TW201317397A - Texture etching solution composition and texture etching method of crystalline silicon wafers - Google Patents

Texture etching solution composition and texture etching method of crystalline silicon wafers Download PDF

Info

Publication number
TW201317397A
TW201317397A TW101136798A TW101136798A TW201317397A TW 201317397 A TW201317397 A TW 201317397A TW 101136798 A TW101136798 A TW 101136798A TW 101136798 A TW101136798 A TW 101136798A TW 201317397 A TW201317397 A TW 201317397A
Authority
TW
Taiwan
Prior art keywords
composition
cellulose
compound
texture
group
Prior art date
Application number
TW101136798A
Other languages
Chinese (zh)
Inventor
Hyung-Pyo Hong
Jae-Youn Lee
Myun-Kyu Park
Dae-Sung Lim
Original Assignee
Dongwoo Fine Chem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110106968A external-priority patent/KR101933527B1/en
Priority claimed from KR1020120080780A external-priority patent/KR20130043051A/en
Application filed by Dongwoo Fine Chem Co Ltd filed Critical Dongwoo Fine Chem Co Ltd
Publication of TW201317397A publication Critical patent/TW201317397A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Weting (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed are a texture etching solution composition for a crystalline silicon wafer, and a texture etching method using the same. The texture etching solution composition for a crystalline silicon wafer includes a polymer formed by polymerizing a monomer that is substituted with a cyclic compound having 4 to 10 carbon atoms as well as at least one nitrogen atom. The texture etching solution composition and the texture etching method are capable of forming pyramids with a specific structure which can minimize a quality deviation of a texture within a region in formation of a micro-pyramid structure on the surface of the crystalline silicon wafer to increase luminous efficiency while reducing a reflectivity.

Description

紋理蝕刻液組合物及結晶矽晶圓紋理蝕刻方法Texture etching liquid composition and crystal germanium wafer texture etching method

相關申請案

本申請案主張在韓國智慧財產局於2011年10月19日申請的韓國專利申請案第10-2011-0106967號、於2011年10月19日申請的韓國專利申請案第10-2011-0106968號與於2012年7月24日申請的韓國專利申請案第10-2012-0080780號的優先權,其全部揭露的內容併入本文作為參考。

本發明關於一種用於結晶矽晶圓的紋理蝕刻液組成物,可以最小化結晶矽晶圓表面上的一個區域內的紋理品質變異與改善光吸收效能,以及一種使用前面組成物的結晶矽晶圓的紋理蝕刻方法。

Related application

Korean Patent Application No. 10-2011-0106967, filed on October 19, 2011, and Korean Patent Application No. 10-2011-0106968, filed on October 19, 2011, the Korean Intellectual Property Office, filed on October 19, 2011 The entire disclosure of the Korean Patent Application No. 10-2012-0080780, filed on Jul. 24, 2012, is hereby incorporated by reference.

The present invention relates to a texture etchant composition for a crystalline germanium wafer that minimizes texture quality variation and improved light absorption efficiency in a region on the surface of a crystalline germanium wafer, and a crystalline twin using the previous composition Round texture etching method.

相關技藝之說明
近年來,太陽能電池迅速地普及且被熟知為一種下個世代的能源來源以及一種將潔靜能源(亦即,太陽光)直接轉換為電力的電子裝置。這類太陽能電池原則上具有一P型矽半導體,其包含添加於其中的矽與硼,以及由一PN接面半導體基板,其中原則上包括了具有添加矽與硼於其中的P型矽半導體,以及藉由將磷(P)擴散至P型矽半導體表面而形成N型矽半導體層。
當光(例如太陽光)照射在PN接面之電場所提供的基板上時,半導體中的電子(-)與孔洞(+)被激發且這類被激發的電子(-)及孔洞(+)可以自由地與隨意地在半導體內部移動。在這種情形,在PN接面所形成的電場內的電子(-)可以遷移至N型半導體,同時孔洞(+)移動至P型半導體。如果電極是被提供在P型半導體及N型半導體二者的表面上,以使電子流向一個外部電路,則產生電流。在此類原則的基礎上,太陽光被轉換成為電力能源。因此,為了改善太陽光轉換效能,PN接面半導體基板的每單位面積的電力輸出應被盡可能增大,且為這些目的,反射必須減小同時最大化光吸收。考慮到前面的情況,用於構成PN接面半導體基板的一種太陽能電池的矽晶圓應具有一種在其表面上所形成的微型角錐體結構,以及可以提供一層抗反射膜。在微型角錐體結構中已經被紋理化的矽晶圓表面可以減少具有大範圍波長的入射光的反射,繼而增加被吸收光的量。結果,太陽能電池的性能,亦即,太陽能電池的效能可以被提高。
一種用於將矽晶圓表面紋理化成為微型角錐體結構的方法已被揭露,例如,美國第4,137,123號專利案描述一種矽紋理蝕刻液,其中0.5至10重量百分比的矽被溶解在一種非等向性蝕刻(通稱為’乾蝕刻’)液中,該非等向性蝕刻液由0至75體積百分比的乙二醇、0.05至50重量百分比的氫氧化鉀以及剩餘水份所組成。然而,這樣的蝕刻液造成了無法形成角錐體,因而增加光反射並致使光吸收效能減小。

此外,歐洲專利案第0477424號提出一種紋理蝕刻方法,將氧氣供給至包括了溶解於乙二醇、氫氧化鉀以及剩餘水份的混合物中的矽之紋理蝕刻液,亦即,進行通氣製程數分鐘。然而,上面的蝕刻方法致使無法形成角錐體,繼而增加光反射同時使光吸收效能變差以及,此外,還有需要另一種通氣設備的缺點。

另外,韓國專利註冊案第0180621號揭露一種紋理蝕刻液,包含0.5~5%的氫氧化鉀溶液、3至20體積百分比的異丙醇和75至96.5體積百分比的去離子水的混合物;美國專利案第6,451,218號揭露一種紋理蝕刻液,包括一鹼性化合物、異丙醇、含水鹼性乙二醇和水。然而,由於前面蝕刻液每一個包括了具有相當低沸點的異丙醇,而此材料必須在蝕刻期間被額外地加入,在生產力和成本方面產生了經濟上的缺點。此外,額外加入異丙醇導致了蝕刻液的溫度梯度,因而在矽晶圓表面上一個區域內增加紋理品質變異,以及最終惡化的均勻性。
Description of Related Art In recent years, solar cells have rapidly spread and are known as a source of energy for the next generation and an electronic device that directly converts clean energy (i.e., sunlight) into electricity. Such a solar cell has in principle a P-type germanium semiconductor comprising germanium and boron added thereto, and a semiconductor substrate bonded by a PN, which in principle comprises a P-type germanium semiconductor having germanium and boron added thereto. And forming an N-type germanium semiconductor layer by diffusing phosphorus (P) to the surface of the p-type germanium semiconductor.
When light (such as sunlight) is irradiated on a substrate provided by an electric field of a PN junction, electrons (-) and holes (+) in the semiconductor are excited and such excited electrons (-) and holes (+) It can move freely and randomly inside the semiconductor. In this case, electrons (-) in the electric field formed by the PN junction can migrate to the N-type semiconductor while the holes (+) move to the P-type semiconductor. If an electrode is provided on the surface of both the P-type semiconductor and the N-type semiconductor to flow electrons to an external circuit, a current is generated. Based on such principles, sunlight is converted into electricity. Therefore, in order to improve the solar light conversion efficiency, the power output per unit area of the PN junction semiconductor substrate should be increased as much as possible, and for these purposes, the reflection must be reduced while maximizing light absorption. In view of the foregoing, a tantalum wafer for a solar cell constituting a PN junction semiconductor substrate should have a micro-pyramidal structure formed on the surface thereof, and an anti-reflection film can be provided. The surface of the germanium wafer that has been textured in the micro-pyramid structure can reduce the reflection of incident light having a wide range of wavelengths, which in turn increases the amount of light absorbed. As a result, the performance of the solar cell, that is, the performance of the solar cell can be improved.
A method for texturing a ruthenium wafer surface into a micro-pyramid structure has been disclosed. For example, U.S. Patent No. 4,137,123 describes a ruthenium texture etchant in which 0.5 to 10 weight percent of ruthenium is dissolved in an unequal In the etch etching (generally referred to as 'dry etching'), the anisotropic etchant consists of 0 to 75 volume percent ethylene glycol, 0.05 to 50 weight percent potassium hydroxide, and residual moisture. However, such an etching solution causes the formation of pyramids, thereby increasing light reflection and causing a decrease in light absorption efficiency.

In addition, European Patent No. 0477424 proposes a texture etching method for supplying oxygen to a textured etching solution comprising cerium dissolved in a mixture of ethylene glycol, potassium hydroxide and residual moisture, that is, the number of venting processes minute. However, the above etching method makes it impossible to form a pyramid, which in turn increases light reflection while making light absorption performance worse and, in addition, has the disadvantage of requiring another ventilation device.

In addition, Korean Patent Registration No. 0180621 discloses a texture etching solution comprising a mixture of 0.5 to 5% potassium hydroxide solution, 3 to 20 volume percent isopropanol and 75 to 96.5 volume percent deionized water; No. 6,451,218 discloses a texture etching solution comprising a basic compound, isopropanol, aqueous alkaline glycol and water. However, since the front etching liquids each include isopropyl alcohol having a relatively low boiling point, and this material must be additionally added during etching, there are economic disadvantages in terms of productivity and cost. In addition, the additional addition of isopropyl alcohol results in a temperature gradient of the etchant, thereby increasing the texture quality variation and the uniformity of the final deterioration in a region on the surface of the germanium wafer.

