TW201300704A - 發光轉換器、磷光體強化光源或具有大於80之演色性指數之照明器具 - Google Patents

發光轉換器、磷光體強化光源或具有大於80之演色性指數之照明器具 Download PDF

Info

Publication number
TW201300704A
TW201300704A TW101112847A TW101112847A TW201300704A TW 201300704 A TW201300704 A TW 201300704A TW 101112847 A TW101112847 A TW 101112847A TW 101112847 A TW101112847 A TW 101112847A TW 201300704 A TW201300704 A TW 201300704A
Authority
TW
Taiwan
Prior art keywords
light
organic
luminescent material
phosphor
light source
Prior art date
Application number
TW101112847A
Other languages
English (en)
Inventor
Bommel Ties Van
Rifat Ata Mustafa Hikmet
Jan Cornelis Kriege
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201300704A publication Critical patent/TW201300704A/zh

Links

Abstract

本發明提供發光轉換器200、220、240、260,磷光體強化光源及照明器具。該發光轉換器200包括第一有機發光材料202、第二有機發光材料208及第三無機發光材料206。該第一有機發光材料202、該第二有機發光材料208及該無機發光材料206吸收一部份由該光源發射的光及/或吸收一部份由其他發光材料之至少一者發射的光。該第一有機發光材料202將至少一部份該吸收的光轉換成第一顏色分佈之光。該第二有機發光材料208將至少一部份該吸收的光轉換成第二顏色分佈之光。該無機發光材料206將至少一部份該吸收的光轉換成第三顏色分佈,以補償由該第一有機發光材料202及該第二有機發光材料208之至少一者之光的自吸收。

