TW201343914A - 酶-改變之代謝物活性 - Google Patents

酶-改變之代謝物活性 Download PDF

Info

Publication number
TW201343914A
TW201343914A TW102112451A TW102112451A TW201343914A TW 201343914 A TW201343914 A TW 201343914A TW 102112451 A TW102112451 A TW 102112451A TW 102112451 A TW102112451 A TW 102112451A TW 201343914 A TW201343914 A TW 201343914A
Authority
TW
Taiwan
Prior art keywords
substrate
clostridium
alcohol dehydrogenase
seq
acetone
Prior art date
Application number
TW102112451A
Other languages
English (en)
Other versions
TWI659104B (zh
Inventor
Michael Koepke
Danielle Maddock
Monica Gerth
Wayne Patrick
Original Assignee
Lanzatech New Zealand Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzatech New Zealand Ltd filed Critical Lanzatech New Zealand Ltd
Publication of TW201343914A publication Critical patent/TW201343914A/zh
Application granted granted Critical
Publication of TWI659104B publication Critical patent/TWI659104B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • C12P7/28Acetone-containing products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01002Alcohol dehydrogenase (NADP+) (1.1.1.2), i.e. aldehyde reductase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本發明係關於突變體醇去氫酶、包含其之微生物及藉由微生物發酵產生一或多種產物之方法。

