TW201305080A - IR reflective coating with high reliability, energy-saving glass device and method of producing the coating thereof - Google Patents

IR reflective coating with high reliability, energy-saving glass device and method of producing the coating thereof Download PDF

Info

Publication number
TW201305080A
TW201305080A TW100127035A TW100127035A TW201305080A TW 201305080 A TW201305080 A TW 201305080A TW 100127035 A TW100127035 A TW 100127035A TW 100127035 A TW100127035 A TW 100127035A TW 201305080 A TW201305080 A TW 201305080A
Authority
TW
Taiwan
Prior art keywords
metal
layer
base film
metal base
alloy
Prior art date
Application number
TW100127035A
Other languages
Chinese (zh)
Inventor
Kuan-Ju Lin
chun-yuan Xu
Original Assignee
Kuan-Ju Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuan-Ju Lin filed Critical Kuan-Ju Lin
Priority to TW100127035A priority Critical patent/TW201305080A/en
Publication of TW201305080A publication Critical patent/TW201305080A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

This invention provides an IR reflective coating with high reliability formed on a transparent substrate. The IR reflective coating comprises: a buffering layer formed on the transparent substrate and a first metal base film layer structure formed on the buffering layer. The first metal base film layer structure sequentially comprises, from the buffering layer towards the direction distal from the transparent substrate, a first metal layer, a second metal layer, and a third metal layer. The first metal layer is made of Ag; the second metal layer is made of a second metal selected from the group consisting of Zn, Sn, Ti, Ni, ZnSn alloy, ZnTi alloy, ZnNi alloy, SnTi alloy and SnNi alloy. The third metal layer of the first metal base film layer structure is a barrier layer. This invention also provides an energy-saving glass device and a method of producing the coating mentioned above.

Description

信賴性佳之紅外線反射鍍膜、節能玻璃裝置及其鍍膜的製作方法Infrared reflective coating, energy-saving glass device and coating method thereof

本發明是有關於一種紅外線反射鍍膜(infrared reflection coating),特別是指一種信賴性(reliability)佳之紅外線反射鍍膜、節能玻璃裝置(low-emissivity glass unit)及其鍍膜之製作方法。The present invention relates to an infrared reflection coating, and more particularly to an infrared reflective coating, a low-emissivity glass unit, and a method for producing the same.

紅外線反射鍍膜具有提供可見光(visible light)穿透(transmission),並阻隔紅外線穿透的功用。當處於冬天時節,紅外線反射鍍膜更可將室內人體所產生的體熱侷限在室內環境中以維持室內溫度處於室溫狀態。相反地,當夏天的室內需使用到空調設備以維持室溫時,紅外線反射鍍膜便可阻隔外界紅外線的穿透,避免因外界紅外線之輻射熱能的穿透而導致室內溫度居高不下,並藉此省下空調設備所需消耗的電能。因此,紅外線反射鍍膜一般常被鍍製於透明玻璃基板上以供做為節能玻璃使用。The infrared reflective coating has the function of providing visible light transmission and blocking infrared penetration. When in the winter season, the infrared reflective coating can limit the body heat generated by the indoor human body to the indoor environment to maintain the indoor temperature at room temperature. On the contrary, when the air conditioning equipment is used in the summer to maintain the room temperature, the infrared reflective coating can block the penetration of external infrared rays, avoiding the penetration of the external radiant heat energy, resulting in high indoor temperature and borrowing. This saves the electricity consumed by the air conditioning equipment. Therefore, the infrared reflective coating is generally plated on a transparent glass substrate for use as an energy-saving glass.

參圖1,US 7,906,203 B2揭示一種紅外線反射鍍膜1,形成於一玻璃基板11上。該紅外線反射鍍膜1包含:一形成於該玻璃基板11之一表面110上的透明介電層(transparent dielectric layer)12,及三紅外線反射膜13。每一紅外線反射膜13自該透明介電層12朝遠離該玻璃基板11的方向依序具有一由Ag、Cu或Au等高導電性(conductivity)金屬材質所製成的紅外線反射層131、一阻障層(blocker layer)132,及一透明介電層133。Referring to Fig. 1, US 7,906,203 B2 discloses an infrared reflective coating 1 formed on a glass substrate 11. The infrared reflective coating 1 includes a transparent dielectric layer 12 formed on one surface 110 of the glass substrate 11, and a three infrared reflective film 13. Each of the infrared reflecting films 13 has an infrared reflecting layer 131 made of a highly conductive metal material such as Ag, Cu or Au, in order from the transparent dielectric layer 12 away from the glass substrate 11. A blocker layer 132 and a transparent dielectric layer 133.

該等透明介電層133可以是由單一層氧化物所構成,也可以是由三、五或七層不同的氧化物(如,ZnO及SnO2)所構成,其主要目的是在於,提升可見光的穿透率(transmittance)。The transparent dielectric layer 133 may be composed of a single layer of oxide, or may be composed of three, five or seven different oxides (eg, ZnO and SnO 2 ), the main purpose of which is to enhance visible light. Transmittance.

該等阻障層132可以是由Ti、Ni、Cr、NiCr,或Nb等金屬材料所製成。由於在鍍製該等透明介電層133時,需在反應室裡引入氧氣(O2)以鍍製氧化物;因此,該等阻障層132之主要目的是在於,阻隔氧氣與Ag或Cu等金屬材料產生氧化反應,並維持該紅外線反射鍍膜1整體的信賴性。雖然該紅外線反射鍍膜1的紅外線穿透率可降低至1.5%左右;然而,該紅外線反射鍍膜1仍需使用到氧化物;因此,其整體信賴性仍然必免不了氧氣的破壞。The barrier layers 132 may be made of a metal material such as Ti, Ni, Cr, NiCr, or Nb. Since the oxygen (O 2 ) is introduced into the reaction chamber to plate the oxide when the transparent dielectric layer 133 is plated; therefore, the main purpose of the barrier layer 132 is to block oxygen and Ag or Cu. The metal material generates an oxidation reaction and maintains the reliability of the entire infrared reflective coating film 1. Although the infrared transmittance of the infrared reflective coating 1 can be reduced to about 1.5%; however, the infrared reflective coating 1 still requires the use of an oxide; therefore, its overall reliability still inevitably destroys oxygen.

經上述說明可知,改善紅外線反射鍍膜的氧化問題並藉此提升紅外線反射鍍膜的信賴性,是此技術領域者所需改進的課題。As apparent from the above description, improving the oxidation problem of the infrared reflective coating and thereby improving the reliability of the infrared reflective coating is an improvement problem in the technical field.

因此,本發明之目的,即在提供一種信賴性佳之紅外線反射鍍膜。Accordingly, it is an object of the present invention to provide an infrared reflective coating which is highly reliable.

本發明之另一目的,即在提供一種節能玻璃裝置。Another object of the invention is to provide an energy efficient glass unit.

本發明之又一目的,即在提供一種信賴性佳之紅外線反射鍍膜的製作方法。Another object of the present invention is to provide a method for producing an infrared reflective coating which is highly reliable.

於是,本發明信賴性佳之紅外線反射鍍膜,是形成於一透光基板上。該紅外線反射鍍膜包含:一形成於該透光基板上的緩衝層,及一形成於該緩衝層上的第一金屬基(metal-based)膜層結構。該第一金屬基膜層結構自該緩衝層朝遠離該透光基板的方向依序具有一第一金屬層、一第二金屬層及一第三金屬層。該第一金屬基膜層結構的第一金屬層是由Ag所製成。該第一金屬基膜層結構的第二金屬層是由一選自下列所構成之群組的第二金屬所製成:Zn、Sn、Ti、Ni、ZnSn合金、ZnTi合金、ZnNi合金、SnTi合金,及SnNi合金。該第一金屬基膜層結構的第三金屬層是一阻障層。Therefore, the infrared reflective coating film of the present invention is formed on a light-transmissive substrate. The infrared reflective coating comprises: a buffer layer formed on the transparent substrate, and a first metal-based film structure formed on the buffer layer. The first metal base film layer structure has a first metal layer, a second metal layer and a third metal layer sequentially from the buffer layer away from the transparent substrate. The first metal layer of the first metal base film layer structure is made of Ag. The second metal layer of the first metal base film layer structure is made of a second metal selected from the group consisting of Zn, Sn, Ti, Ni, ZnSn alloy, ZnTi alloy, ZnNi alloy, SnTi Alloy, and SnNi alloy. The third metal layer of the first metal base film layer structure is a barrier layer.

此外,本發明節能玻璃裝置,包含:一第一元件、一第二元件,及一間隔件(spacer)。該第一元件具有一透光基板,及一形成於該透光基板上之如前所述的信賴性佳之紅外線反射鍍膜。該第二元件具有另一透光基板,且該另一透光基板面向該第一透光基板並與該第一透光基板間隔設置。該間隔件夾置於該第一元件與第二元件之間,並與該第一元件及第二元件共同界定出一封閉空間。In addition, the energy-saving glass device of the present invention comprises: a first component, a second component, and a spacer. The first component has a transparent substrate, and a highly reliable infrared reflective coating formed on the transparent substrate as described above. The second component has another transparent substrate, and the other transparent substrate faces the first transparent substrate and is spaced apart from the first transparent substrate. The spacer is interposed between the first component and the second component and defines a closed space together with the first component and the second component.