Description

發光轉換器、磷光體強化光源或具有大於80之演色性指數之照明器具
本發明係關於將第一顏色分佈的光轉換成另一顏色分佈的光的發光產物。
在許多應用中,發光材料結合固態發光體以產生使用者體驗為白光的光發射分佈。該產生的白光之光發射分佈之演色性指數應為相對高以具有良好的演色性指數。
已知將不同無機發光材料(每種發射不同顏色的光)一起與固態發光體(其發射單一顏色的光)組合。無機發光材料係穩定的且可在相對高溫度下使用。然而,無機發光材料係相對昂貴的。
為降低成本,在一些應用中,使用所謂的遠程有機磷,其係有機發光材料之混合物且其係置於離該固態發光體之一定距離處。然而,可獲得有限系列的穩定有機發光材料,使得難以製造在每一顏色下具有足夠大的光發射之光源。因此,難以形成包括具有高演色性指數之有機發光材料之混合物的光源。
本發明之一目標是提供具有高演色性指數的磷光體強化光源之發光轉換器。
本發明之第一態樣提供如技術方案1中申請的發光轉換器。本發明之第二態樣提供如技術方案12中申請的磷光體強化光源。本發明之第三態樣提供如技術方案15中申請的 照明器具。有益的實施例係於該等附隨技術方案中界定。
根據本發明第一態樣之包括光源的磷光體強化光源之發光轉換器包括第一有機發光材料、第二有機發光材料及第三無機發光材料。該第一有機發光材料吸收第一部份由該光源發射的光及/或吸收一部份由該第二有機發光材料或該無機發光材料之至少一者發射的光。該第一有機發光材料將至少一部份該吸收的光轉換成第一顏色分佈的光。該第二有機發光材料吸收第二部份由該光源發射的光及/或吸收一部份由該第一有機發光材料或該無機發光材料之至少一者發射的光。該第二有機發光材料將至少一部份該吸收的光轉換成第二顏色分佈的光。該無機發光材料吸收第三部份由該光源發射的光及/或吸收一部份由該第一有機發光材料或該第二有機發光材料發射的光。該無機發光材料將至少一部份該吸收的光轉換成第三顏色分佈以補償該第一有機發光材料及該第二有機發光材料之至少一者的光自吸收。
由該發光轉換器接收的光經由該發光轉換器部份吸收及部份發射。該第一有機發光材料由該光源的光或由另一發光材料發射的光激發並發射該第一顏色分佈之光。該第二發光材料係由該光源的光或由另一發光材料發射的光激發並發射該第二顏色分佈之光。因此,由該發光轉換器發射的光分佈包括至少直接源自該光源的光,及該第一光顏色佈及該第二顏色分佈之光。若選擇特定量的有機發光材料,可藉由該發光轉換器發射白光。然而,如先前討論 的,難以形成具有例如大於80之相對高演色性指數(CRI)的光。因此,當技術人士必須獲得相對高的演色性指數時,其不會使用兩種有機發光材料。
發明人認為由於該等有機發光材料之一者之所謂的「自吸收」光,因而形成具有高CRI的光發射係尤其困難的。通常在磷光體強化光源中使用的光源係發射藍色光的固態發光體。許多已知的有機發光材料吸收藍色光並不強烈。因此,必須使用相對大量的該特定有機發光材料以可使足量的藍色光轉換成該第一或第二顏色分佈的光。若使用如此大量的該材料,在該第一或第二顏色分佈之下端由該第一或第二有機發光材料發射的一部份光被該第一或第二有機發光材料自身吸收。此現象由該特定有機發光材料之光發射光譜與該特定有機發光材料之光吸收光譜之重疊引起。換言之,經受自吸收的特定發光材料吸收一部份由該特定發光材料自身發射的光。
由於該光之自吸收,相對大量的該第一或第二發光材料之光發射光譜在該發射光譜之較低波長處獲得傾斜並因此該第一或第二顏色分佈之平均波長稍向較高波長偏移(朝向紅光)。結果,包括該第一及第二有機發光材料的該發光轉換器之光發射光譜在保持該演色性指數低於某一值(例如低於80)之特定光譜範圍內缺乏光。
發明人發現該自吸收之效應可藉由添加第三發光材料來補償,該第三發光材料係無機的且其發射補償該第一及/或該第二發光材料之自吸收的第三顏色分佈。如此可形成 發射具有在幾乎所有顏色範圍內的光及因此具有高演色性指數的光分佈。應用無機發光材料之另一優點係此材料係穩定的材料。另外,由於該少量的無機磷光體該發光轉換器係相對廉價的。
在本發明中,每種發光材料發射特定顏色分佈的光。該特定顏色分佈可(例如)包括具有預定波長附近之特定帶寬的原色,或可例如包括複數種原色。該預定的波長係輻射功率光譜分佈之平均波長。該原色的光(例如)包括紅光、綠光、藍光、黃光及琥珀光。該特定顏色分佈亦可包括複數種顏色之混合,諸如該等相鄰的顏色綠色及黃色。
根據另一實施例,該第一顏色分佈包括紅光。配置該第二有機發光材料用於僅吸收一部份由該光源發射的光及/或吸收一部份由該無機發光材料發射的光且該第二顏色分佈包括黃光。配置該無機發光材料用於僅吸收該第三部份由該光源發射的光,及該第三顏色分佈包括在自490 nm至560 nm之光譜範圍內的光。在此實施例之特定組合中,該發射黃光的第二有機發光材料經受相對大量的自吸收,其導致在僅包括該等有機發光材料的發光轉換器之光發射光譜中缺乏綠光。此藉由該實施例之無機發光材料補償。
