TW201338502A - Display unevenness detection method and device for display device - Google Patents

Display unevenness detection method and device for display device Download PDF

Info

Publication number
TW201338502A
TW201338502A TW101116827A TW101116827A TW201338502A TW 201338502 A TW201338502 A TW 201338502A TW 101116827 A TW101116827 A TW 101116827A TW 101116827 A TW101116827 A TW 101116827A TW 201338502 A TW201338502 A TW 201338502A
Authority
TW
Taiwan
Prior art keywords
pixel
display
unevenness
value
pixel value
Prior art date
Application number
TW101116827A
Other languages
Chinese (zh)
Other versions
TWI501627B (en
Inventor
Kunihiro Mizuno
Keiichi Kurasho
Original Assignee
Nihon Micronics Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Micronics Kk filed Critical Nihon Micronics Kk
Publication of TW201338502A publication Critical patent/TW201338502A/en
Application granted granted Critical
Publication of TWI501627B publication Critical patent/TWI501627B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of El Displays (AREA)

Abstract

The present invention detects the display unevenness of a display device with high accuracy. The output image data of the display image of a liquid crystal panel display (3), which is obtained from a CCD camera (5), is addressed and the pixel value of each pixel of the liquid crystal panel display (3) is acquired. Then, the differential pixel value of each pixel is acquired in order to detect the display unevenness of the liquid crystal panel display (3). When doing so, an integral pixel value is acquired by averaging the pixel value of each pixel with the pixel values of peripheral pixels, the integral pixel value is subtracted from the original pixel value of the corresponding pixel, and the value thus obtained is acquired as the differential pixel value for each pixel. It is possible to remove the low-frequency components such as offsets from the pixel value distribution of the adjacent pixels and to retain the high-frequency components that are the same as the display unevenness by acquiring the differential pixel value by means of integration and differentiation. As a consequence, it is possible to detect the display unevenness of a liquid crystal panel display (3) with a higher accuracy than when the differential pixel value of each pixel is acquired by means of the difference between the output image data and the input image data.

Description

顯示元件之顯示不均檢測方法及其裝置 Display unevenness detection method and device thereof

本發明係關於檢測出顯示元件之顯示不均之方法與裝置。 The present invention relates to a method and apparatus for detecting display unevenness of display elements.

拍攝顯示元件顯示之影像,並藉由所拍攝之影像資料與顯示用影像資料之比較來檢測出顯示元件之顯示不均之方式,在以根據其而擷取出之修正內容修正顯示用影像資料以解決顯示不均方面,係為有用。相關聯之技術,揭示於日本特許廳公開專利公報特開2010-57149號公報或特開2005-150349號公報。 Shooting an image displayed by the display element, and detecting a display unevenness of the display element by comparing the captured image data with the display image data, and correcting the display image data with the correction content extracted therefrom It is useful to solve the problem of uneven display. The related art is disclosed in Japanese Laid-Open Patent Publication No. 2010-57149 or JP-A-2005-150349.

[先行技術文獻] [Advanced technical literature]

[專利文獻1]日本特開2010-57149號公報 [Patent Document 1] Japanese Patent Laid-Open Publication No. 2010-57149

[專利文獻2]日本特開2005-150349號公報 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2005-150349

在檢測出顯示元件之顯示不均方面,本發明者群,為了提升檢測精度之進一步提升,而研究了拍攝顯示元件所顯示之影像而得之影像資料之具體解析方法。在其過程中,發現了影像資料之具體解析做法會對顯示不均之檢測精度帶來影響。本發明有鑑於此種問題,本發明之目的在於提供以更高精度檢測出顯示元件之顯示不均之方法與裝置。 In order to improve the display accuracy of the display elements, the inventors have studied a specific analysis method of the image data obtained by capturing the image displayed by the display element in order to improve the detection accuracy. In the process, it was found that the specific analysis of the image data will affect the detection accuracy of display unevenness. The present invention has been made in view of such a problem, and an object of the present invention is to provide a method and apparatus for detecting display unevenness of a display element with higher precision.

本發明之形態,為一種顯示元件之顯示不均檢測方法,其包含:像素值取得步驟,根據拍攝顯示元件所顯示之影像而得之輸出影像資料,取得前述顯示元件之各像素之像素值;積分步驟,藉由使用與前述顯示元件之顯示不均形狀及大小對應之核心大小之空間過濾器,將前述顯示元件之各像素值與周邊像素之像素值平均化而予以積分,以取得前述顯示元件之各像素之積分像素值;微分步驟,藉由前述顯示元件之各像素中前述像素值與前述積分像素值之差分,取得前述顯示元件之各像素之微分像素值;以及不均區域檢測步驟,根據前述顯示元件之前述微分像素值超過既定不均判定閾值之像素之分布,檢測出前述顯示元件中之前述顯示不均之產生區域。 An embodiment of the present invention is a display unevenness detecting method for a display element, comprising: a pixel value obtaining step of obtaining pixel values of respective pixels of the display element according to output image data obtained by capturing an image displayed by the display element; In the integration step, by using a spatial filter having a core size corresponding to the display unevenness and size of the display element, the pixel values of the display elements and the pixel values of the peripheral pixels are averaged and integrated to obtain the display. An integrated pixel value of each pixel of the component; a differentiation step of obtaining a differential pixel value of each pixel of the display element by a difference between the pixel value and the integrated pixel value in each pixel of the display element; and an uneven region detecting step And generating a display area of the display unevenness in the display element based on a distribution of pixels of the display element in which the differential pixel value exceeds a predetermined unevenness determination threshold.

又,本發明之另一形態,為一種顯示元件之顯示不均檢測裝置,其具備:像素值取得手段,將拍攝顯示元件顯示之影像所得之輸出影像資料之各像素值分配至前述顯示元件之各像素,取得前述顯示元件之各像素之像素值;積分手段,藉由使用與前述顯示元件之顯示不均形狀及大小對應之核心大小之空間過濾器,將前述顯示元件之各像素值與周邊像素之像素值平均化而予以積分,以取得前述顯示元件之各像素之積分像素值;微分手段,藉由前述顯示元件之各像素中前述像素值與前述積分像素值之差分,取得前述顯示元件之各像素之微分像素值;像素值比較手段,係將前述顯示元件之各像素之前述微分像素值與既定不均判定閾值比較;以及不均區域檢測手段,根據前述微 分像素值超過前述不均判定閾值之像素之分布,檢測出前述顯示元件中之前述顯示不均之產生區域。 Moreover, another aspect of the present invention provides a display unevenness detecting device for a display device, comprising: a pixel value obtaining means for assigning each pixel value of an output image data obtained by capturing an image displayed by the display element to the display element And obtaining, by each pixel, a pixel value of each pixel of the display element; and integrating means, using a spatial filter having a core size corresponding to a display unevenness and size of the display element, and each pixel value of the display element and the periphery A pixel value of the pixel is averaged and integrated to obtain an integrated pixel value of each pixel of the display element; and a differentiation means obtains the display element by a difference between the pixel value and the integrated pixel value in each pixel of the display element a differential pixel value of each pixel; the pixel value comparison means comparing the differential pixel value of each pixel of the display element with a predetermined unevenness determination threshold; and the uneven area detecting means according to the foregoing The distribution of the pixels whose sub-pixel values exceed the aforementioned unevenness determination threshold value detects the generation region of the display unevenness in the display element.

根據本發明之形態,係藉由顯示元件之各像素值與其積分值即積分像素值之差分取得各像素之微分像素值。因此,係截去與相鄰像素之像素值變化之低頻成分,取得像素值變化之高頻成分。藉此,即使涵蓋顯示元件之像素整體產生像素值之偏置,亦能排除與像素值變化之低頻成分相符之此偏置成分。因此,相較於從藉由作為顯示元件顯示影像之源頭之輸入影像資料與顯示元件之輸出影像資料之差分取得之微分像素值檢測出顯示不均之方式,能以更高精度檢測出顯示元件之顯示不均。 According to an aspect of the present invention, the differential pixel value of each pixel is obtained by the difference between each pixel value of the display element and its integrated value, that is, the integrated pixel value. Therefore, the low-frequency component that changes the pixel value of the adjacent pixel is cut off, and the high-frequency component of the pixel value change is obtained. Thereby, even if the pixel covering the display element as a whole produces an offset of the pixel value, the offset component corresponding to the low frequency component of the pixel value change can be excluded. Therefore, the display element can be detected with higher precision than the differential pixel value obtained by the difference between the input image data of the source of the image displayed as the display element and the output image data of the display element. The display is uneven.

以下,說明適用本發明之顯示不均檢測方法之顯示不均檢測裝置之實施形態。本發明之顯示不均檢測裝置,亦可以組裝於顯示元件之製程中之檢查線(未圖示)等之線上形式構成,亦可從檢查線分離而以獨立之單機形式來構成。 Hereinafter, an embodiment of a display unevenness detecting device to which the display unevenness detecting method of the present invention is applied will be described. The display unevenness detecting device of the present invention may be configured by being assembled on a line such as an inspection line (not shown) in the process of the display element, or may be separated from the inspection line and formed in a separate stand-alone form.

又,作為能以本發明之顯示不均檢測裝置檢測出之顯示不均之顯示元件,例如有液晶面板顯示器或電漿面板顯示器、有機EL面板顯示器等。以下實施形態中,係以顯示元件為液晶面板顯示器之情形為例進行說明。 Further, as the display element which can detect the display unevenness by the display unevenness detecting device of the present invention, for example, a liquid crystal panel display, a plasma panel display, an organic EL panel display or the like can be used. In the following embodiments, a case where the display element is a liquid crystal panel display will be described as an example.

如圖1所示,本實施形態之顯示不均檢測裝置1,係以單機形式構成,係從以CCD攝影機5拍攝液晶面板顯示器3(相當於顯示元件)顯示之測試圖案等影像所得之輸出影像 資料檢測出液晶面板顯示器3之顯示不均。顯示不均檢測裝置1,只要處理能力上無障礙,例如亦能以個人電腦等構成。 As shown in FIG. 1, the display unevenness detecting device 1 of the present embodiment is configured as a stand-alone image, and is an output image obtained by capturing a test pattern such as a test pattern displayed on the liquid crystal panel display 3 (corresponding to a display element) by the CCD camera 5. The data detects uneven display of the liquid crystal panel display 3. The display unevenness detecting device 1 can be configured by a personal computer or the like as long as it is unobstructed in processing capability.

顯示不均檢測裝置1具有CPU(中央處理裝置)、RAM(隨機存取記憶體)、ROM(唯讀記憶體)、硬碟等。CPU藉由執行存放於ROM或硬碟之程式來執行液晶面板顯示器3之顯示不均之檢測處理。 The display unevenness detecting device 1 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a hard disk, and the like. The CPU performs detection processing of display unevenness of the liquid crystal panel display 3 by executing a program stored in a ROM or a hard disk.

顯示不均檢測裝置1進行之液晶面板顯示器3之顯示不均之檢測處理,如圖2所示包含輸出影像資料取得處理(步驟S1)、定址及波紋除去處理(步驟S3)、微分處理(步驟S5)、微分閾值判定(一次閾值判定、二元化)處理(步驟S7)、不均強度計算處理(步驟S9)、不均強度閾值判定(二次閾值判定)處理(步驟S11)、以及結果輸出處理(步驟S13)。 The detection processing of the display unevenness of the liquid crystal panel display 3 by the unevenness detecting device 1 is displayed, and as shown in FIG. 2, the output image data obtaining process (step S1), the address and ripple removal processing (step S3), and the differential processing (step) are included. S5), differential threshold determination (primary threshold determination, binarization) processing (step S7), uneven intensity calculation processing (step S9), unevenness intensity threshold determination (secondary threshold determination) processing (step S11), and result Output processing (step S13).

