TW201338415A - High voltage swing decomposition method and apparatus - Google Patents

High voltage swing decomposition method and apparatus Download PDF

Info

Publication number
TW201338415A
TW201338415A TW101146343A TW101146343A TW201338415A TW 201338415 A TW201338415 A TW 201338415A TW 101146343 A TW101146343 A TW 101146343A TW 101146343 A TW101146343 A TW 101146343A TW 201338415 A TW201338415 A TW 201338415A
Authority
TW
Taiwan
Prior art keywords
voltage level
voltage
latch
coupled
circuit
Prior art date
Application number
TW101146343A
Other languages
Chinese (zh)
Other versions
TWI508444B (en
Inventor
hao-jie Zhan
Tsung-Hsin Yu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW201338415A publication Critical patent/TW201338415A/en
Application granted granted Critical
Publication of TWI508444B publication Critical patent/TWI508444B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356113Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit

Abstract

A voltage swing decomposition circuit includes first and second clamp circuits and a protection circuit. The first clamp circuit is configured to clamp an output node of the first clamp circuit at a first voltage level when an input node of the voltage swing decomposition circuit has a voltage higher than the first voltage level. The second clamp circuit is configured to clamp an output node of the second clamp circuit at a second voltage level, higher than the first level, when the voltage of the input node is lower than the second voltage level. The protection circuit is coupled to the output nodes of the first and second clamp circuits, and is configured to selectively set an output node of the protection circuit to the first or second voltage level, the first and second clamp circuits are coupled together by the output node of the protection circuit.

Description

電壓擺幅分解電路與方法 Voltage swing decomposition circuit and method

本發明係有關於分解電壓擺幅之電路與方法。 The present invention relates to circuits and methods for decomposing voltage swings.

在許多的電路應用中,訊號中的電壓是用來代表或傳達訊息。通常來說,一個數位訊號用以代表一第一狀態時具有一第一電壓位準,對應於一第二狀態時上述訊號具有一第二電壓位準。例如,通常可選擇一電壓例如0V(或其他相對「低」之電壓值)作為接地或是代表一邏輯「低」之值或狀態;選擇一正電壓例如5V作為一電源電壓以代表一邏輯「高」之值或狀態。關於所選擇之電壓位準或電壓擺幅(voltage swing)通常為基於許多因素之設計考量,其因素包括硬體限制、資源消耗的要求以及製造或過程中的限制。 In many circuit applications, the voltage in the signal is used to represent or convey the message. Generally, a digital signal has a first voltage level for representing a first state, and a second voltage level for a signal corresponding to a second state. For example, a voltage such as 0V (or other relatively low voltage value) can be selected as the ground or a logical "low" value or state; a positive voltage such as 5V is selected as a supply voltage to represent a logic " High value or status. The choice of voltage level or voltage swing is typically a design consideration based on a number of factors, including hardware limitations, resource consumption requirements, and manufacturing or process limitations.

在一些情況中,一訊號具有相對大差異的高低電壓值,若要使用並非設計用以處理如此高電壓擺幅或無法長時間承受如此高電壓之元件來處理此類型之信號,是相當困難的。舉例來說,由於使用單一閘極氧化層之元件,積體電路中的數位電路元件通常具有相對低的安全操作電壓。若將一高電壓訊號(如5V數位輸入訊號)使用於具有較低的安全操作電壓(如2.8V)之數位電路時,將會導致此數位電路損壞。 In some cases, a signal has a relatively large difference between high and low voltage values. It is quite difficult to use a component that is not designed to handle such a high voltage swing or that cannot withstand such a high voltage for a long time to process this type of signal. . For example, digital circuit components in integrated circuits typically have relatively low safe operating voltages due to the use of components of a single gate oxide layer. If a high voltage signal (such as a 5V digital input signal) is used for a digital circuit with a low safe operating voltage (such as 2.8V), this digital circuit will be damaged.

根據本發明一實施例,提供一種電壓擺幅分解電路,包括:一第一箝位電路,其用以當電壓擺幅分解電路之一輸入節點電壓高於第一電壓位準之時,箝制上述第一箝位電路之一輸出節點電壓於上述第一電壓位準;一第二箝位電路,其用以當上述輸入節點電壓低於一第二電壓位準且第二電壓位準高於第一電壓位準之時,箝制上述第二箝位電路之一輸出節點電壓於上述第二電壓位準;以及一保護電路,耦接至上述第一箝位電路與第二箝位電路之複數輸出節點,上述保護電路用以選擇性設置上述保護電路之一輸出節點至第一箝位電路與第二電壓位準兩者之其一;其中該第一箝位電路與第二箝位電路經由上述保護電路之輸出節點耦接在一起。 According to an embodiment of the invention, a voltage swing decomposition circuit is provided, comprising: a first clamp circuit for clamping the above when a voltage swing input circuit has an input node voltage higher than a first voltage level; One of the first clamp circuits outputs a node voltage at the first voltage level; a second clamp circuit is configured to when the input node voltage is lower than a second voltage level and the second voltage level is higher than the first And clamping a voltage of one of the second clamp circuits to the second voltage level; and a protection circuit coupled to the plurality of outputs of the first clamp circuit and the second clamp circuit a node, the protection circuit is configured to selectively set one of the output nodes of the protection circuit to one of the first clamp circuit and the second voltage level; wherein the first clamp circuit and the second clamp circuit pass the foregoing The output nodes of the protection circuit are coupled together.

此篇敘述之特定示範實施例是用以搭配附圖一起閱讀,上述附圖視為整篇敘述之一部分。除非另有明確說明,用語中有關附件、耦接與類似用語(如連接與內連接)係代表結構為直接或非直接地經由介質結構穩固或附屬至另一結構,其可為可移動或固定之附件或關係。同樣的,有關電性連結及其類似用語,如耦接(coupled)、連接(connected)以及內連接(interconnected),指的是一種結構經由直接或間接地穿過中介結構而與另一個結構形成穩固或黏附的關係,除非有特殊說明,則其指的是可移動或穩固的黏附或關係。 The specific exemplary embodiments of this description are read in conjunction with the drawings, which are considered as part of the entire description. Unless specifically stated otherwise, terms, attachments, and similar terms (such as connections and inner connections) in the terms are representative of a structure that is either directly or indirectly secured through the media structure or attached to another structure, which may be movable or fixed. Attachment or relationship. Similarly, electrical connections and the like, such as coupled, connected, and interconnected, refer to a structure that is formed directly or indirectly through an intervening structure to form another structure. A firm or adherent relationship, unless otherwise specified, refers to a moveable or stable bond or relationship.

本說明書之實施例針對涉及高電壓訊號之應用提供電 壓保護。一高電壓訊號分解成數個電壓位準低於上述高電壓訊號之不同訊號。有利的是,一高電壓擺幅(Vswing_high)之電壓訊號可以分解為擺幅小於高電壓擺幅(Vswing_high)之複數訊號,而不需使用其本身電壓擺幅為高電壓擺幅(Vswing_high)之特定電壓保護電路。此外,多個實施例中皆沒有直流電流損耗。 Embodiments of the present specification provide voltage protection for applications involving high voltage signals. A high voltage signal is decomposed into a plurality of different signals having a voltage level lower than the high voltage signal. Advantageously, a high voltage swing (V swing_high) can be resolved into the swing voltage signal less than the high voltage swing (V swing_high) of a plurality of signals, without using its own high voltage swing voltage swing (V Swing_high ) A specific voltage protection circuit. Moreover, there is no DC current loss in many embodiments.

根據本說明書之一些實施例,第1圖係一電壓擺幅分解電路之方塊圖。電壓擺幅分解電路100(也稱為一電壓位準分解電路)接收相對高電壓擺幅之一輸入,並產生相對較低電壓擺幅之複數訊號。舉例來說,在一些實施例中,輸入節點101之輸入訊號(於第1圖中標示為V3X_IN)依據3V的擺幅於0V與3V之間變化。在以下的討論中以一3V輸入擺幅作為一實施例,但本說明書之實施例可適用於具有不同電壓值與電壓擺幅之輸入與輸出訊號。標號「V3X_IN」代表相對於電壓V1X具有三倍電壓擺幅之電壓。在一些實施例中,電壓V1X與V2X分別為1V與2V,亦可使用其他值。電路100將高電壓擺幅之上述輸入訊號分解為複數訊號V1A、V1B、V1C、V2A以及V2B。為了執行該電壓擺幅分解,電壓V1X與V2X分別為1V與2V,並提供至電路100。 According to some embodiments of the present specification, FIG. 1 is a block diagram of a voltage swing decomposition circuit. Voltage swing decomposition circuit 100 (also referred to as a voltage level decomposition circuit) receives one of the inputs of a relatively high voltage swing and produces a complex signal of relatively low voltage swing. For example, in some embodiments, the input signal to input node 101 (labeled V3X_IN in Figure 1) varies between 0V and 3V depending on the 3V swing. In the following discussion, a 3V input swing is used as an embodiment, but embodiments of the present description are applicable to input and output signals having different voltage values and voltage swings. The symbol "V 3X_IN " represents a voltage having a triple voltage swing with respect to the voltage V 1X . In some embodiments, the voltage V 1X and V 2X are 1V and 2V, other values may also be used. Circuit 100 decomposes the input signal of the high voltage swing into complex signals V 1A , V 1B , V 1C , V 2A , and V 2B . To perform this voltage swing decomposition, voltages V 1X and V 2X are 1V and 2V, respectively, and are provided to circuit 100.

