TW201339151A - 發光元件、發光裝置、電子裝置、照明裝置及有機化合物 - Google Patents

發光元件、發光裝置、電子裝置、照明裝置及有機化合物 Download PDF

Info

Publication number
TW201339151A
TW201339151A TW101143479A TW101143479A TW201339151A TW 201339151 A TW201339151 A TW 201339151A TW 101143479 A TW101143479 A TW 101143479A TW 101143479 A TW101143479 A TW 101143479A TW 201339151 A TW201339151 A TW 201339151A
Authority
TW
Taiwan
Prior art keywords
light
emitting element
organic compound
emitting
layer
Prior art date
Application number
TW101143479A
Other languages
English (en)
Other versions
TWI570121B (zh
Inventor
Yasushi Kitano
Hiroshi Kadoma
Satoko Shitagaki
Nobuharu Ohsawa
Satoshi Seo
Original Assignee
Semiconductor Energy Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Lab filed Critical Semiconductor Energy Lab
Publication of TW201339151A publication Critical patent/TW201339151A/zh
Application granted granted Critical
Publication of TWI570121B publication Critical patent/TWI570121B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本發明實施態樣提供一種可以用作磷光化合物的主體材料的新穎有機化合物。另外,本發明實施態樣提供一種具有該有機化合物的發光元件。另外,本發明實施態樣提供一種具有該發光元件的發光裝置、電子裝置及照明設備。在包括夾持在一對電極之間的發光層的發光元件中,發光層至少包括有機化合物和磷光化合物,在該有機化合物中,二苯並[f,h]喹噁啉骨架藉由伸芳基與具有兩個取代基的胺基接合該取代基分別是芳基或雜芳基。