因此,本發明的一個目的在提供一種用於結晶矽晶圓的紋理蝕刻液組成物,可以形成具有特定結構的角錐體,該角錐體可於結晶矽晶圓的表面上形成微型角錐體結構的一個區域內最小化紋理的品質變異,以增加發光效能同時減小反射。
本發明的另一個目的在提供一種用於結晶矽晶圓的紋理蝕刻液組成物,而無需應用通氣製程以及於紋理化期間使用額外的蝕刻液組成分。     

本發明的又一個目的在提供一種使用用於前面矽晶圓之紋理蝕刻液的紋理蝕刻方法。

為完成上述目的,本發明提供下列者。

(1)一種用於結晶矽晶圓的紋理蝕刻液組成物,包含一聚合物,藉由聚合一單體而形成,該單體以具有4至10個碳原子以及至少一氮原子的一環狀化合物所取代。

(2) 根據上述第(1)項的組成物,該單體在該單體的一環結構還包含至少一氧或硫原子。
(3) 根據上述第(1)項的組成物,該單體是選自由N-乙烯基吡咯烷酮、N-丙烯醯基嗎啉、N-乙烯基琥珀醯亞胺、N-丙烯醯氧基琥珀醯亞胺、N-乙烯基己內醯胺、N-乙烯基咔唑和N-丙烯醯基吡咯烷酮所組成的群組至少其中之一。
(4)根據上述第(1)項的組成物,該聚合物具有1,000至1,000,000的重量平均分子量。
(5) 根據上述第(1)項的組成物,該聚合物具有攝氏100度或更高的沸點。
(6) 根據上述第(1)項的組成物,該聚合物相對於該蝕刻液組成物的一總重量包括10-12至1重量百分比的量。
(7) 根據上述第(1)項的組成物,該組成物還包含一鹼性化合物。
(8) 根據上述第(1)項的組成物,該組成物還包含多醣。
(9) 根據上述第(7)項的組成物,該鹼性化合物是選自由氫氧化鉀、氫氧化鈉、氫氧化銨、氫氧化四甲銨和氫氧化四乙銨所組成的群組至少其中之一。
(10) 根據上述第(8)項的組成物,該多醣是選自由一葡聚糖化合物、一果聚糖化合物、一甘露聚糖化合物、一半乳聚糖的化合物及其金屬鹽類所組成的群組至少其中之一。
(11) 根據上述第(8)項的組成物,該多醣是選自由纖維素、二甲基胺基乙基纖維素、二乙基胺基乙基纖維素、乙基羥乙基纖維素、甲基羥乙基纖維素、4-胺基芐基纖維素、三乙基胺基乙基纖維素、氰乙基纖維素、乙基纖維素、甲基纖維素、羧甲基纖維素、羧乙基纖維素、羥乙基纖維素、羥丙基纖維素、藻酸、直鏈澱粉、支鏈澱粉、果膠、澱粉、糊精、α-環糊精、β-環糊精、γ-環糊精、羥丙基-β-環糊精、甲基-β-環糊精、葡聚糖、葡聚糖硫酸鈉、皂苷、肝醣、酵母聚糖、香菇多醣、裂褶菌多糖及其金屬鹽類所組成的群組中的至少一葡聚糖化合物。
(12) 根據上述第(1)項的組成物,該組成物還包含一以磺酸鹽為基礎的陰離子表面活性劑。
(13) 根據上述第(12)項的組成物,該以磺酸鹽為基礎的陰離子表面活性劑是選自由聚乙二醇-12聚二甲基矽氧烷磺基琥珀酸二鈉、二辛基磺基琥珀酸鈉、十二烷基苯磺酸鈉、月桂醇磺基琥珀酸酯二鈉、聚乙二醇-12聚二甲基矽氧烷磺基琥珀酸二鈉、二己基磺基琥珀酸酯鈉、二月桂醇磺基琥珀酸酯、二辛基磺基琥珀酸鉀、二己基磺基琥珀酸酯鉀,二月桂醇磺基琥珀酸鉀和月桂醇磺基琥珀酸酯二鉀所組成的群組至少其中之一。
(14) 根據上述第(1)項的組成物,該組成物還包含一二氧化矽化合物。
(15) 根據上述第(14)項的組成物,該二氧化矽化合物是精細的二氧化矽粉末、以氧化鈉穩定的一膠態二氧化矽分散液、以氧化鉀穩定的一膠態二氧化矽分散液、以一酸性溶液穩定的一膠態二氧化矽分散液、以氨穩定的一膠體二氧化矽分散液以選自由乙醇、丙醇、乙二醇、甲基乙基酮及甲基異丁基酮所組成的群組中的至少一有機溶劑穩定的一膠體二氧化矽分散液、液態矽酸鈉、液態矽酸鉀以及液態矽酸鋰所組成的群組至少其中之一。
(16) 根據上述第(14)項的組成物,該二氧化矽化合物相對於該蝕刻液組成物的一總重量包括10-5至10重量百分比的量。
(17) 一種藉由使用根據申請專利範圍第1至16項中任一項所述的蝕刻液組成物所實施的結晶矽晶圓的紋理蝕刻方法。
(18) 根據上述第(17)項的方法,該方法包含在攝氏50至100度的溫度噴塗該蝕刻液組成物30秒至60分鐘。
(19)根據上述第(17)項的方法,該方法包含在攝氏50至100度的溫度以該蝕刻液組成物浸沒該晶圓30秒至60分鐘。
根據本發明的用於結晶矽晶圓的紋理蝕刻液組成物及紋理蝕刻方法,可以最小化結晶矽晶圓表面上一個區域內的紋理品質變異,亦即,改善紋理的一致性以最大化太陽能的吸收同時減小光反射,此外,本發明所形成的角錐體具有一種角錐體傾斜面凹入角錐體的結構,以致於進一步將減少10%或更少的反射,因而快速地增加發光的效能。
Accordingly, it is an object of the present invention to provide a textured etchant composition for a crystalline germanium wafer that can form a pyramid having a specific structure that can form a micro-pyramidal structure on the surface of a crystalline germanium wafer. Minimize the quality variation of the texture within an area to increase luminous efficacy while reducing reflection.
Another object of the present invention is to provide a textured etchant composition for crystallizing tantalum wafers without the use of an aeration process and the use of additional etchant composition during texturing.

It is still another object of the present invention to provide a texture etching method using a texture etchant for a front germanium wafer.

In order to accomplish the above object, the present invention provides the following.

(1) A texture etching solution composition for crystallizing a germanium wafer, comprising a polymer formed by polymerizing a monomer having a ring having 4 to 10 carbon atoms and at least one nitrogen atom Substituted as a compound.

(2) The composition according to the above item (1), which further contains at least one oxygen or sulfur atom in a ring structure of the monomer.
(3) The composition according to the above item (1), which is selected from the group consisting of N-vinylpyrrolidone, N-propylene decylmorpholine, N-vinyl succinimide, N-propylene oxime amber At least one of the group consisting of quinone imine, N-vinyl caprolactam, N-vinylcarbazole, and N-propenylpyrrolidone.
(4) The composition according to the above item (1), which has a weight average molecular weight of 1,000 to 1,000,000.
(5) The composition according to the above item (1), which has a boiling point of 100 ° C or higher.
(6) The composition according to the above item (1), which comprises an amount of 10 -12 to 1 weight percent with respect to a total weight of the etchant composition.
(7) The composition according to the above item (1), which further comprises a basic compound.
(8) The composition according to the above item (1), which further comprises a polysaccharide.
(9) The composition according to the above item (7), wherein the basic compound is at least selected from the group consisting of potassium hydroxide, sodium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide, and tetraethylammonium hydroxide. one of them.
(10) The composition according to the above item (8), which is selected from the group consisting of a glucan compound, a fructan compound, a mannan compound, a half-breast compound, and a metal salt thereof. At least one of the groups.
(11) The composition according to the above item (8), which is selected from the group consisting of cellulose, dimethylaminoethylcellulose, diethylaminoethylcellulose, ethylhydroxyethylcellulose, Methyl hydroxyethyl cellulose, 4-aminobenzyl cellulose, triethylaminoethyl cellulose, cyanoethyl cellulose, ethyl cellulose, methyl cellulose, carboxymethyl cellulose, carboxy Ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, alginic acid, amylose, amylopectin, pectin, starch, dextrin, α-cyclodextrin, β-cyclodextrin, γ- Cyclodextrin, hydroxypropyl-β-cyclodextrin, methyl-β-cyclodextrin, dextran, sodium dextran sulfate, saponin, glycogen, zymosan, lentinan, schistosomiasis and At least one glucan compound in the group consisting of metal salts thereof.
(12) The composition according to the above item (1), which further comprises a sulfonate-based anionic surfactant.
(13) The composition according to the above item (12), wherein the sulfonate-based anionic surfactant is selected from the group consisting of polyethylene glycol-12 polydimethyl siloxane sulfosuccinate disodium, two Sodium octyl sulfosuccinate, sodium dodecyl benzene sulfonate, disodium lauryl sulfosuccinate, disodium polyethylene glycol-12 polydimethyl methoxy sulfosuccinate, dihexyl sulfonate Sodium succinate, dilauryl sulfosuccinate, potassium dioctyl sulfosuccinate, potassium dihexyl sulfosuccinate, potassium dilauryl sulfosuccinate and lauryl sulfosuccinate At least one of the groups consisting of potassium.
(14) The composition according to the above item (1), which further comprises a cerium oxide compound.
(15) According to the composition of the above item (14), the cerium oxide compound is a fine cerium oxide powder, a colloidal cerium oxide dispersion stabilized by sodium oxide, and a colloidal state stabilized by potassium oxide. a cerium oxide dispersion, a colloidal cerium oxide dispersion stabilized by an acidic solution, and an ammonia-stabilized colloidal cerium oxide dispersion selected from the group consisting of ethanol, propanol, ethylene glycol, methyl ethyl ketone and At least one of the group consisting of at least one organic solvent-stabilized monocolloid cerium oxide dispersion, liquid sodium citrate, liquid potassium citrate, and liquid lithium niobate in the group consisting of isobutyl ketone.
(16) The composition according to the above item (14), wherein the cerium oxide compound is included in an amount of from 10 -5 to 10% by weight based on the total weight of the etchant composition.
(17) A texture etching method of a crystalline germanium wafer which is carried out by using the etching liquid composition according to any one of claims 1 to 16.
(18) The method according to the above item (17), which comprises spraying the etchant composition at a temperature of 50 to 100 degrees Celsius for 30 seconds to 60 minutes.
(19) The method according to the above item (17), which comprises immersing the wafer with the etchant composition at a temperature of 50 to 100 degrees Celsius for 30 seconds to 60 minutes.
The texture etchant composition and texture etching method for crystallization of germanium wafers according to the present invention can minimize texture quality variation in a region on the surface of the crystalline germanium wafer, that is, improve texture uniformity to maximize solar energy The absorption simultaneously reduces the light reflection. In addition, the pyramid formed by the present invention has a structure in which the pyramidal inclined surface is recessed into the pyramid, so that the reflection is further reduced by 10% or less, thereby rapidly increasing the luminous efficiency. .