電路100包括箝位電路110a以及110b與一保護電路120。箝位電路110a提供訊號V1C,當輸入訊號V3X_IN之電壓值低於電壓V2X時,訊號V1C被箝制於電壓V2X。由於此箝制,當輸入訊號V3X_IN之電壓值變化於0V與3V之間時,訊號V1C變化於2V與3V之間。箝位電路110b提供訊號V1A,當輸入訊號V3X_IN之電壓值高於電壓V1X時, 上述訊號被箝制於電壓V1X。由於此箝制,當輸入訊號V3X_IN之電壓值變化於0V與3V之間時,訊號V1A變化於0V與1V之間。當輸入訊號V3X_IN之電壓值變化於0V與3V之間時,根據訊號V2A與V2B而產生訊號V1A與V1C,其各自變化於0V至2V以及1V至3V之間。保護電路120根據訊號V2A與V2B產生訊號V1B,當輸入訊號V3X_IN之電壓值變化於0V與3V之間時,訊號V1B變化為1V至2V之間。因此保護電路120用以選擇性地設置一輸出節點至1V或2V,上述輸出節點將箝位電路110a與110b耦接在一起。 Circuit 100 includes clamp circuits 110a and 110b and a protection circuit 120. The clamp circuit 110a provides a signal V 1C , and when the voltage value of the input signal V 3X_IN is lower than the voltage V 2X , the signal V 1C is clamped to the voltage V 2X . Due to this clamping, when the voltage value of the input signal V 3X_IN changes between 0V and 3V, the signal V 1C changes between 2V and 3V. The clamp circuit 110b provides a signal V 1A , and when the voltage value of the input signal V 3X_IN is higher than the voltage V 1X , the signal is clamped to the voltage V 1X . Due to this clamping, when the voltage value of the input signal V 3X_IN changes between 0V and 3V, the signal V 1A changes between 0V and 1V. When the voltage value of the input signal V 3X_IN changes between 0V and 3V, the signals V 1A and V 1C are generated according to the signals V 2A and V 2B , each of which varies between 0V to 2V and 1V to 3V. Protection circuit 120 according to the signal V 2A and V 2B generates signal V 1B, when the voltage value of the change in the input signal V 3X_IN between 0V and 3V, signal V 1B is changed from 1V to 2V. Therefore, the protection circuit 120 is configured to selectively set an output node to 1V or 2V, and the output node couples the clamp circuits 110a and 110b together.

第2A圖係實現電路100之一概要圖,上述電路使用閂鎖作為箝位電路。箝位電路110a包括閂鎖210b與210d,而箝位電路110b包括閂鎖210a與210c。每個閂鎖皆有一對耦接之電晶體,如第2A圖所示。箝位電路110a與110b各自具有複數PMOS電晶體與複數NMOS電晶體。在每個閂鎖中,其相對應的電晶體於同一時間點,電晶體對中只有一電晶體處於「導通」(傳導電流)狀態。此閂鎖功能如同電壓比較器比較哪一個MOS電晶體具有一較強之驅動強度。每一閂鎖具有一對電晶體,其源極/汲極分別彼此耦接。對於每一由NMOS電晶體組成之閂鎖,該閂鎖中被導通之電晶體相較於同一電晶體對中之另一電晶體,具有較高之閘極電壓(相較於源極電壓)。對於每一由PMOS電晶體組成之閂鎖,該閂鎖中被導通之的電晶體具有較低之閘極電壓(相較於源極電壓)。 2A is a schematic diagram of an implementation circuit 100 that uses a latch as a clamp circuit. Clamp circuit 110a includes latches 210b and 210d, and clamp circuit 110b includes latches 210a and 210c. Each latch has a pair of coupled transistors, as shown in Figure 2A. The clamp circuits 110a and 110b each have a plurality of PMOS transistors and a plurality of NMOS transistors. In each latch, at the same time point, the corresponding transistor is in a "on" (conducting current) state. This latch function functions as a voltage comparator to compare which MOS transistor has a stronger driving strength. Each latch has a pair of transistors whose source/drain are respectively coupled to each other. For each latch consisting of an NMOS transistor, the transistor that is turned on in the latch has a higher gate voltage (compared to the source voltage) than the other transistor in the same transistor pair. . For each latch consisting of a PMOS transistor, the transistor that is turned on in the latch has a lower gate voltage (compared to the source voltage).

保護電路120包括一對保護開關。在一些實施例中, 上述開關包括一NMOS電晶體M1以及一PMOS電晶體M2,且耦接至具有訊號V1B之節點220-1b。由節點220-2a之電壓(即訊號V2A)所控制之電晶體M2,用以選擇性設置節點220-1b至電壓V1X。由節點220-2b之電壓(即訊號V2B)所控制之電晶體M1,用以選擇性設置節點220-1b至電壓V2X。節點220-1b是保護電路120之輸出節點;節點220-2a是閂鎖210a之輸出節點;節點220-2b是閂鎖210b之輸出節點;節點220-1a是閂鎖210c之輸出節點;節點220-1c是閂鎖210d之輸出節點。節點220-1a與220-1c分別為箝位電路110b與110a之輸出節點。 Protection circuit 120 includes a pair of protection switches. In some embodiments, the switch includes an NMOS transistor M1 and a PMOS transistor M2, and is coupled to the node 220-1b having the signal V 1B . The transistor M2 controlled by the voltage of the node 220-2a (i.e., the signal V 2A ) is used to selectively set the node 220-1b to the voltage V 1X . The transistor M1 controlled by the voltage of the node 220-2b (i.e., the signal V 2B ) is used to selectively set the node 220-1b to the voltage V 2X . Node 220-1b is the output node of protection circuit 120; node 220-2a is the output node of latch 210a; node 220-2b is the output node of latch 210b; node 220-1a is the output node of latch 210c; node 220 -1c is the output node of latch 210d. Nodes 220-1a and 220-1c are output nodes of clamp circuits 110b and 110a, respectively.

電路100的操作可經由參考第2B-2C圖而瞭解。在第2B-2C圖中,電晶體不導通則以虛線「X」表示。第2B圖說明輸入訊號V3X_IN之電壓值為其最小電壓值(以此例為0V)之實施例。因為電晶體M3之閘極以輸入訊號V3X_IN=0V偏壓,電晶體M3具有較電晶體M4低之閘極電壓,故電晶體M3不導通而電晶體M4導通。普通技能者將瞭解金氧半導體場效應電晶體(metal-oxide semiconductor field effect transistor;MOSFET)通常對稱地由源極至汲極建構,並且MOSFET之源極/汲極端根據慣例當電晶體偏壓時才標示為源極或汲極端。NMOS電晶體之源極或汲極端具有相對低電位稱之為源極端,則另一端稱為汲極端。PMOS電晶體之源極或汲極端具有相對高電位稱之為源極端,則另一端稱為汲極端。 The operation of circuit 100 can be understood by reference to Figure 2B-2C. In the 2B-2C diagram, the transistor is not turned on and is indicated by a broken line "X". Figure 2B illustrates an embodiment in which the voltage value of the input signal V 3X_IN is its minimum voltage value (0V in this example). Since the gate of the transistor M3 is biased with the input signal V 3X_IN =0 V, the transistor M3 has a lower gate voltage than the transistor M4, so that the transistor M3 is not turned on and the transistor M4 is turned on. Those skilled in the art will understand that metal-oxide semiconductor field effect transistors (MOSFETs) are typically symmetrically constructed from source to drain, and the source/drain extremes of the MOSFET are conventionally biased when the transistor is biased. Only marked as source or 汲 extreme. The source or the NMOS terminal of the NMOS transistor has a relatively low potential called the source terminal, and the other end is called the 汲 terminal. The source or the 汲 terminal of the PMOS transistor has a relatively high potential called the source terminal, and the other end is called the 汲 terminal.

因為V3X_IN=0V,節點220-2a(對應至訊號V2A)經由電晶體M4下拉至0V。PMOS電晶體M2經由閘極電壓0V 而導通,並維持節點220-1b(對應至訊號V1B)於1V。因為PMOS電晶體M5與M6之閘極電壓分別為1V與0V,電晶體M5不導通而電晶體M6導通,因此節點220-2b(訊號V2B)之電壓為1V。 Since V 3X_IN =0V, node 220-2a (corresponding to signal V 2A ) is pulled down to 0V via transistor M4. The PMOS transistor M2 is turned on via the gate voltage 0V and maintains the node 220-1b (corresponding to the signal V 1B ) at 1V. Since the gate voltages of the PMOS transistors M5 and M6 are 1V and 0V, respectively, the transistor M5 is not turned on and the transistor M6 is turned on, so the voltage of the node 220-2b (signal V 2B ) is 1V.

電晶體M1與M2各自具有節點耦接於節點220-1b。PMOS電晶體M2之源極至閘極電壓為1V,而NMOS電晶體M1之閘極至源極電壓為0V,因此電晶體M1不導通。 The transistors M1 and M2 each have a node coupled to the node 220-1b. The source-to-gate voltage of the PMOS transistor M2 is 1V, and the gate-to-source voltage of the NMOS transistor M1 is 0V, so the transistor M1 is not turned on.

因為NMOS電晶體M7與M8之閘極電壓分別為1V與0V,電晶體M7導通而電晶體M8不導通。節點220-1a(對應至訊號V1A)被拉至0V。 Since the gate voltages of the NMOS transistors M7 and M8 are 1V and 0V, respectively, the transistor M7 is turned on and the transistor M8 is not turned on. Node 220-1a (corresponding to signal V 1A ) is pulled to 0V.

因為PMOS電晶體M9與M10的閘極電壓分別為1V與0V,電晶體M9導通而電晶體M10不導通。節點220-1c(訊號V1C)被拉至2V。 Since the gate voltages of the PMOS transistors M9 and M10 are 1V and 0V, respectively, the transistor M9 is turned on and the transistor M10 is not turned on. Node 220-1c (signal V 1C ) is pulled to 2V.

第2C圖說明輸入訊號V3X_IN之電壓值為其最大電壓值(在此例為3V)之實施例。PMOS電晶體M6因閘極偏壓於3V而不導通,而導通的電晶體M5將節點220-2b之電壓(訊號V2B)拉高至3V。以3V偏壓而導通之NMOS電晶體M1,維持節點220-1b之電壓(訊號V1B)於2V。 Figure 2C illustrates an embodiment in which the voltage value of the input signal V 3X_IN is its maximum voltage value (in this example, 3V). The PMOS transistor M6 is not turned on due to the gate bias at 3V, and the turned-on transistor M5 pulls the voltage of the node 220-2b (signal V 2B ) to 3V. The NMOS transistor M1, which is turned on with a bias of 3V, maintains the voltage of the node 220-1b (signal V 1B ) at 2V.

因為NMOS電晶體M3與M4之閘極電壓分別為3V與2V,電晶體M3導通而電晶體M4不導通。因此,節點220-2a(訊號V2A)之電壓為2V。 Since the gate voltages of the NMOS transistors M3 and M4 are 3V and 2V, respectively, the transistor M3 is turned on and the transistor M4 is not turned on. Therefore, the voltage of node 220-2a (signal V 2A ) is 2V.

NMOS電晶體M1之閘極至源極電壓為1V,而PMOS電晶體M2源極至閘極電壓為0V。因此,電晶體M2不導通。 The gate-to-source voltage of the NMOS transistor M1 is 1V, and the source-to-gate voltage of the PMOS transistor M2 is 0V. Therefore, the transistor M2 is not turned on.