Description

發光元件、發光裝置、電子裝置、照明裝置及有機化合物
本發明關於一種發光元件、發光裝置、電子裝置、照明設備及有機化合物。
近年來,對利用電致發光(EL:Electro Luminescence)的發光元件的研究開發日益火熱。在這些發光元件的基本結構中,在一對電極之間夾有包含發光物質的層。藉由對該元件施加電壓,可以獲得來自發光物質的發光。
因為這種發光元件是自發光型發光元件,所以具有如下優點:像素的可見度高於液晶顯示器;不需要背光等。由此,這種發光元件可以被認為適合於平板顯示器元件。此外,這種發光元件的重要優點是可以製造成得薄型且輕量。再者,非常高速的響應也是這種發光元件的特徵之一。
另外,由於這種自發光型的發光元件可以形成為膜狀,所以能夠容易獲得面發光,從而能夠形成利用面發光的大面積元件。這是在以白熾燈和LED為代表的點光源或以螢光燈為代表的線光源中難以得到的特徵,因此作為可以應用於照明等的面光源的利用價值也高。
根據發光物質是有機化合物還是無機化合物,對上述利用電致發光的發光元件進行大致的分類。在使用將有機 化合物用於發光物質且在一對電極之間設置包含該有機化合物的層的有機EL元件時,藉由對發光元件施加電壓,電子和電洞分別從陰極和陽極注入到包含發光有機化合物的層,而使電流流過。並且,所注入的電子及電洞使有機化合物成為激發態,而從所激發的有機化合物得到發光。
由有機化合物形成的激發態可以是單重態激發或三重態激發,來自單重態激發(S)的發光被稱為螢光,而來自三重態激發(T)的發光被稱為磷光。另外,在發光元件中,單重態激發和三重態激發的統計學上的生成比例被認為是S:T=1:3。
在將單重態激發能轉換成發光的化合物(以下稱為螢光化合物)中,在室溫下僅觀察到來自單重態激發的發光(螢光),觀察不到來自三重態激發的發光(磷光)。因此,基於S:T=1:3的關係,使用螢光化合物的發光元件中的內部量子效率(所產生的光子相對於所注入的載流子的比例)的理論上的極限被認為是25%。
另一方面,在將三重態激發能轉換成發光的化合物(以下稱為磷光化合物)中,觀察到來自三重態激發的發光(磷光)。此外,在磷光化合物中,由於容易出現系間穿越(intersystem crossing)(即從單重態激發轉移到三重態激發),因此理論上內部量子效率能夠增加到100%。換句話說,可以得到比螢光化合物高的發射效率。由於該原因,為了實現高效率的發光元件,近年來已在對使用磷光化合物的發光元件進行深入研究開發。
當使用上述磷光化合物形成發光元件的發光層時,為了抑制磷光化合物的濃度驟減或由三重態-三重態湮滅導致的猝滅,通常以使該磷光化合物分散在由其他化合物構成的基體中的實施態樣形成發光層。此時,用作基體的化合物被稱為主體材料,分散在基體中的化合物諸如磷光化合物被稱為客體材料(摻雜物)。
當將磷光化合物用作客體材料時,主體材料所需要的性質是具有比該磷光化合物高的三重態激發能(基態與三重態激發之間的能量差)。另外,還需要容易接收電子和電洞,可傳輸電洞和電子(即雙極性)的性質。
藉由用於主體材料的物質具有雙極性,可以高效地接收電子和電洞,所以將上述主體材料用於發光層的發光元件能夠降低驅動電壓。
另外,由於單重態激發能(基態與單重態激發之間的能量差)高於三重態激發能,所以具有高三重態激發能的物質也具有高單重態激發能。因此,上述具有高三重態激發能的物質還對將螢光化合物用作發光物質的發光元件有效。
作為具有比磷光化合物高的三重態激發能及雙極性的主體材料,公開了如下咔唑衍生物:一種具有雜芳環的咔唑衍生物,其中在同一分子內包括具有電子傳輸性的雜芳環的噁二唑骨架或喹噁啉骨架與具有電洞傳輸性的咔唑骨架(例如專利文獻1)。
[專利文獻1]日本專利申請公開第2010-241801號
如在專利文獻1中所報告,對磷光化合物的主體材料積極地進行研究。但是從發光元件的觀點來看,發光效率、可靠性、發光特性、合成效率或成本等的方面上還有改善的餘地,因此需要研發更優越的發光元件。
鑒於上述問題,本發明的一個實施態樣的目的之一是提供一種可以用作磷光化合物的主體材料的新穎有機化合物。另外,本發明的一個實施態樣的目的之一是提供一種具有該有機化合物的發光元件。
另外,本發明的一個實施態樣的目的之一是提供一種具有上述發光元件的發光裝置、電子裝置及照明設備。
本發明的一個實施態樣是一種包括夾持在一對電極之間的發光層的發光元件,該發光層至少包括有機化合物和磷光化合物,其中,該有機化合物中二苯並[f,h]喹噁啉骨架藉由伸芳基與具有兩個取代基的胺基接合,並且,該取代基分別是芳基或雜芳基。
在上述結構中,較佳的是取代基中的至少一者包括咔唑骨架。另外,二苯並[f,h]喹噁啉骨架較佳為2位取代產物,其中,藉由伸芳基二苯並[f,h]喹噁啉骨架的2位與胺基接合。
藉由伸芳基,電子傳輸性高的二苯並[f,h]喹噁啉骨架和電洞傳輸性高的具有兩個取代基的胺基接合,由此可以成為具有雙極性的有機化合物。藉由成為具有雙極性的有 機化合物,可以高效地接收電子和電洞。另外,該有機化合物也具有高三重態激發能的能階(T1能階)。從而,將上述有機化合物用於發光層的發光元件可以能夠降低驅動電壓。
另外,作為本發明的另一個實施態樣,在包括夾持在一對電極之間的發光層的發光元件中,該發光層至少包括有機化合物和磷光化合物,該有機化合物可以由通式(G1)表示。此外,由通式(G1)表示的有機化合物是有用的新穎化合物,該化合物是本發明的一個實施態樣。
在通式(G1)中,R11至R19分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar1表示取代或未取代的碳數為6至13的伸芳基。另外,Ar2表示取代或未取代的碳數為6至13的芳基。另外,α表示取代或未取代的伸苯基或者取代或未取代的聯苯二基,n表示0或1。此外,A表示取代或未取代的9H-咔唑-9-基或者取代或未取代的9-芳基-9H-咔唑-3-基。
另外,作為本發明的另一個實施態樣,在包括夾持在一對電極之間的發光層的發光元件中,該發光層至少包括 有機化合物和磷光化合物,該有機化合物可以由通式(G2-1)表示。此外,由通式(G2-1)表示的有機化合物是有用的新穎化合物,該化合物是本發明的一個實施態樣。
在通式(G2-1)中,R11至R19及R21至R28分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar1表示取代或未取代的碳數為6至13的伸芳基。另外,Ar2表示取代或未取代的碳數為6至13的芳基。此外,α表示取代或未取代的伸苯基或者取代或未取代的聯苯二基。
另外,作為本發明的另一個實施態樣,在包括夾持在一對電極之間的發光層的發光元件中,該發光層至少包括有機化合物和磷光化合物,該有機化合物可以由通式(G3-1)表示。此外,由通式(G3-1)表示的有機化合物是有用的新穎化合物,該化合物是本發明的一個實施態樣。
在通式(G3-1)中,R11至R19及R31至R37分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar1表示取代或未取代的碳數為6至13的伸芳基。另外,Ar2及Ar3分別表示取代或未取代的碳數為6至13的芳基。另外,α表示取代或未取代的伸苯基或者取代或未取代的聯苯二基,n表示0或1。
另外,在由上述通式(G2-1)及通式(G3-1)表示的有機化合物中,Ar1較佳為取代或未取代的伸苯基或者取代或未取代的聯苯二基。
另外,在由上述通式(G2-1)表示的有機化合物中,α較佳為取代或未取代的對-伸苯基。另外,在由上述通式(G3-1)表示的有機化合物中,較佳的是n是1,並且α是取代或未取代的對-伸苯基。此外,在由上述通式(G2-1)及通式(G3-1)表示的有機化合物中,Ar1較佳為取代或未取代的對-伸苯基。就是說,由通式(G2-1)及通式(G3-1)表示的有機化合物分別可以由通式(G2-2)及通式(G3-2)表示。
從而,作為本發明的另一個實施態樣,在包括夾持在一對電極之間的發光層的發光元件中,該發光層至少包括 有機化合物和磷光化合物,該有機化合物可以由通式(G2-2)表示。此外,由通式(G2-2)表示的有機化合物是有用的新穎化合物,該化合物是本發明的一個實施態樣。
在通式(G2-2)中,R11至R19、R21至R28、R41至R44及R51至R54分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar2表示取代或未取代的碳數為6至13的芳基。
另外,作為本發明的另一個實施態樣,在包括夾持在一對電極之間的發光層的發光元件中,該發光層至少包括有機化合物和磷光化合物,該有機化合物可以由通式(G3-2)表示。此外,由通式(G3-2)表示的有機化合物是有用的新穎化合物,該化合物是本發明的一個實施態樣。
在通式(G3-2)中,R11至R19、R31至R37、R41至R44及R51至R54分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar2及Ar3分別表示取代或未取代的碳數為6至13的芳基。
另外,作為本發明的另一個實施態樣,在包括夾持在一對電極之間的發光層的發光元件中,該發光層至少包括有機化合物和磷光化合物,該有機化合物可以由通式(G3-3)表示。此外,由通式(G3-3)表示的有機化合物是有用的新穎化合物,該化合物是本發明的一個實施態樣。
在通式(G3-3)中,R11至R19、R31至R37及R41至R44分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar2及Ar3分別表示取代或未取代的碳數為6至13的芳基。
另外,使用上述發光元件的發光裝置、電子裝置及照明設備也包括在本發明的範疇內。另外,本說明書中的發光裝置包括影像顯示裝置、發光裝置以及光源。此外,如下模組也都包括在發光裝置中:在面板上安裝有連接器如FPC(Flexible Printed Circuit:撓性印刷電路)或TCP( Tape Carrier Package:帶載封裝)的模組;TCP的端部設置有印刷佈線板的模組;藉由COG(Chip On Glass:玻璃覆晶封裝)實施態樣將IC(積體電路)直接安裝在發光元件中的模組。
本發明的一個實施態樣可以提供一種能夠用作磷光化合物的主體材料的新穎有機化合物。另外,可以提供一種具有該有機化合物的發光元件。另外,本發明的一個實施態樣可以提供一種驅動電壓低且電流效率高的發光元件。本發明的一個實施態樣可以提供一種藉由使用該發光元件減少耗電量的發光裝置、電子裝置及照明設備。
下面,關於本發明的實施方式將參照圖式給予詳細說明。但是,所屬技術領域的普通技術人員可以很容易地理解一個事實,就是本發明不侷限於以下說明,其方式和詳細內容可以被變換為各種各樣的形式而不脫離本發明的宗旨及其範圍。因此,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。
實施態樣1
在本實施態樣中,參照圖1說明在包括夾持在一對電極之間的發光層的發光元件中的該發光層至少包含有機化合物和磷光化合物的結構。
如圖1所示,在本實施態樣所示的發光元件中,在一 對電極(第一電極101與第二電極103)之間夾有包含發光層113的EL層102,EL層102除了發光層113之外,還包括電洞注入層111、電洞傳輸層112、電子傳輸層114、電子注入層115、電荷產生層116等而形成。注意,在本實施態樣中,將第一電極101用作陽極,而將第二電極103用作陰極。另外,第一電極101設置在基板100上,作為基板100可以使用玻璃基板等。
藉由對這種發光元件施加電壓,從第一電極101一側注入的電洞和從第二電極103一側注入的電子在發光層113中重新結合,使磷光化合物處於激發態。然後,當處於激發態的磷光化合物回到基態時發光。像這樣,在本發明的一個實施態樣中,磷光化合物用作發光元件中的發光物質。
另外,發光層113至少包括有機化合物和磷光化合物,該有機化合物是藉由伸芳基二苯並[f,h]喹噁啉骨架和具有兩個取代基的胺基接合的化合物,該取代基分別是芳基或雜芳基。
藉由伸芳基電子傳輸性高的二苯並[f,h]喹噁啉骨架和電洞傳輸性高的具有兩個取代基的胺基接合,由此可以成為具有雙極性的有機化合物。另外,該有機化合物也具有高T1能階,所以可以高效地接收電子和電洞。從而,將上述有機化合物用於發光層113的發光元件可以降低驅動電壓。
另外,EL層102中的電洞注入層111是包含電洞傳 輸性高的物質和受體物質的層,由於受體物質而從電洞傳輸性高的物質抽出電子,由此產生電洞。因此,電洞從電洞注入層111藉由電洞傳輸層112注入到發光層113。
另外,電荷產生層116是包含電洞傳輸層高的物質和受體物質的層。由於受體物質而從電洞傳輸性高的物質抽出電子,因此被抽出的電子從具有電子注入性的電子注入層115藉由電子傳輸層114注入到發光層113。
下面,對製造本實施態樣所示的發光元件時的具體例子進行說明。
作為第一電極101及第二電極103,可以使用金屬、合金、導電化合物及它們的混合物等。明確而言,除了氧化銦-氧化錫(ITO:Indium Tin Oxide)、包含矽或氧化矽的氧化銦-氧化錫、氧化銦-氧化鋅、包含氧化鎢及氧化鋅的氧化銦、金(Au)、鉑(Pt)、鎳(Ni)、鎢(W)、鉻(Cr)、鉬(Mo)、鐵(Fe)、鈷(Co)、銅(Cu)、鈀(Pd)、鈦(Ti)之外,還可以使用屬於元素週期表中第1族或第2族的元素,即鹼金屬諸如鋰(Li)和銫(Cs)等、鹼土金屬諸如鎂(Mg)、鈣(Ca)和鍶(Sr)等、包含它們的合金(MgAg、AlLi)、稀土金屬諸如銪(Eu)和鐿(Yb)等、包含它們的合金及石墨烯等。另外,第一電極101及第二電極103例如可以藉由濺射法或蒸鍍法(包括真空蒸鍍法)等來形成。
作為用於電洞注入層111、電洞傳輸層112及電荷產生層116的電洞傳輸性高的物質,例如可以舉出:4,4’-雙 [N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’,4”-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4’,4”-三(N,N-二苯基胺基)三苯胺(簡稱:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯基胺基]三苯胺(簡稱:MTDATA)、4,4’-雙[N-(螺環-9,9’-聯茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)等芳香胺化合物;3-[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)胺基]-9-苯基咔唑(簡稱:PCzPCN1)等。除了上述以外,還可以使用4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)等的咔唑化合物、4,4’,4”-(1,3,5-苯三基)三(二苯並噻吩)(簡稱:DBT3P-II)等二苯並噻吩化合物、1,3,5-三(二苯並呋喃-4-基)苯(簡稱:DBF3P-II)等二苯並呋喃化合物、9-[3,5-二-(菲-9-基)-苯基]-菲(簡稱:Pn3P)等稠環化合物等。這些物質主要是具有10-6cm2/Vs以上的電洞遷移率的物質。然而,只要是電洞傳輸性高於電子傳輸性的物質,則也可以使用上述材料之外的物質。
另外,本發明的一個實施態樣的有機化合物為具有電洞傳輸性的材料,所以也可以將該有機化合物用於電洞傳 輸層112。
再者,也可以使用聚(N-乙烯咔唑)(簡稱:PVK)、聚(4-乙烯三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。
另外,電洞注入層111及電荷產生層116可以使用含有上述電洞傳輸性高的物質和受體物質的混合層。在此情況下,載流子注入性得到提高,所以是較佳的。作為使用的受體物質,可以舉出過渡金屬氧化物或屬於元素週期表中的第四族至第八族的金屬的氧化物。明確地說,氧化鉬是特別佳的。
發光層113作為用作發光物質的客體材料包含磷光化合物,並且作為主體材料包含其三重激發態能高於該磷光化合物的物質。
在此,作為上述主體材料,可以利用本發明的一個實施態樣的有機化合物。本發明的一個實施態樣的有機化合物是藉由伸芳基來接合二苯並[f,h]喹噁啉骨架與具有兩個取代基的胺基的化合物,該取代基分別是芳基或雜芳基。另外,較佳的是取代基中的至少一者包括咔唑骨架。另外,該二苯並[f,h]喹噁啉骨架較佳為2位取代產物,其中,藉由伸芳基二苯並[f,h]喹噁啉骨架的2位與胺基接合。
換言之,上述有機化合物是由通式(G1)表示的有 機化合物。另外,由通式(G1)表示的有機化合物是本發明的一個實施態樣。
在通式(G1)中,R11至R19分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar1表示取代或未取代的碳數為6至13的伸芳基。另外,Ar2表示取代或未取代的碳數為6至13的芳基。另外,α表示取代或未取代的伸苯基或者取代或未取代的聯苯二基,n表示0或1。此外,A表示取代或未取代的9H-咔唑-9-基或者取代或未取代的9-芳基-9H-咔唑-3-基。
另外,作為由上述通式(G1)表示的有機化合物,明確地說更佳為具有由通式(G2-1)表示的結構。另外,由通式(G2-1)表示的有機化合物是本發明的一個實施態樣。
在通式(G2-1)中,R11至R19及R21至R28分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar1表示取代或未取代的碳數為6至13的伸芳基。另外,Ar2表示取代或未取代的碳數為6至13的芳基。此外,α表示取代或未取代的伸苯基或者取代或未取代的聯苯二基。
另外,作為由上述通式(G1)表示的有機化合物,明確地說更佳為具有由通式(G3-1)表示的結構。另外,由通式(G3-1)表示的有機化合物是本發明的一個實施態樣。
在通式(G3-1)中,R11至R19及R31至R37分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar1表示取代或未取代的碳數為6至13 的伸芳基。另外,Ar2及Ar3分別表示取代或未取代的碳數為6至13的芳基。另外,α表示取代或未取代的伸苯基或者取代或未取代的聯苯二基,n表示0或1。
另外,在由上述通式(G2-1)及通式(G3-1)表示的有機化合物中,Ar1較佳為取代或未取代的伸苯基或者取代或未取代的聯苯二基。
另外,在由上述通式(G2-1)表示的有機化合物中,α較佳為取代或未取代的對-伸苯基。另外,在由上述通式(G3-1)表示的有機化合物中,較佳的是n是1,並且α是取代或未取代的對-伸苯基。此外,在由上述通式(G2-1)及通式(G3-1)表示的有機化合物中,Ar1較佳為取代或未取代的對-伸苯基。就是說,由通式(G2-1)及通式(G3-1)表示的有機化合物分別可以由通式(G2-2)及通式(G3-2)表示。另外,由通式(G2-2)及通式(G3-2)表示的有機化合物是本發明的一個實施態樣。
在通式(G2-2)中,R11至R19、R21至R28、R41至R44及R51至R54分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar2表示取 代或未取代的碳數為6至13的芳基。
在通式(G3-2)中,R11至R19、R31至R37、R41至R44及R51至R54分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar2及Ar3分別表示取代或未取代的碳數為6至13的芳基。
另外,作為由上述通式(G1)及(G3-1)表示的有機化合物,明確地說更佳為具有由通式(G3-3)表示的結構。另外,由通式(G3-3)表示的有機化合物是本發明的一個實施態樣。
在通式(G3-3)中,R11至R19、R31至R37及R41至R44分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。另外,Ar2及Ar3分別表示取代 或未取代的碳數為6至13的芳基。
另外,作為通式(G1)、(G2-1)及(G3-1)中的Ar1的具體結構,例如可以舉出結構式(Ar-1)至結構式(Ar-15)所示的取代基。
另外,作為通式(G1)、(G2-1)、(G3-1)、(G2-2)、(G3-2)及(G3-3)中的Ar2以及通式(G3-1)、(G3-2)及(G3-3)中的Ar3的具體結構,例如可以舉出結構式(Ar-16)至結構式(Ar-29)所示的取代基。
另外,作為通式(G1)、(G2-1)、(G3-1)、(G2-2)、(G3-2)及(G3-3)中的R11至R19以及作為通式(G2-1)及(G2-2)中的R21至R28以及作為通式(G3-1)、(G3-2)及(G3-3)中的R31至R37以及作為通式(G2-2)、(G3-2)及(G3-3)中的R41至R44以及作為通式(G2-2)及(G3-2)中的R51至R54的具體結構,例如可以舉出結構式(R-1)至結構式(R-23)所示的取代基。
另外,作為由上述通式(G1)、(G2-1)、(G3-1)、(G2-2)、(G3-2)及(G3-3)表示的有機化合物的具體結構,例如可以舉出結構式(100)至結構式(157)以及結構式(200)至結構式(235)所示的有機化合物。
另外,作為本發明的一個實施態樣的有機化合物的合成方法可以應用各種反應。例如,藉由進行下面描述的合成反應能夠合成由通式(G1)表示的有機化合物。另外,有機化合物的合成方法不侷限於以下合成方法。
《由通式(G1)表示的有機化合物的合成方法》
首先,以下示出合成方案(A-1)。如合成方案(A-1)所示,藉由鈴木-宮浦(Suzuki-Miyaura)反應使二苯並[f,h]喹噁啉衍生物的鹵化物(化合物1)與胺衍生物的有機硼化合物或胺衍生物的硼酸(化合物2)偶合,可以合成目的化合物的由通式(G1)表示的有機化合物。
另外,在合成方案(A-1)中,R11至R19分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基,R60及R61分別表示氫、碳數為1至6的烷基中的任一個。在合成方案(A-1)中,R60及R61也可以互相接合而形成環。另外,X1表示鹵素或三氟甲磺酸基。另外,Ar1表示取代或未取代的碳數為6至13的伸芳基。另外,Ar2表示取代或未取代的碳數為6至13的芳基。另外,α表示取代或未取代的伸苯基或者取代或未取代的聯苯二基,n表示0或1。此外,A表示取代或未取代 的9H-咔唑-9-基或者取代或未取代的9-芳基-9H-咔唑-3-基。
另外,作為在合成方案(A-1)中可以使用的鈀催化劑,可以舉出醋酸鈀(Ⅱ)、四(三苯基膦)鈀(0)、雙(三苯基膦)鈀(Ⅱ)二氯化物等,但是可以使用的鈀催化劑不侷限於此。