Description

酶-改變之代謝物活性
本發明係關於突變體醇去氫酶、包含其之微生物及藉由微生物發酵產生一或多種產物之方法。
藉由利用微生物發酵來產生諸如乙醇或丁醇等醇為眾所周知,且數個世紀以來在工業上使用。歷史上,乙醇發酵係最大製程。丙酮-丁醇-乙醇(ABE)發酵被視為第二大發酵製程[Duerre P:Production of solvents.在:Handbook on Clostridia,CRC Press,2005:671-696]且如中國(China)等國家之當前生產能力超過1,000,000噸(ton)[Ni Y及Sun Z:Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China.Appl.Microbiol.Biotechnol.,2009,83:415-423]。丁醇通常用作溶劑或生物燃料,而丙酮被視為不期望副產物[Duerre P:Production of solvents.在:Handbook on Clostridia,CRC Press,2005:671-696]。已知由於二級醇去氫酶若干拜氏梭菌(Clostridium beijerinckii)分離物產生異丙醇而非丙酮[George HA、Johnson JL、Moore WEC、Holdeman LV、Chen JS:Acetone,isopropanol,and butanol production by Clostridium beijerinckii(syn.Clostridium butylicum)and Clostridium aurantibutyricum.Appl Environ Microbiol 45:1160-1163]。異丙醇具有與丁醇類似之性質且將比丙酮有益。然而,該還原並不十分有效,且 各別拜氏梭菌菌株不產生良好力價且不認為係有用產生菌株。
目前,丙酮丁醇梭菌(C.acetobutylicum)已使用來自拜氏梭菌之二級醇去氫酶經代謝改造用於異丙醇產生[Lee等人,2012:Metabolic engineering of Clostridium acetobutylicum ATCC824 for isopropanol-butanol-ethanol fermentation,Appl.Environ.Microbiol.78:1416-1423],但將需要高效醇去氫酶來最佳化此製程。
ABE發酵之挑戰係所有已知生物均依賴基於糖或澱粉之受質。適於產生諸如丙酮及異丙醇等化學產物之許多碳水化合物原料之成本係受其作為人類食物或動物飼料之價值影響,且用於該產生之產生澱粉或蔗糖之作物之栽培在所有地理中均非經濟可持續的。因此,感興趣的係研發將較低成本及/或較豐富之碳資源轉化成諸如丙酮及異丙醇等有用化學產物之技術。
CO係諸如煤或石油及石油衍生之產物等有機材料之不完全燃燒之主要游離高能副產物。例如,據報告澳大利亞(Australia)之鋼鐵工業每年產生並釋放至大氣中之CO超過500,000公噸(tonne)。諸如緊密相關微生物自產乙醇梭菌(Clostridium autoethanogenum)、揚氏梭菌(C.ljungdahlii)及萊格梭菌(C.ragsdalei)等產乙酸生物能夠依賴含有CO或CO2/H2之氣體作為唯一能量及碳源而化學自營生長,並合成諸如乙酸鹽、乙醇或2,3-丁二醇等產物,而非丙酮或異丙醇[Munasinghe PC、Khanal SK:Biomass-derived syngas fermentation into biofuels:Opportunities and challenges.Bioresource Technol 2010,5013-22]。
目前,異丙醇之產生係報告於在100-L領試規模發酵罐中自源自柳枝稷之合成氣之關於萊格梭菌(梭菌菌株P11)之研究中[Kundiyana DK、Huhnke RL、Wilkins MR:Syngas fermentation in a 100-L pilot scale fermentor:Design and process considerations.J Biosci Bioeng 2010,109:492-498]。然而,來自同一實驗室之相關研究顯示,此係 歸因於所用合成氣中之污染,此乃因其穿過含有20%丙酮之洗氣混合物[Ramachandriya KD:Effect of biomass generated producer gas,methane and physical parameters on producer gas fermentations by Clostridium strain P11.Masters thesis,Oklahoma State University 2009;Ramachandriya KD、Wilkins MR、Delorme MJM、Zhu X、Kundiyana DK、Atiyeh HK、Huhnke RL:Reduction of acetone to isopropanol using producer gas fermenting microbes.Biofuels Environ Biotechnol,2011,電子出版物]。然而,作者證實丙酮藉由萊格梭菌(梭菌菌株P11)還原成異丙醇並推測存在二級醇去氫酶,但找不到任何證據。
本發明之目的係克服先前技術之一或多個缺點,或至少為公眾提供有用選擇。
本發明者已在自產乙醇梭菌中識別新穎一級:二級醇去氫酶,該一級:二級醇去氫酶可用於(例如)自CO產生異丙醇及/或一或多種其他產物,或用於將丙酮-丁醇-乙醇(ABE)發酵升級至異丙醇-丁醇-乙醇(IBE)發酵,或用於將MEK轉化成2-丁醇,且本發明者已藉由定向誘變最佳化酶之性質,例如受質及/或輔助因子特異性。
在本發明之一態樣中,提供對至少一種第一受質具有相對於至少一種第二受質提高之特異性的醇去氫酶,其中該至少一種第一受質及該至少一種第二受質係選自由以下組成之群:該第一受質係丙酮且該第二受質係MEK;該第一受質係丙酮且該第二受質係乙醛;該第一受質係丙酮且該第二受質係乙醯甲基甲醇;該第一受質係MEK且該第二受質係乙醛;該第一受質係MEK且該第二受質係係乙醯甲基甲醇; 該第一受質係乙醯甲基甲醇且該第二受質係丙酮;該第一受質係乙醯甲基甲醇且該第二受質係MEK;該第一受質係乙醯甲基甲醇且該第二受質係乙醛;該第一受質係乙醛且該第二受質係丙酮;該第一受質係乙醛且該第二受質係乙醯甲基甲醇;及該第一受質係乙醛且該第二受質係MEK;且,其中與相應野生型醇去氫酶相比較,該醇去氫酶包括至少一種或多種突變。
在一實施例中,該醇去氫酶對一種、兩種或三種第一受質具有相對於兩種或三種第二受質提高之特異性。在另一實施例中,該醇去氫酶對兩種或三種第一受質具有相對於一種、兩種或三種第二受質提高之特異性。
在另一態樣中,本發明提供對NADH輔助因子具有相對於NADPH輔助因子提高之特異性之醇去氫酶,其中與相應野生型醇去氫酶相比較,該醇去氫酶包括至少一種或多種突變。
在另一態樣中,本發明提供使用NADH作為輔助因子之醇去氫酶,其中與使用NADPH作為輔助因子之相應野生型醇去氫酶相比較,該醇去氫酶包括至少一種或多種突變。
在一特定實施例中,該醇去氫酶對丙酮具有相對於MEK及/或乙醛及/或乙醯甲基甲醇提高之特異性。
在一特定實施例中,該醇去氫酶對MEK具有相對於丙酮及/或乙醛及/或乙醯甲基甲醇提高之特異性。
在一特定實施例中,該醇去氫酶對乙醛具有相對於丙酮及/或MEK及/或乙醯甲基甲醇提高之特異性。
在一特定實施例中,該醇去氫酶對乙醯甲基甲醇具有相對於丙酮及/或MEK及/或乙醛提高之特異性。
在一特定實施例中,該醇去氫酶實質上沒有使用乙醯甲基甲醇作為受質之能力。在一特定實施例中,該醇去氫酶實質上沒有使用乙醯甲基甲醇作為受質之能力,但能夠使用丙酮、MEK及/或乙醛作為受質。
在一實施例中,該至少一種突變係於與SEQ ID 36之醇去氫酶序列之位置Gly198、Ser199、Arg200、Pro201及Tyr218相應之胺基酸中之一者或其組合處的胺基酸取代。
在一實施例中,與相應野生型醇去氫酶相比較,該醇去氫酶包括以下突變中之一或多者:Gly198Asp、Gly198Ile、Gly198Leu、Gly198Val、Ser199Asp、Ser199Glu、Ser199Leu、Ser199Val、Arg200Glu、Pro201Asp、Pro201Glu、Tyr218Ala及Tyr218Phe。
在另一實施例中,與相應野生型醇去氫酶相比較,該醇去氫酶包括以下突變中之一者:Tyr218Gly、Tyr218Ser或Tyr218Val。
在一實施例中,該醇去氫酶包括Ser199Asp取代。在一實施例中,該醇去氫酶包括Ser199Glu取代。
在一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu。在一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Leu及Pro201Glu。在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ala。在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Phe。在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Gly。在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ser。在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Val。
在一實施例中,該醇去氫酶包括Ser199Asp取代,並對1)丙酮具有相對於MEK及/或乙醯甲基甲醇提高之受質特異性。在一實施例中,該醇去氫酶包括Ser199Asp取代,並對丙酮具有相對於MEK及乙醯甲基甲醇提高之受質特異性。
在一實施例中,該醇去氫酶包括Ser199Glu取代,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及/或乙醯甲基甲醇;及/或2)MEK,相對於乙醛及/或乙醯甲基甲醇。在一實施例中,該醇去氫酶包括Ser199Glu取代,並對1)丙酮具有相對於MEK及乙醛及乙醯甲基甲醇提高之受質特異性。在另一實施例中,該醇去氫酶包括Ser199Glu取代,並對MEK具有相對於乙醛及乙醯甲基甲醇提高之受質特異性。在一實施例中,該醇去氫酶包括Ser199Glu取代,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK及乙醛及乙醯甲基甲醇;及2)MEK,相對於乙醛及乙醯甲基甲醇。
在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val及Pro201Glu,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK;及/或2)乙醛,相對於MEK、丙酮及/或乙醯甲基甲醇;及/或3)乙醯甲基甲醇,相對於丙酮及/或MEK。在一實施例中,包括取代之此組合之醇去氫酶對乙醛具有相對於MEK及丙酮及乙醯甲基甲醇提高之受質特異性。在一實施例中,包括取代之此組合之醇去氫酶對乙醯甲基甲醇具有相對於丙酮及MEK提高之受質特異性。在另一實施例中,包括取代之此組合之醇去氫酶對以下物質具有提高之受質特異性:1)丙酮,相對於MEK;及2)乙醛,相對於MEK及丙酮及乙醯甲基甲醇;及3)乙醯甲基甲醇,相對於丙酮及MEK。
在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ala,對以下物質具有提 高之受質特異性:1)丙酮,相對於MEK、乙醛及/或乙醯甲基甲醇;及/或2)MEK,相對於乙醛及/或乙醯甲基甲醇;及/或3)乙醯甲基甲醇,相對於乙醛。在一實施例中,包括取代之此組合之醇去氫酶對丙酮具有相對於MEK及乙醛及乙醯甲基甲醇提高之受質特異性。在一實施例中,包括取代之此組合之醇去氫酶對MEK具有相對於乙醛及乙醯甲基甲醇提高之受質特異性。在另一實施例中,包括取代之此組合之醇去氫酶對以下物質具有提高之受質特異性:1)丙酮,相對於MEK及乙醛及乙醯甲基甲醇;及2)MEK,相對於乙醛及乙醯甲基甲醇;及3)乙醯甲基甲醇,相對於乙醛。
在另一實施例中,醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Phe,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及/或乙醯甲基甲醇;及/或2)MEK,相對於乙醛及/或乙醯甲基甲醇;及/或3)乙醛,相對於乙醯甲基甲醇。在一實施例中,包括取代之此組合之醇去氫酶對丙酮具有相對於MEK及乙醛及乙醯甲基甲醇提高之受質特異性。在一實施例中,包括取代之此組合之醇去氫酶對MEK具有相對於乙醛及乙醯甲基甲醇提高之受質特異性。在另一實施例中,包括取代之此組合之醇去氫酶對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及乙醯甲基甲醇;及2)MEK,相對於乙醛及乙醯甲基甲醇;及3)乙醛,相對於乙醯甲基甲醇。在一實施例中,包括取代之此組合之醇去氫酶實質上沒有使用乙醯甲基甲醇作為受質之能力。
在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ala,且能夠使用NADH作為輔助因子。在一實施例中,該醇去氫酶包括所有該等取代,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及乙醯甲基甲醇;及2)MEK,相對於乙醛及乙醯甲基甲醇;及3)乙醯甲 基甲醇,相對於乙醛;且4)能夠使用NADH作為輔助因子。
在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Phe,且能夠使用NADH作為輔助因子。在一實施例中,該醇去氫酶包括所有該等取代,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及乙醯甲基甲醇;及2)MEK,相對於乙醛及乙醯甲基甲醇;及3)乙醛,相對於乙醯甲基甲醇;且4)能夠使用NADH作為輔助因子。
在一實施例中,該醇去氫酶具有於SEQ ID 38中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 42中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 50中提供之序列。
在一實施例中,該醇去氫酶具有於SEQ ID 44中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 46中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 48中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 52中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 54中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 63中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 64中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 65中提供之序列。
在第二態樣中,本發明提供編碼本發明之第一態樣之醇去氫酶之核酸。
在某些實施例中,該核酸具有SEQ ID 37、SEQ ID 41、SEQ ID 47、SEQ ID 49、SEQ ID 67、SEQ ID 68、SEQ ID 69或SEQ ID 70之序列。在其他實施例中,該核酸具有SEQ ID 39、SEQ ID 43、SEQ ID 45、SEQ ID 51或SEQ ID 53之序列。
在第三態樣中,本發明提供包含編碼本發明之第一態樣之醇去氫酶之核酸的核酸載體。在一實施例中,該載體係表現載體。在一實 施例中,編碼第一態樣之醇去氫酶之核酸係第二態樣之核酸。
在第四態樣中,本發明提供包含本發明之第二或第三態樣之核酸的宿主細胞。
在第五態樣中,本發明提供包含一或多種本發明之第二或第三態樣之核酸的重組微生物。
在一實施例中,該微生物能夠藉由發酵產生一或多種選自以下之產物:異丙醇;2,3-丁二醇;乙醇;及,2-丁醇;及視情況一或多種其他產物。
在一實施例中,該微生物能夠藉由發酵產生一或多種選自以下之產物:乙醯甲基甲醇;乙醛;MEK;及,丙酮;及視情況一或多種其他產物。
在一實施例中,該重組微生物係選自包含細菌、古菌及真菌之微生物之群。
在一實施例中,該重組微生物係選自梭菌屬、乙酸桿菌屬(Acetobacterium)、穆爾氏菌屬(Moorella)、丁酸桿菌屬(Butyribacterium)、柏勞菌屬(Blautia)、醋菌屬、熱厭氧桿菌屬(Thermoanaerobacter)、艾氏菌屬(Escherichia)、克雷白氏菌屬(Klebsiella)、發酵單胞菌屬(Zymomonas)、檸檬酸桿菌屬 (Citrobacter)、腸桿菌屬(Enterobacter)、沙門氏菌屬(Salmonella)、沙雷氏菌屬(Serratia)、乳酸桿菌屬(Lactobacillus)、乳球菌屬(Lactococcus)、腸球菌屬(Enterococcus)、小球菌屬(Pediococcus)、鏈球菌屬(Streptococcus)、酵母菌(Saccharomyces)、畢赤酵母菌屬(Pichia)、假絲酵母菌屬(Candida)、漢遜氏酵母菌屬(Hansenula)、耶氏酵母菌屬(Yarrowia)、紅酵母菌屬(Rhodotorula)、根黴菌屬(Rhizopus)、毛芽孢菌屬(Trichosporon)、油脂酵母菌屬(Lipomyces)、麴菌屬(Aspergillus)、木黴菌屬(trichoderma)、外瓶黴屬(Exophila)、白黴菌屬(Mucor)、分枝孢子菌屬(Cladosporium)、白腐菌屬(Phanerochaete)、枝孢黴屬(Cladiophilalophora)、擬青黴菌屬(Paecilomyces)、足分枝菌屬(Scedosporium)、長喙殼菌屬(Ophistoma)、芽孢桿菌屬(Bacillus)、寡養菌(Oligotropha)、假單胞菌屬(Pseudomonas)、嗜碳菌屬(Carbophilus)、嗜氫菌屬(Hydrogenophaga)、分枝桿菌屬(Mycobacterium)、紮瓦爾金氏菌屬(Zavarzinia)、貪銅菌屬(Cupravidus)、藍綠菌屬(Senechocystis)、綠曲撓菌屬(Chloroflexus)、甲基單胞菌屬(Methylomonas)、甲基桿菌屬(Methylobacter)、甲基球菌屬(Methylococcus)、甲基微菌屬(Methylomicrobium)、甲基球形菌屬(Methylosphera)、甲基暖菌屬(Methylocaldum)、甲基孢囊菌屬、甲基彎菌屬(Methylosinus)、甲烷桿菌屬(Methanobacterium)、甲烷球菌屬(Methanococcus)、產甲烷菌屬(Methanogenium)、甲烷八聯球菌屬(Methanosarcina)、甲烷球形菌屬(Methanoshera)、甲烷熱桿菌屬(Methanothermobacter)、甲烷絲菌屬(Methanotrix)、棒狀桿菌屬(Corynebacterium)、不動菌屬(Acinetobacter)、放線菌屬(Actinomyces)、纖毛菌屬(Bacteriodes)、伯克氏菌屬(Burkholderia)、短桿菌屬(Brevibacterium)、火球菌屬(Pyrococcus)、地桿菌屬(Geobacter)、地芽孢桿菌屬(Geobacillus)、類 芽孢桿菌屬(Paenibacillus)、分枝桿菌屬、紅假單胞菌屬(Rhodopseudomonas)、熱袍菌屬(Thermatoga)、熱厭氧桿菌屬、鏈黴菌屬(Streptomyces)、紅細菌屬(Rhodobacter)、赤球菌屬(Rhodococcus)、消化球菌屬(Peptococcus)、雙歧桿菌屬(Bifidobacterium)、丙酸桿菌屬(Propionibacterium)、細梭菌屬(Fusobacterium)、曲狀桿菌屬(Campylobacter)、範永氏球菌屬(Veillonella)、水居菌屬(Aquincola)、關節桿菌屬(Arthrobacter)、莫拉氏菌屬(Moraxella)及冷桿菌屬(Psychrobacter)。
在一實施例中,該生物係選自一氧化碳營養型產乙酸微生物之群、ABE微生物之群、腸內細菌之群、乳酸桿菌屬之群、真菌及酵母之群、好氧性一氧化碳營養菌(carboxydotrophes)之群、好氧性CO2固定生物之群、親甲基醇菌之群及產甲烷菌之群。
在一實施例中,該微生物係選自包含以下之群之一氧化碳營養型產乙酸菌:自產乙醇梭菌、揚氏梭菌、萊格梭菌、食一氧化碳梭菌(Clostridium carboxidivorans)、德瑞克梭菌(Clostridium drakei)、糞味梭菌(Clostridium scatologenes)、考斯卡梭菌(Clostridium coskatii)、醋酸梭菌(Clostridium aceticum)、大梭菌(Clostridium magnum)、梭菌屬(Clostridium sp.)、黏丁酸桿菌(Butyribacterium limosum)、食甲基丁酸桿菌(Butyribacterium methylotrophicum)、伍氏乙酸桿菌(Acetobacterium woodii)、柏氏鹼性桿菌(Alkalibaculum bacchii)、產生柏勞菌(Blautia producta)、黏液真桿菌(Eubacterium limosum)、熱醋穆爾氏菌(Moorella thermoacetica)、熱自養穆爾氏菌(Moorella thermautotrophica)、芬尼氏醋菌(Oxobacter pfennigii)及凱伍熱厭氧桿菌(Thermoanaerobacter kiuvi)。在一實施例中,該微生物係自產乙醇梭菌或揚氏梭菌。在一特定實施例中,該微生物係自產乙醇梭菌DSM10061或DSM23693。在另一特定實施例中,該微生物係揚氏梭 菌DSM13528(或ATCC55383)。
在一實施例中,該微生物係選自包含以下之群之ABE微生物:丙酮丁醇梭菌、拜氏梭菌、糖丁酸梭菌(Clostridium saccharobutylicum)、糖乙酸多丁醇梭菌(Clostridium saccharoperbutylacetonicum)。在一實施例中,該微生物係丙酮丁醇梭菌或拜氏梭菌。在一特定實施例中,該微生物係丙酮丁醇梭菌ATCC824(或DSM792)。在另一特定實施例中,該微生物係拜氏梭菌NCIMB8052(ATCC51743)。
在一實施例中,該微生物係選自包含以下之群之腸內細菌:艾氏菌屬、克雷白氏菌屬、發酵單胞菌屬、檸檬酸桿菌屬、腸桿菌屬、沙門氏菌屬、沙雷氏菌屬。在一實施例中,該微生物係大腸桿菌(Eschericia coli)、運動發酵單胞菌(Zymononas mobilis)、肺炎克雷白氏菌(Klebsiella pneumonia)、產酸克雷白氏菌(Klebsiella oxtoca)、陰溝腸桿菌(Enterobacter cloacae)或黏質沙雷氏菌(Serratia marcescens)。
在一實施例中,該微生物係選自包含以下之群之乳酸桿菌屬:乳酸桿菌屬、乳球菌屬、腸球菌屬、小球菌屬、鏈球菌屬。在一實施例中,該微生物係短毛乳酸桿菌(Lactobacillus brevis)、糞腸球菌(Enterococcus faecalis)、乳酸乳球菌(Lactococcus lactis)。
在一實施例中,該微生物係如下之真菌或酵母:其選自包含以下之群:酵母菌屬、畢赤酵母菌屬、假絲酵母菌屬、漢遜氏酵母菌屬、耶氏酵母菌屬、紅酵母菌屬、根黴菌屬、毛芽孢菌屬、油脂酵母菌屬,且選自包含以下之群:麴菌屬、木黴菌屬、外瓶黴屬、白黴菌屬、分枝孢子菌屬、白腐菌屬、枝孢黴屬、擬青黴菌屬、足分枝菌屬、長喙殼菌屬。在一實施例中,該微生物係啤酒酵母菌(Saccharomyces cerevisiae)、熱帶念珠菌(Candidia tropicalis)、白色念 珠菌(Candidia albicans)或解脂耶氏酵母菌(Yarrowia lipolytica)。在一實施例中,該微生物係黑麴菌(Aspargillus niger)或裏氏木黴菌(Trichderma resei)。
在一實施例中,該微生物係選自包含以下之群之好氧性一氧化碳營養菌:芽孢桿菌屬、寡養菌、假單胞菌屬、嗜碳菌屬、嗜氫菌屬、分枝桿菌屬、紮瓦爾金氏菌屬。在一實施例中,該微生物係食羧寡養菌(Oligotropha carboxydovorans)、碳酸嗜碳菌(Carbophilus carboxidus)、類黃色嗜氫菌(Hydrogenophaga pseudoflava)、分枝桿菌屬(Mycobacterium sp.)、氫碳酸假單胞菌(Pseudomonas carboxydohydrogena)、假單胞菌屬(Pseudomonas sp.)、餐伴紮瓦爾金氏菌(Zavarzinia compransoris)或施氏芽孢桿菌(Bacillus schlegelii)。
在一實施例中,該微生物係選自包含貪銅菌屬、藍綠菌屬、綠曲撓菌屬之群之好氧性CO2固定生物。在一實施例中,該微生物係鉤蟲貪銅菌(Cupravidus necator)、藍綠菌屬(Senechocystis sp.)或橙色綠曲撓菌(Chloroflexus auranticus)。
在一實施例中,該微生物係選自包含以下之群之親甲基醇菌:甲基單胞菌屬、甲基桿菌屬、甲基球菌屬、甲基微菌屬、甲基球形菌屬、甲基暖菌屬、甲基孢囊菌屬、甲基彎菌屬。在一實施例中,該微生物係莢膜甲基球菌(Methylococcus capsulatus)或發孢甲基彎菌(Methylosinus trichosporium)。
在一實施例中,該微生物係選自包含以下之群之產甲烷菌:甲烷桿菌屬、甲烷球菌屬、產甲烷菌屬、甲烷八聯球菌屬、甲烷球形菌屬、甲烷熱桿菌屬、甲烷絲菌屬。在一實施例中,該微生物係馬爾堡甲烷熱桿菌(Methanothermobacter marburgensis)或巴氏甲烷八聯球菌(Methanosarcina bakeri)。
在第六態樣中,本發明提供藉由使用本發明之第五態樣之微生 物使受質微生物發酵來產生異丙醇、2,3-丁二醇、乙醇及2-丁醇及視情況一或多種其他產物中之一或多者之方法。
在另一態樣中,本發明提供產生乙醯甲基甲醇、MEK、丙酮及乙醛中之一或多者之方法。
在一實施例中,該方法包含以下步驟:(a)將受質提供至含有一或多種本發明微生物之培養物之生物反應器;及(b)使生物反應器中之培養物發酵,以產生異丙醇、2,3-丁二醇、乙醇及2-丁醇及視情況一或多種其他產物中之一或多者。
在一實施例中,該受質係包含CO、CO2及H2中之一或多者之受質。在另一實施例中,該受質係包含一或多種碳水化合物之受質。
在另一實施例中,可使用兩種或更多種不同受質之組合。在一實施例中,使用包含CO、CO2及H2中之一或多者之受質及包含一或多種碳水化合物之受質的組合。
在一實施例中,該受質係包含CO之受質,且該方法包含以下步驟:(a)在將工業製程產生之含CO氣體釋放至大氣中之前,捕獲該氣體;(b)藉由含有一或多種本發明之一氧化碳營養型產乙酸微生物之培養物使含CO氣體厭氧發酵,以產生異丙醇、2,3-丁二醇、乙醇及2-丁醇及視情況一或多種其他產物中之一或多者。
廣義上亦可稱本發明存在於本說明書中個別或共同提及或指示之各部分、要素及特徵中,存在於該等部分、要素或特徵中之兩者或更多者之任何或所有組合中,且若在本文中提及在本發明相關領域具有已知等效物之具體整體,則認為該等已知等效物如同個別地闡明一般併入本文中。
根據下文僅以實例方式給出之說明,參照附圖可瞭解本發明之該等及其他態樣,應在所有新穎態樣中考慮本發明,其中:圖1:顯示野生型蛋白質在大腸桿菌中表現時高度可溶,且可容易地純化。樣品(左至右):總細胞提取物;可溶性溶解產物;分子量階梯狀條帶(ladder);管柱溶析流分1至7。
圖2:顯示Ser199Asp(左圖)及Arg200Gln(右圖)突變體蛋白質高度可溶。Ser199Asp樣品(左至右):總細胞提取物;階梯狀條帶;管柱洗滌1;管柱洗滌2;溶析流分1至5。Arg200Gln樣品(左至右):總細胞提取物;管柱洗滌1;管柱洗滌2;階梯狀條帶;溶析流分1至5。
圖3:顯示野生型蛋白質及Ser199Asp突變體之活性。Ser199Asp突變體在丙酮之情況下幾乎與野生型一樣活躍。
圖4:顯示Ser199Asp突變體之相對活性。
圖5:顯示突變體2(圖A)、突變體7(圖B)、突變體10(圖C)、突變體11(圖D)及突變體13(圖E)係可溶的。突變體2樣品(左至右):總細胞提取物、可溶性溶解物、管柱洗滌流分(1至6)、分子量階梯狀條帶、管柱溶析流分(1至6)。突變體7樣品(左至右):總細胞提取物、可溶性溶解物、管柱洗滌流分(1至5)、分子量階梯狀條帶、管柱溶析流分(1至7)。突變體10樣品(左至右):總細胞提取物、可溶性溶解物、管柱洗滌流分(1)、分子量階梯狀條帶、管柱洗滌流分(2至4)、管柱溶析流分(1至5)。突變體11樣品(左至右):總細胞提取物、可溶性溶解物、管柱洗滌流分(1至3)、分子量階梯狀條帶、管柱溶析流分(1至5)。突變體13樣品(左至右):總細胞提取物、可溶性溶解物、管柱洗滌流分(1)、分子量階梯狀條帶、管柱洗滌流分(2至3)、管柱溶析流分(1至5)、分子量階梯狀條帶。