另外,一般而言,發光材料僅吸收比由特定發光材料發射的光之波長更低的光。因此,該無機發光材料可僅吸收該光源之光,及該第二有機發光材料僅吸收由該光源發射的光及/或由該無機發光材料發射的光。
根據一實施例,該第一有機發光材料及第二有機發光材 料係穩定的有機發光材料。該穩定的發光材料係定義為在至少一個以下測試條件下在100小時內顯示發光降低小於10%的材料。使發光材料分子上溶解於聚合物基質,諸如聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)或聚碳酸酯(PC)並調整該濃度使得在200微米之厚度時該含有該等發光分子的層在450 nm顯示10%吸收。接著將該層置於恒溫的腔室中並使用在450 nm發射的雷射持續輻照。在該腔室中罩住該聚合物層的氛圍可為:純氮氣、空氣或含有0.1%氧氣的純氮氣之混合物。
在一實施例中,該第二有機材料係根據式(I)或(II)之化合物: 其中- G1係直鏈或支鏈烷基或含氧烷基CnH2n+1Om,n為自1至44之整數及m<n/2,或G1係Y; - A、B、C、J及Q之各者獨立地為氫、異丙基、第三丁基、氟、甲氧基或未取代之飽和烷基CnH2n+1,n係自1至16之整數;- G2、G3、G4及G5之至少兩者為氟,而G2、G3、G4及G5之剩餘者獨立地為氫、甲氧基或未取代之飽和烷基CnH2n+1,n係自1至16之整數,- R係直鏈或支鏈烷基或含氧烷基CnH2n+1Om,n係自1至44之整數且m<n/2,或R係氫、異丙基、第三丁基、氟、甲氧基或氰基,- A、B、C、J及Q之各者獨立地為氫、異丙基、第三丁基、氟、甲氧基、氰基或未取代之飽和烷基CnH2n+1,n為自1至16之整數。
當用藍光輻照時,一些已知的發射黃光的有機發光材料具有低穩定性。發明人已發現以上說明的當用藍光輻照時發射黃光且具有高穩定性的有機發光材料之群。然而,此等材料具有相對低的藍光之吸收且如此若使用此類材料更明顯存在「自吸收」之效應。因此,添加該無機發光材料對於獲得具有相對高演色性指數的光發射光譜係重要的。
在一實施例中,該第二有機發光材料包括根據式(III)或(IV)之苝單醯胺化合物:
或該第二有機發光材料包括根據式(V)或(VI)之經氟取代之苝雙醯胺化合物:
該實施例之化合物係穩定的有機發光材料且因此極適用於磷光體強化光源,且其等可使該藍色光譜範圍中的光向該黃色光譜範圍中的光轉換。
在一實施例中,該第一有機發光材料及該第二有機發光材料之至少一者係苝衍生物。苝衍生物具有有益的發光特性及可形成寬範圍的材料,每種具有不同的吸收/激發光 譜及發射光譜。
在另一實施例中,該無機發光材料包括YAG:Ce或LuAG:Ce中至少一者。
在一實施例中,該發光轉換器包括含有該第一有機發光材料、該第二發光材料及該無機發光材料之混合物的層。製造含有該發光材料之混合物的發光轉換器係相對容易的並因此相對廉價的。該等材料必須一次性混合,且在一個步驟中該混合物可配置在該磷光體強化光源中。該發光材料之混合物通常與基質聚合物混合以獲得可輕易應用於磷光體強化光源的材料之混合物。該基質聚合物係發光材料分散或分子溶解於其中的聚合物。可在聚合物,諸如丙烯酸酯(例如聚甲基丙烯酸甲酯)、聚碳酸酯、聚苯乙烯、聚乙烯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯及其等共聚物及摻合物中,選擇該聚合物基質。
此外,該無機發光材料在該發光材料之混合物中可發揮散射材料之作用。通常,在材料層中應用發光材料。在此層中,光通常例如經由內部反射被擷取。部份此擷取的光通常被再吸收並因此損失,其降低該發光轉換器之轉換效率。為防止該光在層的內部被擷取,可添加另外的散射材料至該發光層。然而,散射材料亦呈現一些不佳種類的光損失。藉由將作為該第一發光材料的無機發光材料與作為該第二發光材料的有機發光材料混合成發光材料之單一混合物,該無機發光材料可用作改善該發光材料內部產生的光之擷取的散射材料。當使用發光材料之混合物時,另一 益處係該磷光體強化光源之外觀係由該等發光材料之混合物決定,而非在堆疊構造之情況中的該上部發光材料之外觀。此將產生該磷光體強化光源之更自然外觀,其會減少消費者混淆。
在另一實施例中,該發光轉換器包括至少三層之堆疊,其中各層包括以下之群之單一的發光材料:該第一有機發光材料、該第二發光材料及該無機發光材料。儘管製造各包含另一發光材料的層之堆疊係比製造單一層更複雜,但如此產生額外的設計自由以獲得根據預定的光發射分佈準確地發射光之磷光體強化光源。例如,特定的發光材料除可由該光源之光激發外,亦可由另外的發光材料發射的光激發。將該等特定的發光材料作為該第一層係有利於防止產生的光被另一發光材料吸收。然而,在其他實施例中,根據該預定的光發射分佈之特定特性,在其他層之間施加具有該特定的發光材料之層係有利的。