另外,作為在合成方案(A-1)中可以使用的鈀催化劑的配體,可以舉出三(鄰-甲苯基)膦、三苯基膦、三環己基膦等。但是,可以使用的鈀催化劑的配體不侷限於此。
另外,作為在合成方案(A-1)中可以使用的鹼,可以舉出第三丁醇鈉等有機鹼或者碳酸鉀、碳酸鈉等無機鹼等,但是可以使用的鹼不侷限於此。
作為在合成方案(A-1)中可以使用的溶劑,可以舉出如下溶劑:甲苯和水的混合溶劑;甲苯、醇諸如乙醇等和水的混合溶劑;二甲苯和水的混合溶劑;二甲苯、醇諸如乙醇等和水的混合溶劑;苯和水的混合溶劑;苯、醇諸如乙醇等和水的混合溶劑;以及乙二醇二甲醚等醚類和水的混合溶劑等,但是可以使用的溶劑不侷限於此。另外,更佳地使用甲苯和水的混合溶劑;甲苯、乙醇和水的混合溶劑;或者乙二醇二甲醚等醚類和水的混合溶劑。
作為合成方案(A-1)所示的偶聯反應,也可以採用使用有機鋁、有機鋯、有機鋅或有機錫化合物等的交叉偶聯反應代替使用化合物2所示的有機硼化合物或硼酸的鈴 木-宮浦反應。但是,不侷限於這些。
另外,在合成方案(A-1)所示的偶合反應中,也可以藉由鈴木-宮浦反應使二苯並[f,h]喹噁啉衍生物的有機硼化合物或二苯並[f,h]喹噁啉衍生物的硼酸與胺衍生物的鹵化物或三氟甲磺酸酯取代產物偶合。
另外,如以下的合成方案(A-2)所示,藉由在鹼存在下使用金屬催化劑、金屬或金屬化合物使二苯並[f,h]喹噁啉衍生物的鹵化物(化合物3)與胺衍生物(化合物4)偶聯,也可以合成目的物的由通式(G1)表示的有機化合物。
另外,在合成方案(A-2)中,R11至R19分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。此外,X2表示鹵素或三氟甲磺酸基,並且作為鹵素,更佳地使用碘或溴。另外,Ar1表示取代或未取 代的碳數為6至13的伸芳基。另外,Ar2表示取代或未取代的碳數為6至13的芳基。另外,α表示取代或未取代的伸苯基或者取代或未取代的聯苯二基,n表示0或1。此外,A表示取代或未取代的9H-咔唑-9-基或者取代或未取代的9-芳基-9H-咔唑-3-基。
在合成方案(A-2)中進行哈特維希.布赫瓦爾德(Hartwig-Buchwald)反應的情況下,作為可使用的鈀催化劑,可以舉出雙(二亞苄基丙酮)鈀(0)、醋酸鈀(Ⅱ)等,但是可以使用的鈀催化劑不限於此。
另外,作為在合成方案(A-2)中可以使用的鈀催化劑的配體,可以舉出三(第三丁基)膦、三(n-己基)膦、三環己基膦等。但是,可以使用的鈀催化劑的配體不侷限於此。
另外,作為在合成方案(A-2)中可以使用的鹼,可以舉出第三丁醇鈉等有機鹼或者碳酸鉀等無機鹼等,但是可以使用的鹼不侷限於此。
另外,作為在合成方案(A-2)中可以使用的溶劑,可以舉出甲苯、二甲苯、苯、四氫呋喃等,但是可以使用的溶劑不侷限於此。
另外,除了哈特維希.布赫瓦爾德(Hartwig-Buchwald)反應以外,還可以使用烏爾曼(Ullmann)反應等,且不侷限於此。
藉由上述步驟,可以合成本發明的一個實施態樣的有機化合物。
另外,藉由包含上述有機化合物(主體材料)及磷光化合物(客體材料)形成發光層113,可以從發光層113得到發光效率高的磷光發光。
在本實施態樣中,對使用磷光化合物的發光元件進行說明,但是不侷限於此。本發明的一個實施態樣的有機化合物是藉由伸芳基使二苯並[f,h]喹噁啉骨架與具有兩個取代基的胺基接合的化合物,該取代基分別是芳基或雜芳基。另外,本發明的一個實施態樣的有機化合物具有高T1能階,所以該有機化合物也具有高單重態激發能的能階(S1能階)。從而,本發明的一個實施態樣的有機化合物可以用作在可見光區發射螢光的材料的主體材料。
另外,可以使用多種用來使發光物質(客體材料)分散的物質(主體材料)。因此,發光層113除了本發明的一個實施態樣的有機化合物以外,還可以包含第二主體材料(也稱為輔助材料)。另外,本發明的一個實施態樣的有機化合物也可以用作第二主體材料(輔助材料)。
作為第二主體材料,例如可以舉出用於電洞傳輸層112的材料。
電子傳輸層114是包含電子傳輸性高的物質的層。作為電子傳輸層114,可以使用金屬錯合物諸如Alq3、三(4-甲基-8-羥基喹啉)鋁(簡稱:Almq3)、雙(10-羥基苯並[h]-喹啉)鈹(簡稱:BeBq2)、BAlq、Zn(BOX)2、雙[2-(2-羥基苯基)-苯並噻唑]鋅(簡稱:Zn(BTZ)2)等。此外,也可以使用雜芳族化合物諸如2-(4-聯苯基 )-5-(4-第三丁基苯基)-1,3,4-噁二唑(簡稱:PBD)、1,3-雙[5-(對第三丁基苯基)-1,3,4-噁二唑-2-基]苯(簡稱:OXD-7)、3-(4-第三丁基苯基)-4-苯基-5-(4-聯苯基)-1,2,4-三唑(簡稱:TAZ)、3-(4-第三丁基苯基)-4-(4-乙基苯基)-5-(4-聯苯基)-1,2,4-三唑(簡稱:p-EtTAZ)、紅菲繞啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)、4,4’-雙(5-甲基苯並噁唑-2-基)二苯乙烯(簡稱:BzOs)等。另外,也可以使用高分子化合物諸如聚(2,5-吡啶二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-co-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-co-(2,2’-聯吡啶-6,6’-二基)](簡稱:PF-BPy)。在此所述的物質是主要具有10-6cm2/Vs以上的電子遷移率物質。另外,只要是電子傳輸性比電洞傳輸性高的物質,就可以將上述物質之外的物質用作電子傳輸層。
另外,作為電子傳輸層114,不僅可以採用單層,而且可以採用由上述物質構成的層的兩層以上的疊層。此外,本發明的一個實施態樣的有機化合物為具有電子傳輸性的材料,所以將該有機化合物可以用於電子傳輸層114。
電子注入層115是包含電子注入性高的物質的層。作為電子注入層115,可以使用氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2)及鋰氧化物(LiOx)等鹼金屬、鹼土金屬或它們的化合物。此外,可以使用氟化鉺(ErF3)等稀土金屬化合物。另外,也可以使用上述構成電子傳 輸層114的物質。
或者,也可以作為電子注入層115使用將有機化合物與電子給體(施體)混合而成的複合材料。這種複合材料的電子注入性及電子傳輸性高,因為電子給體使得電子產生在有機化合物中。在此情況下,有機化合物較佳是傳輸產生的電子的性能優異的材料。具體地,例如,可以使用如上所述的構成電子傳輸層114的物質(金屬錯合物和雜芳族化合物等)。作為電子給體,只要使用對有機化合物呈現電子給體性的物質即可。具體地,較佳地為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、銫、鎂、鈣、鉺、鐿等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,例如可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。此外,也可以使用氧化鎂等路易士鹼。或者,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。
另外,上述電洞注入層111、電洞傳輸層112、發光層113、電子傳輸層114、電子注入層115和電荷產生層116分別可以藉由蒸鍍法(包括真空蒸鍍法)、噴墨法、塗敷法等的方法形成。
在上述發光元件中,由於在第一電極101和第二電極103之間產生的電位差而產生電流,並且由於在EL層102中電洞和電子重新結合而得到發光。並且,該光穿過第一電極101和第二電極103中的任一者或兩者取出到外部。因此,第一電極101和第二電極103中的任一者或兩者為具有透光性的電極。
如上所說明的發光元件使用磷光化合物得到磷光發光,所以與使用螢光化合物的發光元件相比,可以實現高效率的發光元件。
另外,本實施態樣所示的發光元件是發光元件的結構的一個例子,但是也可以將其他實施態樣所示的其他結構的發光元件應用於作為本發明的一個實施態樣的發光裝置。此外,作為具備上述發光元件的發光裝置,除了被動矩陣型發光裝置和主動矩陣型發光裝置以外還可以製造在其他實施態樣所說明的具備與上述發光元件不同的發光元件的微腔結構的發光裝置等。上述發光裝置都包括在本發明中。
另外,在主動矩陣型發光裝置的情況下,對TFT的結構沒有特別的限制。例如,可以適當地使用交錯型TFT或反交錯型TFT。此外,形成在TFT基板上的驅動用電路可以由N型TFT和P型TFT中的一者或兩者形成。並且,對用於TFT的半導體膜的結晶性也沒有特別的限制。例如,可以使用非晶半導體膜、結晶半導體膜和氧化物半導體膜等。
另外,本實施態樣所示的結構可以與其他實施態樣所示的結構適當地組合而實施。
實施態樣2
在本實施態樣中,參照圖2及圖25說明將磷光化合物、本發明的一個實施態樣的有機化合物及其它兩種以上 的有機化合物用於發光層的發光元件。
本實施態樣所示的發光元件具有如圖2所示那樣的在一對電極(第一電極201與第二電極202)之間包括EL層203的結構。另外,EL層203至少具有發光層204,除此之外,EL層203還可以包括電洞注入層、電洞傳輸層、電子傳輸層、電子注入層、電荷產生層等。此外,作為電洞注入層、電洞傳輸層、電子傳輸層、電子注入層、電荷產生層,可以使用實施態樣1所示的物質。另外,在本實施態樣中,第一電極201用作陽極,第二電極202用作陰極。
本實施態樣所示的發光層204包含磷光化合物205、第一有機化合物206及第二有機化合物207。另外,磷光化合物205是發光層204中的客體材料。此外,第一有機化合物206和第二有機化合物207中的至少一方包含本發明的一個實施態樣的有機化合物,發光層204中的含有率多的一者為發光層204中的主體材料。
在發光層204中,藉由採用將上述客體材料分散到主體材料的結構,可以抑制發光層的晶化。另外,可以抑制由於客體材料的濃度高而導致的濃度驟減而提高發光元件的發光效率。
另外,第一有機化合物206及第二有機化合物207的每一個的三重激發態能的能階(T1能階)較佳的是高於磷光化合物205的T1能階。這是因為如下緣故:如果第一有機化合物206(或第二有機化合物207)的T1能階低 於磷光化合物205的T1能階,則第一有機化合物206(或第二有機化合物207)使有助於發光的磷光化合物205的三重激發態能猝滅(quench),而導致發光效率的降低。
在此,為了提高從主體材料到客體材料的能量轉移效率,較佳的是,考慮到作為分子之間的轉移機制周知的福斯特(Förster)機制(偶極-偶極相互作用)及德克斯特(Dexter)機制(電子交換相互作用),主體材料的發射光譜(在考慮由單重激發態引起的能量轉移的情況下是指螢光光譜,而在考慮由三重激發態引起的能量轉移的情況下是指磷光光譜)與客體材料的吸收光譜(更詳細地說,最長波長(低能量)一側的吸收帶中的光譜)重疊的部分大。但是,在通常的磷光的客體材料的情況下,難以使主體材料的螢光光譜與客體材料的最長波長(低能量)一側的吸收帶中的光譜重疊。這是因為如下緣故:在上述情況下,主體材料的磷光光譜位於比螢光光譜長的波長(低能量)一側,因此主體材料的T1能階低於磷光化合物的T1能階,而導致上述猝滅的問題。另一方面,當為了避免猝滅的問題而將主體材料的T1能階設定為高於磷光化合物的T1能階時,主體材料的螢光光譜漂移到短波長(高能量)一側,因此該螢光光譜不與客體材料的最長波長(低能量)一側的吸收帶中的吸收光譜重疊。因此,通常,難以使主體材料的螢光光譜與客體材料的最長波長(低能量)一側的吸收帶中的吸收光譜重疊並最大限度地提高主體 材料的由單重激發態引起的能量轉移。
於是,在本實施態樣中,第一有機化合物206及第二有機化合物207的組合較佳是形成激基複合物(也稱為“exciplex”)的組合。由此,在發光層204中,作為位於更長波長一側的激基複合物的發射光譜觀察到第一有機化合物206的螢光光譜及第二有機化合物207的螢光光譜。並且,藉由以使激基複合物的發射光譜與客體材料(磷光化合物205)的吸收光譜的重疊的部分大的實施態樣選擇第一有機化合物206和第二有機化合物207,可以最大限度地提高由單重激發態引起的能量轉移(參照圖25)。另外,關於三重激發態,也可以認為發生來自激基複合物的能量轉移,而不發生來自主體材料的能量轉移。另外,圖25示出第一有機化合物206(或者第二有機化合物207)的螢光光譜251、第一有機化合物206(或者第二有機化合物207)的磷光光譜252、磷光化合物205的吸收光譜253、激基複合物的發射光譜254以及位於最長波長一側的吸收帶255。
作為磷光化合物205,例如可以使用磷光銥金屬錯合物等。作為發射藍光的材料可以舉出四(1-吡唑基)硼酸雙[2-(4’,6’-二氟苯基)吡啶-N,C2' ]銥(Ⅲ)(簡稱:FIr6)、吡啶甲酸雙[2-(4’,6’-二氟苯基)吡啶-N,C2' ]銥(Ⅲ)(簡稱:FIrpic)、吡啶甲酸雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶-N,C2' }銥(Ⅲ)(簡稱:Ir(CF3ppy)2(pic))、乙醯丙酮雙[2-(4’,6’-二氟苯基)吡啶-N,C2' ]銥(Ⅲ)(簡稱:FIr(acac))等。 作為發射綠光的材料可以舉出三(2-苯基吡啶-N,C2' )銥(Ⅲ)(簡稱:Ir(ppy)3)、乙醯丙酮雙(2-苯基吡啶-N,C2')銥(Ⅲ)(簡稱:Ir(ppy)2(acac))、乙醯丙酮雙(1,2-二苯基-1H-苯並咪唑)銥(Ⅲ)(簡稱:Ir(pbi)2(acac))、乙醯丙酮雙(苯並[h]喹啉)銥(Ⅲ)(簡稱:Ir(bzq)2(acac))、三(苯並[h]喹啉)銥(Ⅲ)(簡稱:Ir(bzq)3)等。另外,作為發射黃光的材料可以舉出乙醯丙酮雙(2,4-二苯基-1,3-噁唑-N,C2')銥(Ⅲ)(簡稱:Ir(dpo)2(acac))、乙醯丙酮雙[2-(4'-(五氟苯基苯基)吡啶]銥(Ⅲ)(簡稱:Ir(p-PF-ph)2(acac))、乙醯丙酮雙(2-苯基苯並噻唑-N,C2')銥(Ⅲ)(簡稱:Ir(bt)2(acac))、(乙醯丙酮)雙[2,3-雙(4-氟苯基)-5-甲基吡嗪]銥(Ⅲ)(簡稱:Ir(Fdppr-Me)2(acac))、(乙醯丙酮)雙{2-(4-甲氧基苯基)-3,5-二甲苯吡嗪}銥(Ⅲ)(簡稱:Ir(dmmoppr)2(acac))等。作為發射橙色光的材料可以舉出三(2-苯基喹啉-N,C2')銥(Ⅲ)(簡稱:Ir(pq)3)、乙醯丙酮雙(2-苯基喹啉-N,C2')銥(Ⅲ)(簡稱:Ir(pq)2(acac))、(乙醯丙酮)雙(3,5-二甲基-2-苯基吡嗪)銥(Ⅲ)(簡稱:Ir(mppr-Me)2(acac))、(乙醯丙酮)雙(5-異丙基-3-甲基-2-苯基吡嗪)銥(Ⅲ)(簡稱:Ir(mppr-iPr)2(acac))等。作為發射紅光的材料可以舉出有機金屬錯合物,諸如乙醯丙酮雙[2-(2'-苯並[4,5-α]噻吩基)吡啶-N,C3')銥(Ⅲ)(簡稱:Ir(btp)2(acac))、乙醯丙酮雙(1-苯基異喹啉-N,C2')銥(Ⅲ)(簡稱:Ir(piq)2(acac))、(乙醯丙酮)雙[2,3-雙(4-氟苯基)喹噁啉]銥(Ⅲ)(簡稱: Ir(Fdpq)2(acac))、(乙醯丙酮)雙[2,3,5-三苯基吡嗪]銥(Ⅲ)(簡稱:Ir(tppr)2(acac))、(二新戊醯甲烷)雙(2,3,5-三苯基吡嗪)銥(Ⅲ)(簡稱:Ir(tppr)2(dpm))、2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:PtOEP)等。另外,因為藉由例如以下稀土金屬錯合物可以得到由稀土金屬離子發射的光(在不同多重性之間的電子躍遷):三(乙醯丙酮)(單菲繞啉)鋱(Ⅲ)(簡稱:Tb(acac)3(Phen))、三(1,3-二苯基-1,3-丙二酸(propanedionato))(單菲繞啉)銪(Ⅲ)(簡稱:Eu(DBM)3(Phen))、三[1-(2-噻吩甲醯基)-3,3,3-三氟乙酸](單菲繞啉)銪(Ⅲ)(簡稱:Eu(TTA)3(Phen))等,所以這類稀土金屬錯合物可以被用作磷光化合物。另外,作為第一有機化合物206和第二有機化合物207的組合,較佳為組合容易接受電子的化合物(電子俘獲化合物)和容易接受電洞的化合物(電洞俘獲化合物)。另外,本發明的一個實施態樣的有機化合物可以用作容易接受電洞的化合物。
作為容易接受電子的化合物,例如可以舉出2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹噁啉(簡稱:2mDBTPDBq-II)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯並[f,h]喹噁啉(簡稱:2CzPDBq-Ⅲ)、7-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹噁啉(簡稱:7mDBTPDBq-II)和6-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹噁啉(簡稱:6mDBTPDBq-II)。
上述第一有機化合物206和第二有機化合物207是能夠形成激基複合物的組合的一個例子,該激基複合物的發 射光譜與磷光化合物205的吸收光譜重疊,且與磷光化合物205的吸收光譜的峰值相比激基複合物的發射光譜的峰值位於長波長,即可。
另外,當由容易接受電子的化合物和容易接受電洞的化合物構成第一有機化合物206和第二有機化合物207時,可以根據其混合比控制載流子平衡。明確而言,較佳的是第一有機化合物:第二有機化合物=1:9至9:1。
因為本實施態樣所示的發光元件能夠由於利用激基複合物的發射光譜與磷光化合物的吸收光譜的重疊的能量轉移而提高能量轉移效率,所以可以實現外部量子效率高的發光元件。
另外,作為包括在本發明中的其他結構,也可以採用如下結構:作為磷光化合物205(客體材料)以外的其他兩種有機化合物使用電洞俘獲性主體分子及電子俘獲性主體分子來形成發光層204,以得到將電洞和電子導入存在於兩種主體分子中的客體分子而使客體分子成為激發態的現象(即,Guest Coupled with Complementary Hosts:GCCH,客體與互補主體的偶合)。
此時,作為電洞俘獲性主體分子及電子俘獲性主體分子,分別可以使用上述容易接受電洞的化合物及容易接受電子的化合物。
另外,本實施態樣所示的發光元件是發光元件的結構的一個例子,但是也可以將其他實施態樣所示的其他結構的發光元件應用於作為本發明的一個實施態樣的發光裝置 。此外,作為具備上述發光元件的發光裝置,除了被動矩陣型發光裝置和主動矩陣型發光裝置以外還可以製造在其他實施態樣所說明的具備與上述發光元件不同的發光元件的微腔結構的發光裝置等。上述發光裝置都包括在本發明中。
另外,在主動矩陣型發光裝置的情況下,對TFT的結構沒有特別的限制。例如,可以適當地使用交錯型TFT或反交錯型TFT。此外,形成在TFT基板上的驅動用電路可以由N型TFT和P型TFT中的一者或兩者形成。並且,對用於TFT的半導體膜的結晶性也沒有特別的限制。例如,可以使用非晶半導體膜、結晶半導體膜、氧化物半導體膜等。
另外,本實施態樣所示的結構可以與其他實施態樣所示的結構適當地組合而實施。
實施態樣3
在本實施態樣中,作為本發明的一個實施態樣,說明隔著電荷產生層具有多個EL層的結構的發光元件(以下,稱為串聯型發光元件)。
本實施態樣所示的發光元件是如圖3A所示那樣的串聯型發光元件,其中在一對電極(第一電極301與第二電極304)之間具有多個EL層(第一EL層302(1)、第二EL層302(2))。
在本實施態樣中,第一電極301是用作陽極的電極, 第二電極304是用作陰極的電極。另外,第一電極301及第二電極304可以採用與實施態樣1相同的結構。此外,雖然多個EL層(第一EL層302(1)和第二EL層302(2))都可以具有與實施態樣1或實施態樣2所示的EL層相同的結構,但是多個EL層中的任一個也可以具有與實施態樣1或實施態樣2所示的結構相同的結構。換言之,第一EL層302(1)和第二EL層302(2)既可以具有相同結構又可以具有不同的結構,並且作為其結構可以使用與實施態樣1或實施態樣2相同的結構。
另外,在多個EL層(第一EL層302(1)和第二EL層302(2))之間設置有電荷產生層305。電荷產生層305具有如下功能:當對第一電極301和第二電極304施加電壓時,將電子注入到一方的EL層中,且將電洞注入到另一方的EL層中。在本實施態樣中,當以第一電極301的電位高於第二電極304的電位的實施態樣施加電壓時,電子從電荷產生層305注入到第一EL層302(1)中,且電洞注入到第二EL層302(2)中。
另外,考慮到光提取效率,較佳的是使電荷產生層305具有透射可見光的性質(明確而言,電荷產生層305的可見光透射率為40%以上)。另外,即使電荷產生層305的導電率低於第一電極301或第二電極304的導電率,電荷產生層305也發揮其作用。
電荷產生層305既可以具有電洞傳輸性高的有機化合物添加有電子受體(受體)的結構又可以具有電子傳輸性 高的有機化合物添加有電子給體(施體)的結構。或者,也可以層疊有這兩種結構。
在採用電洞傳輸性高的有機化合物添加有電子受體的結構的情況下,作為電洞傳輸性高的有機化合物,例如可以使用芳族胺化合物等諸如NPB、TPD、TDATA、MTDATA或4,4’-雙[N-(螺環-9,9’-聯茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)等。在此所述的物質是主要具有10-6cm2/Vs以上的電洞遷移率的物質。但是,只要是電洞傳輸性比電子傳輸性高的有機化合物,就可以使用上述物質之外的物質。
另外,作為電子受體,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟喹啉並二甲烷(簡稱:F4-TCNQ)、氯醌等。另外,還可以舉出過渡金屬氧化物。另外,可以舉出屬於元素週期表中第4族至第8族的金屬的氧化物。明確而言,較佳為使用氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳和氧化錸,這是因為它們具有高電子接受性。尤其,較佳為使用氧化鉬,因為氧化鉬在大氣中穩定且其吸濕性低,所以容易進行處理。
另一方面,在採用電子傳輸性高的有機化合物添加有電子給體的結構的情況下,作為電子傳輸性高的有機化合物,例如可以使用具有喹啉骨架或苯並喹啉骨架的金屬錯合物等諸如Alq、Almq3、BeBq2、BAlq等。此外,除此之外,還可以使用具有噁唑基配體或噻唑基配體的金屬錯合物等諸如Zn(BOX)2或Zn(BTZ)2等。再者,除了 金屬錯合物之外,還可以使用PBD、OXD-7、TAZ、BPhen、BCP等。在此所述的物質是主要具有10-6cm2/Vs以上的電子遷移率的物質。另外,可以使用包含嘧啶骨架的有機化合物。另外,只要是電子傳輸性比電洞傳輸性高的有機化合物,就可以使用上述物質之外的物質。