本發明關於一種用於結晶矽晶圓的紋理蝕刻液組成物,其包括藉由聚合一種被具有4至10個碳原子以及至少一氮原子的環狀化合物所取代的單體而形成的一種聚合物,並形成具有特定結構的角錐體,可以最小化結晶矽晶圓表面上所形成的微型角錐體結構的一個區域內的紋理品質變異,以增加發光效能並減小反射,以及一種紋理蝕刻方法。

以下,將詳細說明本發明。      
本發明的用於結晶矽晶圓的紋理蝕刻液組成物,包括藉由聚合一種被具有4至10個碳原子以及至少一氮原子的環狀化合物所取代的單體而形成的一種聚合物。  

根據本發明的聚合物控制了在矽晶方向的蝕刻率的差異,以避免由鹼性化合物造成的過度蝕刻,因而最小化了紋理的品質變異,並且快速地減少由蝕刻所產生的氫氣泡的數量,因而抑制了泡沫附著(bubble sticking)的發生。
特別是,藉由使用本發明的聚合物而在蝕刻液中形成的錐體,可具有一種每一角錐體的傾斜面凹入該角錐體的結構。由於傾斜面凹入角錐體的結構顯示出較小的反射,與已知技藝中任何習用的角錐體結構相較,反射藉由使用本發明的蝕刻液而減少10%或更少,藉此增加了發光效能。

本發明的聚合物是藉由聚合一種被具有4至10個碳原子以及至少一氮原子的環狀化合物所取代的單體而製備,其中該單體除了氮原子之外,還可在其環狀結構中單獨或一起包括至少一個氧或硫原子。單體的特別範例可包括選自由N-乙烯基吡咯烷酮、N-丙烯醯基嗎啉、N-乙烯基琥珀醯亞胺、N-丙烯醯氧基琥珀醯亞胺、N-乙烯基己內醯胺、N-乙烯基咔唑、N-丙烯醯基吡咯烷酮等所組成的群組至少其中之一。

根據本發明的聚合物較佳具有1,000至1,000,000的重量平均分子量,以增加角錐體的底角,因而減小反射以及在矽晶圓整個表面上形成一致的角錐體。
此外,根據本發明的聚合物較佳具有攝氏100度或更高的沸點,且更佳是,攝氏150至400度,以減少使用的聚合物的量。
根據本發明一個方面的聚合物,就與該蝕刻液組成物所包含的其他組成分的相容性而言,較佳具有6至15的漢森(Hansen)溶解度參數(HSP,δp)。

根據本發明的聚合物相對於該蝕刻液組成物的總重量可包括10-12至1重量百分比的量。在上述含量範圍內,在控制矽晶方向的蝕刻率差異的效果為最大化,且角錐體的傾斜面凹入角錐體的角錐體結構可被適當地形成。
根據本發明的聚合物可與水溶性之極性溶劑混合。

水溶性之極性溶劑的種類無特別限制,只要其與用於結晶矽晶圓的紋理蝕刻液組成物所包含的其他組成分相容,以及可包括極性質子性及/或非質子性溶劑。

極性質子性溶劑可包括:醚化合物(例如乙二醇單甲醚、二乙二醇單甲醚、三乙二醇單甲醚、聚乙二醇單甲醚、乙二醇單乙醚、二乙二醇單乙醚、乙二醇單丁醚、二乙二醇單丁醚、三乙二醇單丁醚、丙二醇單甲醚、二丙二醇單甲醚等)、醇化合物(例如丙醇、丁醇、異丙醇、四氫糠醇、乙二醇、丙二醇、或諸如此類)。極性非質子性溶劑可包括:醯胺化合物(例如N-甲基甲醯胺、N,N-二甲基甲醯胺等)、亞碸化合物(例如二甲亞碸、環丁碸等)、磷酸化合物(例如磷酸三乙酯、磷酸三丁酯,或諸如此類),其可以單獨或與其兩種或多種結合使用。

根據本發明的紋理蝕刻液組成物還可包括一二氧化矽化合物。

在本發明中,該二氧化矽化合物是一種被物理性吸附於結晶矽晶圓的表面且作用成為一種光罩的組成分,因而可使結晶矽晶圓的表面具有一層微型角錐體外形。因此,其在晶圓表面上在體現一致的紋理形態顯示出相當顯著的效果。
在本發明可使用的二氧化矽化合物可包括粉末、膠體分散型式或液態金屬矽酸鹽化合物,或諸如此類。更特別的是,精細的二氧化矽粉末;以氧化鈉穩定的膠體二氧化矽分散液;以氧化鉀穩定的膠體二氧化矽分散液;以酸性溶液穩定的膠體二氧化矽分散液;以氨穩定的膠體二氧化矽分散液以選自由乙醇、丙醇、乙二醇、甲基乙基酮及甲基異丁基酮所組成的群組中的至少一有機溶劑穩定的膠體二氧化矽分散液;液體矽酸鈉;液態矽酸鉀;液態矽酸鋰,以及諸如此類,可為例示性且這些可單獨或與其中的二種或多種結合使用。

該二氧化矽化合物相對於用於結晶矽晶圓的蝕刻液組成物的總重量可包括10-5至10重量百分比的量,且較佳是10-4至1重量百分比的量。

在上述含量範圍內,微型角錐體可容易地在結晶矽晶圓的表面上形成。

本發明的蝕刻液組成物還可包括一鹼性化合物、多醣、或諸如此類。
該鹼性化合物是蝕刻矽晶圓表面的一種組成分,且可以包括習知技藝中常用的任何鹼性組成分而無特別的限制。本文可用的鹼性化合物可包括,例如,氫氧化鉀、氫氧化鈉、氫氧化銨、氫氧化四甲銨、氫氧化四乙銨或諸如此類,其中, 較佳使用氫氧化鉀及/或氫氧化鈉。這些材料可被單獨或與其中的二種或多種結合使用。
較佳地,該鹼性化合物相較於用於結晶矽晶圓的紋理蝕刻液組成物的總重量包括0.1至20重量百分比的量,更佳為1至5的重量百分比的量。在上述含量範圍內,矽晶圓的表面可被成功地蝕刻。

該多醣是一種包括二個或多個單醣經由醣苷鍵結形成一個大尺寸分子的醣類,防止了藉由使用鹼性化合物的過度蝕刻和蝕刻加速,以致於製備一致的微形角錐體,同時將經由蝕刻所產生的氫氣泡快速地自矽晶圓表面滴落,藉此改善其外觀。

該多醣的範例可包括:葡聚糖化合物、果聚糖化合物、甘露聚糖化合物、半乳聚糖化合物,或其金屬鹽類。其中,較佳地使用葡聚糖化合物及其金屬鹽類。上面物質可單獨或與其兩種或多種結合使用。
該葡聚糖化合物可包括,例如,纖維素、二甲基胺基纖維素、二乙基胺基乙基纖維素、乙基羥乙基纖維素、甲基羥乙基纖維素、4-胺基芐基纖維素、三乙基胺基乙基纖維素、氰乙基纖維素、乙基纖維素、甲基纖維素、羧甲基纖維素、羧乙基纖維素、羥乙基纖維素、羥丙基纖維素、藻酸、直鏈澱粉、支鏈澱粉、果膠、澱粉、糊精、α-環糊精、β-環糊精、γ-環糊精、羥丙基-β-環糊精、甲基-β-環糊精、葡聚糖、葡聚糖硫酸鈉、皂苷、肝醣、酵母聚糖、香菇多醣、裂褶菌多糖、或其金屬鹽類。

該多醣可以具有5,000~1,000,000的分子量,較佳為50,000至200,000的分子量。

該多醣相對於100重量百分比的用於結晶矽晶圓的紋理蝕刻液組成物可包括10-9至0.5重量百分比的量,且較佳為10-6至0.1重量百分比的量。如果多醣的含量是在前面的範圍內,則可避免過度蝕刻以及可以有效控制蝕刻加速。當含量超過0.5重量百分比時,鹼性化合物的蝕刻率可被大幅降低,造成形成所需微型角錐體的困難度。