步驟S1之輸出影像資料取得處理中,例如藉由從顯示不均檢測裝置1供應至液晶面板顯示器3之輸入影像資料使液晶面板顯示器3顯示測試圖案等影像,由顯示不均檢測裝置1取得來自已拍攝其顯示畫面之CCD攝影機5之視頻訊號作為液晶面板顯示器3之輸出影像資料。 In the output image data obtaining process of step S1, for example, the liquid crystal panel display 3 displays an image such as a test pattern by the input image data supplied from the display unevenness detecting device 1 to the liquid crystal panel display 3, and the display unevenness detecting device 1 acquires the image. The video signal of the CCD camera 5 on which the display screen has been taken is used as the output image data of the liquid crystal panel display 3.

此處,會產生於液晶面板顯示器3之顯示不均有亮度不均與顏色不均,本實施形態之顯示不均檢測裝置1能檢測出亮度不均與顏色不均之任一者。因此,於液晶面板顯示器3,係適當改變RGB值圖案而顯示適於亮度不均之檢測之影像或適於顏色不均之檢測之影像。接著,顯示不均檢測裝置1針對各影像進行以下步驟之顯示不均之檢測動 作。 Here, the display unevenness detecting device 1 of the present embodiment can detect any unevenness in brightness and color unevenness in the display of the liquid crystal panel display 3. Therefore, in the liquid crystal panel display 3, an image suitable for detection of uneven brightness or an image suitable for detection of uneven color is displayed by appropriately changing the RGB value pattern. Next, the display unevenness detecting device 1 performs detection of uneven display of the following steps for each image. Work.

步驟S3之定址處理,係將CCD攝影機5之CCD感測器之各像素分配至液晶面板顯示器3之各像素,從構成輸出影像資料之CCD感測器之各像素之像素值切割出液晶面板顯示器3之各像素之像素值。 In the address processing of step S3, each pixel of the CCD sensor of the CCD camera 5 is assigned to each pixel of the liquid crystal panel display 3, and the liquid crystal panel display is cut out from the pixel value of each pixel of the CCD sensor constituting the output image data. The pixel value of each pixel of 3.

此外,在顯示元件為有機EL面板顯示器或電漿面板顯示器等時,亦能將一個發光元件作為一個像素來進行定址處理。 Further, when the display element is an organic EL panel display or a plasma panel display or the like, one light-emitting element can also be addressed as one pixel.

此外,液晶面板顯示器3與CCD感測器分別具有將像素配置成矩陣狀之格子圖案。又,CCD攝影機5由於具有較液晶面板顯示器3多之像素,因此來自液晶面板顯示器3之一個像素之影像光係被CCD攝影機5之複數個像素接收。因此,液晶面板顯示器3之各像素之像素值,例如根據與該像素對應之CCD攝影機5之複數個像素中像素值最高之像素來決定。 Further, the liquid crystal panel display 3 and the CCD sensor respectively have a lattice pattern in which pixels are arranged in a matrix. Further, since the CCD camera 5 has more pixels than the liquid crystal panel display 3, the image light from one pixel of the liquid crystal panel display 3 is received by a plurality of pixels of the CCD camera 5. Therefore, the pixel value of each pixel of the liquid crystal panel display 3 is determined, for example, based on the pixel having the highest pixel value among the plurality of pixels of the CCD camera 5 corresponding to the pixel.

此時,CCD攝影機5只要具有液晶面板顯示器3之整數倍之像素,則不會於CCD攝影機5之像素週期與液晶面板顯示器3之像素周期之間產生相位差。因此,在液晶面板顯示器3之各像素以相同之像素值發光時,與各像素對應之CCD攝影機5之像素中像素值最高之像素彼此為相同之像素值。因此,於已拍攝液晶面板顯示器3之顯示影像之CCD攝影機5之攝影影像中不會產生波紋紋路。 At this time, if the CCD camera 5 has pixels that are an integer multiple of the liquid crystal panel display 3, a phase difference does not occur between the pixel period of the CCD camera 5 and the pixel period of the liquid crystal panel display 3. Therefore, when each pixel of the liquid crystal panel display 3 emits light at the same pixel value, the pixels having the highest pixel value among the pixels of the CCD camera 5 corresponding to each pixel have the same pixel value. Therefore, no corrugation is generated in the photographic image of the CCD camera 5 that has taken the display image of the liquid crystal panel display 3.

然而,若CCD攝影機5具有非液晶面板顯示器3之整數倍之數目之像素,則會於CCD攝影機5之像素週期與液 晶面板顯示器3之像素周期之間產生相位差。因此,在液晶面板顯示器3之各像素以相同之像素值發光時,與各像素對應之CCD攝影機5之像素中像素值最高之像素彼此不成為相同之像素值。此原因導致於已拍攝液晶面板顯示器3之顯示影像之CCD攝影機5之攝影影像中產生波紋紋路。 However, if the CCD camera 5 has a number of pixels that are not integer multiples of the liquid crystal panel display 3, it will be in the pixel period of the CCD camera 5 and the liquid. A phase difference occurs between the pixel periods of the crystal panel display 3. Therefore, when each pixel of the liquid crystal panel display 3 emits light at the same pixel value, the pixels having the highest pixel value among the pixels of the CCD camera 5 corresponding to the respective pixels do not have the same pixel value. This causes a corrugation pattern to be generated in the photographic image of the CCD camera 5 that has taken the display image of the liquid crystal panel display 3.

若在包含了此波紋紋路之狀態下直接將來自CCD攝影機5之輸出影像資料使用於液晶面板顯示器3之顯示不均之檢測,則有可能會導致顯示不均之誤檢測。 If the output image data from the CCD camera 5 is directly used for detecting the display unevenness of the liquid crystal panel display 3 in the state in which the corrugated texture is included, erroneous detection of display unevenness may occur.

因此,係在步驟S3進行定址處理與波紋除去處理。波紋除去處理,例如係利用本申請人在日本特開2004-317329號公報之申請中所提出之將CCD感測器之各像素與其周邊像素加算或予以平均化之手法,除去輸出影像資料中之波紋成分。 Therefore, the address processing and the ripple removal processing are performed in step S3. The corrugation removal process is, for example, a method of adding or averaging pixels of a CCD sensor and its peripheral pixels as proposed by the applicant in Japanese Patent Application Laid-Open No. 2004-317329, and removing the output image data. Corrugated composition.

此外,在顯示元件為有機EL面板顯示器或電漿面板顯示器等時,由於發光元件亦以矩陣狀之格子圖案配置,因此將同樣之波紋除去處理與定址處理一起進行係為有效。不過,波紋除去處理並非必需,在顯示不均之檢測時若波紋紋路之產生不會造成障礙時,則亦可省略波紋除去處理。 Further, when the display element is an organic EL panel display or a plasma panel display or the like, since the light-emitting elements are also arranged in a matrix lattice pattern, it is effective to perform the same ripple removal processing together with the address processing. However, the ripple removal processing is not essential, and if the occurrence of the corrugation is not caused by the detection of unevenness in display, the ripple removal processing may be omitted.

在步驟S5之微分處理,如圖3所示,進行液晶面板顯示器3之各像素之像素值之強調處理(步驟S51)、積分處理(步驟S51)、以及液晶面板顯示器3之各像素之像素值與積分像素值之差分處理(步驟S53)。 In the differential processing in step S5, as shown in FIG. 3, the pixel value of each pixel of the liquid crystal panel display 3 is emphasized (step S51), the integration processing (step S51), and the pixel value of each pixel of the liquid crystal panel display 3. The difference processing from the integrated pixel value (step S53).

在步驟S51之積分處理,係使用空間過濾器將在圖2之步驟S3進行之定址處理及波紋除去處理後之液晶面板顯 示器3之各像素之像素值與周邊像素之像素值平均化並予以積分,取得積分像素值。 In the integration process in step S51, the liquid crystal panel after the address processing and the ripple removal processing performed in step S3 of FIG. 2 is performed using a space filter. The pixel values of the pixels of the display 3 and the pixel values of the peripheral pixels are averaged and integrated to obtain an integrated pixel value.

此處所使用之空間過濾器,必須具有覆蓋會於液晶面板顯示器3產生之顯示不均之矩陣形狀。因此,空間過濾器具有與會於液晶面板顯示器3產生之顯示不均對應之核心大小。例如若顯示不均為最大時有可能具有液晶面板顯示器3之100×100像素量之大小,則使用於積分之空間過濾器亦為100×100之核心大小。亦即,各核心之值為「1」,係數為核心數之逆數(=1/(100×100))。 The space filter used herein must have a matrix shape covering the display unevenness which is generated by the liquid crystal panel display 3. Therefore, the spatial filter has a core size corresponding to the display unevenness generated by the liquid crystal panel display 3. For example, if the display is not the maximum, it is possible to have a size of 100×100 pixels of the liquid crystal panel display 3, and the spatial filter used for integration is also a core size of 100×100. That is, the value of each core is "1", and the coefficient is the inverse of the core number (=1/(100×100)).

此外,使用空間過濾器進行步驟S51之積分處理時,若欲積分之對象像素(積分像素值之取得對象像素)接近液晶面板顯示器3之上下左右之外周邊之任一邊,則空間過濾器之一部分核心列會超出液晶面板顯示器3之外側。 Further, when the integration process of step S51 is performed using the spatial filter, if the target pixel to be integrated (the target pixel of the integrated pixel value) is close to either the upper, lower, left, and right sides of the liquid crystal panel display 3, one part of the spatial filter The core column will be beyond the outside of the LCD panel display 3.

此處,參照圖4及圖5,以使用積分用之空間過濾器40(與顯示元件之顯示不均形狀及大小對應之核心大小之空間過濾器)將液晶面板顯示器3之各像素之像素值予以積分之情形為例進行說明。此外,此處說明之例中,如圖4之最右方或圖5之最下方分別顯示之樣圖所示,係示意地顯示空間過濾器40之核心大小為7×7。此空間過濾器40係將各核心值設為「1」,將各核心之係數設為全核心數之逆數(=1/(7×7))。 Here, referring to FIG. 4 and FIG. 5, the pixel value of each pixel of the liquid crystal panel display 3 is used by using the spatial filter 40 for integration (a spatial filter having a core size corresponding to the display unevenness and size of the display element). The case of integrating is taken as an example for explanation. Further, in the example described here, as shown in the right side of Fig. 4 or the bottom view of Fig. 5, respectively, the core size of the space filter 40 is schematically shown to be 7 × 7. This spatial filter 40 sets each core value to "1" and sets the coefficient of each core to the inverse of the total number of cores (=1/(7 × 7)).

首先,圖4中顯示空間過濾器40相對液晶面板顯示器3之左邊31之位置關係與有效核心列之關係。在此例中,在以空間過濾器40將從左邊31起至第3像素為止之像素 予以積分時(參照從圖4上方至第3個之例),空間過濾器40左側之核心列(1列~3列)係超過液晶面板顯示器3之左邊31而超出至外側。 First, the relationship between the positional relationship of the spatial filter 40 with respect to the left side 31 of the liquid crystal panel display 3 and the effective core column is shown in FIG. In this example, the pixel from the left 31 to the third pixel in the spatial filter 40 When integrating (refer to the example from the top of FIG. 4 to the third example), the core column (1 column to 3 columns) on the left side of the space filter 40 is beyond the left side 31 of the liquid crystal panel display 3 and extends beyond the outside.