另外,作為電子給體,可以使用鹼金屬、鹼土金屬、稀土金屬、屬於元素週期表中第2、第13族的金屬及它們的氧化物和碳酸鹽。明確而言,較佳為使用鋰(Li)、銫(Cs)、鎂(Mg)、鈣(Ca)、鐿(Yb)、銦(In)、氧化鋰、碳酸銫等。此外,也可以將如四硫萘並萘(tetrathianaphthacene)那樣的有機化合物用作電子給體。
另外,藉由使用上述材料形成電荷產生層305,可以抑制層疊EL層時驅動電壓增大。
雖然在圖3A所示的發光元件中說明具有兩個EL層的發光元件,但是如圖3B所示那樣,本發明的一個實施態樣也可以同樣地應用於層疊有n個(注意,n是3以上)EL層的發光元件。如根據本實施態樣的發光元件的那樣,當在一對電極之間具有多個EL層時,藉由將電荷產生層配置在EL層與EL層之間,可以在保持低電流密度的同時實現高亮度區域中的發光。因為可以保持低電流密度,所以可以實現長壽命元件。另外,當作為應用例子採用照明時,因為可以減少由於電極材料的電阻導致的電壓下降,所以可以實現大面積的均勻發光。此外,可以實現能夠進行低電壓驅動且耗電量低的發光裝置。
此外,藉由使各EL層發射互不相同顏色的光,可以使發光元件整體發射所需顏色的光。例如,在具有兩個EL層的發光元件中,藉由使第一EL層的發光顏色和第二EL層的發光顏色處於補色關係,可以使發光元件整體發射白色光。注意,“補色”是指當顏色混合時得到非彩色的顏色關係。也就是說,藉由將從發射處於補色關係的顏色的光的物質得到的光混合,可以得到白色發光。
另外,具有三個EL層的發光元件的情況也與此同樣,例如,當第一EL層的發光顏色是紅色,第二EL層的發光顏色是綠色且第三EL層的發光顏色是藍色時,可以使發光元件整體發射白色光。
注意,本實施態樣所示的結構可以與其他實施態樣所示的結構適當地組合而實施。
實施態樣4
在本實施態樣中,參照圖4說明使用將磷光化合物和本發明的一個實施態樣的有機化合物包含於發光層的發光元件的發光裝置。
本實施態樣所示的發光裝置具有利用一對電極之間的光的共振效應的光學微諧振腔(micro optical resonator)(微腔)結構,如圖4所示具有多個發光元件,該發光元件包括在一對電極(反射電極451與半透射.半反射電極452)之間至少具有EL層455的結構。另外,EL層455至少具有用作發光區的第一發光層454R、第二發光層 454G及第三發光層454B,除此之外,EL層455還可以具有電洞注入層、電洞傳輸層、電子傳輸層、電子注入層、電荷產生層等。此外,第一發光層454R、第二發光層454G及第三發光層454B中的至少一個包含磷光化合物和本發明的一個實施態樣的有機化合物。
在本實施態樣中,說明如圖4所示的那樣包括結構不同的發光元件(第一發光元件450R、第二發光元件450G和第三發光元件450B)的發光裝置。
第一發光元件450R具有在反射電極451上依次層疊有如下層的結構:第一透明導電層453a;EL層455;以及半透射.半反射電極452。另外,第二發光元件450G具有在反射電極451上依次層疊有第二透明導電層453b、EL層455以及半透射.半反射電極452的結構。另外,第三發光元件450B具有在反射電極451上依次層疊有EL層455及半透射.半反射電極452的結構。
另外,上述發光元件(第一發光元件450R、第二發光元件450G及第三發光元件450B)都具有反射電極451、EL層455以及半透射.半反射電極452。
另外,EL層455包括第一發光層454R、第二發光層454G、第三發光層454B。此外,在第一發光層454R中發射在600nm以上且760nm以下的波長區域中具有峰值的光(λR),在第二發光層454G中發射在500nm以上且550nm以下的波長區域中具有峰值的光(λG),而在第三發光層454B中發射在420nm以上且480nm以下的波長區 域中具有峰值的光(λB)。由此,可以使任何發光元件(第一發光元件450R、第二發光元件450G及第三發光元件450B)都發射使來自第一發光層454R、第二發光層454G及第三發光層454B的發光重疊而成的光,即及於可見光區的寬(broad)的光。注意,根據上述記載,波長的長度滿足λBGR的關係。
本實施態樣所示的各發光元件分別具有在反射電極451與半透射.半反射電極452之間夾有EL層455的結構,並且從包括在EL層455中的各發光層向全方向射出的光由具有光學微共振器(微腔)的功能的反射電極451和半透射.半反射電極452發生共振。另外,反射電極451使用具有反射性的導電材料形成,該膜的可見光反射率為40%至100%,較佳為70%至100%,並且該膜的電阻率為1×10-2Ωcm以下。另外,半透射.半反射電極452使用具有反射性的導電材料和具有透光性的導電材料形成,該膜的可見光反射率為20%至80%,較佳為40%至70%,並且該膜的電阻率為1×10-2Ωcm以下。
另外,在本實施態樣中,藉由使分別設置在第一發光元件450R和第二發光元件450G中的透明導電層(第一透明導電層453a、第二透明導電層453b)的厚度彼此不同,使每個發光元件的反射電極451與半透射.半反射電極452之間的光程彼此不同。換言之,關於從各發光元件的各發光層發射的寬的光,在反射電極451與半透射.半反射電極452之間發生共振的光增強,而不發生共振的光 衰減,所以藉由使每個元件的反射電極451與半透射.半反射電極452之間的光程彼此不同,可以取出不同波長的光。
另外,光程(也稱為光徑長)是指實際上的距離乘以折射率而求得的值,在本實施態樣中其是指實際上的膜厚度乘以n(折射率)而求得的值。換言之,“光程=實際上的膜厚度×n”。
另外,在第一發光元件450R中從反射電極451到半透射.半反射電極452的光程為mλR/2(注意,m是1以上的自然數),在第二發光元件450G中從反射電極451到半透射.半反射電極452的光程為mλG/2(注意,m是1以上的自然數),並且在第三發光元件450B中從反射電極451到半透射.半反射電極452的光程為mλB/2(注意,m是1以上的自然數)。
藉由採用上述結構,從第一發光元件450R主要取出在包括於EL層455中的第一發光層454R中發射的光(λR),從第二發光元件450G主要取出在包括於EL層455中的第二發光層454G中發射的光(λG),並且從第三發光元件450B主要取出在包括於EL層455中的第三發光層454B中發射的光(λB)。另外,從各發光元件取出的光分別從半透射.半反射電極452一側射出。
另外,在上述結構中,嚴格而言,可以從反射電極451到半透射.半反射電極452的光程是指從反射電極451中的反射區域到半透射.半反射電極452中的反射區域的 距離。但是,難以嚴格地決定反射電極451或半透射.半反射電極452中的反射區域的位置,所以藉由假定反射電極451和半透射.半反射電極452中的任意的位置為反射區域來可以充分地獲得上述效果。
另外,在第一發光元件450R中,因為來自第一發光層454R的發光中的由反射電極451反射而回來的光(第一反射光)與從第一發光層454R直接入射到半透射半反射電極452的光(第一入射光)發生干擾,所以藉由將反射電極451與第一發光層454R的光程調節為(2nR-1)λR/4(注意,nR是1以上的自然數)。藉由調節光程,可以使第一反射光與第一入射光的相位一致,從而可以放大來自第一發光層454R的發光。
另外,嚴格而言,可以反射電極451與第一發光層454R之間的光程是指反射電極451中的反射區域與第一發光層454R中的發光區域之間的光程。但是,難以嚴格地決定反射電極451中的反射區域或第一發光層454R中的發光區域的位置,所以藉由將反射電極451中的任意的位置假定為反射區域並將第一發光層454R中的任意的位置假定為發光區域,來可以充分地獲得上述效果。
另外,在第二發光元件450G中,因為來自第二發光層454G的發光中的由反射電極451反射而回來的光(第二反射光)與從第二發光層454G直接入射到半透射半反射電極452的光(第二入射光)發生干擾,所以藉由將反射電極451與第二發光層454G的光程調節為(2nG-1) λG/4(注意,nG是1以上的自然數)。藉由調節光程,可以使第二反射光與第二入射光的相位一致,從而可以放大來自第二發光層454G的發光。
另外,嚴格而言,反射電極451與第二發光層454G之間的光程是指反射電極451中的反射區域與第二發光層454G中的發光區域之間的光程。但是,難以嚴格地決定反射電極451中的反射區域或第二發光層454G中的發光區域的位置,所以藉由將反射電極451中的任意的位置假定為反射區域並第二發光層454G中的任意的位置假定為發光區域,來可以充分地獲得上述效果。
另外,在第三發光元件450B中,因為來自第三發光層454B的發光中的由反射電極451反射而回來的光(第三反射光)與從第三發光層454B直接入射到半透射半反射電極452的光(第三入射光)發生干擾,所以藉由將反射電極451與第三發光層454B的光程調節為(2nB-1)λB/4(注意,nB是1以上的自然數)。藉由調節光程,可以使第三反射光與第三入射光的相位一致,從而可以放大來自第三發光層454B的發光。
另外,嚴格而言,可以反射電極451與第三發光層454B之間的光程是指反射電極451中的反射區域與第三發光層454B中的發光區域之間的光程。但是,難以嚴格地決定反射電極451中的反射區域或第三發光層454B中的發光區域的位置,所以藉由將反射電極451中的任意的位置假定為反射區域並將第三發光層454B中的任意的位 置假定為發光區域,來可以充分地獲得上述效果。
另外,在上述結構中,示出每個發光元件在EL層中都具有包括多個發光層的結構,但是本發明不侷限於此。例如,也可以採用如下結構:將上述結構與實施態樣3所說明的串聯型(疊層型)發光元件組合,在一個發光元件中隔著電荷產生層設置多個EL層,且在各EL層中形成一個或多個發光層。
本實施態樣所示的發光裝置具有微腔結構,即使具有相同的EL層,也能夠提取根據發光元件不同的波長的光,因此不需要RGB的分別塗敷。因此,由於容易實現高精細化等,有利於實現全彩色化。另外,因為能夠加強特定波長的正面方向的發光強度,所以可以實現低耗電量化。該結構是當將其應用於使用三種顏色以上的像素的彩色顯示器(影像顯示裝置)時特別有效的,但是也可以將其用於照明等的用途。
另外,本實施態樣所示的結構可以與其他實施態樣所示的結構適當地組合而實施。
實施態樣5
在本實施態樣中,參照圖5A和5B說明具有將磷光化合物和本發明的一個實施態樣的有機化合物用於發光元件的發光裝置。
另外,使用本發明的一個實施態樣的發光元件的發光裝置既可以是被動矩陣型發光裝置,又可以是主動矩陣型 發光裝置。此外,可以將其他實施態樣所示的發光元件應用於本實施態樣所示的發光裝置。
在本實施態樣中,參照圖5A和5B對作為使用本發明的一個實施態樣的發光元件的發光裝置的主動矩陣型發光裝置進行說明。
圖5A是示出發光裝置的俯視圖,圖5B相當於沿圖5A中所示的虛線A-A’切割的剖面圖。根據本實施態樣的主動矩陣型發光裝置具有設置在元件基板501上的像素部502、驅動電路部(源極線驅動電路)503以及驅動電路部(閘極線驅動電路)504。像素部502、驅動電路部503及驅動電路部504被密封材料505密封在元件基板501與密封基板506之間。
此外,在元件基板501上設置用來連接對驅動電路部503及驅動電路部504傳達來自外部的信號(例如,視頻信號、時脈信號、起始信號或重設信號等)或電位的外部輸入端子的引導佈線507。在此,示出作為外部輸入端子設置FPC(軟性印刷電路)508的例子。另外,雖然在此只表示FPC508,但是該FPC508也可以安裝有印刷線路板(PWB)。本說明書中的發光裝置不僅包括發光裝置本體,而且還包括安裝有FPC或PWB的發光裝置。
接著,參照圖5B說明剖面結構。在元件基板501上形成有驅動電路部及像素部,但是在此示出作為源極線驅動電路的驅動電路部503及像素部502。
驅動電路部503示出形成有將n通道型TFT509和p 通道型TFT510組合而成的CMOS電路的例子。另外,形成驅動電路部的電路也可以使用各種CMOS電路、PMOS電路或NMOS電路形成。此外,在本實施態樣中,雖然示出將驅動電路形成在基板上的驅動器一體型,但是不一定需要如此,也可以將驅動電路形成在外部而不形成在基板上。
此外,像素部502包括多個像素,該像素包括開關用TFT511、電流控制用TFT512及與電流控制用TFT512的佈線(源極電極或汲極電極)電連接的第一電極513。另外,以覆蓋第一電極513的端部的實施態樣形成有絕緣物514。在此,使用正型的光敏丙烯酸樹脂形成絕緣物514。另外,在本實施態樣中,第一電極513用作陽極,第二電極516用作陰極。
另外,為了提高層疊在絕緣物514上的膜的覆蓋率,較佳的是在絕緣物514的上端部或下端部形成具有曲率的曲面。例如,在作為絕緣物514的材料使用正型的光敏丙烯酸樹脂的情況下,較佳為使絕緣物514的上端部具備具有曲率半徑(0.2μm至3μm)的曲面。此外,作為絕緣物514,可以使用負性感光性樹脂和正性感光性樹脂的兩者,可以使用有機化合物、無機化合物諸如氧化矽、氧氮化矽等。
在第一電極513上層疊形成有EL層515及第二電極516。在EL層515中至少設置有發光層,在發光層中包含有磷光化合物和本發明的一個實施態樣的有機化合物。 另外,在EL層515中,除了發光層之外,可以適當地設置電洞注入層、電洞傳輸層、電子傳輸層、電子注入層、電荷產生層等。
另外,發光元件517具有第一電極513、EL層515及第二電極516的疊層結構。作為用於第一電極513、EL層515及第二電極516的材料,可以使用實施態樣1所示的材料。此外,雖然在此未圖示,但是第二電極516與作為外部輸入端子的FPC508電連接。
此外,雖然在圖5B所示的剖面圖中僅示出一個發光元件517,但是,在像素部502中以矩陣形狀配置有多個發光元件。在像素部502中分別選擇性地形成能夠得到三種(R、G、B)發光的發光元件,而可以形成能夠進行全彩色顯示的發光裝置。此外,也可以藉由與濾色片組合來實現能夠進行全彩色顯示的發光裝置。
再者,藉由利用密封材料505將密封基板506與元件基板501貼合在一起,得到在由元件基板501、密封基板506及密封材料505圍繞的空間518中具備發光元件517的結構。另外,除了空間518填充有惰性氣體(氮、氬等)的結構以外,還包括空間518填充有密封材料505的結構。
另外,作為密封材料505,較佳為使用環氧類樹脂。另外,這些材料較佳是儘量不透過水分、氧的材料。此外,作為密封基板506,除了玻璃基板、石英基板之外,還可以使用由FRP(Fiberglass-Reinforced Plastics:玻璃纖 維強化塑膠)、PVF(聚氟乙烯)、聚酯或丙烯酸樹脂等構成的塑膠基板。
藉由上述步驟,可以得到利用磷光發光的主動矩陣型發光裝置。
另外,本實施態樣所示的結構可以與其他實施態樣所示的結構適當地組合而實施。
實施態樣6
在本實施態樣中,說明一種電子裝置,該電子裝置包括上述實施態樣所示的本發明的一個實施態樣的發光裝置。作為這種電子裝置,可以舉出影像拍攝裝置如攝像機及數位相機等、護目鏡型顯示器、導航系統、音頻再生裝置(車載音響、身歷聲組合音響等)、電腦、遊戲機、可攜式資訊終端(可攜式電腦、行動電話、智慧手機、可攜式遊戲機、電子書閱讀器或平板終端等)、具有儲存介質的影像再現裝置(具體為再現數位影音光碟(DVD)等儲存介質且具有可以顯示其影像的顯示裝置的裝置)等。參照圖6A至7B對上述電子裝置的具體例子進行說明。
圖6A是本發明的一個實施態樣的電視機,該電視機包括外殼611、支撐台612、顯示部613、揚聲器部614、視頻輸入端子615等。在該電視機中,顯示部613可以應用本發明的一個實施態樣的發光裝置。因為本發明的一個實施態樣的發光裝置可以實現低驅動電壓且高電流效率,所以藉由應用本發明的一個實施態樣的發光裝置,可以獲 得低耗電量的電視機。
圖6B是本發明的一個實施態樣的電腦,該電腦包括主體621、外殼622、顯示部623、鍵盤624、外部連接埠625、指點裝置626等。在該電腦中,顯示部623可以應用本發明的一個實施態樣的發光裝置。因為本發明的一個實施態樣的發光裝置可以實現低驅動電壓且高電流效率,所以藉由應用本發明的一個實施態樣的發光裝置,可以獲得低耗電量的電腦。
圖6C是本發明的一個實施態樣的行動電話,該行動電話包括主體631、外殼632、顯示部633、聲音輸入部634、聲音輸出部635、操作鍵636、外部連接埠637、天線638等。在該行動電話中,顯示部633可以應用本發明的一個實施態樣的發光裝置。因為本發明的一個實施態樣的發光裝置可以實現低驅動電壓且高電流效率,所以藉由應用本發明的一個實施態樣的發光裝置,可以獲得低耗電量的行動電話。
圖6D是本發明的一個實施態樣的攝像機,該攝像機包括主體641、顯示部642、外殼643、外部連接埠644、遙控接收部645、影像接收部646、電池647、聲音輸入部648、操作鍵649、取景部650等。在該攝像機中,顯示部642可以應用本發明的一個實施態樣的發光裝置。因為本發明的一個實施態樣的發光裝置可以驅動電壓低地得到高電流效率,所以藉由應用本發明的一個實施態樣的發光裝置,可以獲得低耗電量的攝像機。
圖7A-1至A-3和7B是根據本發明的一個實施態樣的平板終端的一個例子,圖7A-1、圖7A-2及圖7A-3示出平板電腦5000(tablet personal computer),圖7B示出平板電腦6000。
在圖7A-1、圖7A-2及圖7A-3所示的平板電腦5000中,圖7A-1示出正視圖,圖7A-2示出側面圖,圖7A-3示出後視圖。另外,在圖7B所示的平板電腦6000中,圖7B示出正視圖。
平板電腦5000包括:外殼5001;顯示部5003;電源按鈕5005;正面相機5007;背面相機5009;第一外部連接端子5011;以及第二外部連接端子5013等。
另外,顯示部5003被安裝在外殼5001中,也可以用作觸摸屏。例如,可以在顯示部5003上顯示圖示5015以管理電子郵件、日程。另外,在外殼5001的正面一側組裝有正面相機5007,利用該正面相機5007可以拍攝使用者一側的影像。另外,在外殼5001的背面一側組裝有背面相機5009,利用該背面相機5009可以拍攝與使用者相反一側的影像。另外,外殼5001具備第一外部連接端子5011及第二外部連接端子5013,例如,可以藉由第一外部連接端子5011將聲音輸出到耳機等,藉由第二外部連接端子5013進行資料的移動等。
另外,圖7B所示的平板電腦6000包括:第一外殼6001;第二外殼6003;鉸鏈部6005;第一顯示部6007;第二顯示部6009;電源按鈕6011;第一相機6013;第二 相機6015等。
另外,第一顯示部6007被安裝在第一外殼6001中,第二顯示部6009被安裝在第二外殼6003中。第一顯示部6007及第二顯示部6009,例如可以將第一顯示部6007用作顯示用面板,將第二顯示部6009用作觸摸屏。藉由邊看第一顯示部6007所顯示的文字圖示6017邊利用第二顯示部6009所顯示的圖示6019或鍵盤6021(第二顯示部6009所顯示的鍵盤影像),可以進行影像的選擇或文字的輸入等。當然還可以採用如下結構:將第一顯示部6007用作觸摸屏,將第二顯示部6009用作顯示用面板;將第一顯示部6007及第二顯示部6009都用作觸摸屏。
另外,第一外殼6001及第二外殼6003由鉸鏈部6005相連接而可以進行開閉動作。藉由採用上述結構,當攜帶平板電腦6000時第一外殼6001中組裝的第一顯示部6007與第二外殼6003中組裝的第二顯示部6009合在一起,由此可以保護第一顯示部6007和第二顯示部6009的表面(例如塑膠基板等),所以是較佳的。
另外,作為第一外殼6001及第二外殼6003可以採用由鉸鏈部6005分離的結構(所謂可轉換型)。藉由採用上述結構,例如,如在縱向放置第一外殼6001且橫向放置第二外殼6003的狀態下使用平板電腦那樣的使用範圍擴大,所以是較佳的。
另外,使用第一相機6013及第二相機6015可以進行3D影像的拍攝。
另外,作為平板電腦5000及平板電腦6000也可以採用能夠進行無線資訊收發的結構。例如,還可以採用如下結構:藉由進行無線上網,購買所希望的資訊並下載。
此外,平板電腦5000及平板電腦6000還可以具有如下功能:顯示各種各樣的資訊(靜態影像、動態影像、文字影像等);將日曆、日期或時刻等顯示在顯示部上;對顯示部上顯示的資訊進行操作或編輯的觸摸輸入;藉由各種各樣的軟體(程式)控制處理等。此外,也可以內置檢測裝置諸如根據外光的光量可以將顯示的亮度設定為最適合的亮度的光感測器、陀螺儀和加速度感測器等檢測傾斜度的感測器。
在平板電腦5000的顯示部5003和平板電腦6000的第一顯示部6007或/及第二顯示部6009中,可以應用本發明的一個實施態樣的發光裝置。因為本發明的一個實施態樣的發光裝置可以實現低驅動電壓且高電流效率,所以藉由應用本發明的一個實施態樣的發光裝置,可以獲得低耗電量的平板終端。
如上所述,本發明的一個實施態樣的發光裝置的應用範圍非常廣泛,並且可以將該發光裝置用於各種領域的電子裝置。藉由使用本發明的一個實施態樣的發光裝置,可以獲得減少了耗電量的電子裝置。
此外,也可以將本發明的一個實施態樣的發光裝置用作照明設備。參照圖8A至8C對照明設備的具體例子進行說明。
圖8A是將本發明的一個實施態樣的發光裝置用作背光的液晶顯示裝置的一個例子。圖8A所示的液晶顯示裝置包括外殼701、液晶層702、背光703以及外殼704,該液晶層702與驅動器IC705連接。此外,作為背光703使用本發明的一個實施態樣的發光裝置,藉由端子706向背光703供應電流。如上所述,藉由將本發明的一個實施態樣的發光裝置用作液晶顯示裝置的背光,可以獲得耗電量低的背光。另外,本發明的一個實施態樣的發光裝置是面發光的照明設備,由此也可以實現大面積化,所以還可以實現背光的大面積化。因此,可以獲得實現低耗電量和大面積的液晶顯示裝置。
圖8B是將本發明的一個實施態樣的發光裝置用作照明設備的檯燈的例子。圖8B所示的檯燈包括外殼801和光源802,將本發明的一個實施態樣的發光裝置用作光源802。因為可以實現低驅動電壓且高電流效率,所以藉由應用本發明的一個實施態樣的發光裝置,可以獲得低耗電量的檯燈。
圖8C是將本發明的一個實施態樣的發光裝置用作室內照明設備901的例子。由於本發明的一個實施態樣的發光裝置也可以實現大面積化,所以可以用作大面積的照明設備。另外,因為本發明的一個實施態樣的發光裝置可以實現低驅動電壓且高電流效率,所以藉由應用本發明的一個實施態樣的發光裝置,可以獲得低耗電量的照明設備。如此,可以在將本發明的一個實施態樣的發光裝置用作室 內照明設備901的房間內設置如圖6A所說明的本發明的一個實施態樣的電視機902,來看公共廣播或電影。
