝置之側視方塊圖。
圖2為依據一實施例包括一倍增區的裝置之側視方塊圖。
圖3為依據一實施例一環狀裝置之頂視方塊圖。
圖4為依據一實施例包括一倍增區的裝置之側視方塊圖。
圖5A為依據一實施例顯示摻雜濃度的一裝置之側視方塊圖。
圖5B為依據一實施例暗電流作為在N-矽電極上偏壓之函數之圖表。
圖5C-5F為依據一實施例一裝置的側視方塊圖, 顯示電場強度呈n-矽上的偏壓之函數。
圖6為依據一實施例基於施加偏壓之流程圖。
較佳實施例之詳細說明
此處描述的裝置實施例諸如突崩式光二極體(APD)來檢測光可利用低崩潰電壓的三個端子,及共振增強(例如基於微光環)以有效地增加光吸收路徑,同時維持小尺寸,以達成高量子效率,低暗電流,低崩潰電壓,及低功耗。不使用既有APD結構,諸如分開吸收電荷倍增(SACM)設計,且無相聯結的高驅動電壓(例如針對SACM鍺矽(GeSi)裝置)及相聯結的複雜製程(諸如精準電荷層摻雜控制),可達成效果。此處描述的裝置實施例可具有小的形狀因數、低功耗(例如約5-12伏特操作電壓)、低成本,且可用在光子平台及其它高頻寬、小串擾、及低功耗應用的晶片上光互連體。此外,裝置實施例可根據互補金氧半導體(CMOS)製造技術製造且與該技術為可相容。
圖1為依據一實施例含括一倍增區130的一裝置100之側視方塊圖。裝置100進一步包括與第一端子112相聯結的第一區110,及與第二端子122相聯結的但與第一區110藉倍增區130隔開的一第二區120。吸收區132係設置在倍增區130上,且與第三端子134相聯結。倍增區電場140係與倍增區130相聯結,及吸收區電場142係與吸收區132相聯結。
裝置100可根據吸收光及生成電場而檢測光。吸收區132係吸收光子,生成電載子,及倍增區130係突崩式 倍增所生成的載子,及掃掠該等載子至第一區110及/或第二區120。裝置100可運用第一端子112、第二端子122、及第三端子134以影響載子的生成及/或倍增,例如藉獨立地控制吸收區電場142及倍增區電場140。
吸收區電場142可與倍增區電場140獨立控制以將載子從吸收區132移動至倍增區130。倍增區電場140可經調整以超過影響載子離子化的臨界值,可能導致倍增區130內的突崩式倍增同時維持低於崩潰電壓位準。吸收區電場142的強度可低於倍增區電場140的強度。如此,裝置100例示說明兩個可平行控制電場,根據通過第一端子112、第二端子122、及第三端子134的驅動電壓,許可吸收區132及倍增區130的獨立且分開控制。吸收區電場142可為低,以驅動光生成的電載子至倍增區130。倍增區電場140可橫向延伸於第一區110與第二區120間以分開載子及/或觸發突崩式倍增以檢測電流。
可獨立控制的電場可根據端子作動用於吸收區132及倍增區130,而無需在一區內部的多個分開摻雜層。如此,不似基於SACM的設計,一區無需使用精準控制的摻雜改性以生成一電荷層。裝置100可基於諸如用於倍增區的矽及用於吸收區的鍺等材料,而無需例如審慎生成的與一區相聯結的多層III-V結構。矽具有優勢諸如與Si CMOS方法可相容性,及比起其它III-V材料對離子化係數(k值)的衝擊低(例如矽的0.02相較於InGaAlAs的0.2)。
此外,於本案提出的實施例中,載子無需行經障 壁至倍增區130。相反地,對於低偏壓的既有SACM APD,電場可基於偏壓而於倍增區積聚。然後,大部分偏壓降至電荷層上以根據表示式dQ=CdV(於該處dQ為電荷變化,C為電容,及dV為電壓變化)補償施用區中摻雜的電荷。如此,於SACM APD中,在平衡電荷層之後,倍增區電場可開始穿透入吸收區。沒有在SACM APD的吸收區的電場,光生成的載子可能不會行進至欲收集的倍增。因此,SACM APD需要極高電壓操作。舉例言之,使用本方案的高操作電壓可為用於GeSi APD的25-30V。
如此,與SACM APD相反,例如,於本案實施例中可達成在遠更低的操作電壓及/或崩潰電壓操作(例如約為十伏特)。又復,崩潰電壓可取決於第一區110與第二區120的間距。藉由縮小第一區110與第二區120的間距至數百奈米,例如只施加數伏特即可出現增益倍增。因此,可達成適合晶片上光學互連體應用的小尺寸、高量子效率、低暗電流、低崩潰電壓及低功耗裝置。