圖6:顯示野生型蛋白質及突變體2、7、10、11及13以NADH作 為輔助因子且以丙酮作為受質之活性。僅突變體11使用NADH作為輔助因子時具有較顯著之活性。所有分析中之受質均係5mM丙酮。
圖7:顯示野生型及突變體ADH酶對正規化為丙酮(丙酮組=1)之不同受質之比活性。對於每一酶而言,使用較佳輔助因子(即對於野生型ADH、突變體2及突變體7而言,NADPH;對於突變體10及突變體11而言,NADH)。
圖8:顯示野生型及突變體ADH酶對正規化為MEK(2-丁酮)(MEK組=1)之不同受質之比活性。對於每一酶而言,使用較佳輔助因子(即對於野生型ADH、突變體2及突變體7而言,NADPH;對於突變體10及突變體11而言,NADH)。
圖9:顯示野生型及突變體ADH酶對正規化為乙醛(乙醛組=1)之不同受質之比活性。對於每一酶而言,使用較佳輔助因子(即對於野生型ADH、突變體2及突變體7而言,NADPH;對於突變體10及突變體11而言,NADH)。
圖10:顯示野生型及突變體ADH酶對正規化為乙醯甲基甲醇(乙醯甲基甲醇組=1)之不同受質之比活性。對於每一酶而言,使用較佳輔助因子(即對於野生型ADH、突變體2及突變體7而言,NADPH;對於突變體10及突變體11而言,NADH)。
圖11:自產乙醇梭菌DSM10061野生型酶以NADH及NADPH作為輔助因子且以丙酮作為受質之活性測試,包括對照(CNTL)。
圖12:針對野生型Adh酶利用不同受質所量測之動力學、KM值及活性。
圖13:pMTL85147-ThlA-CtfAB-Adc-Adh之質粒圖。
圖14:異丙醇、2,3-丁二醇、2-丁醇及乙醇之發酵途徑及醇去氫酶(adh)之作用。其他反應:乙醯乳酸合成酶(als)、乙醯乳酸去羧酶(aldc)、二醇脫水酶(pdd)、醛去氫酶(ald)、醛:鐵氧化還原蛋白氧化還 原酶(aor)、磷酸轉乙醯酶(pta)、乙酸激酶(ack)、硫解酶(thlA)、輔酶A轉移酶(ctfAB)、乙醯乙酸去羧酶(adc)。
序列列表之詳細說明:
本說明書隨附有序列列表,其中列示以下序列:SEQ ID No.1至34:係闡述於下文表3、4及5中。
SEQ ID No.35:本發明者所研究之野生型ADH之核酸序列。
SEQ ID No.36:本發明者所研究之野生型ADH之胺基酸序列。
SEQ ID No.37:本發明者所產生之包含取代Ser199Asp之突變體ADH之核酸序列。
SEQ ID No.38:本發明者所產生之包含取代Ser199Asp之突變體ADH之胺基酸序列。
SEQ ID No.39:Wood Ljungdahl啟動子區域之核酸序列。
SEQ ID No.40:本文中進一步闡述之質粒pMTL85147-ThlA-CtfAB-Adc-Adh之核苷酸序列。
SEQ ID No.41:下文進一步闡述之突變體7之核酸序列(經密碼子最佳化)。
SEQ ID No.42:下文進一步闡述之突變體7之胺基酸序列。
SEQ ID No.43:下文進一步闡述之突變體8之核酸序列(經密碼子最佳化)。
SEQ ID No.44:下文進一步闡述之突變體8之胺基酸序列。
SEQ ID No.45:下文進一步闡述之突變體9之核酸序列(經密碼子最佳化)。
SEQ ID No.46:下文進一步闡述之突變體9之胺基酸序列。
SEQ ID No.47:下文進一步闡述之突變體10之核酸序列(經密碼子最佳化)。
SEQ ID No.48:下文進一步闡述之突變體10之胺基酸序列。
SEQ ID No.49:下文進一步闡述之突變體11之核酸序列(經密碼子最佳化)。
SEQ ID No.50:下文進一步闡述之突變體11之胺基酸序列。
SEQ ID No.51:下文進一步闡述之突變體12之核酸序列(經密碼子最佳化)。
SEQ ID No.52:下文進一步闡述之突變體12之胺基酸序列。
SEQ ID No.53:下文進一步闡述之突變體13之核酸序列(經密碼子最佳化)。
SEQ ID No.54:下文進一步闡述之突變體13之胺基酸序列。
SEQ ID No.55:自產乙醇梭菌醇去氫酶基因之5’同源臂之核苷酸序列。
SEQ ID No.56:自產乙醇梭菌醇去氫酶基因之3’同源臂之核苷酸序列。
SEQ ID No.57:引物Sec5f。
SEQ ID No.58:引物Sec5r。
SEQ ID No.59:引物Sec3f。
SEQ ID No.60:引物Sec3r。
SEQ ID No.61:引物SecOf。
SEQ ID No.62:引物SecOr。
SEQ ID No.63:具有以下取代之醇去氫酶之胺基酸序列:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Gly。
SEQ ID No.64:具有以下取代之醇去氫酶之胺基酸序列:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ser。
SEQ ID No.65:具有以下取代之醇去氫酶之胺基酸序列:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Val。
SEQ ID No.66:具有以下取代之醇去氫酶之胺基酸序列: Ser199Glu。
SEQ ID No.67:具有以下取代之醇去氫酶之核酸序列:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Gly。
SEQ ID No.68:具有以下取代之醇去氫酶之核酸序列:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ser。
SEQ ID No.69:具有以下取代之醇去氫酶之核酸序列:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Val。
SEQ ID No.70:具有以下取代之醇去氫酶之核酸序列:Ser199Glu(經密碼子最佳化)。
下文以一般術語闡述本發明,包括本發明之較佳實施例。藉助下文在標題「實例」下給出之揭示內容來進一步闡明本發明,該揭示內容提供支持本發明之實驗數據、本發明各態樣之具體實例及實施本發明之方式。
本發明者已意外地發現,來自一氧化碳營養型產乙酸微生物之醇去氫酶之突變提高其對受質乙醯甲基甲醇、甲基乙基酮(MEK或2-丁酮)、丙酮及乙醛中之一或多者相對於彼此之特異性。
另外,本發明者已識別能夠接受NADH(代替NADPH或除NADPH以外)作為輔助因子之突變體。因此,其不受該等輔助因子中之僅一者之可用性限制且能夠使用較豐富細胞內NADH庫以提高產物形成之總效率。
突變意指,本發明之酶適於相對於另一發酵終產物優先產生一發酵終產物並允許使用通常相對於NADPH庫大得多之NADH庫(Bennett及San,2009)。在ABE發酵中,產生乙醇及丙酮二者,且在IBE發酵中產生異丙醇(Köpke及Dürre,2011)。本發明可允許提高丙酮至異丙醇之還原或相對於乙醛至乙醇之還原優先催化此反應,或反 之亦然。例如,本發明可有助於克服異丙醇產生中之限制,此乃因所有菌株依賴於嚴格地NADPH依賴性且具有對乙醛高背景活性之未經修飾之醇去氫酶。經改造用於異丙醇產生之大腸桿菌菌株具有相同缺點及低產量,此乃因使用來自拜氏梭菌之相同NADPH依賴性醇去氫酶而非替代物[Hanai T等人(2007)Engineered synthetic pathway for isopropanol production in Escherichia coli.Applied and environmental microbiology 73:7814-8;Inokuma K等人(2010)Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping.Journal of bioscience and bioengineering 110:696-701;Jojima T等人(2008)Production of isopropanol by metabolically engineered Escherichia coli.Applied microbiology and biotechnology 77:1219-24]。類似地,本發明提供自包含一氧化碳之受質藉由先前不能產生可行含量之異丙醇之一氧化碳營養型產乙酸微生物產生異丙醇之方法。一些一氧化碳營養型生物(如自產乙醇梭菌、揚氏梭菌或萊格梭菌)能夠形成乙醇及2,3-丁二醇二者(Köpke等人,2011)。本發明亦可允許提高乙醯甲基甲醇至2,3-丁二醇之還原或相對於乙醛至乙醇之還原優先催化此反應,或反之亦然。2,3-丁二醇可藉由二醇脫水酶轉化成MEK(Toraya等人,1976,Substrate specificity of coenzyme B12-dependent diol dehydrase-glycerol as both a good substrate and a potent inactivator.Biochem.Biophys.Res.Commun.,69:475-80)。本發明允許MEK有效轉化成2-丁醇。因此,本發明亦提供用於以較高特異性自乙醯甲基甲醇產生2,3-丁二醇並自MEK產生2-丁醇之溶液。
因此,本發明尤其提供對以下物質具有提高之特異性之醇去氫酶:丙酮受質,相對於其他受質,如乙醯甲基甲醇、甲基乙基酮(MEK或2-丁酮)及/或乙醛受質;MEK受質,相對於乙醛及/或乙醯甲基甲醇受質;乙醛受質,相對於MEK、乙醯甲基甲醇及/或丙酮受 質;及/或乙醯甲基甲醇受質,相對於丙酮、MEK及/或乙醛受質,其中與相應野生型醇去氫酶相比較,該醇去氫酶包括至少一種或多種突變;提供編碼該等醇去氫酶之核酸;包含該等核酸之核酸載體;能夠藉由受質之發酵產生異丙醇、2,3-丁二醇、乙醇及2-丁醇及視情況一或多種其他產物中之一或多者且包含一或多種編碼一或多種本發明之醇去氫酶之核酸的微生物;及用於產生異丙醇、2,3-丁二醇、乙醇及2-丁醇及視情況一或多種其他產物中之一或多者之方法。
本發明亦提供實質上沒有使用乙醯甲基甲醇作為受質之能力之醇去氫酶、編碼此一醇去氫酶之核酸及核酸載體、包含該等核酸或核酸載體之微生物及使用該醇去氫酶之方法。
片語「包含CO、CO2及H2中之一或多者之受質」應理解為包括任一受質,其中一或多種微生物菌株可利用CO、CO2及H2中之一或多者進行(例如)生長及/或發酵。應瞭解,該受質可包含與其他氣體相比較100% CO、CO2或H2或大部分係CO、CO2或H2,或可以該等氣體中之兩者或更多者之任一比率組合。在特定實施例中,該受質包含CO與CO2之組合。在另一實施例中,該受質包含CO與H2之組合。在另一實施例中,該受質包含CO2與H2之組合。在另一實施例中,該受質包含CO、CO2及H2之組合。
在某些實施例中,該受質可包含CO2及任一培養物,在光(光合作用)及/或電(電合成)之存在下實施生長或發酵。在某些實施例中,CO2係與O2組合。
在一實施例中,「包含CO、CO2及H2之受質」係「包含一氧化碳之受質」。「包含CO之受質」及類似術語應理解為包括任一受質,其中一或多種微生物菌株可利用一氧化碳進行(例如)生長及/或發酵。
片語「包含一氧化碳之氣體受質」及類似片語及術語包括任一含有一定量一氧化碳之氣體。在某些實施例中,該受質含有至少約20 體積%至約100體積% CO、20體積%至70體積% CO、30體積%至60體積% CO及40體積%至55體積% CO。在特定實施例中,該受質包含約25體積%、或約30體積%、或約35體積%、或約40體積%、或約45體積%、或約50體積% CO、或約55體積% CO、或約60體積% CO。
雖然包含CO之受質不需含有任何氫,但依照本發明方法,H2之存在應對產物形成無害。在特定實施例中,氫之存在改良醇產生之總效率。例如,在特定實施例中,該受質可包含大約2:1、或1:1、或1:2比率之H2:CO。在一實施例中,該受質包含約30體積%或更少H2、20體積%或更少H2、約15體積%或更少H2或約10體積%或更少H2。在其他實施例中,受質流包含低濃度之H2,例如,小於5%、或小於4%、或小於3%、或小於2%、或小於1%或實質上不含氫。該受質亦可含有一些CO2,例如,約1體積%至約80體積% CO2,或1體積%至約30體積% CO2。在一實施例中,該受質包含小於或等於約20體積% CO2。在特定實施例中,該受質包含小於或等於約15體積% CO2、小於或等於約10體積% CO2、小於或等於約5體積% CO2或實質上無CO2
在本發明之特定實施例中,含CO氣體受質係工業廢氣(off gas或waste gas)。「工業廢氣」應按廣義視為包括任何包含工業製程產生之CO之氣體且包括由於以下而產生之氣體:鐵質金屬產品製造、非鐵質產品製造、石油精製製程、煤氣化、生物質氣化、電力生產、碳黑生產及焦炭製造。其他實例可在本文其他部分中提供。
在一實施例中,「包含CO、CO2及H2之受質」係「包含CO2及H2之受質」。「包含CO2及H2之受質」及類似術語應理解為包括任一受質,其中一或多種微生物菌株可利用二氧化碳及氫進行(例如)生長及/或發酵。
含有CO2及H2之受質將通常大部分係H2,例如至少約30體積% H2、或至少40體積% H2、或至少50體積% H2、或至少60體積% H2、 或至少70體積% H2、或至少80體積% H2或至少85體積% H2
氣體受質將通常含有至少約10體積% CO2、或至少15體積% CO2、或至少20體積% CO2、或至少25體積% CO2、或至少30體積% CO2或至少40體積% CO2
在某些實施例中,H2:CO2之比率係約1:1、或約2:1或約3:1。
在某些實施例中,包含CO2及H2之受質係作為工業製程之副產物獲得或來自一些其他來源之廢氣。世界上CO2排放之最大來源係來自發電廠、工業設施及其他來源中之化石燃料(例如煤、石油及氣體)之燃燒。
氣體受質可係作為工業製程之副產物獲得或來自某另一來源(例如來自汽車尾氣)之含有CO2及H2之廢氣。在某些實施例中,該工業製程係選自由以下組成之群:氫製造、氨製造、染料燃燒、煤氣化及石灰石及水泥之生產。氣體受質可係攙和一或多種氣體受質以提供經攙和流之結果。熟習此項技術者應理解,富含H2或富含CO2之廢氣流比富含H2及CO2二者之廢氣流更豐富。熟習此項技術者應理解,攙和一或多種包含期望組份CO2及H2中之一者之氣體流將屬於本發明之範圍。
富氫氣體流係藉由包括烴之蒸汽重組、且特定而言天然氣之蒸汽重組之各種製程來產生。煤或烴之部分氧化亦係富氫氣體之來源。富氫氣體之其他來源包括水之電解、來自用於產生氯之電解槽及來自各種精煉廠及化學物流之副產物。
通常富含二氧化碳之氣體流包括來自烴(例如天然氣或石油)之燃燒之廢氣。二氧化碳亦係作為氨、石灰或磷酸鹽生產之副產物產生。
在以下說明中,在遞送並使「含有CO之氣體受質」或「包含CO、CO2及H2中之一或多者之氣體受質」發酵方面闡述本發明之實施例。然而,應瞭解,氣體受質可以替代形式提供。例如,氣體受質可 溶解於液體中來提供。基本上,液體經含有一氧化碳、二氧化碳及/或氫之氣體飽和,且然後將此液體添加至生物反應器。此可使用標準方法來達成。舉例而言,可使用微泡分散發生器(Hensirisak等人,Scale-up of microbubble dispersion generator for aerobic fermentation;Applied Biochemistry and Biotechnology第101卷,第3號/2002年10月)。在另一實例中,可將含有CO之氣體受質吸附至固體載體上。藉由使用術語「含有CO之受質」、「包含CO2及H2之受質」及「包含CO、CO2及H2中之一或多者之受質」及類似片語來涵蓋該等替代方法。
片語「包含一或多種碳水化合物之受質」及類似術語應理解為包括任一受質,其中一或多種微生物菌株可利用一或多種碳水化合物進行(例如)生長及/或發酵。「碳水化合物」應按廣義視為包括單-、二-、寡-及多糖、簡單及複雜碳水化合物,包括葡萄糖、果糖、糖蜜及澱粉。
在一實施例中,「包含一或多種碳水化合物之受質」可來源於生物質。生物質可具有任一性質,且包括(例如)森林或其他商品作物之殘留物(例如樹木、樹枝、樹樁、木片、鋸屑、修剪物)、城市固體廢棄物及生長以提供用於藉由微生物發酵產生一或多種產物之原料的作物,包括(例如)芒草、柳枝稷、大麻、玉米、楊樹、柳樹、高粱、甘蔗及竹。
除非上下文另有要求,否則本文中所用之片語「發酵」、「發酵製程」、「發酵反應」及諸如此類意欲涵蓋製程之生長階段及產物生物合成階段二者。如本文中將進一步闡述,在一些實施例中,生物反應器可包含第一生長反應器及第二發酵反應器。由此,將金屬或組合物添加至發酵反應應理解為包含添加至該等反應器中之任一者或兩者。
術語「生物反應器」包括由一或多個容器及/或塔或管道佈置組 成之發酵裝置,其包含連續攪拌槽反應器(CSTR)、固定化細胞反應器(ICR)、滴流床反應器(TBR)、氣泡柱、氣升發酵槽、靜態混合器或適於氣相-液相接觸之其他容器或其他裝置。在一些實施例中,生物反應器可包含第一生長反應器及第二發酵反應器。由此,當提及將受質添加至生物反應器或發酵反應時,其應理解為包括在適當時添加至其中一個或兩個反應器中。
術語核酸「構築體」或「載體」及類似術語應按廣義視為包括適於用作媒介物以將遺傳物質轉移至細胞中之任一核酸(包含DNA、cDNA及RNA)。該術語應視為包括質體、病毒(包括噬菌體)、黏質體及人工染色體。構築體或載體可包括一或多個調控元件、複製起點、多選殖位點及/或可選標記。在一特定實施例中,構築體或載體適於允許表現由構築體或載體編碼之一或多個基因。核酸構築體或載體包括裸核酸以及與一或多種試劑調配在一起以利於遞送至細胞之核酸(例如,脂質體偶聯核酸,含有核酸之有機體)。載體可用於選殖或表現核酸並用於轉化微生物以產生重組微生物。載體可包括一或多種編碼一或多種本發明醇去氫酶之核酸。
「外源核酸」係源於欲引入該核酸之微生物之外部之核酸。外源核酸可源自任一適當來源,其包括(但不限於)欲引入該核酸之微生物、與欲引入該核酸之有機體不同之微生物菌株或物種,或其可採用人工或重組方式產生。在另一實施例中,外源核酸代表並非天然存在於欲引入該核酸之微生物內之核酸序列,並容許在該微生物中表現非天然存在之產物。外源核酸可適於整合至欲引入該核酸之微生物之基因組中或適於保持染色體外狀態。
「親代微生物」係用於產生本發明微生物之微生物。親代微生物可係自然界中出現者(即野生型微生物)或預先經過修飾但不會表現或過度表現一或多種本發明標的酶之微生物。因此,本發明微生物已 經過修飾以在親代微生物中表現一或多種本發明醇去氫酶。
本文中提及本發明之醇去氫酶對一種受質具有相對於另一受質「提高之特異性」。此意欲意指與野生型醇去氫酶相比較,該醇去氫酶對一中受質具有相對於另一受質提高之特異性。並不能得出以下必然推斷:與野生型醇去氫酶相比較,本發明之醇去氫酶對特定受質具有較高特異性,儘管此在一些實施例中可能係此種情形。另外,該術語不應視為意指本發明之醇去氫酶對特定受質具有相對於另一受質之絕對特異性,僅此在一些實施例中可能係此種情形,且其至少包括特定受質相對於另一受質之優先性。
在與NADH或NADPH輔助因子結合使用時,「提高之特異性」、「較高特異性」或類似術語係指在反應期間輔助因子與醇去氫酶結合之親和力程度。其不應視為意指醇去氫酶及輔助因子具有絕對特異性(儘管此可能係此種情形),且其至少包括特定醇去氫酶與一輔助因子之間之結合相對於另一輔助因子之優先性。
本文中提及「一或多種包括異丙醇、2,3-丁二醇、乙醇及2-丁醇之產物」之產生。然而,應瞭解,亦可生成其他產物。
本文中亦可提及「一或多種包括乙醯甲基甲醇、MEK、乙醛及丙酮之產物」之產生。儘管該等產物在本文中稱為「受質」,但在其中本發明之突變體醇去氫酶對特定受質之特異性與另一受質相比較而降低之某些實施例中,其將以降低之含量轉化成下游產物,或實質上將不發生轉化,從而允許累積增加之含量之乙醯甲基甲醇、MEK、乙醛及/或丙酮。舉例而言,在一實施例中,本發明之醇去氫酶實質上沒有使用乙醯甲基甲醇作為受質之能力,且因此可累積乙醯甲基甲醇。
另外,在一些實施例中,應瞭解,本文中所提及包括異丙醇、2,3-丁二醇、乙醇及2-丁醇中之一或多者之產物中之一或多者可用作 在相同發酵反應、單獨發酵反應中或藉由化學合成進一步轉化成下游產物之中間體或前體。在此情形中,在特定微生物中可能無法檢測到該等產物中之一或多者之產生,或可能僅能夠檢測到少量之產生。然而,可基於一或多種下游產物之產生來推斷一或多種產物之產生。
在本發明之某些實施例中,本發明之醇去氫酶「實質上沒有使用乙醯甲基甲醇作為受質之能力」。此未必意味著該酶絕對沒有使用乙醯甲基甲醇作為受質之能力,儘管此可較佳。在一實施例中,該片語應視為包括野生型酶之活性之大約1%或更少之耐受性或小於0.1sec-1 mM-1之kcat/KM之酶效率。
儘管本發明者已證實與其他受質相比較,來自自產乙醇梭菌之醇去氫酶(SEQ ID 36)之突變提高對各種受質之特異性,且在某些實施例中,輔助因子特異性可經改變或最佳化,但其預期本發明廣泛適用於來自其他生物之其他醇去氫酶;特定而言,對一級或二級醇具有活性且使用NADH或NADPH作為受質之任一醇去氫酶(EC 1.1.1.1或EC 1.1.1.2)。
通常,本發明適用之醇去氫酶之群相對於SEQ ID 36之醇去氫酶將具有至少大約65%序列一致性,更特定而言至少大約70%、75%、80%、85%、90%、95%或99%序列一致性。
舉例而言,本發明可適用於以下醇去氫酶:自產乙醇梭菌之一級:二級醇去氫酶(SEQ ID No 36)、揚氏梭菌(YP_003780646.1)之一級:二級醇去氫酶、拜氏梭菌(P25984.2)之一級:二級醇去氫酶、熱厭氧產乙醇桿菌(Thermoanaerobacter ethanolicus)(ABC50090.1)之一級:二級醇去氫酶或布氏熱厭氧桿菌(Thermoanaerobium brockii)(P14941.1)之一級:二級醇去氫酶。
與相應野生型醇去氫酶相比較,本發明之醇去氫酶包含至少一 種突變。在一實施例中,該至少一種突變係於與SEQ ID 36之醇去氫酶序列之位置Gly198、Ser199、Arg200、Pro201及Tyr218相應之胺基酸中之一者或其組合處的胺基酸取代。在一實施例中,該醇去氫酶包含至少一種突變,其中該至少一種突變係於與SEQ ID 36之醇去氫酶序列之位置Ser199相應之位置處的胺基酸取代。藉由根據業內已知的標準程序與SEQ ID 36之醇去氫酶比對序列,熟習此項技術者將容易地瞭解替代醇去氫酶中之相關位置(與SEQ ID 36之ADH之位置198、199、201及218相應)。
在一實施例中,與相應野生型醇去氫酶相比較,該醇去氫酶包括以下突變中之一或多者:Gly198Asp、Gly198Ile、Gly198Leu、Gly198Val、Ser199Asp、Ser199Glu、Ser199Leu、Ser199Val、Arg200Glu、Pro201Asp、Pro201Glu、Tyr218Ala及Tyr218Phe。
本發明者亦設想與相應野生型醇去氫酶相比較包括以下突變中之一者之本發明醇去氫酶:Tyr218Gly、Tyr218Ser及Tyr218Val。該等突變體代表大小均與下文實例部分中所例示之Tyr218Ala及Tyr218Phe取代相近之取代。
在一實施例中,該醇去氫酶包括Ser199Asp取代。在一實施例中,該醇去氫酶包括Ser199Glu取代。
在一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu。在一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Leu及Pro201Glu。在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ala。在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Phe。在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Gly。在另一實施例中,該醇去氫酶包括以下取代 之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ser。在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Val。
在一實施例中,該醇去氫酶包括Ser199Asp取代,並對1)丙酮具有相對於MEK及/或乙醯甲基甲醇提高之受質特異性。在一實施例中,該醇去氫酶包括Ser199Asp取代,並對丙酮具有相對於MEK及乙醯甲基甲醇提高之受質特異性。
在一實施例中,該醇去氫酶包括Ser199Glu取代,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及/或乙醯甲基甲醇;及/或2)MEK,相對於乙醛及/或乙醯甲基甲醇。在一實施例中,該醇去氫酶包括Ser199Glu取代,並對1)丙酮具有相對於MEK及乙醛及乙醯甲基甲醇提高之受質特異性。在另一實施例中,該醇去氫酶包括Ser199Glu取代,並對MEK具有相對於乙醛及乙醯甲基甲醇提高之受質特異性。在一實施例中,該醇去氫酶包括Ser199Glu取代,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK及乙醛及乙醯甲基甲醇;及2)MEK,相對於乙醛及乙醯甲基甲醇。
在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val及Pro201Glu,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK;及/或2)乙醛,相對於MEK、丙酮及/或乙醯甲基甲醇;及/或3)乙醯甲基甲醇,相對於丙酮及/或MEK。在一實施例中,包括取代之此組合之醇去氫酶對乙醛具有相對於MEK及丙酮及乙醯甲基甲醇提高之受質特異性。在一實施例中,包括取代之此組合之醇去氫酶對乙醯甲基甲醇具有相對於丙酮及MEK提高之受質特異性。在另一實施例中,包括取代之此組合之醇去氫酶對以下物質具有提高之受質特異性:1)丙酮,相對於MEK;及2)乙醛,相對於MEK及丙酮及乙醯甲基甲醇;及3)乙醯甲基甲 醇,相對於丙酮及MEK。
在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ala,對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及/或乙醯甲基甲醇;及/或2)MEK,相對於乙醛及/或乙醯甲基甲醇;及/或3)乙醯甲基甲醇,相對於乙醛。在一實施例中,包括取代之此組合之醇去氫酶對丙酮具有相對於MEK及乙醛及乙醯甲基甲醇提高之受質特異性。在一實施例中,包括取代之此組合之醇去氫酶對MEK具有相對於乙醛及乙醯甲基甲醇提高之受質特異性。在另一實施例中,包括取代之此組合之醇去氫酶對以下物質具有提高之受質特異性:1)丙酮,相對於MEK及乙醛及乙醯甲基甲醇;及2)MEK,相對於乙醛及乙醯甲基甲醇;及3)乙醯甲基甲醇,相對於乙醛。
在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Phe,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及/或乙醯甲基甲醇;及/或2)MEK,相對於乙醛及/或乙醯甲基甲醇;及/或3)乙醛,相對於乙醯甲基甲醇。在一實施例中,包括取代之此組合之醇去氫酶對丙酮具有相對於MEK及乙醛及乙醯甲基甲醇提高之受質特異性。在一實施例中,包括取代之此組合之醇去氫酶對MEK具有相對於乙醛及乙醯甲基甲醇提高之受質特異性。在另一實施例中,包括取代之此組合之醇去氫酶對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及乙醯甲基甲醇;及2)MEK,相對於乙醛及乙醯甲基甲醇;及3)乙醛,相對於乙醯甲基甲醇。在一實施例中,包括取代之此組合之醇去氫酶實質上沒有使用乙醯甲基甲醇作為受質之能力。
在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ala,且能夠使用NADH 作為輔助因子。在一實施例中,該醇去氫酶包括所有該等取代,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及乙醯甲基甲醇;及2)MEK,相對於乙醛及乙醯甲基甲醇;及3)乙醯甲基甲醇,相對於乙醛;且4)能夠使用NADH作為輔助因子。
在另一實施例中,該醇去氫酶包括以下取代之組合:Gly198Asp、Ser199Val、Pro201Glu及Tyr218Phe,且能夠使用NADH作為輔助因子。在一實施例中,該醇去氫酶包括所有該等取代,並對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及乙醯甲基甲醇;及2)MEK,相對於乙醛及乙醯甲基甲醇;及3)乙醛相對於乙醯甲基甲醇;且4)能夠使用NADH作為輔助因子。
在一實施例中,該醇去氫酶具有於SEQ ID 38中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 42中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 50中提供之序列。
在一實施例中,該醇去氫酶具有於SEQ ID 44中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 46中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 48中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 52中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 54中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 63中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 64中提供之序列。在一實施例中,該醇去氫酶具有於SEQ ID 65中提供之序列。