因為NMOS電晶體M7與M8之閘極電壓分別為1V 與2V,電晶體M7不導通而電晶體M8導通。因此,節點220-1a(訊號V1A)之電壓為1V。 Since the gate voltages of the NMOS transistors M7 and M8 are 1V and 2V, respectively, the transistor M7 is not turned on and the transistor M8 is turned on. Therefore, the voltage of the node 220-1a (signal V 1A ) is 1V.

因為PMOS電晶體M9與M10之閘極電壓分別為3V與2V,電晶體M9不導通而電晶體M10導通。節點220-1c(對應至訊號V1C)被拉高至3V。 Since the gate voltages of the PMOS transistors M9 and M10 are 3V and 2V, respectively, the transistor M9 is not turned on and the transistor M10 is turned on. Node 220-1c (corresponding to signal V 1C ) is pulled high to 3V.

本說明書之實施例提供不同控制訊號。在閂鎖210a中,當V3X_IN<V2X則V2A=V3X_IN以及當V3X_IN>V2X則V2A=V2X。閂鎖210a用以根據輸入訊號V3X_IN之電壓值將節點220-2a鎖在0V或電壓V2X。在閂鎖210b中,當V3X_IN>V1X則V2B=V3X_IN以及當V3X_IN<V1X則V2B=V1X。閂鎖210b用以根據電壓V3X_IN將節點220-2b鎖在電壓V1X或3V。在閂鎖210c中,當V3X_IN<V1X則V1A=V3X_IN,當V3X_IN>V1X則V1A=V1X。閂鎖210c用以根據訊號V2A將節點220-2c鎖在0V或電壓V1X。在閂鎖210d中,當V3X_IN>V2X則V1C=V3X_IN以及當V3X_IN<V2X則V1C=V2X。閂鎖210d用以根據訊號V2B鎖住將節點220-2d鎖在電壓V2X或3V。當V3X_IN<V1X則V1B=V1X,當V1X<V3X_IN<V2X則V1B=V3X_IN,當V3X_IN>V2X則V1B=V2XEmbodiments of the present specification provide different control signals. In the latch 210a, when V 3X_IN < V 2X then V 2A = V 3X_IN and when V 3X_IN > V 2X then V 2A = V 2X . The latch 210a is used to lock the node 220-2a to 0V or voltage V 2X according to the voltage value of the input signal V 3X_IN . In the latch 210b, when V 3X_IN > V 1X then V 2B = V 3X_IN and when V 3X_IN < V 1X then V 2B = V 1X . The latch 210b is used to lock the node 220-2b to a voltage V 1X or 3V according to the voltage V 3X_IN . In the latch 210c, when V 3X_IN <V 1X then V 1A = V 3X_IN , and when V 3X_IN > V 1X then V 1A = V 1X . The latch 210c is used to lock the node 220-2c to 0V or voltage V 1X according to the signal V 2A . In the latch 210d, when V 3X_IN > V 2X then V 1C = V 3X_IN and when V 3X_IN < V 2X then V 1C = V 2X . The latch signal V 2B 210d for locking the lock 220-2d node voltage at V 2X or 3V. When V 3X_IN <V 1X then V 1B =V 1X , when V 1X <V 3X_IN <V 2X then V 1B =V 3X_IN , and when V 3X_IN >V 2X then V 1B =V 2X .

第3圖係顯示根據本說明書實施例所述各種訊號之訊號追蹤圖(signal trace diagram)。於數據傳輸數率1Gbps之28奈米製程中,以下訊號繪製於第3圖中:輸入訊號V3X_IN之電壓值(波形310);訊號V1A(波形320);訊號V1B(波形330);訊號V1C(波形340);訊號V2A(波形350);訊號V2B(波形360)。上述圖中對應至一100fF電容負載於相對應之節點上。訊號V1A、V1B以及V1C之電壓擺幅為1V,而訊號 V2A與V2B之電壓擺幅為2V。因此,上述輸入輸入訊號V3X_IN具有高電壓擺幅3V,其被處理而產生具有較低電壓擺幅之多個控制訊號。在一些實施例中,這些控制訊號是用作過電壓保護。 Figure 3 is a diagram showing the signal trace diagram of various signals as described in the embodiments of the present specification. In the 28 nm process with a data transmission rate of 1 Gbps, the following signals are plotted in Figure 3: the voltage value of the input signal V 3X_IN (waveform 310); the signal V 1A (waveform 320); the signal V 1B (waveform 330); Signal V 1C (waveform 340); signal V 2A (waveform 350); signal V 2B (waveform 360). The above figure corresponds to a 100fF capacitive load on the corresponding node. The voltage swings of the signals V 1A , V 1B and V 1C are 1V, and the voltage swings of the signals V 2A and V 2B are 2V. Thus, the input input signal V 3X_IN has a high voltage swing of 3V which is processed to produce a plurality of control signals having a lower voltage swing. In some embodiments, these control signals are used as overvoltage protection.

本說明書之實施例實現於許多製程中,其中包括25與28奈米製程。複數模擬已得到成功的效能足以對抗許多製程邊界(process corners),包括FF、SS與TT等邊界。一個具有普通常識的技能者會瞭解這些邊界指的是NMOS、PMOS與元件之載子飄移率;例如,FF指的是比正常NMOS電晶體快以及比正常PMOS電晶體快。電壓擺幅分解根據不同的實施例可執行於廣泛的溫度範圍,包括-40℃至125℃。 Embodiments of the present specification are implemented in a number of processes, including 25 and 28 nanometer processes. Complex simulations have been successful enough to combat many process corners, including boundaries such as FF, SS, and TT. A common skill person will understand that these boundaries refer to the carrier drift of NMOS, PMOS, and components; for example, FF refers to faster than normal NMOS transistors and faster than normal PMOS transistors. Voltage swing decomposition can be performed over a wide range of temperatures, including -40 ° C to 125 ° C, according to various embodiments.

在一些實施例中,電壓分解執行於多個階段,例如於一樹狀處理之拓樸結構(tree-based processing topology)。第4圖係根據一些實施例,為一多級電壓擺幅分解電路400之方塊圖。相對高電壓擺幅之輸入輸入訊號VNX_IN分解為較低電壓擺幅之多個訊號。在一實施例中,輸入訊號VNX_IN之低電壓位準為0V,而高電壓位準為9V,因此可用V3X_IN相同命名法稱之為V9X_IN。電壓分解電路400-1、400-2a、400-2b以及400-2c每個都與電路100相似,除了其所使用之固定電壓值與電路100所提供的電壓V1X與V2X不同外。舉例來說,電路400-1使用固定電壓值3V與6V(分別指的是電壓V3X與V6X)而非電壓V1X與V2XIn some embodiments, the voltage decomposition is performed in multiple stages, such as a tree-based processing topology. 4 is a block diagram of a multi-level voltage swing decomposition circuit 400, in accordance with some embodiments. The input signal V NX_IN of the relatively high voltage swing is decomposed into a plurality of signals of a lower voltage swing. In one embodiment, the low voltage level of the input signal V NX_IN is 0V, and the high voltage level is 9V, so V 3X_IN can be called V 9X_IN by the same nomenclature. The voltage splitting circuits 400-1, 400-2a, 400-2b, and 400-2c are each similar to the circuit 100 except that the fixed voltage value used is different from the voltages V 1X and V 2X provided by the circuit 100. For example, circuits 400 and a fixed voltage value 3V 6V (refer to the voltage V 3X and V 6X) rather than voltage V 1X and V 2X.

在一第一處理階段(對應至第4圖中樹狀結構之一根部),電路400-1以如上所述針對電路100之相似方式分解 輸入訊號VNX_IN,提供擺幅介於0V與3V之間之訊號405a、擺幅介於3V與6V之間之訊號405b以及擺幅介於6V與9V之間之訊號405c。因此,訊號405a、405b與405c分別與訊號V1A、V1B以及V1C相似,除了其較寬之電壓擺幅以外。 In a first processing stage (corresponding to one of the roots of the tree structure in Figure 4), circuit 400-1 decomposes input signal V NX_IN in a similar manner as described above for circuit 100, providing a swing between 0V and 3V. The signal 405a, the signal 405b swinging between 3V and 6V, and the signal 405c swinging between 6V and 9V. Thus, signal 405a, 405b and 405c are similar to signal V 1A, V 1B, and V 1C, which is wider than the addition of the voltage swing.

在一第二處理階段(對應至於第4圖中樹狀結構之一子根部),每一訊號405a、405b與405c再分別經過分解電路400-2a、400-2b以及400-2c之處理,產生較低電壓擺幅之訊號。電路400-2a產生訊號410a、410b以及410c。訊號410a擺幅介於0V至1V之間,訊號410b擺幅介於1V至2V之間,訊號410c擺幅介於2V至3V之間。同樣地,電路400-2b與400-2c產生訊號420a、420b、420c、430a、430b以及430c,其表示其個別電壓擺幅介於以下範圍:3V至4V之間、4V至5V之間、5V至6V之間、6V至7V之間、7V至8V之間、8V至9V之間。處理階段之階層數將依不同實施例而決定。儘管此樹狀結構之電路400對每一第一階段輸出之訊號405a、405b以及405c做電壓擺幅分解,在一些實施例中並非所有這些訊號在第二階段時都會經過更進一步的處理。 In a second processing stage (corresponding to one of the sub-roots of the tree structure in FIG. 4), each of the signals 405a, 405b, and 405c is processed by the decomposition circuits 400-2a, 400-2b, and 400-2c, respectively, to generate The signal of the lower voltage swing. Circuit 400-2a produces signals 410a, 410b, and 410c. The signal 410a swings between 0V and 1V, the signal 410b swings between 1V and 2V, and the signal 410c swings between 2V and 3V. Similarly, circuits 400-2b and 400-2c generate signals 420a, 420b, 420c, 430a, 430b, and 430c, which indicate that their individual voltage swings are in the range of 3V to 4V, 4V to 5V, 5V. Between 6V, 6V to 7V, 7V to 8V, and 8V to 9V. The number of levels in the processing stage will be determined according to different embodiments. Although the circuit 400 of the tree structure performs a voltage swing decomposition on the signals 405a, 405b, and 405c outputted for each of the first stages, not all of the signals are subjected to further processing in the second stage in some embodiments.