由於在超出液晶面板顯示器3外側之核心列不存在對應之像素列,因此在對此核心列進行積分處理時必須使之無效。因此,針對超出左邊31外側之空間過濾器40之核心列,係使核心無效(核心值=「0」)。 Since there is no corresponding pixel column in the core column beyond the outside of the liquid crystal panel display 3, it must be invalidated when integrating the core column. Therefore, for the core column of the space filter 40 outside the left side 31, the core is invalidated (core value = "0").

又,在以空間過濾器40將從左邊31起至第4像素之後之像素予以積分時(參照從圖4上方起第4個之後之例),空間過濾器40整體收容在液晶面板顯示器3內側。此情形下,由於針對全核心分別存在對應之像素,因此原則上無使之無效之核心(列)。 Further, when the pixels from the left side 31 to the fourth pixel are integrated by the space filter 40 (refer to the example after the fourth from the top in FIG. 4), the space filter 40 is entirely housed inside the liquid crystal panel display 3. . In this case, since there are corresponding pixels for the entire core, there is in principle no core (column) that invalidates it.

此外,針對存在於液晶面板顯示器3右邊之附近區域內之積分對象像素,只要使用將圖4左右反轉後之內容之空間過濾器40進行積分處理即可。 Further, the integration target pixel existing in the vicinity of the right side of the liquid crystal panel display 3 may be subjected to integration processing using the spatial filter 40 that reverses the content of FIG.

如圖5所示,在空間過濾器40接近液晶面板顯示器3之上邊35時亦同樣地進行。亦即,積分對象像素位於從上邊35至第3像素時(參照從圖5右方至第3個之例),空間過濾器40上側之核心列(1列~3列)係超過液晶面板顯示器3之上邊35而超出至外側。因此,針對超出上邊35外側之空間過濾器40之核心列,係使核心無效(核心值=「0」)。 As shown in FIG. 5, the same is performed when the space filter 40 approaches the upper side 35 of the liquid crystal panel display 3. That is, when the integration target pixel is located from the upper side 35 to the third pixel (refer to the example from the right to the third in FIG. 5), the core column (1 column to 3 column) on the upper side of the spatial filter 40 exceeds the liquid crystal panel display. 3 above the edge 35 and beyond to the outside. Therefore, the core is invalidated for the core column of the space filter 40 outside the upper side 35 (core value = "0").

又,在積分對象像素為從上邊35起至第4像素之後之情形(參照從圖5右方起第4個~最左方之例),空間過濾器40整體收容在液晶面板顯示器3內側,因此原則上不需於 空間過濾器40設定使之無效之核心(列)。 In addition, when the integration target pixel is from the upper side 35 to the fourth pixel (refer to the fourth to leftmost example from the right in FIG. 5), the space filter 40 is entirely housed inside the liquid crystal panel display 3. Therefore, in principle, it is not necessary The spatial filter 40 sets a core (column) that is rendered ineffective.

此外,針對存在於液晶面板顯示器3下邊之附近區域內之積分對象像素,只要使用將圖5左右反轉後之內容之空間過濾器40進行積分處理即可。 In addition, the integration target pixel existing in the vicinity of the lower side of the liquid crystal panel display 3 may be subjected to integration processing using the spatial filter 40 that reverses the content of FIG.

此外,在使用背光之液晶面板顯示器3中,特別是於畫面之外周緣部配置光源並使用導光板導光至畫面中央之情形下,藉由導光板中之光之減弱,易產生畫面中央亮度相較於畫面外周邊附近之亮度相對低之陰影。此陰影在電漿面板顯示器或有機EL面板顯示器等不使用背光之顯示元件亦會發生。 Further, in the liquid crystal panel display 3 using the backlight, particularly in the case where the light source is disposed on the peripheral portion of the screen and the light guide is used to guide the light to the center of the screen, the brightness of the light guide plate is weakened, and the central brightness of the screen is easily generated. A relatively low-density shadow near the periphery of the screen. This shadow also occurs in a display panel that does not use a backlight, such as a plasma panel display or an organic EL panel display.

因此,本實施形態中,在積分對象像素位於液晶面板顯示器3外周邊附近時,係使空間過濾器40具有與接近之邊之延伸方向相同方向之方向性,並降低與該邊之延伸方向正交之方向之感度,來對積分像素值進行陰影修正。 Therefore, in the present embodiment, when the integration target pixel is located in the vicinity of the outer periphery of the liquid crystal panel display 3, the spatial filter 40 has the directivity in the same direction as the direction in which the approaching edge is extended, and the direction in which the edge extends is reduced. The sensitivity of the direction of intersection, to shadow correction of the integral pixel value.

例如,在圖4所示之液晶面板顯示器3之左邊31附近,在從左邊31涵蓋至感度修正線32為止之7像素寬度、左邊31之附近區域33易產生陰影。此情形下,當藉由空間過濾器40積分之對象像素存在於附近區域33內時,係使空間過濾器40具有往左邊31之延伸方向之方向性。接著,將與左邊31正交之方向(橫方向)之有效核心列原則上設為3列,並將核心大小設為縱×橫=7×3。 For example, in the vicinity of the left side 31 of the liquid crystal panel display 3 shown in FIG. 4, a 7-pixel width from the left side 31 to the sensitivity correction line 32 and a region 33 near the left side 31 are likely to be shaded. In this case, when the target pixel integrated by the spatial filter 40 exists in the vicinity region 33, the spatial filter 40 is made to have directivity toward the extending direction of the left side 31. Next, the effective core column in the direction orthogonal to the left side 31 (lateral direction) is set to three columns in principle, and the core size is set to vertical × horizontal = 7 × 3.

不過,圖4最上方之例中,由於重疊於空間過濾器40之中央積分對象像素左側之像素之欲使有效之核心列從空間過濾器40之左邊31超出至外側,因此例外地將有效核 心大小設為縱×橫=7×2。 However, in the example at the top of FIG. 4, since the pixel on the left side of the central integration object pixel superimposed on the spatial filter 40 is intended to make the effective core column out of the left side 31 of the spatial filter 40 to the outside, the effective core will be exceptionally The heart size is set to vertical × horizontal = 7 × 2.

同樣地,在圖5所示之液晶面板顯示器3之上邊35附近,在從上邊35涵蓋至感度修正線36為止之7像素寬度、上邊35之附近區域37易產生陰影。此情形下,當藉由空間過濾器40積分之對象像素存在於附近區域37內時,係使空間過濾器40具有往上邊35之延伸方向之方向性。接著,將與上邊35正交之方向(縱方向)之有效核心列原則上設為3列,並將核心大小設為縱×橫=3×7。 Similarly, in the vicinity of the upper side 35 of the liquid crystal panel display 3 shown in FIG. 5, the 7-pixel width from the upper side 35 to the sensitivity correction line 36 and the vicinity 37 of the upper side 35 are likely to be shaded. In this case, when the target pixel integrated by the spatial filter 40 exists in the vicinity region 37, the spatial filter 40 is made to have directivity toward the extending direction of the upper side 35. Next, the effective core column in the direction orthogonal to the upper side 35 (longitudinal direction) is set to three columns in principle, and the core size is set to vertical × horizontal = 3 × 7.

不過,圖5最上方之例中,由於重疊於積分對象像素上側之像素之欲使有效之核心列從空間過濾器40之上邊35超出至外側,因此例外地將有效核心大小設為縱×橫=2×7。 However, in the example at the top of FIG. 5, since the pixel overlapping the pixel on the upper side of the integration target pixel is intended to cause the effective core column to extend from the upper edge 35 of the spatial filter 40 to the outside, the effective core size is exceptionally set to vertical × horizontal. = 2 × 7.

又,在從液晶面板顯示器3之右邊涵蓋至感度修正線(未圖示)為止之7像素寬度、右邊之附近區域內所存在之積分對象像素易產生陰影時,只要使用將圖4左右反轉後之內容之空間過濾器40進行積分處理即可。同樣地,在從液晶面板顯示器3之下邊涵蓋至感度修正線(未圖示)為止之7像素寬度、下邊之附近區域內所存在之積分對象像素易產生陰影時,只要使用將圖5左右反轉後之內容之空間過濾器40進行積分處理即可。 In addition, when the integration target pixel existing in the vicinity of the 7-pixel width and the right side from the right side of the liquid crystal panel display 3 to the sensitivity correction line (not shown) is likely to be shaded, the image is inverted as shown in FIG. The space filter 40 of the latter content can be integrated. Similarly, when the pixel of the integral pixel existing in the vicinity of the 7-pixel width and the lower side from the lower side of the liquid crystal panel display 3 to the sensitivity correction line (not shown) is likely to be shaded, the image is left and right as shown in FIG. The spatial filter 40 of the rotated content can be integrated.

如上述,針對液晶面板顯示器3外周邊附近之積分對象像素,藉由使用使使用之空間過濾器40具有往接近之邊之延伸方向之方向性、並將有效核心大小設為縱×橫=7×2或2×7、或7×3或3×7之空間過濾器40,即能在將積分對象像素之像素值予以積分時同時進行陰影修正。 As described above, the integration target pixel in the vicinity of the outer periphery of the liquid crystal panel display 3 is made to have the directivity of the direction in which the spatial filter 40 is used to extend, and the effective core size is set to vertical × horizontal = 7 The spatial filter 40 of ×2 or 2×7, or 7×3 or 3×7, can perform shadow correction simultaneously when integrating the pixel values of the integration target pixels.

此外,當積分對象像素存在於較感度修正線32,36更靠液晶面板顯示器3內側時,使用於其像素之積分之空間過濾器40之有效核心大小原則上能設為7×7。不過,在積分對象像素從附近區域33,37內超過感度修正線32,36而移至液晶面板顯示器3內側之當中,空間過濾器40之有效核心大小會從縱×橫=7×3或3×7改變為3×7或7×7,由於積分特性急遽變化,因此不佳。 Further, when the integration target pixel exists on the inner side of the liquid crystal panel display 3 with the sensitivity correction lines 32, 36, the effective core size of the spatial filter 40 for integration of the pixels can be set to 7 × 7 in principle. However, when the integration target pixel moves from the vicinity of the region 33, 37 beyond the sensitivity correction line 32, 36 to the inside of the liquid crystal panel display 3, the effective core size of the spatial filter 40 will vary from vertical to horizontal = 7 x 3 or 3. The change of ×7 to 3 × 7 or 7 × 7 is not preferable because the integral characteristics change rapidly.

因此,亦可在位於較附近區域33,37內側之積分對象像素還位於感度修正線32,36附近時,隨著從附近區域33,37遠離,使空間過濾器40之有效核心大小徐徐變化成縱×橫=7×5或5×7、7×7。 Therefore, when the integration target pixels located inside the relatively near regions 33, 37 are also located near the sensitivity correction lines 32, 36, the effective core size of the spatial filter 40 is gradually changed as it is moved away from the nearby regions 33, 37. Vertical × horizontal = 7 × 5 or 5 × 7, 7 × 7.