又,本發明信賴性佳之紅外線反射鍍膜的製作方法,是形成於一透光基板上。該製作方法包含以下步驟:Moreover, the method for producing an infrared reflective coating film which is highly reliable according to the present invention is formed on a light-transmissive substrate. The production method includes the following steps:

(a)於該透光基板上形成一緩衝層;(a) forming a buffer layer on the transparent substrate;

(b)於該緩衝層上形成一第一金屬基膜層結構,該第一金屬基膜層結構自該緩衝層朝遠離該透光基板的方向依序具有一第一金屬層、一第二金屬層及一第三金屬層;及(b) forming a first metal base film layer structure on the buffer layer, the first metal base film layer structure sequentially has a first metal layer and a second from the buffer layer away from the transparent substrate a metal layer and a third metal layer;

(c)於該步驟(b)之後,將該形成有該緩衝層及該第一金屬基膜層結構的透光基板設置於一真空腔體的一基底上,以對該緩衝層及該第一金屬基膜層結構施予微波電漿處理(microwave plasma treatment),並提升該緩衝層及該第一金屬基膜層結構之附著性(adhesion);(c) after the step (b), the transparent substrate on which the buffer layer and the first metal base film layer are formed is disposed on a substrate of a vacuum chamber to the buffer layer and the first a metal base film layer structure is subjected to microwave plasma treatment, and the adhesion of the buffer layer and the first metal base film layer structure is improved;

其中,該第一金屬基膜層結構的第一金屬層是由Ag所製成;其中,該第一金屬基膜層結構的第二金屬層是由一選自下列所構成之群組的第二金屬所製成:Zn、Sn、Ti、Ni、ZnSn合金、ZnTi合金、ZnNi合金、SnTi合金,及SnNi合金;其中,該第一金屬基膜層結構的第三金屬層是一阻障層;及其中,該步驟(c)之基底是由一選自下列所構成之群組的材料所製成:碳纖維(carbon fiber)、石墨及半導體(semiconductor)材料。Wherein the first metal layer of the first metal base film layer structure is made of Ag; wherein the second metal layer of the first metal base film layer structure is a group selected from the group consisting of The second metal is made of: Zn, Sn, Ti, Ni, ZnSn alloy, ZnTi alloy, ZnNi alloy, SnTi alloy, and SnNi alloy; wherein the third metal layer of the first metal base film layer is a barrier layer And wherein the substrate of the step (c) is made of a material selected from the group consisting of carbon fiber, graphite, and semiconductor materials.

本發明之功效在於:藉由該第一金屬基膜層結構之第二金屬層來提升可見光的穿透率,以避免傳統之透明介電層所產生的氧化問題,進而提升紅外線反射鍍膜的信賴性。The invention has the effect of improving the transmittance of visible light by the second metal layer of the first metal base film layer structure, thereby avoiding the oxidation problem caused by the conventional transparent dielectric layer, thereby improving the reliability of the infrared reflective coating film. Sex.

<發明詳細說明><Detailed Description of the Invention>

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之三個較佳實施例與九個具體例的詳細說明中,將可清楚的呈現。The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the present invention.

在本發明被詳細描述之前,要注意的是,在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals.

參閱圖2,本發明信賴性佳之紅外線反射鍍膜20的一第一較佳實施例,是形成於一透光基板2上。該紅外線反射鍍膜20之第一較佳實施例包含一形成於該透光基板2上的緩衝層3,及一形成於該緩衝層3上的第一金屬基膜層結構4。該第一金屬基膜層結構4自該緩衝層3朝遠離該透光基板2的方向依序具有一第一金屬層41、一第二金屬層42及一第三金屬層43。Referring to FIG. 2, a first preferred embodiment of the highly reliable infrared reflective coating 20 of the present invention is formed on a transparent substrate 2. The first preferred embodiment of the infrared reflective coating 20 includes a buffer layer 3 formed on the transparent substrate 2, and a first metal base film layer structure 4 formed on the buffer layer 3. The first metal base film layer structure 4 has a first metal layer 41 , a second metal layer 42 and a third metal layer 43 in this order from the buffer layer 3 away from the transparent substrate 2 .

該第一金屬基膜層結構4的第一金屬層41是由Ag所製成。該第一金屬基膜層結構4的第二金屬層42是由一選自下列所構成之群組的第二金屬所製成:Zn、Sn、Ti、Ni、ZnSn合金、ZnTi合金、ZnNi合金、SnTi合金,及SnNi合金。該第一金屬基膜層結構4的第三金屬層43是一阻障層。The first metal layer 41 of the first metal base film layer structure 4 is made of Ag. The second metal layer 42 of the first metal base film layer structure 4 is made of a second metal selected from the group consisting of Zn, Sn, Ti, Ni, ZnSn alloy, ZnTi alloy, ZnNi alloy. , SnTi alloy, and SnNi alloy. The third metal layer 43 of the first metal base film layer structure 4 is a barrier layer.

較佳地,該第一金屬基膜層結構4的第三金屬層43是由一選自下列所構成之群組的第三金屬所製成:Al、AlTi合金、AlNi合金,及AlZn合金;該緩衝層3是由一選自下列所構成之群組的材料所製成:Zn、ZnO、SnO2,及TiO2。此處需說明的是,該緩衝層3之主要目的是在於提升該透光基板2與該第一金屬基膜層結構4之第一金屬層42間的附著性,另一方面是在於提升可見光的穿透率。Preferably, the third metal layer 43 of the first metal base film layer structure 4 is made of a third metal selected from the group consisting of Al, AlTi alloy, AlNi alloy, and AlZn alloy; The buffer layer 3 is made of a material selected from the group consisting of Zn, ZnO, SnO 2 , and TiO 2 . It should be noted that the main purpose of the buffer layer 3 is to improve the adhesion between the transparent substrate 2 and the first metal layer 42 of the first metal base film layer structure 4, and to enhance visible light. The penetration rate.

又值得一提的是,本發明主要是利用該第一金屬基膜層結構4中的第二金屬層42及第三金屬層43來取代傳統的金屬阻障層及氧化物透明介電層,進而避免於本發明之紅外線反射膜20內因產生氧化物而影響鍍膜品質及信賴性。It is also worth mentioning that the present invention mainly utilizes the second metal layer 42 and the third metal layer 43 in the first metal base film layer structure 4 to replace the conventional metal barrier layer and the oxide transparent dielectric layer. Further, it is avoided that the coating film quality and reliability are affected by the generation of oxides in the infrared ray reflection film 20 of the present invention.

本發明該第一金屬基膜層結構4之第二金屬層42的主要作用在於,調整可見光的穿透率。在一具體例中,該第一金屬基膜層結構4之第二金屬層42是由Zn所製成,其中,選用Zn的主要原因在於,實施磁控濺鍍(magnetron sputtering)時所需的輸出功率(output power)低且濺鍍率高,因此,製作成本低。The main function of the second metal layer 42 of the first metal base film layer structure 4 of the present invention is to adjust the transmittance of visible light. In a specific example, the second metal layer 42 of the first metal base film layer structure 4 is made of Zn, wherein the main reason for selecting Zn is that it is required for performing magnetron sputtering. The output power is low and the sputtering rate is high, so the manufacturing cost is low.

本發明該第一金屬基膜層結構4之第三金屬層43的主要作用是在於,阻隔水氣(moisture)、氧氣的擴散,藉以避免水氣、氧氣與該第一金屬基膜層結構4產生氧化反應並影響其信賴性。在一具體例中,該第一金屬基膜層結構4之第三金屬層43是由AlTi合金所製成;其中,選用AlTi合金的原因在於,提供足夠的機械強度[如,硬度(hardness)]及調整可見光的穿透率。值得一提的是,在不影響可見光穿透率的條件下,本發明於該第一金屬基膜層結構4之第三金屬層43上更可進一步地根據需求以另外形成一頂層(top layer)。如,使用溶膠-凝膠法(sol-gel)製備厚度為100 nm以上之各種顏色的氧化物、碳化物(carbide)或氮化物(nitride)以包覆於該第一金屬基膜層結構4之第三金屬層43上,藉此達到色彩豐富且提升整體結構之耐磨性、抗氧化性等功效,並達到單片玻璃使用的目的。The main function of the third metal layer 43 of the first metal base film layer structure 4 is to block the diffusion of moisture and oxygen to avoid moisture, oxygen and the first metal base film layer structure. Oxidation reaction occurs and affects its reliability. In a specific example, the third metal layer 43 of the first metal base film layer structure 4 is made of an AlTi alloy; wherein the AlTi alloy is selected because it provides sufficient mechanical strength [eg, hardness). ] and adjust the transmittance of visible light. It is worth mentioning that, under the condition that the visible light transmittance is not affected, the present invention further forms a top layer on the third metal layer 43 of the first metal base film layer structure 4 according to requirements. ). For example, an oxide, a carbide or a nitride of various colors having a thickness of 100 nm or more is prepared by using a sol-gel method to coat the first metal base film layer structure 4 The third metal layer 43 is used to achieve the advantages of rich color and improved wear resistance and oxidation resistance of the overall structure, and achieve the purpose of using a single piece of glass.

為有效地阻隔紅外線波段的光源並使可見光波段的光源穿透,因此,較佳地,該第一金屬基膜層結構4的第一金屬層41的厚度是介於14 nm~32 nm之間;該第一金屬基膜層結構4的第二金屬層42的厚度是介於10 nm~35 nm之間;該第一金屬基膜層結構4的第三金屬層43的厚度是介於3 nm~20 nm之間。In order to effectively block the light source in the infrared band and penetrate the light source in the visible light band, preferably, the thickness of the first metal layer 41 of the first metal base film layer structure 4 is between 14 nm and 32 nm. The thickness of the second metal layer 42 of the first metal base film layer structure 4 is between 10 nm and 35 nm; the thickness of the third metal layer 43 of the first metal base film layer structure 4 is between 3 Between nm and 20 nm.