裝置100可利用共振增強以有效增加與吸收區132相聯結的光吸收路徑,同時維持裝置的尺寸小(在數微米以內)。舉例言之,裝置100可基於微光環共振腔而含括一吸收區132及/或其它區/特性件。其它共振腔的幾何形狀及/或型別亦屬可能,諸如基於費布利珀羅(fabry perot)反射鏡及其它技術。
第一區110、第二區120、倍增區130及其它區/元件可藉摻雜,例如以適當材料選擇性地摻雜矽基體製 成。於一個實施例中,第一區110可設計成p摻雜,及第二區120可設計成n摻雜,但p摻雜區及n摻雜區可以其它方式交換或形成。
裝置100可由多種材料製成,諸如矽(Si)、鍺(Ge)、SiGe、各種氧化物及其它材料(例如用於端子的金屬)。於一個實施例中,倍增區130可為矽,吸收區132可為鍺或矽鍺。矽鍺可提供比鍺更低的吸收係數但更高的品質因數(Q),及與倍增區130的矽更低的晶格不匹配,可減低在矽/矽鍺界面的光損耗。如此,具有較低的吸收係數之吸收區132可許可倍增區130比吸收區132更容易耦合可利用的光(例如來自波導),藉此避免倍增區130耦接波導等的負面效應。也可使用其它低衝擊離子化係數(低-K)材料,諸如磷酸鋁。
第一端子112、第二端子122、及第三端子134可由多種接觸材料製成,諸如鋁及/或銅。高度摻雜部分(圖中未顯示)可形成在第一區110、第二區120、及/或吸收區132之內/上以獲得與該等端子的更佳歐姆接觸。端子可具有在替代實施例中的各種替代幾何形狀及附接位置,以因應製作考量,以變更電場特性,以更有效地收集所產生的電荷,及用於其它考量。
圖2為依據一實施例含括一倍增區230的一裝置200之側視方塊圖。裝置200包括一基體204。第一區210係基於第一區接點214及通孔213而與第一端子212相聯結。同理,第二區220係基於第二區接點224及通孔223而與第二端 子222相聯結。該等端子係顯示為銅(Cu),且可為其它金屬及/或材料。倍增區230包括第一部分236及第二部分238。吸收區232係設置於倍增區230的第二部分238,及基於通孔235而與第三端子234相聯結(吸收區接點(圖中未顯示)也與吸收區232相聯結)。第一區接點214及第二區接點224可為第一區210及第二區220的較高摻雜部分,及通孔213、223、及235可為鎢(W)或其它金屬。
基體204係顯示為絕緣體上矽(SOI)基體,含嵌入式(BOX)層208,且可基於其它類別的半導體材料。第一區210、倍增區230的第一部分236、及第二區220可形成於基體204,例如基於離子植入或其它技術。第一區210、倍增區230、及第二區220可基於P型材料、本質半導體材料、及N型材料形成一接面,例如PIN接面206。本質半導體材料可從下方基體材料諸如矽或其它半導體材料製成,及/或近本質低度摻雜材料可藉高電阻率p層、高電阻率n層、或其它材料近似。第一區210、倍增區230的第一部分236、及第二區220可延伸進入基體204的不同深度,包括延伸至BOX層208。於一個實施例中,第一區厚度254及第二區厚度256、以及倍增區230的第一部分236之厚度可為約250奈米。於一個實施例中,第一區210與第二區220可根據約400-600奈米的分開距離250分開。但於替代實施例中此處特別描述的全部厚度/距離可經縮放及/或調整。
倍增區230的第二部分238係設置於倍增區230的第一部分236上。於一個實施例中,第二部分238可具有約 50-100奈米厚度。如此,於一個實施例中,倍增區230的有效厚度可為約300-350奈米。於一個實施例中,吸收區232係設置於第二部分238上,且可具有約100奈米的吸收區厚度252。裝置200也可含括氧化物209諸如二氧化矽(SiO2)設置於基體204、倍增區230、及吸收區232上。氧化物209可提供支持及隔離功能,例如根據氧化物厚度258以決定第一端子212、第二端子222、第三端子234、與基體204間之電容。裝置200的各部分可相對於倍增區230的第一部分236設置,而與第一區210及/或第二區220間有重疊274。舉例言之,倍增區230的第二部分238之一部分可重疊超過分開距離250,一部分可能不重疊(例如根據梯級幾何形狀具有較窄的及較寬的部分)。