本發明之醇去氫酶可藉由業內已知之任一適當方法製得,包括(例如)定點誘變技術、無規誘變技術、重組方法及化學合成,如下文所闡述。
在一些情形中,本發明之突變體醇去氫酶可通常不可溶。可使用標準技術使該等酶可溶。舉例而言,可使用涉及共表現一或多種伴 隨蛋白之技術。在一特定實施例中,使用GroEL及/或GroES伴隨蛋白之共表現。在一特定實施例中,可使用質粒pGro7(Takara Bio公司;clontech.com/takara/NZ/Products/Protein_Research/Protein_Folding_and_Expression/Chaperone_Plasmid_Set)之使用。此質粒有利於GroEL/ES伴隨蛋白之阿拉伯糖(arabinose)誘導型表現。實例性技術亦提供於下文實例2中。
人們可使用任一數量之已知方法評價本發明之醇去氫酶是否具有適當官能性。然而,舉例而言,可使用下文實例中所概述之方法。或者,可使用Ismail等人[Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii.J Bacteriol 1993,175:5097-5105]或Khorkin等人[NADP-dependent bacterial alcohol dehydrogenases:crystal structure,cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii.J Mol Biol.1998,22:278(5):967-981]中所概述之方法評價酶活性。
可使用標準方法評價輔助因子特異性。然而,舉例而言,可使用在下文「實例」部分中所闡述之方法。
核酸
由於本發明係關於新穎醇去氫酶,其亦提供編碼醇去氫酶之核酸及包含該等核酸之核酸載體。
根據酶之胺基酸序列及遺傳密碼中之簡併性,熟習此項技術者將容易地瞭解編碼本發明醇去氫酶之核酸之序列。然而,僅舉例而言,在一實施例中,該核酸具有SEQ ID 37之序列。在其他實施例中,該核酸具有SEQ ID 41或SEQ ID 49之序列。在又其他實施例中,該核酸具有SEQ ID 39、SEQ ID 43、SEQ ID 45、SEQ ID 47、SEQ ID 51、SEQ ID 53、SEQ ID 67、SEQ ID 68、SEQ ID 69或SEQ ID 70之 序列。
應瞭解,編碼本發明醇去氫酶之核酸可針對任一特定微生物進行密碼子最佳化。
就可使用重組技術製造並使用本發明之核酸、醇去氫酶及微生物而言,本發明亦提供包含一或多種編碼一或多種本發明醇去氫酶之核酸之核酸載體。
本發明核酸可在親代微生物轉化後保持染色體外狀態或可適於整合至微生物之基因組中。因此,本發明核酸可包括其他核苷酸序列,其適於輔助整合(例如,允許同源重組及靶向整合至宿主基因組中之區域)或穩定表現及複製染色體外構築體(例如,複製起點、啟動子及其他調控序列)。
在一實施例中,編碼一或多種本發明醇去氫酶之核酸將包含適於促進一或多種該等核酸所編碼酶之表現之啟動子。在一實施例中,啟動子係在適當發酵條件下較佳具有高活性之組成型啟動子。亦可使用誘導型啟動子。在較佳實施例中,該啟動子係選自包含Wood-Ljungdahl基因簇或阿拉伯糖誘導型pBAD啟動子之群。熟習此項技術者應瞭解,可在適當發酵條件下引導表現(較佳高表現程度)之其他啟動子可有效作為所例示實施例之替代選擇。
可使用任一數量之業內標準技術來構築核酸及核酸構築體,包含本發明之表現構築體/載體。例如,可使用化學合成、定點誘變或重組技術。該等技術係闡述於(例如)Sambrook等人(Molecular Cloning:A laboratory manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY,1989)中。其他實例性技術係闡述於下文實例部分中。基本上,個別基因及調控元件將彼此可操作連接,從而使得該等基因可經表現以形成期望蛋白。用於本發明中之適宜載體將為熟習此項技術者所瞭解。然而,舉例而言,以下載體可係適宜的: pBAD或pMTL80000載體及在下文實例部分中所例示之質體。
本發明亦提供宿主生物、特定而言微生物,且包括病毒、細菌及酵母,其包括本文所闡述核酸中之任一或多者。
微生物
本發明亦提供能夠藉由受質之發酵產生異丙醇、MEK、2,3-丁二醇及2-丁醇及視情況一或多種其他產物中之一或多者且包含至少一種本發明核酸之微生物。
本發明微生物可自親代微生物使用任一數量之業內已知技術來製備,包括(例如)將期望突變引入至親代微生物中之天然醇去氫酶基因中的定點誘變技術或將一或多種編碼一或多種本發明醇去氫酶之核酸引入至親代微生物中的其他重組技術。
在一實施例中,將一或多種編碼一或多種醇去氫酶之外源核酸引入至親代微生物中並代替親代微生物中之一或多種天然醇去氫酶基因。在另一實施例中,將一或多種編碼一或多種本發明醇去氫酶之外源核酸引入至親代微生物中並與親代微生物中之醇去氫酶基因互補。在其他實施例中,將一或多種外源核酸引入至親代微生物中,以將一或多種期望突變引入至親代微生物中之一或多種天然醇去氫酶基因中。在另一實施例中,將一或多種編碼一或多種醇去氫酶之外源核酸引入至親代微生物中,且將一或多種突變引入至親代微生物中之一或多種天然醇去氫酶基因中,以降低或剔除其表現及活性。
在一實施例中,本發明微生物係自親代微生物使用重組技術來製備。例如,利用一或多種編碼本發明醇去氫酶之外源核酸或一或多種適於將期望突變引入至親代微生物中之天然醇去氫酶基因中之核酸轉化親代微生物。外源核酸可在親代微生物轉化後保持染色體外狀態或可整合至親代微生物之基因組中(在一實施例中,以代替天然醇去氫酶基因,或將突變引入至天然醇去氫酶基因中)。因此,其可包括 其他核苷酸序列,其適於輔助整合(例如,允許同源重組及靶向整合至宿主基因組中之區域)或表現及複製染色體外構築體(例如,複製起點、啟動子及其他調控元件或序列),如前文所闡述。
僅舉例而言,微生物轉化(包括轉導或轉染)可藉由電穿孔、超音波處理、聚乙二醇介導之轉化、化學或天然勝任性或偶聯來達成。適宜轉化技術係闡述於(例如)SambrookJ、Fritsch EF、Maniatis T:Molecular Cloning:A laboratory Manual,Cold Spring Harbour Labrotary Press,Cold Spring Harbour,1989中。
一或多種外源核酸可以裸核酸形式遞送至親代微生物或可與一或多種試劑調配在一起以有利於轉化過程(例如,脂質體偶聯核酸,含有核酸之生物)。視情況,該一或多種核酸可係DNA、RNA或其組合。在某些實施例中可使用限制性抑制劑;例如參見Murray,N.E.等人(2000)Microbial.Molec.Biol.Rev.64,412)。
在一實施例中,該親代微生物係選自包含細菌、古菌及真菌之群。
在一實施例中,該親代微生物係選自梭菌屬、乙酸桿菌屬、穆爾氏菌屬、丁酸桿菌屬、柏勞菌屬、醋菌屬、熱厭氧桿菌屬、艾氏菌屬、克雷白氏菌屬、發酵單胞菌屬、檸檬酸桿菌屬、腸桿菌屬、沙門氏菌屬、沙雷氏菌屬、乳酸桿菌屬、乳球菌屬、腸球菌屬、小球菌屬、鏈球菌屬、酵母菌屬、畢赤酵母菌屬、假絲酵母菌屬、漢遜氏酵母菌屬、耶氏酵母菌屬、紅酵母菌屬、根黴菌屬、毛芽孢菌屬、油脂酵母菌屬、麴菌屬、木黴菌屬、外瓶黴屬、白黴菌屬、分枝孢子菌屬、白腐菌屬、枝孢黴屬、擬青黴菌屬、足分枝菌屬、長喙殼菌屬、芽孢桿菌屬、寡養菌、假單胞菌屬、嗜碳菌屬、嗜氫菌屬、分枝桿菌屬、紮瓦爾金氏菌屬、貪銅菌屬、藍綠菌屬、綠曲撓菌屬、甲基單胞菌屬、甲基桿菌屬、甲基球菌屬、甲基微菌屬、甲基球形菌屬、甲基 暖菌屬、甲基孢囊菌屬、甲基彎菌屬、甲烷桿菌屬、甲烷球菌屬、產甲烷菌屬、甲烷八聯球菌屬、甲烷球形菌屬、甲烷熱桿菌屬、甲烷絲菌屬、棒狀桿菌屬、不動菌屬、放線菌屬、纖毛菌屬、伯克氏菌屬、短桿菌屬、火球菌屬、地桿菌屬、地芽孢桿菌屬、類芽孢桿菌屬、分枝桿菌屬、紅假單胞菌屬、熱袍菌屬、熱厭氧桿菌屬、鏈黴菌屬、紅細菌屬、赤球菌屬、消化球菌屬、雙歧桿菌屬、丙酸桿菌屬、細梭菌屬、曲狀桿菌屬、範永氏球菌屬、水居菌屬、關節桿菌屬、莫拉氏菌屬及冷桿菌屬。
在一實施例中,該親代微生物係選自一氧化碳營養型產乙酸微生物之群、ABE微生物之群、腸內細菌之群、乳酸桿菌屬之群、真菌及酵母之群、好氧性一氧化碳營養菌之群、好氧性CO2固定生物之群、親甲基醇菌之群及產甲烷菌之群。
在一實施例中,親代微生物係選自一氧化碳營養型產乙酸菌之群。在某些實施例中,該微生物係選自包括以下之群:自產乙醇梭菌、揚氏梭菌、萊格梭菌、食一氧化碳梭菌、德瑞克梭菌、糞味梭菌、考斯卡梭菌、醋酸梭菌、大梭菌、梭菌屬、黏丁酸桿菌、食甲基丁酸桿菌、伍氏乙酸桿菌、柏氏鹼性桿菌、產生柏勞菌、黏液真桿菌、熱醋穆爾氏菌、熱自養穆爾氏菌、芬尼氏醋菌及凱伍熱厭氧桿菌。
該等一氧化碳營養型產乙酸菌係藉由其在厭氧條件下使用諸如一氧化碳(CO)及二氧化碳(CO2)等氣體單碳(C1)來源以及作為能量來源之一氧化碳(CO)及/或氫(H2)並依賴其而化學自營生長,從而形成乙醯基輔酶A、乙酸鹽及其他產物之能力來界定。其共享相同發酵模式Wood-Ljungdahl或還原型乙醯基輔酶A途徑,且係藉由由以下組成之酶集之存在來界定:一氧化碳去氫酶(CODH)、氫化酶、甲酸去氫酶、甲醯基-四氫葉酸合成酶、亞甲基-四氫葉酸去氫酶、甲醯基-四氫 葉酸環化水解酶、亞甲基-四氫葉酸還原酶及一氧化碳去氫酶/乙醯基輔酶A合成酶(CODH/ACS),其組合對於此類型之細菌而言係特有且獨特的(Drake、Küsel、Matthies、Wood及Ljungdahl,2006)。與將受質轉化成形成產物(經由乙醯基輔酶A或直接地)之生物質、次級代謝物及丙酮酸鹽之糖發酵細菌之化學異營生長相比,在產乙酸菌中將該受質直接引導至乙醯基輔酶A中,自其形成產物、生物質及次級代謝物。
在一實施例中,該微生物係選自一氧化碳營養型梭菌簇,其包含自產乙醇梭菌、揚氏梭菌及萊格梭菌及相關分離物。該等微生物包括(但不限於)菌株自產乙醇梭菌JAI-1T(DSM10061)(Abrini、Naveau及Nyns,1994)、自產乙醇梭菌LBS1560(DSM19630)(WO/2009/064200)、自產乙醇梭菌LBS1561(DSM23693)、揚氏梭菌PETCT(DSM13528=ATCC 55383)(Tanner、Miller及Yang,1993)、揚氏梭菌ERI-2(ATCC 55380)(美國專利5,593,886)、揚氏梭菌C-01(ATCC 55988)(美國專利6,368,819)、揚氏梭菌O-52(ATCC 55989)(美國專利6,368,819)或「萊格梭菌P11T」(ATCC BAA-622)(WO 2008/028055)及諸如「考斯卡梭菌」(美國專利2011/0229947)、「梭菌屬MT351」(Tyurin及Kiriukhin,2012)等相關分離物及其諸如揚氏梭菌OTA-1(Tirado-Acevedo O.Production of Bioethanol from Synthesis Gas Using Clostridium ljungdahlii.PhD thesis,North Carolina State University,2010)或「梭菌屬MT896」(Berzin、Kiriukhin及Tyurin,2012)等突變體菌株。
該等菌株在梭菌rRNA第I簇中形成亞簇(Collins等人,1994),在16S rRNA基因層面上具有至少99%一致性,但係不同物種,如藉由DNA-DNA再結合及DNA指紋實驗所測定(WO 2008/028055、美國專利2011/0229947)。
此簇之菌株係藉由共同特徵來界定,具有類似基因型及表現型二者,且其均共享相同之能量守恆及發酵代謝模式。此簇之菌株缺乏細胞色素且經由Rnf複合物保存能量。
此簇之所有菌株具有具有約4.2MBp之基因組大小(Köpke等人,2010)及約32%mol之GC組成(Abrini等人,1994;Köpke等人,2010;Tanner等人,1993)(WO 2008/028055;美國專利2011/0229947)及編碼Wood-Ljungdahl途徑之酶(一氧化碳去氫酶、甲醯基-四氫葉酸合成酶、亞甲基-四氫葉酸去氫酶、甲醯基-四氫葉酸環化水解酶、亞甲基-四氫葉酸還原酶及一氧化碳去氫酶/乙醯基輔酶A合成酶)、氫化酶、甲酸去氫酶、Rnf複合物(rnfCDGEAB)、丙酮酸鹽:鐵氧化還原蛋白氧化還原酶、醛:鐵氧化還原蛋白氧化還原酶(Köpke等人,2010、2011)之保守的必需關鍵基因操縱子。已發現負責氣體吸收之Wood-Ljungdahl途徑基因之組織及數量在所有物種中均相同,除核酸及胺基酸序列之差異以外(Köpke等人,2011)。
該等菌株均具有類似形態及大小(對數生長細胞係介於0.5-0.7×3-5μm之間),具有嗜溫性(最優生長溫度在30℃至37℃之間)且係絕對厭氧菌(Abrini等人,1994;Tanner等人,1993)(WO 2008/028055)。此外,其均共享相同之主要譜系特徵,例如相同pH範圍(pH 4至7.5,且最優初始pH為5.5至6);依賴含CO氣體並具有類似生長速率之強自養生長;及代謝譜,其中乙醇及乙酸為主要發酵終產物,且在某些條件下形成少量2,3-丁二醇及乳酸(Abrini等人,1994;Köpke等人,2011;Tanner等人,1993)(WO之不同在於利用各種糖(例如鼠李糖、阿拉伯糖)、酸(例如葡萄糖酸鹽、檸檬酸鹽)、胺基酸(例如精胺酸、組胺酸)或其他受質(例如甜菜鹼、丁醇)作為受質。已發現一些物種係某些維生素(例如,硫胺素、生物素)之營養缺陷型,而其他物種並非如此。已顯示羧酸還原成其相應醇屬於該等生物之範圍內(Perez、 Richter、Loftus及Angenent,2012)。
因此,所闡述特徵並不限於一種生物(如自產乙醇梭菌或揚氏梭菌),而係一氧化碳營養型、合成乙醇之梭菌之一般特徵。因此,可預期本發明在各種菌株之間起作用,但其可能在性能方面有差別。
在一實施例中,親代菌株使用CO作為其唯一碳來源及能量來源。
在某些實施例中,該親代微生物係選自包含自產乙醇梭菌、揚氏梭菌及萊格梭菌之群。在一實施例中,該群組亦包含考斯卡梭菌。在一特定實施例中,該微生物係自產乙醇梭菌DSM10061或DSM23693。在另一特定實施例中,該微生物係揚氏梭菌DSM13528(或ATCC55383)。
在一實施例中,該親代微生物係ABE發酵微生物。「ABE發酵微生物」或「ABE微生物」係能夠產生溶劑丁醇及乙醇及丙酮或異丙醇之革蘭氏陽性(Gram-positive)梭菌生物。此群組中之屬包括丙酮丁醇梭菌、拜氏梭菌、糖丁酸梭菌及糖乙酸多丁醇梭菌。該等生物均形成孢子,為革蘭氏陽性,且屬於梭菌rRNA第I簇內。此群組已由Keis等人(Keis、Shaheen及Jones,2001)詳細闡述。
在一特定實施例中,ABE微生物係選自包含丙酮丁醇梭菌、拜氏梭菌、糖丁酸梭菌、糖乙酸多丁醇梭菌之群。
在一實施例中,該親代微生物係丙酮丁醇梭菌或拜氏梭菌。在一特定實施例中,該微生物係丙酮丁醇梭菌ATCC824(DSM792)或EA 2018(CCTCC M 94061)。在另一特定實施例中,該微生物係拜氏梭菌NCIMB8052(ATCC51743)及NRRL B-593(DSM 6423)。
在一實施例中,該親代微生物係腸內細菌。腸內細菌係屬於腸內桿菌目科(Enterobacteriacea)之棒形革蘭氏陰性細菌,其能夠使糖發酵以產生乳酸及/或乙醇及/或乙醯甲基甲醇及/或2,3-丁二醇及/或其 他產物。
在一特定實施例中,該腸內細菌係選自包含艾氏菌屬、克雷白氏菌屬、發酵單胞菌屬、檸檬酸桿菌屬、腸桿菌屬、沙門氏菌屬、沙雷氏菌屬之群。在一實施例中,該親代微生物係大腸桿菌、運動發酵單胞菌、肺炎克雷白氏菌、產酸克雷白氏菌、陰溝腸桿菌或黏質沙雷氏菌。
在一實施例中,該親代微生物係乳酸桿菌屬。乳酸桿菌屬係選自能夠使糖發酵以產生乳酸及/或2,3-丁二醇及/或MEK及/或2-丁醇及/或其他產物之乳酸桿菌目(Lactobacillales)的革蘭氏陽性乳酸細菌。
在一特定實施例中,該乳酸桿菌屬係選自包含乳酸桿菌屬、乳球菌屬、腸球菌屬、小球菌屬、鏈球菌屬之群。在一實施例中,該親代微生物係短毛乳酸桿菌、糞腸球菌、乳酸乳球菌。
在一實施例中,該親代微生物係真菌或酵母。真菌係真核微生物,且酵母係其具體亞集,其能夠使糖發酵成乙醇及/或乙醯甲基甲醇及/或其他產物。
在一特定實施例中,該真菌係選自包含麴菌屬、木黴菌屬、外瓶黴屬、白黴菌屬、分枝孢子菌屬、白腐菌屬、枝孢黴屬、擬青黴菌屬、足分枝菌屬、長喙殼菌屬之群。在一實施例中,該親代微生物係黑麴菌或裏氏木黴菌。
在一特定實施例中,該酵母係選自包含酵母菌屬、畢赤酵母菌屬、假絲酵母菌屬、漢遜氏酵母菌屬、耶氏酵母菌屬、紅酵母菌屬、根黴菌屬、毛芽孢菌屬、油脂酵母菌屬之群,且選自包含麴菌屬、木黴菌屬、外瓶黴屬、白黴菌屬、分枝孢子菌屬、白腐菌屬、枝孢黴屬、擬青黴菌屬、足分枝菌屬、長喙殼菌屬之群。在一實施例中,該親代微生物係啤酒酵母菌、熱帶念珠菌、白色念珠菌或解脂耶氏酵母菌。在一實施例中,該親代微生物係黑麴菌或裏氏木黴菌。
在一實施例中,親代該微生物係好氧性一氧化碳營養菌。好氧性一氧化碳營養菌係可發現在自然界中無處不在且已自各種環境以及人類分離之細菌(King及Weber,2007)。在分類層面上,此生理群組相當多樣,包含不同門,例如α-變形菌門(α-proteobacteria)、厚壁菌門(firmicute)或放線菌門(actinobacteria)(King及Weber,2007)。顯示所有該等生物在空氣之存在下在CO含量>1%下生長(King及Weber,2007)。典型氣體混合物係由50% CO及50%空氣組成(Cypionka等人,1980)。
在特定實施例中,該親代微生物係選自包含芽孢桿菌屬、寡養菌、假單胞菌屬、嗜碳菌屬、嗜氫菌屬、分枝桿菌屬、紮瓦爾金氏菌屬之群。在一實施例中,該親代微生物係食羧寡養菌、碳酸嗜碳菌、類黃色嗜氫菌、分枝桿菌屬、氫碳酸假單胞菌、假單胞菌屬、餐伴紮瓦爾金氏菌或施氏芽孢桿菌。
在一實施例中,該親代微生物係好氧性CO2固定生物。好氧性CO2固定微生物係能夠利用H2或經由光合作用在氧之存在下固定CO2之細菌。該好氧性CO2固定微生物係選自包含貪銅菌屬、藍綠菌屬、綠曲撓菌屬之群。在一實施例中,該親代微生物係鉤蟲貪銅菌、藍綠菌屬或橙色綠曲撓菌。
在一實施例中,該親代微生物係親甲基醇菌。親甲基醇微生物能夠使用還原型單碳受質(如甲烷或甲醇)作為碳源用於生長。親甲基醇菌係選自包含甲基單胞菌屬、甲基桿菌屬、甲基球菌屬、甲基微菌屬、甲基球形菌屬、甲基暖菌屬、甲基孢囊菌屬、甲基彎菌屬之群。在一實施例中,該親代微生物係莢膜甲基球菌或發孢甲基彎菌。
在一實施例中,該親代微生物係產甲烷菌。產甲烷菌係可將CO2還原成甲烷之古菌。該產甲烷菌係選自包含甲烷桿菌屬、甲烷球菌屬、產甲烷菌屬、甲烷八聯球菌屬、甲烷球形菌屬、甲烷熱桿菌屬、 甲烷絲菌屬之群。在一實施例中,該親代微生物係馬爾堡甲烷熱桿菌或巴氏甲烷八聯球菌。
方法
本發明提供藉由使用本發明重組微生物使受質微生物發酵來產生異丙醇、乙醇、2,3-丁二醇及/或2-丁醇及視情況一或多種其他產物之方法。
在另一實施例中,本發明提供產生乙醯甲基甲醇、MEK、乙醛及丙酮及視情況一或多種其他產物中之一或多者之方法。
在一實施例中,該受質係包含一或多種碳水化合物之受質。在另一實施例中,該受質係包含CO、CO2及H2中之一者或其組合之受質。在某些實施例中,可使用包含一或多種碳水化合物及包含CO、CO2及H2中之一或多者之受質二者的經混合受質。
在一實施例中,該方法包含以下步驟:(a)將受質提供至含有一或多種本發明微生物之培養物之生物反應器;及(b)使生物反應器中之培養物發酵,以產生異丙醇、2,3-丁二醇、乙醇及2-丁醇及視情況一或多種其他產物中之一或多者。
較佳地,該一或多種產物包括異丙醇。
在一實施例中,該方法包含以下步驟:(c)將受質提供至含有一或多種本發明微生物之培養物之生物反應器;及(d)使生物反應器中之培養物發酵,以產生乙醯甲基甲醇、MEK、乙醛及丙酮及視情況一或多種其他產物中之一或多者。
該方法可進一步包含回收一或多種產物之步驟。在某些實施例中,該一或多種產物係產生一或多種下游產物中之中間體。在此實施例中,該一或多種產物可經回收,且然後在(例如)單獨發酵或化學合 成反應中用作受質。在另一實施例中,不回收該一或多種產物,並在相同發酵製程中將其轉化成一或多種下游產物。
應瞭解,為使細菌生長及使受質轉化為該一或多種產物,除該受質之外,需要將適宜液體營養培養基進給至生物反應器。可以連續、分批或分批進給方式將受質及培養基進給至生物反應器。營養培養基將含有足以容許所用微生物生長之維生素及礦物質。適宜發酵培養基將為業內已知。然而,舉例而言,為使包含一或多種碳水化合物之受質發酵,可使用Luria營養液(LB)、酵母萃取蛋白腖右旋糖(YEPD)或強化梭菌培養基(RCM)。另外,適於使用CO發酵之厭氧培養基為業內已知,但舉例而言,適宜培養基係於Biebel(2001)闡述。在本發明之一實施例中,該培養基係如下文實例部分中所闡述。
該發酵法宜在適合使該受質發酵成該一或多種產物及視情況一或多種其他產物之條件下進行。應考慮之反應條件包括壓力、溫度、氣體流速、液體流速、培養基pH、培養基氧化還原電位、攪動速率(若使用連續攪拌槽反應器)、接種物含量、確保該受質不會成為限制因素之最大受質濃度、及避免產物抑制之最大產物濃度。
如上所述,該發酵法將使用適當培養基及發酵條件進行。在一實施例中,若使用氣體受質,則應考慮最大氣體受質濃度,以確保液相中之CO(及/或CO2及/或H2)不會成為限制因素。
另外,若以CO(及/或CO2及/或H2)為受質,則通常需要提高受質流之CO(及/或CO2及/或H2)濃度(或氣體受質中之CO(及/或CO2及/或H2)分壓)且從而提高發酵反應之效率。在升高壓力下操作可以使CO(及/或CO2及/或H2)自氣相轉移至液相之速率顯著提高,在液相中微生物可吸收CO作為產生一或多種產物之碳源。此進而意味著,當將生物反應器維持在升高壓力而非大氣壓力下時,可縮短滯留時間(其定義為生物反應器中之液體體積除以輸入氣體流速)。最優反應條件將 部分取決於所採用之本發明特定微生物。然而,一般而言,較佳地在高於環境壓力之壓力下進行發酵。同樣,由於將CO(及/或CO2及/或H2)轉化為一或多種產物之指定速率部分隨受質滯留時間而變,且達成所期望滯留時間又指示生物反應器之所需體積,故使用加壓系統可顯著降低所需生物反應器體積,且從而顯著減少發酵設備之資金成本。根據美國專利案第5,593,886號中所提出之實例,反應器體積可隨反應器操作壓力增加而成線性比例降低,即,在10個大氣壓壓力下操作之生物反應器僅需在1個大氣壓壓力下操作之生物反應器之體積之十分之一。
舉例而言,已闡述在升高壓力下進行氣體形成乙醇之發酵反應之益處。例如,WO 02/08438闡述在30psig及75psig壓力下實施氣體形成乙醇之發酵反應,分別得到150g/l/天及369g/l/天之乙醇生產率。然而已發現,在大氣壓下使用類似培養基及輸入氣體組成進行之發酵實例每天每公升產生1/10至1/20之間之乙醇。
亦期望,引入含CO(及/或CO2及/或H2)氣體受質之速率應可確保液相中之CO(及/或CO2及/或H2)濃度不會成為限制因素。此乃因CO(及/或CO2及/或H2)限制性條件可導致培養物消耗產物。
用於進給發酵反應之氣體流之組成可對該反應之效率及/或成本具有顯著影響。例如,O2可降低厭氧發酵製程之效率。在發酵製程中發酵之前或之後之各階段處理不期望或不必要之氣體會增加該等階段之負擔(例如,若在進入生物反應器之前壓縮氣體流,則可能使用不必要之能量來壓縮在發酵中不需要之氣體)。因此,可期望處理受質流、特定而言源自工業來源之受質流,以移除不期望之組份並提高期望組份之濃度。
在某些實施例中,將本發明之微生物培養物維持於水性培養基中。較佳地,水性培養基係厭氧微生物基本生長培養基。適宜培養基 為業內所已知並闡述於(例如)美國專利第5,173,429號及第5,593,886號及WO 02/08438中,且如下文實例部分中所闡述。
在包含含有CO之受質之發酵之本發明實施例中,該發酵包含使用本發明重組微生物使生物反應器中之受質厭氧發酵以產生一或多種產物之步驟。
可使用此實例之方法來減少來自工業製程之總大氣碳排放。
在一實施例中,該方法包含以下步驟:(a)將包含CO之受質提供至含有一或多種本發明微生物之培養物之生物反應器;及(b)使生物反應器中之培養物厭氧發酵,以產生異丙醇、2,3-丁二醇、乙醇及2-丁醇及視情況一或多種其他產物中之一或多者。
在另一實施例中,上文步驟(b)中之一或多種產物係乙醯甲基甲醇、MEK、乙醛及丙酮及視情況一或多種其他產物。
在一實施例中,該方法包含以下步驟:在將工業製程產生之含CO氣體釋放至大氣中之前,捕獲該氣體;藉由含有一或多種本發明微生物之培養物使含CO氣體厭氧發酵,以產生異丙醇、2,3-丁二醇、乙醇及2-丁醇及視情況一或多種其他產物中之一或多者。
在另一實施例中,上文步驟(b)中之一或多種產物係乙醯甲基甲醇、MEK、乙醛及丙酮及視情況一或多種其他產物。
在本發明之實施例中,藉由微生物發酵之氣體受質係含有CO之氣體受質。該氣體受質可係作為工業製程之副產物獲得或來自一些其他來源(例如來自汽車尾氣)之含CO廢氣。在某些實施例中,該工業製程係選自由以下組成之群:鐵質金屬產品製造(例如鋼鐵廠)、非鐵質產品製造、石油精煉製程、煤氣化、電力生產、碳黑生產、氨生產、 甲醇生產及焦炭製造。在該等實施例中,可在將含CO氣體排放至大氣中之前使用任一便利方法自工業製程捕獲該氣體。CO可係合成氣(包括一氧化碳及氫之氣體)之組份。通常燃燒掉自工業製程產生之CO以產生CO2,且因此本發明尤其可用於減少CO2溫室氣體排放及產生用作生物燃料之丁醇。視含CO氣體受質之組成而定,亦可期望在將其引入發酵之前對其進行處理以移除任何不期望雜質(例如粉塵顆粒)。例如,可使用已知方法過濾或洗滌氣體受質。
熟習此項技術者將容易瞭解在使用包含一或多種碳水化合物之受質之發酵中使用的各種方法。然而,舉例而言,可使用闡述於Vogel,H.C.及Todaro,C.C.(2007).Fermentation and Biochemical Engineering Handbook:Principles,process design and equipment(ISBN:0-8155-1407-7);Vogel,H.C.及Todaro,C.C.(1996).Fermentation and Biochemical Engineering Handbook(ISBN:978-0-8155-1407-7);Ezeji TC、Qureshi N、Blaschek HP(2005)Industrial relevant fermentations.在Handbook on Clostridia中,Dürre P編輯(CRC Press,Boca Raton,FL),第799頁至第814頁中之方法。
產物回收
可藉由業內已知方法自發酵液回收異丙醇、2,3-丁二醇、乙醇、2-丁醇、乙醯甲基甲醇、MEK、乙醛及/或丙酮或含有該等產物中之任一或多者之經混合流及丙酮及視情況一或多種其他產物,該等方法係例如分餾或分級蒸發、滲透蒸發、氣提及萃取發酵(包括例如液體-液體萃取)。
在本發明之某些較佳實施例中,藉由以下方式自發酵液回收該一或多種產物:自生物反應器連續移除一部分發酵液,自該發酵液分離微生物細胞(便利地藉由過濾),且自該發酵液回收一或多種產物。可便利地藉由(例如)蒸餾回收醇。可藉由(例如)蒸餾回收丙酮。可藉 由(例如)吸附於活性炭上回收所產生之任何酸。較佳地,將分離之微生物細胞返回至發酵生物反應器。較佳地,亦將在移除任何醇及酸之後殘留之無細胞滲透物返回至發酵生物反應器。在將無細胞滲透物返回至生物反應器之前,可將額外營養素(例如B族維生素)添加至無細胞滲透物中以補充營養培養基。
同樣,若如上文所闡述調節該發酵液之pH以促進乙酸吸附至活性炭,則在返回至生物反應器之前,應將pH再調節至與發酵生物反應器中之發酵液類似之pH。
實例 實例1-自產乙醇梭菌之野生型醇去氫酶之表徵及在單一胺基酸取代下受質特異性之範圍
已顯示若干梭菌物種(包括揚氏梭菌(Köpke等人,2010))使用CO作為唯一碳源,其中乙醇作為終產物。該等細菌能夠固定CO,並經由Wood-Ljungdahl途徑將其轉化成乙醯基輔酶A。然後乙醯基輔酶A之乙醯基部分可用於各種代謝途徑。在此尤其感興趣的係,可藉由醇去氫酶(ADH)將羰基還原成其相應醇(Köpke等人,2010)。此提供將CO轉化成具有商業價值之生物燃料及生化試劑之途徑。
自產乙醇梭菌DSM10061菌株之基因組測序識別與來自拜氏梭菌之預先經表徵酶具有86%一致性之ADH。來自此菌株之ADH能夠使用乙醛作為其受質,並產生乙醇作為終產物。其亦能夠催化丙酮還原成異丙醇。
異丙醇係比乙醇更具經濟價值之終產物,此乃因其可經脫水以形成丙烯,丙烯可聚合成聚丙烯,即常用塑膠(Inokuma等人,2010)。至丙烯之微生物途徑亦將降低對石油之需求,目前大部分丙烯係衍生自石油。
以提高經由ADH酶產生異丙醇之效率為目標來完成誘變研究。 構築並測試5種突變體:Ser199Asp、Ser199Glu、Arg200Gln、Arg200Glu及雙突變體Ser199Glu/Arg200Gln。
材料 微生物及生長條件
大腸桿菌DH5α-E係獲得自Invitrogen。此菌株之基因型為:F-80△lacZM15(lacZYA-argF)U169 recA1 endA1 hsdR17(rk-,mk+)gal-phoA supE44-thi-1 gyrA96 relA1。