參圖3與圖4,本發明該第一較佳實施例之信賴性佳之紅外線反射鍍膜20的製作方法,是形成於該透光基板2上。該第一較佳實施例之製作方法包含以下步驟:Referring to FIG. 3 and FIG. 4, a method for fabricating the highly reliable infrared reflective coating 20 of the first preferred embodiment of the present invention is formed on the transparent substrate 2. The manufacturing method of the first preferred embodiment comprises the following steps:

(a)於該透光基板2上形成該緩衝層3;(a) forming the buffer layer 3 on the transparent substrate 2;

(b)於該緩衝層3上形成該第一金屬基膜層結構4,該第一金屬基膜層結構4自該緩衝層3朝遠離該透光基板2的方向依序具有該第一金屬層41、該第二金屬層42及該第三金屬層43;及(b) forming the first metal base film layer structure 4 on the buffer layer 3, the first metal base film layer structure 4 having the first metal sequentially from the buffer layer 3 away from the transparent substrate 2 a layer 41, the second metal layer 42 and the third metal layer 43;

(c)於該步驟(b)之後,將該形成有該緩衝層3及該第一金屬基膜層結構4的透光基板2設置於一真空腔體91的一基底92上,以對該緩衝層3及該第一金屬基膜層結構4施予微波電漿處理,並提升該緩衝層3及該第一金屬基膜層結構4之附著性。(c) after the step (b), the transparent substrate 2 on which the buffer layer 3 and the first metal base film layer structure 4 are formed is disposed on a substrate 92 of a vacuum chamber 91 to The buffer layer 3 and the first metal base film layer structure 4 are subjected to microwave plasma treatment, and the adhesion of the buffer layer 3 and the first metal base film layer structure 4 is improved.

其中,該步驟(c)之基底92是由一選自下列所構成之群組的材料所製成:碳纖維、石墨及半導體材料。Wherein, the substrate 92 of the step (c) is made of a material selected from the group consisting of carbon fiber, graphite and semiconductor materials.

適用於本發明之半導體材料是矽(Si)。由於碳纖維、石墨及矽等材料具有高的熱傳係數(thermal conductivity);此外,此等材料對於微波MW的吸收性(absorptivity)佳。因此,可以迅速將微波MW轉化成高溫的熱能H。本發明該第一較佳實施例之製作方法主要是藉由碳纖維、石墨及半導體材料具備有迅速吸收微波MW以將所吸收之微波MW轉換成熱能H,及迅速地分散並傳遞熱能H等特質,以使微波MW迅速地被該基底92所吸收並轉換成熱能H,且由該基底92迅速地分散以傳遞熱能H至該透光基板2上的緩衝層3與第一金屬基膜層結構4。藉此,微波MW經該基底92迅速吸收所轉換的熱能,可為該透光基板2、該緩衝層3及該第一金屬基膜層結構4三者介面(interface)間的原子提供良好的交互擴散(interdiffusion)及快速的微波熱燒結(sintering),進而提升其三者間的附著性。A semiconductor material suitable for use in the present invention is bismuth (Si). Materials such as carbon fibers, graphite, and ruthenium have high thermal conductivity; in addition, these materials have good absorptivity for microwave MW. Therefore, the microwave MW can be quickly converted into high-temperature heat energy H. The manufacturing method of the first preferred embodiment of the present invention is mainly characterized in that carbon fiber, graphite and a semiconductor material are provided with a rapid absorption of microwave MW to convert the absorbed microwave MW into thermal energy H, and rapidly disperse and transfer heat energy H and the like. So that the microwave MW is quickly absorbed by the substrate 92 and converted into thermal energy H, and rapidly dispersed by the substrate 92 to transfer thermal energy H to the buffer layer 3 and the first metal-based film layer structure on the transparent substrate 2. 4. Thereby, the microwave MW rapidly absorbs the converted thermal energy through the substrate 92, and provides good atoms between the three interfaces of the transparent substrate 2, the buffer layer 3 and the first metal base film layer structure 4. Interdiffusion and rapid microwave thermal sintering (sintering), thereby improving the adhesion between the three.

為使得微波MW得以有效地分散並傳遞至該緩衝層3及該第一金屬基膜層結構4,較佳地,由俯視方向觀察時,該基底92的面積是大於等於該透光基板2上之緩衝層3的面積,並大於等於該第一金屬基膜層結構4的面積,且該基底92的面積與該透光基板2上之緩衝層3的面積相互重疊,並與第一金屬基膜層結構4的面積相互重疊。In order to enable the microwave MW to be effectively dispersed and transmitted to the buffer layer 3 and the first metal base film layer structure 4, preferably, the area of the substrate 92 is greater than or equal to the light-transmitting substrate 2 when viewed in a plan view. The area of the buffer layer 3 is greater than or equal to the area of the first metal base film layer structure 4, and the area of the substrate 92 overlaps with the area of the buffer layer 3 on the transparent substrate 2, and is combined with the first metal base. The areas of the film structure 4 overlap each other.

此處需說明的是,當工作壓力(working pressure)越小時(如,0.05 Torr),該真空腔體91所欲產生微波電漿的時間越長(即,較不易產生微波電漿);反之,當工作壓力越大時(如,5 Torr),該真空腔體91則越容易產生微波電漿。此外,為避免該真空腔體91因處於常壓下而使該第一金屬基膜層結構4產生氧化的問題;因此,較佳地,於實施該步驟(c)時,該真空腔體91的工作壓力是小於等於0.5 Torr。It should be noted here that when the working pressure is small (for example, 0.05 Torr), the vacuum chamber 91 is required to generate microwave plasma for a longer period of time (ie, it is less prone to generate microwave plasma); When the working pressure is larger (for example, 5 Torr), the vacuum chamber 91 is more likely to generate microwave plasma. In addition, in order to avoid the problem that the vacuum chamber 91 is oxidized due to being under normal pressure, the vacuum chamber 91 is preferably subjected to the step (c). The working pressure is 0.5 Torr or less.

較佳地,該步驟(c)之微波電漿處理是經由一電源供應器提供一介於750 W~2000 W之間的輸出功率(output power)。又需說明的是,電源供應器所提供之輸出功率的大小主要是與產生微波電漿的速度快慢有關;換言之,輸出功率越大,產生微波電漿的速度越快;此外,由上段說明已可了解,工作壓力越低越不易產生微波電漿,而工作壓力的大小主要是涉及抽氣系統(如,幫浦)的抽氣能力,因此,適用於本發明該步驟(c)之真空腔體91的工作壓力的下限值是取決於抽氣系統的抽氣能力,只要是可將該真空腔體91的工作壓力降低至高真空狀態,皆適合實施於本發明該步驟(c)。但須說明的是,當該步驟(c)之真空腔體91處於高真空狀態時,其所提供的輸出功率不是需相對提高,就是該步驟(c)所實施的時間需相對延長,才可達到提升表面疏水性之目的。Preferably, the microwave plasma treatment of the step (c) is to provide an output power between 750 W and 2000 W via a power supply. It should also be noted that the output power provided by the power supply is mainly related to the speed of generating the microwave plasma; in other words, the higher the output power, the faster the generation of the microwave plasma; in addition, as explained in the above paragraph It can be understood that the lower the working pressure is, the more difficult it is to generate microwave plasma, and the working pressure is mainly related to the pumping capacity of the pumping system (eg, pump), and therefore, it is suitable for the vacuum chamber of step (c) of the present invention. The lower limit of the working pressure of the body 91 depends on the pumping capacity of the pumping system, and is suitable for the step (c) of the present invention as long as the working pressure of the vacuum chamber 91 can be lowered to a high vacuum state. However, it should be noted that when the vacuum chamber 91 of the step (c) is in a high vacuum state, the output power provided by the vacuum chamber 91 does not need to be relatively increased, or the time required for the step (c) needs to be relatively extended. To achieve the purpose of improving the hydrophobicity of the surface.

較佳地,該步驟(c)之微波電漿處理之電漿源是氮氣(N2)、氬氣(Ar),或乙炔(C2H2)。Preferably, the plasma source of the microwave plasma treatment of the step (c) is nitrogen (N 2 ), argon (Ar), or acetylene (C 2 H 2 ).

經前述說明可知,本發明該第一較佳實施例之第一金屬基膜層結構4之第三金屬層43,較佳是由一選自下列所構成之群組的第三金屬所製成:Al、AlTi合金、AlNi合金,及AlZn合金;因此,該第一金屬基膜層結構4之第三金屬層43的一表面於微波電漿處理後的一預定時間後是呈疏水性(hydrophobic property)。此處需說明的是,該預定時間於本發明中的定義是30分鐘以上。The third metal layer 43 of the first metal base film layer structure 4 of the first preferred embodiment of the present invention is preferably made of a third metal selected from the group consisting of the following. Al, AlTi alloy, AlNi alloy, and AlZn alloy; therefore, a surface of the third metal layer 43 of the first metal base film structure 4 is hydrophobic after a predetermined time after microwave plasma treatment (hydrophobic Property). It should be noted here that the predetermined time is defined in the present invention to be 30 minutes or more.

參圖5,本發明信賴性佳之紅外線反射鍍膜20的一第二較佳實施例,大致上是相同於該第一較佳實施例,其不同處是在於,本發明該第二較佳實施例之信賴性佳之紅外線反射鍍膜20更包含一第二金屬基膜層結構5。該第二金屬基膜層結構5夾置於該緩衝層3與該第一金屬基膜層結構4之間。該第二金屬基膜層結構5自該緩衝層3朝遠離該透光基板2的方向依序具有一第一金屬層51及一第二金屬層52。該第二金屬基膜層結構5的第一金屬層51是由Ag所製成,該第二金屬基膜層結構5的第二金屬層52是由一選自下列所構成之群組的第二金屬所製成:Zn、Sn、Ti、Ni、ZnSn合金、ZnTi合金、ZnNi合金、SnTi合金,及SnNi合金。Referring to FIG. 5, a second preferred embodiment of the highly reliable infrared reflective coating 20 of the present invention is substantially the same as the first preferred embodiment, and the difference lies in the second preferred embodiment of the present invention. The infrared reflective coating 20 with good reliability further includes a second metal base film layer structure 5. The second metal base film layer structure 5 is interposed between the buffer layer 3 and the first metal base film layer structure 4. The second metal base film layer structure 5 has a first metal layer 51 and a second metal layer 52 sequentially from the buffer layer 3 away from the transparent substrate 2 . The first metal layer 51 of the second metal base film layer structure 5 is made of Ag, and the second metal layer 52 of the second metal base film layer structure 5 is made of a group selected from the group consisting of Made of two metals: Zn, Sn, Ti, Ni, ZnSn alloy, ZnTi alloy, ZnNi alloy, SnTi alloy, and SnNi alloy.