各區的幾何形狀可能各異。吸收區232與倍增區230的第二部分238可經改變以許可低暗電流及/或低電容。第二部分238可包括如圖顯示的梯級形狀,使得第二部分238可橫向延伸比吸收區232更遠。吸收區232例如比較其它區可具有更小的面積及厚度。可變更第一區210及/或第二區220的幾何形狀包括縮小各區間的分開距離250以達成低突崩式崩潰電壓。有鑑於各區的折射率,可變更倍增區230的形狀。舉例言之,由鍺製成的吸收區232可具有比矽製成的倍增區230更高的折射率,可能影響各區之間的模限制,使得梯級形狀係減少鍺吸收區232內的模/半模限制。可調整其它區幾何形狀以解決該等模如何可限制在一給定區內。
也可調整幾何形狀以減低操作電壓。倍增區230的梯級形狀許可及/或影響與倍增區230相聯結的模限制。分開距離250可經選擇以控制崩潰電壓,諸如防止穿隧崩潰及促進突崩式倍增。吸收區232與第一/第二區210、220間距可經選擇以避免高電場穿透入吸收區232內,以避免影響在吸收區232的離子化及/或突崩式倍增。
幾何形狀諸如梯級形狀可改變一區的有效指數以增加模耦合,諸如增進具有不同折射率的矽與鍺(或其它材料)的模耦合,及在根據本質材料較不可能耦合的材料內輔助根據幾何形狀的光耦合。其它模耦合形狀及材料為可能,包括其中倍增區230具有比吸收區232更高的指數之材料。吸收區232可以一種幾何形狀結構化以免耦接波導,且可具有幾何形狀(結合倍增區230的幾何形狀)以有效放置吸收區232更遠離波導(例如缺乏吸收區232的橫向延伸超過倍增區230)。區幾何形狀可提供其它功能,諸如倍增區230的梯級結構藉實體上隔開波導與通孔235而防止一波導的光場重疊通孔235。除了梯級結構外,斜坡、曲面、斜面、或其它幾何形狀可用以提供各種效果。於替代實施例中,可刪除各區。舉例言之,倍增區230的第二部分238可經刪除,使得吸收區232係位在倍增區230的第一部分236上。
通孔及端子可為各種金屬,除了所顯示的銅及鎢之外可包括鋁。通孔及端子的幾何形狀可各異,包括不同寬度及數目。於該具體實施例中,通孔213及通孔223係顯示具有多重次通孔結構(例如雙電極),而通孔235係顯示具 有單一電極結構。變化成任一區/組件係為可能,及鑑於加工/製造可改變。
第一區接點214及第二區接點224可具有比第一區210及第二區220更高的植入濃度,例如每立方厘米1020離子或以上之濃度或用於與通孔213、通孔223的歐姆接觸。雖然未特別顯示於圖2,吸收區232可包括更高摻雜區,例如吸收區接點用於與通孔235的歐姆接觸。
各區可使用微影術在矽基體204上組成,例如於圖2所示,被氧化物209或其它結構材料包圍以提供機械支持給該等區。二氧化矽可用作為電絕緣各區的電介質。此外,多種組成物可用作為電介質,諸如比較其它區具有折射率差異的不同的矽氧化物。於一個實施例中,該等區可為由氧化物209光絕緣的共振器(例如微光環)。
多種製法可用以製造裝置200。BOX 208層可植入基體204,或植入本體矽SOI晶圓的矽區內。根據N+離子植入可增加第一區210,根據P+離子植入可增加第二區210。根據N++離子植入可增加第二區接點224,及根據P++離子植入可增加第一區接點214。例如基於100奈米矽的選擇性磊晶生長(SEG),倍增區230的第二部分238可設置於第一部分236上。例如基於100奈米鍺或矽鍺的SEG,吸收區232可設置於倍增區230上。可增加氧化物209,及可執行非晶形矽/場氧化物開啟程序以暴露吸收區232。然後,根據P++離子植入,吸收區接點(未顯示於圖2)可植入吸收區232內。最後,可進行線處理後端,包括金屬沈積物以形成通 孔213、235、223及端子212、234、及222。
在形成包含倍增區230及吸收區232的共振腔(例如微光環)之前,第一區210及第二區220可以與共振腔(例如聚光環,一者具有比共振腔更小的直徑,及一者具有更大直徑)互補的形狀植入。其它幾何形狀可用於該等區,包括其它共振腔結構,諸如跑道共振器及分散式回授反射鏡結構,及其它製造技術例如可用於裝置。
於操作期間,吸收區232可吸收光子260以產生電氣載子(電洞262及電子264)。透過倍增區230,基於吸收區電場(未顯示於圖2)載子被掃出吸收區232,觸發突崩式倍增以基於倍增區電場(未顯示於圖2)而產生額外載子欲由第一區210及第二區220收集。裝置200可施加偏壓以基於第一端子212、第二端子222、及/或第三端子234轉運載子至倍增區。裝置200也可施加偏壓以基於第一端子212、第二端子222、及/或第三端子234,使得高電場造成在倍增區230的突崩式倍增增益。