大腸桿菌LMG194係獲得自Invitrogen。此菌株之基因型為:F-△lacX74 galE thi rpsL △phoA(Pvu II)△ara714 leu::Tn10。
大腸桿菌MC1061係獲得自大腸桿菌遺傳貯存中心(Coli Genetic Stock Centre)。此菌株之基因型為araD139 △(araA-leu)7697 △(lac)X74 galK16 galE15(GalS)lambda-e14-mcrA0 relA1 rpsL150(strR)spoT1 mcrB1 hsdR2。
自產乙醇梭菌DSM10061係獲得自DSMZ(The German Collection of Microorganisms and Cell Cultures,Inhoffenstraβe 7 B,38124 Braunschweig,Germany)。
丙酮丁醇梭菌ATCC824及拜氏梭菌NCIMB8052係獲得自David Jones教授(奧塔哥大學(University of Otago)),且亦可分別以登錄號ATCC824/DSM792及ATCC5 1743自公共菌株保藏中心DSMZ及ATCC獲得。
在好氧條件下使用補充有胺苄青黴素(ampicillin,100μg/mL)或卡本西林(carbenicillin,50μg/mL)之Luria Burtani培養基培養所有大腸桿菌菌株。[098]固體培養基含有1.5%瓊脂。除非另有說明,否則使所有菌株在37℃下生長。
電穿孔後,使用SOC培養基(20g/L胰腖,5g/L酵母萃取物,10mM NaCl,2.5mM KCl及20mM葡萄糖)回收大腸桿菌。
使用標準厭氧技術,使自產乙醇梭菌在具有pH 5.6之PETC培養基(表1)中生長,且使丙酮丁醇梭菌及拜氏梭菌在RCM培養基(表2)中生長[Hungate RE:A roll tube method for cultivation of strict anaerobes,在Norris JR and Ribbons DW(編輯),Methods in Microbiology,第3B卷中.Academic Press,New York,1969:117-132;Wolfe RS:Microbial formation of methane.Adv Microb Physiol 1971,6:107-146]。
ADH基因及蛋白質
自產乙醇梭菌DSM10061之野生型ADH之胺基酸及核酸序列係分別顯示於SEQ ID 36及SEQ ID 35中。
引物
質粒
使用pMTL85147-ThlA-CtfAB-Adc-Adh(圖8)進行自產乙醇梭菌DSM10061 ADH基因擴增。
已使用標準重組DNA及分子選殖技術構築質粒pMTL85147-ThlA-CtfAB-Adc-Adh[Sambrook J、Fritsch EF、Maniatis T:Molecular Cloning:A laboratory Manual,Cold Spring Harbour Labrotary Press,Cold Spring Harbour,1989;Ausubel FM、Brent R、Kingston RE、Moore DD、Seidman JG、Smith JA、Struhl K:Current protocols in molecular biology.John Wiley & Sons有限公司,Hoboken,1987]。 ThlA基因(NC_003030.1;GI:1119056)係擴增自丙酮丁醇梭菌之基因組DNA,基因adc-ctfAB-adc(NC_009617;區域:4,400,524-4,402,656;包括GI:5294994、GI:5294995及GI:5294996)係擴增自拜氏梭菌,且adh基因(圖5)及Wood-Ljungdahl啟動子區域(SEQ ID 39)係擴增自自產乙醇梭菌DSM10061。用於擴增之寡核苷酸序列係係在表4中給出。隨後使用限制性位點NotI、NdeI、EcoRI、KpnI、BamHI、SalI、XhoI將所有所擴增片段選殖至質粒pMTL 85141(FJ797651.1;Nigel Minton,諾丁翰大學(University of Nottingham),UK)中[Heap JT、Pennington OJ、Cartman ST、Minton NP.A modular system for Clostridium shuttle plasmids.J Microbiol Methods.2009,78:79-85]。最終質粒係在SEQ ID 40中給出,且已經測序以確保其不含突變。
使用經Bertram及Dürre(Conjugal transfer and expression of streptococcal transposons in Clostridium acetobutylicum.Arch Microbiol 1989,151:551-557)改良之方法自丙酮丁醇梭菌ATCC824、拜氏梭菌NCIMB8052及自產乙醇梭菌DSM10061分離基因組DNA。收穫(6,000×g,15min,4℃)100ml過夜培養物,將其用磷酸鉀緩衝液(10mM,pH 7.5)洗滌並懸浮於1.9ml STE緩衝液(50mM Tris-HCl,1mM EDTA,200mM蔗糖;pH 8.0)中。添加300μl溶菌酶(約100,000U),且在37℃下將該混合物培育30min,接著添加280μl 10%(w/v)SDS溶液,並再培育10min。在室溫下藉由添加240μl EDTA溶液(0.5M,pH 8)、20μl Tris-HCl(1M,pH 7.5)及10μl RNaseA來消化RNA。然後,添加100μl蛋白酶K(0.5U),並在37℃下進行蛋白質水解1h至3h。最後,添加600μl過氯酸鈉(5M),接著進行苯酚-氯仿萃取及異丙醇沈澱。用分光光度計來檢查DNA數量及品質。
表現載體pBAD(KpnI)-WpiMetC係獲得自Invitrogen。已預先藉由插入編碼六聚組胺酸(His6)標籤之片段、TEV蛋白酶切割位點(用於(若需要)在純化後自ADH移除His6)及編碼來自不相關細菌(沃巴赫氏菌(Wolbachia pipientis))之MetC酶之基因來修飾此研究中所使用之質粒。
方法 野生型ADH之擴增:
使用引物ADH_TEV_KpnI_for及ADH_HindIII_Reverse自50ng/μl質粒pMTL85147-ThlA-CtfAB-Adc-Adh(LZ)工作儲備溶液擴增自產乙醇梭菌DSM10061之野生型ADH。
如下製得50μL PCR混合物:
使用以下循環條件:
利用循環純化套組(Cycle Pure kit,Omega Bio-Tek)清潔產物。
載體及插入物之消化:
以以下配方,藉由利用酶KpnI-HF及HindIII消化pBAD(KpnI)-WpiMetC來製備pBAD骨幹:
利用KpnI-HF及HindIII以類似方式消化所擴增ADH基因:
兩次消化均係在37℃下進行16小時。於經SYBRsafe(Invitrogen)染色之1%瓊脂糖凝膠上分離所消化產物。切除與所消化載體及插入物相應之條帶,且使用凝膠清潔處理套組(gel clean-up kit)(Omega Bio-Tek)回收DNA。
pBAD(KpnI)-ADH之構築
在以下反應中連接來自ADH及pBAD消化之經純化DNA以及對照連接,該反應含有超過載體3×莫耳濃度過量之插入物:
在16℃下將該反應培育2小時。藉由電穿孔使用連接混合物之2μL等份試樣轉化大腸桿菌MC1061細胞之50μL等份試樣。在37℃下於SOC中回收1小時後,將等份試樣鋪展於LB-胺苄青黴素板上,並在37℃下培育過夜。挑選6個菌落,並藉由PCR使用pBAD_for及ADH_HindIII_rev引物篩選存在ADH插入物之菌落。自成功純系與700 μl培養物及300μl無菌50%(v/v)甘油製得冷凍儲備溶液。藉由DNA測序驗證ADH基因之序列。
ADH之定點誘變
藉由重疊延長PCR構築所有5種突變體之方案均相同,只是每一突變體係利用其相應誘變引物來構築。因此,僅提供產生一突變體之方案。
Ser199Asp初級產物之生成:
定點誘變之第一步驟係生成兩種重疊初級產物。該等產物之PCR反應係如下:
初級產物1.0:
初級產物1.1:
循環條件係如下:
利用Omega循環純化套組清潔產物。
Ser199Asp次級產物之生成:
定點誘變之下一步驟係使用利用外部引物之重疊延長PCR(Ho SN,Hunt HD,Horton RM,Pullen JK,Pease LR.(1989)Site-directed mutagenesis by overlap extension using the polymerase chain reaction.Gene,77,51至59),以將兩種初級產物重組成含有具有所引入突變之完整基因之全長次級產物。混合兩種初級產物,以使得其具有相等莫耳濃度。使用以下PCR配方:
循環條件與野生型ADH之擴增相同。
pBAD(KpnI)-ADH(Ser199Asp)之構築:
用於選殖五種ADH突變體(即攜帶突變:Ser199Asp; Ser199Glu;Arg200Gln;Arg200Glu;及Ser199Glu/Arg200Gln)中之每一者之消化及連接方案與用於構築pBAD(KpnI)-ADH之彼等相同。藉由DNA測序證實每一突變之存在。
ADH酶之表現及純化
除其中說明以外,所有突變體以及野生型之表現及純化方案相同。下文提供野生型ADH之表現及純化之方案。
可溶性表現之測試:
使來自冷凍儲備溶液之5mL LB-胺苄青黴素過夜培養物在37℃下生長,且在第二天早上用於接種100mL LB-胺苄青黴素。在37℃下培育該培養物,直至達到0.8之OD600為止。此時,添加1mL 20%阿拉伯糖,且在28℃下培育該培養物用於其餘之表現。在t=0h、2h、4h及16h(即過夜)時取500μL樣品。對於每一樣品,使細胞沈澱,且傾倒出上清液。然後將沈澱再懸浮於HEPES緩衝液(50mM Na-HEPES及0.2mM DTT,pH 8.0)中,且將Benzonase(Merck,25單位/μL)及rLysozyme(Merck,30kU/μL)各自添加0.2μL。在室溫下將該混合物培育15min,且然後冷凍(在-80℃下)並解凍3次。此時,自每一混合物取出10μL作為「總蛋白質」樣品。將樣品之剩餘部分以13000rpm離心1min,且將上清液移除並置於冰上。自每一混合物取出上清液之10μL等份試樣作為‘可溶性蛋白質’樣品。向每一10μL總蛋白質樣品及可溶性蛋白質樣品中添加10μL SDS緩衝液,且在98℃下將所有混合物加熱5min。將15μL之每一等份試樣裝載至具有12%解析凝膠及4%堆積凝膠之SDS-PAGE凝膠中。將該凝膠在200V下運行40min。使用考馬斯藍(Coomassie blue)將該凝膠染色過夜,且然後褪色。
在表現結束時,使100mL培養物之剩餘部分在50mL管中沈澱,並在-80℃下冷凍儲存。
蛋白質純化:
由於野生型及突變體ADH酶菌在其N端均攜帶His6tagsat,故其均可使用固定化金屬親和力層析法純化。將上文所闡述之冷凍細胞沈澱(來自100mL培養物)再懸浮於具有0.5μl rLysozyme(30kU/μl)、0.5μl Benzonase(25U/μl)及50μl蛋白酶抑制劑混合物(Sigma)之10mL冰冷溶解緩衝液(50mM磷酸鉀、300mM NaCl,pH 7.0)中。在冰上培育30min後,藉由超音波處理溶解細胞,使不可溶碎片沈澱,且使用0.2微米過濾器使上清液澄清。將經澄清上清液添加至已用溶解緩衝液徹底洗滌之Talon樹脂(Clontech)中。使用500μL之床體積純化野生型ADH,且使用200μL之床體積純化每一突變體。使該蛋白質與Talon樹脂在4℃下結合1小時,且然後用溶解緩衝液洗滌7次。使用補充有150mM咪唑之溶解緩衝液自管柱溶析該蛋白質,且將溶析液收集於500μL流分中。在SDS page凝膠上運行在純化製程中之各階段所取之等份試樣以及所有溶析流分,以證實蛋白質之存在並確定純化之成功。使用Amicon 4ml離心超濾裝置(Amicon Ultra-4 Centrifugal Filter Units)(Millipore)將蛋白質交換至儲存緩衝液(50mM磷酸鉀、150mM NaCl、10% v/v甘油,pH 7.0)中。
野生型蛋白質在大腸桿菌中表現時高度可溶,且可容易純化(圖1)。Ser199Asp及Arg200Gln突變體蛋白質亦高度可溶(圖2)。另兩種點突變體(Ser199Glu及Arg200Glu)之溶解性較多變(結果未顯示)。有點意外地,雙突變體(Ser199Glu+Arg200Gln)比Ser199Glu更具可溶性(結果未顯示)。
Ser199Asp突變體之序列係提供於SEQ ID 37(核酸)及SEQ ID 38(胺基酸)中。
活性分析
使用具有石英比色皿之Cary 100 UV/vis分光光度計實施所有活性 分析。該分析中所使用之所有化學物係來源於Sigma-Aldrich。
除非另有說明,否則分析具有0.2mM之輔助因子(NADPH/NADH)濃度、3mM之受質(乙醛、乙醯基輔酶A、丙酮、DL-乙醯甲基甲醇、MEK)濃度及30nM之ADH濃度。其在具有1mM DTT之50mM Tris-HCl緩衝液(pH 7.5)中實施。所有分析利用新近製備之受質及輔助因子以一式三份進行。
首先,量測自產乙醇梭菌之野生型酶,且顯示該酶為嚴格地NADPH依賴性且對NADH幾乎無任何可檢測活性(圖11),如針對拜氏梭菌之醇去氫酶所闡述(Ismaiel、Zhu、Colby及Chen,1993)。
其後,測定自產乙醇梭菌DSM10061之經純化野生型酶之動力學(圖12)作為基線,以評估具有取代之突變酶(圖9)。可利用酮(丙酮、MEK、乙醯甲基甲醇)及醛(乙醛)檢測活性,該等化合物在若干發酵途徑中甚為重要(圖14)。
隨後,分析所生成之突變體醇去氫酶,並與野生型酶相比較。可不分析Ser199Glu突變體,此乃因無可溶性蛋白質。粗細胞溶解物之分析未顯示ADH活性。雖然可溶,但Arg200Gln突變體亦未顯示可檢測活性。不出所料,組合該兩者之突變體Ser199Glu+Arg200Gln亦無活性。在該三種剩下之蛋白質中,當將受質濃度增加5倍(至15mM)並將酶濃度增加6倍(至180nM)時,僅Arg200Glu之活性係可量測的。
另一方面,Ser199Asp突變體在丙酮之情況下幾乎與野生型一樣活躍(圖3)。最感興趣地,Ser199Asp突變體對丙酮更具特異性(圖4)。此標明,用Ser199Asp突變體代替野生型ADH可提高異丙醇產生。此突變體係其他取代之基礎,如實例2中所闡述。
實例2-受質及輔助因子對多個胺基酸取代之特異性之變化
基於實例1之結果,本發明者生成並研究另8種具有1種至4種胺基酸取代之醇去氫酶突變體之活性:
材料 引物
質粒
藉由DNA 2.0合成突變體7之基因序列。對序列進行密碼子最佳化用於在大腸桿菌中表現蛋白質。所合成基因係提供於質粒pJ201中。此序列包括用於將突變體7 ADH基因亞選殖至表現載體pBAD(KpnI)-ADH中之HindIII及KpnI限制性位點。
方法 突變體7之表現質粒之構築
藉由利用限制性酶KpnI-HF及HindIII-HF消化pBAD(KpnI)-ADH來製備pBAD骨幹。
利用限制性酶Kpn-HF及HindIII-HF以類似方式自pJ201載體消化突變體7基因。
於經SYBRsafe(Invitrogen)染色之1%瓊脂糖凝膠上分離所消化產物。切除與所消化載體及插入物相應之條帶,且使用凝膠清潔處理套組(Omega Bio-Tek)回收DNA。
根據製造商之標準方案使用3:1莫耳比之插入物與載體並使用T4 DNA連接酶(NEB)連接經純化插入物及載體DNA。
藉由電穿孔使用連接混合物轉化大腸桿菌MC1061細胞。將經轉化細胞之等份試樣鋪展於LB-胺苄青黴素上,並在37℃下培育過夜。挑選單一菌落。純化所得表現質粒,且藉由DNA測序證實突變體7基因之序列。自成功純系製得冷凍儲備溶液。
ADH之快變誘變
用於構築突變體8、9、10、11及12之模板DNA係pBAD(KpnI)-突變體7 ADH。用於構築突變體13之模板DNA係pBAD(KpnI)-ADH。除不同模板DNA及相應誘變引物以外,構築突變體8至13之方案均相同。使用得自Stratagene之快變II定點誘變套組並使用其標準的推薦方案構築每一突變體。用於構築每一突變體之正向及反向引物係列示於表5中。
藉由熱休克使用快變誘變反應之產物轉化化學勝任大腸桿菌XL1-Blue細胞。挑選單一菌落。純化所得表現質粒,且藉由DNA測序證實每一突變體基因之序列。自每一成功純系製得冷凍儲備溶液。
蛋白質表現及純化
使用突變體2、7、10、11之表現載體轉化預先經質粒pGro7轉化之大腸桿菌LMG194(Takara Bio公司)。此質粒有利於GroEL/ES伴隨蛋白之阿拉伯糖誘導型表現。使用突變體13之表現載體轉化大腸桿菌LMG194。
藉由將L-阿拉伯糖添加至0.2%(w/v)之最終濃度,在中對數期培養物(OD600 0.5)中誘導每一ADH突變體之表現。在28℃下將培養物再培育5h。藉由離心收穫細胞,且將沈澱儲存於-80℃下。將每一沈澱再懸浮於10mL溶解緩衝液(50mM磷酸鉀、300mM NaCl,pH 7.0)中。添加蛋白酶抑制劑混合物(150μL)、Benzonase核酸酶(37.5U)及溶菌酶(0.2mg.mL-1,最終濃度)。在4℃下培育20分鐘後,於冰上藉由超音波處理溶解細胞,且藉由離心(21,000g,4℃,30分鐘)使溶解 物澄清。將經澄清溶解物與500μL Talon金屬親和力樹脂(50% w/v漿液)混合,且在4℃下將該混合物輕輕攪動1h,以使得His6標記之ADH蛋白質結合該樹脂。用溶解緩衝液將樹脂洗滌多次,然後轉移至重力流管柱。為純化突變體7、8、9、10及12,此洗滌步驟中包括5mM ATP/MgCl2以有利於移除伴隨蛋白。用10個床體積之分別含有5mM咪唑及10mM咪唑之溶解緩衝液進一步洗滌後,利用5個床體積之溶析緩衝液(50mM磷酸鉀、300mM NaCl、150mM咪唑,pH 7.0)溶析每一經純化蛋白質。使用Amicon Ultra centrifugal filter units(10kDa分子量截止值;Merck Millipore,Billerica,MA)將經純化蛋白質交換至儲存緩衝液(50mM磷酸鉀、150mM NaCl、10%(v/v)甘油,pH 7.5)中。藉由經無菌0.22μm過濾器(Millex-GV;Millipore)過濾來移除聚集體。藉由SDS-PAGE判斷每一蛋白質為>95%純。藉由量測A 280(使用根據(Pace、Vajdos等人,1995)計算之消光係數)量化ADH濃度。將經純化蛋白質之等份試樣儲存於-80℃下。活性分析驗證該等儲存條件與冷凍/解凍循環組合未導致任何活性喪失。
如圖5中所顯示,突變體2、7及11在具有pGro7質粒之大腸桿菌中表現時均高度可溶。突變體10之可溶性蛋白質產量低於其他變體。突變體8、9及12甚至當與pGro7共表現時亦完全不可溶。突變體13高度可溶,且在與野生型ADH蛋白質相同之條件下可大量產生。
活性分析
使用分光光度計分析並基於先前闡述之方法(Ismaiel、Zhu等人,1993)量測野生型及突變體ADH活性。藉由監測與NADPH或NADH之氧化相關之340nm下吸光度(ε 340=6,220M-1.cm-1)之降低來量化活性。在25℃下使用具有Peltier溫度控制器之Cary 100 UV-Vis分光光度計量測穩態動力學參數。標準分析混合物含有50mM Tris-HCl、1mM DTT(pH 7.5),其中任一輔助因子(NADPH或NADH)以0.2mM存 在。利用5mM之受質濃度量測初始反應速率。以一式三份進行量測並針對背景進行校正。輔助因子NADH及NADPH及受質丙酮、乙醯甲基甲醇、MEK係來源於Sigma-Aldrich。如下文所闡述純化D-乙醯甲基甲醇,此乃因沒有商業來源。
總體而言,使用NADH作為輔助因子,突變體11具有最高活性(圖6)。針對突變體11之輔助因子使用已完全切換(與野生型ADH相比較);突變體11對NADPH無可檢測活性。
突變體11具有四種突變(G198D、S199V、P201E、Y218A)。觀測到輔助因子使用之切換需要所有四種突變。對NADH之活性需要添加Y218A突變,但僅此突變(即突變體13)對輔助因子偏好沒有任何影響。此在圖14中所顯示之至異丙醇、2,3-丁二醇、2-丁醇及乙醇之發酵途徑中可具有重要優勢。
如圖7中所顯示,一些突變體亦對丙酮相對於較大受質(乙醯甲基甲醇及MEK)或較小受質(乙醛)更具特異性。所有突變體(2、7、10及11)對丙酮具有相對於MEK提高之受質特異性。突變體2、10及11對丙酮具有相對於乙醛且相對於乙醯甲基甲醇提高之受質特異性。
如圖8中所顯示,一些突變體亦對MEK相對於較大受質(乙醯甲基甲醇)或較小受質(乙醛)更具特異性。突變體2、10及11對MEK具有相對於乙醛且相對於乙醯甲基甲醇提高之受質特異性。
如圖9中所顯示,一些突變體亦對乙醛相對於較大受質(丙酮、乙醯甲基甲醇及MEK)更具特異性。突變體7對乙醛具有相對於丙酮且相對於MEK提高之受質特異性。突變體2、7及10對乙醛具有相對於乙醯甲基甲醇提高之受質特異性。
如圖10中所顯示,一些突變體亦對乙醯甲基甲醇相對於較小受質(丙酮、乙醯甲基甲醇及MEK)更具特異性。突變體7對乙醯甲基甲醇具有相對於丙酮且相對於MEK提高之受質特異性。突變體7及11對 乙醯甲基甲醇具有相對於乙醛提高之受質特異性。突變體10對乙醯甲基甲醇喪失活性,而對其他受質丙酮、MEK及乙醛仍具有活性。
總而言之,如圖7至10中所繪示,結果顯示:- 突變體2對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及乙醯甲基甲醇,2)MEK,相對於乙醛及乙醯甲基甲醇;- 突變體7對以下物質具有提高之受質特異性:1)丙酮,相對於MEK,2)乙醛,相對於MEK、丙酮及乙醯甲基甲醇,3)乙醯甲基甲醇,相對於丙酮及MEK;- 突變體11對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及乙醯甲基甲醇,2)MEK,相對於乙醛及乙醯甲基甲醇,3)乙醯甲基甲醇,相對於乙醛;且- 突變體10對以下物質具有提高之受質特異性:1)丙酮,相對於MEK、乙醛及乙醯甲基甲醇,及2)MEK,相對於乙醛及乙醯甲基甲醇,3)乙醛,相對於乙醯甲基甲醇。此在圖14中所顯示之至異丙醇、2,3-丁二醇、2-丁醇及乙醇之發酵途徑中可具有重要優勢。
D-乙醯甲基甲醇之純化
D-乙醯甲基甲醇(或(S)-乙醯甲基甲醇)之鏡像選擇性合成:如所闡述經由D-(-)-2,3-丁二醇之區域選擇性控制之單氧化合成D-乙醯甲基甲醇(D’Accoloti等人,1993 J.Org.Chem.58:3600-1)。根據對先前報導程序之修改新近製備必需二甲基二氧口元(DMDO)-丙酮溶液,且隨後藉由碘滴定法滴定。
DMDO-丙酮溶液之生成:向1000mL 3頸圓底燒瓶安裝氣體配接器及雙蒸餾頭,該雙蒸餾頭附接有經真空調適接收器。塞住最後之接頭,並意欲用於試劑添加。將圓底燒瓶緊固至接收端,並在丙酮-乾冰浴中冷卻至-78℃。真空與使用加鹽冰(salted-ice)冷卻至-20℃、隨 後連接至-196℃液氮冷指阱之Buchi®冷指冷凝器呈直線。
向反應容器裝填較大橢圓形攪拌棒、水(220mL)、丙酮(160mL)及碳酸氫鈉(120.063g)。在0℃下開始劇烈攪拌,同時利用氮氣吹洗,在以3分鐘間隔添加5份固體過硫酸氫鉀(oxone,250.047g)期間繼續吹洗。呈現強烈起泡,且控制過硫酸氫鉀添加速率以從而管理此起泡。添加第二份之過硫酸氫鉀後,在白色漿液上面之無色溶液呈現粉色。過硫酸氫鉀添加完全後,繼續攪拌15分鐘。在起泡消退時,施加微真空(900毫巴(mbar)),將其緩慢增加至約450毫巴,同時監測起泡。在逐漸施加真空期間,將淺黃色溶液收集於經冷卻接收器中。在收集約100mL DMDO-丙酮溶液後,利用Na2S2O3飽和溶液使反應淬滅,且使產物達到室溫。
DMDO之碘滴定法滴定:將新近蒸餾之DMDO存於丙酮中之溶液(1.00mL)移液至乙酸-丙酮溶液(2mL,3:2)中。然後與乾冰一起添加碘化鉀飽和水溶液(2.0mL),以對該溶液除氣。使此混合,同時在黑暗中於室溫下儲存10分鐘。將該混合物用水(5mL)稀釋,並使用1%澱粉溶液作為終點指示劑針對Na2S2O3(0.00099mol/L)水溶液進行滴定,產生29.9mM之濃度。然後將該燒瓶密封並儲存於-18℃下。
(R,R)-2,3-丁二醇之DMDO氧化。根據文獻(D’Accoloti等人,1993 J.Org.Chem.58:3600-1)中所報導方法實施D-(-)-2,3-丁二醇至(R)-3-羥基丁酮之單氧化。
實例3-在一氧化碳營養菌中使用經最佳化醇去氫酶相對於乙醇優先產生2,3-丁二醇
顯示一氧化碳營養型生物自產乙醇梭菌自CO產生乙醇及2,3-丁二醇二者(Köpke等人,2011)(圖14)。如實例1中所證實,自產乙醇梭菌中存在醇去氫酶,該酶催化乙醇途徑及2,3-丁二醇途徑中之最後步驟,即分別乙醛至乙醇及乙醯甲基甲醇至2,3-丁二醇之反應(圖14)。 此野生型酶對乙醛之活性高於對乙醯甲基甲醇之活性(圖12),此導致相對於2,3-丁二醇,乙醇為利用自產乙醇梭菌DSM 10061之發酵中之主要產物(Köpke等人,2011)。在實例2中,利用胺基酸取代G198E、S199V、P201E生成對乙醯甲基甲醇具有相對於乙醛提高之受質特異性之醇去氫酶突變體(突變體7)(圖7)。與野生型菌株相比較,與野生型酶相比較相對於乙醛優先使用乙醯甲基甲醇之此酶可用於相對於乙醇產生提高2,3-丁二醇產生。
使用位點NdeI及EcoRI將突變體醇去氫酶之基因(Seq.ID 41)選殖至攜帶鐵氧化還原蛋白啟動子之pMTL85353穿梭載體(Heap、Pennington、Cartman及Minton,2009)中。然後使該構築體甲基化,並如所闡述藉由電穿孔轉化成自產乙醇梭菌(US 2012/0252083、WO/2012/115527)。挑選耐甲碸黴素(Thiamphenicol)菌落,並於5mL液體培養基中生長。藉由PCR驗證經轉化培養物,並實施發酵實驗。當將代謝終產物與自產乙醇梭菌之野生型相對照時,攜帶突變體醇去氫酶之菌株將具有提高之2,3-丁二醇:乙醇比率。
與此類似,可利用醇去氫酶突變體並使用相同質粒修飾其他產乙酸菌株(例如揚氏梭菌)。已針對若干一氧化碳營養型產乙酸菌(例如揚氏梭菌(Köpke等人2010,Poc.Nat.Acad.Sci.U.S.A.107:13087-92;(Leang、Ueki及Lovley,2011)PCT/NZ2011/000203;WO2012/053905)、伍氏乙酸桿菌(Straetz等人,1994,Appl.Environ.Microbiol.60:1033-37)及熱醋穆爾氏菌(Kita等人,2012))闡述電穿孔。自產乙醇梭菌、揚氏梭菌及其他產乙酸菌株能夠產生乙醇及2,3-丁二醇(Köpke等人,2011)。藉由表現突變體醇去氫酶,此比率可經提高有利於2,3-丁二醇。
實例4-在一氧化碳營養菌中使用經最佳化醇去氫酶相對於2,3-丁二醇優先產生乙醇
如實例3中所闡述,自產乙醇梭菌能夠自CO產生乙醇及2,3-丁二醇二者(圖14)。然而,對於一些製程,僅產生單一產物以使製程之成本(例如分離)保持較低可係有利的。通常,此可藉由使該等途徑中之一者之途徑中之酶不活化來達成。然而,在催化多個途徑中之反應之多官能酶之情形下,可不應用此策略,其係針對自產乙醇梭菌中催化乙醛至乙醇之還原及乙醯甲基甲醇至2,3-丁二醇之還原二者之醇去氫酶之情形。本發明給出達成(例如)產生乙醇以及降低之含量之2,3-丁二醇或無2,3-丁二醇之替代方法。在實例2中,利用胺基酸取代G198D、S199V、P201E、Y218F生成喪失還原乙醯甲基甲醇之能力、但仍對乙醛具有活性之醇去氫酶突變體(突變體10)(圖7)。將此突變體醇去氫酶之基因(Seq.ID 47)與該醇去氫酶之側翼區域一起選殖至載體中,以允許雙同源交叉整合(用突變體醇去氫酶代替野生型)。使用自產乙醇梭菌DSM23693基因組DNA對SecAdh基因之1kb 5’(Seq.ID.55)及3’(Seq.ID.56)同源臂進行PCR擴增。分別使用引物Sec5f(attcatcctgcaggACAGTTAAAAAGCATATCTAACAGT(SEQ ID 57))/Sec5r(gactgcggccgcTAAATATATAAGCAAATGTTGTGCC(SEQ ID 58))及Sec3f(atatgctagCGTATTTTTAATTGCGAACTTAAGA(SEQ ID 59))/Sec3r(gactggcgcgcCAGTTAAAGTTAGACATCCGATTAT(SEQ ID 60))擴增5’及3’同源臂。將該兩個PCR產物選殖至介於SbfI/NotI與NheI/AscI位點之間之pMTL85151質粒中,以得到pMTL85151-SecAdh-KO。如上文所闡述轉化該載體。在甲碸黴素板上選擇後,使用側接同源臂之引物SecOf(TTGGAATTTTAGCTGTAGATAACAA(SEQ ID 61))及SecOr(TAAGTGATTTTCAATGGACTTTACT(SEQ ID 62))篩選用突變體醇去氫酶置換野生型醇去氫酶之轉化體。測序一致後,實施發酵實驗,證實產生乙醇,且產生減少之2,3-丁二醇或不產生2,3-丁二醇在自產乙醇梭菌中,存在對丁二醇具有活性之第二 酶,其在某些條件下可經剔除,以完全移除2,3-丁二醇產生。
與此類似,可利用醇去氫酶突變體並使用相同質粒修飾其他產生2,3-丁二醇之產乙酸菌株(例如揚氏梭菌及萊格梭菌)。已針對揚氏梭菌(Köpke等人2010,Poc.Nat.Acad.Sci.U.S.A.107:13087-92;Leang等人,2011)闡述電穿孔以及用於雙同源交叉之方法。