另外,本實施態樣可以與其他實施態樣適當地組合。
實施例1
在本實施例中,說明作為本發明的一個實施態樣的有機化合物的實施態樣1的結構式(100)所示的4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPDBq)的合成方法。
《4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPDBq)的合成》
在合成方案(B-1)中示出4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPDBq)的合成方案。
在50mL三口燒瓶中放入0.23g(0.87mmol)2-氯二苯並[f,h]喹噁啉、0.50g(0.94mmol)4-{N-[4-(9-苯基-9H-咔唑-3-基)苯基]-N-苯基胺基}苯基硼酸、5mL甲苯、1mL乙醇和1.5mL2M碳酸鉀水溶液。藉由在減壓下攪拌該混合物而進行脫氣,對該燒瓶內進行氮氣置換。對該混合物添加20mg(17μmol)四(三苯基膦)鈀(0)。在氮氣流80℃下攪拌該混合物20小時。在經過規定時間之後,將水和甲苯加入到該混合物中,並用甲苯萃取所得到的水層。混合所得到的抽出溶液和有機層,使用飽和碳酸氫鈉水溶液和飽和食鹽水進行洗滌,並使用硫酸鎂對所得到的有機層進行乾燥。對所得到的混合物進行自然過濾,並且濃縮濾液,以得到固體。藉由利用矽膠柱層析法(甲苯:己烷=1: 1)精製所得到的固體,並且使用甲苯/甲醇使所得到的固體再結晶化,從而以85%的收率得到0.53g的目的物的黃色粉末。
藉由利用梯度昇華法昇華精煉所得到的0.52g 4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺的粉末。在昇華精製中,在壓力為4.2Pa且氬流量為5.0mL/min的條件下以320℃對4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺進行加熱。在昇華精煉之後,以83%的收率得到0.43g 4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺的黃色粉末。
藉由核磁共振方法(1H NMR)確認到該化合物是目的物的4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPDBq)。
以下示出所得到的化合物的1H NMR資料。1H NMR(CDCl3,300 MHz):δ=7.14(t,J=7.2 Hz,1H),7.29-7.83(m,24H),8.20(d,J=7.8 Hz,1H),8.27(d,J=8.7 Hz,2H),8.37(s,1H),8.66(d,J=8.1 Hz,2H),9.20-9.24(m,1H),9.36(s,1H),9.40(d,J=7.2 Hz,1H)。
另外,圖9A和9B示出1H NMR圖。另外,圖9B是放大圖9A的7.0ppm至9.5ppm的範圍而示出的圖表。
另外,圖10A示出PCBAPDBq(簡稱)的甲苯溶液的吸收光譜,圖10B示出其發射光譜。此外,圖11A示出PCBAPDBq(簡稱)的薄膜的吸收光譜,圖11B示出其發 射光譜。當測定吸收光譜時,使用紫外可見分光光度計(日本分光株式會社製造,V550型)。為了進行測定,將溶液放在石英皿中,並對將薄膜蒸鍍在石英基板上而製造樣本。另外,藉由減去僅將甲苯放在石英皿中而測量出來的吸收光譜,獲得該溶液的吸收光譜。藉由減去石英基板的吸收光譜,獲得薄膜的吸收光譜。
在圖10A至圖11B中,橫軸表示波長(nm),縱軸表示強度(任意單位)。在測量甲苯溶液的情況下,在282nm、325nm及416nm附近觀察到吸收峰值,發光波長的峰值為483nm附近。在測量薄膜的情況下,在254nm、333nm及425nm附近觀察到吸收峰值,發光波長的峰值為522nm附近。
實施例2
在本實施例中,說明作為本發明的一個實施態樣的有機化合物的實施態樣1的結構式(201)所示的3-(二苯並[f,h]喹噁啉-2-基)-4'-(9H-咔唑-9-基)三苯胺(簡稱:mYGAPDBq)的合成方法。
《3-(二苯並[f,h]喹噁啉-2-基)-4'-(9H-咔唑-9-基)三苯胺(簡稱:mYGAPDBq)的合成》
在合成方案(C-1)中示出3-(二苯並[f,h]喹噁啉-2-基)-4'-(9H-咔唑-9-基)三苯胺(簡稱:mYGAPDBq)的合成方案。
在200mL的三口燒瓶中放入1.1g(2.9mmol)2-(3-溴苯基)二苯並[f,h]喹噁啉、1.0g(3.0mmol)9-[4-(N-苯基胺基)苯基]-9H-咔唑、0.60g(6.2mmol)第三丁醇鈉。在減壓下對該燒瓶內進行氮氣置換。對該混合物添加30mL二甲苯,藉由在減壓下攪拌該混合物而進行脫氣。對該混合物添加0.2mL三(第三丁基)膦(10%wt己烷溶液)及55mg(96μmol)雙(二亞苄基丙酮)鈀(0)。在氮氣流140℃下對該混合物進行7小時的回流。在經過規定時間之後,將水加入到該混合物中,並用甲苯萃取所得到的水層。混合所得到的抽出溶液和有機層,使用飽和碳 酸氫鈉水溶液和飽和食鹽水進行洗滌,並使用硫酸鎂對所得到的有機層進行乾燥。對所得到的混合物進行自然過濾,並且濃縮濾液,以得到固體。藉由利用矽膠柱層析法(甲苯:己烷=1:2)精製得到油狀物。藉由對所得到的油狀物添加甲醇,照射超聲波,並進行抽濾收集固體,以30%的收率得到0.57g的目的物的黃色粉末。
藉由利用梯度昇華法昇華精煉所得到的0.55g 2-(3-{N-[4-(9H-咔唑-9-基)苯基]-N-苯基胺基}苯基)二苯並[f,h]喹噁啉的黃色粉末。在昇華精製中,在壓力為3.0Pa且氬流量為5.0mL/min的條件下以300℃對2-(3-{N-[4-(9H-咔唑-9-基)苯基]-N-苯基胺基}苯基)二苯並[f,h]喹噁啉進行16小時的加熱。在昇華精煉之後,以82%的收率得到0.45g 2-(3-{N-[4-(9H-咔唑-9-基)苯基]-N-苯基胺基}苯基)二苯並[f,h]喹噁啉的黃色玻璃態物質。
藉由核磁共振方法(1H NMR)確認到該化合物是目的物的3-(二苯並[f,h]喹噁啉-2-基)-4'-(9H-咔唑-9-基)三苯胺(簡稱:mYGAPDBq)。
以下示出所得到的化合物的1H NMR資料。1H NMR(DMSO-d6,300 MHz):δ=7.21-7.51(m,14H),7.60-7.73(m,4H),7.81-7.92(m,3H),8.18(d,J=7.8 Hz,1H),8.25-8.30(m,3H),8.88(d,J=8.4 Hz,2H),9.08(d,J=7.8 Hz,1H),9.15(d,J=7.8 Hz,1H),9.65(s,1H)。
另外,圖26A和26B示出1H NMR圖。另外,圖26B是放大圖26A的7.0ppm至10.0ppm的範圍而示出的圖 表。
另外,圖27A示出mYGAPDBq(簡稱)的甲苯溶液的吸收光譜,圖27B示出其發射光譜。此外,圖28A示出mYGAPDBq(簡稱)的薄膜的吸收光譜,圖28B示出其發射光譜。當測定吸收光譜時,使用紫外可見分光光度計(日本分光株式會社製造,V550型)。為了進行測定,將溶液放在石英皿中,並對將薄膜蒸鍍在石英基板上而製造樣本。另外,藉由減去僅將甲苯放在石英皿中而測量出來的吸收光譜,獲得該溶液的吸收光譜。藉由減去石英基板的吸收光譜,獲得薄膜的吸收光譜。
注意,在圖27A至圖28B中,橫軸表示波長(nm),縱軸表示強度(任意單位)。在測量甲苯溶液的情況下,在215nm、280nm、293nm及372nm附近觀察到吸收峰值,發光波長的峰值為502nm附近。在測量薄膜的情況下,在244nm、261nm、288nm、313nm及377nm附近觀察到吸收峰值,發光波長的峰值為500nm附近。
接著,利用液相層析質譜分析(Liquid Chromatography Mass Spectrometry,簡稱:LC/MS分析)對藉由本實施例得到的mYGAPDBq(簡稱)進行分析。
在LC/MS分析中,使用Waters(沃特世)Corporation製造的Acquity UPLC及Waters Corporation製造的Xevo G2 Tof MS。
在MS分析中,藉由電噴霧電離法(ElectroSpray Ionization,簡稱:ESI)進行離子化。此時,將毛細管電 壓設定為3.0kV,將樣本錐孔電壓設定為30V,並且以正模式(positive mode)進行檢測。再者,在碰撞室(collision cell)內將以上述條件被離子化了的成分碰撞到氬氣體來使其離解為產物離子。將碰撞到氬時的能量(碰撞能量)設定為70eV。另外,進行檢測的質量範圍是m/z=100至1200。
圖29示出進行MS分析的測定結果。由圖29的結果可知,在本發明的一個實施態樣的mYGAPDBq(簡稱)中,主要在m/z=167附近、m/z=243附近、m/z=394附近、m/z=445附近及m/z=472附近檢測出產物離子的峰值,而主要在m/z=639附近檢測出來源於前體離子的峰值。注意,“附近”意味著在LC/MS分析中隨著氫離子的有無及同位素的存在而使產物離子和前體離子的數值發生變化以及包括該變化的數值的不均勻性。另外,圖29所示的結果表示來源於mYGAPDBq(簡稱)的特徵,由此可以認為從識別混合物是否包含mYGAPDBq(簡稱)的角度來看該結果很重要。
實施例3
在本實施例中,評價將磷光化合物和實施態樣1及實施例1所示的由結構式(100)表示的有機化合物用於發光層的發光元件1。以下示出在本實施例中使用的材料的化學式。
參照圖12說明發光元件1。以下,示出本實施例的發光元件1的製造方法。
(發光元件1)
首先,在基板1100上藉由濺射法形成包含矽或氧化矽的氧化銦-氧化錫化合物(ITO-SiO2,以下簡稱為ITSO )膜,由此形成第一電極1101。另外,所使用的靶材的成分比為In2O3:SnO2:SiO2=85:10:5[wt.%]。另外,將第一電極1101的厚度設定為110nm,且將其電極面積設定為2mm×2mm。在此,第一電極1101是用作發光元件的陽極的電極。
接著,作為用來在基板1100上形成發光元件的預處理,在用水洗滌基板1100表面並在200℃下進行焙燒1小時之後,對該基板1100進行UV臭氧處理370秒。
然後,將基板1100放進到真空蒸鍍裝置中,其內部被減壓到10-4Pa左右。在真空蒸鍍裝置內的加熱室中,在170℃下進行30分鐘的真空焙燒,然後使基板1100冷卻30分鐘左右。
接著,以使形成有第一電極1101的面朝下的實施態樣將形成有第一電極1101的基板1100固定在設置在真空蒸鍍裝置內的基板支架上,並將壓力降低到10-4Pa左右,然後在第一電極1101上共蒸鍍4,4’,4”-(1,3,5-苯三基)三(二苯並噻吩)(簡稱:DBT3P-II)和氧化鉬,從而形成電洞注入層1111。將電洞注入層1111的厚度設定為40nm,將DBT3P-II(簡稱)與氧化鉬的重量比調節為4:2(=DBT3P-II:氧化鉬)。另外,共蒸鍍法是指在一個處理室中從多個蒸發源同時進行蒸鍍的蒸鍍法。
接著,在電洞注入層1111上形成厚度為20nm的4-苯基-4'-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)膜,由此形成電洞傳輸層1112。
再者,藉由共蒸鍍實施例1中合成的4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPDBq)以及(乙醯丙酮)雙(4,6-二苯基嘧啶)銥(Ⅲ)(別稱:雙[2-(6-苯基-4-嘧啶基-κN3)苯基-κC](2,4-戊二酮-κ2O,O’)銥(Ⅲ))(簡稱:[Ir(dppm)2(acac)]),在電洞傳輸層1112上形成發光層1113。這裏,將PCBAPDBq(簡稱)以及[Ir(dppm)2(acac)](簡稱)的重量比調節為1:0.05(=PCBAPDBq:[Ir(dppm)2(acac)])。另外,將發光層1113的厚度設定為40nm。
另外,[Ir(dppm)2(acac)](簡稱)是磷光化合物,也是發光層1113中的客體材料(摻雜劑)。此外,PCBAPDBq(簡稱)是發光層1113中的主體材料。
接著,在發光層1113上形成厚度為10nm的2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹噁啉(簡稱:2mDBTPDBq-II)膜,由此形成第一電子傳輸層1114a。
接著,在第一電子傳輸層1114a上形成厚度為20nm的紅菲繞啉(簡稱:BPhen)膜,由此形成第二電子傳輸層1114b。
再者,在第二電子傳輸層1114b上蒸鍍形成厚度為1nm的氟化鋰(LiF)膜,由此形成電子注入層1115。
最後,作為用作陰極的第二電極1103,藉由蒸鍍形成厚度為200nm的鋁膜,由此製造本實施例的發光元件1。
表1示出藉由上述步驟而得到的發光元件1的元件結 構。
接著,在氮氛圍的手套箱中,以不使發光元件1暴露於大氣的實施態樣對發光元件1進行密封處理(將密封材料塗敷在元件的周圍,在密封時以80℃進行1小時的熱處理)。然後,測定該發光元件1的工作特性。注意,在室溫下(在保持為25℃的氛圍中)進行測定。
圖13示出發光元件1的電流密度-亮度特性。在圖13中,橫軸表示電流密度(mA/cm2),而縱軸表示亮度(cd/m2)。另外,圖14示出發光元件1的電壓-亮度特性。在圖14中,橫軸表示電壓(V),而縱軸表示亮度(cd/m2)。另外,圖15示出發光元件1的亮度-電流效率特性。在圖15中,橫軸表示亮度(cd/m2),而縱軸表示電流效率(cd/A)。另外,圖16示出發光元件1的電壓-電流特性。在圖16中,橫軸表示電壓(V),而縱軸表示電流(mA)。
根據圖13及圖15可知,發光元件1是高效率的發光元件。另外,根據圖13、圖14及圖16可知,發光元件1是低電壓驅動且耗電量低的發光元件。
接著,表2示出發光元件1的亮度為770cd/m2時的電壓(V)、電流密度(mA/cm2)、CIE色品座標(x,y)、亮度(cd/m2)、電流效率(cd/A)和外部量子效率(%)。
另外,圖17示出發光元件1的電流密度為2.5mA/cm2時的發射光譜。如圖17所示,發光元件1的發射光譜在583nm處具有峰值。
另外,如表2所示,發光元件1的亮度為770cd/m2時的CIE色品座標為(x,y)=(0.56,0.43)。由此可知,得到來源於摻雜劑的發光。
根據上述可知,將磷光化合物及本發明的一個實施態樣的有機化合物的PCBAPDBq(簡稱)用作發光層的發光元件1能夠高效地發射橙色波長區的光。因此,可以說PCBAPDBq(簡稱)較佳為用作發射橙色光或比橙色光更長的波長的光的發光材料的主體材料。
接著,對上述發光元件1進行可靠性試驗的評價。圖 18示出可靠性試驗的結果。
在可靠性試驗中,在將初始亮度設定為5000cd/m2並電流密度恆定的條件下驅動發光元件1。圖18示出其結果。橫軸表示元件的驅動時間(h),而縱軸表示起始亮度為100%時的歸一化亮度(%)。根據圖18可知,直到發光元件1的歸一化亮度降低到57%為止,需要約510小時的驅動時間。
如此,根據圖18可知,發光元件1是長使用壽命的發光元件。
根據上述結果可知,將磷光化合物及本發明的一個實施態樣的有機化合物的PCBAPDBq(簡稱)用作發光層的發光元件1是高效率、低驅動電壓、低耗電量以及長使用壽命的發光元件。
實施例4
在本實施例中,評價將磷光化合物和實施態樣1及實施例1所示的由結構式(100)表示的有機化合物用於發光層的發光元件2。另外,本實施例所示的發光元件2採用與以上實施例3所示的發光元件1不同的發光層。以下示出在本實施例中使用的材料的化學式。
參照圖12說明發光元件2。以下,示出本實施例的發光元件2的製造方法。
(發光元件2)
首先,在基板1100上藉由濺射法形成包含矽或氧化矽的氧化銦-氧化錫化合物(ITO-SiO2,以下簡稱為ITSO )膜,由此形成第一電極1101。另外,所使用的靶材的成分比為In2O3:SnO2:SiO2=85:10:5[wt.%]。另外,將第一電極1101的厚度設定為110nm,且將其電極面積設定為2mm×2mm。在此,第一電極1101是用作發光元件的陽極的電極。
接著,作為用來在基板1100上形成發光元件的預處理,在用水洗滌基板表面並在200℃下進行焙燒1小時之後,對基板1100進行UV臭氧處理370秒。
然後,將基板放進到真空蒸鍍裝置中,其內部被減壓到10-4Pa左右。在真空蒸鍍裝置內的加熱室中,在170℃下進行30分鐘的真空焙燒,然後使基板1100冷卻30分鐘左右。
接著,以使形成有第一電極1101的面朝下的實施態樣將形成有第一電極1101的基板1100固定在設置在真空蒸鍍裝置內的基板支架上,並將壓力降低到10-4Pa左右,然後在第一電極1101上共蒸鍍4,4’,4”-(1,3,5-苯三基)三(二苯並噻吩)(簡稱:DBT3P-II)和氧化鉬,從而形成電洞注入層1111。將電洞注入層1111的厚度設定為40nm,將DBT3P-II與氧化鉬的重量比調節為4:2(=DBT3P-II:氧化鉬)。
接著,在電洞注入層1111上形成厚度為20nm的4-苯基-4'-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)膜,由此形成電洞傳輸層1112。
再者,藉由共蒸鍍2-[3-(二苯並噻吩-4-基)苯基]二 苯並[f,h]喹噁啉(簡稱:2mDBTPDBq-II)、在實施例1中合成的4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPDBq)以及(乙醯丙酮)雙(4,6-二苯基嘧啶)銥(Ⅲ)(別稱:雙[2-(6-苯基-4-嘧啶基-κN3)苯基-κC](2,4-戊二酮-κ2O,O’)銥(Ⅲ))(簡稱:[Ir(dppm)2(acac)]),在電洞傳輸層1112上形成發光層1113。在此,將2mDBTPDBq-II(簡稱)、PCBAPDBq(簡稱)以及[Ir(dppm)2(acac)](簡稱)的重量比調節為0.6:0.4:0.05(=2mDBTPDBq-II:PCBAPDBq:[Ir(dppm)2(acac)])。另外,將發光層1113的厚度設定為40nm。
另外,[Ir(dppm)2(acac)](簡稱)是磷光化合物,也是發光層1113中的客體材料(摻雜劑)。另外,2mDBTPDBq-II(簡稱)是發光層1113中的主體材料。此外,PCBAPDBq(簡稱)發光層1113中的輔助材料。
接著,在發光層1113上形成厚度為10nm的2mDBTPDBq-II(簡稱)膜,由此形成第一電子傳輸層1114a。
接著,在第一電子傳輸層1114a上形成厚度為20nm的紅菲繞啉(簡稱:BPhen)膜,由此形成第二電子傳輸層1114b。
再者,在第二電子傳輸層1114b上蒸鍍形成厚度為1nm的氟化鋰(LiF)膜,由此形成電子注入層1115。
最後,作為用作陰極的第二電極1103,藉由蒸鍍形 成厚度為200nm的鋁膜,由此製造本實施例的發光元件2。
表3示出藉由上述步驟而得到的發光元件2的元件結構。
接著,在氮氛圍的手套箱中,以不使發光元件2暴露於大氣的實施態樣對發光元件2進行密封處理(將密封材料塗敷在元件的周圍,在密封時以80℃進行1小時的熱處理)。然後,測定該發光元件2的工作特性。注意,在室溫下(在保持為25℃的氛圍中)進行測定。
圖19示出發光元件2的電流密度-亮度特性。在圖19中,橫軸表示電流密度(mA/cm2),而縱軸表示亮度(cd/m2)。另外,圖20示出發光元件2的電壓-亮度特性。在圖20中,橫軸表示電壓(V),而縱軸表示亮度(cd/m2)。另外,圖21示出發光元件2的亮度-電流效 率特性。在圖21中,橫軸表示亮度(cd/m2),而縱軸表示電流效率(cd/A)。另外,圖22示出發光元件2的電壓-電流特性。在圖22中,橫軸表示電壓(V),而縱軸表示電流(mA)。
根據圖19及圖21可知,發光元件2是高效率的發光元件。另外,根據圖19、圖20及圖22可知,發光元件2是低電壓驅動且耗電量低的發光元件。
接著,表4示出發光元件2的亮度為1097cd/m2時的電壓(V)、電流密度(mA/cm2)、CIE色品座標(x,y)、亮度(cd/m2)、電流效率(cd/A)和外部量子效率(%)。
另外,圖23示出發光元件2的電流密度為2.5mA/cm2時的發射光譜。如圖23所示,發光元件2的發射光譜在584nm處具有峰值。
另外,如表4所示,發光元件2的亮度為1097cd/m2時的CIE色品座標為(x,y)=(0.56,0.44)。由此可知,得到來源於摻雜劑的發光。
根據上述可知,將磷光化合物及本發明的一個實施態樣的有機化合物的PCBAPDBq(簡稱)用作發光層的發光 元件2能夠高效地發射橙色波長區的光。因此,可以說PCBAPDBq(簡稱)較佳為用作發射橙色光或比橙色光更長的波長的光的發光材料的輔助材料。
接著,對上述發光元件2進行可靠性試驗的評價。圖24示出可靠性試驗的結果。
在可靠性試驗中,在將初始亮度設定為5000cd/m2並電流密度恆定的條件下驅動發光元件2。圖24示出其結果。橫軸表示元件的驅動時間(h),而縱軸表示起始亮度為100%時的歸一化亮度(%)。根據圖24可知,直到發光元件2的歸一化亮度降低到72%為止,需要約1000小時的驅動時間。
如此,根據圖24可知,發光元件2是長使用壽命的發光元件。
根據上述結果可知,將磷光化合物及本發明的一個實施態樣的有機化合物的PCBAPDBq(簡稱)用作發光層的發光元件2是高效率、低驅動電壓、低耗電量以及長使用壽命的發光元件。
實施例5
在本實施例中,對將磷光化合物和實施態樣1及實施例1所示的由結構式(100)表示的有機化合物用於發光層的發光元件3以及比較用比較發光元件4進行評價。以下示出在本實施例中使用的材料化學式。
首先,參照圖12說明發光元件3。以下,示出本實施例的發光元件3的製造方法。
(發光元件3)
首先,在基板1100上藉由濺射法形成包含矽或氧化矽的氧化銦-氧化錫化合物(ITSO)膜,由此形成第一電極1101。另外,所使用的靶材的成分比為In2O3:SnO2:SiO2=85:10:5[wt.%]。另外,將第一電極1101 的厚度設定為110nm,且將其電極面積設定為2mm×2mm。在此,第一電極1101是用作發光元件的陽極的電極。
接著,作為用來在基板1100上形成發光元件的預處理,在用水洗滌基板表面並在200℃下進行焙燒1小時之後,對基板1100進行UV臭氧處理370秒。
然後,將基板放進到真空蒸鍍裝置中,其內部被減壓到10-4Pa左右。在真空蒸鍍裝置內的加熱室中,在170℃下進行30分鐘的真空焙燒,然後使基板1100冷卻30分鐘左右。