另外,該層狀結構提供具有發光材料的不同層可經由極適用於該特定發光材料的製造方法而產生之益處。例如,有機發光材料通常係可溶的以產生具有特定黏度的液體。此液體經由熟知的旋塗技術可輕易地以實質上均勻之形式施加於載體材料上。該無機發光材料可能係不溶的且如此該第一發光材料層可經由其他適於該選擇的第一發光材料的技術產生。
在一實施例中,該發光轉換器包括局部包括第一子區域及第二子區域的層。該第一子區域包括以下之群之第一材 料:該第一有機發光材料、該第二發光材料及該無機發光材料。該第二子區域包括以下之群之第二材料:該第一有機發光材料、該第二發光材料及該無機發光材料。該第一材料係不同於該第二材料。該第一子區域並不包括該第二材料及該第二子區域並不包括該第一材料。另外,該層可包括其他的材料,像基質聚合物。然而,該層包括具有單一發光材料的子區域及具有另一單一發光材料的子區域。因此,該層包括不同發光材料之圖案。藉由圖案化該層中的發光材料,獲得另外的設計參數用於藉由該磷光體強化光源最佳化該發射的顏色分佈。可藉由在特定位置印刷或塗覆基質聚合物與一特定發光材料之混合物及在該起始印刷的混合物之間的區域印刷該基質聚合物及另一發光材料之另一混合物來進行該圖案化。用圖案化的發光層可防止由特定發光材料發射的光被另一特定發光材料所吸收。該圖案化導致該等不同發光材料之空間分隔並從而減小其等對彼此之光發射光譜的影響,若特定顏色的光可能不會被發光材料吸收以獲得足夠高的光演色性指數,其係尤其重要的。
在另一實施例中,該發光轉換器包括含有以下組成之群之第三材料的另一層:該第一有機發光材料、該第二發光材料及該無機發光材料,該第三材料係不同於該第一材料且不同於該第二材料。
在另一實施例中,該層包括含有以下組成之群之第三材料的第三子區域:該第一有機發光材料、該第二發光材料 及該無機發光材料。該第三材料係不同於該第一材料且不同於該第二材料。該第三子區域並不包括該第一材料且並不包括該第二材料。該第一子區域及該第二子區域並不包括該第三材料。
該具有在空間上隔開的三種發光材料的層可在基板(例如玻璃基板)上製造。
在一實施例中,該發光轉換器包括散射粒子。該等散射粒子可包括例如Al2O3及TiO2。散射粒子有助於藉由該發光轉換器獲得更漫射及更均勻的光發射。通常,在材料層中應用發光材料。在此層中,光通常例如經由內部反射被擷取。部份此擷取的光通常被再次吸收並因此損失,其降低該發光轉換器之轉換效率。為防止該光在層內部被擷取,可添加另外的散射材料至該發光層。
根據本發明之第二態樣,提供磷光體強化光源,其包括光源及根據本發明之第一態樣的發光轉換器。
根據本發明之第二態樣的磷光體強化光源提供如根據本發明之第一態樣的該發光轉換器之相同益處並具有如該發光轉換器之對應實施例之相似效應的相似實施例。
該光源可為固態發光體,諸如發光二極體、雷射二極體或有機發光二極體。
在一實施例中,該光源發射藍光。在該藍色光譜範圍中發射的光源係一般可作為高功率光源獲得並具有長壽命。另外,可獲得若干有益的發光材料以使該藍光向黃光轉換(其係由該第一有機發光材料發射的光),向紅光轉換(其係 由該第二有機發光材料發射的光),及向490至560 nm之光譜範圍中的光轉換(其係由該無機發光材料發射的光)。
在一實施例中,在該光源及該發光轉換器之間存在間隙。該間隙防止熱自該光源向該發光轉換器直接傳導,從而防止該發光材料由於過熱而劣化。通常該術語「遠程磷光體配置」係用以表示在該發光轉換器及該光源之間存在一定距離。
在另一實施例中,該磷光體強化光源具有演色性指數大於75的光發射。在另一實施例中,該演色性指數係大於80。
該磷光體強化光源之光發射分佈係該光源之該第一顏色分佈、該第二顏色分佈、該第三顏色分佈及剩餘的光之加權總和。因此,由該磷光體強化的總光發射具有在每一顏色範圍內的光並具有相對高演色性指數。
根據本發明之第三態樣,提供照明器具,其包括根據本發明之第一態樣的發光轉換器或包括根據本發明之第二態樣的磷光體強化光源。
根據本發明之第三態樣的照明器具提供如根據本發明之第一態樣的發光轉換器或根據本發明之第二態樣的磷光體強化光源之相同益處並具有如該發光轉換器或該磷光體強化光源之對應實施例之相似效應的相似實施例。
本發明之此等或其他態樣係從下文描述之實施例瞭解且參照該等實施例闡明。
彼等熟習此項技術者應瞭解該等上述之實施例、實施方 案及/本發明之態樣之兩者或更多者可以任何認為有用的方式結合。
該發光轉換器、該磷光體強化光源及該照明器具之調整或變體(其對應於該發光產物之描述的調整或變體)可由熟習此項技術者基於本發明說明進行。
應注意在不同圖中由該等相同參照數字表示的項目具有相同結構特徵及相同功能,或係相同的符號。在已解釋此項目之功能及/或結構時,在該詳細的發明說明中無重複解釋的必要。
該等圖純粹係圖示的且並不按比例繪製。特別是為了清楚起見,一些尺寸被很大程度地擴大。