此外,上述縱×橫=7×7之核心大小不過為說明上之一例,空間過濾器之核心大小只要為與會產生於液晶面板顯示器3之顯示不均對應之尺寸,可為任意。又,針對用在接近液晶面板顯示器3外周邊之積分對象像素之積分之空間過濾器,可如圖4及圖5所示之空間過濾器40,使與接近之邊之延伸方向正交之方向之有效核心列數為可變,使感度具有方向性。 Further, the core size of the above-mentioned vertical × horizontal = 7 × 7 is merely an example of the above description, and the core size of the spatial filter may be any size as long as it corresponds to the display unevenness which may occur on the liquid crystal panel display 3. Further, for the spatial filter used for integration of the integration target pixel near the outer periphery of the liquid crystal panel display 3, the spatial filter 40 shown in Figs. 4 and 5 can be made to be orthogonal to the direction in which the approaching edge extends. The number of effective core columns is variable, making the sensitivity directional.

例如,在空間過濾器具有15×15之核心大小時,能隨著積分對象像素從附近區域33,37遠離,使空間過濾器之有效核心大小從縱×橫=15×3或3×15依序以15×5或5×15、15×7或7×15、15×9或9×15、15×11或11×15、15×13或13×15、15×15之方式經過多個階段地變化。 For example, when the spatial filter has a core size of 15×15, the effective core size of the spatial filter can be made from vertical/horizontal=15×3 or 3×15 as the integral object pixel moves away from the nearby regions 33, 37. The sequence passes through multiples of 15×5 or 5×15, 15×7 or 7×15, 15×9 or 9×15, 15×11 or 11×15, 15×13 or 13×15, 15×15. Change in stages.

此外,在無需考量上述之陰影修正之情形,亦可如圖4 及圖5所示之空間過濾器40,將與作為無效核心之液晶面板顯示器3外周邊側之核心列相同或接近其之列數之核心,在液晶面板顯示器3中央側之核心列予以無效化。如此,能使在與液晶面板顯示器3之左邊31或上邊35(或者右邊或下邊)正交之方向之空間過濾器40之方向性(感度)對積分對象像素為均等。亦即,在無需考量陰影修正時,可任意決定是否於液晶面板顯示器3中央側亦設定無效之核心列。 In addition, in the case of not needing to consider the above-mentioned shadow correction, it can also be as shown in FIG. The space filter 40 shown in FIG. 5 is the same as the core of the outer peripheral side of the liquid crystal panel display 3 as an invalid core, or is close to the core of the liquid crystal panel display 3, and is invalidated in the core row on the center side of the liquid crystal panel display 3. . Thus, the directivity (sensitivity) of the spatial filter 40 in the direction orthogonal to the left side 31 or the upper side 35 (or the right side or the lower side) of the liquid crystal panel display 3 can be made equal to the integration target pixel. That is, when it is not necessary to consider the shading correction, it is possible to arbitrarily determine whether or not the invalid core column is also set on the center side of the liquid crystal panel display 3.

又,在液晶面板顯示器3之四角,例如圖6所示,左邊31與上邊35之兩個附近區域33,37係重複。因此,當於附近區域33,37重覆之區域39內有積分對象像素時,只要合計以圖4及圖5所示之空間過濾器40分別予以無效化之核心列,將空間過濾器40之左右及上下之各2~3列之核心予以無效即可。此情形下亦同樣地,在無需考量陰影修正時,可任意決定是否於液晶面板顯示器3中央側亦將無效之核心列分別設定於縱方向及橫方向。 Further, at the four corners of the liquid crystal panel display 3, for example, as shown in Fig. 6, the two adjacent regions 33, 37 of the left side 31 and the upper side 35 are repeated. Therefore, when there is an integration target pixel in the region 39 overlapped in the vicinity 33, 37, the spatial filter 40 is added to the core column which is invalidated by the spatial filter 40 shown in Figs. 4 and 5, respectively. The cores of the 2~3 columns of the left and right and the upper and lower columns can be invalidated. Also in this case, when it is not necessary to consider the shading correction, it is possible to arbitrarily determine whether or not the core row which is ineffective on the center side of the liquid crystal panel display 3 is set in the vertical direction and the lateral direction, respectively.

此外,液晶面板顯示器3之顯示不均,若有於縱橫兩方向分別具有某程度之尺寸者,則亦會有縱方向或橫方向之尺寸較小之線狀不均。相較於於縱橫兩方向具有某程度之尺寸之顯示不均,線狀之不均由於不均之範圍(面積)較小,因此若進行積分處理則會被周邊像素之像素值拉引而使積分像素值變低,而有難以檢測出作為顯示不均之傾向。 Further, the display of the liquid crystal panel display 3 is uneven, and if it has a certain size in both the vertical and horizontal directions, there is a linear unevenness in which the size in the longitudinal direction or the lateral direction is small. Compared with the display unevenness of a certain size in both the vertical and horizontal directions, the unevenness of the line is small due to the unevenness (area). Therefore, if the integration process is performed, the pixel value of the peripheral pixels is pulled. The integral pixel value becomes low, and it is difficult to detect a tendency to be uneven.

因此,在檢測於縱方向或橫方向尺寸較小之線狀不均時進行之圖2之步驟S5之微分處理,亦可如圖7所示,在 同樣地執行圖3之步驟S51之積分處理及步驟S53之差分處理前,進行強調處理(步驟S50)作為前處理。 Therefore, the differential processing of step S5 of FIG. 2 performed when the linear unevenness of the dimension in the longitudinal direction or the lateral direction is small is detected, as shown in FIG. Similarly, before the integration process of step S51 of FIG. 3 and the difference process of step S53 are performed, emphasis processing (step S50) is performed as pre-processing.

在步驟S50之強調處理,係將縱方向或橫方向之線狀不均之像素值在線狀不均之延伸方向予以平均化使雜訊成分減低。圖8係顯示進行延伸於縱方向之線狀不均之強調處理之情形。此情形下,係使用與線狀不均同樣地於縱方向具有方向性(排列有有效核心)之強調處理用之空間過濾器50(強調用空間過濾器)。此空間過濾器50,以n×n之核心大小僅於其橫方向中央設有縱1列之有效核心(核心值=「1」),其他則設為無效核心(核心值=「0」)。有效核心之係數係有效核心數n之逆數(=1/n)。此外,圖8中係顯示n=9之情形。 In the emphasis processing in step S50, the pixel values of the linear unevenness in the vertical direction or the lateral direction are averaged in the direction in which the linear unevenness is extended to reduce the noise component. Fig. 8 is a view showing an emphasis processing for performing linear unevenness extending in the longitudinal direction. In this case, the space filter 50 (the space filter for emphasis) for the emphasis processing having the directivity (arranged with the effective core) in the longitudinal direction is used in the same manner as the linear unevenness. The spatial filter 50 has an effective core of a vertical column (core value = "1") in the center of the horizontal direction of n × n, and the other is set as an invalid core (core value = "0"). . The coefficient of the effective core is the inverse of the effective core number n (=1/n). In addition, the case of n=9 is shown in FIG.

在使用此空間過濾器50之圖7之步驟S50之線狀不均之強調處理中,線狀不均部分之像素值被平均化為與縱方向之有效核心數n相同之周邊像素之像素值。藉此,線狀不均之縱方向之邊界被明確化,而容易檢測出作為顯示不均。 In the emphasis processing of the linear unevenness of step S50 of FIG. 7 using the spatial filter 50, the pixel values of the linear uneven portion are averaged to the pixel values of the peripheral pixels which are the same as the effective core number n in the longitudinal direction. . Thereby, the boundary of the longitudinal direction of the linear unevenness is clarified, and it is easy to detect the display unevenness.

此外,延伸於橫方向之線狀不均之強調處理,只要使用於橫方向具有方向性之強調處理用之空間過濾器(未圖示)即可。又,針對點狀密集之點狀缺陷,由於藉由進行此強調處理,像素值即配合周邊像素之像素值而下降,因此作為顯示不均不易誤檢測。 Further, the emphasis processing for extending the linear unevenness in the lateral direction may be a space filter (not shown) for the emphasis processing in the lateral direction. Further, since the dot-dense dot-like defect is subjected to the emphasis processing, the pixel value is lowered in accordance with the pixel value of the peripheral pixel, and thus the display unevenness is less likely to be erroneously detected.

在進行以上說明之步驟S50之強調處理時,係使用強調處理後之液晶面板顯示器3之各像素之像素值進行圖7 之步驟S51之積分處理,以取得積分像素值。在此積分處理時,亦可如參照圖4及圖5所說明般,依照積分對象像素與液晶面板顯示器3外周邊之位置關係,使空間過濾器50一部分之核心列無效化。 When performing the emphasis processing of step S50 described above, the pixel values of the pixels of the liquid crystal panel display 3 after the emphasis processing are performed. The integration process of step S51 is performed to obtain the integrated pixel value. At the time of the integration processing, as described with reference to FIGS. 4 and 5, the core column of a part of the space filter 50 may be invalidated in accordance with the positional relationship between the integration target pixel and the outer periphery of the liquid crystal panel display 3.

其次,在圖3或圖7之步驟S53之差分處理,求出進行步驟S51之積分處理前之液晶面板顯示器3之各像素之像素值與步驟S51之積分處理後之積分像素值之差分,取得此差分作為液晶面板顯示器3之各像素之微分像素值。以上,圖2之步驟S5之微分處理即結束。 Next, in the difference processing of step S53 of FIG. 3 or FIG. 7, the difference between the pixel value of each pixel of the liquid crystal panel display 3 before the integration processing of step S51 and the integral pixel value after the integration processing of step S51 is obtained. This difference is a differential pixel value of each pixel of the liquid crystal panel display 3. Above, the differential processing of step S5 of Fig. 2 ends.

此外,顯示於圖3之步驟S51旁邊之2個圖表,係顯示步驟S51之積分處理前與處理後之液晶面板顯示器3之某橫方向之1線中之像素值分布。比較此2個圖表後可知,在進行圖3或圖7之步驟S51之積分處理後,係抽出液晶面板顯示器3之像素值變化之低頻成分。在涵蓋液晶面板顯示器3之像素整體產生像素值之偏置時,於所抽出之低頻成分會包含此偏置量。 Further, the two graphs displayed next to step S51 of FIG. 3 show the distribution of pixel values in one of the horizontal directions of the liquid crystal panel display 3 before and after the integration processing in step S51. Comparing the two graphs, it is understood that after the integration processing of step S51 of FIG. 3 or FIG. 7 is performed, the low-frequency component of the pixel value change of the liquid crystal panel display 3 is extracted. When the pixel of the liquid crystal panel display 3 is entirely offset by the pixel value, the extracted low frequency component will contain the offset amount.

又,圖3之步驟S53旁邊所示之圖表,係顯示步驟S53之差分處理後之液晶面板顯示器3之某橫方向之1線中之像素值分布。參照此圖表後可知,在進行上述之圖3或圖7之步驟S53之差分處理後,係僅抽出已從液晶面板顯示器3之像素值變化除去低頻成分後之高頻成分。在涵蓋液晶面板顯示器3之像素整體產生像素值之偏置時,偏置量亦作為低頻成分被排除。 Further, the graph shown in the step S53 of FIG. 3 is a display of the pixel value distribution in one of the horizontal directions of the liquid crystal panel display 3 after the difference processing in step S53. Referring to this graph, it is understood that after performing the difference processing in step S53 of FIG. 3 or FIG. 7 described above, only the high-frequency components after the low-frequency components have been removed from the pixel value change of the liquid crystal panel display 3 are extracted. When the pixel of the liquid crystal panel display 3 is entirely offset by the pixel value, the offset amount is also excluded as a low frequency component.