因此在此實施例中,電路400-2a包括類似於電路100中箝位電路之箝位電路,但卻連接至不同之固定電壓。電路400-2a之該箝位電路用以當訊號405a高於1V時,箝制訊號410a於1V,以及當訊號405a低於2V時,箝制訊號410c於2V。同樣地在此實施例中,電路400-2b包括用以當訊號405b高於4V時,箝制訊號420a於4V,以及當訊 號405b低於5V時,箝制訊號420c於5V之箝位電路。同樣地,電路400-2c包括用以當訊號405c高於7V時,箝制訊號430a於7V,以及當訊號405c低於8V時,箝制訊號430c於8V之箝位電路。類似電路400-1於此樹狀圖之第一階段,位於第二階段之每一電路400-2a、400-2b以及400-2c皆包括各兩個閂鎖於其中之兩個箝位電路。為了繪圖簡便,此第二階段箝位電路與閂鎖並未顯示於第4圖中;在一些實施例中,其安排類似於第2圖中的箝位電路與閂鎖,除非他們連接至與第2圖類似之元件不同之固定電壓。 Thus, in this embodiment, circuit 400-2a includes a clamping circuit similar to the clamping circuit in circuit 100, but connected to a different fixed voltage. The clamping circuit of the circuit 400-2a is used to clamp the signal 410a at 1V when the signal 405a is higher than 1V, and clamp the signal 410c to 2V when the signal 405a is lower than 2V. Similarly, in this embodiment, the circuit 400-2b includes a clamp signal 420a at 4V when the signal 405b is higher than 4V, and a signal When the number 405b is lower than 5V, the clamp signal 420c is clamped to the 5V clamp circuit. Similarly, the circuit 400-2c includes a clamp circuit for clamping the signal 430a at 7V when the signal 405c is higher than 7V, and clamping the signal 430c at 8V when the signal 405c is lower than 8V. Similar circuit 400-1 in the first stage of the tree diagram, each of the circuits 400-2a, 400-2b, and 400-2c in the second stage includes two clamp circuits each latched therein. For ease of drawing, this second stage clamp circuit and latch are not shown in Figure 4; in some embodiments, the arrangement is similar to the clamp circuit and latch in Figure 2 unless they are connected to Figure 2 is similar to the fixed voltage of the different components.

在一些實施例中,上述由分解電路輸出之複數控制訊號具有不同幅度之電壓擺幅。第5圖係一電壓擺幅分解電路500之方塊圖,該電路與電路100相似,除了電路500並未處理一輸入訊號以產生具有相同電壓擺幅之複數輸出訊號。輸入電壓V5X_IN具有一低位準0V與一高位準5V。一固定電壓4V(於此實施例標示為電壓V4X)提供至電路500,代替電壓V2X提供一固定電壓2V至電路100。電路500產生擺幅介於0V與1V之間之訊號510a、擺幅介於1V與4V之間之訊號510b、擺幅介於4V與5V之間之訊號510c。就如何產生而言,訊號510a、510b以及510c與訊號V1A、V1B以及V1C相似,但他們卻有不同電壓擺幅。此外,電路500產生變化於0V至4V之訊號510d,與變化於1V至5V之一訊號510e。因此,訊號510d與510e與訊號V2A與V2B相似,除了較寬(或較高)之擺幅。在許多實施例中,提供至電壓分解電路之該輸入訊號具有各種不同之電 壓擺幅,包括多個低與高之電壓值。在一些實施例中使用一多級處理配置與第4圖類似,一些電壓分解電路提供相同電壓擺幅之複數輸出訊號,而其他分解電路則提供不同電壓擺幅之複數輸出訊號。因此,許多實施例提供彈性之架構分解一高電壓擺幅訊號,用以適應各種電路應用與限制。 In some embodiments, the plurality of control signals output by the decomposition circuit have voltage swings of different amplitudes. Figure 5 is a block diagram of a voltage swing decomposition circuit 500 similar to circuit 100 except that circuit 500 does not process an input signal to produce a complex output signal having the same voltage swing. The input voltage V 5X_IN has a low level of 0V and a high level of 5V. 4V a fixed voltage (this embodiment is designated voltage V 4X) supplied to the circuit 500, instead of providing a fixed voltage V 2X circuit 100 to a voltage 2V. The circuit 500 generates a signal 510a with a swing between 0V and 1V, a signal 510b with a swing between 1V and 4V, and a signal 510c with a swing between 4V and 5V. Signals 510a, 510b, and 510c are similar to signals V 1A , V 1B , and V 1C in terms of how they are generated, but they have different voltage swings. In addition, circuit 500 produces a signal 510d that varies from 0V to 4V, and a signal 510e that varies from 1V to 5V. Thus, signals 510d and 510e are similar to signals V 2A and V 2B except for a wider (or higher) swing. In many embodiments, the input signal provided to the voltage decomposition circuit has a variety of different voltage swings, including a plurality of low and high voltage values. In some embodiments, a multi-stage processing configuration is used similar to Figure 4, with some voltage decomposition circuits providing complex output signals of the same voltage swing, while other decomposition circuits provide complex output signals of different voltage swings. Accordingly, many embodiments provide an elastic architecture to decompose a high voltage swing signal to accommodate various circuit applications and limitations.

第6圖係根據一些實施例採用電壓擺幅分解之電路600之電路圖。電路600包括電晶體M11、M12、M13、電流源610、電阻620以及電壓擺幅分解電路630。電路630相似於電路100,除了電路600使用固定電壓1.8V與3V而非分別由電路100中的電壓V1X與V2X提供之1V與2V。訊號VBUS擺幅介於0V與5V之間。由於固定電壓為1.8V與3.3V,訊號VA相似於電路100中的訊號V2B,除了訊號VA擺幅介於1.8V至5V之間而非1V至3V之間。如果VBUS=0V,電路630維持訊號VA於1.8V。例如根據一USBOTG(USB on-the-go)對話請求協議規範,PMOS電晶體M13打開,如果VBUS=5V,電路630維持訊號VA於5V而不導通電晶體M13。所以,5V擺幅縮減至較小擺幅,其增進此應用之可靠度。 Figure 6 is a circuit diagram of a circuit 600 employing voltage swing decomposition in accordance with some embodiments. Circuit 600 includes transistors M11, M12, M13, current source 610, resistor 620, and voltage swing decomposition circuit 630. Circuit 630 is similar to circuit 100 except that circuit 600 uses fixed voltages of 1.8V and 3V instead of 1V and 2V provided by voltages V 1X and V 2X in circuit 100, respectively. The signal V BUS swing is between 0V and 5V. Since the fixed voltage is 1.8V and 3.3V, the signal V A is similar to the signal V 2B in the circuit 100 except that the signal V A swing is between 1.8V and 5V instead of between 1V and 3V. If V BUS =0 V, circuit 630 maintains signal V A at 1.8V. For example, according to a USBOTG (USB on-the-go) dialog request protocol specification, the PMOS transistor M13 is turned on. If V BUS = 5V, the circuit 630 maintains the signal V A at 5 V without conducting the crystal M13. Therefore, the 5V swing is reduced to a smaller swing, which improves the reliability of this application.

第7圖係根據一些實施例採用電壓擺幅分解之電路700之電路圖。輸入/輸出焊墊710具有變化於0V至電壓V3X之輸入訊號V3X_IN。焊墊710耦接至包括一或多個P型元件(全體於第7圖中以一PMOS電晶體符號代表)之電路720a,也耦接至包括一或多個N型元件(全體於第7圖中以一NMOS電晶體符號代表)之電路720b。為了保護電路720a 與720b對抗由焊墊710所造成之高電壓擺幅,由焊墊710提供之輸入訊號V3X_IN經由電壓擺幅分解電路100而產生較低擺幅之訊號v1A、V1B以及V1C。在第7圖中,V3X=3V1X以及V2X=2V1X。上拉驅動電路740a與下拉驅動電路740b為傳統驅動電路。由於控制訊號V1A、V1B以及V1C,電路720a與720b被保護以避免高電壓擺幅之傷害而確保可靠度。有利的是,電路700沒有消耗直流電流。 Figure 7 is a circuit diagram of a circuit 700 employing voltage swing decomposition in accordance with some embodiments. The input/output pad 710 has an input signal V 3X_IN that varies from 0V to a voltage V 3X . The pad 710 is coupled to the circuit 720a including one or more P-type components (all represented by a PMOS transistor symbol in FIG. 7), and is also coupled to include one or more N-type components (all in the seventh Circuit 720b, represented by an NMOS transistor symbol, is shown. In order to protect the circuits 720a and 720b against the high voltage swing caused by the pad 710, the input signal V 3X_IN provided by the pad 710 generates a lower swing signal v 1A , V 1B via the voltage swing decomposition circuit 100 and V 1C . In Fig. 7, V 3X = 3 * V 1X and V 2X = 2 * V 1X . The pull-up drive circuit 740a and the pull-down drive circuit 740b are conventional drive circuits. Due to the control signals V 1A , V 1B and V 1C , the circuits 720a and 720b are protected from high voltage swings to ensure reliability. Advantageously, circuit 700 does not consume DC current.

第8圖係根據一些實施例之過程流程圖。流程800開始後,步驟810為提供一輸入訊號(即輸入訊號V3X_IN),其電壓變化介於第一電壓位準(即0V)與第二電壓位準(即電壓V3X)之間。第一電壓位準低於第二電壓位準。步驟820為產生第一訊號(即訊號V2A),其電壓變化介於第一電壓位準與第三電壓位準(即電壓V2X)之間。第三電壓位準高於第一電壓位準且低於第二電壓位準。根據上述輸入訊號而產生第一訊號。步驟830為產生一第二訊號(即訊號V2B),其電壓變化介於第四電壓位準(即電壓V1X)與第二電壓位準。第四電壓位準高於第一電壓位準而低於第三電壓位準。根據上述輸入訊號,產生上述第二訊號。步驟840為第三訊號(即訊號V1B)基於第一與第二訊號,選擇性設置於第三或第四電壓位準其中之一者。在一些實施例中,此過程包括產生電壓變化於第一電壓位準與第四電壓位準間之第四訊號(即訊號V1A)。該根據第一訊號產生之第四訊號,當輸入訊號高於第四電壓位準時,其被箝制於第四電壓位準。在一些實施例中,此過程包括產生電壓變化於第三電壓位準與第二電壓位準之第五信號(即訊號V1C)。該根據第 二訊號產生之第五訊號,當輸入電壓低於第三電壓位準時,被箝制於第三電壓位準。 Figure 8 is a process flow diagram in accordance with some embodiments. After the process 800 begins, step 810 provides an input signal (ie, input signal V 3X_IN ) whose voltage varies between a first voltage level (ie, 0V) and a second voltage level (ie, voltage V 3X ). The first voltage level is lower than the second voltage level. Step 820 generates a first signal (i.e. the signal V 2A), which changes the voltage level between the first voltage and the third voltage level (i.e., voltage V 2X) between. The third voltage level is higher than the first voltage level and lower than the second voltage level. The first signal is generated according to the input signal. Step 830 is to generate a second signal (ie, signal V 2B ) whose voltage varies between the fourth voltage level (ie, voltage V 1X ) and the second voltage level. The fourth voltage level is higher than the first voltage level and lower than the third voltage level. The second signal is generated according to the input signal. Step 840 is that the third signal (ie, signal V 1B ) is selectively set to one of the third or fourth voltage levels based on the first and second signals. In some embodiments, the process includes generating a fourth signal (ie, signal V 1A ) having a voltage change between the first voltage level and the fourth voltage level. The fourth signal generated according to the first signal is clamped to the fourth voltage level when the input signal is higher than the fourth voltage level. In some embodiments, the process includes generating a fifth signal (ie, signal V 1C ) at which the voltage changes to a third voltage level and a second voltage level. The fifth signal generated according to the second signal is clamped to the third voltage level when the input voltage is lower than the third voltage level.

在一些實施例中,電壓擺幅分解電路(即電路100)包括第一與第二箝位電路(即分別為箝位電路110a與110b)與一保護電路(即保護電路120)。當電壓擺幅分解電路之輸入節點(即節點101)具有一電壓高於第一電壓位準時,該第一箝位電路配置為箝制第一箝位電路之輸出節點(即節點220-1a)於第一電壓位準(即電壓V1X)。當輸入節點電壓低於第二電壓位準時,第二箝位電路配置為箝制第二箝位電路之輸出節點(即節點220-1c)於第二電壓位準(即電壓V2X)。上述保護電路耦接於第一與第二箝位電路之輸出節點,並且配置為選擇性設置上述保護電路之輸出節點(即節點220-1b)至第一或第二電壓位準。該第一與第二箝位電路經由上述保護電路之輸出節點耦接於一起。 In some embodiments, the voltage swing decomposition circuit (ie, circuit 100) includes first and second clamp circuits (ie, clamp circuits 110a and 110b, respectively) and a protection circuit (ie, protection circuit 120). When the input node of the voltage swing decomposition circuit (ie, node 101) has a voltage higher than the first voltage level, the first clamp circuit is configured to clamp the output node of the first clamp circuit (ie, node 220-1a) a first voltage level (i.e., voltage V 1X). When the input node voltage is lower than the second voltage level, the second clamp circuit is configured to clamp the output node of the second clamp circuit (ie, node 220-1c) to the second voltage level (ie, voltage V 2X ). The protection circuit is coupled to the output nodes of the first and second clamping circuits, and is configured to selectively set an output node (ie, node 220-1b) of the protection circuit to a first or second voltage level. The first and second clamping circuits are coupled together via an output node of the protection circuit.

在一些實施例中,電路包括第一與第二閂鎖(即分別為閂鎖210a與210b)以及保護模組(即電路120),第一閂鎖包括第一與第二NMOS電晶體(即分別為電晶體M3與M4)。第一NMOS電晶體的閘極耦接至第二NMOS電晶體的第一端點;而第二NMOS電晶體的閘極耦接至第一NMOS電晶體的第一端點。第一NMOS電晶體的第二端點經由第一閂鎖之輸出節點(即節點220-2a)耦接至第二NMOS電晶體的第二端點。第二閂鎖包括第一與第二PMOS電晶體(即分別為電晶體M5與M6)。第一PMOS電晶體的閘極耦接至第二PMOS電晶體的第一端點;第二PMOS電晶體的閘極耦接至第一PMOS電晶體的第一端點。第一PMOS電晶體的 第二端點經由第二閂鎖之節點(即220-2b)耦接至第二PMOS的第二端點。上述保護模組包括第三NMOS電晶體(即電晶體M1)與第三PMOS電晶體(即電晶體M2)。第三PMOS電晶體的閘極耦接至第一閂鎖之輸出節點,第三PMOS電晶體的第一端點耦接至第一NMOS電晶體的第一端點。第三NMOS電晶體的閘極耦接至第二閂鎖的輸出節點。第三NMOS電晶體的第一端點耦接至第二PMOS電晶體的第一端點。第三NMOS電晶體的第一端點經由上述保護模組之輸出節點(即節點220-1b)耦接至第三PMOS電晶體的第一端點。 In some embodiments, the circuit includes first and second latches (ie, latches 210a and 210b, respectively) and a protection module (ie, circuit 120), the first latch including first and second NMOS transistors (ie, They are transistors M3 and M4 respectively. The gate of the first NMOS transistor is coupled to the first terminal of the second NMOS transistor; and the gate of the second NMOS transistor is coupled to the first terminal of the first NMOS transistor. The second end of the first NMOS transistor is coupled to the second end of the second NMOS transistor via the output node of the first latch (ie, node 220-2a). The second latch includes first and second PMOS transistors (ie, transistors M5 and M6, respectively). The gate of the first PMOS transistor is coupled to the first terminal of the second PMOS transistor; the gate of the second PMOS transistor is coupled to the first terminal of the first PMOS transistor. First PMOS transistor The second endpoint is coupled to the second endpoint of the second PMOS via a second latched node (ie, 220-2b). The protection module includes a third NMOS transistor (ie, a transistor M1) and a third PMOS transistor (ie, a transistor M2). The gate of the third PMOS transistor is coupled to the output node of the first latch, and the first end of the third PMOS transistor is coupled to the first terminal of the first NMOS transistor. The gate of the third NMOS transistor is coupled to the output node of the second latch. The first end of the third NMOS transistor is coupled to the first end of the second PMOS transistor. The first end of the third NMOS transistor is coupled to the first end of the third PMOS transistor via an output node of the protection module (ie, node 220-1b).

在一些實施例中,給定輸入訊號(例如輸入訊號V3X_IN),其電壓變化於第一電壓位準(即0V)與第二電壓位準(即電壓V3X)。第一電壓位準低於第二電壓位準。產生第一信號(即訊號V2A),其電壓變化於第一電壓位準與第三電壓位準(即電壓V2X)。第三電壓位準高於第一電壓位準,卻低於第二電壓位準。基於上述輸入訊號產生第一訊號。產生訊號(即訊號V2B),其電壓變化於第四電壓位準(即電壓V1X)與第二電壓位準。第四電壓位準高於第一電壓位準,卻低於第三電壓位準。基於上述輸入訊號產生第二訊號。根據第一與第二訊號,第三訊號(即訊號V1B)選擇性設置為第三與第四電壓位準之其一。 In some embodiments, a given input signal (e.g. input signal V 3X_IN), the voltage variation of the first voltage level (i.e., 0V) and a second voltage level (i.e., voltage V 3X). The first voltage level is lower than the second voltage level. A first signal (ie, signal V 2A ) is generated, the voltage of which varies between the first voltage level and the third voltage level (ie, voltage V 2X ). The third voltage level is higher than the first voltage level but lower than the second voltage level. The first signal is generated based on the input signal. A signal (ie, signal V 2B ) is generated whose voltage changes to a fourth voltage level (ie, voltage V 1X ) and a second voltage level. The fourth voltage level is higher than the first voltage level but lower than the third voltage level. The second signal is generated based on the input signal. According to the first and second signals, the third signal (ie, the signal V 1B ) is selectively set to one of the third and fourth voltage levels.

儘管在此說明與敘述數個實施例,實施例還是無法限制於在此詳細所示,因為普通技能者可以此專利申請範圍相同之觀點與範圍而做出許多的變形與結構上的改變。 While the invention has been shown and described with respect to the embodiments, the embodiments of the invention are not limited by the scope of the invention.

100、500、630‧‧‧電壓擺幅分解電路 100,500, 630‧‧‧ voltage swing decomposition circuit

101‧‧‧輸入節點 101‧‧‧Input node

110a、110b‧‧‧箝位電路 110a, 110b‧‧‧ clamp circuit

120‧‧‧保護電路 120‧‧‧Protection circuit

210a、210b、210c、210d‧‧‧閂鎖 210a, 210b, 210c, 210d‧‧‧ latch

220-1a、220-1b、220-1c、220-2a、220-2b‧‧‧節點 220-1a, 220-1b, 220-1c, 220-2a, 220-2b‧‧‧ nodes

310、320、330、340、350、360‧‧‧圖 310, 320, 330, 340, 350, 360‧‧‧

400‧‧‧多級電壓擺幅分解電路 400‧‧‧Multi-level voltage swing decomposition circuit

400-1、400-2a、400-2b、400-2c‧‧‧電壓分解電路 400-1, 400-2a, 400-2b, 400-2c‧‧‧ voltage decomposition circuit

405a、405b、405c‧‧‧訊號 405a, 405b, 405c‧‧‧ signals

420a、420b、420c‧‧‧訊號 420a, 420b, 420c‧‧‧ signals

430a、430b、430c‧‧‧訊號 430a, 430b, 430c‧‧‧ signals

510a、510b、510c、510d、510e‧‧‧訊號 510a, 510b, 510c, 510d, 510e‧‧‧ signals

600、700‧‧‧電壓擺幅分解之電路 600, 700‧‧‧ Voltage swing decomposition circuit

610‧‧‧電流源 610‧‧‧current source

620‧‧‧電阻 620‧‧‧resistance

710‧‧‧焊墊 710‧‧‧ solder pads

720a、720b‧‧‧電路 720a, 720b‧‧‧ circuits

740a‧‧‧上拉驅動電路 740a‧‧‧ Pull-up drive circuit

740b‧‧‧下拉驅動電路 740b‧‧‧ Pull-down drive circuit

800‧‧‧流程 800‧‧‧ Process

810、820、830、840‧‧‧步驟 810, 820, 830, 840 ‧ ‧ steps

以下所示將描述圖中之元件,上述元件用以舉例說明其用途而不需衡量其大小。 The elements in the figures will be described below, and the above elements are used to illustrate their use without measuring their size.

第1圖係根據本說明書之實施例之電壓擺幅分解電路之方塊圖。 Figure 1 is a block diagram of a voltage swing decomposition circuit in accordance with an embodiment of the present specification.

第2A圖係使用閂鎖作為箝位電路之電路100之簡圖。 Figure 2A is a simplified diagram of a circuit 100 using a latch as a clamp circuit.

第2B圖係用以對應V3X_IN=0V之實施例之電路100之簡圖。 Figure 2B is a simplified diagram of circuit 100 for an embodiment corresponding to V3X_IN = 0V.

第2C圖係用以對應V3X_IN=3V之實施例之電路100之簡圖。 Figure 2C is a simplified diagram of circuit 100 for an embodiment corresponding to V 3X_IN = 3V.

第3圖係根據一些實施例顯示不同的輸入與輸出訊號之訊號追蹤圖。 Figure 3 is a diagram showing signal traces of different input and output signals in accordance with some embodiments.

第4圖係根據一些實施例多級電壓擺幅分解電路之方塊圖。 Figure 4 is a block diagram of a multi-level voltage swing decomposition circuit in accordance with some embodiments.

第5圖係根據一些實施例之電壓擺幅分解電路之方塊圖。 Figure 5 is a block diagram of a voltage swing decomposition circuit in accordance with some embodiments.

第6圖係根據一些實施例採用電壓擺幅分解之電路圖。 Figure 6 is a circuit diagram of voltage swing decomposition in accordance with some embodiments.

第7圖係根據一些實施例採用電壓擺幅分解之電路圖。 Figure 7 is a circuit diagram of voltage swing decomposition in accordance with some embodiments.

第8圖係根據一些實施例之流程圖。 Figure 8 is a flow chart in accordance with some embodiments.

100‧‧‧電壓擺幅分解電路 100‧‧‧Voltage swing decomposition circuit

110a、110b‧‧‧箝位電路 110a, 110b‧‧‧ clamp circuit

120‧‧‧保護電路 120‧‧‧Protection circuit

210a、210b、210c、210d‧‧‧閂鎖 210a, 210b, 210c, 210d‧‧‧ latch

220-1a、220-1b、220-1c、220-2a、220-2b‧‧‧節點 220-1a, 220-1b, 220-1c, 220-2a, 220-2b‧‧‧ nodes

Claims (10)

一種電壓擺幅分解電路,包括:一第一箝位電路,其用以當電壓擺幅分解電路之一輸入節點電壓高於第一電壓位準之時,箝制上述第一箝位電路之一輸出節點電壓於上述第一電壓位準;一第二箝位電路,其用以當上述輸入節點電壓低於一第二電壓位準且上述第二電壓位準高於上述第一電壓位準之時,箝制上述第二箝位電路之一輸出節點電壓於上述第二電壓位準;以及一保護電路,耦接至上述第一箝位電路與上述第二箝位電路之複數輸出節點,上述保護電路用以選擇性設置上述保護電路之一輸出節點至上述第一箝位電路與上述第二電壓位準之一者;其中上述第一箝位電路與上述第二箝位電路經由上述保護電路之輸出節點耦接在一起。 A voltage swing decomposition circuit includes: a first clamp circuit configured to clamp an output of the first clamp circuit when an input node voltage of the voltage swing decomposition circuit is higher than a first voltage level The node voltage is at the first voltage level; a second clamping circuit is configured to when the input node voltage is lower than a second voltage level and the second voltage level is higher than the first voltage level And clamping a voltage of the output node of the second clamping circuit to the second voltage level; and a protection circuit coupled to the plurality of output nodes of the first clamping circuit and the second clamping circuit, the protection circuit The method for selectively setting an output node of the protection circuit to the first clamp circuit and the second voltage level; wherein the first clamp circuit and the second clamp circuit output via the protection circuit The nodes are coupled together. 如申請專利範圍第1項所述之電壓擺幅分解電路,其中上述保護電路包括:一第一保護開關,其用以選擇性設置上述保護電路之上述輸出節點至上述第一電壓位準,上述第一保護開關由上述第一箝位電路控制;以及一第二保護開關,其用以選擇性設置上述保護電路之上述輸出節點至上述第二電壓位準,上述第二保護開關由上述第二箝位電路控制;其中:上述第一保護開關包括一PMOS電晶體,上述PMOS電晶體其閘極耦接至上述第一箝位電路之上述輸出節點, 一第一端點連接至上述第一電壓位準,而一第二端點連接至上述保護電路之上述輸出節點;以及上述第二保護開關包括一NMOS電晶體,上述NMOS電晶體其閘極耦接至上述第二箝位電路之上述輸出節點,一第一端點連接至上述第二電壓位準,而一第二端點耦接至上述保護電路之上述輸出節點。 The voltage swing decomposition circuit of claim 1, wherein the protection circuit comprises: a first protection switch for selectively setting the output node of the protection circuit to the first voltage level, The first protection switch is controlled by the first clamping circuit; and a second protection switch is configured to selectively set the output node of the protection circuit to the second voltage level, and the second protection switch is configured by the second Clamping circuit control; wherein: the first protection switch comprises a PMOS transistor, and the gate of the PMOS transistor is coupled to the output node of the first clamping circuit, a first terminal is connected to the first voltage level, and a second terminal is connected to the output node of the protection circuit; and the second protection switch comprises an NMOS transistor, and the NMOS transistor has a gate coupling Connected to the output node of the second clamping circuit, a first terminal is connected to the second voltage level, and a second terminal is coupled to the output node of the protection circuit. 如申請專利範圍第1項所述之電壓擺幅分解電路,其中:上述第一箝位電路包括一第一閂鎖,上述第一閂鎖用以基於上述輸入節點電壓鎖住上述第一閂鎖之一輸出節點於一參考電壓位準與上述第二電壓位準之一者,其中上述參考電壓位準低於上述第一電壓位準;上述第一閂鎖包括一對NMOS電晶體,其中每一NMOS電晶體之閘極耦接至另一NMOS電晶體之第一端點,於上述NMOS電晶體對中的每一電晶體之第二端點經由上述第一閂鎖之上述輸出節點而耦接在一起;上述第一箝位電路更包括耦接至上述第一閂鎖之上述輸出節點之一第三閂鎖,其中上述第三閂鎖用以基於上述第一閂鎖之上述輸出節點電壓,鎖住上述第三閂鎖之一輸出節點於上述參考電壓位準與上述第一電壓位準之一者;上述第三閂鎖包括一對NMOS電晶體,其中每一NMOS電晶體之閘極耦接至另一NMOS電晶體之第一端點,於上述NMOS電晶體對中的每一電晶體之第二端點經由上述第一箝位電路之上述輸出節點而耦接在一起;上述第二箝位電路包括一第二閂鎖,上述第二閂鎖用 以基於上述輸入節點電壓鎖住上述第一閂鎖之一輸出節點於上述第一電壓位準與一第三電壓位準之一者,其中上述第三電壓位準高於上述第二電壓位準;上述第二閂鎖包括一對PMOS電晶體,其中每一PMOS電晶體之閘極耦接至另一PMOS電晶體之第一端點,於上述PMOS電晶體對中的每一電晶體之第二端點經由上述第二閂鎖之上述輸出節點耦接在一起;上述第二箝位電路更包括耦接至上述第二閂鎖之上述輸出節點之一第四閂鎖,其中上述第四閂鎖用以基於上述第二閂鎖之上述輸出節點電壓,鎖住上述第四閂鎖之一輸出節點於上述第二電壓位準與上述第三電壓位準之一者;上述第四閂鎖包括一對PMOS電晶體,其中每一PMOS電晶體之閘極耦接至另一PMOS電晶體之第一端點,於上述PMOS電晶體對中的每一電晶體之第二端點經由上述第二箝位電路之上述輸出節點耦接在一起;以及其中上述輸入節點之電壓變化介於上述參考電壓位準與上述第三電壓位準之間。 The voltage swing decomposition circuit of claim 1, wherein: the first clamping circuit comprises a first latch, and the first latch is configured to lock the first latch based on the input node voltage One of the output nodes is at a reference voltage level and one of the second voltage levels, wherein the reference voltage level is lower than the first voltage level; the first latch includes a pair of NMOS transistors, wherein each a gate of an NMOS transistor is coupled to a first end of another NMOS transistor, and a second end of each of the NMOS transistor pairs is coupled via the output node of the first latch The first clamping circuit further includes a third latch coupled to the output node of the first latch, wherein the third latch is configured to be based on the output node voltage of the first latch Locking one of the output ports of the third latch to the reference voltage level and one of the first voltage levels; the third latch includes a pair of NMOS transistors, wherein the gate of each NMOS transistor Coupling to another NMOS transistor a first end point, wherein the second end of each of the NMOS transistor pairs is coupled together via the output node of the first clamping circuit; the second clamping circuit includes a second latch Lock, the above second latch And latching, according to the input node voltage, one of the first latch output node to one of the first voltage level and a third voltage level, wherein the third voltage level is higher than the second voltage level The second latch includes a pair of PMOS transistors, wherein a gate of each PMOS transistor is coupled to a first end of another PMOS transistor, and a transistor of each of the PMOS transistor pairs The two terminals are coupled together via the output node of the second latch; the second clamping circuit further includes a fourth latch coupled to the output node of the second latch, wherein the fourth latch The lock is configured to lock one of the output terminals of the fourth latch to the second voltage level and the third voltage level based on the output node voltage of the second latch; the fourth latch includes a pair of PMOS transistors, wherein a gate of each PMOS transistor is coupled to a first end of another PMOS transistor, and a second end of each of the PMOS transistor pairs is via the second The above output nodes of the clamp circuit are coupled together And wherein the change in voltage between the input node of said reference voltage level and said third voltage level. 如申請專利範圍第1項所述之電壓擺幅分解電路,更包括:一第三箝位電路,其用以當上述第一箝位電路之上述輸出節點電壓高於上述第三電壓位準時,箝制上述第三箝位電路之一輸出節點電壓於上述第三電壓位準,其中上述第三電壓位準低於上述第一電壓位準;以及一第四箝位電路,其用以當上述第一箝位電路之上述輸出節點電壓高於一第四電壓位準時,箝制上述第四箝位 電路之上述輸出節點電壓於上述第四電壓位準,其中上述第四電壓位準高於上述第三電壓位準但低於上述第一電壓位準。 The voltage swing decomposition circuit of claim 1, further comprising: a third clamp circuit, when the output node voltage of the first clamp circuit is higher than the third voltage level, And clamping a third node of the third clamp circuit to the third voltage level, wherein the third voltage level is lower than the first voltage level; and a fourth clamp circuit for using the foregoing Clamping the fourth clamp when the output node voltage of a clamp circuit is higher than a fourth voltage level The output node voltage of the circuit is at the fourth voltage level, wherein the fourth voltage level is higher than the third voltage level but lower than the first voltage level. 如申請專利範圍第1項所述之電壓擺幅分解電路,更包括:一第三箝位電路,其用以當上述第二箝位電路之上述輸出節點電壓高於一第三電壓位準時,箝制上述第三箝位電路之一輸出節點電壓於上述第三電壓位準,其中上述第三電壓位準高於上述第二電壓位準;以及一第四箝位電路,其用以當上述第二箝位電路之上述輸出節點電壓低於一第四電壓位準時,箝制上述第四箝位電路之一輸出節點電壓於上述第四電壓位準,其中上述第四電壓位準高於上述第三電壓位準且高於上述第二電壓位準。 The voltage swing decomposition circuit of claim 1, further comprising: a third clamp circuit, when the output node voltage of the second clamp circuit is higher than a third voltage level, And clamping a third node of the third clamping circuit to the third voltage level, wherein the third voltage level is higher than the second voltage level; and a fourth clamping circuit for using the foregoing When the output node voltage of the second clamp circuit is lower than a fourth voltage level, clamping one of the output voltages of the fourth clamp circuit to the fourth voltage level, wherein the fourth voltage level is higher than the third The voltage level is higher than the second voltage level described above. 一種電壓擺幅分解電路,包括:一第一閂鎖,包括一第一NMOS電晶體與一第二NMOS電晶體,其中上述第一NMOS電晶體的閘極耦接至上述第二NMOS電晶體的第一端點,上述第二NMOS電晶體的閘極耦接至上述第一NMOS電晶體的第一端點,且經由上述第一閂鎖之一輸出節點,上述第一NMOS的第二端點耦接至上述第二NMOS電晶體的第二端點;一第二閂鎖,包括一第一PMOS電晶體與一第二PMOS電晶體,其中上述第一PMOS電晶體的閘極耦接至上述第二PMOS電晶體之第一端點,上述第二PMOS電晶體的閘極耦接至上述第一PMOS的第一端點,且經由上述上述第 二閂鎖之一輸出節點,上述第一PMOS電晶體的第二端點耦接至上述第二PMOS電晶體的第二端點;以及一保護模組,包括一第三NMOS電晶體與一第三PMOS電晶體,其中上述第三PMOS電晶體的閘極耦接至上述第一閂鎖之上述輸出節點,上述第三PMOS電晶體的第一端點耦接至上述第一NMOS電晶體的第一端點,上述第三NMOS電晶體的閘極耦接至上述第二閂鎖之上述輸出節點,上述第三NMOS電晶體的第一端點耦接至上述第二PMOS電晶體的第一端點,以及經由上述保護模組之一輸出節點,第三NMOS電晶體的第一端點耦接至第三PMOS電晶體的第一端點。 A voltage swing decomposition circuit includes: a first latch comprising a first NMOS transistor and a second NMOS transistor, wherein a gate of the first NMOS transistor is coupled to the second NMOS transistor a first end, a gate of the second NMOS transistor is coupled to the first end of the first NMOS transistor, and a node is outputted via one of the first latches, and the second end of the first NMOS The second latch is coupled to the second NMOS transistor; the second latch includes a first PMOS transistor and a second PMOS transistor, wherein the gate of the first PMOS transistor is coupled to the a first end of the second PMOS transistor, a gate of the second PMOS transistor is coupled to the first end of the first PMOS, and An output node of the second latch, the second end of the first PMOS transistor is coupled to the second end of the second PMOS transistor; and a protection module includes a third NMOS transistor and a first a PMOS transistor, wherein a gate of the third PMOS transistor is coupled to the output node of the first latch, and a first end of the third PMOS transistor is coupled to the first NMOS transistor An end of the third NMOS transistor is coupled to the output node of the second latch, and a first end of the third NMOS transistor is coupled to the first end of the second PMOS transistor And a first end of the third NMOS transistor is coupled to the first end of the third PMOS transistor via the output node of one of the protection modules. 如專利申請範圍第6項所述之電壓擺幅分解電路,其中上述第三PMOS電晶體之第二端點連接至上述第一電壓位準,上述第三NMOS電晶體之第二端點連接至高於上述第一電壓位準的上述第二電壓位準,以及上述第一NMOS電晶體之第二端點與上述第一PMOS電晶體之第二端點耦接至上述電路之一輸入節點;其中更包括:一第三閂鎖,其包括一第四NMOS電晶體與一第五NMOS電晶體,其中上述第四NMOS電晶體的閘極耦接至上述第五NMOS電晶體的第一端點,上述第五NMOS電晶體的閘極耦接至上述第四NMOS電晶體的第一端點,經由上述第三閂鎖之一輸出節點,上述第四NMOS電晶體的第二端點耦接至上述第五NMOS電晶體的第二端點;一第四閂鎖,其包括一第四PMOS電晶體與一第五PMOS電晶體,其中上述第四PMOS電晶體的閘極耦接至 上述第五PMOS電晶體的第一端點,上述第五PMOS電晶體的閘極耦接至上述第四PMOS電晶體的第一端點,經由上述第四閂鎖之一輸出節點,上述第四PMOS電晶體的第二端點耦接至上述第五PMOS電晶體的第二端點;一第五閂鎖,其包括一第六NMOS電晶體與一第七NMOS電晶體,其中上述第六NMOS電晶體的閘極耦接至上述第七NMOS電晶體的第一端點,上述第七NMOS電晶體的閘極耦接至上述第六NMOS電晶體的第一端點,經由上述第五閂鎖之一輸出節點,第六NMOS電晶體的第二端底耦接至上述第七NMOS電晶體的第二端點;以及一第六閂鎖,其包括一第六PMOS電晶體與一第七PMOS電晶體,其中上述第六PMOS電晶體的閘極耦接至上述第七PMOS電晶體的第一端點,上述第七PMOS電晶體的閘極耦接至上述第六PMOS電晶體的第一端點,經由上述第六閂鎖之一輸出節點,上述第六PMOS電晶體的第二端點耦接至上述第七PMOS電晶體的第二端點;其中上述第七NMOS電晶體的第一端點與上述第六PMOS電晶體的第一端點耦接至上述第三閂鎖與上述第四閂鎖之一者之輸出節點;其中上述電路之上述輸入節點電壓變化介於一參考電壓位準與上述第三電壓位準之間,其中上述參考電壓位準低於上述第一電壓位準,以及上述第三電壓位準高於上述第二電壓位準。 The voltage swing decomposition circuit of claim 6, wherein the second end of the third PMOS transistor is connected to the first voltage level, and the second end of the third NMOS transistor is connected to the high The second voltage level at the first voltage level, and the second end of the first NMOS transistor and the second end of the first PMOS transistor are coupled to an input node of the circuit; The method further includes: a third latch comprising a fourth NMOS transistor and a fifth NMOS transistor, wherein a gate of the fourth NMOS transistor is coupled to a first end of the fifth NMOS transistor, The gate of the fifth NMOS transistor is coupled to the first end of the fourth NMOS transistor, and the second end of the fourth NMOS transistor is coupled to the first end of the fourth NMOS transistor. a second end of the fifth NMOS transistor; a fourth latch comprising a fourth PMOS transistor and a fifth PMOS transistor, wherein the gate of the fourth PMOS transistor is coupled to a first terminal of the fifth PMOS transistor, a gate of the fifth PMOS transistor is coupled to a first end of the fourth PMOS transistor, and an output node is connected to the fourth latch a second end of the PMOS transistor is coupled to the second end of the fifth PMOS transistor; a fifth latch comprising a sixth NMOS transistor and a seventh NMOS transistor, wherein the sixth NMOS a gate of the transistor is coupled to the first end of the seventh NMOS transistor, and a gate of the seventh NMOS transistor is coupled to the first end of the sixth NMOS transistor via the fifth latch An output node, a second end of the sixth NMOS transistor is coupled to the second end of the seventh NMOS transistor; and a sixth latch comprising a sixth PMOS transistor and a seventh PMOS a transistor, wherein a gate of the sixth PMOS transistor is coupled to a first end of the seventh PMOS transistor, and a gate of the seventh PMOS transistor is coupled to a first end of the sixth PMOS transistor Pointing, through one of the sixth latch outputs node, the second end of the sixth PMOS transistor Connecting to the second end of the seventh PMOS transistor; wherein the first end of the seventh NMOS transistor is coupled to the first end of the sixth PMOS transistor to the third latch and the fourth An output node of one of the latches; wherein the input node voltage of the circuit changes between a reference voltage level and the third voltage level, wherein the reference voltage level is lower than the first voltage level, And the third voltage level is higher than the second voltage level. 如專利申請範圍第6項所述之電壓擺幅分解電路,更包括: 一第三閂鎖,其包括一第四NMOS電晶體與一第五NMOS電晶體,其中上述第四NMOS電晶體的閘極耦接至上述第五NMOS電晶體的第一端點,上述第五NMOS電晶體的閘極耦接至上述第四NMOS電經體的第一端點,以及經由上述第三閂鎖之輸出節點,上述第四NMOS電晶體的第二端點耦接至上述第五NMOS電晶體的第二端點;一第四閂鎖,其包括一第四PMOS電晶體與一第五PMOS電晶體,其中上述第四PMOS電晶體的閘極耦接至上述第五PMOS電晶體的第一端點,上述第五PMOS電晶體的閘極耦接至上述第四PMOS電晶體的第一端點,以及經由上述第四閂鎖之一輸出節點,上述第四PMOS電晶體的第二端點耦接至上述第五PMOS電晶體的第二端點;一第五閂鎖,其包括一第六NMOS電晶體與一第七NMOS電晶體,其中上述第六NMOS電晶體的閘極耦接至上述第七NMOS電晶體的第一端點,上述第七NMOS電晶體耦接至上述第六NMOS電晶體的第一端點,經由上述第五閂鎖之一輸出節點,上述第六NMOS電晶體的第二端點耦接至上述第七NMOS電晶體第二端點;以及一第六閂鎖,其包括一第六PMOS電晶體與一第七PMOS電晶體,其中上述第六PMOS電晶體的閘極耦接至上述第七PMOS電晶體的第一端,上述第七PMOS電晶體的閘極耦接至上述第六PMOS的第一端,以及經由上述第六閂鎖之一輸出節點,上述第六PMOS電晶體的第二端點耦接至上述第七PMOS電晶體的第二端點;其中上述第七NMOS電晶體的第一端點與上述第六 PMOS電晶體的第一端點耦接至上述第三閂鎖與上述第四閂鎖之一者之上述輸出節點;其中上述第三PMOS電晶體的第二端點連接至上述第一電壓位準,上述第三NMOS電晶體的第二端點連接至高於上述第一電壓位準之上述第二電壓位準,上述第一NMOS電晶體的第二端點與上述第一PMOS電晶體的第二端點各自連接至上述電路之一輸入節點;其中上述電路之上述輸入節點之電壓變化介於上述參考電壓位準與上述第三電壓位準之間,其中上述參考電壓位準低於上述第一電壓位準,且上述第三電壓位準高於上述第二電壓位準。 The voltage swing decomposition circuit as described in claim 6 of the patent application scope further includes: a third latch comprising a fourth NMOS transistor and a fifth NMOS transistor, wherein a gate of the fourth NMOS transistor is coupled to a first end of the fifth NMOS transistor, the fifth a gate of the NMOS transistor is coupled to the first end of the fourth NMOS transistor, and a second end of the fourth NMOS transistor is coupled to the fifth terminal via the output node of the third latch a second end of the NMOS transistor; a fourth latch comprising a fourth PMOS transistor and a fifth PMOS transistor, wherein the gate of the fourth PMOS transistor is coupled to the fifth PMOS transistor a first terminal, a gate of the fifth PMOS transistor coupled to the first end of the fourth PMOS transistor, and an output node via the fourth latch, the fourth PMOS transistor The second end is coupled to the second end of the fifth PMOS transistor; a fifth latch comprising a sixth NMOS transistor and a seventh NMOS transistor, wherein the gate of the sixth NMOS transistor Coupling to a first end point of the seventh NMOS transistor, the seventh NMOS transistor is coupled to the upper end a first end of the sixth NMOS transistor, through one of the output ports of the fifth latch, the second end of the sixth NMOS transistor is coupled to the second end of the seventh NMOS transistor; a six-latch, comprising a sixth PMOS transistor and a seventh PMOS transistor, wherein a gate of the sixth PMOS transistor is coupled to a first end of the seventh PMOS transistor, and the seventh PMOS transistor The gate is coupled to the first end of the sixth PMOS, and the output node of the sixth latch, the second end of the sixth PMOS transistor is coupled to the second of the seventh PMOS transistor An end point; wherein the first end point of the seventh NMOS transistor is the sixth end a first end of the PMOS transistor is coupled to the output node of the third latch and the fourth latch; wherein the second end of the third PMOS transistor is connected to the first voltage level a second end of the third NMOS transistor connected to the second voltage level higher than the first voltage level, a second end of the first NMOS transistor and a second end of the first PMOS transistor The endpoints are each connected to an input node of the circuit; wherein a voltage change of the input node of the circuit is between the reference voltage level and the third voltage level, wherein the reference voltage level is lower than the first The voltage level is above, and the third voltage level is higher than the second voltage level. 一種電壓擺幅分解方法,包括:提供一輸入訊號,其電壓變化於上述第一電壓位準與上述第二電壓位準之間,其中上述第一電壓位準低於上述第二電壓位準;產生一第一訊號,其電壓變化於上述第一電壓位準與上述第三電壓位準之間,其中上述第三電壓位準高於上述第一電壓位準且低於上述第二電壓位準,上述第一訊號基於上述輸入訊號而產生;產生一第二訊號,其電壓變化於上述第四電壓位準與上述第二電壓位準之間,其中上述第四電壓位準高於上述第一電壓位準且低於上述第三電壓位準,上述第二電壓位準基於上述輸入訊號而產生;以及根據上述第一訊號與上述第二訊號選擇性設定一第三訊號至上述第三電壓位準與上述第四電壓位準之一者。 A voltage swing decomposition method includes: providing an input signal, wherein a voltage is changed between the first voltage level and the second voltage level, wherein the first voltage level is lower than the second voltage level; Generating a first signal whose voltage varies between the first voltage level and the third voltage level, wherein the third voltage level is higher than the first voltage level and lower than the second voltage level The first signal is generated based on the input signal; a second signal is generated, and a voltage thereof is changed between the fourth voltage level and the second voltage level, wherein the fourth voltage level is higher than the first The voltage level is lower than the third voltage level, the second voltage level is generated based on the input signal; and the third signal is selectively set to the third voltage level according to the first signal and the second signal One of the fourth voltage levels as described above. 如專利申請範圍第9項所述之電壓擺幅分解方法,更包括;根據上述第一訊號,產生一第四訊號,其電壓變化於上述第一電壓位準與上述第四電壓位準之間,其中當上述輸入訊號高於上述第四電壓位準時,上述第四訊號被箝制於上述第四電壓位準;以及根據上述第二訊號,產生一第五訊號,其電壓變化介於上述第三電壓位準與上述第二電壓位準之間,其中當上述輸入訊號低於上述第三電壓位準時,上述第五訊號被箝制於上述第三電壓位準。 The voltage swing decomposition method of claim 9, further comprising: generating a fourth signal according to the first signal, wherein the voltage changes between the first voltage level and the fourth voltage level The fourth signal is clamped to the fourth voltage level when the input signal is higher than the fourth voltage level; and the fifth signal is generated according to the second signal, and the voltage change is between the third The voltage level is between the second voltage level and the second voltage level, wherein the fifth signal is clamped to the third voltage level when the input signal is lower than the third voltage level.
TW101146343A 2012-03-14 2012-12-10 High voltage swing decomposition method and apparatus TWI508444B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/420,072 US8873213B2 (en) 2012-03-14 2012-03-14 High voltage swing decomposition method and apparatus

Publications (2)

Publication Number Publication Date
TW201338415A true TW201338415A (en) 2013-09-16
TWI508444B TWI508444B (en) 2015-11-11

Family

ID=49137164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101146343A TWI508444B (en) 2012-03-14 2012-12-10 High voltage swing decomposition method and apparatus

Country Status (3)

Country Link
US (1) US8873213B2 (en)
CN (1) CN103312314B (en)
TW (1) TWI508444B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190701B2 (en) * 2013-11-25 2017-08-30 株式会社メガチップス Data receiving apparatus and fail-safe circuit
US9336993B2 (en) * 2014-02-26 2016-05-10 Taiwan Semiconductor Manufacturing Company, Ltd. Digital pattern generator (DPG) for E-beam lithography
US10431939B2 (en) 2016-05-26 2019-10-01 Qualcomm Incorporated Over-voltage protection systems and methods
JP7152681B2 (en) 2018-06-19 2022-10-13 株式会社ソシオネクスト Semiconductor integrated circuit device and level shifter circuit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088391A (en) * 1994-06-17 1996-01-12 Mitsubishi Electric Corp Semiconductor circuit
US5910725A (en) * 1997-03-27 1999-06-08 Digital Equipment Corporation Integrated circuit output power supply transient voltage protection circuit
US6075686A (en) * 1997-07-09 2000-06-13 Industrial Technology Research Institute ESD protection circuit for mixed mode integrated circuits with separated power pins
US7642258B2 (en) * 2002-04-19 2010-01-05 Allergan, Inc. Combination of brimonidine and timolol for topical ophthalmic use
TWI266406B (en) * 2003-10-14 2006-11-11 Realtek Semiconductor Corp Electrostatic discharge protection circuit for a voltage source
US7087968B1 (en) * 2005-05-31 2006-08-08 Macronix International Co., Ltd. Electrostatic discharge protection circuit and semiconductor circuit therewith
US7643258B2 (en) * 2005-05-31 2010-01-05 Macronix International Co., Ltd. Methods and apparatus for electrostatic discharge protection in a semiconductor circuit
US7777998B2 (en) * 2007-09-10 2010-08-17 Freescale Semiconductor, Inc. Electrostatic discharge circuit and method therefor
US8040647B2 (en) * 2008-11-11 2011-10-18 Infineon Technologies Austria Ag System and method for protection against loss of battery in reverse battery protected devices
CN101814525B (en) * 2009-02-19 2011-12-07 台湾积体电路制造股份有限公司 ESD protecting method for fin field effect transistor(FinFET)
US8742803B2 (en) * 2012-09-26 2014-06-03 Broadcom Corporation Output driver using low voltage transistors

Also Published As

Publication number Publication date
CN103312314A (en) 2013-09-18
US8873213B2 (en) 2014-10-28
US20130241615A1 (en) 2013-09-19
TWI508444B (en) 2015-11-11
CN103312314B (en) 2016-01-20

Similar Documents

Publication Publication Date Title
CN105680834B (en) A kind of dynamic comparer of high-speed low-power-consumption
CN103022996B (en) Electronic static discharge protection circuit and electronic static discharge protection method
TWI508444B (en) High voltage swing decomposition method and apparatus
TWI429158B (en) Electronic system, data communication system and method for negative voltage protection
TWI627727B (en) Electrostatic discharge protection device and detection circuit thereof
JPS63187728A (en) Electric circuit
CN109327218B (en) Level shift circuit and integrated circuit chip
US20110316505A1 (en) Output Buffer With Improved Output Signal Quality
TW201705688A (en) Three input comparator
JP2017525280A (en) Dual comparator circuit with dynamic VIO shift protection
TWI415388B (en) Level shift circuit without high voltage stress of trasistors and operating at low voltages
TWI692204B (en) Level shifter
WO2018055666A1 (en) Interface circuit
TWI401890B (en) Voltage level converter
CN106712765B (en) PEC L transmitter interface circuit based on CMOS process
TWI535198B (en) Differential signaling driver
US9154116B2 (en) Input circuit with mirroring
US8497722B2 (en) SR flip-flop
CN109144925A (en) Universal serial bus circuit
TWI565241B (en) Input/output buffer circuit
TWI502870B (en) Voltage conversion device
CN103312313A (en) rail to rail enable signal and level conversion circuit
CN108304021A (en) Clamp circuit
CN104467799A (en) Input/output circuit device
CN106230415A (en) Power-on reset circuit applied to gate driver of display device