圖1a及1b示意性地呈現自吸收之現象。圖1a中呈現包括發光分子104、108、110的基質聚合物層102。出於清晰之原因,該等發光分子104、108、110之尺寸被很大程度地擴大。該等發光分子104、108、110具有有機發光材料。該包括該等發光分子104、108、110的層102具有良好的透光特性,原因在於該基質聚合物係透明的且並不顯示光吸收。另外,該有機發光材料係相對透明的。因此,該層僅吸收該等落在該發光材料之吸收光譜範圍內的波長。預定的顏色分佈之光106照射在該層102之一側上。一部份該光106透過該層102。另一部份該光106被該等發光分子110吸收。
圖1b中呈現該等發光分子104、108、110之激發光譜 152。在圖1b之圖表150中,該x軸表示該光之波長,及該y軸表示該光之強度。曲線152表示該吸收光譜,其顯示該等發光分子104、108、110吸收光時的光之特定波長。
圖1a中顯示發光分子110吸收一部份該光106並發射另一種顏色的光112。圖1b中,呈現該等發光分子104、108、110之發射光譜156,其顯示該光可在複數個波長處發射。
該由發光分子110發射的光以複數個方向發射。發光分子108亦接收一部份由發光分子110發射的光。如圖1b中可見,該吸收光譜152及該光發射光譜156部份重疊且如此由該發光分子110發射的光可被發光分子108吸收。該灰色的陰影面積154表示在最壞情況下被該等發光分子104、110、108之其他發光分子吸收的該等發光分子104、110、108發射的光的量。此現象稱為自吸收。
該自吸收的量很大程度上取決於該等發光分子104、108、110在該基質聚合物層102中的濃度,及取決於(但程度較輕)其他因素像(例如)該層102之厚度及在其離開該層之前在該層中光之路徑長度。該可獲得的分子越多,或該路徑長度越長,該可偵測的自吸收現象越多。由於吸收該光發射光譜之下部的光,因而由該發光材料層發射的該顏色分佈之平均波長向較高波長偏移。
若使用發射黃光的有機發光材料(其識別為穩定的)結合發射藍光的光源,則不得不使用相對大量的發射黃光的有機發光材料,原因在於該發射黃光的有機發光材料之吸收光譜係位於該藍色光譜中有限延伸處。因此,該發射黃光 的有機材料對藍光並不極敏感的且不得不使用相對大量的此材料。由於自吸收,該發射黃光的有機發光材料之光發射光譜向較大波長(因此,向該紅光譜)偏移。若藍光源結合發射黃光的有機發光材料及發射紅光的有機發光材料,則可產生白光,然而,由於該發射黃光的有機發光材料之光發射的偏移,因而該白光之演色性指數(CRI)並不足夠高。產生具有高於80之CRI的白光係相對困難的。在許多應用中,該CRI必須高於80以獲得良好的演色性。
發明人對自吸收之瞭解係本發明之基礎。在本發明中,為獲得具有足夠高CRI的白光,將在該綠色光譜中發射的無機發光材料添加至發射黃光的有機發光材料及發射紅光的有機發光材料之組合。
圖2呈現根據本發明之第一態樣之發光轉換器之四個不同實施例。該發光轉換器200係基質聚合物層204,其中有三種不同的發光材料202、206、208。
該基質聚合物係該發光材料分散或分子上溶解於其中的聚合物。該聚合物基質可在聚合物,諸如丙烯酸酯(例如聚甲基丙烯酸甲酯)、聚碳酸酯、聚苯乙烯、聚乙烯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯及其等共聚物及摻合物中選擇。
發光材料202係吸收由光源發射的光並將一部份該吸收的光轉換成包括黃光的第一顏色分佈之光的有機發光材料。換言之,發光材料202係發射黃光的有機發光材料。此材料之實例係商業上稱為材料Lumogen F Yellow 170, 其由BASF售出。該材料係苝衍生物。當用藍光輻照時極穩定的一特定類別苝衍生物包含式(I)或(II)之化合物: 其中- G1係直鏈或支鏈烷基或含氧烷基CnH2n+1Om,n為自1至44之整數且m<n/2,或G1為Y;- A、B、C、J及Q之各者獨立地為氫、異丙基、第三丁基、氟、甲氧基或未經取代之飽和的烷基CnH2n+1,n為自1至16之整數;- G2、G3、G4及G5中至少兩者為氟,而G2、G3、G4及G5中剩餘者獨立地為氫、甲氧基或未經取代之飽和的烷基CnH2n+1,n為自1至16之整數,- R為直鏈或支鏈烷基或含氧烷基CnH2n+1Om,n為自1至44 之整數且m<n/2,或R為氫、異丙基、第三丁基、氟、甲氧基或氰基,- A、B、C、J及Q之各者獨立地為氫、異丙基、第三丁基、氟、甲氧基、氰基或未經取代之飽和的烷基CnH2n+1,n為自1至16之整數。
式(II)之化合物的兩個特定實例係式(III)或(IV)之苝單醯胺化合物:
一種式(I)之化合物為式(V)或(VI)之經氟取代之苝雙醯胺化合物:
發光材料206係無機發光材料,其吸收由光源發射的光並將一部份該吸收的光轉換成第三顏色分佈之光,該第三顏色分佈之光包含在自490 nm至560 nm之光譜範圍內的光。換言之,該無機發光材料206發射綠/黃光及更尤其是在其中該發射黃光的有機發光材料202經受自吸收的光譜範圍中。此材料之實例係該LuAG 3.5% FT 500材料或摻雜Ce的YAG。