接著,以使形成有第一電極1101的面朝下的實施態樣將形成有第一電極1101的基板1100固定在設置在真空蒸鍍裝置內的基板支架上,並將壓力降低到10-4Pa左右,然後在第一電極1101上共蒸鍍DBT3P-II(簡稱)和氧化鉬,從而形成電洞注入層1111。將電洞注入層1111的厚度設定為30nm,將DBT3P-II(簡稱)與氧化鉬的重量比調節為4:2(=DBT3P-II:氧化鉬)。
接著,在電洞注入層1111上形成厚度為20nm的BPAFLP(簡稱)膜,而形成電洞傳輸層1112。
接著,共蒸鍍實施例1中合成的PCBAPDBq(簡稱)和(二新戊醯甲烷)雙(2,3,5-三苯基吡嗪)銥(Ⅲ)(簡稱:Ir(tppr)2(dpm)),在電洞傳輸層1112上形成發光層1113。這裏,將PCBAPDBq(簡稱)以及Ir(tppr)2(dpm)(簡稱)的重量比調節為1:0.05(=PCBAPDBq:Ir(tppr)2(dpm))。另外,將發光層1113的厚度設定為 40nm。
另外,Ir(tppr)2(dpm)(簡稱)是磷光化合物,也是發光層1113中的客體材料(摻雜劑)。此外,PCBAPDBq(簡稱)是發光層1113中的主體材料。
接著,在發光層1113上形成厚度為20nm的PCBAPDBq(簡稱)膜,由此形成第一電子傳輸層1114a。
接著,在第一電子傳輸層1114a上形成厚度為20nm的BPhen(簡稱)膜,由此形成第二電子傳輸層1114b。
接著,在第二電子傳輸層1114b上蒸鍍形成厚度為1nm的氟化鋰(LiF)膜,由此形成電子注入層1115。
最後,作為用作陰極的第二電極1103,藉由蒸鍍形成厚度為200nm的鋁膜,由此製造本實施例的發光元件3。
(比較發光元件4)
作為比較發光元件4的發光層1113,藉由共蒸鍍4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯基胺(簡稱:PCBA1BP)和Ir(tppr)2(dpm)(簡稱),在電洞傳輸層1112上形成發光層1113。在此,將PCBA1BP(簡稱)以及Ir(tppr)2(dpm)(簡稱)的重量比調節為1:0.05(=PCBA1BP:Ir(tppr)2(dpm))。另外,將發光層1113的厚度設定為40nm。
另外,比較發光元件4的發光層1113之外的部分與發光元件3同樣製造。
表5示出藉由上述步驟所得到的發光元件3及比較發 光元件4的元件結構。
接著,在氮氛圍的手套箱中,以不使發光元件3及比較發光元件4暴露於大氣的實施態樣對發光元件3及比較發光元件4進行密封處理(將密封材料塗敷在元件的周圍,在密封時以80℃進行1小時的熱處理)。然後,測定該發光元件3及比較發光元件4的工作特性。注意,在室溫下(在保持為25℃的氛圍中)進行測定。
圖30示出發光元件3及比較發光元件4的電流密度-亮度特性。在圖30中,橫軸表示電流密度(mA/cm2),而縱軸表示亮度(cd/m2)。另外,圖31示出發光元件3及比較發光元件4的電壓-亮度特性。在圖31中,橫軸表 示電壓(V),而縱軸表示亮度(cd/m2)。另外,圖32示出發光元件3及比較發光元件4的亮度-電流效率特性。在圖32中,橫軸表示亮度(cd/m2),而縱軸表示電流效率(cd/A)。另外,圖33示出發光元件3及比較發光元件4的電壓-電流特性。在圖33中,橫軸表示電壓(V),而縱軸表示電流(mA)。
根據圖30及圖32可知,與比較發光元件4相比,發光元件3是高效率的發光元件。另外,根據圖30、圖31及圖33可知,與比較發光元件4相比,發光元件3是低電壓驅動且耗電量低的發光元件。
接著,表6示出發光元件3及比較發光元件4的亮度為1000cd/m2左右時的電壓(V)、電流密度(mA/cm2)、CIE色品座標(x,y)、亮度(cd/m2)、電流效率(cd/A)和外部量子效率(%)。
另外,如表6所示,發光元件3的亮度為1152cd/m2時的CIE色品座標為(x,y)=(0.65,0.34)。另外,比較發光元件4的亮度為1029cd/m2時的CIE色品座標為 (x,y)=(0.44,0.46)。由此可知,本發明的一個實施態樣的發光元件3得到來源於摻雜劑的發光。
根據上述可知,將磷光化合物及本發明的一個實施態樣的有機化合物的PCBAPDBq(簡稱)用作發光層的發光元件3能夠高效地發射紅色波長區的光。因此,可以說PCBAPDBq(簡稱)較佳為用作發射橙色光或比橙色光更長的波長的光的發光材料的主體材料。
接著,對上述發光元件3及比較發光元件4進行可靠性試驗的評價。圖34示出可靠性試驗的結果。
在可靠性試驗中,在將初始亮度設定為5000cd/m2並電流密度恆定的條件下驅動發光元件3及比較發光元件4。圖34示出其結果。橫軸表示元件的驅動時間(h),而縱軸表示起始亮度為100%時的歸一化亮度(%)。根據圖34可知,直到發光元件3的歸一化亮度降低到80%為止,需要約97小時的驅動時間。直到比較發光元件4的歸一化亮度降低到50%為止,需要約95小時的驅動時間。
如此,根據圖34可知,與比較發光元件4相比,發光元件3是長使用壽命的發光元件。
根據上述結果可知,將磷光化合物及本發明的一個實施態樣的有機化合物的PCBAPDBq(簡稱)用作發光層的發光元件3是高效率、低驅動電壓、低耗電量以及長使用壽命的發光元件。
實施例6
在本實施例中,評價將磷光化合物和實施態樣1及實施例1所示的由結構式(100)表示的有機化合物用於發光層的發光元件5及比較用比較發光元件6。以下示出在本實施例中使用的材料的化學式。
首先,參照圖12說明發光元件5。以下,示出本實施例的發光元件5的製造方法。
(發光元件5)
首先,在基板1100上藉由濺射法形成包含矽或氧化矽的氧化銦-氧化錫化合物(ITSO)膜,由此形成第一電極1101。另外,所使用的靶材的成分比為In2O3:SnO2:SiO2=85:10:5[wt.%]。另外,將第一電極1101的厚度設定為110nm,且將其電極面積設定為2mm×2mm。在此,第一電極1101是用作發光元件的陽極的電極。
接著,作為用來在基板1100上形成發光元件的預處理,在用水洗滌基板表面並在200℃下進行焙燒1小時之後,對基板1100進行UV臭氧處理370秒。
然後,將基板放進到真空蒸鍍裝置中,其內部被減壓到10-4Pa左右。在真空蒸鍍裝置內的加熱室中,在170℃下進行30分鐘的真空焙燒,然後使基板1100冷卻30分鐘左右。
接著,以使形成有第一電極1101的面朝下的實施態樣將形成有第一電極1101的基板1100固定在設置在真空蒸鍍裝置內的基板支架上,並將壓力降低到10-4Pa左右,然後在第一電極1101上共蒸鍍DBT3P-II(簡稱)和氧化鉬,從而形成電洞注入層1111。其厚度設定為40nm,將DBT3P-II(簡稱)與氧化鉬的重量比調節為4:2(=DBT3P-II:氧化鉬)。
接著,在電洞注入層1111上形成厚度為20nm的BPAFLP(簡稱)膜,而形成電洞傳輸層1112。
接著,共蒸鍍2mDBTPDBq-II(簡稱)、實施例1中合成的PCBAPDBq(簡稱)及[Ir(dppm)2(acac)](簡稱) ,在電洞傳輸層1112上形成發光層1113。這裏,將2mDBTPDBq-II(簡稱)、PCBAPDBq(簡稱)及[Ir(dppm)2(acac)](簡稱)的重量比調節為0.8:0.2:0.05(=2mDBTPDBq-II:PCBAPDBq:[Ir(dppm)2(acac)])。另外,將發光層1113的厚度設定為40nm。
另外,[Ir(dppm)2(acac)](簡稱)是磷光化合物,也是發光層1113中的客體材料(摻雜劑)。另外,2mDBTPDBq-II(簡稱)是發光層1113中的主體材料。此外,PCBAPDBq(簡稱)是發光層1113中的輔助材料。
接著,在發光層1113上形成厚度為10nm的2mDBTPDBq-II(簡稱)膜,由此形成第一電子傳輸層1114a。
接著,在第一電子傳輸層1114a上形成厚度為20nm的BPhen(簡稱)膜,由此形成第二電子傳輸層1114b。
接著,在第二電子傳輸層1114b上蒸鍍形成厚度為1nm的氟化鋰(LiF)膜,由此形成電子注入層1115。
最後,作為用作陰極的第二電極1103,藉由蒸鍍形成厚度為200nm的鋁膜,由此製造本實施例的發光元件5。
(比較發光元件6)
作為比較發光元件6的發光層1113,共蒸鍍2mDBTPDBq-II(簡稱)、4-(9-苯基-9H-咔唑-3-基)-4'-(3-苯基喹噁啉-2-基)三苯胺(簡稱:PCBA1PQ)及 [Ir(dppm)2(acac)](簡稱),在電洞傳輸層1112上形成發光層1113。在此,將2mDBTPDBq-II(簡稱)、PCBA1PQ(簡稱)及[Ir(dppm)2(acac)](簡稱)的重量比調節為0.8:0.2:0.05(=2mDBTPDBq-II:PCBA1PQ:[Ir(dppm)2(acac)])。另外,將發光層1113的厚度設定為40nm。
另外,比較發光元件6的發光層1113之外的部分與發光元件5同樣製造。
表7示出藉由上述步驟所得到的發光元件5及比較發光元件6的元件結構。
接著,在氮氛圍的手套箱中,以不使發光元件5及比 較發光元件6暴露於大氣的實施態樣對發光元件5及比較發光元件6進行密封處理(將密封材料塗敷在元件的周圍,在密封時以80℃進行1小時的熱處理)。然後,測定該發光元件5及比較發光元件6的工作特性。注意,在室溫下(在保持為25℃的氛圍中)進行測定。
圖35示出發光元件5及比較發光元件6的電流密度-亮度特性。在圖35中,橫軸表示電流密度(mA/cm2),而縱軸表示亮度(cd/m2)。另外,圖36示出發光元件5及比較發光元件6的電壓-亮度特性。在圖36中,橫軸表示電壓(V),而縱軸表示亮度(cd/m2)。另外,圖37示出發光元件5及比較發光元件6的亮度-電流效率特性。在圖37中,橫軸表示亮度(cd/m2),而縱軸表示電流效率(cd/A)。另外,圖38示出發光元件5及比較發光元件6的電壓-電流特性。在圖38中,橫軸表示電壓(V),而縱軸表示電流(mA)。
根據圖37可知,與比較發光元件6相比,發光元件5是高電流效率的發光元件。
接著,表8示出發光元件5及比較發光元件6的亮度為1000cd/m2左右時的電壓(V)、電流密度(mA/cm2)、CIE色品座標(x,y)、亮度(cd/m2)、電流效率(cd/A)和外部量子效率(%)。
另外,如表8所示,發光元件5的亮度為1101cd/m2時的CIE色品座標為(x,y)=(0.56,0.43)。比較發光元件6的亮度為1008cd/m2時的CIE色品座標為(x,y)=(0.56,0.43)。由此可知,得到來源於摻雜劑的發光。
根據上述可知,將磷光化合物及本發明的一個實施態樣的有機化合物的PCBAPDBq(簡稱)用作發光層的發光元件5能夠高效地發射橙色波長區的光。因此,可以說PCBAPDBq(簡稱)較佳為用作發射橙色光或比橙色光更長的波長的光的發光材料的輔助材料。
接著,對上述發光元件5及比較發光元件6進行可靠性試驗的評價。圖39示出可靠性試驗的結果。
在可靠性試驗中,在將初始亮度設定為5000cd/m2並電流密度恆定的條件下驅動發光元件5及比較發光元件6。圖39示出其結果。橫軸表示元件的驅動時間(h),而縱軸表示起始亮度為100%時的歸一化亮度(%)。根據圖39可知,直到發光元件5的歸一化亮度降低到73%為止, 需要約790小時的驅動時間。直到比較發光元件6的歸一化亮度降低到70%為止,需要約510小時的驅動時間。
如此,根據圖39可知,與比較發光元件6相比,發光元件5是長使用壽命的發光元件。
根據上述結果可知,將磷光化合物及本發明的一個實施態樣的有機化合物的PCBAPDBq(簡稱)用作發光層的發光元件5是高效率及長使用壽命的發光元件。
實施例7
在本實施例中,評價將磷光化合物和實施態樣1及實施例2所示的由結構式(201)表示的有機化合物用於發光層的發光元件7。以下示出在本實施例中使用的材料的化學式。
首先,參照圖12說明發光元件7。以下,示出本實施例的發光元件7的製造方法。
(發光元件7)
首先,在基板1100上藉由濺射法形成包含矽或氧化矽的氧化銦-氧化錫化合物(ITSO)膜,由此形成第一電極1101。另外,所使用的靶材的成分比為In2O3:SnO2:SiO2=85:10:5[wt.%]。另外,將第一電極1101 的厚度設定為110nm,且將其電極面積設定為2mm×2mm。這裏,第一電極1101是用作發光元件的陽極的電極。
接著,作為用來在基板1100上形成發光元件的預處理,在用水洗滌基板表面並在200℃下進行焙燒1小時之後,對基板1100進行UV臭氧處理370秒。
然後,將基板放進到真空蒸鍍裝置中,其內部被減壓到10-4Pa左右。在真空蒸鍍裝置內的加熱室中,在170℃下進行30分鐘的真空焙燒,然後使基板1100冷卻30分鐘左右。
接著,以使形成有第一電極1101的面朝下的實施態樣將形成有第一電極1101的基板1100固定在設置在真空蒸鍍裝置內的基板支架上,並將壓力降低到10-4Pa左右,然後在第一電極1101上共蒸鍍DBT3P-II(簡稱)和氧化鉬,從而形成電洞注入層1111。將電洞注入層1111的厚度設定為20nm,將DBT3P-II(簡稱)與氧化鉬的重量比調節為4:2(=DBT3P-II:氧化鉬)。
接著,在電洞注入層1111上形成厚度為20nm的BPAFLP(簡稱)膜,而形成電洞傳輸層1112。
接著,共蒸鍍實施例2中合成的mYGAPDBq(簡稱)、PCBNBB(簡稱)和Ir(tppr)2(dpm)(簡稱),在電洞傳輸層1112上形成發光層1113。這裏,將mYGAPDBq(簡稱)、PCBNBB(簡稱)和Ir(tppr)2(dpm)(簡稱)重量比調節為0.8:0.2:0.05(=mYGAPDBq:PCBNBB:Ir(tppr)2(dpm))。另外,將發光層1113的厚度設定為 30nm。
另外,Ir(tppr)2(dpm)(簡稱)是磷光化合物,也是發光層1113中的客體材料(摻雜劑)。另外,mYGAPDBq(簡稱)是發光層1113中的主體材料。此外,PCBNBB(簡稱)是發光層1113中的輔助材料。
接著,在發光層1113上形成厚度為25nm的mYGAPDBq(簡稱)膜,由此形成第一電子傳輸層1114a。
接著,在第一電子傳輸層1114a上形成厚度為25nm的BPhen(簡稱)膜,由此形成第二電子傳輸層1114b。
接著,在第二電子傳輸層1114b上蒸鍍形成厚度為1nm的氟化鋰(LiF)膜,由此形成電子注入層1115。
最後,作為用作陰極的第二電極1103,藉由蒸鍍形成厚度為200nm的鋁膜,由此製造本實施例的發光元件7。
表9示出藉由上述步驟而得到的發光元件7的元件結構。
接著,在氮氛圍的手套箱中,以不使發光元件7暴露於大氣的實施態樣對發光元件7進行密封處理(將密封材料塗敷在元件的周圍,在密封時以80℃進行1小時的熱處理)。然後,測定該發光元件7的工作特性。注意,在室溫下(在保持為25℃的氛圍中)進行測定。
圖40示出發光元件7的電流密度-亮度特性。在圖40中,橫軸表示電流密度(mA/cm2),而縱軸表示亮度(cd/m2)。另外,圖41示出發光元件7的電壓-亮度特性。在圖41中,橫軸表示電壓(V),而縱軸表示亮度(cd/m2)。另外,圖42示出發光元件7的亮度-電流效率特性。在圖42中,橫軸表示亮度(cd/m2),而縱軸表示電流效率(cd/A)。另外,圖43示出發光元件7的電壓-電流特性。在圖43中,橫軸表示電壓(V),而縱軸表示電流(mA)。
根據圖40及圖42可知,發光元件7是高效率的發光元件。另外,根據圖40、圖41及圖43可知,發光元件7是低電壓驅動且耗電量低的發光元件。
接著,表10示出發光元件7的亮度為672cd/m2時的電壓(V)、電流密度(mA/cm2)、CIE色品座標(x,y)、亮度(cd/m2)、電流效率(cd/A)和外部量子效率(%)。
另外,如表10所示,發光元件7的亮度為672cd/m2時的CIE色品座標為(x,y)=(0.65,0.35)。由此可知,得到來源於摻雜劑的發光。
根據上述可知,將磷光化合物及本發明的一個實施態樣的有機化合物的mYGAPDBq(簡稱)用作發光層的發光元件7能夠高效地發射紅色波長區的光。因此,mYGAPDBq(簡稱)較佳為用作發光材料的主體材料。
100‧‧‧基板
101‧‧‧第一電極
102‧‧‧EL層
103‧‧‧第二電極
111‧‧‧電洞注入層
112‧‧‧電洞傳輸層
113‧‧‧發光層
114‧‧‧電子傳輸層
115‧‧‧電子注入層
116‧‧‧電荷產生層
201‧‧‧第一電極
202‧‧‧第二電極
203‧‧‧EL層
204‧‧‧發光層
205‧‧‧磷光化合物
206‧‧‧第一有機化合物
207‧‧‧第二有機化合物
301‧‧‧第一電極
302‧‧‧EL層
304‧‧‧第二電極
305‧‧‧電荷產生層
450R‧‧‧第一發光元件
450G‧‧‧第二發光元件
450B‧‧‧第三發光元件
451‧‧‧反射電極
452‧‧‧半透射.半反射電極
453a‧‧‧第一透明導電層
453b‧‧‧第二透明導電層
454R‧‧‧第一發光層
454G‧‧‧第二發光層
454B‧‧‧第三發光層
455‧‧‧EL層
501‧‧‧元件基板
502‧‧‧像素部
503‧‧‧驅動電路部
504‧‧‧驅動電路部
505‧‧‧密封材料
506‧‧‧密封基板
507‧‧‧佈線
508‧‧‧FPC
509‧‧‧n通道型TFT
510‧‧‧p通道型TFT
511‧‧‧開關用TFT
512‧‧‧電流控制用TFT
513‧‧‧第一電極
514‧‧‧絕緣物
515‧‧‧EL層
516‧‧‧第二電極
517‧‧‧發光元件
518‧‧‧空間
611‧‧‧外殼
612‧‧‧支撐台
613‧‧‧顯示部
614‧‧‧揚聲器部
615‧‧‧視頻輸入端子
621‧‧‧主體
622‧‧‧外殼
623‧‧‧顯示部
624‧‧‧鍵盤
625‧‧‧外部連接埠
626‧‧‧指點裝置
631‧‧‧主體
632‧‧‧外殼
633‧‧‧顯示部
634‧‧‧聲音輸入部
635‧‧‧聲音輸出部
636‧‧‧操作鍵
637‧‧‧外部連接埠
638‧‧‧天線
641‧‧‧主體
642‧‧‧顯示部
643‧‧‧外殼
644‧‧‧外部連接埠
645‧‧‧遙控接收部
646‧‧‧影像接收部
647‧‧‧電池
648‧‧‧聲音輸入部
649‧‧‧操作鍵
650‧‧‧取景部
701‧‧‧外殼
702‧‧‧液晶層
703‧‧‧背光
704‧‧‧外殼
705‧‧‧驅動器IC
706‧‧‧端子
801‧‧‧外殼
802‧‧‧光源
901‧‧‧照明設備
902‧‧‧電視機
1100‧‧‧基板
1101‧‧‧第一電極
1103‧‧‧第二電極
1111‧‧‧電洞注入層
1112‧‧‧電洞傳輸層
1113‧‧‧發光層
1114a‧‧‧第一電子傳輸層
1114b‧‧‧第二電子傳輸層
1115‧‧‧電子注入層
5000‧‧‧平板電腦
5001‧‧‧外殼
5003‧‧‧顯示部
5005‧‧‧電源按鈕
5007‧‧‧正面相機
5009‧‧‧背面相機
5011‧‧‧第一外部接続端子
5013‧‧‧第二外部接続端子
5015‧‧‧圖示
6000‧‧‧平板電腦
6001‧‧‧第一外殼
6003‧‧‧第二外殼
6005‧‧‧鉸鏈部
6007‧‧‧第一顯示部
6009‧‧‧第二顯示部
6011‧‧‧電源按鈕
6013‧‧‧第一相機
6015‧‧‧第二相機
6017‧‧‧文字圖示
6019‧‧‧圖示
6021‧‧‧鍵盤
在圖式中:圖1是說明本發明的一個實施態樣的發光元件的圖;圖2是說明本發明的一個實施態樣的發光元件的圖;圖3A和3B是說明本發明的一個實施態樣的發光元件的圖;圖4是說明本發明的一個實施態樣的發光元件的圖;圖5A和5B是說明本發明的一個實施態樣的發光裝置的圖;圖6A至6D是說明本發明的一個實施態樣的電子裝置的圖; 圖7A-1至A-3和7B是說明本發明的一個實施態樣的電子裝置的圖;圖8A至8C是說明本發明的一個實施態樣的照明設備的圖;圖9A和9B是示出4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPDBq)的1H NMR圖表的圖;圖10A和10B是示出4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPDBq)的甲苯溶液的吸收光譜及發射光譜的圖;圖11A和11B是示出4-(二苯並[f,h]喹噁啉-2-基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPDBq)的薄膜的吸收光譜及發射光譜的圖;圖12是說明實施例的發光元件的圖;圖13是示出發光元件1的電流密度-亮度特性的圖;圖14是示出發光元件1的電壓-亮度特性的圖;圖15是示出發光元件1的亮度-電流效率的圖;圖16是示出發光元件1的電壓-電流特性的圖;圖17是示出發光元件1的發射光譜的圖;圖18是示出發光元件1的驅動時間-歸一化亮度特性的圖;圖19是示出發光元件2的電流密度-亮度特性的圖;圖20是示出發光元件2的電壓-亮度特性的圖;圖21是示出發光元件2的亮度-電流效率的圖; 圖22是示出發光元件2的電壓-電流特性的圖;圖23是示出發光元件2的發射光譜的圖;圖24是示出發光元件2的驅動時間-歸一化亮度特性的圖;圖25是說明激基複合物的概念的圖;圖26A和26B是示出3-(二苯並[f,h]喹噁啉-2-基)-4'-(9H-咔唑-9-基)三苯胺(簡稱:mYGAPDBq)的1H NMR圖表的圖;圖27A和27B是示出3-(二苯並[f,h]喹噁啉-2-基)-4'-(9H-咔唑-9-基)三苯胺(簡稱:mYGAPDBq)的甲苯溶液的吸收光譜及發射光譜的圖;圖28A和28B是示出3-(二苯並[f,h]喹噁啉-2-基)-4'-(9H-咔唑-9-基)三苯胺(簡稱:mYGAPDBq)的薄膜的吸收光譜及發射光譜的圖;圖29是示出3-(二苯並[f,h]喹噁啉-2-基)-4'-(9H-咔唑-9-基)三苯胺(簡稱:mYGAPDBq)的LC/MS分析結果的圖;圖30是示出發光元件3及發光元件4的電流密度-亮度特性的圖;圖31是示出發光元件3及發光元件4的電壓-亮度特性的圖;圖32是示出發光元件3及發光元件4的亮度-電流效率的圖;圖33是示出發光元件3及發光元件4的電壓-電流特 性的圖;圖34是示出發光元件3及發光元件4的驅動時間-歸一化亮度特性的圖;圖35是示出發光元件5及發光元件6的電流密度-亮度特性的圖;圖36是示出發光元件5及發光元件6的電壓-亮度特性的圖;圖37是示出發光元件5及發光元件6的亮度-電流效率的圖;圖38是示出發光元件5及發光元件6的電壓-電流特性的圖;圖39是示出發光元件5及發光元件6的驅動時間-歸一化亮度特性的圖;圖40是示出發光元件7的電流密度-亮度特性的圖;圖41是示出發光元件7的電壓-亮度特性的圖;圖42是示出發光元件7的亮度-電流效率的圖;圖43是示出發光元件7的電壓-電流特性的圖。
100‧‧‧基板
101‧‧‧第一電極
102‧‧‧EL層
103‧‧‧第二電極
111‧‧‧電洞注入層
112‧‧‧電洞傳輸層
113‧‧‧發光層
114‧‧‧電子傳輸層
115‧‧‧電子注入層
116‧‧‧電荷產生層