此外,為有效地阻隔紅外線波段的光源並使可見光波段的光源穿透,較佳地,該第二金屬基膜層結構5的第一金屬層51的厚度是介於14 nm~32 nm之間;該第二金屬基膜層結構5的第二金屬層52的厚度是介於44 nm~60 nm之間。In addition, in order to effectively block the light source in the infrared band and penetrate the light source in the visible light band, preferably, the thickness of the first metal layer 51 of the second metal base film layer structure 5 is between 14 nm and 32 nm. The thickness of the second metal layer 52 of the second metal base film layer structure 5 is between 44 nm and 60 nm.

本發明該第二較佳實施例之信賴性佳之紅外線反射鍍膜20的製作方法大致上是相同於該第一較佳實施例,其不同處是在於,該第二較佳實施例之製作方法於該步驟(b)之前更包含一步驟(b’)。該步驟(b’)是形成該夾置於該緩衝層3與該第一金屬基膜層結構4之間的第二金屬基膜層結構5。該第二金屬基膜層結構5自該緩衝層3朝遠離該透光基板2的方向依序具有該第一金屬層51及該第二金屬層52。該第二金屬基膜層結構5的第一金屬層51與第二金屬層52之金屬材料已說明於前,於此不再多加贅述。The method for fabricating the highly reliable infrared reflective coating 20 of the second preferred embodiment of the present invention is substantially the same as the first preferred embodiment, and the difference is that the manufacturing method of the second preferred embodiment is This step (b) further includes a step (b'). This step (b') is to form the second metal-based film layer structure 5 sandwiched between the buffer layer 3 and the first metal-based film layer structure 4. The second metal base film layer structure 5 has the first metal layer 51 and the second metal layer 52 in this order from the buffer layer 3 away from the transparent substrate 2 . The metal materials of the first metal layer 51 and the second metal layer 52 of the second metal base film layer structure 5 have been described above, and will not be further described herein.

參圖6,本發明信賴性佳之紅外線反射鍍膜20的一第三較佳實施例,大致上是相同於該第二較佳實施例,其不同處是在於,本發明該第三較佳實施例之該第二金屬基膜層結構5更具有一第三金屬層53。該第二金屬基膜層結構5的第三金屬層53夾置於該第二金屬基膜層結構5的第二金屬層52與該第一金屬基膜層結構4之間,且是由一選自下列所構成之群組的第三金屬所製成:Al、AlTi合金、AlNi合金,及AlZn合金。Referring to FIG. 6, a third preferred embodiment of the highly reliable infrared reflective coating 20 of the present invention is substantially the same as the second preferred embodiment, and the difference lies in the third preferred embodiment of the present invention. The second metal base film layer structure 5 further has a third metal layer 53. The third metal layer 53 of the second metal base film layer structure 5 is interposed between the second metal layer 52 of the second metal base film layer structure 5 and the first metal base film layer structure 4, and is composed of A third metal selected from the group consisting of Al, an AlTi alloy, an AlNi alloy, and an AlZn alloy.

需說明的是,本發明該第一金屬基膜層結構4與第二金屬基膜層結構5是經由磁控濺鍍所製成。熟悉濺鍍相關技術者皆知,當濺鍍室(sputtering chamber)裡的背景壓力(base pressure)過大時,將於濺渡室裡殘留微量的水氣及氧氣,因此,即便是所鍍製的鍍膜為純金屬膜,其純金屬膜內亦可能含有微量的氧成分。經前述說明可知,本發明該第一金屬基膜層結構4與第二金屬基膜層結構5內是容許含有微量的氧成分。It should be noted that the first metal base film layer structure 4 and the second metal base film layer structure 5 of the present invention are made by magnetron sputtering. Those skilled in the art of sputtering know that when the base pressure in the sputtering chamber is too large, traces of moisture and oxygen will remain in the splash chamber, so even if it is plated The coating is a pure metal film, and the pure metal film may also contain a trace amount of oxygen. As apparent from the above description, in the first metal base film layer structure 4 and the second metal base film layer structure 5 of the present invention, a trace amount of oxygen component is allowed.

參圖7,本發明之節能玻璃裝置,包含:一第一元件200、一第二元件6,及一間隔件7。Referring to FIG. 7, the energy-saving glass device of the present invention comprises: a first component 200, a second component 6, and a spacer 7.

該第一元件200具有該透光基板2,及該形成於該透光基板2上之該等較佳實施例之信賴性佳的紅外線反射鍍膜20。The first component 200 has the transparent substrate 2 and the highly reliable infrared reflective coating 20 of the preferred embodiment formed on the transparent substrate 2.

該第二元件6具有一另一透光基板61,且該另一透光基板61面向該透光基板2並與該透光基板2間隔設置。The second component 6 has a further transparent substrate 61 , and the other transparent substrate 61 faces the transparent substrate 2 and is spaced apart from the transparent substrate 2 .

該間隔件7夾置於該第一元件200與第二元件6之間,並與該第一元件200及第二元件6共同界定出一封閉空間8。此外,本發明該節能玻璃裝置更包含一填置於該封閉空間8的惰性氣體(inert gas)。The spacer 7 is interposed between the first component 200 and the second component 6 and together with the first component 200 and the second component 6 defines a closed space 8. In addition, the energy-saving glass device of the present invention further comprises an inert gas filled in the closed space 8.

此處須說明的是,本發明之主要技術特徵是在於,該紅外線反射鍍膜20之第一金屬基膜層結構4與第二金屬基膜層結構5是由金屬材料所製成,該節能玻璃裝置的封裝方式屬此技術領域者所知悉的概念,並非本發明之技術重點,於此不再多加贅述。It should be noted that the main technical feature of the present invention is that the first metal base film layer structure 4 and the second metal base film layer structure 5 of the infrared reflective coating film 20 are made of a metal material, the energy-saving glass. The manner of encapsulation of the device is a concept known to those skilled in the art, and is not the technical focus of the present invention, and will not be further described herein.

<具體例1(E1)><Specific Example 1 (E1)>

本發明信賴性佳之紅外線反射鍍膜的一具體例1(E1)是根據該第一較佳實施例來實施。A specific example 1 (E1) of the infrared reflective coating film of the present invention which is highly reliable is implemented according to the first preferred embodiment.

本發明該具體例1(E1)是使用一磁控濺鍍系統以於一透光基板上依序形成一緩衝層及一依序具有一第一金屬層、一第二金屬層及一第三金屬層之第一金屬基膜層結構。在本發明該具體例1(E1)中,該透光基板是購自台灣玻璃公司的一般清玻璃,且該透光基板的厚度與面積分別為6 mm與10 cm×10 cm;該緩衝層、該第一金屬基膜層結構之第一、第二與第三金屬層分別是一Zn層、一Ag層、一Zn層與一AlTi合金層,且厚度分別為20 nm、28 nm、20 nm與15 nm。The specific example 1 (E1) of the present invention uses a magnetron sputtering system to sequentially form a buffer layer on a transparent substrate and sequentially has a first metal layer, a second metal layer and a third The first metal base film layer structure of the metal layer. In the specific example 1 (E1) of the present invention, the transparent substrate is a general clear glass available from Taiwan Glass Co., Ltd., and the thickness and area of the transparent substrate are 6 mm and 10 cm×10 cm, respectively; The first, second, and third metal layers of the first metal base film layer structure are a Zn layer, an Ag layer, a Zn layer, and an AlTi alloy layer, respectively, and have thicknesses of 20 nm, 28 nm, and 20, respectively. Nm and 15 nm.

進一步地,該形成有該緩衝層及第一金屬基膜層結構之透光基板是被放置於一工作壓力為0.5 Torr之真空腔體中的一碳纖維布上,以1100 W的輸出功率對該緩衝層及第一金屬基膜層結構施予50秒的氮氣微波電漿處理。在本發明該具體例1(E1)中,該碳纖維布是購自日本東麗公司所產之型號為3K T300B 1x1平織210 g/m2的碳纖維。Further, the transparent substrate on which the buffer layer and the first metal base film layer are formed is placed on a carbon fiber cloth in a vacuum chamber with a working pressure of 0.5 Torr, and the output power is 1100 W. The buffer layer and the first metal base film layer structure were subjected to a nitrogen microwave plasma treatment for 50 seconds. In the specific example 1 (E1) of the present invention, the carbon fiber cloth is a carbon fiber of a type 3K T300B 1x1 plain weave 210 g/m 2 which is commercially available from Toray Industries, Japan.

<具體例2(E2)><Specific example 2 (E2)>

本發明信賴性佳之紅外線反射鍍膜的一具體例2(E2)大致上是相同於該具體例1(E1),其不同處是在於,該具體例2(E2)之一第一金屬基膜層結構之一第二金屬層及一第三金屬層的厚度分別為35 nm及7 nm。A specific example 2 (E2) of the infrared reflective coating film of the present invention is substantially the same as the specific example 1 (E1), and is different in that the first metal base film layer of the specific example 2 (E2) One of the second metal layer and the third metal layer has a thickness of 35 nm and 7 nm, respectively.

<具體例3(E3)><Specific example 3 (E3)>

本發明信賴性佳之紅外線反射鍍膜的一具體例3(E3)大致上是相同於該具體例1(E1),其不同處是在於,該具體例3(E3)之一第一金屬基膜層結構之一第一金屬層及一第二金屬層的厚度分別為18 nm及10 nm。A specific example 3 (E3) of the infrared reflective coating film of the present invention is substantially the same as the specific example 1 (E1), and is different in that the first metal base film layer of the specific example 3 (E3) One of the first metal layer and the second metal layer has a thickness of 18 nm and 10 nm, respectively.

<具體例4(E4)><Specific example 4 (E4)>

本發明信賴性佳之紅外線反射鍍膜的一具體例4(E4)大致上是相同於該具體例1(E1),其不同處是在於,該具體例4(E4)之一緩衝層是一厚度10 nm的TiO2層。A specific example 4 (E4) of the infrared reflective coating film of the present invention is substantially the same as the specific example 1 (E1), and the difference is that one of the buffer layers of the specific example 4 (E4) is a thickness of 10 TiO 2 layer of nm.

<具體例5(E5)><Specific example 5 (E5)>

本發明信賴性佳之紅外線反射鍍膜的一具體例5(E5)大致上是相同於該具體例4(E4),其不同處是在於,該具體例5(E5)之一緩衝層是一厚度10 nm的SnO2層。A specific example 5 (E5) of the infrared reflective coating film of the present invention is substantially the same as the specific example 4 (E4), and the difference is that one of the buffer layers of the specific example 5 (E5) is a thickness of 10 The SnO 2 layer of nm.

<具體例6(E6)><Specific example 6 (E6)>

本發明信賴性佳之紅外線反射鍍膜的一具體例6(E6)的製作條件大致上是相同於該具體例1(E1),其不同處是在於,該具體例6(E6)是依據該第三較佳實施例來實施。在該具體例6(E6)中,該信賴性佳之紅外線反射鍍膜於一透光基板上是依序形成有一緩衝層、一依序具有一第一金屬層、一第二金屬層、一第三金屬層之第二金屬基膜層結構,及一依序具有一第一金屬層、一第二金屬層、一第三金屬層之第一金屬基膜層結構。其中,該緩衝層是一Zn層,且厚度為20 nm;該第二金屬基膜層結構之第一、第二與第三金屬層分別是一Ag層、一Zn層與一AlTi合金層,且厚度分別為28 nm、48 nm與3 nm;該第一金屬基膜層結構之第一、第二與第三金屬層分別是一Ag層、一Zn層與一AlTi合金層,且厚度分別為24 nm、15 nm與12 nm。The production condition of a specific example 6 (E6) of the infrared reflective coating film of the present invention is substantially the same as that of the specific example 1 (E1), and the difference is that the specific example 6 (E6) is based on the third The preferred embodiment is implemented. In the specific example 6 (E6), the highly reliable infrared reflective coating is sequentially formed with a buffer layer on a transparent substrate, and sequentially has a first metal layer, a second metal layer, and a third layer. a second metal base film layer structure of the metal layer, and a first metal base film layer structure sequentially having a first metal layer, a second metal layer and a third metal layer. Wherein, the buffer layer is a Zn layer and has a thickness of 20 nm; the first, second and third metal layers of the second metal base film layer structure are an Ag layer, a Zn layer and an AlTi alloy layer, respectively. And the thicknesses are 28 nm, 48 nm and 3 nm respectively; the first, second and third metal layers of the first metal base film layer structure are an Ag layer, a Zn layer and an AlTi alloy layer, respectively, and the thicknesses are respectively It is 24 nm, 15 nm and 12 nm.

<具體例7(E7)><Specific example 7 (E7)>

本發明信賴性佳之紅外線反射鍍膜的一具體例7(E7)的製作方法大致上是相同於該具體例6(E6),其不同處是在於,該具體例7(E7)之是根據該第二較佳實施例來實施。在本發明該具體例7(E7)中,該信賴性佳之紅外線反射鍍膜於一透光基板上是依序形成有一緩衝層、一依序具有一第一金屬層、一第二金屬層之第二金屬基膜層結構,及一依序具有一第一金屬層、一第二金屬層、一第三金屬層之第一金屬基膜層結構。其中,該緩衝層是一Zn層,且厚度為30 nm;該第二金屬基膜層結構之第一與第二金屬層分別是一Ag層與一Zn層,且厚度分別為24 nm與58 nm;該第一金屬基膜層結構之第一、第二與第三金屬層分別是一Ag層、一Zn層與一AlTi合金層,且厚度分別為18 nm、25 nm與5 nm。The method for producing a specific example 7 (E7) of the infrared reflective coating film of the present invention is substantially the same as the specific example 6 (E6), and the difference is that the specific example 7 (E7) is based on the first The second preferred embodiment is implemented. In the seventh embodiment (E7) of the present invention, the highly reliable infrared reflective coating is sequentially formed with a buffer layer on a transparent substrate, and sequentially has a first metal layer and a second metal layer. a two metal base film layer structure, and a first metal base film layer structure having a first metal layer, a second metal layer and a third metal layer in sequence. Wherein, the buffer layer is a Zn layer and has a thickness of 30 nm; the first and second metal layers of the second metal base film layer structure are an Ag layer and a Zn layer, respectively, and the thickness is 24 nm and 58 respectively. The first, second, and third metal layers of the first metal base film layer structure are an Ag layer, a Zn layer, and an AlTi alloy layer, respectively, and have thicknesses of 18 nm, 25 nm, and 5 nm, respectively.

<具體例8(E8)><Specific Example 8 (E8)>

本發明信賴性佳之紅外線反射鍍膜的一具體例8(E8)大致上是相同於該具體例6(E6),其不同處是在於,該具體例8(E8)之一緩衝層是一厚度10 nm的TiO2層;該具體例8(E8)之一第二金屬基膜層結構的一第二金屬層的厚度為44 nm;該具體例8(E8)之一第一金屬基膜層結構的一第二與第三金屬層的厚度分別為20 nm與20 nm。A specific example 8 (E8) of the infrared reflective coating film of the present invention is substantially the same as the specific example 6 (E6), and the difference is that one of the buffer layers of the specific example 8 (E8) is a thickness of 10 a TiO 2 layer of nm; a second metal layer of the second metal base film layer structure of the specific example 8 (E8) has a thickness of 44 nm; and the first metal base film layer structure of the specific example 8 (E8) The thickness of a second and third metal layer is 20 nm and 20 nm, respectively.

<具體例9(E9)><Specific Example 9 (E9)>

本發明信賴性佳之紅外線反射鍍膜的一具體例9(E9)大致上是相同於該具體例8(E8),其不同處是在於,該具體例9(E9)之一緩衝層是一厚度10 nm的SnO2層;該具體例9(E9)之一第二金屬基膜層結構的一第二金屬層的厚度為47 nm。A specific example 9 (E9) of the infrared reflective coating film of the present invention is substantially the same as the specific example 8 (E8), and the difference is that one of the buffer layers of the specific example 9 (E9) is a thickness of 10 a SnO 2 layer of nm; a second metal layer of the second metal base film layer structure of the specific example 9 (E9) has a thickness of 47 nm.

本發明該等具體例(E1~E9)之各緩衝層、各金屬基膜層結構及其對應之厚度,是簡單地彙整於下列表1.中。The buffer layers of the specific examples (E1 to E9) of the present invention, the structures of the respective metal base film layers, and their corresponding thicknesses are simply summarized in the following Table 1.

<分析數據><Analysis data>

由圖8所顯示之穿透率曲線可知,本發明該具體例1(E1)於可見光波段的最大穿透率可趨近65%;此外,於趨近780 nm處的穿透率已下降至23%。As can be seen from the transmittance curve shown in FIG. 8, the maximum transmittance of the specific example 1 (E1) in the visible light region of the present invention can approach 65%; in addition, the transmittance at the approach of 780 nm has decreased to twenty three%.

由圖9所顯示之穿透率曲線可知,本發明該具體例2(E2)於可見光波段的最大穿透率可趨近65%;此外,於趨近780 nm處的穿透率趨近30%。It can be seen from the transmittance curve shown in FIG. 9 that the maximum transmittance of the specific example 2 (E2) in the visible light region of the present invention can approach 65%; in addition, the transmittance at the approaching 780 nm approaches 30. %.

由圖10所顯示之穿透率曲線可知,本發明該具體例3(E3)於可見光波段的最大穿透率可趨近80%;此外,於趨近780 nm處的穿透率趨近43%。As can be seen from the transmittance curve shown in FIG. 10, the maximum transmittance of the specific example 3 (E3) in the visible light region of the present invention can approach 80%; in addition, the transmittance at the approach of 780 nm approaches 43. %.

由圖11所顯示之穿透率曲線可知,本發明該具體例4(E4)於可見光波段的最大穿透率已下降至51%;此外,於趨近780 nm處的穿透率約為22%。該具體例4(E4)與該具體例1~3(E1~E3)相較下明顯可知,本發明該具體例1~3(E1~E3)所使用之緩衝層為Zn,其對於可見光波段內的穿透率有提升的效果。As can be seen from the transmittance curve shown in Fig. 11, the maximum transmittance of the specific example 4 (E4) in the visible light region of the present invention has decreased to 51%; in addition, the transmittance at the approach of 780 nm is about 22 %. This specific example 4 (E4) is more apparent than the specific examples 1 to 3 (E1 to E3), and the buffer layer used in the specific examples 1 to 3 (E1 to E3) of the present invention is Zn, which is visible light band. The penetration rate inside has an effect of improvement.

由圖12所顯示之穿透率曲線可知,本發明該具體例5(E5)於可見光波段的最大穿透率亦下降至51%;此外,於趨近780 nm處的穿透率約為25%。該具體例5(E5)與該具體例1~3(E1~E3)相較下明顯可知,本發明該具體例1~3(E1~E3)所使用之緩衝層為Zn,其對於可見光波段內的穿透率有提升的效果。As can be seen from the transmittance curve shown in FIG. 12, the maximum transmittance of the specific example 5 (E5) in the visible light region of the present invention also drops to 51%; in addition, the transmittance at the approach of 780 nm is about 25 %. This specific example 5 (E5) is more apparent than the specific examples 1 to 3 (E1 to E3), and the buffer layer used in the specific examples 1 to 3 (E1 to E3) of the present invention is Zn, which is visible light band. The penetration rate inside has an effect of improvement.

由圖13所顯示之穿透率曲線可知,本發明該具體例6(E6)於可見光波段的最大穿透率約65%;此外,於趨近780 nm處的穿透率已下降至3%。該具體例6(E6)與該具體例1~3(E1~E3)相較下明顯可知,雖然本發明該具體例5使用兩層第一金屬層(即,Ag)可有效地降低紅外線波段的穿透率;然而,本發明該具體例6(E6)因該等第二金屬層(Zn)及第三金屬層(AlTi)以使得其可見光波段之最大穿透率得以維持在65%。As can be seen from the transmittance curve shown in Fig. 13, the specific transmittance of the specific example 6 (E6) in the visible light band of the present invention is about 65%; in addition, the transmittance at the approaching 780 nm has decreased to 3%. . This specific example 6 (E6) is apparent from the specific examples 1 to 3 (E1 to E3), although the specific example 5 of the present invention uses two layers of the first metal layer (i.e., Ag) to effectively reduce the infrared band. The transmittance of the specific example 6 (E6) of the present invention is such that the second metal layer (Zn) and the third metal layer (AlTi) are maintained at a maximum transmittance of 65% in the visible light band.

由圖14所顯示之穿透率曲線可知,本發明該具體例7(E7)於可見光波段的最大穿透率提升至70%;此外,於趨近780 nm處的穿透率約20%;相較於該具體例6(E6),該具體例7(E7)中的兩層第一金屬層(Ag)的厚度較小,導致紅外線波段的穿透率較高,而該具體例7(E7)之第二金屬基膜層結構之第二金屬層(Zn)的厚度較高,更使得其可見光之最大穿透率提升至70%,且其最大穿透率的波長往低頻方向偏移至600 nm處。As can be seen from the transmittance curve shown in FIG. 14, the specific transmittance of the specific example 7 (E7) in the visible light region of the present invention is increased to 70%; moreover, the transmittance at the approach of 780 nm is about 20%; Compared with the specific example 6 (E6), the thickness of the two first metal layers (Ag) in the specific example 7 (E7) is small, resulting in a higher transmittance in the infrared band, and the specific example 7 ( The second metal layer (Zn) of the second metal base film layer structure of E7) has a higher thickness, so that the maximum transmittance of visible light is increased to 70%, and the wavelength of the maximum transmittance is shifted to the low frequency direction. Up to 600 nm.

由圖15所顯示之穿透率曲線可知,本發明該具體例8(E8)於可見光波段的最大穿透率約68%;此外,於趨近780 nm處的穿透率約為4%。As can be seen from the transmittance curve shown in Fig. 15, the specific transmittance of this specific example 8 (E8) in the visible light band of the present invention is about 68%; moreover, the transmittance at the approach of 780 nm is about 4%.

由圖16所顯示之穿透率曲線可知,本發明該具體例9(E9)於可見光波段的最大穿透率約60%;此外,於趨近780 nm處的穿透率已下降至5%。As can be seen from the transmittance curve shown in Fig. 16, the specific transmittance of the specific example 9 (E9) in the visible light region of the present invention is about 60%; in addition, the transmittance at the approaching 780 nm has decreased to 5%. .

由圖17(右側圖式)所顯示之掃描式電子顯微鏡(scanning electron microscope,SEM)影像可知,本發明該具體例6(E6)於氮氣微波電漿處理前,其表面結構是尺寸約20 nm~30 nm左右的奈米粒子;反觀圖18(右側圖式)所顯示之SEM影像可知,本發明該具體例6(E6)於氮氣微波電漿處理後,其表面結構是尺寸約100 nm~120 nm左右的奈米粒子。此外,比較圖17與圖18的左側圖式可知,顯示於圖17中之5 μl的超純水(ultr-pure water)與其第一金屬基膜層結構表面的接觸角(contact angle)較小,而顯示於圖18中之5 μl的超純水與其第一金屬基膜層結構表面的接觸角較大。證實該具體例6(E6)的表面於氮氣微波電漿處理前呈親水性(hydrophilic property),較容易吸附水氣,該具體例6(E6)的表面於氮氣微波電漿處理後的30分鐘後是呈疏水性,且水份可輕易地於其表面滑動,亦證實該具體例6(E6)的表面於氮氣微波電漿處理後,因尺寸介於100 nm~120 nm的奈米粒子而產生蓮花效應(lotus effect)。It can be seen from the scanning electron microscope (SEM) image shown in Fig. 17 (right side drawing) that the surface structure of the specific example 6 (E6) of the present invention is about 20 nm before the microwave microwave plasma treatment. Nanoparticles of ~30 nm; in contrast, the SEM image shown in Fig. 18 (right drawing) shows that the surface structure of the specific example 6 (E6) of the present invention after nitrogen microwave plasma treatment is about 100 nm~ Nanoparticles around 120 nm. Further, comparing the left side diagrams of Fig. 17 and Fig. 18, it is understood that the contact angle of 5 μl of the ultra-pure water shown in Fig. 17 and the surface of the first metal base film layer structure is small. The contact angle of 5 μl of ultrapure water shown in Fig. 18 with the surface of the first metal base film layer structure is large. It was confirmed that the surface of the specific example 6 (E6) was hydrophilic property before the microwave microwave plasma treatment, and it was easier to adsorb water gas. The surface of the specific example 6 (E6) was 30 minutes after the microwave microwave plasma treatment. After that, it is hydrophobic, and the water can easily slide on the surface. It is also confirmed that the surface of the specific example 6 (E6) is treated with a nanoparticle having a size of 100 nm to 120 nm after the microwave microwave plasma treatment. Produces a lotus effect.

綜上所述,本發明信賴性佳之紅外線反射鍍膜、節能玻璃裝置及其鍍膜的製作方法,藉由該第一、第二金屬基膜層結構之第二金屬層來提升可見光的穿透率,可避免傳統之透明介電層所產生的氧化問題;此外,微波電漿處理不僅提升紅外線反射鍍膜的附著性,亦使其表面呈疏水性,有利於阻隔水氣的進入從而增加紅外線反射鍍膜的信賴性,故確實能達成本發明之目的。In summary, the infrared reflective coating, the energy-saving glass device and the method for manufacturing the coating of the invention have improved reliability, and the transmittance of visible light is improved by the second metal layer of the first and second metal-based film layers. It can avoid the oxidation problem caused by the traditional transparent dielectric layer; in addition, the microwave plasma treatment not only enhances the adhesion of the infrared reflective coating, but also makes the surface hydrophobic, which is beneficial to hinder the entry of moisture and increase the infrared reflective coating. With reliability, it is indeed possible to achieve the object of the present invention.

惟以上所述者,僅為本發明之較佳實施例與具體例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment and the specific examples of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent change according to the scope of the invention and the description of the invention. And modifications are still within the scope of the invention patent.

2...透光基板2. . . Light transmissive substrate

20...紅外線反射鍍膜20. . . Infrared reflective coating

200...第一元件200. . . First component

3...緩衝層3. . . The buffer layer

4...第一金屬基膜層結構4. . . First metal base film structure

41...第一金屬層41. . . First metal layer

42...第二金屬層42. . . Second metal layer

43...第三金屬層43. . . Third metal layer

5...第二金屬基膜層結構5. . . Second metal base film structure

51...第一金屬層51. . . First metal layer

52...第二金屬層52. . . Second metal layer

53...第三金屬層53. . . Third metal layer

6...第二元件6. . . Second component

61...另一透光基板61. . . Another transparent substrate

7...間隔件7. . . Spacer

8...封閉空間8. . . Closed space

91...真空腔體91. . . Vacuum chamber

92...基底92. . . Base

MW...微波MW. . . microwave

圖1是一是一剖視示意圖,說明US 7,906,203 B2所揭示之紅外線反射鍍膜;Figure 1 is a cross-sectional view showing the infrared reflective coating disclosed in US 7,906,203 B2;

圖2是一正視示意圖,說明本發明之信賴性佳之紅外線反射鍍膜的一第一較佳實施例;2 is a front elevational view showing a first preferred embodiment of the highly reliable infrared reflective coating of the present invention;

圖3是一流程圖,說明本發明該第一較佳實施例之信賴性佳之紅外線反射鍍膜的製作方法;3 is a flow chart showing a method for fabricating a highly reliable infrared reflective coating according to the first preferred embodiment of the present invention;

圖4是圖3之一步驟(c)的局部放大圖,說明本發明於實施該第一較佳實施例之製作方法時之微波與一基底、一透光基板及一第一金屬基膜層結構間的傳遞關係;4 is a partial enlarged view of a step (c) of FIG. 3, illustrating the microwave and a substrate, a transparent substrate, and a first metal base film layer in the manufacturing method of the first preferred embodiment of the present invention. Transfer relationship between structures;

圖5是一正視示意圖,說明本發明之信賴性佳之紅外線反射鍍膜的一第二較佳實施例;Figure 5 is a front elevational view showing a second preferred embodiment of the highly reliable infrared reflective coating of the present invention;

圖6是一正視示意圖,說明本發明之信賴性佳之紅外線反射鍍膜的一第三較佳實施例;Figure 6 is a front elevational view showing a third preferred embodiment of the highly reliable infrared reflective coating of the present invention;

圖7是一局部正視示意圖,說明本發明運用該等較佳實施例之紅外線反射鍍膜以構成一節能玻璃裝置;Figure 7 is a partial front elevational view showing the present invention using the infrared reflective coating of the preferred embodiments to form an energy-saving glass device;

圖8是一穿透率曲線圖,說明本發明之信賴性佳之紅外線反射鍍膜的一具體例1(E1)的穿透率;Figure 8 is a graph showing the transmittance of a specific example 1 (E1) of the highly reliable infrared reflective coating of the present invention;

圖9是一穿透率曲線圖,說明本發明之信賴性佳之紅外線反射鍍膜的一具體例2(E2)的穿透率;Figure 9 is a graph showing the transmittance of a specific example 2 (E2) of the highly reliable infrared reflective coating of the present invention;