因此,在圖2之步驟S5之微分處理中,藉由進行上述 之圖3或圖7之步驟S51或步驟S53之積分處理或差分處理,與求出對象像素與其周邊像素之像素值之差分之一般微分處理相較,能以更高精度檢測出因顯示不均導致於與周邊像素之間有像素值之間隙之液晶面板顯示器3之像素區域。 Therefore, in the differential processing of step S5 of FIG. 2, by performing the above The integration processing or the difference processing of the step S51 or the step S53 of FIG. 3 or FIG. 7 can detect the unevenness of the display with higher precision than the general differential processing for determining the difference between the pixel values of the target pixel and the peripheral pixels thereof. A pixel area of the liquid crystal panel display 3 that results in a gap between pixel values and peripheral pixels.

此外,在圖3之步驟S51之積分處理,係將已在圖2之步驟S3進行之定址處理及波紋除去處理後之液晶面板顯示器3之各像素之像素值予以積分。相對於此,在圖7之步驟S51之積分處理,係將步驟S50之強調處理後之液晶面板顯示器3之各像素之像素值予以積分。亦即,即使同樣係積分處理,用於積分處理之液晶面板顯示器3之各像素之像素值,圖3之步驟S51之積分處理與圖7之步驟S51之積分處理係相異。 Further, in the integration processing of step S51 of FIG. 3, the pixel values of the respective pixels of the liquid crystal panel display 3 which have been subjected to the address processing and the ripple removal processing performed in step S3 of FIG. 2 are integrated. On the other hand, in the integration processing of step S51 of FIG. 7, the pixel values of the respective pixels of the liquid crystal panel display 3 after the emphasis processing of step S50 are integrated. That is, even if the pixel value of each pixel of the liquid crystal panel display 3 for integration processing is also the same as the integration processing, the integration processing of step S51 of Fig. 3 is different from the integration processing of step S51 of Fig. 7.

因此,在將於縱橫兩方向具有某程度之尺寸之不均與縱方向或橫方向之線狀不均均檢測出作為顯示不均時,需分別進行圖3之步驟之微分處理與圖7之步驟之微分處理。此情形下,只要將圖3之步驟之微分處理與圖7之步驟之微分處理串列地或平行地進行即可。 Therefore, when the unevenness of a certain degree in both the longitudinal and lateral directions and the linear unevenness in the longitudinal direction or the lateral direction are detected as display unevenness, the differential processing of the steps of FIG. 3 and FIG. 7 are separately performed. Differential processing of steps. In this case, the differential processing of the steps of FIG. 3 and the differential processing of the steps of FIG. 7 may be performed in series or in parallel.

此處,參照圖9及圖10說明圖2之步驟S5之微分處理前後之液晶面板顯示器3之輸出影像資料之影像與像素值。 Here, the image and pixel value of the output image data of the liquid crystal panel display 3 before and after the differential processing of step S5 of FIG. 2 will be described with reference to FIGS. 9 and 10.

首先,於圖2之步驟S5之微分處理前之液晶面板顯示器3之輸出影像資料中存在有圖9(a)所示之影像之顯示不均。此時之液晶面板顯示器3之對應像素之像素值,為如 圖9(b)之值。此外,為了使說明容易,圖9(b)中,並非以RGB各值而係以將顯示畫面濃淡之亮度正規化後之值(平均值=100)顯示各像素之像素值。 First, the display unevenness of the image shown in FIG. 9(a) exists in the output image data of the liquid crystal panel display 3 before the differential processing in step S5 of FIG. At this time, the pixel value of the corresponding pixel of the liquid crystal panel display 3 is as Figure 9 (b). In addition, in order to make the description easy, in FIG. 9(b), the pixel value of each pixel is not displayed by the value (average value = 100) in which the brightness of the display screen is normalized by the RGB values.

因此,若對圖9(b)所示之像素值施以圖2之步驟S5之微分處理,則如圖10(b)所示,僅像素值較平均高之像素其像素值成為1000,其他像素之像素值則為0。若將此以影像表示,則如圖10(a)所示,顯示不均與其周邊之對比差,較圖9(a)所示之微分處理前之對比差大,顯示不均變得明確。 Therefore, if the pixel value shown in FIG. 9(b) is subjected to the differential processing of step S5 of FIG. 2, as shown in FIG. 10(b), only the pixel whose pixel value is higher than the average value has a pixel value of 1000, and the like. The pixel value of the pixel is 0. When this is represented by an image, as shown in FIG. 10(a), the contrast difference between the display and the periphery is large, and the contrast difference before the differential processing shown in FIG. 9(a) is large, and the display unevenness becomes clear.

其次,在圖2之步驟S7之微分閾值判定(一次閾值判定)處理,係將與圖10(b)所示之像素值、亦即液晶面板顯示器3之各像素之微分像素值與不均判定閾值比較後予以二元化。不均判定閾值係用以藉由微分像素值判斷是否為液晶面板顯示器3之顯示不均有可能已產生之區域(顯示不均之產生區域)之像素之閾值。 Next, the differential threshold determination (primary threshold determination) processing in step S7 of FIG. 2 determines the pixel value of FIG. 10(b), that is, the differential pixel value of each pixel of the liquid crystal panel display 3, and the unevenness determination. The threshold is compared and then binarized. The unevenness determination threshold is used to determine, by the differential pixel value, whether it is a threshold value of a pixel of a region (a region where unevenness is generated) in which the display of the liquid crystal panel display 3 may not be generated.

接著,如圖11所示,對微分像素值超過不均判定閾值之像素分配標籤值,對微分像素值為不均判定閾值以下之像素分配「0」。標籤值,係將超過不均判定閾值之像素相鄰之集合體作為1個顯示不均之產生區域,對各顯示不均之產生區域唯一賦予之值。因此,於相同顯示不均之產生區域內之像素分配相同標籤值。此外,於標籤值係使用「1」以上之整數。 Next, as shown in FIG. 11, the tag value is assigned to the pixel whose differential pixel value exceeds the unevenness determination threshold value, and "0" is assigned to the pixel whose differential pixel value is equal to or less than the unevenness determination threshold value. The tag value is a value obtained by uniquely assigning a region in which the display unevenness is generated, as an area in which the pixels adjacent to the unevenness determination threshold are adjacent to each other. Therefore, pixels in the same display unevenness generating area are assigned the same tag value. In addition, an integer of "1" or more is used for the tag value.

其次,在圖2之步驟S9之不均強度計算處理,就各顯示不均之產生區域計算顯示不均之強度。顯示不均之強 度,例如能使用Semiconductor Equipment and Materials International(SEMI註冊商標)規格化後之SEMU(SEMI MURA)值。此處,說明SEMU值之計算方法。 Next, in the unevenness intensity calculation processing of step S9 of Fig. 2, the intensity of display unevenness is calculated for each generation area of display unevenness. Showing unevenness For example, the SEMU (SEMI MURA) value normalized by Semiconductor Equipment and Materials International (SEMI registered trademark) can be used. Here, a method of calculating the SEMU value will be described.

SEMU值之計算,必需有顯示不均之產生區域之平均對比Cx、顯示不均之產生區域之面積Sx、人類之察覺極限之顯示不均之濃度Cjnd。平均對比Cx係在將顯示不均之產生區域之周邊像素之亮度設為100%時之以百分比表示之顯示不均之產生區域之亮度(區域內像素之亮度平均值)。面積Sx係以mm2表示。察覺極限之顯示不均之濃度Cjnd係以顯示不均之產生區域之面積Sx之函數F(Sx)表示。 For the calculation of the SEMU value, it is necessary to have an average contrast Cx of the area where the unevenness is generated, an area Sx of the area where the unevenness is generated, and a density Cjnd of the display unevenness of the human limit of detection. The average contrast Cx is the luminance (the average value of the luminance of the pixels in the area) of the display unevenness expressed as a percentage when the brightness of the peripheral pixels of the display unevenness generation area is set to 100%. The area Sx is expressed in mm 2 . The concentration Cjnd of the display unevenness of the detection limit is expressed by a function F(Sx) indicating the area Sx of the generation area of the unevenness.

針對顯示不均之各產生區域求出上述之平均對比Cx時,必需於各產生區域設定前景(Fore Ground:FG)與背景(Back Ground:BG)。例如,在圖9(a)及圖10(a)顯示之形狀之顯示不均之產生區域之情形,係如圖12所示,顯示不均之產生區域為FG,從FG起相隔2像素之周邊2像素寬度之環狀區域為BG。因此,針對屬於FG之各像素與屬於BG之各像素,分別求出平均亮度值,設為FG值及BG值。 When the above-described average contrast Cx is obtained for each of the regions in which the display is uneven, it is necessary to set the foreground (Fore Ground: FG) and the background (Back Ground: BG) in each of the generated regions. For example, in the case where the display unevenness is generated in the shapes shown in FIGS. 9(a) and 10(a), as shown in FIG. 12, the display unevenness generation area is FG, which is separated by 2 pixels from the FG. The annular area of the surrounding 2 pixel width is BG. Therefore, the average luminance value is obtained for each pixel belonging to the FG and each pixel belonging to the BG, and is set to an FG value and a BG value.

其次,使用下式(1)Cx=(FG值-BG值)/BG值………(1),從FG值及BG值求出平均對比Cx。 Next, using the following formula (1) Cx = (FG value - BG value) / BG value (...), the average contrast Cx is obtained from the FG value and the BG value.

又,使用下式(2)Cjnd=F(Sx)=1.97×(1/Sx0.33)+0.72………(2),求出察覺極限之顯示不均之濃度Cjnd。 Further, using the following formula (2) Cjnd=F(Sx)=1.97×(1/Sx 0.33 )+0.72 (2), the concentration Cjnd of the display unevenness of the detection limit is obtained.

接著,使用下式(3) SEMU值=| Cx |/Cjnd………(3),求出SEMU值。 Next, use the following formula (3) SEMU value = | Cx | / Cjnd... (3), and the SEMU value is obtained.

如以上,由於將平均對比Cx或面積Sx使用於SEMU值之計算,因此必需知道顯示不均之產生區域之正確形狀。從此點來看,針對進行圖7之步驟S50之強調處理而特定出顯示不均之產生區域之線狀不均,亦可從藉由SEMU值計算不均強度之對象排除。其理由在於,在線狀不均之情形,作為顯示不均之產生區域被辨識之形狀,可能會藉由前段之強調處理而從原本之線狀不均形狀些許變化之故。 As above, since the average contrast Cx or the area Sx is used for the calculation of the SEMU value, it is necessary to know the correct shape of the display unevenness generating region. From this point of view, the linear unevenness of the region in which the display unevenness is specified for the emphasis processing in step S50 of FIG. 7 can be excluded from the object of calculating the unevenness intensity by the SEMU value. The reason for this is that in the case where the line is uneven, the shape in which the display unevenness is generated may be slightly changed from the original linear uneven shape by the emphasis processing in the previous stage.