Claims (17)

  1. 一種發光元件,包含:夾持在一對電極之間的發光層,其中,該發光層包括第一有機化合物和磷光化合物,其中該第一有機化合物中,二苯並[f,h]喹噁啉骨架藉由伸芳基與具有兩個取代基的胺基接合,且其中,該取代基分別是芳基或雜芳基。
  2. 根據申請專利範圍第1項之發光元件,其中該取代基中的一者包括咔唑骨架。
  3. 根據申請專利範圍第1項之發光元件,其中該二苯並[f,h]喹噁啉骨架的2位藉由伸芳基與該胺基接合。
  4. 一種由通式(G1)表示之有機化合物: 其中,R11至R19分別表示氫、碳數為1至4的烷基及取代或未取代的碳數為6至13的芳基,Ar1表示取代或未取代的碳數為6至13的伸芳基,Ar2表示取代或未取代的碳數為6至13的芳基,α表示取代或未取代的伸苯基或者取代或未取代的聯苯二基,n表示0或1,且 A表示取代或未取代的9H-咔唑-9-基或者取代或未取代的9-芳基-9H-咔唑-3-基。
  5. 根據申請專利範圍第4項之有機化合物,其中:該有機化合物由通式(G2-1)表示,;且R21至R28分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。
  6. 根據申請專利範圍第5項之有機化合物,其中α是取代或未取代的對-伸苯基。
  7. 根據申請專利範圍第4項之有機化合物,其中:該有機化合物由通式(G3-1)表示, R31至R37分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基;且Ar3表示取代或未取代的碳數為6至13的芳基。
  8. 根據申請專利範圍第7項之有機化合物,其中,n是1,且其中α是取代或未取代的對-伸苯基。
  9. 根據申請專利範圍第4項之有機化合物,其中,Ar1是取代或未取代的伸苯基或者取代或未取代的聯苯二基。
  10. 根據申請專利範圍第4項之有機化合物,其中,Ar1是取代或未取代的對-伸苯基。
  11. 根據申請專利範圍第5項之有機化合物,其中:該有機化合物由通式(G2-2)表示,;且R41至R44及R51至R54分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。
  12. 根據申請專利範圍第7項之有機化合物,其中: 該有機化合物由通式(G3-2)表示,;且R41至R44及R51至R54分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。
  13. 根據申請專利範圍第7項之有機化合物,其中:該有機化合物由通式(G3-3)表示,;且R41至R44分別表示氫、碳數為1至4的烷基或者取代或未取代的碳數為6至13的芳基。
  14. 一種發光元件,包含:夾持在一對電極之間的發光層,其中,該發光層包括根據申請專利範圍第4項之有機化合物和磷光化合物。
  15. 一種包含根據申請專利範圍第14項之發光元件的發光裝置。
  16. 一種包含根據申請專利範圍第14項之發光元件的電子裝置。
  17. 一種包含根據申請專利範圍第14項之發光元件的照明裝置。
TW101143479A 2011-11-25 2012-11-21 發光元件、發光裝置、電子裝置、照明裝置及有機化合物 TWI570121B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011258031 2011-11-25