圖10是一穿透率曲線圖,說明本發明之信賴性佳之紅外線反射鍍膜的一具體例3(E3)的穿透率;Figure 10 is a graph showing the transmittance of a specific example 3 (E3) of the highly reliable infrared reflective coating of the present invention;

圖11是一穿透率曲線圖,說明本發明之信賴性佳之紅外線反射鍍膜的一具體例4(E4)的穿透率;Figure 11 is a graph showing the transmittance of a specific example 4 (E4) of the highly reliable infrared reflective coating of the present invention;

圖12是一穿透率曲線圖,說明本發明之信賴性佳之紅外線反射鍍膜的一具體例5(E5)的穿透率;Figure 12 is a graph showing the transmittance of a specific example 5 (E5) of the highly reliable infrared reflective coating of the present invention;

圖13是一穿透率曲線圖,說明本發明之信賴性佳之紅外線反射鍍膜的一具體例6(E6)的穿透率;Figure 13 is a graph showing the transmittance of a specific example 6 (E6) of the highly reliable infrared reflective coating of the present invention;

圖14是一穿透率曲線圖,說明本發明之信賴性佳之紅外線反射鍍膜的一具體例7(E7)的穿透率;Figure 14 is a graph showing the transmittance of a specific example 7 (E7) of the highly reliable infrared reflective coating of the present invention;

圖15是一穿透率曲線圖,說明本發明之信賴性佳之紅外線反射鍍膜的一具體例8(E8)的穿透率;Figure 15 is a graph showing the transmittance of a specific example 8 (E8) of the highly reliable infrared reflective coating of the present invention;

圖16是一穿透率曲線圖,說明本發明之信賴性佳之紅外線反射鍍膜的一具體例9(E9)的穿透率;Figure 16 is a graph showing the transmittance of a specific example 9 (E9) of the highly reliable infrared reflective coating of the present invention;

圖17是一SEM表面形貌影像,說明本發明該具體例6(E6)於微波電漿處理前的表面結構;及Figure 17 is a SEM surface topography image showing the surface structure of the specific example 6 (E6) of the present invention before microwave plasma treatment;

圖18是一SEM表面形貌影像,說明本發明該具體例6(E6)於微波電漿處理後的表面結構。Fig. 18 is a SEM surface topography image showing the surface structure of the specific example 6 (E6) of the present invention after microwave plasma treatment.

2...透光基板2. . . Light transmissive substrate

20...紅外線反射鍍膜20. . . Infrared reflective coating

3...緩衝層3. . . The buffer layer

4...第一金屬基膜層結構4. . . First metal base film structure

41...第一金屬層41. . . First metal layer

42...第二金屬層42. . . Second metal layer

43...第三金屬層43. . . Third metal layer

Claims (18)