發光材料208係有機發光材料,其吸收由光源發射的光並將一部份該吸收的光轉換成包含紅光的第一顏色分佈之光。換言之,發光材料208係發射紅光的有機發光材料。此材料之實例係商業上稱為材料Lumogen F Red 305,其由BASF售出。該材料係苝衍生物。
由於發光材料202、206、208係在一層中混合,因而藍光、黃光及紅光之混合光係傳遞透過該發光轉換器200。該發射黃光的發光材料202可具有同樣包含在自490 nm至560 nm之部份光譜範圍中的光的光吸收光譜。因此,該發射黃光的發光材料202亦可吸收由該無機發光材料206發射的光。該發射紅光的發光材料208亦可具有包括黃光及/或在自490 nm至560 nm之光譜範圍一部分中的光的吸收光 譜。因此,該發射紅光的發光材料208亦可吸收由該無機發光材料206或由該發射黃光的發光材料202發射的光。
該發光轉換器200係作為單一層製造,其包括呈混合形式的三種發光材料202、206、208。製造此層係相對容易及廉價的,原因在於該等材料可與該基質聚合物混合並隨後加工成單一層。
發光轉換器220包括三層,各層包括單一發光材料及各層包括散射粒子228,其用於進一步散射傳遞透過該發光轉換器的光。該等散射粒子228有助於更好的光混合並獲得實質上均勻的由該發光轉換器220發射的光。該等散射粒子可由該材料Al2O3或TiO2構成。
該發光轉換器220之第一層226(其在使用中面向光源)包括該發射紅光的有機發光材料208。在該第一層226之頂部製造的第二層224包括該發射黃光的有機發光材料202。在該第二層224之頂部製造的第三層222包括該發射綠/黃光的無機發光材料206。該第三層係背對該光源並在許多應用中係用作該包括該發光轉換器220的磷光體強化光源之光發射表面。
該發光轉換器220之配置提供額外的設計自由,原因在於該等發光材料202、206、208在該層之堆疊中放置的順序會影響在該發光轉換器220之光發射表面的該光發射分佈。例如,在該顯示的配置中,由該發射紅光的有機發光材料208發射的光可部份地在第二層224中或在該第三層222中各自由該發射黃光的有機發光材料202或該發射綠/ 黃光的無機發光材料206吸收,以各自向黃及綠/黃光轉換。應注意該等發光材料202、206、208亦可在該等層222、224、226中以另一順序配置,以獲得由該發光轉換器220的另一光發射。尤其在圖2之發光轉換器220之所呈現配置中,該發射紅光的有機發光材料208主要吸收由該光源發射的藍光。
該發光轉換器240包括基礎層244,該基礎層包括該發射紅光的有機發光材料208。在該基礎層244之頂部提供包括子區域242、246的圖案化層。子區域242包括該發射黃光的有機發光材料202且不包括該等其他的發光材料206、208。子區域246包括該發射綠/黃光的無機發光材料206且不包含該等其他的發光材料202、208。該發光轉換器240之圖案化配置的優點係該發射黃/綠光的發光材料206及該發射黃光的發光材料202並不彼此直接影響,且因此由該發射黃/綠光的發光材料206發射的該綠/黃光不被該發射黃光的發光材料202吸收且反之亦然。該等子區域242、246之圖案可藉由在該基礎層244之頂部上印刷該等不同子區域之材料來獲得。
該發光轉換器260包括在實際實施例中透光的且可能為透明的基板層264。在該基板層264之頂部提供包含不同子區域262、266、268的圖案化層。該等子區域262、266、268之各者僅包括以下之群的發光材料之一者:該發射黃光的有機發光材料202、該發射紅光的有機發光材料208及該發射綠/黃光的發光材料206。若光在該基板層264之側 被接收並且須在該發光轉換器260之反側發射,則在此種圖案化之下,該等發光材料之各者確實影響其他發光材料的程度有限。
該發光材料202、206、208係示意性地描繪為在特定材料層中球狀物。有機發光材料係由分子組成且如此若該特定發光材料係有機發光材料,則該等球狀物示意性地表示分子。該等有機分子係分子上溶解於形成該層的材料,例如,該基質聚合物。該無機發光材料及該等散射粒子係分散於形成該層的材料(其係例如基質聚合物)中的粒子。該等無機發光粒子及/或散射粒子具有達到0.1至10微米之等級的尺寸。圖3a呈現磷光體強化光源之光發射光譜300,其包括藍色發光二極體(LED)及發光轉換器220,具有隨後規格:該第一層226係54 μm厚並具有0.38重量%之Lumogen F Red 305,該第二層224係81 μm厚並具有0.1重量%之Lumogen F Yellow 170及該第三層222係75 μm厚並具有50重量% LuAG。該等層之各者具有如基質聚合物聚甲基丙烯酸甲酯(PMMA)。該獲得的光發射之色溫係3000 K及該CRI係大於80。圖3a中可見該磷光體強化光源亦發射在自490至560 nm之光譜範圍內的光,其導致該相對高的CRI。