再者,在圖2之步驟S11之不均強度閾值判定(二次閾值判定)處理,係將在步驟S9計算之顯示不均之產生區域之不均強度之值(SEMU值)與強度閾值比較。強度閾值係用以藉由不均強度之值判定最終檢測出作為顯示不均之顯示不均之產生區域之閾值。此強度閾值,設定為檢測出作為顯示不均之顯示不均產生區域之最低不均強度值。 Furthermore, the unevenness intensity threshold determination (secondary threshold determination) processing in step S11 of FIG. 2 compares the value of the unevenness (SEMU value) of the generation unevenness of the display unevenness calculated in step S9 with the intensity threshold. . The intensity threshold is used to determine, by the value of the unevenness intensity, a threshold value at which a region of occurrence of display unevenness as display unevenness is finally detected. The intensity threshold is set to detect the lowest unevenness intensity value of the display unevenness generation area which is display unevenness.

接著,不均強度值超過強度閾值之顯示不均之產生區域,係檢測出作為顯示不均。另一方面,不均強度值不超過強度閾值之顯示不均之產生區域,則不檢測出作為顯示不均。所檢測出之顯示不均,最後在步驟S13之結果輸出處理中,將液晶面板顯示器3中之像素位置與不均強度值建立關聯關係後,作為顯示不均之檢測結果資訊輸出至顯示不均檢測裝置1之外部。 Next, the area where the unevenness intensity value exceeds the intensity threshold value display unevenness is detected as display unevenness. On the other hand, if the unevenness intensity value does not exceed the display area of the display unevenness of the intensity threshold, the display unevenness is not detected. The detected display is uneven. Finally, in the result output processing of step S13, the pixel position in the liquid crystal panel display 3 is correlated with the unevenness intensity value, and the information is output to the display unevenness as the detection result of the display unevenness. The outside of the detecting device 1.

以上,係顯示不均檢測裝置1進行之液晶面板顯示器3 之顯示不均檢測處理之全部內容。又,本實施形態中,圖2之流程圖中之步驟S3為對應請求項中之像素值取得手段(像素值取得步驟)之處理。又,本實施形態中,圖3及圖7之流程圖中之步驟S51為對應請求項中之積分手段(積分步驟)之處理,圖3及圖7中之步驟S53為對應請求項中之微分手段(微分步驟)之處理。 In the above, the liquid crystal panel display 3 performed by the unevenness detecting device 1 is displayed. The entire content of the uneven detection processing is displayed. Further, in the present embodiment, step S3 in the flowchart of Fig. 2 is processing of the pixel value obtaining means (pixel value obtaining step) in the corresponding request item. Further, in the present embodiment, the step S51 in the flowcharts of Figs. 3 and 7 is processing of the integration means (integration step) in the corresponding request item, and the step S53 in Fig. 3 and Fig. 7 is the differentiation in the corresponding request item. Processing of means (differential steps).

再者,本實施形態中,圖2中之步驟S7為對應請求項中之像素值比較手段及不均區域檢測手段(不均區域檢測步驟)之處理,圖7之流程圖中之步驟S50為對應請求項中之強調手段(強調步驟)之處理。 Furthermore, in the present embodiment, step S7 in FIG. 2 is processing of the pixel value comparison means and the uneven area detecting means (uneven area detecting step) in the corresponding request item, and step S50 in the flowchart of FIG. 7 is Corresponding to the processing of the emphasis means (emphasis step) in the request item.

再者,本實施形態中,圖2中之步驟S9為對應強度值取得手段(強度值取得步驟)之處理,圖2中之步驟S11為對應請求項中之像素值比較手段及顯示不均檢測手段(顯示不均檢測步驟)之處理。 In the present embodiment, step S9 in FIG. 2 is processing corresponding to the intensity value obtaining means (intensity value obtaining step), and step S11 in FIG. 2 is a pixel value comparing means and display unevenness detecting in the corresponding request item. The processing of the means (displaying the uneven detection step).

此外,顯示不均檢測裝置1輸出之顯示不均之檢測結果資訊例如能利用於生成液晶面板顯示器3依照各個顯示不均之有無或其內容而儲存之對顯示不均消除用輸入影像資料之修正資料。特別是,只要於液晶面板顯示器3之出貨檢查線等以線上設置顯示不均檢測裝置1,即能使顯示不均檢測步驟與前後之步驟連動。 Further, the detection result information indicating the display unevenness outputted by the unevenness detecting device 1 can be used, for example, to generate a correction for the display unevenness-removing input image data stored in the liquid crystal panel display 3 in accordance with the presence or absence of each display unevenness or its contents. data. In particular, if the display unevenness detecting device 1 is provided on the line of the shipment inspection line or the like of the liquid crystal panel display 3, the display unevenness detecting step can be interlocked with the previous and subsequent steps.

此情形下,統籌管理出貨檢查線之控制器(未圖示)或個別管理線上之各步驟之單元控制器(未圖示,關於顯示不均檢測步驟,顯示不均檢測裝置1即相當於此)係執行以下步驟。 In this case, the controller (not shown) that manages the shipment inspection line or the unit controller of each step on the individual management line is coordinated (not shown, the display unevenness detection step is equivalent to the display unevenness detection device 1 This is the following steps.

亦即,如圖13所示,在步驟S101,進行參照圖2之流程圖說明之顯示不均檢測裝置1對顯示不均之檢測處理,其次,從顯示不均檢測裝置1輸出之顯示不均之檢測結果資訊檢測出有無顯示不均(步驟S103)。在不存在顯示不均時(在步驟S103為NO),則判定為良品,結束與檢查對象之液晶面板顯示器3相關之檢查步驟。 That is, as shown in FIG. 13, in step S101, the display unevenness detecting means 1 performs the detection processing of the display unevenness described with reference to the flowchart of FIG. 2, and secondly, the display unevenness outputted from the display unevenness detecting means 1 is performed. The detection result information detects the presence or absence of display unevenness (step S103). When there is no display unevenness (NO in step S103), it is determined to be a good product, and the inspection procedure related to the liquid crystal panel display 3 to be inspected is ended.

另一方面,在存在顯示不均時(在步驟S103為YES),則針對該液晶面板顯示器3,顯示不均檢測裝置1將已輸出檢測出顯示不均之內容之檢查結果資訊之次數與設定次數比較(步驟S105)。接著,在輸出次數超過設定次數時(在步驟S105為YES),則判定為不良品,結束與檢查對象之液晶面板顯示器3相關之檢查步驟。 On the other hand, when there is display unevenness (YES in step S103), for the liquid crystal panel display 3, the display unevenness detecting device 1 outputs the number of times and the setting of the inspection result information that has detected the content of the display unevenness. The number of times is compared (step S105). When the number of times of output exceeds the set number of times (YES in step S105), it is determined that the product is defective, and the inspection procedure relating to the liquid crystal panel display 3 to be inspected is ended.

另一方面,在檢測出顯示不均之檢查結果資訊之輸出次數超過設定次數時(在步驟S105為NO),則進行生成處理,生成對用以消除顯示不均檢測裝置1檢測出之顯示不均之輸入影像資料之修正資料(步驟S107)。 On the other hand, when the number of times of output of the inspection result information indicating the display unevenness exceeds the set number of times (NO in step S105), the generation processing is performed, and the display for detecting the detection unevenness detecting means 1 is not generated. The correction data of the input image data is all (step S107).

修正資料之生成處理,由出貨檢查線之修正資料生成單元(未圖示)所具有之單元控制器來執行。已生成之修正資料,係藉由單元控制器對液晶面板顯示器3所內藏之驅動器電路之快閃記憶體(未圖示)新寫入或覆寫更新。只要此修正資料為適切之內容,於驅動器電路輸入輸入影像資料時,則藉由從快閃記憶體讀出之修正資料對輸入影像資料施加抵銷顯示不均之修正,而使顯示不均從液晶面板顯示器3之顯示畫面消失。 The correction data generation processing is executed by a unit controller included in the correction data generation unit (not shown) of the shipment inspection line. The generated correction data is newly written or overwritten by a flash memory (not shown) of the driver circuit built in the liquid crystal panel display 3 by the unit controller. As long as the correction data is suitable, when the input and output image data is input to the driver circuit, the correction data read from the flash memory is used to correct the unevenness of the input image data, thereby causing uneven display. The display screen of the liquid crystal panel display 3 disappears.

接著,在步驟S107之修正資料生成處理後,再度返回步驟S101,進行參照圖2之流程圖說明之顯示不均檢測裝置1對顯示不均之檢測處理。因此,即使將顯示不均之檢測處理與液晶面板顯示器3之修正資料之更新反覆設定次數,在藉由顯示不均檢測裝置1持續檢測出顯示不均時,該液晶面板顯示器3即被判定為不良品。 Next, after the correction data generation processing of step S107, the process returns to step S101 again, and the detection processing of the display unevenness by the display unevenness detecting device 1 described with reference to the flowchart of FIG. 2 is performed. Therefore, even if the detection process of the display unevenness and the update of the correction data of the liquid crystal panel display 3 are repeatedly set a number of times, when the display unevenness detecting device 1 continuously detects the display unevenness, the liquid crystal panel display 3 is judged as Defective product.

如以上所說明,根據本實施形態之顯示不均檢測裝置1,係從CCD攝影機5所取得之液晶面板顯示器3之顯示影像之輸出影像資料取得液晶面板顯示器3之各像素之像素值,並為了檢測出液晶面板顯示器3之顯示不均而取得各像素之微分像素值時,進行如下步驟。 As described above, according to the display unevenness detecting device 1 of the present embodiment, the pixel value of each pixel of the liquid crystal panel display 3 is obtained from the output image data of the display image of the liquid crystal panel display 3 acquired by the CCD camera 5, and When the display unevenness of the liquid crystal panel display 3 is detected and the differential pixel value of each pixel is obtained, the following steps are performed.

首先,藉由將各像素之像素值與周邊像素之像素值予以平均化來取得積分像素值,其次,將積分像素值從原本之對應像素之像素值減去,取得各像素之微分像素值。 First, the integrated pixel value is obtained by averaging the pixel value of each pixel and the pixel value of the peripheral pixel. Secondly, the integrated pixel value is subtracted from the pixel value of the corresponding pixel, and the differential pixel value of each pixel is obtained.

藉由此積分及差分取得微分像素值,藉此能從相鄰像素之像素值分布除去偏置等低頻成分,留下與顯示不均相同之高頻成分。藉此,相較於藉由輸出影像資料與輸入影像資料之差分取得各像素之微分像素值之方式,能以更高精度檢測出液晶面板顯示器3之顯示不均。 By obtaining the differential pixel values by the integration and the difference, the low-frequency components such as the offset can be removed from the pixel value distribution of the adjacent pixels, leaving the same high-frequency components as the display unevenness. Thereby, the display unevenness of the liquid crystal panel display 3 can be detected with higher precision than the method of obtaining the differential pixel value of each pixel by the difference between the output image data and the input image data.

此外,為了檢測出線狀不均,而將包含強調處理之圖7之流程圖之微分處理與圖3之流程圖之微分處理一起進行之構成,亦可省略。又,在圖3或圖7之步驟S51之積分處理時,如參照圖4及圖5所說明般,依照積分對象像素與液晶面板顯示器3外周邊之位置關係,使空間過濾器50 一部分之核心列無效化之構成,亦可省略。再者,顯示不均之強度亦可以SEMU值以外之值來評估。 Further, in order to detect linear unevenness, the differential processing of the flowchart including FIG. 7 including the emphasis processing may be performed together with the differential processing of the flowchart of FIG. 3, and may be omitted. Further, in the integration processing of step S51 of FIG. 3 or FIG. 7, as described with reference to FIGS. 4 and 5, the spatial filter 50 is made in accordance with the positional relationship between the integration target pixel and the outer periphery of the liquid crystal panel display 3. The constitution of a part of the core column invalidation may also be omitted. Furthermore, the intensity of unevenness can also be evaluated by values other than the SEMU value.