一種信賴性佳之紅外線反射鍍膜,是形成於一透光基板上,該紅外線反射鍍膜包含:一形成於該透光基板上的緩衝層;及一形成於該緩衝層上的第一金屬基膜層結構,該第一金屬基膜層結構自該緩衝層朝遠離該透光甚板的方向依序具有一第一金屬層、一第二金屬層及一第三金屬層;其中,該第一金屬基膜層結構的第一金屬層是由Ag所製成;其中,該第一金屬基膜層結構的第二金屬層是由一選自下列所構成之群組的第二金屬所製成:Zn、Sn、Ti、Ni、ZnSn合金、ZnTi合金、ZnNi合金、SnTi合金,及SnNi合金;及其中,該第一金屬基膜層結構的第三金屬層是一阻障層。A highly reliable infrared reflective coating is formed on a transparent substrate, the infrared reflective coating comprises: a buffer layer formed on the transparent substrate; and a first metal base film layer formed on the buffer layer The first metal base film layer structure has a first metal layer, a second metal layer and a third metal layer sequentially from the buffer layer away from the light transmitting plate; wherein the first metal The first metal layer of the base film layer structure is made of Ag; wherein the second metal layer of the first metal base film layer structure is made of a second metal selected from the group consisting of: a Zn, a Sn, a Ti, a Ni, a ZnSn alloy, a ZnTi alloy, a ZnNi alloy, a SnTi alloy, and a SnNi alloy; and wherein the third metal layer of the first metal base film layer structure is a barrier layer. 依據申請專利範圍第1項所述之信賴性佳之紅外線反射鍍膜,其中,該第一金屬基膜層結構的第三金屬層是由一選自下列所構成之群組的第三金屬所製成:Al、AlTi合金、AlNi合金,及AlZn合金;該緩衝層是由一選自下列所構成之群組的材料所製成:Zn、ZnO、SnO2,及TiO2The infrared reflective coating according to claim 1, wherein the third metal layer of the first metal base film layer is made of a third metal selected from the group consisting of the following: : Al, AlTi alloy, AlNi alloy, and AlZn alloy; the buffer layer is made of a material selected from the group consisting of Zn, ZnO, SnO 2 , and TiO 2 . 依據申請專利範圍第2項所述之信賴性佳之紅外線反射鍍膜,其中,該第一金屬基膜層結構的第一金屬層的厚度是介於14 nm~32 nm之間;該第一金屬基膜層結構的第二金屬層的厚度是介於10 nm~35 nm之間。The infrared reflective coating according to claim 2, wherein the first metal base layer has a first metal layer having a thickness of between 14 nm and 32 nm; the first metal base The thickness of the second metal layer of the film structure is between 10 nm and 35 nm. 依據申請專利範圍第3項所述之信賴性佳之紅外線反射鍍膜,更包含一第二金屬基膜層結構,該第二金屬基膜層結構夾置於該緩衝層與該第一金屬基膜層結構之間,該第二金屬基膜層結構自該緩衝層朝遠離該透光基板的方向依序具有一第一金屬層及一第二金屬層,該第二金屬基膜層結構的第一金屬層是由Ag所製成,該第二金屬基膜層結構的第二金屬層是由一選自下列所構成之群組的第二金屬所製成:Zn、Sn、Ti、Ni、ZnSn合金、ZnTi合金、ZnNi合金、SnTi合金,及SnNi合金。The infrared reflective coating according to claim 3 of the patent application scope further includes a second metal base film layer structure, wherein the second metal base film layer structure is sandwiched between the buffer layer and the first metal base film layer Between the structures, the second metal base film layer structure has a first metal layer and a second metal layer sequentially from the buffer layer away from the transparent substrate, and the second metal base film layer structure is first The metal layer is made of Ag, and the second metal layer of the second metal base film layer structure is made of a second metal selected from the group consisting of Zn, Sn, Ti, Ni, ZnSn Alloy, ZnTi alloy, ZnNi alloy, SnTi alloy, and SnNi alloy. 依據申請專利範圍第4項所述之信賴性佳之紅外線反射鍍膜,其中,該第二金屬基膜層結構更具有一第三金屬層,該第二金屬基膜層結構的第三金屬層夾置於該第二金屬基膜層結構的第二金屬層與該第一金屬基膜層結構之間,且是由一選自下列所構成之群組的第三金屬所製成:Al、AlTi合金、AlNi合金,及AlZn合金。The infrared reflective coating according to claim 4, wherein the second metal base layer structure further has a third metal layer, and the third metal base layer has a third metal layer interposed therebetween. Between the second metal layer of the second metal base film layer structure and the first metal base film layer structure, and made of a third metal selected from the group consisting of: Al, AlTi alloy , AlNi alloy, and AlZn alloy. 依據申請專利範圍第4項所述之信賴性佳之紅外線反射鍍膜,其中,該第二金屬基膜層結構的第一金屬層的厚度是介於14 nm~32 nm之間;該第二金屬基膜層結構的第二金屬層的厚度是介於44 nm~60 nm之間。The infrared reflective coating according to claim 4, wherein the thickness of the first metal layer of the second metal base layer structure is between 14 nm and 32 nm; the second metal base The thickness of the second metal layer of the film structure is between 44 nm and 60 nm. 一種節能玻璃裝置,包含:一第一元件,具有一透光基板,及一形成於該透光基板上之如申請專利範圍第1~6項任一項所述的信賴性佳之紅外線反射鍍膜;一第二元件,具有另一透光基板,該另一透光基板面向該透光基板並與該透光基板間隔設置;及一間隔件,夾置於該第一元件與第二元件之間,並與該第一元件及第二元件共同界定出一封閉空間。An energy-saving glass device comprising: a first component, a light-transmissive substrate, and a highly reliable infrared reflective coating formed on the light-transmissive substrate according to any one of claims 1 to 6; a second component having another transparent substrate facing the transparent substrate and spaced apart from the transparent substrate; and a spacer sandwiched between the first component and the second component And together with the first component and the second component define a closed space. 依據申請專利範圍第7項所述之節能玻璃裝置,更包含一填置於該封閉空間的惰性氣體。The energy-saving glass device according to claim 7 of the patent application, further comprising an inert gas filled in the closed space. 一種信賴性佳之紅外線反射鍍膜的製作方法,是形成於一透光基板上,該製作方法包含以下步驟:(a)於該透光基板上形成一緩衝層;(b)於該緩衝層上形成一第一金屬基膜層結構,該第一金屬基膜層結構自該緩衝層朝遠離該透光基板的方向依序具有一第一金屬層、一第二金屬層及一第三金屬層;及(c)於該步驟(b)之後,將該形成有該緩衝層及該第一金屬基膜層結構的透光基板設置於一真空腔體的一基底上,以對該緩衝層及該第一金屬基膜層結構施予微波電漿處理,並提升該緩衝層及該第一金屬基膜層結構之附著性;其中,該第一金屬基膜層結構的第一金屬層是由Ag所製成;其中,該第一金屬基膜層結構的第二金屬層是由一選自下列所構成之群組的第二金屬所製成:Zn、Sn、Ti、Ni、ZnSn合金、ZnTi合金、ZnNi合金、SnTi合金,及SnNi合金;其中,該第一金屬基膜層結構的第三金屬層是一阻障層;及其中,該步驟(c)之基底是由一選自下列所構成之群組的材料所製成:碳纖維、石墨及半導體材料。A method for fabricating a highly reliable infrared reflective coating is formed on a transparent substrate. The manufacturing method comprises the steps of: (a) forming a buffer layer on the transparent substrate; and (b) forming a buffer layer on the buffer layer. a first metal base film layer structure, the first metal base film layer structure has a first metal layer, a second metal layer and a third metal layer sequentially from the buffer layer away from the transparent substrate; And (c) after the step (b), the transparent substrate on which the buffer layer and the first metal base film layer are formed is disposed on a substrate of a vacuum chamber to serve the buffer layer and the buffer layer The first metal base film layer structure is subjected to microwave plasma treatment, and the adhesion of the buffer layer and the first metal base film layer structure is improved; wherein the first metal base layer structure has a first metal layer formed by Ag The second metal layer of the first metal base film layer structure is made of a second metal selected from the group consisting of Zn, Sn, Ti, Ni, ZnSn alloy, ZnTi An alloy, a ZnNi alloy, a SnTi alloy, and a SnNi alloy; wherein the first metal base film The third metal layer is a barrier layer structure; and in the step (c) the substrate is made of a material selected from the group consisting of: carbon fibers, graphite, and semiconductor materials. 依據申請專利範圍第9項所述之信賴性佳之紅外線反射鍍膜的製作方法,其中,該基底的面積是大於等於該透光基板上之緩衝層的面積,並大於等於該第一金屬基膜層結構的面積,且該基底的面積與該透光基板上之緩衝層的面積相互重疊,並與該第一金屬基膜層結構的面積相互重疊。The method for fabricating an infrared reflective coating according to claim 9 wherein the area of the substrate is greater than or equal to the area of the buffer layer on the transparent substrate and greater than or equal to the first metal base film layer. The area of the structure, and the area of the substrate overlaps with the area of the buffer layer on the transparent substrate, and overlaps with the area of the first metal base film layer structure. 依據申請專利範圍第9項所述之信賴性佳之紅外線反射鍍膜的製作方法,其中,於實施該步驟(c)時,該真空腔體的工作壓力是小於等於0.5 Torr。According to the method for producing an infrared reflective coating which is excellent in reliability as described in claim 9, wherein the vacuum chamber has a working pressure of 0.5 Torr or less when the step (c) is carried out. 依據申請專利範圍第11項所述之信賴性佳之紅外線反射鍍膜的製作方法,其中,該步驟(c)之微波電漿處理是經由一電源供應器提供一介於750 W~2000 W之間的輸出功率。The method for manufacturing an infrared reflective coating according to claim 11, wherein the microwave plasma treatment in the step (c) is to provide an output between 750 W and 2000 W via a power supply. power. 依據申請專利範圍第9項所述之信賴性佳之紅外線反射鍍膜的製作方法,其中,該半導體材料是矽。The method for producing an infrared reflective coating according to claim 9, wherein the semiconductor material is germanium. 依據申請專利範圍第9項所述之信賴性佳之紅外線反射鍍膜的製作方法,其中,該第一金屬基膜層結構的第三金屬層是由一選自下列所構成之群組的第三金屬所製成:Al、AlTi合金、AlNi合金,及AlZn合金,且該第一金屬基膜層結構之第三金屬層的一表面於微波電漿處理後的一預定時間後是呈疏水性;該緩衝層是由一選自下列所構成之群組的材料所製成:Zn、ZnO、SnO2,及TiO2The method for fabricating a highly reliable infrared reflective coating according to claim 9, wherein the third metal layer of the first metal base film layer is a third metal selected from the group consisting of Formed by: Al, AlTi alloy, AlNi alloy, and AlZn alloy, and a surface of the third metal layer of the first metal base film layer structure is hydrophobic after a predetermined time after the microwave plasma treatment; The buffer layer is made of a material selected from the group consisting of Zn, ZnO, SnO 2 , and TiO 2 . 依據申請專利範圍第14項所述之信賴性佳之紅外線反射鍍膜的製作方法,其中,該第一金屬基膜層結構的第一金屬層的厚度是介於14 nm~32 nm之間;該第一金屬基膜層結構的第二金屬層的厚度是介於10 nm~35 nm之間。The method for fabricating a highly reliable infrared reflective coating according to claim 14, wherein the thickness of the first metal layer of the first metal base layer structure is between 14 nm and 32 nm; The thickness of the second metal layer of a metal base film structure is between 10 nm and 35 nm. 依據申請專利範圍第15項所述之信賴性佳之紅外線反射鍍膜的製作方法,於該步驟(b)之前更包含一步驟(b’),該步驟(b’)是形成一夾置於該緩衝層與該第一金屬基膜層結構之間的第二金屬基膜層結構,該第二金屬基膜層結構自該緩衝層朝遠離該透光基板的方向依序具有一第一金屬層及一第二金屬層,該第二金屬基膜層結構的第一金屬層是由Ag所製成,該第二金屬基膜層結構的第二金屬層是由一選自下列所構成之群組的第二金屬所製成:Zn、Sn、Ti、Ni、ZnSn合金、ZnTi合金、ZnNi合金、SnTi合金,及SnNi合金。The method for fabricating the highly reliable infrared reflective coating according to claim 15 of the patent application further comprises a step (b') before the step (b), wherein the step (b') is to form a clip in the buffer. a second metal base film layer structure between the layer and the first metal base film layer structure, the second metal base film layer structure sequentially has a first metal layer from the buffer layer away from the transparent substrate a second metal layer, the first metal layer of the second metal base film layer structure is made of Ag, and the second metal layer of the second metal base film layer structure is composed of a group selected from the group consisting of The second metal is made of: Zn, Sn, Ti, Ni, ZnSn alloy, ZnTi alloy, ZnNi alloy, SnTi alloy, and SnNi alloy. 依據申請專利範圍第16項所述之信賴性佳之紅外線反射鍍膜的製作方法,其中,該第二金屬基膜層結構更具有一第三金屬層,該第二金屬基膜層結構的第三金屬層夾置於該第二金屬基膜層結構的第二金屬層與該第一金屬基膜層結構之間,且是由一選自下列所構成之群組的第三金屬所製成:Al、AlTi合金、AlNi合金,及AlZn合金。The method for fabricating an infrared reflective coating according to claim 16 , wherein the second metal base layer structure further comprises a third metal layer, and the second metal base layer structure is a third metal The layer is sandwiched between the second metal layer of the second metal base film layer structure and the first metal base film layer structure, and is made of a third metal selected from the group consisting of: Al , AlTi alloy, AlNi alloy, and AlZn alloy. 依據申請專利範圍第16項所述之信賴性佳之紅外線反射鍍膜的製作方法,其中,該第二金屬基膜層結構的第一金屬層的厚度是介於14 nm~32 nm之間;該第二金屬基膜層結構的第二金屬層的厚度是介於44 nm~60 nm之間。The method for fabricating an infrared reflective coating according to claim 16 , wherein the thickness of the first metal layer of the second metal base layer structure is between 14 nm and 32 nm; The thickness of the second metal layer of the two metal-based film layer structure is between 44 nm and 60 nm.
TW100127035A 2011-07-29 2011-07-29 IR reflective coating with high reliability, energy-saving glass device and method of producing the coating thereof TW201305080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100127035A TW201305080A (en) 2011-07-29 2011-07-29 IR reflective coating with high reliability, energy-saving glass device and method of producing the coating thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100127035A TW201305080A (en) 2011-07-29 2011-07-29 IR reflective coating with high reliability, energy-saving glass device and method of producing the coating thereof

Publications (1)

Publication Number Publication Date
TW201305080A true TW201305080A (en) 2013-02-01

Family

ID=48168991

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100127035A TW201305080A (en) 2011-07-29 2011-07-29 IR reflective coating with high reliability, energy-saving glass device and method of producing the coating thereof

Country Status (1)

Country Link
TW (1) TW201305080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI586858B (en) * 2015-05-29 2017-06-11 台虹科技股份有限公司 Infrared reflective fiber and infrared reflective fiber manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI586858B (en) * 2015-05-29 2017-06-11 台虹科技股份有限公司 Infrared reflective fiber and infrared reflective fiber manufacturing method

Similar Documents

Publication Publication Date Title
JP3577034B2 (en) Composite material
EP2844038B1 (en) Electrode foil and electronic device
JP5989802B2 (en) Decompression double-glazed glass panel
JP6211075B2 (en) Low radiation transparent laminate, building material including the same, and method for producing low radiation transparent laminate
KR101788369B1 (en) Low-emissivity coating film, method for preparing the same and functional building material for windows comprising the same
CN106536848B (en) Low-emissivity coating and window functional construction material including low-emissivity coating
JP2016536462A (en) Low radiation coating and functional building materials for joinery including the same
JP6259711B2 (en) Thermochromic window and method for manufacturing the same
CN104310801A (en) Tri-silver LOW-E glass with neutral color and preparation method thereof
JP2007070146A (en) Low emissive multilayered glass
JP2014218426A (en) Thermochromic window
TW201305080A (en) IR reflective coating with high reliability, energy-saving glass device and method of producing the coating thereof
JP2746598B2 (en) Visible light selective transmission film
A Mathews et al. Sol-gel functional coatings for solar thermal applications: a review of recent patent literature
CN104325734A (en) Blue three-silver LOW-E glass and preparation method thereof
JP5110723B1 (en) Transparent insulation sheet
WO2010098200A1 (en) Stack article
CN102909911A (en) Transparent conductive glass with high visible light transmittance and manufacture method thereof
JP2004217432A (en) Laminate and structure
JPH0280352A (en) Window glass for vehicle
JP2012136405A (en) Laminate, multilayer glass, and method for producing laminate
TWI288252B (en) Neutral filter able to improve the flatness of the spectrum of the penetrating light
CN102910836A (en) Infrared reflection coating film with good reliability and manufacturing method thereof and energy-saving glass device
CN218089410U (en) Explosion-proof heat insulation film
CN102501447B (en) Double-silver LOW-E glass