Publications (2)

Publication Number Publication Date
TW201339151A true TW201339151A (zh) 2013-10-01
TWI570121B TWI570121B (zh) 2017-02-11

Family

ID=48465988

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101143479A TWI570121B (zh) 2011-11-25 2012-11-21 發光元件、發光裝置、電子裝置、照明裝置及有機化合物

Country Status (5)

Country Link
US (1) US9178158B2 (zh)
JP (1) JP6147993B2 (zh)
KR (1) KR102026218B1 (zh)
CN (1) CN103137894B (zh)
TW (1) TWI570121B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616572B (zh) * 2013-03-26 2023-01-17 株式会社半导体能源研究所 发光装置
US9537106B2 (en) * 2013-05-09 2017-01-03 Universal Display Corporation Organic electroluminescent materials and devices
KR102307287B1 (ko) * 2013-08-30 2021-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP6386299B2 (ja) 2013-08-30 2018-09-05 株式会社半導体エネルギー研究所 発光素子用有機化合物
JP6530227B2 (ja) * 2014-04-25 2019-06-12 株式会社半導体エネルギー研究所 化合物、発光素子、発光装置、電子機器、及び照明装置
KR20240033152A (ko) 2014-05-30 2024-03-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 및 전자 기기
JP6780925B2 (ja) * 2014-07-25 2020-11-04 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
CN110600635A (zh) * 2015-05-29 2019-12-20 株式会社半导体能源研究所 发光元件、发光装置、显示装置、电子设备以及照明装置
KR20170038681A (ko) * 2015-09-30 2017-04-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US10270039B2 (en) 2016-11-17 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR20180108426A (ko) * 2017-03-24 2018-10-04 희성소재 (주) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019234562A1 (ja) 2018-06-06 2019-12-12 株式会社半導体エネルギー研究所 発光装置、表示装置および電子機器
JP2021077639A (ja) 2019-11-08 2021-05-20 株式会社半導体エネルギー研究所 発光装置、電子機器および照明装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723445B2 (en) 2001-12-31 2004-04-20 Canon Kabushiki Kaisha Organic light-emitting devices
WO2004043937A1 (ja) 2002-11-13 2004-05-27 Semiconductor Energy Laboratory Co., Ltd. キノキサリン誘導体、有機半導体素子および電界発光素子
CN102386330B (zh) * 2003-04-18 2014-10-22 株式会社半导体能源研究所 喹喔啉衍生物以及使用它的有机半导体元件、电致发光元件以及电子仪器
JP4637651B2 (ja) * 2004-06-03 2011-02-23 三井化学株式会社 アミン化合物、および該アミン化合物を含有する有機電界発光素子
JP4789598B2 (ja) * 2004-12-06 2011-10-12 株式会社半導体エネルギー研究所 発光素子及び電子機器
JP4932937B2 (ja) * 2004-12-16 2012-05-16 株式会社半導体エネルギー研究所 発光装置
JP5314834B2 (ja) * 2005-04-21 2013-10-16 株式会社半導体エネルギー研究所 発光素子、発光装置、照明装置および電子機器
JP5072293B2 (ja) * 2005-09-12 2012-11-14 株式会社半導体エネルギー研究所 キノキサリン誘導体、およびキノキサリン誘導体を用いた発光素子、発光装置、電子機器
CN1775779A (zh) * 2005-12-06 2006-05-24 郭鹏 二苯醚型唑衍生物电子传输材料、制备新方法及其应用
JP4972938B2 (ja) 2006-01-12 2012-07-11 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
CA2638046A1 (en) 2006-02-10 2007-08-16 Ciba Holding Inc. Novel polymers
EP2004616B1 (en) * 2006-03-21 2014-05-21 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative
JP5063155B2 (ja) * 2006-03-21 2012-10-31 株式会社半導体エネルギー研究所 キノキサリン誘導体、およびキノキサリン誘導体を用いた発光素子、発光装置、電子機器
EP2081912B1 (en) 2006-09-14 2016-03-30 Basf Se Heterocyclic bridged biphenyls and their use in oleds
US8178216B2 (en) 2007-02-28 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device including quinoxaline derivative
KR101564762B1 (ko) 2007-11-30 2015-10-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 퀴녹살린 유도체, 및 퀴녹살린 유도체를 사용한 발광 소자,발광 장치 및 전자 기기
US8119259B2 (en) 2007-11-30 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element and electronic device using the same
US8314101B2 (en) 2007-11-30 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative
EP2067778B1 (en) 2007-12-03 2016-08-17 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device and electronic appliance using the same
US8815412B2 (en) 2007-12-21 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the quinoxaline derivative
KR101691613B1 (ko) 2008-02-12 2017-01-02 유디씨 아일랜드 리미티드 디벤조[f,h]퀴녹살린과의 전계발광 금속 착물
TWI525089B (zh) 2009-03-20 2016-03-11 半導體能源研究所股份有限公司 具有雜芳香族環之咔唑衍生物及使用具有雜芳香族環之咔唑衍生物的發光元件、發光裝置和電子裝置
KR101847578B1 (ko) * 2009-10-16 2018-04-11 에스에프씨 주식회사 축합방향족 화합물 및 이를 포함하는 유기전계발광소자
TWI620747B (zh) 2010-03-01 2018-04-11 半導體能源研究所股份有限公司 雜環化合物及發光裝置
US9067916B2 (en) 2011-02-01 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound
US9056856B2 (en) 2011-02-01 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound
JP2013063963A (ja) 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd 複素環化合物、発光素子、発光装置、電子機器、及び照明装置

Also Published As

Publication number Publication date
KR102026218B1 (ko) 2019-09-27
TWI570121B (zh) 2017-02-11
CN103137894B (zh) 2017-09-12
KR20130058620A (ko) 2013-06-04
JP6147993B2 (ja) 2017-06-14
US20130134395A1 (en) 2013-05-30
CN103137894A (zh) 2013-06-05
JP2013131743A (ja) 2013-07-04
US9178158B2 (en) 2015-11-03

Similar Documents

Publication Publication Date Title
JP6785812B2 (ja) 発光素子、発光装置、電子機器および照明装置
TWI570121B (zh) 發光元件、發光裝置、電子裝置、照明裝置及有機化合物
JP6547021B2 (ja) 有機化合物、発光素子、発光装置、電子機器及び照明装置
KR102264577B1 (ko) 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
TWI656676B (zh) 發光元件、發光裝置、電子裝置及照明設備
TWI550056B (zh) 雜環化合物,發光元件,發光裝置,電子裝置,及照明裝置
TWI667327B (zh) 發光元件,發光裝置,電子裝置,以及照明裝置
TWI775450B (zh) 發光元件、發光裝置、電子裝置及照明設備
TWI596090B (zh) 合成磷光有機金屬銥錯合物的方法,及合成該錯合物之配體的方法
CN103378301B (zh) 有机化合物、发光元件、发光装置、电子设备以及照明装置
TWI592409B (zh) 雜環化合物,發光元件,發光裝置,電子裝置,與照明裝置
JP2023129582A (ja) 発光素子

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees