TW201337548A - 維持單晶片系統上之操作穩定性 - Google Patents

維持單晶片系統上之操作穩定性 Download PDF

Info

Publication number
TW201337548A
TW201337548A TW101133822A TW101133822A TW201337548A TW 201337548 A TW201337548 A TW 201337548A TW 101133822 A TW101133822 A TW 101133822A TW 101133822 A TW101133822 A TW 101133822A TW 201337548 A TW201337548 A TW 201337548A
Authority
TW
Taiwan
Prior art keywords
interrupt
soc
current level
power supply
microcontroller
Prior art date
Application number
TW101133822A
Other languages
English (en)
Other versions
TWI489270B (zh
Inventor
Reed D Vilhauer
William T Glennan
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW201337548A publication Critical patent/TW201337548A/zh
Application granted granted Critical
Publication of TWI489270B publication Critical patent/TWI489270B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/20Handling requests for interconnection or transfer for access to input/output bus
    • G06F13/24Handling requests for interconnection or transfer for access to input/output bus using interrupt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • G06F1/305Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations in the event of power-supply fluctuations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3031Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a motherboard or an expansion card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/81Threshold
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/0038System on Chip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Power Sources (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

各實施例係有關維持單晶片系統(SOC)上之操作穩定性之方法。一電源管理積體電路(PMIC)包含可操作而監視該SOC的一電源供應軌上的電流位準之比較器電路。當該被監視的電流位準越過了臨界設定值時,一中斷管理組件可產生一中斷。該中斷可指示該電流位準是否越過了該臨界設定值而進入或脫離過度電流位準。通過一通訊介面而經由一低延遲中斷通道被耦合到該PMIC的該SOC上之一微控制器可接收且解譯該中斷。該微控制器可操作而回應該中斷而改變該SOC上的一或多個組件之工作點,以便減輕一過電流狀況。

Description

維持單晶片系統上之操作穩定性
本發明係關於維持單晶片系統上之操作穩定性。
許多現有的及即將到來的單晶片系統(System On a Chip;簡稱SOC)架構提供了該產業前所未有的效能不斷增強之中央處理單元(Central Processing Unit;簡稱CPU)、圖形、及影像處理能力。由於尺寸及形狀因數(form factor)的限制,仍然利用具有固有內阻(internal resistance)的單一電池芯(cell)鋰離子(lithium ion;簡稱Li-Ion)型電池運行這些系統。在高電源突波(power surge)之下,可能發生顯著的電壓下降(voltage droop),若不能維持最低電壓要求,則將危及系統組件的操作穩定性。在任何特定時間下之SOC的動態功率範圍(power range)可能將大量的功率耗用高速計算或圖形效能(graphics performance)狀況。在某些程序、電壓、溫度(Process,Voltage,Temperature;簡稱PVT)條件下,SOC可能超過操作電流位準,且因而可能由於電池電壓下降而造成系統毀損。因此,可能需要可解決上述這些或其他問題的改良式技術。
各實施例係有關維持單晶片系統(SOC)上之操作穩 定性之方法。一電源管理積體電路(Power Management Integrated Circuit;簡稱PMIC)包含可操作而監視該SOC的一電源供應軌(power supply rail)上的電流位準之比較器電路。當該被監視的電流位準越過了臨界設定值時,一中斷管理組件可產生一中斷。該中斷可指示該電流位準是否越過了該臨界設定值而進入或脫離過度電流位準。通過一通訊介面而經由一低延遲中斷通道被耦合到該PMIC的該SOC上之一微控制器可接收且解譯該中斷。該微控制器可操作而回應該中斷而改變該SOC上的一或多個組件之工作點(operating point),以便減輕一過電流狀況。
在各實施例中,一電流監視及中斷機制可處理與SOC的操作相關聯之常見缺點。
在某些實施例中,該SOC可利用一或多個可配置的比較器電路,用以持續地監視諸如VCC及VNN軌等的電源供應軌上之電流位準,以便將一前瞻性功率降低機制提供給該SOC。當這些軌上的電流超過了被用來作為一臨界設定值的一可程式比較器跳脫點(trip point)時,一電源管理積體電路(PMIC)可迅速地經由一主機通訊介面將一低延遲警示中斷傳送到該SOC。
舉例而言,該主機通訊介面可以是Intel®行動式電壓定位(Intel® Mobile Voltage Positioning;簡稱IMVP)7 規格中界定的串列電壓識別(Serial Voltage Identification;簡稱SVID)介面。然而,可使用具有低延遲中斷或匯流排主控(bus mastering)機制之任何工業標準通訊介面。在IMVP7之例子中,可使用IMVP7暫存器空間中之特殊狀態位元而經由SVID傳送中斷訊息,而警示該SOC發生了該等電源供應軌上的過電流狀況。可將類似的中斷機制用於其他通訊介面。
該PMIC無法主動地試圖限制VCC及/或VNN上的電流或降低VCC及/或VNN上的電壓,這是因為該PMIC不知道該SOC的目前活動。該PMIC反而讓該SOC解譯一中斷,且在對整體SOC情況適當之情形下降低或"節制"效能,以便減少電力消耗。
一旦經由該SVID介面而傳送了一警示中斷之後,該SOC上的一微控制器在決定該中斷是否代表VCC、VNN、或以上兩者上的過電流事件之後,可迅速地決定最佳行動方案(best course of action)。該SOC可試圖將其CPU、圖形處理器(GFX)、或由VCC或VNN供電的其他SOC組件節制到可將VCC及/或VNN電流消耗位準降低到臨界設定值之下且不會影響到使用者體驗的一工作點。在更嚴重的情況中,該SOC中之該微控制器可經由電源閘控(power gating)而進行可感知的效能降低(performance degradation)或停用特定的功能,以便避免系統毀損(system crash)。該微控制器可具有與該SOC目前可執行何種方案有關之情境知識(contextual knowledge),以助於決定該最佳行動方案。
現在請參閱各圖式,其中相像的元件符號被用來參照到所有相像元件。在下文的說明中,為了便於解說,述及了許多特定細節,以便提供對本發明的徹底了解。然而,顯然可在沒有這些特定細節的情形下實施該等新穎的實施例。在其他的情形中,係以方塊圖之形式示出習知的結構及裝置,以助於對本發明之說明。其用意在於涵蓋在所主張之標的物的精神及範圍內之所有修改、等效物、及替代。
第1圖示出一SOC 100架構之一實施例。本發明所示之SOC 100架構可包含與一微控制器120通訊之一通訊介面118等的組件。微控制器120可在操作上與其中包括一CPU 122、一圖形處理器(GFX)124、一視訊組件126、一相機128、一顯示器130、一或多個靜態隨機存取記憶體(Static Random Access Memory;簡稱SRAM)132、以及一或多個整合式低壓降電壓調整器(Low Dropout Regulator;簡稱LDO)134的數個其他組件通訊。在該特定組的組件中,VCC軌供電給CPU 122,而VNN軌供電給GFX 124、視訊組件126、相機128、顯示器130、SRAMs 132、及LDOs 134。SOC 100可在通訊上被耦合到一電源管理積體電路(PMIC)110。
PMIC 110可包含諸如一叢發控制單元(Burst Control Unit;簡稱BCU)112、一中斷管理組件114、及一通訊介面116等的額外的組件。BCU 112可操作而接收 且處理來自一或多個比較器的用來指示SOC 100的諸如一VCC軌及一VNN軌等的電源供應軌上的電流位準之資料。可將該電流監視的結果傳送到中斷管理組件114,以供進一步的處理。當該被監視的電流位準越過該臨界設定值時,中斷管理組件114可操作而產生一中斷。該臨界設定值亦可被稱為可程式跳脫點。該中斷可包括用來指示該VCC軌或該VNN軌的電流位準是否越過了該臨界設定值而進入過度位準或是越過了該臨界設定值而回到正常位準之資料。該中斷接著可被轉送到PMIC 110上的通訊介面116。通訊介面116接著可將該中斷自PMIC 110轉送到SOC 100。
SOC 100上的該特定組之組件是舉例的。可根據特定的環境及該SOC的功能而使用其他組件或組件組合。該等實施例不限於該例子。
SOC 100上的通訊介面118可自PMIC 110接收該中斷,且在經由通訊介面118而讀取了該資訊之後,將該中斷資訊轉送到微控制器120。微控制器120可解譯該中斷訊息,以便決定SOC 100的該VCC軌、VNN軌、或以上兩軌上是否發生了一過電流狀況或事件。如果該VNN及VCC軌中之一或兩軌上有一過電流狀況,則微控制器120可決定降低SOC 100上的一或多個其他組件之工作點。微控制器120對SOC 100上的目前活動之知識可部分地協助微控制器120之該決定。
例如,如果該VCC軌電流正好越過而進入一過度電 流位準,則微控制器120可節制CPU 122(例如,降低CPU 122之工作頻率或電壓),這是因為該VCC軌供電給CPU 122。一組件的工作頻率或電壓之降低亦可被稱為所提及的該組件的工作點之降低。節制CPU 122而進入一低頻模式(Low Frequency Mode;簡稱LFM)時,可造成該VCC軌上後續的電流下降。在該LFM工作狀態的一段充分的時間之後,監視該VCC軌的該比較器電路可得知該VCC軌上的電流已回到了正常位準,且可開始自PMIC 110產生另一中斷之程序。這次當微控制器120讀取該中斷時,該中斷可能指示正常電流位準,而將在得到授權之情形下提高CPU 122的工作點之選項提供給微控制器120。該等實施例不限於該例子。
同樣地,如果該VNN軌正好越過而進入一過度電流位準,則微控制器120可將諸如GFX 124節制到一較低效能模式,這是因為該VNN軌供電給GFX 124。一旦該VNN軌電流回到正常位準之後,可將用來指示電流位準回到一正常範圍之另一中斷傳送到微控制器120。微控制器120有在得到授權之情形下提高GFX 124的工作點之選項。該等實施例不限於該例子。例如,微控制器120可根據SOC 100的目前活動而改變任何一或多個其他VNN供電的組件(視訊組件126、相機128、顯示器130、SRAMs 132、及LDOs 134)之工作點。
第2圖示出比較器邏輯電路200之一實施例。電流比較器是一種比較兩個電流且切換其輸出而指示哪一個電流 較大之裝置。可將電流比較器邏輯電路200程式化成:以可程式跳脫點組件212接收被標示為IccMAXVCC設定值的一臨界設定值作為比較器214之一輸入,且以可程式跳脫點組件222接收被標示為InnMAXVNN設定值的一臨界設定值作為比較器224之一輸入。另一比較器輸入可以是比較器214中之IccVCC(目前在該VCC軌上的電流)、以及比較器224中之InnVNN(目前在該VNN軌上的電流)。當比較器214中之IccMAXVCC設定值大於IccVCC時,該VCC軌上的電流是在正常位準之內。然而,當比較器214中之IccMAXVCC設定值小於IccVCC時,該VCC軌電流已超過了正常位準,且比較器214之輸出可被設定為過電流狀況,並給定"1"的邏輯值。該輸出可被標示為STATUS_IccMAXVCC,且可以是邏輯"0"或"1",且可被用來指示該VCC軌上的正常電流或過電流。
同樣地,當比較器224中之InnMAXVNN設定值大於InnVNN時,該VNN軌上的電流是在正常位準之內。然而,當比較器224中之InnMAXVNN設定值小於InnVNN時,該VNN軌電流已超過了正常位準,且比較器224之輸出可被設定為過電流狀況,並給定"1"的邏輯值。該輸出可被標示為STATUS_InnMAXVNN,且可以是邏輯"0"或"1",且可被用來指示該VNN軌上的正常電流或過電流。
來自比較器214之STATUS_IccMAXVCC輸出可被傳送到一可程式解彈跳組件216,用以保證自一狀態至另一狀態的單純轉換。例如,如果該解彈跳被設定為500奈 秒,且該STATUS_IccMAXVCC處於"1"的時間只有200奈秒,則短暫突波(momentary glitch)將不會造成假性轉換(spurious transition)。可程式解彈跳組件216之輸出可以是被標示為IccMAXVCC_EVENT 218之一資料信號,該資料信號可以是邏輯"0"或"1",而可用以指示STATUS_IccMAXVCC邏輯值是否已改變。如果STATUS_IccMAXVCC自"0"改變為"1",或是反向的改變,則IccMAXVCC_EVENT 218可被設定為"1"。如果STATUS_IccMAXVCC並未改變,則IccMAXVCC_EVENT 218可被設定為"0"。因此,IccMAXVCC_EVENT 218有自"0"至"1"或自"1"至"0"的任何改變時,可造成一中斷被傳送到SOC 100。
同樣地,來自比較器224之STATUS_InnMAXVNN輸出可被傳送到類似於前文所述的可程式解彈跳組件之一可程式解彈跳組件226。可程式解彈跳組件226之輸出可以是被標示為InnMAXVNN_EVENT 228之一資料信號,該資料信號可以是邏輯"0"或"1",而可用以指示STATUS_InnMAXVNN邏輯值是否已改變。如果STATUS_InnMAXVNN自"0"改變為"1",或是反向的改變,則InnMAXVNN_EVENT 228可被設定為"1"。如果STATUS_InnMAXVNN並未改變,則InnMAXVNN_EVENT 228可被設定為"0"。
第3圖示出中斷管理組件114內之一邏輯電路300之一實施例,該邏輯電路300可操作而決定是否應產生一中 斷。一第一"及(AND)"閘310可接收與該VCC軌電流有關的輸入,且一第二"及"閘320可接收與該VNN軌電流有關的輸入。每一"及"閘310、320之輸出接著可被傳送到一"反或(NOR)"閘330,該"反或"閘330可決定是否應觸發一中斷要求(IRQ#)340。
"及"閘310可自比較器電路214接收IccMAXVCC_EVENT 218作為輸入,且接收被標示為MIccMAXVCC之一遮罩設定值作為輸入,該MIccMAXVCC通常被設定為邏輯"0",以便使"及"閘310切斷IccMAXVCC_EVENT 218輸入。該遮罩若被設定為"1",則將阻止中斷(IRQ#)340被觸發。當該系統處理中斷時,或者該系統因為其正在忙碌中或認為不需要中斷而決定不在此時處理中斷時,該遮罩可被暫時地設定為"1"。
當IccMAXVCC_EVENT 218被設定為邏輯"1"時,將指示該VCC軌上的電流已越過了臨界設定值,而進入過度位準,或回到正常位準。無論是哪種方式,都將在該遮罩輸入被設定為邏輯"0"的情形下使中斷(IRQ#)340被觸發。因為IccMAXVCC_EVENT 218及被反相的遮罩位元(mask bit)都是"1",所以"及"閘310的輸出也將是"1"。"及"閘310的輸出是"反或"閘330的一輸入,且若該"反或"閘330的任一輸入被設定為"1",則該"反或"閘330之輸出將是"1"。"反或"閘330的輸出為"1"時,可使中斷IRQ# 340被觸發。此外,IRQ# 340係連同資料而被置入 狀態暫存器(例如,VCC狀態暫存器)中,該資料指示IRQ# 340的起因是進入一過電流狀況或匯出一過電流狀況的結果。"及"閘310之輸出中示出該結果,其中VCC狀態暫存器中之IccMAX位元被IRQ# 340用來將該事件通知該SOC。
同樣地,當InnMAXVNN_EVENT 228被設定為邏輯"1"時,將指示該VNN軌上的電流已越過了臨界設定值,而進入過度位準,或回到正常位準。無論是哪種方式,都將在該遮罩輸入被設定為邏輯"1"的情形下使中斷(IRQ#)340被觸發。因為InnMAXVNN_EVENT 228及被反相的遮罩位元都是"1",所以"及"閘320的輸出也將是"1"。"及"閘320的輸出是"反或"閘330的一輸入,且若該"反或"閘330的任一輸入被設定為"1",則該"反或"閘330之輸出將是"1"。"反或"閘330的輸出為"1"時,可使中斷IRQ# 340被觸發。此外,IRQ# 340係連同資料而被置入狀態暫存器(例如,VNN狀態暫存器)中,該資料指示IRQ# 340的起因是進入一過電流狀況或匯出一過電流狀況的結果。"及"閘320之輸出中示出該結果,其中VNN狀態暫存器中之InnMAX位元被IRQ# 340用來將該事件通知該SOC。
第4圖示出監視SOC 100的該VCC軌上的電流改變且對該電流改變作出反應的一時序圖400之一實施例。該時序圖上示出的各成分包括隨著時間經過的VCC電流位準之一圖形、VCC電流位準等於或大於最大電流位準的 時間之一數位表示法、中斷觸發及清除其接腳位準之一數位表示法、微控制器讀取該等中斷狀態暫存器之一時間線(timeline)、以及SOC 100活動之一高階描述。
在該例子中,當該VCC軌上的電流上升時,該電流可能越過被標示為IccMAXVCC[m:0]的一臨界設定值。該事件可在402上觸發來自中斷管理組件114的一中斷IRQ# 340,其中一VCC狀態暫存器中之一IccMAX位元可被設定,而指示該VCC軌上的一過電流狀況。可將該中斷自PMIC 110傳送到SOC 100。在404上,SOC 100之微控制器120可使用一StatusReg命令讀取該中斷的該等狀態暫存器。在406上讀取了該VCC狀態暫存器之後,微控制器120可檢查該VCC軌的該IccMAX位元是否被設定。然後可停止觸發中斷(IRQ#)340之接腳位準。微控制器120然後可決定降低CPU 122的頻率以便在LFM模式中運行,且可在408上將一用來指示該降低頻率之要求傳送到CPU 122。CPU 122可鎖定該較低的頻率,且可在410上開始在LFM模式中運行。因為CPU 122現在可在LFM模式中工作,所以該VCC軌上的電流可在412上開始下降。當該VCC軌上的電流下降到小於IccMAXVCC[m:0]的該臨界設定值時,可在414上將另一中斷(IRQ#)340自PMIC 110觸發到SOC 100上的微控制器120。SOC 100的微控制器120可以前文所述之方式讀取該中斷的該等狀態暫存器。在416上讀取了該VCC狀態暫存器之後,微控制器120可檢查該VCC軌的該 IccMAX位元是否已被清除。然後可停止觸發IRQ# 340之接腳位準。然後在418上,微控制器120可決定使CPU 122恢復到其先前的工作點。如果該微控制器決定使CPU 122保持在LFM,或者並未被授權將工作點改變到一不同的模式,則該微控制器不必然需要恢復CPU 122的工作點。微控制器120可使用其對SOC 100的目前活動之知識而作出其決定。然而,該微控制器現在可知道該VCC軌上的電流回到了正常位準之內。
第5圖示出監視SOC 100的該VNN軌上的電流改變且對該電流改變作出反應的一時序圖500之一實施例。該時序圖上示出的各成分包括隨著時間經過的VNN電流位準之一圖形、VNN電流位準等於或大於最大電流位準的時間之一數位表示法、中斷觸發及清除其接腳位準之一數位表示法、微控制器讀取該等中斷狀態暫存器之一時間線、以及SOC 100活動之一高階描述。
在該例子中,當該VNN軌上的電流上升時,該電流可能越過被標示為InnMAXVNN[m:0]的一臨界設定值。該事件可在502上觸發來自中斷管理組件114的一中斷IRQ# 340,其中一VNN狀態暫存器中之一InnMAX位元可被設定,而指示該VNN軌上的一過電流狀況。可將該中斷自PMIC 110傳送到SOC 100。在504上,SOC 100之微控制器120可使用一StatusReg命令讀取該中斷的該等狀態暫存器。在506上讀取了該VNN狀態暫存器之後,微控制器120可檢查該VNN軌的該InnMAX位元是 否被設定。然後可停止觸發IRQ# 340之接腳位準。微控制器120然後可決定降低GFX 124的頻率以便在一較低效能模式中運行,且可在508上將一用來指示該降低頻率之要求傳送到GFX 124。GFX 124可在510上鎖定該較低效能模式。因為GFX 124現在可在較低效能模式中工作,所以該VNN軌上的電流可在512上開始下降。當該VNN軌上的電流下降到小於InnMAXVNN[m:0]的該臨界設定值時,可在514上將另一中斷IRQ# 340自PMIC 110觸發到SOC 100上的微控制器120。SOC 100的微控制器120可以前文所述之方式讀取該中斷的該等狀態暫存器。在516上讀取了該VNN狀態暫存器之後,微控制器120可檢查該VNN軌的該InnMAX位元是否已被清除。然後可停止觸發IRQ# 340之接腳位準。然後在518上,微控制器120可決定使GFX 124恢復到其先前的工作點。如果該微控制器決定使GFX 124保持在較低效能模式,或者並未被授權將該工作點改變到一不同的模式,則該微控制器不必然需要恢復GFX 124的工作點。微控制器120可使用其對SOC 100的目前活動之知識而作出其決定。然而,該微控制器現在可知道該VNN軌上的電流回到了正常位準之內。
本說明書包含用來執行本發明揭示的架構的新穎觀點之例示方法之一或多個代表性流程圖。雖然為了顧及解說的簡化而諸如以流程圖或流向圖之形式將本發明所示之一或多種方法示出及說明為一系列的行動,但是我們應可了 解:該等方法不限於這些行動的順序,這是因為可按照不同的順序執行根據本發明的某些行動,且/或可與本說明書示出及說明的行動不同之其他行動同時執行根據本發明的某些行動。例如,熟悉此項技術者當可了解:可將一方法替代地在諸如一狀態圖中表示為一系列的相關狀態或事件。此外,在一新穎實施例中,一方法中示出的所有行動可能不都是必要的。
第6圖示出一邏輯流程圖600之一實施例。邏輯流程600可代表本發明所述的一或多個實施例執行的操作中之某些或所有操作。
在第6圖所示之該例示實施例中,邏輯流程600可在方塊610中監視SOC 100的電源供應軌上之電流位準。例如,可分別以可程式跳脫點組件212、222將電流比較器214、224程式化成:接收被標示為IccMAXVCC設定值的一臨界設定值作為比較器214之一輸入,且接收被標示為InnMAXVNN設定值的一臨界設定值作為比較器224之一輸入。另一比較器輸入可以是比較器214中之IccVCC(目前在該VCC電源供應軌上的電流)、以及比較器224中之InnVNN(目前在該VNN電源供應軌上的電流)。該等實施例不限於該例子。
在方塊620中,邏輯流程600可將SOC 100的該VCC及VNN軌上的被監視之電流位準與該臨界設定值比較。例如,當比較器214中之IccMAXVCC設定值大於IccVCC時,該VCC軌是在正常位準之內。然而,當比較 器214中之IccMAXVCC設定值小於IccVCC時,該VCC軌電流已超過了正常位準,且比較器214之輸出可被設定為過電流狀況,並給定"1"的邏輯值。同樣地,當比較器224中之InnMAXVNN設定值大於InnVNN時,該VNN軌上的電流是在正常位準之內。然而,當比較器224中之InnMAXVNN設定值小於InnVNN時,該VNN軌電流已超過了正常位準,且比較器224之輸出可被設定為過電流狀況,並給定"1"的邏輯值。該等實施例不限於該例子。
在方塊630中,邏輯流程600可產生用來指示電流位準已越過了該臨界設定值之一中斷。例如,在中斷管理組件114內,一第一"及"閘310可接收與該VCC軌相關的輸入,且一第二"及"閘320可接收與該VNN軌相關的輸入。每一"及"閘310、320之輸出然後可被傳送到一"反或"閘330,該"反或"閘330可決定是否應觸發一中斷要求(IRQ#)340。該等實施例不限於該例子。
在方塊640中,邏輯流程600可將該中斷傳送到SOC 100上之一微控制器120。例如,可將中斷IRQ# 340自PMIC 110內之中斷管理組件114轉送到通訊介面116。通訊介面116然後可將該中斷自PMIC 110轉送到SOC 100內之通訊介面118。該等實施例不限於該例子。
在方塊650中,邏輯流程600可決定SOC 100的該VCC及VNN軌上的電流位準是否越過了該臨界設定值而進入或脫離過度電流位準。例如,該中斷可包含用來指示該VCC軌或該VNN軌的電流位準是否越過了該臨界設定 值而進入一過度位準或越過了該臨界設定值而進入一正常位準之資料。該中斷資料可以是一VCC狀態暫存器中被設定而指示該VCC軌上的一過電流狀況之一IccMAX位元及/或一VNN狀態暫存器中被設定而指示該VNN軌上的一過電流狀況之一InnMAX位元。該等實施例不限於該例子。
在方塊660中,邏輯流程600可決定是否要回應用來指示電流已越過進入過度位準之該中斷而改變一或多個SOC組件之工作條件。例如,如果該VCC軌電流正好越過而進入一過度電流位準,則微控制器120可降低CPU 122的工作點,這是因為該VCC軌供電給CPU 122。強制CPU 122進入一低頻模式(LFM)時,可造成該VCC軌上的電流下降。同樣地,如果該VNN軌電流正好越過而進入一過度的電流位準,則微控制器120可降低GFX 124的工作點而進入一較低效能模式,這是因為該VNN軌供電給GFX 124。該等實施例不限於該例子。
在方塊670中,邏輯流程600可決定是否要回應用來指示電流已離開了該過度位準之該中斷而改變一或多個SOC組件之工作條件。例如,如果該VCC軌電流正好越過而回到一正常電流位準,則微控制器120可考慮提高CPU 122之工作點。同樣地,如果該VNN軌電流正好越過而回到一正常電流位準,則微控制器120可考慮提高GFX 124之工作點而進入一高效能模式。該等實施例不限於該例子。
可使用詞語"一個實施例"或"一實施例"以及其派生詞說明某些實施例。這些術語意指以與該實施例有關之方式述及的一特定特徵、結構、或特性被包含在至少一實施例中。在本說明書中之各部分中出現詞語"在一實施例中"時,不必然都參照到相同的實施例。此外,可使用詞語"被耦合"及"被連接"以及其派生詞說明某些實施例。這些術語將不必然作為彼此的同義字。例如,可使用術語"被連接"及/或"被耦合"說明某些實施例,以便指示兩個或更多個元件在實體上或電氣上相互直接接觸。然而,術語"被耦合"亦可意指:兩個或更多個元件並未相互直接接觸,但是仍然相互配合或作用。
此處要強調:為了可讓讀者迅速確定技術揭示的本質而提供"發明摘要"。係在該"發明摘要"不會被用來詮釋或限制申請專利範圍的範圍或意義的理解下,提交該"發明摘要"。此外,在前文的"實施方式"中,可看出:為了使揭示事項流暢,而將各特徵歸類在單一的實施例中。不應將本發明揭示的方法詮釋為反映了申請專利範圍所述及之實施例需要有比每一申請專利範圍中明確述及的特徵更多的特徵之意圖。其實,如最後的申請專利範圍所反映的,本發明之標的物可處於比單一揭示的實施例的所有特徵少之特徵。因此,特此將最後的各申請專利範圍併入該"實施方式",而使每一申請專利範圍獨立對應一各別的實施例。在最後的申請專利範圍中,術語"包括"及"在其中"被分別用來作為各別術語"包含"及"其中"之普通英文同義 語。此外,術語"第一"、"第二"、及"第三"等的術語只是被用來作為標記,且其用意並非將數字的要求強加在該等術語的受詞。
前文所述者包括所揭示的該架構之一些例子。當然,不可能述及各組件及/或方法所能想到之每一組合,但是對此項技術具有一般知識者當可了解:許多進一步的組合及變更也是可能的。因此,該新穎的架構將包含在最後的申請專利範圍的精神及範圍內之所有此類改變、修改、及變化。
100‧‧‧單晶片系統
116,118‧‧‧通訊介面
120‧‧‧微控制器
122‧‧‧中央處理單元
124‧‧‧圖形處理器
126‧‧‧視訊組件
128‧‧‧相機
130‧‧‧顯示器
132‧‧‧靜態隨機存取記憶體
134‧‧‧低壓降電壓調整器
110‧‧‧電源管理積體電路
112‧‧‧叢發控制單元
114‧‧‧中斷管理組件
200‧‧‧比較器邏輯電路
214,224‧‧‧比較器
212,222‧‧‧可程式跳脫點組件
216,226‧‧‧可程式解彈跳組件
300‧‧‧邏輯電路
310‧‧‧第一"及"閘
320‧‧‧第二"及"閘
330‧‧‧"反或"閘
340‧‧‧中斷要求
第1圖示出一SOC架構之一實施例。
第2圖示出比較器邏輯電路之一實施例。
第3圖示出用來決定是否應產生一中斷的一邏輯電路之一實施例。
第4圖示出監視該SOC的VCC軌上的電流改變且對該電流改變作出反應的一時序圖之一實施例。
第5圖示出監視該SOC的該VNN軌上的電流改變且對該電流改變作出反應的一時序圖之一實施例。
第6圖示出一邏輯流程圖之一實施例。

Claims (24)

  1. 一種裝置,包含:一或多個比較器電路,該一或多個比較器電路可操作而監視一處理單元的一或多個電源供應軌上之電流位準,且決定該一或多個電源供應軌上之電流位準是否越過了用來指示一過度電流位準之一臨界設定值;在通訊上與該一或多個比較器電路耦合之一中斷管理組件,該中斷管理組件可操作而執行下列步驟:當該被監視之電流位準越過了該臨界設定值時,產生一中斷,該中斷包括用來指示該一或多個電源供應軌之電流位準是否越過了該臨界設定值而進入該過度位準或者是否越過了該臨界設定值而進入正常位準之資料;以及將該中斷傳送到該處理單元。
  2. 如申請專利範圍第1項之裝置,其中該處理單元是一單晶片系統(SOC)。
  3. 如申請專利範圍第1項之裝置,其中該臨界設定值是可程式的。
  4. 如申請專利範圍第1項之裝置,其中該中斷管理組件包含一或多個電源供應狀態暫存器。
  5. 如申請專利範圍第4項之裝置,其中該中斷管理組件可操作而設定一電源供應狀態暫存器中之一狀態位元,該狀態位元指示該電源供應狀態暫存器上的電流位準越過了該臨界設定值而進入該過度位準。
  6. 如申請專利範圍第4項之裝置,其中該中斷管理組 件可操作而清除一電源供應狀態暫存器中之一狀態位元,該狀態位元指示該電源供應狀態暫存器上的電流位準越過了該臨界設定值而進入該正常位準。
  7. 一種裝置,包含:一微控制器,該微控制器可操作而執行下列步驟:自一電源管理積體電路(PMIC)接收一中斷,該中斷指示該裝置的一電源供應軌的被監視之電流位準何時越過了一臨界設定值,該中斷包括指示該電源供應軌之電流位準是否越過了該臨界設定值而進入過度位準或者是否越過了該臨界設定值而進入正常位準之資料;評估在該裝置上發生的活動;以及回應該中斷而決定是否改變該裝置上的一或多個組件之工作點。
  8. 如申請專利範圍第7項之裝置,其中該微控制器可操作而回應該中斷而降低該裝置上的一或多個組件之工作點。
  9. 如申請專利範圍第7項之裝置,其中該微控制器可操作而回應該中斷而增加該裝置上的一或多個組件之工作點。
  10. 如申請專利範圍第7項之裝置,包含一單晶片系統(SOC)。
  11. 如申請專利範圍第7項之裝置,其中該SOC包括該微控制器。
  12. 如申請專利範圍第7項之裝置,其中在一SOC控 制下之該一或多個組件包括一顯示器。
  13. 如申請專利範圍第7項之裝置,其中通過一通訊介面而經由一低延遲中斷通道接收該中斷。
  14. 一種方法,包含下列步驟:監視一單晶片系統(SOC)的一電源供應軌上之電流位準;決定該電源供應軌上之電流位準是否越過了指示一過度電流位準之一臨界設定值;當該電源供應軌之被監視之電流位準越過了該臨界設定值時,產生一中斷,該中斷包括指示該電流位準是否越過了該臨界設定值之資料;以及經由一通訊介面將該中斷傳送到一微控制器。
  15. 如申請專利範圍第14項之方法,包含下列步驟:讀取該中斷;以及如果該中斷指示該電源供應軌上之電流位準越過了該臨界位準,則決定是否改變該SOC上的一或多個組件之工作點。
  16. 如申請專利範圍第15項之方法,包含下列步驟:回應該中斷而改變該SOC上的一或多個組件之工作點。
  17. 如申請專利範圍第15項之方法,包含下列步驟:如果該電源供應軌上之電流位準越過了該臨界位準,則評估該SOC上發生的活動,以便決定要改變工作點的組件。
  18. 一種系統,包含:一電源管理積體電路(PMIC),該PMIC包含:一或多個比較器電路,該一或多個比較器電路可操作而監視一處理單元的一或多個電源供應軌上之電流位準,且決定該一或多個電源供應軌上之電流位準是否越過了指示一過度電流位準之一臨界設定值;在通訊上與該一或多個比較器電路耦合之一中斷管理組件,該中斷管理組件可操作而執行下列步驟:當被監視之電流位準越過了該臨界設定值時,產生一中斷,該中斷包括指示該一或多個電源供應軌之電流位準是否越過了該臨界設定值之資料;以及傳送該中斷;以及一單晶片系統(SOC),該SOC包含一微控制器,該微控制器可操作而執行下列步驟:自該PMIC接收該中斷;評估在該SOC上發生的活動;以及回應該中斷而決定是否改變該SOC上的一或多個組件之工作點。
  19. 如申請專利範圍第18項之系統,其中該臨界設定值是可程式的。
  20. 如申請專利範圍第18項之系統,其中在產生該中斷之前,必須先經過該臨界設定值被越過的一可程式之最小時間量。
  21. 如申請專利範圍第18項之系統,其中該中斷可被遮罩。
  22. 如申請專利範圍第18項之系統,其中該微控制器可操作而回應該中斷而改變該SOC上的一或多個組件之工作點。
  23. 如申請專利範圍第22項之系統,其中該微控制器可操作而回應該中斷而降低該SOC上的一或多個組件之工作點。
  24. 如申請專利範圍第22項之系統,其中該微控制器可操作而回應該中斷而增加該SOC上的一或多個組件之工作點。
TW101133822A 2011-09-30 2012-09-14 用於維持單晶片系統上之操作穩定性的裝置、方法及系統 TWI489270B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/054284 WO2013048447A1 (en) 2011-09-30 2011-09-30 Maintaining operational stability on a system on a chip

Publications (2)

Publication Number Publication Date
TW201337548A true TW201337548A (zh) 2013-09-16
TWI489270B TWI489270B (zh) 2015-06-21

Family

ID=47996180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101133822A TWI489270B (zh) 2011-09-30 2012-09-14 用於維持單晶片系統上之操作穩定性的裝置、方法及系統

Country Status (4)

Country Link
US (1) US20130283083A1 (zh)
CN (1) CN103842932A (zh)
TW (1) TWI489270B (zh)
WO (1) WO2013048447A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202692A2 (de) * 2013-06-21 2014-12-24 Fujitsu Technology Solutions Intellectual Property Gmbh Computersystem und überlastschutzschaltung
TWI569137B (zh) * 2013-09-04 2017-02-01 Idt歐洲有限公司 Fpga功率管理系統
US10228744B2 (en) 2013-10-18 2019-03-12 Nxp Usa, Inc. Method and apparatus for detecting and managing overcurrent events
KR102320399B1 (ko) 2014-08-26 2021-11-03 삼성전자주식회사 전원 관리 칩, 그것을 포함하는 모바일 장치 및 그것의 클록 조절 방법
KR102244992B1 (ko) 2014-10-17 2021-04-28 삼성전자주식회사 부하 전류 정보를 제공하는 전력관리 집적회로 및 그것을 포함하는 전자 장치
US9419624B2 (en) * 2014-11-12 2016-08-16 Xilinx, Inc. Power management system for integrated circuits
KR102387203B1 (ko) 2015-06-03 2022-04-15 삼성전자주식회사 병합된 파워 레일을 통해 전원전압을 공급받는 시스템 온 칩 및 이를 포함하는 모바일 시스템
WO2017172987A1 (en) * 2016-04-01 2017-10-05 Intel Corporation Power consumption measurement for system-on-chip devices
US10256665B2 (en) 2016-07-01 2019-04-09 Intel Corporation Power transmitting device having wire-free power transfer safety detection
CN106528311A (zh) * 2016-09-29 2017-03-22 杭州芯讯科技有限公司 嵌入式系统及其控制方法
CN111427719B (zh) * 2020-02-17 2023-06-13 瑞芯微电子股份有限公司 一种提升soc系统可靠性和异常重启性能的方法和装置
US11493975B2 (en) * 2020-09-24 2022-11-08 Intel Corporation System, apparatus and method for providing power monitoring isolation in a processor
US11493980B1 (en) * 2021-05-17 2022-11-08 Qualcomm Incorporated Power controller communication latency mitigation
CN113434368A (zh) * 2021-07-06 2021-09-24 深圳市商汤科技有限公司 一种数据处理装置、方法、计算机设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0156802B1 (ko) * 1995-11-07 1998-11-16 김광호 네트워크 하이버네이션 시스템 및 그 제어 방법
US6338150B1 (en) * 1997-05-13 2002-01-08 Micron Technology, Inc. Diagnostic and managing distributed processor system
TWI225586B (en) * 2002-09-09 2004-12-21 Quanta Comp Inc Dynamically changing the power consumption apparatus for a computer system
EP1671214A4 (en) * 2003-10-10 2010-01-27 Nokia Corp MICROSOLUTION ARCHITECTURE FOR A SYSTEM ON A CHIP (SOC)
US7716502B2 (en) * 2005-08-24 2010-05-11 Radu Muresan Current flattening and current sensing methods and devices
DE102006007261A1 (de) * 2006-02-10 2007-08-23 Atmel Germany Gmbh Transponder und Verfahren zur drahtlosen Datenübertragung
KR101258530B1 (ko) * 2006-09-01 2013-04-30 삼성전자주식회사 딥스탑 모드를 구현하기 위한 시스템 온 칩 및 그 방법
US7882383B2 (en) * 2006-11-01 2011-02-01 Freescale Semiconductor, Inc. System on a chip with RTC power supply
US9652241B2 (en) * 2007-04-10 2017-05-16 Cambridge Consultants Ltd. Data processing apparatus with instruction encodings to enable near and far memory access modes
US20090230923A1 (en) * 2008-03-14 2009-09-17 Eveready Battery Company, Inc. Battery management circuit
US8120203B2 (en) * 2008-07-18 2012-02-21 Intersil Americas Inc. Intelligent management of current sharing group
US8208237B2 (en) * 2008-09-30 2012-06-26 International Business Machines Corporation Administering offset voltage error in a current sensing circuit
TW201013381A (en) * 2008-09-30 2010-04-01 Lite On Technology Corp System-on-chip (SoC) and power supply method thereof
US8635470B1 (en) * 2009-12-16 2014-01-21 Applied Micro Circuits Corporation System-on-chip with management module for controlling processor core internal voltages

Also Published As

Publication number Publication date
WO2013048447A1 (en) 2013-04-04
CN103842932A (zh) 2014-06-04
US20130283083A1 (en) 2013-10-24
TWI489270B (zh) 2015-06-21

Similar Documents

Publication Publication Date Title
TWI489270B (zh) 用於維持單晶片系統上之操作穩定性的裝置、方法及系統
CN101517510B (zh) 使计算平台转换到低功率系统状态
EP3011450B1 (en) Dynamic voltage and frequency management based on active processors
US10679690B2 (en) Method and apparatus for completing pending write requests to volatile memory prior to transitioning to self-refresh mode
KR101464911B1 (ko) 컴퓨터 플랫폼의 시스템 전력 상태를 전환하는 방법, 장치 및 시스템
US9058282B2 (en) Dynamic cache write policy
US7181188B2 (en) Method and apparatus for entering a low power mode
US20200210304A1 (en) Server power consumption management method and device
CN103765409A (zh) 有功率效率的处理器体系结构
CN108469890B (zh) 高待机电源系统的智能电源供应管理
KR20110038036A (ko) 슬리프 프로세서
WO2021007682A1 (zh) 供电保护方法和具有供电保护功能的系统
US10228744B2 (en) Method and apparatus for detecting and managing overcurrent events
US11281280B2 (en) Reducing chiplet wakeup latency
KR20080027006A (ko) 별도의 시스템관리동작의 수행이 가능한 디바이스를 구비한컴퓨터시스템 및 그 제어방법
CN107037868A (zh) 一种基于存储系统的冷备电切换系统及方法
EP3279796A1 (en) Resource access management component and method therefor
US9043628B2 (en) Power management of multiple compute units sharing a cache
CN106575276B (zh) 子系统的电源管理控制
US20190220346A1 (en) Safety Enhancement for Memory Controllers
Salami et al. A Demo of FPGA Aggressive Voltage Downscaling: Power and Reliability Tradeoffs
US9116701B2 (en) Memory unit, information processing device, and method
US11404128B2 (en) Power control method for a memory storage device and a memory storage system
CN113608604A (zh) 基于龙芯处理器的计算机电源管理系统、方法、介质及设备
CN101093414A (zh) 对中断等待影响最小的热调节控制方法、系统和处理器