選擇性地,根據本發明的用於結晶矽晶圓的紋理蝕刻液組成物還可包括一種以磺酸鹽為基礎的陰離子表面活性劑。該以磺酸鹽為基礎的陰離子表面活性劑是一種組成分,其避免由鹼性化合物引起的過度蝕刻與加速蝕刻,因而形成一致的微型角錐體,且同時,將蝕刻期間所產生的氫氣泡快速地自矽晶圓表面滴落,以因此避免氣泡附著。此外,此表面活性劑具有清潔力,以將雜質自矽晶圓的表面移除,藉此改善紋理化後晶圓表面向外的外觀。

該以磺酸鹽為基礎的陰離子表面活性劑的種類無特別限制,然而可包括,例如,聚乙二醇-12聚二甲基矽氧烷磺基琥珀酸二鈉、二辛基磺基琥珀酸鈉、十二烷基苯磺酸鈉、月桂醇磺基琥珀酸酯二鈉、聚乙二醇-12二甲基矽氧烷磺基琥珀酸二鉀、二己基磺基琥珀酸酯鈉、二月桂醇磺基琥珀酸酯鈉、二辛基磺基琥珀酸鉀、二己基磺基琥珀酸酯鉀、二月桂醇磺基琥珀酸鉀、月桂醇磺基琥珀酸酯二鉀,或諸如此類。這些材料可單獨或與其兩種或多種結合使用。

對於總量100重量百分比之用於結晶矽晶圓的紋理蝕刻液組成物,該以磺酸鹽為基礎的陰離子表面活性劑可包括0.000001至1重量百分比的量,較佳是0.00001至0.1重量百分比的量,且更佳是0.0001至0.1重量百分比的量。在上述含量範圍內,表面活性劑可形成一致的角錐體並顯示出所需的去污性能。

選擇性地,根據本發明的用於結晶矽晶圓的紋理蝕刻液組成物還可包括至少一添加劑,其選自由:脂肪酸及其金屬鹽類;和一種包括聚氧乙烯(POE)化合物、聚氧丙烯(POP)化合物及/或其共聚物之表面活性劑所組成的群組。

該脂肪酸及其金屬鹽類是一種組成分,其通常與多醣一起使用,以避免由鹼性化合物造成的過度蝕刻,因而形成一致的微型角錐體,且同時,將蝕刻期間產生的氫氣泡快速地自矽晶圓表面滴落,因而避免氣泡附著。
本文使用的脂肪酸是帶有具有羧基基團的烴鏈之羧酸,且包括,特別是,乙酸、丙酸、丁酸、戊酸、庚酸、辛酸、壬酸、癸酸、月桂酸、肉豆蔻酸、棕櫚酸、硬脂酸、花生酸、二十二酸、二十四酸、serotic acid、二十碳五烯酸、二十二碳六烯酸、亞油酸、α-亞麻仁油酸、g-亞麻仁油酸、二同型-懲-亞麻仁油酸、花生四烯酸、油酸、反油酸、芥酸、神經酸或諸如此類。替代地,一種脂肪酸鹽可包括,例如,上述脂肪酸和例如氫氧化鈉或氫氧化鉀的一種金屬鹽類的一種酯化產物。這些材料可以單獨或與其兩種或多種結合使用。
該脂肪酸及其鹽類相對於用於結晶矽晶圓的紋理蝕刻液組成物的總重量可包括10-9至10重量百分比的量,且較佳是10-6至1重量百分比的量。在上述含量範圍內,過度蝕刻可被有效避免。

聚氧乙烯(POE)化合物、聚氧丙烯(POP)化合物及其共聚物實質上是一種具有羥基基團的表面活性劑,其是一種控制紋理蝕刻液組成物中氫氧根離子[OH-]的活性之組成分,因而減小Si100方向與Si111方向之間的蝕刻率的差異,且同時,改善結晶矽晶圓表面的潤濕性並將蝕刻期間產生的氫氣泡快速地滴落,因而避免氣泡附著的發生。

這樣的聚氧乙烯(POE)表面活性劑可包括,例如,聚氧乙二醇、聚氧乙二醇甲基醚、聚氧乙烯單烯醚、聚氧乙烯新戊醚、聚乙二醇單(三苯乙烯基苯基)醚、聚氧乙烯十六烷基醚、聚氧乙烯月桂醚、聚氧乙烯油醚、聚氧乙烯硬脂醚、聚氧乙烯十三烷基醚、聚氧乙烯癸基醚、聚氧乙烯辛基醚、聚氧乙烯雙酚-A醚、聚氧乙烯甘油醚、聚氧乙烯壬基苯基醚、聚氧乙烯芐基醚、聚氧乙烯苯基醚、聚氧乙烯辛基苯基醚、聚氧乙烯酚醚、在其烷基基團具有6至30個碳原子數的聚氧乙烯烷基環己基醚、聚氧乙烯β-萘酚醚、聚氧乙烯蓖麻油醚、聚氧乙烯氫化蓖麻油醚;聚氧乙烯月桂酯、聚氧乙烯硬脂酯、聚氧乙烯油酸酯;聚氧乙烯月桂胺、聚氧乙烯硬脂胺、聚氧乙烯牛脂胺,或諸如此類。同時,聚氧丙烯(POP)表面活性劑可包括,例如,聚丙二醇。此外,聚氧乙烯(POE)化合物和聚氧丙烯(POP)化合物的共聚物可包括,例如,聚氧乙烯-聚氧丙烯共聚物、聚氧乙烯-聚氧丙烯十烷基醚共聚物、聚氧乙烯-聚氧丙烯十一烷基醚共聚物、聚氧乙烯-聚氧丙烯十二烷基醚共聚物、聚氧乙烯-聚氧丙烯十四烷基醚共聚物、聚氧乙烯-聚氧丙烯2-乙基己醚共聚物、聚氧乙烯-聚氧丙烯月桂醚共聚物、聚氧乙烯-聚氧丙烯硬脂醚共聚物、添加甘油的聚氧乙烯-聚氧丙烯共聚物、添加乙二胺的聚氧乙烯-聚氧丙烯共聚物,或諸如此類,其可單獨或與其兩種或多種結合使用。

相對於用於結晶矽晶圓的紋理蝕刻液組成物的總重量,包括聚氧乙烯(POE)化合物、聚氧丙烯(POP)化合物及/或其共聚物的表面活性劑可包括10-9至10重量百分比的量,較佳是10-6至1重量百分比的量,且更佳是0.00001至0.1重量百分比的量。在上述含量範圍內,矽晶圓表面的一個區域內於紋理化期間紋理的品質變異可被減小。

根據本發明的用於結晶矽晶圓的紋理蝕刻液適當地採用上述的組成分,且隨後,還包括藉由將水加入紋理蝕刻液中作為剩餘水分,以控制整體的構成組成物。較佳地,上述組成分的含量被控制在上述含量的範圍內。
水分的種類無特別限制,但,較佳地是去離子水,且更佳地是,用於半導體製程具有18兆歐姆/釐米或更大的特定電阻的去離子水。

由於藉由包括上述組成分所形成的用於結晶矽晶圓的紋理蝕刻液組成物包含,特別是,一種具有擁有一個雜元素的環狀化合物之取代基的聚合物,其可能達到多個優點,在於結晶矽晶圓表面的一個區域內的紋理品質變異可被最小化,亦即,可改善紋理的一致性,以最大化太陽能的吸收,光反射可被減小以增大發光效能,以及可以體現一特定的角錐體結構(其中角錐體的傾斜面凹入角錐體),以減小反射。此外,於紋理蝕刻期間不需增加額外的蝕刻液組成分及使用通氣設備,藉此達到生產力與成本方面的經濟優點。   
本發明的用於結晶矽晶圓的紋理蝕刻液組成物可被適當地使用於常用的蝕刻製程,例如浸漬、噴塗、嵌入型蝕刻,及諸如此類。

本發明亦提供一種使用用於結晶矽晶圓的上述紋理蝕刻液組成物的結晶矽晶圓的紋理蝕刻方法。

結晶矽晶圓的紋理蝕刻方法可包括,以本發明的用於結晶矽晶圓的紋理蝕刻液組成物來浸沒該結晶矽晶圓,將本發明的用於結晶矽晶圓的紋理蝕刻液組成物噴塗於結晶矽晶圓上,或上述二種方法。

浸沒及/或噴塗的次數可無特別限制且,且在浸沒與噴塗同時進行時,其操作的順序亦可無限制。

浸沒、噴塗或浸沒與噴塗可於攝氏50至100度進行30秒至60分鐘。

根據本發明的用於結晶矽晶圓的紋理蝕刻方法無需使用替代的用於供應氧氣之通氣設備,因此在開始生產和製程成本方面具有經濟優點,且甚至經由簡單的方法能夠形成一致的微型角錐體結構,以及可以形成一種特定的角錐體結構(其中其傾斜面凹入角錐體),以致於減小反射。
下面,較佳具體實施例將參照範例與比較範例來說明以更具體地了解本發明。但,對所屬技術領域具有通常知識者將顯而易見的是,這樣的具體實施例是供作說明的目的,而在不違反本發明的範圍與精神下可做多種修飾與變化,且這樣的修飾與變化是適當地包含在如同所附隨之申請專利範圍所限定的本發明中。

範例

範例1至20及比較範例1至6
藉由將剩餘水分加至下面表1所列的預定構成組成物(重量百分比)的成分中,製備出用於結晶矽晶圓的每一種紋理蝕刻液組成物。



 

實驗範例

分別以在範例1至20與比較範例1至6中的每一個所製備的用於結晶矽晶圓的紋理蝕刻液組成物浸沒單結晶矽晶圓,因此被蝕刻。在本文,紋理條件包括攝氏80度之溫度與20分鐘的時間。