圖3b呈現包括藍色LED及發光轉換器240的磷光體強化光源之光發射光譜350。該發光轉換器具有PMMA之基礎層,其係27 μm厚並包括0.05重量%Lumogen F Red 305。該具有該發射黃光的有機發光材料202的子區域242係 PMMA層之部份,該PMMA層係210 μm厚並包括0.01重量% Lumogen F Yellow 170,在其頂部提供包含Al2O3粒子的60 μm PMMA層之散射層。該具有該發射綠-黃光的無機發光材料206的子區域246係PMMA層之部份,該PMMA層係200 μm厚並包括50重量% LuAG。
圖4呈現磷光體強化光源400、430、460之三個實施例。磷光體強化光源400包括基座408,在其上提供發射藍光的LED 410。光混合腔室404係藉該基座408、壁面406及根據本發明之第一態樣的發光轉換器402密封。該基座之表面及面向該光混合腔室404的該等壁面之表面可為光反射性的。該藍色或UV LED 410向該發光轉換器402發射藍光,此使至少部份由該LED 410發射的光向黃光、紅光及綠/黃光轉換。結果,使藍光、綠光、黃光及紅光之組合發射至該磷光體強化光源400之周圍中,其在該顏色空間(例如,CIE xyz顏色空間)中具有接近黑體線的色點且其具有大於80之CRI。若使用圖3a中討論的發光轉換器及若該LED發射藍光,則該磷光體強化光源400可具有根據圖3a之光發射光譜。
該磷光體強化光源430之另一實例並不包括壁面,但包括曲面的發光轉換器432,其封閉該光混合腔室404。
磷光體強化光源460係修整之螢光燈管。呈現該燈管466之橫截面。在該燈管466之內部腔室464中提供藍色LED 468。沿著該燈管466的長度,可提供複數個此等LED 468。該藍色LED 468向根據本發明之第一態樣之發光轉換 器462發射藍光。使該發光轉換器462應用至面向該燈管466之內部腔室464的該燈管466之內表面。
圖5呈現根據本發明之第三態樣的照明器具500之實施例。該照明器具500包括根據本發明之第一態樣的發光轉換器或根據本發明之第二態樣包括磷光體強化光源。
應注意該等上述實施例闡釋而非限制本發明,及彼等熟習此項技術者可在不脫離本發明之附隨申請專利範圍內設計許多替代性實施例。
在該等申請專利範圍中,任何置於圓括號之間的參考符號不應視作限制該申請專利範圍。動詞「包括」及其動詞變化之應用並不排除除申請專利範圍說明之外的元件或步驟之存在。在元件前的冠詞「一(a)」或「一(an)」並不排除複數個此等元件之存在。本發明可藉由包括若干相異元件的硬體來實施。在該裝置申請專利範圍例舉的若干方法中,若干此等方法可藉由同一項目的硬體具體實施。在相互不同的附屬申請專利範圍中引用某些測量,這一事實並不表示此等測量之組合不能加以利用。
102‧‧‧層
104‧‧‧發光分子
106‧‧‧光
108‧‧‧發光分子
110‧‧‧發光分子
112‧‧‧光
150‧‧‧圖表
152‧‧‧曲線
154‧‧‧灰色陰影區域
156‧‧‧發射光譜
200‧‧‧發光轉換器
202‧‧‧第一有機發光材料
204‧‧‧層
206‧‧‧無機發光材料
208‧‧‧第二有機發光材料
220‧‧‧發光轉換器
222‧‧‧第三層
224‧‧‧第二層
226‧‧‧第一層
228‧‧‧散射粒子
240‧‧‧發光轉換器
242‧‧‧子區域
244‧‧‧基礎層
246‧‧‧子區域
260‧‧‧發光轉換器
262‧‧‧子區域
264‧‧‧基板層
266‧‧‧子區域
268‧‧‧子區域
300‧‧‧光發射光譜
350‧‧‧光發射光譜
400‧‧‧磷光體強化光源
402‧‧‧發光轉換器
404‧‧‧光混合腔室
406‧‧‧壁面
408‧‧‧基座
410‧‧‧藍色或UV LED/光源
430‧‧‧磷光體強化光源
432‧‧‧發光轉換器
460‧‧‧磷光體強化光源
462‧‧‧發光轉換器
464‧‧‧內腔室
466‧‧‧燈管
468‧‧‧藍色LED/光源
500‧‧‧照明器具
502‧‧‧磷光強化光源
圖1a示意性地顯示發光材料之自吸收,圖1b示意性地顯示由該激發光譜及該光發射分布之重疊引起的發光材料之自吸收,圖2示意性地顯示根據本發明之第一態樣的發光轉換器之不同實施例,圖3a及圖3b示意性地顯示特定發光轉換器自藍色發光二 極體接收光的光發射分佈,圖4示意性地顯示根據本發明之第二態樣的磷光體強化光源之三種實施例,及圖5示意性地顯示根據本發明之第三態樣的照明器具之實施例。
200‧‧‧發光轉換器
202‧‧‧第一有機發光材料
204‧‧‧層
206‧‧‧無機發光材料
208‧‧‧第二有機發光材料
220‧‧‧發光轉換器
222‧‧‧第三層
224‧‧‧第二層
226‧‧‧第一層
228‧‧‧散射粒子
240‧‧‧發光轉換器
242‧‧‧子區域
244‧‧‧基礎層
246‧‧‧子區域
260‧‧‧發光轉換器
262‧‧‧子區域
264‧‧‧基板層
266‧‧‧子區域
268‧‧‧子區域