實例5-在一氧化碳營養菌中使用經最佳化醇去氫酶產生異丙醇
自產乙醇梭菌已藉由引入丙酮生物合成基因經修飾用於自CO產生異丙醇,此取決於野生型醇去氫酶(US 2012/0252083、WO/2012/115527)。為改良產生,可引入實例2中所生成之具有取代G198D、S199V、P201E、Y218A之對丙酮具有高度特異性之突變體醇去氫酶(突變體11)。藉由SalI/XhoI限制性位點將突變體醇去氫酶基因(Seq.ID 53)選殖至丙酮生物合成質粒(Seq.ID 40)中。然後如上文所闡述在自產乙醇梭菌中轉化該質粒。利用經轉化培養物之發酵實驗將顯示提高之異丙醇產生,其中所有丙酮均轉化成異丙醇。除對丙酮具有提高之特異性以外,該生物將使用NADPH及NADH用於異丙醇合成,從而允許利用兩個庫。
與此類似,可利用醇去氫酶突變體並使用相同質粒修飾其他產乙酸菌株(例如揚氏梭菌)。已針對若干一氧化碳營養型產乙酸菌(如揚氏梭菌(Köpke等人2010,Poc.Nat.Acad.Sci.U.S.A.107:13087-92;(Leang等人,2011)PCT/NZ2011/000203;WO2012/053905)、伍氏乙酸桿菌(Straetz等人,1994,Appl.Environ.Microbiol.60:1033-37)或熱醋穆爾氏菌(Kita等人,2012))闡述電穿孔。其中自產乙醇梭菌、揚氏梭菌及其他產乙酸菌株能夠產生乙醇及2,3-丁二醇(Köpke等人,2011)。藉由表現突變體醇去氫酶,此比率可經提高有利於2,3-丁二醇。
實例6-在ABE生物中使用經最佳化醇去氫酶產生異丙醇
已顯示,丙酮丁醇梭菌可使用來自拜氏梭菌之二級醇去氫酶經代謝改造用於異丙醇產生,但所報導之結果顯示僅較低含量之異丙醇及未轉化成異丙醇之剩餘丙酮[Lee等人,2012:Metabolic engineering of Clostridium acetobutylicum ATCC824 for isopropanol-butanol-ethanol fermentation,Appl.Environ.Microbiol.78:1416-1423]。為改良此製程,需要經最佳化之醇去氫酶來克服此限制。
在實例2中,利用取代G198D、S199V、P201E、Y218A生成對乙醯甲基甲醇具有高特異性且亦能夠使用NADH之經最佳化突變體醇去氫酶(突變體11),在丙酮丁醇梭菌中NADH比NADPH更豐富。使用位點NdeI及EcoRI將突變體醇去氫酶基因(Seq.ID 53)選殖至攜帶強丙酮丁醇梭菌硫解酶啟動子之pMTL85354穿梭載體(Heap等人,2009)中。然後使用枯草芽孢桿菌(Bacillus subtilis)噬菌體甲基轉移酶在活體內使該質粒甲基化,並如所闡述在丙酮丁醇梭菌中轉化(Mermelstein及Papoutsakis,1993)。在利用經轉化培養物實施之發酵中,以高特異性將所有乙醯甲基甲醇轉化異丙醇。
實例7-在大腸桿菌使用經最佳化醇去氫酶產生異丙醇
在若干研究中大腸桿菌為異丙醇產生之標靶[Hanai T等人(2007)Engineered synthetic pathway for isopropanol production in Escherichia coli.Applied and environmental microbiology 73:7814-8;Inokuma K等人(2010)Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping.Journal of bioscience and bioengineering 110:696-701;Jojima T等人(2008)Production of isopropanol by metabolically engineered Escherichia coli.Applied microbiology and biotechnology 77:1219-24]。然而,所有研究均使用來自拜氏梭菌之完全相同之未經最佳化醇去氫酶,該未經最佳化醇去氫酶因該酶之低特異性及NADPH依賴性而限制異丙醇產生。此變得 顯而易見,此乃因在所有研究中,由於丙酮不能足夠有效地還原成異丙醇,故其作為副產物累積。在大腸桿菌中,NADH庫之庫係NADPH庫之若干倍大(Bennett及San,2009)。
在實例2中,利用取代G198D、S199V、P201E、Y218A生成對乙醯甲基甲醇具有高特異性且亦能夠使用NADH之經最佳化突變體醇去氫酶(突變體11)。大腸桿菌可使用業內所使用之標準技術經改造以包括此突變體醇去氫酶。與野生型生物相比較,該重組大腸桿菌將具有提高之異丙醇產生。
實例8-在酵母啤酒酵母菌中使用經最佳化醇去氫酶產生2-丁醇
一些酵母啤酒酵母菌菌株除乙醇以外能夠產生高含量之乙醯甲基甲醇(Romano、Suzzi、Mortimer及Polsinelli,1995)。可藉由實例1中所闡述之自產乙醇梭菌之醇去氫酶之作用將D-乙醯甲基甲醇(或(S)-乙醯甲基甲醇)轉化成內消旋-2,3-丁二醇。已闡述利用(例如)產氣桿菌(A.aerogenes)(Toraya T、Shirakashi T、Kosuga T,1976)或肺炎克雷白氏菌(Bachovchin、Eagar、Moore及Richards,1977)之二醇脫水酶將內消旋-2,3-丁二醇轉化成MEK。然後可利用實例1中所闡述之自產乙醇梭菌之醇去氫酶將MEK再次轉化成2-丁醇(圖14)。然而,由於醇去氫酶對乙醇亦具有活性,故期望具有對乙醛至乙醇僅具有較低活性但對乙醯甲基甲醇至2,3-丁二醇及MEK至2-丁醇具有相對較高活性的酶。實例2之突變體11恰好具有該等性質,且使用NADH作為輔助因子,NADH在酵母中係有利的。
在誘導型酵母啟動子GAL1/10下將來自肺炎克雷白氏菌(YP_002236782;YP_002236783;YP_002236784)之突變體11之密碼子最佳化基因(Seq.ID 50)及二醇脫水酶之密碼子最佳化基因選殖至適當載體中,如(Steen等人,2008)所闡述。使用如(Gietz RW:RA Guide to Yeast Genetics and Molecular and Cell Biology.Part B.San Diego, CA:Academic Press公司;2002:87-96)所闡述之乙酸鋰方法實施所有啤酒酵母菌菌株之轉化。成功轉化及驗證後,在30℃下利用啤酒酵母菌於富YPD培養基中實施發酵,其中2-丁醇及低含量之乙醇為產物。
本文中已參照某些較佳實施例闡述本發明,以使讀者不進行過多實驗即能實踐本發明。然而,熟習此項技術者將容易地認識到,許多組份及參數可在某種程度上改變或修改或用已知等效物替代,而不背離本發明之範圍。應瞭解,該等修改及等效物係如同個別闡明一般併入本文中。提供題目、標題或諸如此類以增強讀者對本文件之理解,但不應視為限制本發明之範圍。
上文及下文引用之所有申請案、專利及公開案(若存在)之全部揭示內容菌以引用方式併入本文中。然而,在本說明書中提及任何申請案、專利及公開案時,並非且不應視為承認或以任一形式提出,其在世界上任一國家構成有效之先前技術或形成通用常識之一部分。
在本說明書通篇及以下任何申請專利範圍中,除非上下文另有要求,否則單詞「包括(comprise、comprising)」及諸如此類應理解為與排他性含義相反之包含性含義,亦即「包含,但不限於」之含義。
參考文獻
Abrini, J.、Naveau, H.及Nyns, E. J. (1994). Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Archives of microbiology, 161(4), 345-351.自http://www.springerlink.com/index/vl43151w30423660.pdf擷取
Bachovchin, W. W.、Eagar, R. G.、Moore, K. W.及Richards, J. H. (1977). Mechanism of action of adenosylcobalamin: glycerol and other substrate analogues as substrates and inactivators for propanediol dehydratase--kinetics, stereospecificity, and mechanism. Biochemistry, 16(6), 1082-92.自http://www.ncbi.nlm.nih.gov/pubmed/321014擷取
Bennett, G. N.及San, K. (2009). Systems Biology and Biotechnology of Escherichia coli.在S. Y. Lee (編輯), Systems Biology and Biotechnology of Escherichia coli (第351頁至第376頁)中. Dordrecht: Springer Netherlands. doi:10.1007/978-1-4020-9394-4
Berzin, V.、Kiriukhin, M.及Tyurin, M. (2012). Selective production of acetone during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MAceT113. Letters in applied microbiology. doi:10.1111/j.1472-765X.2012.03272.x
Collins, M. D.、Lawson, P. A.、Willems, A.、Cordoba, J. J.、Fernandez-Garayzabal, J.、Garcia, P.、Cai, J.等人(1994). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. International journal of systematic bacteriology, 44(4), 812-26.自http://www.ncbi.nlm.nih.gov/pubmed/7981107擷取
Drake, H. L.、Küsel, K.、Matthies, C.、Wood, H. G.及Ljungdahl, L. G. (2006). Acetogenic Prokaryotes.在M. Dworkin、S. Falkow、E. Rosenberg、K.-H. Schleifer及E. Stackebrandt (編輯), The Prokaryotes (第3次編輯,第354頁至第420頁)中. New York, NY: Springer. doi:10.1007/0-387-30742-7
Heap, J. T.、Pennington, O. J.、Cartman, S. T.及Minton, N. P. (2009). A modular system for Clostridium shuttle plasmids. Journal of microbiological methods, 78(1), 79-85. doi:10.1016/j.mimet.2009.05.004
Ismaiel, a a、Zhu, C. X.、Colby, G. D.及Chen, J. S. (1993). Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. Journal of bacteriology, 175(16), 5097-105.自http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=204976&tool=pmcentrez&rendertype=abstract擷取
Keis, S.、Shaheen, R.及Jones, D. T. (2001). Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and. International journal of systematic and evolutionary microbiology, 2095-2103
Kita, A.、Iwasaki, Y.、Sakai, S.、Okuto, S.、Takaoka, K.、Suzuki, T.、Yano, S.等人(2012). Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica. Journal of Bioscience and Bioengineering, xx(xx), 1-6. doi:10.1016/j.jbiosc.2012.10.013
Köpke, M.及Dürre, P. (2011). Biochemical production of biobutanol.在R. Luque、J. Campelo及J. H. Clark (編輯), Handbook of biofuels production:processes and technologies(第221頁至第257頁)中. Camebridge, UK: Woodhead Publishing Ltd.自http://www.woodheadpublishing.com/en/book.aspx?bookID=1643擷取
Köpke, M.、Held, C.、Hujer, S.、Liesegang, H.、Wiezer, A.、Wollherr, A.、Ehrenreich, A.等人(2010). Clostridium ljungdahlii represents a microbial production platform based on syngas. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 13087-92. doi:10.1073/pnas.1004716107
Köpke, M.、Mihalcea, C.、Liew, F.、Tizard, J. H.、Ali, M. S.、Conolly, J. J.、Al-Sinawi, B.等人(2011). 2,3-Butanediol Production By Acetogenic Bacteria, an Alternative Route To Chemical Synthesis, Using Industrial Waste Gas. Applied and environmental microbiology, 77(15), 5467-75. doi:10.1128/AEM.00355-11
Leang, C.、Ueki, T.及Lovley, D. R. (2011). Development of Genetic Systems for Clostridium ljungdahlii. Poster.
Mermelstein, L. D.及Papoutsakis, E. T. (1993). In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Applied and environmental microbiology, 59(4), 1077-81.自http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=202241&tool=pmcentrez&rendertype=abstract擷取
Perez, J. M.、Richter, H.、Loftus, S. E.及Angenent, L. T. (2012). Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation. Biotechnology and bioengineering, 1-30. doi:10.1002/bit.24786
Romano, P.、Suzzi, G.、Mortimer, R.及Polsinelli, M. (1995). Production of high levels of acetoin in Saccharomyces cerevisiae wine yeasts is a recessive trait. The Journal of applied bacteriology, 78(2), 169-74.自http://www.ncbi.nlm.nih.gov/pubmed/7698951擷取
Steen, E. J.、Chan, R.、Prasad, N.、Myers, S.、Petzold, C. J.、Redding, A.、Ouellet, M.等人(2008). Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial cell factories, 7, 36. doi:10.1186/1475-2859-7-36
Tanner, R. S.、Miller, L. M.及Yang, D. (1993). Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. International journal of systematic bacteriology, 43(2), 232.自http://ijs.sgmjournals.org/content/43/2/232.short擷取
Toraya T、Shirakashi T、Kosuga T, F. S. (1976). Substrate Specificity Of Coenzyme B12-Dependent Diol Dehydratase. Biochemical and biophysical research communications, 69(2), 475-480.
Tyurin, M.及Kiriukhin, M. (2012). Electrofusion of cells of Acetogen Clostridium sp. MT 351 with erm (B) or cat in the chromosome. Journal of Biotech, 1-12.自http://lu38361.web.officelive.com/Documents/2012v4p1-12.pdf擷取
Ismaiel, A. A.、C. X. Zhu等人(1993).「Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii.」J. Bacteriol. 175(16): 5097-5105.
Pace, C. N.、F. Vajdos等人(1995). How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4(11): 2411- 2423.
<110> 紐西蘭商藍瑟科技紐西蘭有限公司 麥可 蔻普其 莫妮卡 葛斯 韋恩 派屈克 丹妮爾 麥道可
<120> 酶-改變之代謝物活性
<130> LT75PCT
<150> US 61/620538
<151> 2012-04-05
<160> 70
<170> PatentIn version 3.5
<210> 1
<211> 37
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 1
<210> 2
<211> 45
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 2
<210> 3
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 3
<210> 4
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 4
<210> 5
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 5
<210> 6
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 6
<210> 7
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 7
<210> 8
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 8
<210> 9
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 9
<210> 10
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 10
<210> 11
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 11
<210> 12
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 12
<210> 13
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 13
<210> 14
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 14
<210> 15
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 15
<210> 16
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 16
<210> 17
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 17
<210> 18
<211> 26
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 18
<210> 19
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 19
<210> 20
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 20
<210> 21
<211> 34
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 21
<210> 22
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 22
<210> 23
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 23
<210> 24
<211> 33
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 24
<210> 25
<211> 35
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 25
<210> 26
<211> 35
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 26
<210> 27
<211> 37
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 27
<210> 28
<211> 37
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 28
<210> 29
<211> 42
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 29
<210> 30
<211> 42
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 30
<210> 31
<211> 35
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 31
<210> 32
<211> 35
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 32
<210> 33
<211> 48
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 33
<210> 34
<211> 48
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 34
<210> 35
<211> 1056
<212> DNA
<213> 自產乙醇梭菌
<400> 35
<210> 36
<211> 352
<212> PRT
<213> 自產乙醇梭菌
<400> 36
<210> 37
<211> 1056
<212> DNA
<213> 自產乙醇梭菌
<400> 37
<210> 38
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 38
<210> 39
<211> 560
<212> DNA
<213> 自產乙醇梭菌
<400> 39
<210> 40
<211> 7922
<212> DNA
<213> 人工序列
<220>
<223> 合成質粒
<400> 40
<210> 41
<211> 1056
<212> DNA
<213> 自產乙醇梭菌
<400> 41
<210> 42
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 42
<210> 43
<211> 1056
<212> DNA
<213> 自產乙醇梭菌
<400> 43
<210> 44
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 44
<210> 45
<211> 1056
<212> DNA
<213> 自產乙醇梭菌
<400> 45
<210> 46
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 46
<210> 47
<211> 1053
<212> DNA
<213> 自產乙醇梭菌
<400> 47
<210> 48
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 48
<210> 49
<211> 1056
<212> DNA
<213> 自產乙醇梭菌
<400> 49
<210> 50
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 50
<210> 51
<211> 1056
<212> DNA
<213> 自產乙醇梭菌
<400> 51
<210> 52
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 52
<210> 53
<211> 1056
<212> DNA
<213> 自產乙醇梭菌
<400> 53
<210> 54
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 54
<210> 55
<211> 1062
<212> DNA
<213> 自產乙醇梭菌
<400> 55
<210> 56
<211> 823
<212> DNA
<213> 自產乙醇梭菌
<400> 56
<210> 57
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 57
<210> 58
<211> 37
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 58
<210> 59
<211> 34
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 59
<210> 60
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 60
<210> 61
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 61
<210> 62
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 合成引物
<400> 62
<210> 63
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 63
<210> 64
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 64
<210> 65
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 65
<210> 66
<211> 351
<212> PRT
<213> 自產乙醇梭菌
<400> 66
<210> 67
<211> 1053
<212> DNA
<213> 自產乙醇梭菌
<400> 67
<210> 68
<211> 1053
<212> DNA
<213> 自產乙醇梭菌
<400> 68
<210> 69
<211> 1053
<212> DNA
<213> 自產乙醇梭菌
<400> 69
<210> 70
<211> 1056
<212> DNA
<213> 自產乙醇梭菌
<400> 70