對於使用上述組成物所製造的各自的紋理、紋理的一致性、與反射被量測及其結果如下面表2所示。

在此方面,第1圖是一掃描式電子顯微鏡(SEM)圖,顯示藉由使用於範例1所製備的用於結晶矽晶圓的紋理蝕刻液組成物而蝕刻的單結晶矽晶圓的紋理,第2圖是一掃描式電子顯微鏡圖,顯示藉由使用於範例13所製備的用於結晶矽晶圓的紋理蝕刻液組成物而蝕刻的單結晶矽晶圓的紋理,以及第3圖是一掃描式電子顯微鏡圖,顯示藉由使用於比較範例1所製備的用於結晶矽晶圓的紋理蝕刻液組成物而蝕刻的單結晶矽晶圓的紋理。

紋理一致性是以可見觀察(使用數位相機)、光學顯微鏡與掃描式電子顯微鏡做評估,而角錐體的尺寸是藉由掃描式電子顯微鏡進行測量。
◎角錐體形成遍及晶圓。
○角錐體在一部分的晶圓上未形成(角錐體未形成的程度低於5%)。
△角錐體在一部分的晶圓上未形成(角錐體未形成的程度介於5%至50%)。
× 錐體在晶圓上未形成(角錐體未形成的程度90%或更高)。

當使用紫外線來照射具有400至800奈米之波長範圍的光時,紋理反射是藉由計算平均反射而決定。
如表2所示,確認在範例1至20的每一個所製備的用於矽晶圓之紋理蝕刻液組成物顯示出遍及結晶矽晶圓的非常高程度的角錐體形成。特別是,參照第1圖與第2圖,可以從範例1與13的角錐體型態可看出,它們具有傾斜面凹入角椎體的結構。因為這樣的紋理一致性與特定的角錐體型態,可以看見根據上述每一種範例的矽晶圓的紋理具有低於10%的相當低的反射。

然而,在比較範例1與2的每一個的用於晶圓之紋理蝕刻液組成物,可以看見角錐體具有一種典型型態,藉此具有10%或更高的相當高的反射,雖然它們遍及晶圓而形成,如第3圖所示(比較範例1)。

此外,與根據本發明之範例1至20的紋理蝕刻液組成物相較,比較範例3與4顯示了角錐體形成程度與反射方面的重大差異。

同時,如同比較範例1與2,使用雜環單分子化合物的比較範例5亦顯示出10%或更多的高反射。

此外,確認使用二氧化矽化合物以及雜環單分子化合物的比較範例6在角錐體形成與反射方面,顯示出比本發明之範例較差的效果,是由於上述比較範例未包括本發明的聚合物。  




The present invention relates to a texture etching solution composition for crystallizing a germanium wafer, which comprises a polymerization formed by polymerizing a monomer substituted with a cyclic compound having 4 to 10 carbon atoms and at least one nitrogen atom. And forming a pyramid with a specific structure that minimizes texture quality variations in a region of the micro-pyramidal structure formed on the surface of the crystalline germanium wafer to increase luminous efficacy and reduce reflection, and a texture etching method .

Hereinafter, the present invention will be described in detail.
The texture etching liquid composition for a crystalline germanium wafer of the present invention comprises a polymer formed by polymerizing a monomer substituted with a cyclic compound having 4 to 10 carbon atoms and at least one nitrogen atom.

The polymer according to the present invention controls the difference in etching rate in the twinning direction to avoid excessive etching caused by the basic compound, thereby minimizing the quality variation of the texture, and rapidly reducing the hydrogen bubbles generated by the etching. The amount, thus inhibiting the occurrence of bubble sticking.
In particular, the cone formed in the etching solution by using the polymer of the present invention may have a structure in which the inclined surface of each pyramid is recessed into the pyramid. Since the structure of the concave surface concave pyramid shows a small reflection, the reflection is reduced by 10% or less by using the etching liquid of the present invention as compared with any conventional pyramidal structure in the prior art. Luminous performance.

The polymer of the present invention is prepared by polymerizing a monomer substituted with a cyclic compound having 4 to 10 carbon atoms and at least one nitrogen atom, wherein the monomer may be in the ring in addition to the nitrogen atom. The at least one oxygen or sulfur atom is included alone or together in the structure. Specific examples of the monomer may include those selected from the group consisting of N-vinylpyrrolidone, N-propenylmorpholine, N-vinyl succinimide, N-propylene decoxy succinimide, N-vinyl caprolactone At least one of a group consisting of an amine, N-vinylcarbazole, N-propenylpyrrolidone, and the like.

The polymer according to the present invention preferably has a weight average molecular weight of from 1,000 to 1,000,000 to increase the base angle of the pyramid, thereby reducing reflection and forming a uniform pyramid on the entire surface of the tantalum wafer.
Further, the polymer according to the present invention preferably has a boiling point of 100 ° C or higher, and more preferably 150 to 400 ° C to reduce the amount of the polymer used.
The polymer according to one aspect of the present invention preferably has a Hansen solubility parameter (HSP, δp) of 6 to 15 in terms of compatibility with other components contained in the etchant composition.

The polymer according to the present invention may comprise an amount of from 10 -12 to 1 weight percent relative to the total weight of the etchant composition. Within the above content range, the effect of controlling the difference in the etching rate in the twinning direction is maximized, and the pyramidal structure in which the inclined surface of the pyramid is recessed into the pyramid can be appropriately formed.
The polymer according to the invention can be mixed with a water-soluble polar solvent.

The kind of the water-soluble polar solvent is not particularly limited as long as it is compatible with other constituent components contained in the texture etching liquid composition for crystallizing the ruthenium wafer, and may include a polar protic and/or aprotic solvent.

The polar protic solvent may include: an ether compound (for example, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, ethylene glycol monoethyl ether, two Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, etc.), alcohol compounds (such as propanol, butyl Alcohol, isopropanol, tetrahydrofurfuryl alcohol, ethylene glycol, propylene glycol, or the like). The polar aprotic solvent may include: a guanamine compound (for example, N-methylformamide, N,N-dimethylformamide, etc.), an anthraquinone compound (for example, dimethyl hydrazine, cyclobutyl hydrazine, etc.), A phosphate compound (for example, triethyl phosphate, tributyl phosphate, or the like), which may be used singly or in combination of two or more kinds thereof.

The texture etchant composition according to the present invention may further comprise a cerium oxide compound.

In the present invention, the cerium oxide compound is a component which is physically adsorbed on the surface of the crystallization wafer and functions as a reticle, so that the surface of the crystallization wafer has a micro-pyramid shape. Therefore, it exhibits a remarkable effect on the surface of the wafer in a consistent texture morphology.
The cerium oxide compound which can be used in the present invention may include a powder, a colloidal dispersion type or a liquid metal citrate compound, or the like. More particularly, fine cerium oxide powder; colloidal cerium oxide dispersion stabilized by sodium oxide; colloidal cerium oxide dispersion stabilized by potassium oxide; colloidal cerium oxide dispersion stabilized by acidic solution; The stable colloidal cerium oxide dispersion is dispersed in at least one organic solvent-stabilized colloidal cerium oxide selected from the group consisting of ethanol, propanol, ethylene glycol, methyl ethyl ketone and methyl isobutyl ketone. Liquid; liquid sodium citrate; liquid potassium citrate; liquid lithium niobate, and the like, may be exemplified and these may be used alone or in combination with two or more of them.

The total weight of the cerium oxide compound relative to the etchant composition for crystallizing the ruthenium wafer may be in an amount of from 10 -5 to 10% by weight, and preferably from 10 -4 to 1% by weight.

Within the above content range, the micro pyramids can be easily formed on the surface of the crystalline germanium wafer.

The etching liquid composition of the present invention may further comprise a basic compound, a polysaccharide, or the like.
The basic compound is a component of the surface of the etched wafer and may include any basic component commonly used in the prior art without particular limitation. The basic compound usable herein may include, for example, potassium hydroxide, sodium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide or the like, wherein potassium hydroxide and/or hydroxide are preferably used. sodium. These materials may be used alone or in combination with two or more of them.
Preferably, the basic compound comprises an amount of from 0.1 to 20 weight percent, more preferably from 1 to 5 weight percent, based on the total weight of the texture etchant composition for the crystalline germanium wafer. Within the above range of contents, the surface of the germanium wafer can be successfully etched.

The polysaccharide is a saccharide comprising two or more monosaccharides bonded via a glycosidic bond to form a large-sized molecule, preventing over-etching and etching acceleration using a basic compound, so as to prepare a uniform micro-pyramid, At the same time, hydrogen bubbles generated by etching rapidly drip from the surface of the wafer, thereby improving the appearance thereof.

Examples of the polysaccharide may include: a dextran compound, a fructan compound, a mannan compound, a galactan compound, or a metal salt thereof. Among them, a dextran compound and a metal salt thereof are preferably used. The above substances may be used singly or in combination of two or more kinds thereof.
The glucan compound may include, for example, cellulose, dimethylamino cellulose, diethylaminoethyl cellulose, ethyl hydroxyethyl cellulose, methyl hydroxyethyl cellulose, 4-amine Base benzyl cellulose, triethylaminoethyl cellulose, cyanoethyl cellulose, ethyl cellulose, methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, hydroxyethyl cellulose, Hydroxypropyl cellulose, alginic acid, amylose, amylopectin, pectin, starch, dextrin, α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, hydroxypropyl-β-ring Dextrin, methyl-β-cyclodextrin, dextran, sodium dextran sulfate, saponin, glycogen, zymosan, lentinan, Schizophyllum polysaccharide, or a metal salt thereof.

The polysaccharide may have a molecular weight of 5,000 to 1,000,000, preferably a molecular weight of 50,000 to 200,000.