又,本實施形態之顯示不均檢測裝置1中,係將圖2之步驟S9之不均強度計算處理或步驟S11之不均強度閾值判定(二次閾值判定)處理作為顯示不均之檢測之一環全部予以進行。 Further, in the display unevenness detecting device 1 of the present embodiment, the unevenness intensity calculation processing of step S9 of FIG. 2 or the unevenness intensity threshold value determination (secondary threshold value determination) of step S11 is performed as detection of display unevenness. All the rings will be carried out.

然而,為了檢測出液晶面板顯示器3之顯示不均之產生區域而取得液晶面板顯示器3之各像素之微分像素值時,只要進行圖3或圖7之流程圖顯示之微分處理,則亦可省略步驟S9及步驟S11之步驟。此情形下,係將在圖2之步驟S7之微分閾值判定處理檢測出之顯示不均之產生區域與液晶面板顯示器3中之像素位置建立關聯關係後,作為顯示不均之檢測結果資訊,在圖2之步驟S13之結果輸出處理中輸出至顯示不均檢測裝置1之外部。 However, when the differential pixel value of each pixel of the liquid crystal panel display 3 is obtained in order to detect the display unevenness of the liquid crystal panel display 3, the differential processing shown in the flowchart of FIG. 3 or FIG. 7 may be omitted. Steps S9 and S11. In this case, the relationship between the display unevenness detected by the differential threshold determination processing in step S7 of FIG. 2 and the pixel position in the liquid crystal panel display 3 is used as the detection result information of the display unevenness. The result output processing of step S13 of Fig. 2 is output to the outside of the display unevenness detecting apparatus 1.

又,如開頭亦有論及,本發明之顯示不均檢測方法與適用此方法之顯示不均檢測裝置,除了上述實施形態所說明之液晶面板顯示器3以外,亦能利用於電漿面板顯示器或有機EL面板顯示器等顯示元件之顯示不均之檢測。 Further, as also mentioned at the outset, the display unevenness detecting method of the present invention and the display unevenness detecting device using the same can be used for a plasma panel display or a liquid crystal panel display 3 as described in the above embodiment. Detection of display unevenness of display elements such as organic EL panel displays.

本發明能在藉由影像處理檢測出顯示元件之顯示不均時廣泛地運用。 The present invention can be widely applied when detecting display unevenness of display elements by image processing.

1‧‧‧顯示不均檢測裝置 1‧‧‧Display uneven detection device

3‧‧‧液晶面板顯示器 3‧‧‧LCD panel display

5‧‧‧CCD攝影機 5‧‧‧CCD camera

31‧‧‧左邊 31‧‧‧left

32,36‧‧‧感度修正線 32,36‧‧‧sensitivity correction line

33,37‧‧‧附近區域 33,37‧‧‧near area

35‧‧‧上邊 35‧‧‧上上

39‧‧‧區域 39‧‧‧Area

40,50‧‧‧空間過濾器 40, 50‧‧‧ space filter

圖1係顯示使用本發明之第1實施形態之顯示不均檢測裝置檢測出顯示元件之顯示不均之狀態之說明圖。 Fig. 1 is an explanatory view showing a state in which display unevenness of a display element is detected by the display unevenness detecting device according to the first embodiment of the present invention.

圖2係顯示圖1之顯示不均檢測裝置進行之顯示不均檢測步驟之流程圖。 FIG. 2 is a flow chart showing the display unevenness detecting step performed by the display unevenness detecting device of FIG. 1.

圖3係顯示圖2之微分處理之具體步驟之流程圖。 Figure 3 is a flow chart showing the specific steps of the differential processing of Figure 2.

圖4係將圖3之積分處理中之積分像素值之取得原理針對液晶面板顯示器之左邊附近區域之像素顯示之說明圖。 4 is an explanatory diagram showing the principle of obtaining the integrated pixel value in the integration process of FIG. 3 for the pixel display in the vicinity of the left side of the liquid crystal panel display.

圖5係將圖3之積分處理中之積分像素值之取得原理針對液晶面板顯示器之上邊附近區域之像素顯示之說明圖。 FIG. 5 is an explanatory diagram showing the principle of obtaining the integrated pixel value in the integration process of FIG. 3 for the pixel display in the vicinity of the upper side of the liquid crystal panel display.

圖6係將圖3之積分處理中之積分像素值之取得原理針對液晶面板顯示器之左上角附近區域之像素顯示之說明圖。 6 is an explanatory diagram showing the principle of obtaining the integrated pixel value in the integration processing of FIG. 3 for the pixel display in the vicinity of the upper left corner of the liquid crystal panel display.

圖7係顯示圖2之微分處理之具體步驟之流程圖。 Figure 7 is a flow chart showing the specific steps of the differential processing of Figure 2.

圖8係顯示圖7之強調處理之原理之說明圖。 Fig. 8 is an explanatory view showing the principle of the emphasis processing of Fig. 7.

圖9(a),(b)係局部顯示圖1之液晶面板顯示器之微分處理前之輸出影像資料之影像及各像素值之說明圖。 9(a) and 9(b) are partial views showing an image of an output image data and a pixel value before the differential processing of the liquid crystal panel display of FIG. 1.

圖10(a),(b)係局部顯示圖1之液晶面板顯示器之微分處理後之輸出影像資料之影像及各像素值之說明圖。 10(a) and 10(b) are partial views showing an image of the output image data after the differential processing of the liquid crystal panel display of FIG. 1 and an image of each pixel value.

圖11係顯示對圖10(b)所示之微分像素值超過不均判定閾值之像素賦予標籤值之狀態之說明圖。 FIG. 11 is an explanatory view showing a state in which a label value is given to a pixel in which the differential pixel value shown in FIG. 10(b) exceeds the unevenness determination threshold value.

圖12係顯示為了求出SEMU值所必須之顯示不均之產生區域中前景(FG)與背景(BG)之位置關係之說明圖。 Fig. 12 is an explanatory view showing the positional relationship between the foreground (FG) and the background (BG) in the generation region of the display unevenness necessary for obtaining the SEMU value.

圖13係顯示利用圖1之顯示不均檢測裝置對顯示不均之檢測結果之液晶面板顯示器之檢查步驟之流程圖。 Fig. 13 is a flow chart showing the inspection procedure of the liquid crystal panel display using the display unevenness detecting means of Fig. 1 for the detection result of the display unevenness.

1‧‧‧顯示不均檢測裝置 1‧‧‧Display uneven detection device

3‧‧‧液晶面板顯示器 3‧‧‧LCD panel display

5‧‧‧CCD攝影機 5‧‧‧CCD camera

Claims (10)