Claims (20)

  1. 一種醇去氫酶,其對至少一種第一受質具有相對於至少一種第二受質提高之特異性,其中該至少一種第一受質及該至少一種第二受質係選自由以下組成之群:該第一受質係丙酮且該第二受質係MEK;該第一受質係丙酮且該第二受質係乙醛;該第一受質係丙酮且該第二受質係乙醯甲基甲醇;該第一受質係MEK且該第二受質係乙醛;該第一受質係MEK且該第二受質係乙醯甲基甲醇;該第一受質係乙醯甲基甲醇且該第二受質係丙酮;該第一受質係乙醯甲基甲醇且該第二受質係MEK;該第一受質係乙醯甲基甲醇且該第二受質係乙醛;該第一受質係乙醛且該第二受質係丙酮;該第一受質係乙醛且該第二受質係乙醯甲基甲醇;及該第一受質係乙醛且該第二受質係MEK;且,其中與相應野生型醇去氫酶相比較,該醇去氫酶包括至少一種或多種突變。
  2. 一種醇去氫酶,其使用NADH作為輔助因子或其對NADH輔助因子具有相對於NADPH輔助因子提高之特異性,其中與相應野生型醇去氫酶相比較,該醇去氫酶包括至少一種或多種突變。
  3. 如請求項1至2之醇去氫酶,其中該醇去氫酶包括在以下位置中之一或多者處之胺基酸取代:Gly198、Ser199、Arg200、Pro201、Tyr218。
  4. 如請求項3之醇去氫酶,其中該胺基酸取代係選自以下中之一或多種:Gly198Asp、Gly198Ile、Gly198Leu、Gly198Val、 Ser199Asp、Ser199Glu、Ser199Leu、Ser199Val、Arg200Glu、Pro201Asp、Pro201Glu、Tyr218Ala、Tyr218Phe、Tyr218Gly、Tyr218Ser及Tyr218Val。
  5. 如請求項4之醇去氫酶,其中該醇去氫酶包括:Ser199Asp取代;Ser199Glu取代;Gly198Asp、Ser199Val及Pro201Glu之取代組合;Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ala之取代組合;Gly198Asp、Ser199Val、Pro201Glu及Tyr218Phe之取代組合;Gly198Asp、Ser199Val、Pro201Glu及Tyr218Val之取代組合;Gly198Asp、Ser199Val、Pro201Glu及Tyr218Gly之取代組合;或Gly198Asp、Ser199Val、Pro201Glu及Tyr218Ser之取代組合。
  6. 如請求項5之醇去氫酶,其中該醇去氫酶包含SEQ ID 38、SEQ ID 42、SEQ ID 48、SEQ ID 50、SEQ ID 63、SEQ ID 64或SEQ ID 65之序列。
  7. 一種核酸,其編碼如請求項1至6中任一項之醇去氫酶。
  8. 如請求項7之核酸,其中該核酸包含SEQ ID 37、SEQ ID 41、SEQ ID 47、SEQ ID 49、SEQ ID 67、SEQ ID 68、SEQ ID 69或SEQ ID 70之序列。
  9. 一種核酸載體,其包含如請求項7之核酸。
  10. 一種宿主細胞,其包含如請求項7之核酸或請求項9之核酸載體。
  11. 一種重組微生物,其包含一或多種如請求項7之核酸或如請求項9之核酸載體,其中該微生物能夠藉由發酵產生一或多種選自以下之產物:異丙醇;2,3-丁二醇;乙醇;2-丁醇;及視情況一或多種其他產物。
  12. 一種重組微生物,其包含一或多種如請求項7之核酸或如請求項9之核酸載體,其中該微生物能夠藉由發酵產生一或多種選自以下之產物:乙醯甲基甲醇;MEK;乙醛;丙酮;及視情況一或多種其他產物。
  13. 如請求項12之重組微生物,其中該微生物係選自包含細菌、古菌及真菌之群。
  14. 如請求項13之重組微生物,其中該微生物係選自包含以下之群之一氧化碳營養型產乙酸菌:自產乙醇梭菌(Clostridium autoethanogenum)、揚氏梭菌(Clostridium ljungdahlii)、萊格梭菌(Clostridium ragsdalei)、食一氧化碳梭菌(Clostridium carboxidivorans)、德瑞克梭菌(Clostridium drakei)、糞味梭菌(Clostridium scatologenes)、考斯卡梭菌(Clostridium coskatii)、醋酸梭菌(Clostridium aceticum)、大梭菌(Clostridium magnum)、梭菌屬(Clostridium sp.)、黏丁酸桿菌(Butyribacterium limosum)、食甲基丁酸桿菌(Butyribacterium methylotrophicum)、伍氏乙酸桿菌(Acetobacterium woodii)、柏氏鹼性桿菌(Alkalibaculum bacchii)、產生柏勞菌(Blautia producta)、黏液真桿菌(Eubacterium limosum)、熱醋穆爾氏菌(Moorella thermoacetica)、熱自養穆爾氏菌(Moorella thermautotrophica)、芬尼氏醋菌(Oxobacter pfennigii)及凱伍熱厭氧桿菌(Thermoanaerobacter kiuvi)。
  15. 如請求項13之重組微生物,其中該微生物係選自包含丙酮丁醇梭菌(Clostridium acetobutylicum)、拜氏梭菌(Clostridium beijerinckii)、糖丁酸梭菌(Clostridium saccharobutylicum)、糖乙酸多丁醇梭菌(Clostridium saccharoperbutylacetonicum)之群之ABE發酵微生物。
  16. 一種重組微生物,其中該微生物係選自包含大腸桿菌(E.coli)、肺炎克雷白氏菌(Klebsiella pneumonia)、產酸克雷白氏菌(Klebsiella oxytoca)、地衣芽孢桿菌(Bacillus licheniformis)、枯草芽孢桿菌(Bacillus subtilis)、短毛乳酸桿菌(Lactobacillus brevis)及啤酒酵母菌(Saccharomyces cerevisiae)之群。
  17. 一種產生異丙醇、2,3-丁二醇、乙醇、2-丁醇、乙醯甲基甲醇、MEK、乙醛及丙酮及視情況一或多種其他產物中之一或多者之方法,其係由受質使用如請求項11至16中任一項之微生物進行微生物發酵。
  18. 如請求項17之方法,其至少包含以下步驟:(a)提供受質給含有一或多種本發明微生物之培養物之生物反應器;及(b)使該培養物在該生物反應器中發酵,產生該一或多種產物。
  19. 如請求項17或18之方法,其中該受質係選自包含CO、CO2及H2中之一或多者之受質及/或包含一或多種碳水化合物之受質。
  20. 如請求項19之方法,其中該受質包含含有CO之受質,且該方法包含以下步驟:(a)在工業製程所產生含CO氣體釋放至大氣中之前,捕獲該氣體;(b)由該含CO氣體使用培養物進行厭氧發酵,以產生該一或多種產物,其中該培養物包含一或多種一氧化碳營養型產乙酸微生物。
TW102112451A 2012-04-05 2013-04-08 酶-改變之代謝物活性 TWI659104B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261620538P 2012-04-05 2012-04-05
US61/620,538 2012-04-05