如此裝置200隨光流增高具有高量子效率,使用低功率預算,及利用高品質因數Q及共振效率,以累積共振腔效率(例如基於微光環結構)。裝置200也可於高頻寬操作,例如由於與第一區210及第二區220間缺乏重疊相聯結的低RC常數,及減少與分開距離250相關的載波行進。
圖3為依據一實施例一環狀裝置300之頂視方塊圖。裝置300包括一波導302(例如矽或其它導光材料)及一環狀(例如微光環)共振腔,但其它型別及/或形狀可用於共振 (例如基於費布利珀羅共振器、分散式布拉格反射鏡(DBR)、及其它共振元件)。裝置300也包括第一區310、第一區接點314、倍增區330、吸收區332、第二區320、及第二區接點324。裝置300係與一光吸收路徑370相聯結。為了獲得例示說明組件的更佳可見性,可不顯示額外元件。舉例言之,裝置300顯示為不含端子或其它元件,以更明白顯示下方元件,否則該等下方元件可被端子所遮掩。於一個實施例中,微光環的直徑可為5-10微米及縱高約200奈米。如此小的幾何形狀大小導致光互連體及其它應用的低電容及相對應的高速能力。
於操作期間,光可從波導302臨界耦接入共振腔(例如吸收區332)。在與光的共振腔及/或波長相聯結的共振波長可形成共振增強。光可在吸收區332吸收以產生電氣載子。吸收可沿光吸收路徑370發生,該路徑可為彎曲,例如當光環繞微光環行進時。如此,共振器結構增強量子效率。波導內部的光能,例如基於約1.1至2微米的波長,可包括單一頻率或光頻的組合。
波導302可接收功率於共振腔,及功率可耦合入共振腔。來自波導302耦合的功率係基於由共振腔所內部耗散的功率(例如由吸收區332所吸收)。關鍵性耦合出現在當波導302內的全部光係耦合入共振腔(例如出射功率為零,理想狀況)。波導與共振腔間的耦合可基於波導302邊緣與共振腔邊緣(例如微光環周邊或倍增區330邊緣)間的分開而予控制。共振腔與波導間之關係的其它幾何形狀可提供能 量轉移的耦合,例如垂直偏位/重疊。吸收區332及倍增區330可具有加強耦合的幾何形狀。舉例言之,吸收區332可比倍增區330更窄,使得倍增區330可從吸收區332進一步朝向波導302延伸。倍增區330可向外延伸以防止裝置300的其它部分接觸或趨近於波導302,因而發生與倍增區330的耦合。
於裝置300的經例示說明之基於微光環的APD設計中,在光共振波長的光可沿倍增區330的圓形路徑行進多個來回。因此,光吸收路徑370的有效長度可超過裝置300的線性維度(例如該路徑可比裝置300的長、寬、及/或高更長)。共振腔增強的光吸收路徑370使得針對一給定裝置300的腳印產生更多光載子,同時裝置300的暗電流維持為低,原因在於暗電流並非根據彎曲的多來回光吸收路徑370之增長的有效長度,而係根據吸收區332的基本幾何形狀/面積。因此,可達成高量子效率及低暗電流。又復,光吸收路徑370之增長的有效長度許可窄細的吸收區332針對較低吸收係數材料具有鬆弛的耐受性,而與其它設計相反,後者的吸收係取決於線性幾何維度諸如,高吸收長度/寬度/深度及高材料的吸收係數。基於微光環或其它共振增強結構的裝置300之吸收較大取決於微光環的耦合係數及品質因數(Q),許可一材料的窄細吸收區332具有較低吸收係數及高Q。吸收區332的厚度可經選擇以免太快吸收耦合光,以使得光具有多個來回,及避免太快吸收。舉例言之,約100奈米厚度的吸收區可提供有利結果,但可調整幾何形狀 /維度。
裝置實施例可用於涉及例如具有不同波長的多個通道之分波複用(WDM)應用。若不同波長光係含在波導內,則各個波長可獨立地調節而不影響其它波長。裝置300可為波長敏感以影響特定波長或波長範圍。舉例言之,共振腔可在特定共振波長或波長範圍共振光能。吸收區332選擇性地可對在特定波長光較為敏感。如此,多個裝置300可與波導302相聯結以利用期望的波長。裝置300也可提供減弱濾波功能以濾波特定波長,例如在檢測器接收而無需專用的/分開濾波組件。具有夠高的Q,裝置300可涵蓋窄頻寬用於減弱濾波功能。如此,裝置300可組合光檢測器功能與減弱濾波功能至一個裝置300。與特定波長光交互作用使得裝置300具有較低的雜訊特性及對來自其它光頻的干擾有更高抗性。取決於設計及體現(例如區幾何形狀等)可改變及選擇裝置300的波長選擇性。也可能基於施加至裝置300的電調諧(例如電調諧共振腔)而調整共振波長。
圖3顯示的微光環APD實施例可建立在SOI基體上。第一區310及第二區320可植入基體作為同心環。矽緩衝層及鍺吸收層的全面性生長添加至罩蓋基體表面。隨後藉蝕刻法將微光環界定於該覆蓋層以形成該環狀倍增區330及環狀吸收區332。可形成倍增區330及吸收區332的微光環形狀以重疊第一區310與第二區320間之分開距離,如圖3所示。電接點(第一區接點314、第二區接點324、及吸收區接點(未顯示於圖3))係界定在鍺吸收區332及矽p-及n- 第一區310頂上。矽緩衝區(例如倍增區330的第二部分)係縮短吸收區332與波導間的光洩漏路徑,且係生長在基體頂上。矽緩衝區可經刪除,使得吸收層係直接長在基材上。
圖4為依據一實施例含括一倍增區430的一裝置400的側視方塊圖。裝置400也包括基體404、BOX 408、矽405、第一區410、第二區420、吸收區432、P+吸收區433、第一端子412、第二端子422、第三端子434、及氧化物409。裝置400也可包括一電荷層431,及於替代實施例中,可刪除電荷層431。倍增區430係與倍增區電場440相聯結,及吸收區432係與吸收區電場442相聯結。
電荷層431可植入在吸收區432與倍增區430間,以限制在倍增區430的矽內部倍增區電場440的高電場。如此,電荷層431係遏止倍增區電場440免於進入吸收區432,藉此避免影響在具有較高衝擊離子化係數(K值)的吸收區432材料內的離子化,藉此許可高速APD設計在較高頻寬以較低雜訊操作。不似基於嚴格及特定層化結構的SACM結構,電荷層431係關聯鬆弛製造技術且容易植入矽405內。
圖5A為依據一實施例顯示摻雜濃度的一裝置500A之側視方塊圖。裝置500A包括BOX 508A、矽505A、第一區510A、第二區520A、吸收區532A、P+吸收區533A、端子512A、及氧化物509A。
多個摻雜濃度實施例基於各區的著色為可見。舉例言之,摻雜濃度約略如下:矽區505A約1.0E+15cm-3 p-型,第一區510A約1.0E+19cm-3 p-型,第二區520A約 1.0E+19cm-3 n-型,吸收區532A約於本質摻雜濃度(約1.0E+15cm-3),及P+吸收區533A約1.0E+19cm-3 p-型。於替代實施例中,摻雜濃度及各種幾何形狀可經改變/調整。
圖5B為依據一實施例暗電流582B作為在N-矽電極上偏壓580B之函數之圖表500B。N-矽電極又稱圖5A中顯示的第二區520A。於圖表500B中第二區520A上的電壓係從0變化至6伏特,而第一區510A及吸收區532A上的電壓係依據端子512A維持於零。如圖表500B所示,當在崩潰前第二區520A上的電壓從0V升高至約3V時,總暗電流維持為低(約3E-15A)。於約3V及以上,總暗電流快速升高(例如接近4V及以上的崩潰)。如此,期望在電極(例如第一區510A、第二區520A、及/或其它區)上有相對低的偏壓以避免暗電流。此處描述的各個實施例許可使用低操作電壓,結果導致低暗電流。
圖5C-5F為依據一實施例一裝置的側視方塊圖,顯示電場強度呈n-矽上的偏壓580C-580F之函數。電場係顯示為從在P+吸收區上方氧化物的低值(例如9.3E-09)至第一區與第二區間該區域的高值(例如1.3E+06)。電場的演進係例示說明於圖5C-5F,藉固定VpGe及VpSi於0V,及掃掠VnSi(580C、580D、580E、及580F)從0V至3V(亦即於圖5C、5D、及5E中的崩潰前)及再度至4V(於圖5F接近崩潰)。
圖6為依據一實施例基於施加偏壓之流程圖600。於方塊610,光二極體的第一區係根據第一端子施加偏壓。於方塊620,光二極體的第二區係根據第二端子施加 偏壓,其中該第二區係藉倍增區而與第一區分開。於方塊630,位在倍增區上的光二極體的吸收區係根據第三端子施加偏壓;其中根據施加偏壓於第一端子及/或第二端子,倍增區電場相對於吸收區電場可獨立地控制。於方塊640,根據來自波導的耦合光在吸收區生成一載子。於方塊650,第一端子、第二端子、及第三端子係被施加偏壓以在低於衝擊離子化的臨界值於一能量位準轉運所生成的載子從吸收區至倍增區。
100‧‧‧裝置
110‧‧‧第一區
112‧‧‧第一端子
120‧‧‧第二區
122‧‧‧第二端子
130‧‧‧倍增區
132‧‧‧吸收區
134‧‧‧第三端子
140‧‧‧倍增區電場
142‧‧‧吸收區電場

Claims (15)

  1. 一種裝置,其係包含:與一第一端子相聯結的一第一區;與一第二端子相聯結的且藉一倍增區而與該第一區分開的一第二區;及配置於該倍增區上且與一第三端子相聯結的一吸收區;其中根據該第一端子、該第二端子、及該第三端子,一倍增區電場相對於一吸收區電場係可獨立控制。
  2. 如申請專利範圍第1項之裝置,其中該倍增區及吸收區係成形為一共振腔以提供共振增強及沿該共振腔具有比該裝置之線性維度更大的一有效長度之一光吸收路徑。
  3. 如申請專利範圍第2項之裝置,其中該光吸收路徑係許可沿該光吸收路徑根據複數個來回的光吸收。
  4. 如申請專利範圍第1項之裝置,其中該倍增區電場係根據該第一區與該第二區間之一分開距離而將造成在該倍增區的一放大突崩效應。
  5. 如申請專利範圍第1項之裝置,其中該倍增區係為與一衝擊離子化係數相聯結的一未經摻雜的本質材料。
  6. 如申請專利範圍第1項之裝置,其中該第一區、該倍增區的一第一部分、及該第二區係配置於一基體內作為一波導共振結構,及該倍增區的一第二部分係配置於該基 體上作為一緩衝層。
  7. 如申請專利範圍第6項之裝置,其中該吸收區及該倍增區的該第二部分係配置於該倍增區的該第一部分上。
  8. 如申請專利範圍第1項之裝置,其係進一步包含一波導以根據一耦合係數而臨界地耦合來自該波導的光進入該倍增區,以形成根據一共振波長的一共振增強。
  9. 如申請專利範圍第1項之裝置,其係進一步包含配置於該吸收區與該倍增區間之一電荷層以限制該倍增區電場至該倍增區。
  10. 一種共振突崩式光二極體(APD),其係包含:一絕緣體上矽(SOI)基體包括根據與一第一端子相聯結的一第一區、一本質矽倍增區、及與一第二端子相聯結的一第二區之一PIN接面;及配置於該倍增區上及具有一第三端子的一吸收區;其中根據第一端子、第二端子、及第三端子,一倍增區電場係相對於一吸收區電場為可獨立控制。
  11. 如申請專利範圍第10項之突崩式光二極體,其中該吸收區係與一中等吸收係數相聯結,其中根據一低光吸收係數,一倍增區係為對該耦合光實質上透明。
  12. 如申請專利範圍第10項之突崩式光二極體,其中一倍增區電場係根據小於或等於約12伏特的一突崩式崩潰電壓。
  13. 如申請專利範圍第10項之突崩式光二極體,其中該倍增區係包括配置於該SOI基體上的一本質矽緩衝層。
  14. 一種方法,其係包含:根據一第一端子施加偏壓一光二極體的一第一區;根據一第二端子施加偏壓該光二極體的一第二區,其中該第二區係藉一倍增區而與該第一區分開;及根據一第三端子施加偏壓設在該倍增區上的該光二極體的一吸收區;其中根據該第一端子、該第二端子、及該第三端子,一倍增區電場相對於一吸收區電場係可獨立控制。
  15. 如申請專利範圍第14項之方法,其係進一步包含根據臨界耦合光而在該吸收區生成一載子,及對該第一端子、該第二端子、及該第三端子施加偏壓以在低於衝擊離子化的臨界值於一能量位準轉運所生成的載子從吸收區至倍增區。
TW102117569A 2012-05-29 2013-05-17 包括可獨立控制吸收區及倍增區電場的裝置 TWI646696B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US2012/039866 WO2013180690A1 (en) 2012-05-29 2012-05-29 Devices including independently controllable absorption region and multiplication region electric fields
??PCT/US12/39866 2012-05-29

Publications (2)

Publication Number Publication Date
TW201403848A true TW201403848A (zh) 2014-01-16
TWI646696B TWI646696B (zh) 2019-01-01

Family

ID=49673740

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102117569A TWI646696B (zh) 2012-05-29 2013-05-17 包括可獨立控制吸收區及倍增區電場的裝置

Country Status (6)

Country Link
US (1) US9490385B2 (zh)
EP (1) EP2856505B1 (zh)
KR (1) KR101951980B1 (zh)
CN (1) CN104303315B (zh)
TW (1) TWI646696B (zh)
WO (1) WO2013180690A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035982A (zh) * 2021-03-03 2021-06-25 中国电子科技集团公司第三十八研究所 全硅掺杂多结电场增强型锗光波导探测器

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121271B2 (en) 2013-05-22 2021-09-14 W&WSens, Devices, Inc. Microstructure enhanced absorption photosensitive devices
US10468543B2 (en) 2013-05-22 2019-11-05 W&Wsens Devices, Inc. Microstructure enhanced absorption photosensitive devices
US10700225B2 (en) 2013-05-22 2020-06-30 W&Wsens Devices, Inc. Microstructure enhanced absorption photosensitive devices
US10446700B2 (en) 2013-05-22 2019-10-15 W&Wsens Devices, Inc. Microstructure enhanced absorption photosensitive devices
CN105556680B (zh) 2013-05-22 2017-12-22 王士原 微结构增强型吸收光敏装置
CN107078145B (zh) * 2014-11-18 2019-05-07 王士原 经微结构增强吸收的光敏器件
US10546963B2 (en) * 2014-12-01 2020-01-28 Luxtera, Inc. Method and system for germanium-on-silicon photodetectors without germanium layer contacts
KR102285120B1 (ko) * 2015-01-20 2021-08-05 한국전자통신연구원 광 수신 소자
WO2016190346A1 (ja) * 2015-05-28 2016-12-01 日本電信電話株式会社 受光素子および光集積回路
WO2017019013A1 (en) * 2015-07-27 2017-02-02 Hewlett Packard Enterprise Development Lp Doped absorption devices
WO2017023301A1 (en) * 2015-08-04 2017-02-09 Coriant Advanced Technology, LLC Lateral ge/si avalanche photodetector
EP3352219B1 (en) * 2015-09-17 2020-11-25 Sony Semiconductor Solutions Corporation Solid-state imaging element, electronic device and method for manufacturing solid-state imaging element
CN105655417B (zh) 2016-02-29 2017-07-28 华为技术有限公司 光波导探测器与光模块
CN112018142A (zh) * 2016-06-21 2020-12-01 深圳帧观德芯科技有限公司 基于雪崩光电二极管的图像感测器
RU2641620C1 (ru) * 2016-09-20 2018-01-18 Общество с ограниченной ответственностью "ДЕтектор Фотонный Аналоговый" Лавинный фотодетектор
JP2018082089A (ja) * 2016-11-17 2018-05-24 日本電信電話株式会社 光検出器
CN109119509B (zh) * 2017-06-23 2023-10-27 松下知识产权经营株式会社 光检测元件
FR3070540A1 (fr) * 2017-08-25 2019-03-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photodiode a avalanche
CN107403848B (zh) * 2017-09-08 2023-06-20 中国工程物理研究院电子工程研究所 一种背照式级联倍增雪崩光电二极管
WO2020010590A1 (en) * 2018-07-12 2020-01-16 Shenzhen Xpectvision Technology Co., Ltd. Image sensors with silver-nanoparticle electrodes
US10854768B2 (en) 2018-12-20 2020-12-01 Hewlett Packard Enterprise Development Lp Optoelectronic component with current deflected to high-gain paths comprising an avalanche photodiode having an absorbing region on a p-doped lateral boundary, an n-doped lateral boundary and an amplifying region
JP2020113715A (ja) * 2019-01-16 2020-07-27 日本電信電話株式会社 光検出器
US10797194B2 (en) * 2019-02-22 2020-10-06 Hewlett Packard Enterprise Development Lp Three-terminal optoelectronic component with improved matching of electric field and photocurrent density
FR3094572B1 (fr) * 2019-03-29 2021-02-19 Commissariat Energie Atomique procede de fabrication d’une puce photonique comportant une photodiode SACM-APD couplée optiquement a un guide d’onde intégré
US11056603B2 (en) * 2019-07-12 2021-07-06 Hewlett Packard Enterprise Development Lp Photodetectors with controllable resonant enhancement
CN111370524B (zh) * 2020-03-18 2021-07-23 武汉华星光电技术有限公司 感光传感器及其制备方法、阵列基板、显示面板
CN111739972B (zh) * 2020-07-01 2023-11-10 中国科学院上海技术物理研究所 一种双面环形Ge基长波红外和太赫兹探测器和制备方法
EP3940798A1 (en) 2020-07-13 2022-01-19 Imec VZW Avalanche photodiode device with a curved absorption region
CN112133775B (zh) * 2020-09-04 2022-11-08 上海大学 碲锌镉/硅γ射线X射线探测器及其制备方法
CN112993065A (zh) * 2021-03-30 2021-06-18 华中科技大学 一种基于Bragg光栅和横向波导结构的雪崩光电探测器
US11927819B2 (en) * 2021-11-10 2024-03-12 Hewlett Packard Enterprise Development Lp Optical device having a light-emitting structure and a waveguide integrated capacitor to monitor light
US12013573B2 (en) * 2022-07-14 2024-06-18 Hewlett Packard Enterprise Development Lp Optical resonating device having microring resonator photodiode
CN116884981B (zh) * 2023-06-07 2024-04-23 边际科技(珠海)有限公司 一种响应0.85微米雪崩二极管与平面透镜的集成结构及其制程

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732264B2 (ja) 1985-01-23 1995-04-10 株式会社東芝 半導体受光素子
JP3221402B2 (ja) 1998-06-22 2001-10-22 住友電気工業株式会社 受光素子と受光装置
GB0012167D0 (en) 2000-05-20 2000-07-12 Secr Defence Brit Improvements in photo detectors
US6583482B2 (en) 2000-12-06 2003-06-24 Alexandre Pauchard Hetero-interface avalance photodetector
US6794631B2 (en) 2002-06-07 2004-09-21 Corning Lasertron, Inc. Three-terminal avalanche photodiode
GB0216075D0 (en) 2002-07-11 2002-08-21 Qinetiq Ltd Photodetector circuits
US7372495B2 (en) * 2002-08-23 2008-05-13 Micron Technology, Inc. CMOS aps with stacked avalanche multiplication layer and low voltage readout electronics
KR100463416B1 (ko) * 2002-09-05 2004-12-23 한국전자통신연구원 아발란치 포토트랜지스터
JP4611066B2 (ja) 2004-04-13 2011-01-12 三菱電機株式会社 アバランシェフォトダイオード
US7397101B1 (en) 2004-07-08 2008-07-08 Luxtera, Inc. Germanium silicon heterostructure photodetectors
US7209623B2 (en) * 2005-05-03 2007-04-24 Intel Corporation Semiconductor waveguide-based avalanche photodetector with separate absorption and multiplication regions
US7233051B2 (en) * 2005-06-28 2007-06-19 Intel Corporation Germanium/silicon avalanche photodetector with separate absorption and multiplication regions
US7683397B2 (en) * 2006-07-20 2010-03-23 Intel Corporation Semi-planar avalanche photodiode
FR2906082B1 (fr) 2006-09-18 2008-10-31 Commissariat Energie Atomique Photodiode a avalanche
US20080121866A1 (en) 2006-11-27 2008-05-29 Ping Yuan Avalanche photodiode detector
US7720342B2 (en) 2008-04-15 2010-05-18 Hewlett-Packard Development Company, L.P. Optical device with a graded bandgap structure and methods of making and using the same
JP2013080728A (ja) 2010-01-07 2013-05-02 Hitachi Ltd アバランシェフォトダイオード及びそれを用いた受信機
US8461624B2 (en) * 2010-11-22 2013-06-11 Intel Corporation Monolithic three terminal photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035982A (zh) * 2021-03-03 2021-06-25 中国电子科技集团公司第三十八研究所 全硅掺杂多结电场增强型锗光波导探测器

Also Published As

Publication number Publication date
EP2856505A1 (en) 2015-04-08
WO2013180690A1 (en) 2013-12-05
CN104303315A (zh) 2015-01-21
CN104303315B (zh) 2017-05-31
US20150108327A1 (en) 2015-04-23
EP2856505B1 (en) 2020-11-18
TWI646696B (zh) 2019-01-01
EP2856505A4 (en) 2016-02-24
KR101951980B1 (ko) 2019-02-25
US9490385B2 (en) 2016-11-08
KR20150018518A (ko) 2015-02-23

Similar Documents

Publication Publication Date Title
TWI646696B (zh) 包括可獨立控制吸收區及倍增區電場的裝置
US10700225B2 (en) Microstructure enhanced absorption photosensitive devices
US9748429B1 (en) Avalanche diode having reduced dark current and method for its manufacture
US9329415B2 (en) Method for forming an optical modulator
JP7429084B2 (ja) マイクロストラクチャ向上型吸収感光装置
US7151881B2 (en) Impurity-based waveguide detectors
US8938134B2 (en) Hybrid optical modulator for photonic integrated circuit devices
US7075165B2 (en) Embedded waveguide detectors
TWI745553B (zh) 高速光偵測裝置
US11251326B2 (en) Method of fabrication of a photonic chip comprising an SACM-APD photodiode optically coupled to an integrated waveguide
KR20150035520A (ko) 결함 실리콘 흡수 영역을 갖는 애벌란시 포토다이오드
US11437531B2 (en) Photodetector
US20190019903A1 (en) SILICON WAVEGUIDE INTEGRATED WITH SILICON-GERMANIUM (Si-Ge) AVALANCHE PHOTODIODE DETECTOR
WO2020084080A1 (en) Pn-junction phase modulator in a large silicon waveguide platform
CN116031324B (zh) 一种单光子雪崩二极管及制作方法
US8639065B2 (en) System having avalanche effect light sensor with enhanced sensitivity
LU100953B1 (en) Photodetector
CN116646410A (zh) 硅锗探测器及其制备方法