一種顯示元件之顯示不均檢測方法,其包含:像素值取得步驟,根據拍攝顯示元件所顯示之影像而得之輸出影像資料,取得前述顯示元件之各像素之像素值;積分步驟,藉由使用與前述顯示元件之顯示不均形狀及大小對應之核心大小之空間過濾器,將前述顯示元件之各像素值與周邊像素之像素值平均化而予以積分,以取得前述顯示元件之各像素之積分像素值;微分步驟,藉由前述顯示元件之各像素中前述像素值與前述積分像素值之差分,取得前述顯示元件之各像素之微分像素值;以及不均區域檢測步驟,根據前述顯示元件之前述微分像素值超過既定不均判定閾值之像素之分布,檢測出前述顯示元件中之前述顯示不均之產生區域。 A display unevenness detecting method for a display element, comprising: a pixel value obtaining step of obtaining pixel values of each pixel of the display element according to an output image data obtained by capturing an image displayed by the display element; and an integration step by using a spatial filter having a core size corresponding to the display unevenness and size of the display element, wherein each pixel value of the display element and the pixel value of the peripheral pixel are averaged and integrated to obtain an integral of each pixel of the display element a pixel value; a differentiation step of obtaining a differential pixel value of each pixel of the display element by a difference between the pixel value and the integrated pixel value in each pixel of the display element; and a non-uniform area detecting step according to the display element The distribution of the pixels in which the differential pixel value exceeds the predetermined unevenness determination threshold value detects the generation region of the display unevenness in the display element. 如申請專利範圍第1項之顯示元件之顯示不均檢測方法,其進一步包含:強調步驟,使用於作為檢測對象之前述顯示不均之延伸方向具有方向性之強調用空間過濾器,將前述顯示元件之各像素值與前述延伸方向之周邊像素之像素值予以平均化,在前述積分步驟針對藉由前述強調步驟而平均化之前述顯示元件之各像素之像素值,取得前述積分像素值。 The display unevenness detecting method of the display element according to the first aspect of the invention, further comprising: an emphasizing step of using the spatial filter for emphasizing the extending direction of the display unevenness as the detection target, and displaying the display The pixel values of the elements and the pixel values of the peripheral pixels in the extending direction are averaged, and the integrating pixel values are obtained for the pixel values of the pixels of the display elements averaged by the emphasis step in the integrating step. 如申請專利範圍第1或2項之顯示元件之顯示不均檢測方法,其中,在前述積分像素值之取得對象像素屬於前述顯示元件之各外周邊之附近區域之任一個時,即在前述 積分步驟,使用與邊之延伸方向正交之方向之感度已降低之前述空間過濾器將前述取得對象像素之像素值予以積分,該邊係對應前述取得對象像素所屬於之附近區域。 The display unevenness detecting method of the display element according to the first or second aspect of the invention, wherein the target pixel of the integrated pixel value belongs to any one of the vicinity of each outer periphery of the display element, that is, in the foregoing In the integration step, the pixel value of the acquisition target pixel is integrated by using the spatial filter whose sensitivity is reduced in a direction orthogonal to the direction in which the edge extends, and the edge corresponds to a region in the vicinity of the acquisition target pixel. 如申請專利範圍第1或2項之顯示元件之顯示不均檢測方法,其進一步包含:強度值取得步驟,根據屬於前述產生區域之各像素之前述像素值或前述微分像素值,取得前述產生區域之顯示不均強度值;以及檢測步驟,檢測出前述強度值超過既定不均強度閾值之前述產生區域作為前述顯示不均。 The display unevenness detecting method of the display element according to claim 1 or 2, further comprising: an intensity value obtaining step of obtaining the generated region based on the pixel value or the differential pixel value of each pixel belonging to the generating region And displaying the unevenness intensity value; and detecting the step of detecting the occurrence region in which the intensity value exceeds a predetermined unevenness intensity threshold as the display unevenness. 如申請專利範圍第3項之顯示元件之顯示不均檢測方法,其進一步包含:強度值取得步驟,根據屬於前述產生區域之各像素之前述像素值或前述微分像素值,取得前述產生區域之顯示不均強度值;以及檢測步驟,檢測出前述強度值超過既定不均強度閾值之前述產生區域作為前述顯示不均。 The display unevenness detecting method of the display element of claim 3, further comprising: an intensity value obtaining step of obtaining the display of the generated area based on the pixel value or the differential pixel value of each pixel belonging to the generating area a non-uniform intensity value; and a detecting step of detecting the occurrence region in which the intensity value exceeds a predetermined unevenness intensity threshold as the display unevenness. 一種顯示元件之顯示不均檢測裝置,其具備:像素值取得手段,將拍攝顯示元件顯示之影像所得之輸出影像資料之各像素值分配至前述顯示元件之各像素,取得前述顯示元件之各像素之像素值;積分手段,藉由使用與前述顯示元件之顯示不均形狀及大小對應之核心大小之空間過濾器,將前述顯示元件之各像素值與周邊像素之像素值平均化而予以積分,以取得前述顯示元件之各像素之積分像素值;微分手段,藉由前述顯示元件之各像素中前述像素值 與前述積分像素值之差分,取得前述顯示元件之各像素之微分像素值;像素值比較手段,係將前述顯示元件之各像素之前述微分像素值與既定不均判定閾值比較;以及不均區域檢測手段,根據前述微分像素值超過前述不均判定閾值之像素之分布,檢測出前述顯示元件中之前述顯示不均之產生區域。 A display unevenness detecting device for a display device, comprising: a pixel value obtaining means for assigning each pixel value of an output image data obtained by capturing an image displayed by a display element to each pixel of the display element, and acquiring each pixel of the display element a pixel value; the integration means integrates the pixel values of the display elements and the pixel values of the peripheral pixels by using a spatial filter having a core size corresponding to the display unevenness and size of the display element, and integrates Obtaining an integrated pixel value of each pixel of the display element; and a differential means, wherein the pixel value in each pixel of the display element is used Obtaining a differential pixel value of each pixel of the display element from the difference between the integrated pixel values; and comparing the differential pixel value of each pixel of the display element with a predetermined unevenness determination threshold; and the uneven area The detecting means detects the generation region of the display unevenness in the display element based on the distribution of the pixels in which the differential pixel value exceeds the unevenness determination threshold. 如申請專利範圍第6項之顯示元件之顯示不均檢測裝置,其進一步具備:強調手段,使用於作為檢測對象之前述顯示不均之延伸方向具有方向性之強調用空間過濾器,將前述顯示元件之各像素值與前述延伸方向之周邊像素之像素值予以平均化;前述積分手段,係針對藉由前述強調手段而平均化之前述顯示元件之各像素之像素值,取得前述積分像素值。 The display unevenness detecting device of the display device of the sixth aspect of the invention, further comprising: an emphasis means for using the spatial filter for emphasis on the direction of extension of the display unevenness as the detection target, and displaying the display The pixel values of the elements and the pixel values of the peripheral pixels in the extending direction are averaged. The integration means acquires the integrated pixel values for the pixel values of the pixels of the display elements averaged by the emphasis means. 如申請專利範圍第6或7項之顯示元件之顯示不均檢測裝置,其中,前述積分手段,在前述積分像素值之取得對象像素屬於前述顯示元件之各外周邊之附近區域之任一個時,即使用與邊之延伸方向正交之方向之感度已降低之前述空間過濾器將前述取得對象像素之像素值予以積分,該邊係對應前述取得對象像素所屬於之附近區域。 The display unevenness detecting device of the display device of the sixth or seventh aspect of the invention, wherein the integration means, when the acquisition target pixel of the integrated pixel value belongs to any of the vicinity of each outer periphery of the display element, In other words, the spatial filter having the sensitivity reduced in the direction orthogonal to the direction in which the sides extend is integrated with the pixel value of the acquisition target pixel, and the side corresponds to the vicinity of the acquisition target pixel. 如申請專利範圍第6或7項之顯示元件之顯示不均檢測裝置,其進一步具備:強度值取得手段,根據屬於前述產生區域之各像素之前述像素值或前述微分像素值,取得前述產生區域之顯示不均強度值; 強度值比較手段,將前述強度值與既定不均強度閾值比較;以及檢測手段,檢測出前述強度值超過既定不均強度閾值之前述產生區域作為前述顯示不均。 The display unevenness detecting device of the display device according to claim 6 or 7, further comprising: an intensity value obtaining means for obtaining the generated region based on the pixel value or the differential pixel value of each pixel belonging to the generating region Showing the uneven intensity value; The intensity value comparison means compares the intensity value with a predetermined unevenness intensity threshold value, and the detecting means detects the occurrence region in which the intensity value exceeds a predetermined unevenness intensity threshold value as the display unevenness. 如申請專利範圍第8項之顯示元件之顯示不均檢測裝置,其進一步具備:強度值取得手段,根據屬於前述產生區域之各像素之前述像素值或前述微分像素值,取得前述產生區域之顯示不均強度值;強度值比較手段,比較前述強度值與既定不均強度閾值;以及檢測手段,檢測出前述強度值超過既定不均強度閾值之前述產生區域作為前述顯示不均。 The display unevenness detecting device of the display device of claim 8, further comprising: an intensity value obtaining means for obtaining the display of the generated region based on the pixel value or the differential pixel value of each pixel belonging to the generating region The unevenness intensity value; the intensity value comparison means compares the intensity value with the predetermined unevenness intensity threshold value; and the detecting means detects the occurrence region in which the intensity value exceeds the predetermined unevenness intensity threshold value as the display unevenness.
TW101116827A 2012-03-01 2012-05-11 Display unevenness detection method and device thereof TWI501627B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055271 WO2013128616A1 (en) 2012-03-01 2012-03-01 Display unevenness detection method and device for display device

Publications (2)

Publication Number Publication Date
TW201338502A true TW201338502A (en) 2013-09-16
TWI501627B TWI501627B (en) 2015-09-21

Family

ID=49081860

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101116827A TWI501627B (en) 2012-03-01 2012-05-11 Display unevenness detection method and device thereof

Country Status (5)

Country Link
JP (1) JP5919370B2 (en)
KR (1) KR101637408B1 (en)
CN (1) CN104137171B (en)
TW (1) TWI501627B (en)
WO (1) WO2013128616A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128617A1 (en) * 2012-03-01 2013-09-06 株式会社日本マイクロニクス Display unevenness detection method and device for display device
CN105244001B (en) * 2015-11-09 2018-01-09 深圳市华星光电技术有限公司 A kind of method and device of determination mura offsets
CN105628344B (en) * 2016-01-29 2019-02-01 深圳英伦科技股份有限公司 Backlight module and its light transmission uniformity detection system and its LED mix pearl matching method
CN106500969B (en) * 2016-11-17 2019-07-26 深圳Tcl新技术有限公司 Display screen homogeneity testing method and display screen uniformity test system
CN106448524B (en) * 2016-12-14 2020-10-02 深圳Tcl数字技术有限公司 Method and device for testing brightness uniformity of display screen
KR102454986B1 (en) * 2017-05-23 2022-10-17 삼성디스플레이 주식회사 Spot detecting apparatus and method of detecting spot using the same
CN108281120B (en) * 2018-01-27 2020-04-10 深圳市华星光电半导体显示技术有限公司 Mura repairing method of display panel
JP2020086419A (en) * 2018-11-28 2020-06-04 雄二 橋本 Adjustment method and adjustment system for obtaining uniformity of plural control objects and conveyer device and adjusted equipment
JP2020086409A (en) * 2018-11-30 2020-06-04 株式会社イクス Unevenness correction data generation method and unevenness correction data generation system
CN109493825B (en) * 2019-01-16 2020-11-24 合肥鑫晟光电科技有限公司 Picture parameter calculation method, device and storage medium
CN110299114A (en) * 2019-06-25 2019-10-01 深圳Tcl新技术有限公司 Judgment method, device and the storage medium of show uniformity
CN111652865B (en) 2020-05-29 2022-04-08 惠州市华星光电技术有限公司 Mura detection method, device and readable storage medium

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121724A (en) * 2003-10-14 2005-05-12 Sankyo Kk Adjusting method of flat display apparatus
JP2005150349A (en) 2003-11-14 2005-06-09 Tdk Corp Method for manufacturing laminated electronic component
JP2005165387A (en) * 2003-11-28 2005-06-23 Seiko Epson Corp Method and device for detecting stripe defective of picture and display device
JP2005331929A (en) * 2004-04-19 2005-12-02 Semiconductor Energy Lab Co Ltd Image analysis method, image analysis program, and pixel evaluation system therewith
US8184923B2 (en) * 2004-04-19 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Image analysis method, image analysis program, pixel evaluation system having the image analysis method, and pixel evaluation system having the image analysis program
JP2006135381A (en) * 2004-11-02 2006-05-25 Olympus Corp Calibration method and calibration apparatus
TWI289704B (en) * 2005-08-03 2007-11-11 Chi-Cheng Ye Detecting method of preventing the liquid crystal molecule of the LCD screen from generating gravity mura
US20080018630A1 (en) * 2006-07-18 2008-01-24 Yusuke Fujino Liquid crystal display device, liquid crystal display and method of driving liquid crystal display device
TWI334928B (en) * 2007-04-19 2010-12-21 Au Optronics Corp Mura detection method and system
JP4681033B2 (en) 2008-07-31 2011-05-11 株式会社イクス Image correction data generation system, image data generation method, and image correction circuit
TW201022653A (en) * 2008-12-10 2010-06-16 Ind Tech Res Inst Inspection method and system for display
JP5026545B2 (en) * 2010-03-30 2012-09-12 シャープ株式会社 Display device, luminance unevenness correction method, correction data creation device, and correction data creation method
WO2013128617A1 (en) * 2012-03-01 2013-09-06 株式会社日本マイクロニクス Display unevenness detection method and device for display device

Also Published As

Publication number Publication date
CN104137171A (en) 2014-11-05
KR20140133881A (en) 2014-11-20
JPWO2013128616A1 (en) 2015-07-30
JP5919370B2 (en) 2016-05-18
WO2013128616A1 (en) 2013-09-06
KR101637408B1 (en) 2016-07-07
TWI501627B (en) 2015-09-21
CN104137171B (en) 2017-03-29

Similar Documents

Publication Publication Date Title
TWI501626B (en) Display unevenness detection method and device thereof
TWI501627B (en) Display unevenness detection method and device thereof
US7783103B2 (en) Defect detecting device, image sensor device, image sensor module, image processing device, digital image quality tester, and defect detecting method
JP4882529B2 (en) Defect detection method and defect detection apparatus
US11314979B2 (en) Method and apparatus for evaluating image acquisition accuracy, electronic device and storage medium
KR20140067394A (en) Apparatus and method for detection mura in display device
JP2005172559A (en) Method and device for detecting line defect on panel
US8237848B2 (en) Image sensing apparatus and method for sensing target that has a defective portion region
JP2009036582A (en) Inspection method, inspection device and inspection program of plane display panel
KR101977647B1 (en) Apparatus and Method for Detection MURA in Display Device
US9646224B2 (en) Image processing method, image processing device and automated optical inspection machine
JP2005345290A (en) Streak-like flaw detecting method and streak-like flaw detector
TWI607212B (en) Image generation device, defect inspection device, and defect inspection method
JP2009250937A (en) Pattern inspection device and method
JP6765788B2 (en) Image inspection equipment
JP2005140655A (en) Method of detecting stain flaw, and stain flaw detector
JP2004219176A (en) Method and apparatus for detecting pixel irregulality failing
JP2012185030A (en) Color unevenness determination device, color unevenness determination method and display device
KR20180061511A (en) Method For Processing Compensation Display Defect And Display Device Using The Same
JP2008175558A (en) Device and method for visual inspection
JP5603964B2 (en) Flat panel display inspection method, inspection apparatus, and inspection program
JP5846100B2 (en) Display device defect inspection method
JP2009036580A (en) Method, equipment and program for preparing image for checkup, and method and equipment for checking planar display panel
JP2009145161A (en) Method and apparatus for detecting defect
JP2005346300A (en) Stripe defect detection method and device