The polysaccharide may comprise an amount of from 10 -9 to 0.5 weight percent, and preferably from 10 -6 to 0.1 weight percent, relative to 100 weight percent of the texture etchant composition used to crystallize the ruthenium wafer. If the content of the polysaccharide is within the above range, excessive etching can be avoided and the etching acceleration can be effectively controlled. When the content exceeds 0.5% by weight, the etching rate of the basic compound can be drastically lowered, resulting in difficulty in forming a desired micro-pyramid.

Alternatively, the texture etchant composition for crystallizing germanium wafers according to the present invention may further comprise a sulfonate-based anionic surfactant. The sulfonate-based anionic surfactant is a component which avoids excessive etching and accelerated etching caused by a basic compound, thereby forming a uniform micro-pyramid, and at the same time, hydrogen bubbles generated during etching Quickly drip from the surface of the wafer to avoid bubble sticking. In addition, the surfactant has a cleaning power to remove impurities from the surface of the wafer, thereby improving the outward appearance of the textured wafer surface.

The kind of the sulfonate-based anionic surfactant is not particularly limited, but may include, for example, polyethylene glycol-12 polydimethyl siloxane sulfosuccinate disodium, dioctyl sulfo amber Sodium, sodium dodecylbenzene sulfonate, disodium lauryl sulfosuccinate, dipotassium polyethylene glycol-12 dimethyl methoxy sulfosuccinate, sodium dihexyl sulfosuccinate, Sodium lauryl sulfosuccinate, potassium dioctyl sulfosuccinate, potassium dihexyl sulfosuccinate, potassium dilauryl sulfosuccinate, dipotassium lauryl sulfosuccinate, or the like. These materials may be used singly or in combination of two or more kinds thereof.

The sulfonate-based anionic surfactant may comprise an amount of 0.000001 to 1 weight percent, preferably 0.00001 to 0.1 weight percent, for a total of 100 weight percent of the texture etchant composition for the crystalline germanium wafer. The amount, and more preferably, is an amount of 0.0001 to 0.1% by weight. Within the above range of contents, the surfactant forms a uniform pyramid and exhibits the desired stain removal performance.

Optionally, the texture etchant composition for crystallization of a germanium wafer according to the present invention may further comprise at least one additive selected from the group consisting of: fatty acids and metal salts thereof; and a compound comprising polyoxyethylene (POE), poly A group consisting of oxypropylene (POP) compounds and/or copolymers thereof.

The fatty acid and its metal salt are a component which is usually used together with a polysaccharide to avoid excessive etching caused by a basic compound, thereby forming a uniform micro-pyramid, and at the same time, rapidly generating hydrogen bubbles generated during etching. Dropping from the surface of the wafer, thus avoiding bubble adhesion.
The fatty acid used herein is a carboxylic acid having a hydrocarbon chain having a carboxyl group, and includes, in particular, acetic acid, propionic acid, butyric acid, valeric acid, heptanoic acid, caprylic acid, capric acid, capric acid, lauric acid, meat. Myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, tetracosanoic acid, serotic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid, α-linseed oil Acid, g-linolenic acid, di-type-懲-linolenic acid, arachidonic acid, oleic acid, oleic acid, erucic acid, nervonic acid or the like. Alternatively, a fatty acid salt may include, for example, an esterification product of the above fatty acid and a metal salt such as sodium hydroxide or potassium hydroxide. These materials may be used singly or in combination of two or more kinds thereof.
The fatty acid and its salts may comprise an amount of from 10 -9 to 10 weight percent, and preferably from 10 -6 to 1 weight percent, relative to the total weight of the texture etchant composition used to crystallize the ruthenium wafer. Over-etching can be effectively avoided within the above content range.

A polyoxyethylene (POE) compound, a polyoxypropylene (POP) compound, and a copolymer thereof are substantially a surfactant having a hydroxyl group, which is a control of a hydroxide ion [OH - ] in a composition of an etching solution. The composition of the active component, thereby reducing the difference in etching rate between the Si 100 direction and the Si 111 direction, and at the same time, improving the wettability of the surface of the crystalline germanium wafer and rapidly dropping hydrogen bubbles generated during the etching, Thus, the occurrence of bubble sticking is avoided.

Such polyoxyethylene (POE) surfactants may include, for example, polyoxyethylene glycol, polyoxyethylene glycol methyl ether, polyoxyethylene monoethyl ether, polyoxyethylene neopentyl ether, polyethylene glycol single (Tristyrylphenyl)ether, polyoxyethylene cetyl ether, polyoxyethylene lauryl ether, polyoxyethylene ether ether, polyoxyethylene stearyl ether, polyoxyethylene tridecyl ether, polyoxyethylene Mercapto ether, polyoxyethylene octyl ether, polyoxyethylene bisphenol-A ether, polyoxyethylene glyceryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene benzyl ether, polyoxyethylene phenyl ether, poly Oxyethylene octyl phenyl ether, polyoxyethylene phenol ether, polyoxyethylene alkyl cyclohexyl ether having 6 to 30 carbon atoms in its alkyl group, polyoxyethylene β-naphthol ether, polyoxyethylene Castor oil ether, polyoxyethylene hydrogenated castor oil ether; polyoxyethylene lauryl ester, polyoxyethylene stearyl ester, polyoxyethylene oleate; polyoxyethylene laurylamine, polyoxyethylene stearylamine, polyoxyethylene tallow amine , or the like. Meanwhile, the polyoxypropylene (POP) surfactant may include, for example, polypropylene glycol. Further, a copolymer of a polyoxyethylene (POE) compound and a polyoxypropylene (POP) compound may include, for example, a polyoxyethylene-polyoxypropylene copolymer, a polyoxyethylene-polyoxypropylenedecyl ether copolymer, and a poly Oxyethylene-polyoxypropylene undecyl ether copolymer, polyoxyethylene-polyoxypropylene lauryl ether copolymer, polyoxyethylene-polyoxypropylene tetradecyl ether copolymer, polyoxyethylene-polyoxygen Propylene 2-ethylhexyl ether copolymer, polyoxyethylene-polyoxypropylene lauryl ether copolymer, polyoxyethylene-polyoxypropylene stearyl ether copolymer, glycerin-added polyoxyethylene-polyoxypropylene copolymer, adding B A polyoxyethylene-polyoxypropylene copolymer of a diamine, or the like, which may be used singly or in combination of two or more kinds thereof.

The surfactant including a polyoxyethylene (POE) compound, a polyoxypropylene (POP) compound, and/or a copolymer thereof may include 10 -9 to the total weight of the texture etchant composition for crystallizing the ruthenium wafer. An amount of 10% by weight, preferably 10 -6 to 1% by weight, and more preferably 0.00001 to 0.1% by weight. Within the above content range, the quality variation of the texture during texturing in one region of the wafer surface can be reduced.

The texture etching liquid for crystallizing the germanium wafer according to the present invention suitably employs the above composition, and then, by adding water to the texture etching liquid as residual moisture, to control the overall constituent composition. Preferably, the content of the above component is controlled within the above range.
The kind of the moisture is not particularly limited, but is preferably deionized water, and more preferably, deionized water having a specific resistance of 18 megaohms/cm or more for the semiconductor process.

Since the texture etching liquid composition for crystallizing the germanium wafer formed by including the above composition component contains, in particular, a polymer having a substituent of a cyclic compound having one hetero element, it is possible to achieve a plurality of advantages. The texture quality variation in a region of the surface of the crystallized germanium wafer can be minimized, that is, the texture uniformity can be improved to maximize the absorption of solar energy, and the light reflection can be reduced to increase the luminous efficacy, and A particular pyramidal structure (where the slope of the pyramid is recessed into the pyramid) can be embodied to reduce reflection. In addition, no additional etchant composition and use of venting equipment are required during texture etching, thereby achieving economic advantages in terms of productivity and cost.
The texture etching liquid composition for a crystalline germanium wafer of the present invention can be suitably used in a usual etching process such as dipping, spraying, embedded etching, and the like.

The present invention also provides a texture etching method using a crystalline germanium wafer for the above-described texture etching liquid composition for crystallizing a germanium wafer.

The texture etching method of the crystalline germanium wafer may include immersing the crystalline germanium wafer with the textured etching liquid composition for crystallizing the germanium wafer of the present invention, and forming the texture etching liquid for the crystalline germanium wafer of the present invention. The object is sprayed onto a crystalline germanium wafer, or both.

The number of times of immersion and/or spraying may be not particularly limited, and the order of operation may be unlimited without immersion and spraying.

Immersion, spraying or immersion and spraying can be carried out at 50 to 100 degrees Celsius for 30 seconds to 60 minutes.

The texture etching method for crystallizing tantalum wafers according to the present invention does not require the use of an alternative ventilation device for supplying oxygen, thus having economic advantages in terms of starting production and process cost, and even forming a uniform micro-horn cone through a simple method The body structure, as well as a specific pyramid structure (where the sloped surface is recessed into the pyramid), so as to reduce reflection.
In the following, preferred embodiments will be described with reference to examples and comparative examples to more specifically understand the present invention. However, it will be apparent to those skilled in the art that the present invention is in the scope of the invention, and that various modifications and changes can be made without departing from the scope and spirit of the invention. Variations are suitably included in the invention as defined by the accompanying claims.

example

Examples 1 to 20 and Comparative Examples 1 to 6
Each of the texture etching liquid compositions for crystallizing the crucible wafer was prepared by adding the remaining moisture to the components of the predetermined constituent composition (percent by weight) listed in Table 1 below.





Experimental example

The texture etchant composition for the crystalline germanium wafer prepared in each of Examples 1 to 20 and Comparative Examples 1 to 6, respectively, was immersed in a single crystal germanium wafer, and thus etched. In this paper, the texture conditions include a temperature of 80 degrees Celsius and a time of 20 minutes.

The textures, textures, and reflections of the respective textures produced using the above compositions were measured and the results are shown in Table 2 below.

In this regard, FIG. 1 is a scanning electron microscope (SEM) image showing the texture of a single crystal germanium wafer etched by using the texture etching liquid composition for the crystalline germanium wafer prepared in Example 1. Figure 2 is a scanning electron microscope image showing the texture of a single crystal germanium wafer etched by using the texture etching liquid composition for crystallizing germanium wafer prepared in Example 13, and Fig. 3 is A scanning electron microscope image showing the texture of a single crystal germanium wafer etched by using the texture etching liquid composition for crystallization of the germanium wafer prepared in Comparative Example 1.

Texture consistency was evaluated by visible observation (using a digital camera), optical microscopy and scanning electron microscopy, and the size of the pyramid was measured by a scanning electron microscope.
◎ pyramids are formed throughout the wafer.
o The pyramid is not formed on a portion of the wafer (the degree of pyramid formation is less than 5%).
The Δ pyramid is not formed on a portion of the wafer (the degree of pyramid formation is between 5% and 50%).
× The cone is not formed on the wafer (the degree of pyramid formation is 90% or higher).

When ultraviolet light is used to illuminate light having a wavelength range of 400 to 800 nm, texture reflection is determined by calculating the average reflection.
As shown in Table 2, it was confirmed that the texture etchant composition for the tantalum wafer prepared in each of Examples 1 to 20 exhibited a very high degree of pyramid formation throughout the crystalline germanium wafer. In particular, referring to Figures 1 and 2, it can be seen from the pyramidal patterns of Examples 1 and 13 that they have a structure in which the inclined faces are recessed into the vertebral bodies. Because of such texture uniformity and a particular pyramidal shape, it can be seen that the texture of the tantalum wafer according to each of the above examples has a relatively low reflection of less than 10%.

However, in the texture etchant compositions for wafers of each of Comparative Examples 1 and 2, it can be seen that the pyramids have a typical pattern, thereby having a relatively high reflection of 10% or more, although they are throughout Wafer is formed as shown in Figure 3 (Comparative Example 1).

Furthermore, Comparative Examples 3 and 4 show significant differences in the degree of pyramid formation and reflection compared to the texture etchant compositions according to Examples 1 to 20 of the present invention.

Meanwhile, as in Comparative Examples 1 and 2, Comparative Example 5 using a heterocyclic monomolecular compound also showed high reflection of 10% or more.

Further, Comparative Example 6 in which the use of the cerium oxide compound and the heterocyclic single molecule compound was confirmed to exhibit a poorer effect than the example of the present invention in terms of pyramid formation and reflection, since the above comparative example did not include the polymer of the present invention.




deg...度Deg. . . degree

k...千倍k. . . Thousand times

kV...千伏特kV. . . Kilovolt

mm...毫米Mm. . . Millimeter

SE(U)...二次電子(U)SE(U). . . Secondary electron (U)

um...微米Um. . . Micron

本發明的上面與其他的目的、特徵及其他優點將由以下詳細說明結合附圖而可更清楚地了解,其中:
第1圖是一掃描式電子顯微鏡(SEM)圖,顯示藉由使用於範例1製備的用於結晶矽晶圓的紋理蝕刻液組成物而蝕刻的單結晶矽晶圓的紋理;
第2圖是一掃描式電子顯微鏡圖,顯示藉由使用於範例13所製備的用於結晶矽晶圓的紋理蝕刻液組成物而蝕刻的單結晶矽晶圓的紋理;以及

第3圖是一掃描式電子顯微鏡圖,顯示藉由使用於比較範例1所製備的用於結晶矽晶圓的紋理蝕刻液組成物而蝕刻的單結晶矽晶圓的紋理。
The above and other objects, features and other advantages of the present invention will become more apparent from
1 is a scanning electron microscope (SEM) image showing the texture of a single crystal germanium wafer etched by using the texture etchant composition for crystallization of a germanium wafer prepared in Example 1;
Figure 2 is a scanning electron microscope image showing the texture of a single crystal germanium wafer etched by using the texture etchant composition for crystallization of a germanium wafer prepared in Example 13;

Fig. 3 is a scanning electron microscope diagram showing the texture of a single crystal germanium wafer etched by the texture etching liquid composition for crystallization of a germanium wafer prepared in Comparative Example 1.

deg...度Deg. . . degree

k...千倍k. . . Thousand times

kV...千伏特kV. . . Kilovolt

mm...毫米Mm. . . Millimeter

SE(U)...二次電子(U)SE(U). . . Secondary electron (U)

um...微米Um. . . Micron

Claims (19)

一種用於結晶矽晶圓的紋理蝕刻液組成物,包含:一聚合物,藉由聚合一單體而形成,該單體以具有4至10個碳原子以及至少一氮原子的一環狀化合物所取代。A texture etching solution composition for crystallizing a germanium wafer, comprising: a polymer formed by polymerizing a monomer having a cyclic compound having 4 to 10 carbon atoms and at least one nitrogen atom Replaced. 如申請專利範圍第1項所述的組成物,其中該單體在該單體的一環結構還包含至少一氧或硫原子。The composition of claim 1, wherein the monomer further comprises at least one oxygen or sulfur atom in a ring structure of the monomer. 如申請專利範圍第1項所述的組成物,其中該單體是選自由N-乙烯基吡咯烷酮、N-丙烯醯基嗎啉、N-乙烯基琥珀醯亞胺、N-丙烯醯氧基琥珀醯亞胺、N-乙烯基己內醯胺、N-乙烯基咔唑和N-丙烯醯基吡咯烷酮所組成的群組至少其中之一。The composition of claim 1, wherein the monomer is selected from the group consisting of N-vinyl pyrrolidone, N-propylene decylmorpholine, N-vinyl succinimide, N-propylene decyloxy amber. At least one of the group consisting of quinone imine, N-vinyl caprolactam, N-vinylcarbazole, and N-propenylpyrrolidone. 如申請專利範圍第1項所述的組成物,其中該聚合物具有1,000至1,000,000的重量平均分子量。The composition of claim 1, wherein the polymer has a weight average molecular weight of 1,000 to 1,000,000. 如申請專利範圍第1項所述的組成物,其中該聚合物具有攝氏100度或更高的沸點。The composition of claim 1, wherein the polymer has a boiling point of 100 degrees Celsius or higher. 如申請專利範圍第1項所述的組成物,其中該聚合物相對於該蝕刻液組成物的一總重量包括10-12至1重量百分比的量。The composition of claim 1, wherein the polymer comprises an amount of from 10 -12 to 1 weight percent relative to a total weight of the etchant composition. 如申請專利範圍第1項所述的組成物,還包含一鹼性化合物。The composition of claim 1, further comprising a basic compound. 如申請專利範圍第1項所述的組成物,還包含多醣。The composition according to claim 1, further comprising a polysaccharide. 如申請專利範圍第7項所述的組成物,其中該鹼性化合物是選自由氫氧化鉀、氫氧化鈉、氫氧化銨、氫氧化四甲銨與氫氧化四乙銨所組成的群組至少其中之一。The composition of claim 7, wherein the basic compound is selected from the group consisting of potassium hydroxide, sodium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide and tetraethylammonium hydroxide. one of them. 如申請專利範圍第8項所述的組成物,其中該多醣是選自由一葡聚糖化合物、一果聚糖化合物、一甘露聚糖化合物、一半乳聚糖化合物及其金屬鹽類所組成的群組至少其中之一。The composition of claim 8, wherein the polysaccharide is selected from the group consisting of a glucan compound, a fructan compound, a mannan compound, a half-breast compound, and a metal salt thereof. At least one of the groups. 如申請專利範圍第8項所述的組成物,其中該多醣是選自由纖維素、二甲基胺基乙基纖維素、二乙基胺基乙基纖維素、乙基羥乙基纖維素、甲基羥乙基纖維素、4-胺基芐基纖維素、三乙基胺基乙基纖維素、氰乙基纖維素、乙基纖維素、甲基纖維素、羧甲基纖維素、羧乙基纖維素、羥乙基纖維素、羥丙基纖維素、藻酸、直鏈澱粉、支鏈澱粉、果膠、澱粉、糊精、α-環糊精、β-環糊精、γ-環糊精、羥丙基-β-環糊精、甲基-β-環糊精,葡聚糖、葡聚糖硫酸鈉、皂苷、肝醣、酵母聚糖、香菇多醣、裂褶菌多糖及其金屬鹽類所組成的群組中的至少一葡聚糖化合物。The composition of claim 8, wherein the polysaccharide is selected from the group consisting of cellulose, dimethylaminoethyl cellulose, diethylaminoethyl cellulose, ethyl hydroxyethyl cellulose, Methyl hydroxyethyl cellulose, 4-aminobenzyl cellulose, triethylaminoethyl cellulose, cyanoethyl cellulose, ethyl cellulose, methyl cellulose, carboxymethyl cellulose, carboxy Ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, alginic acid, amylose, amylopectin, pectin, starch, dextrin, α-cyclodextrin, β-cyclodextrin, γ- Cyclodextrin, hydroxypropyl-β-cyclodextrin, methyl-β-cyclodextrin, dextran, sodium dextran sulfate, saponin, glycogen, zymosan, lentinan, schistosomiasis and At least one glucan compound in the group consisting of metal salts thereof. 如申請專利範圍第1項所述的組成物,還包含一以磺酸鹽為基礎的陰離子表面活性劑。The composition of claim 1, further comprising a sulfonate-based anionic surfactant. 如申請專利範圍第1項所述的組成物,其中該以磺酸鹽為基礎的陰離子表面活性劑是選自由聚乙二醇-12聚二甲基矽氧烷磺基琥珀酸二鈉、二辛基磺基琥珀酸鈉、十二烷基苯磺酸鈉、月桂醇磺基琥珀酸酯二鈉、聚乙二醇-12聚二甲基矽氧烷磺基琥珀酸二鉀、二己基磺基琥珀酸酯鈉、二月桂醇磺基琥珀酸酯鈉、二辛基磺基琥珀酸鉀、二己基磺基琥珀酸酯鉀、二月桂醇磺基琥珀酸鉀以及月桂醇磺基琥珀酸酯二鉀所組成的群組至少其中之一。The composition of claim 1, wherein the sulfonate-based anionic surfactant is selected from the group consisting of polyethylene glycol-12 polydimethyl siloxane sulfosuccinate disodium, two Sodium octyl sulfosuccinate, sodium dodecyl benzene sulfonate, disodium lauryl sulfosuccinate, diethylene glycol PEG-12 polydimethyl siloxane sulfosuccinate, dihexyl sulfonate Sodium succinate, sodium dilauryl sulfosuccinate, potassium dioctyl sulfosuccinate, potassium dihexyl sulfosuccinate, potassium dilauryl sulfosuccinate, and lauryl sulfosuccinate At least one of the groups consisting of dipotassium. 如申請專利範圍第1項所述的組成物,還包含一二氧化矽化合物。The composition of claim 1, further comprising a cerium oxide compound. 如申請專利範圍第14項所述的組成物,其中該二氧化矽化合物是精細的二氧化矽粉末、以氧化鈉穩定的一膠體二氧化矽分散液、以氧化鉀穩定的一膠體二氧化矽分散液、以一酸性溶液穩定的一膠體二氧化矽分散液、以氨穩定的一膠體二氧化矽分散液以選自由乙醇、丙醇、乙二醇、甲基乙基酮及甲基異丁基酮所組成的群組中的至少一有機溶劑穩定的一膠體二氧化矽分散液、液態矽酸鈉、液態矽酸鉀以及液態矽酸鋰所組成的群組至少其中之一。The composition according to claim 14, wherein the cerium oxide compound is fine cerium oxide powder, a colloidal cerium oxide dispersion stabilized by sodium oxide, and a colloidal cerium oxide stabilized by potassium oxide. a dispersion, a colloidal ceria dispersion stabilized by an acidic solution, and an ammonia-stabilized colloidal ceria dispersion selected from the group consisting of ethanol, propanol, ethylene glycol, methyl ethyl ketone and methyl isobutyl At least one of a group consisting of at least one organic solvent-stabilized monocolloid ceria dispersion, liquid sodium citrate, liquid potassium citrate, and liquid lithium niobate in the group consisting of ketones. 如申請專利範圍第14項所述的組成物,其中該二氧化矽化合物相對於該蝕刻液組成物的一總重量包括10-5至10重量百分比的量。The composition of claim 14, wherein the cerium oxide compound comprises an amount of from 10 -5 to 10% by weight based on the total weight of the etchant composition. 一種藉由使用根據申請專利範圍第1至16項中任一項所述的蝕刻液組成物所實施的結晶矽晶圓的紋理蝕刻方法。A texture etching method of a crystalline germanium wafer performed by using the etching liquid composition according to any one of claims 1 to 16. 根據申請專利範圍第17項所述的方法,包含在攝氏50至100度的溫度噴塗該蝕刻液組成物30秒至60分鐘。The method of claim 17, comprising spraying the etchant composition at a temperature of 50 to 100 degrees Celsius for 30 seconds to 60 minutes. 根據申請專利範圍第17項所述的方法,包含在攝氏50至100度的溫度以該蝕刻液組成物浸沒該晶圓30秒至60分鐘。
The method of claim 17, comprising immersing the wafer with the etchant composition at a temperature of 50 to 100 degrees Celsius for 30 seconds to 60 minutes.
TW101136798A 2011-10-19 2012-10-05 Texture etching solution composition and texture etching method of crystalline silicon wafers TW201317397A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110106968A KR101933527B1 (en) 2011-10-19 2011-10-19 Texture etching solution composition and texture etching method of crystalline silicon wafers
KR20110106967 2011-10-19
KR1020120080780A KR20130043051A (en) 2011-10-19 2012-07-24 Texture etching solution composition and texture etching method of crystalline silicon wafers