Publications (2)

Publication Number Publication Date
TW201343914A true TW201343914A (zh) 2013-11-01
TWI659104B TWI659104B (zh) 2019-05-11

Family

ID=49292595

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102112451A TWI659104B (zh) 2012-04-05 2013-04-08 酶-改變之代謝物活性

Country Status (8)

Country Link
US (1) US9550979B2 (zh)
EP (1) EP2834351B1 (zh)
JP (1) JP6407141B2 (zh)
KR (1) KR102079274B1 (zh)
CN (1) CN104619834B (zh)
NZ (1) NZ700609A (zh)
TW (1) TWI659104B (zh)
WO (1) WO2013152236A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104474A (ja) * 2014-08-22 2016-06-09 有限会社情報科学研究所 共鳴発泡と真空キャビテーションによるウルトラファインバブル製造方法及びウルトラファインバブル水製造装置。
JP5923679B1 (ja) * 2015-01-26 2016-05-25 有限会社情報科学研究所 還元発酵方法、還元発酵装置、酸化還元発酵方法、及び酸化還元発酵装置
BR112017018257A2 (pt) 2015-02-27 2018-04-10 White Dog Labs Inc método de fermentação mixotrópica para produzir acetona, isopropanol, ácido butírico e outros bioprodutos, e misturas dos mesmos
EP3775178A4 (en) * 2018-04-06 2022-01-05 Braskem S.A. NEW NADH-DEPENDENT ENZYMMUTANTS FOR THE CONVERSION OF ACETONE INTO ISOPROPANOL
GB201916756D0 (en) * 2019-11-18 2020-01-01 Imperial College Innovations Ltd Alcohol dehydrogenase
CN111057686B (zh) * 2019-12-23 2021-05-04 浙江大学 一种醇脱氢酶突变体及应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173429A (en) 1990-11-09 1992-12-22 The Board Of Trustees Of The University Of Arkansas Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism
US5593886A (en) 1992-10-30 1997-01-14 Gaddy; James L. Clostridium stain which produces acetic acid from waste gases
US20020064847A1 (en) * 1996-10-22 2002-05-30 Daicel Chemical Industries, Ltd. Novel secondary alcohol dehydrogenase, process for preparing said enzyme, and process for preparing alcohols and ketones using said enzyme
UA72220C2 (uk) 1998-09-08 2005-02-15 Байоенджініерінг Рісорсиз, Інк. Незмішувана з водою суміш розчинник/співрозчинник для екстрагування оцтової кислоти, спосіб одержання оцтової кислоти (варіанти), спосіб анаеробного мікробного бродіння для одержання оцтової кислоти (варіанти), модифікований розчинник та спосіб його одержання
DE60121335T2 (de) 2000-07-25 2007-08-02 Emmaus Foundation, Inc., Fayetteville Verfahren zur steigerung der ethanolproduktion bei der mikrobiellen fermentation
US7794994B2 (en) * 2001-11-09 2010-09-14 Kemeta, Llc Enzyme-based system and sensor for measuring acetone
AU2003256152A1 (en) * 2002-08-01 2004-02-23 Nederlands Instituut Voor Zuivelonderzoek Substrate conversion
US7704723B2 (en) 2006-08-31 2010-04-27 The Board Of Regents For Oklahoma State University Isolation and characterization of novel clostridial species
WO2008035187A2 (en) * 2006-09-21 2008-03-27 Dow Global Technologies Inc. Alcohol dehydrogenase from agromyces sp. and a method of producing a chiral secondary alcohol using same
KR101375029B1 (ko) 2007-11-13 2014-03-14 란자테크 뉴질랜드 리미티드 신규 세균 및 이의 이용 방법
US8455239B2 (en) 2007-12-23 2013-06-04 Gevo, Inc. Yeast organism producing isobutanol at a high yield
EP2346992A4 (en) * 2008-09-26 2012-06-06 Kesen Ma THERMOSTABLE ALCOHOL DEHYDROGENASE FROM THERMOCOCCUS GUAYMASENSIS
US8039239B2 (en) * 2008-12-16 2011-10-18 Coskata, Inc. Recombinant microorganisms having modified production of alcohols and acids
US20110250629A1 (en) * 2009-12-23 2011-10-13 Lanza Tech New Zealand Limited Alcohol production process
US8143037B2 (en) 2010-03-19 2012-03-27 Coskata, Inc. Ethanologenic Clostridium species, Clostridium coskatii
CA2802015C (en) * 2010-06-09 2018-01-16 Coskata, Inc. Cloning and expression of the genes encoding key clostridial catalyzing mechanisms for syngas to ethanol production and functional characterization thereof
US20110236941A1 (en) 2010-10-22 2011-09-29 Lanzatech New Zealand Limited Recombinant microorganism and methods of production thereof
US9365868B2 (en) 2011-02-25 2016-06-14 Lanzatech New Zealand Limited Fermentation process for producing isopropanol using a recombinant microorganism
CN108486169B (zh) 2011-02-25 2022-08-12 朗泽科技新西兰有限公司 重组微生物及其用途

Also Published As

Publication number Publication date
CN104619834A (zh) 2015-05-13
TWI659104B (zh) 2019-05-11
JP6407141B2 (ja) 2018-10-17
EP2834351A1 (en) 2015-02-11
EP2834351B1 (en) 2019-03-27
NZ700609A (en) 2016-07-29
US20130267006A1 (en) 2013-10-10
EP2834351A4 (en) 2016-01-13
JP2015512646A (ja) 2015-04-30
KR102079274B1 (ko) 2020-02-20
WO2013152236A1 (en) 2013-10-10
KR20150005951A (ko) 2015-01-15
US9550979B2 (en) 2017-01-24
CN104619834B (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
AU2012221176B2 (en) Recombinant microorganisms and uses therefor
JP6445970B2 (ja) 組換え微生物およびその使用
AU2011318676B2 (en) Production of butanol from carbon monoxide by a recombinant microorganism
CA2914003C (en) Recombinant microorganisms exhibiting increased flux through a fermentation pathway
TWI659104B (zh) 酶-改變之代謝物活性
TW201723170A (zh) 用於改良氣體醱酵產乙酸菌之效率的精胺酸增補
US10179907B2 (en) Gene modification in clostridium for increased alcohol production
TW201816109A (zh) 包括產能醱酵路徑之經基因工程改造之細菌