Publications (1)

Publication Number Publication Date
TW201317397A true TW201317397A (en) 2013-05-01

Family

ID=48871758

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101136798A TW201317397A (en) 2011-10-19 2012-10-05 Texture etching solution composition and texture etching method of crystalline silicon wafers

Country Status (3)

Country Link
JP (1) JP2014534630A (en)
CN (1) CN103890139A (en)
TW (1) TW201317397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294368A (en) * 2013-07-19 2015-01-21 东友精细化工有限公司 Texture etching solution composition and texture etching method of crystalline silicon wafers

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114603B2 (en) * 2013-03-27 2017-04-12 株式会社カネカ Crystalline silicon solar cell, method for manufacturing the same, and solar cell module
KR102122049B1 (en) * 2013-07-19 2020-06-11 동우 화인켐 주식회사 Texture etching solution composition and texture etching method of crystalline silicon wafers
JP2015088712A (en) * 2013-11-01 2015-05-07 日本酢ビ・ポバール株式会社 Texture etchant, liquid additive agent for texture etchant, texture-formed substrate, method for manufacturing texture-formed substrate, and solar battery
TWI635160B (en) * 2014-03-07 2018-09-11 東友精細化工有限公司 Texture etching solution composition and texture etching method of crystalline silicon wafers
CN106521634A (en) * 2016-10-18 2017-03-22 湖州三峰能源科技有限公司 Auxiliary chemical composition used for monocrystalline silicon or polycrystalline silicon acidic texturization and application thereof
CN107217306B (en) * 2017-05-19 2023-07-07 湖州三峰能源科技有限公司 Chemical composition of polycrystalline silicon wafer acid texturing optimizing agent and application thereof
CN111321471B (en) * 2019-03-25 2021-05-11 杭州飞鹿新能源科技有限公司 Low-weight monocrystalline silicon texturing additive and application thereof
CN110257072A (en) * 2019-06-13 2019-09-20 常州时创能源科技有限公司 Silicon wafer one texture-etching side and etching edge additive and its application
CN110846721A (en) * 2019-10-12 2020-02-28 湖南理工学院 Monocrystalline silicon texturing additive formula containing polyalcohol and PEG
CN111354840B (en) * 2020-04-22 2020-11-03 一道新能源科技(衢州)有限公司 Preparation method of selective emitter double-sided PERC solar cell
CN113502163B (en) * 2021-09-10 2021-12-03 杭州晶宝新能源科技有限公司 Chemical auxiliary agent for forming solar cell back structure, and preparation method and application thereof
CN113817472B (en) * 2021-11-23 2022-02-11 绍兴拓邦电子科技有限公司 Texturing process of solar cell silicon wafer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2415783A1 (en) * 2003-01-16 2004-07-16 Jose Y. Ibusca Ygold 2 white
US7291280B2 (en) * 2004-12-28 2007-11-06 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Multi-step methods for chemical mechanical polishing silicon dioxide and silicon nitride
KR20100125448A (en) * 2008-03-25 2010-11-30 어플라이드 머티어리얼스, 인코포레이티드 Surface cleaning texturing process for crystalline solar cells
WO2010102013A2 (en) * 2009-03-03 2010-09-10 Akrion Systems Llc Method for selective under-etching of porous silicon
US20110070744A1 (en) * 2009-09-18 2011-03-24 Zhi-Wen Sun Silicon Texturing Formulations for Solar Applications
TW201118154A (en) * 2009-10-26 2011-06-01 Dongwoo Fine Chem Co Ltd Etching composition for texturing crystalline silicon-based wafer
MY163052A (en) * 2009-10-30 2017-08-15 Merck Patent Gmbh Process For The Production Of Solar Cells Comprising A Selective Emitter
WO2011056948A2 (en) * 2009-11-05 2011-05-12 Advanced Technology Materials, Inc. Methods of texturing surfaces for controlled reflection
EP2372779B9 (en) * 2010-04-01 2015-01-07 SolarWorld Industries America, Inc. Alkaline etching liquid for texturing a silicon wafer surface
CN101937946B (en) * 2010-09-16 2012-05-09 浙江大学 Surface texture method of solar battery silicon slice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294368A (en) * 2013-07-19 2015-01-21 东友精细化工有限公司 Texture etching solution composition and texture etching method of crystalline silicon wafers

Also Published As

Publication number Publication date
JP2014534630A (en) 2014-12-18
CN103890139A (en) 2014-06-25

Similar Documents

Publication Publication Date Title
TW201317397A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
TWI612128B (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
TW201300507A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
TWI635161B (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
TWI544060B (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
TW201245418A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
TWI537437B (en) Single crystalline silicon wafers and method of preparing the same
TWI635160B (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR20140082220A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR101933527B1 (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
WO2013058477A2 (en) Texture etching fluid composition and texture etching method for crystalline silicon wafers
TWI586789B (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR101994084B1 (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR20130043051A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR101892624B1 (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR20140082222A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR20150109089A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR101804266B1 (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
Nurulfadzilah et al. Physical and optical studies on ZnO films by SOL-GEL
TW201506129A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR20150108104A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR20150009712A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers
KR20150106221A (en) Texture etching solution composition and texture etching method of crystalline silicon wafers