Claims (15)

  1. 一種包括光源(410、468)的磷光體強化光源(400、430、460、502)之發光轉換器(200、220、240、260、402、432、462),該發光轉換器(200、220、240、260、402、432、462)包括第一有機發光材料(202)、第二有機發光材料(208)及第三無機發光材料(206),其中配置該第一有機發光材料(202)用於吸收第一部份由該光源(410、468)發射的光及/或吸收一部份由該第二有機發光材料(208)或該無機發光材料(206)之至少一者發射的光,及配置該第一有機發光材料(202)用於將至少一部份該吸收的光轉換成第一顏色分佈的光,配置該第二有機發光材料(208)用於吸收第二部份由該光源(410、468)發射的光及/或吸收一部份由該第一有機發光材料(202)或該無機發光材料(206)之至少一者發射的光,及配置該第二有機發光材料(208)用於將至少一部份該吸收的光轉換成第二顏色分佈的光,及配置該無機發光材料(206)用於吸收第三部份由該光源(410、468)發射的光及/或吸收一部份由該第一有機發光材料(202)或該第二有機發光材料(208)發射的光,及配置該無機發光材料(206)用於將至少一部份該吸收的光轉換成第三顏色分佈用於補償由該第一有機發光材料(202)及該第二有機發光材料(208)之至少一者之光的自吸收。
  2. 如請求項1之發光轉換器(200、220、240、260、402、432、462),其中 該第一顏色分佈包括紅光,配置該第二有機發光材料(208)用於僅吸收一部份由該光源(410、468)發射的光及/或吸收一部份由該無機發光材料(206)發射的光,該第二顏色分佈包括黃光,配置該無機發光材料(206)用於僅吸收第三部份由該光源(410、468)發射的光,及該第三顏色分佈包括在自490 nm至560 nm之光譜範圍內的光。
  3. 如請求項1之發光轉換器(200、220、240、260、402、432、462),其中該第二有機發光材料(208)係根據式(I)或(II)之化合物: 其中 G1係直鏈或支鏈烷基或含氧烷基CnH2n+1Om,n為自1至44之整數且m<n/2,或G1為Y;A、B、C、J及Q之各者獨立地為氫、異丙基、第三丁基、氟、甲氧基或未經取代之飽和的烷基CnH2n+1,n為自1至16之整數;G2、G3、G4及G5之至少兩者為氟,而G2、G3、G4及G5之剩餘者獨立地為氫、甲氧基或未經取代之飽和烷基CnH2n+1,n為自1至16之整數,R為直鏈或支鏈烷基或含氧烷基CnH2n+1Om,n為自1至44之整數且m<n/2,或R為氫、異丙基、第三丁基、氟、甲氧基或氰基,A、B、C、J及Q之各者獨立地為氫、異丙基、第三丁基、氟、甲氧基、氰基或未經取代之飽和烷基CnH2n+1,n為自1至16之整數。
  4. 如請求項3之發光轉換器(200、220、240、260、402、432、462),其中該第二有機發光材料(208)包括根據式(III)或(IV)之苝單醯胺化合物: 或該第二有機發光材料(208)包括根據式(V)或(VI)之經氟取代之苝雙醯胺化合物:
  5. 如請求項1之發光轉換器(200、220、240、260、402、432、462),其中該第一有機發光材料(202)包括苝衍生物。
  6. 如請求項1之發光轉換器(200、220、240、260、402、432、462),其中該無機發光材料(206)包括YAG:Ce或LuAG:Ce中至少一者。
  7. 如請求項1之包含在層(204)中的發光轉換器(200、220、240、260、402、432、462),其包括該第一有機發光材料(202)、該第二有機發光材料(208)及該無機發光材料(206)之混合物。
  8. 如請求項1之包括至少三層(222、224、226)之堆疊的發光轉換器(200、220、240、260、402、432、462),其中每一層(222、224、226)包括以下之群的單一發光材料:該第一有機發光材料(202)、該第二有機發光材料(208)及該無機發光材料(206)。
  9. 如請求項1之發光轉換器(200、220、240、260、402、432、462),其包括含有以下子區域的層包括以下之群之第一材料的第一子區域(242、262):該第一有機發光材料(202)、該第二有機發光材料(208)及該無機發光材料(206),及包括以下之群之第二材料的第二子區域(246、266):該第一有機發光材料(202)、該第二有機發光材料(208)及該無機發光材料(206),其中該第二材料係不同於該第一材料,該第一子區域(242、262)不包括該第二材料及該第二子區域(246、266)不包括該第一材料。
  10. 如請求項9之包括另一層(244)的發光轉換器(200、220、240、260、402、432、462),該另一層(244)包括以下之群之第三材料:該第一有機發光材料(202)、該第二有機發光材料(208)及該無機發光材料(206),其中該第三材 料係不同於該第一材料且不同於該第二材料。
  11. 如請求項9之發光轉換器(200、220、240、260、402、432、462),其中該層包括含有以下之群之第三材料的第三子區域(268):該第一有機發光材料(202)、該第二有機發光材料(208)及該無機發光材料(206),其中該第三材料係不同於該第一材料且不同於該第二材料,該第三子區域(268)不包括該第一材料且不包括該第二材料,該第一子區域(242、262)及該第二子區域(246、266)不包括該第三材料。
  12. 一種磷光體強化光源(400、430、460、502),其包括光源(410、468),如請求項1之發光轉換器(200、220、240、260、402、432、462)。
  13. 如請求項12之磷光體強化光源(400、430、460、502),其中該光源(410、468)發射藍光。
  14. 如請求項12之磷光體強化光源(400、430、460、502),其經配置以具有演色性指數大於75的光發射。
  15. 一種照明器具(500),其包括如請求項1之發光轉換器(200、220、240、260、402、432、462)或包括如請求項12之磷光體強化光源(400、430、460、502)。
TW101112847A 2011-04-12 2012-04-11 發光轉換器、磷光體強化光源或具有大於80之演色性指數之照明器具 TW201300704A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11016204 2011-04-12

Publications (1)

Publication Number Publication Date
TW201300704A true TW201300704A (zh) 2013-01-01

Family

ID=48137432

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101112847A TW201300704A (zh) 2011-04-12 2012-04-11 發光轉換器、磷光體強化光源或具有大於80之演色性指數之照明器具

Country Status (1)

Country Link
TW (1) TW201300704A (zh)

Similar Documents

Publication Publication Date Title
JP6032766B2 (ja) ルミネッセンスコンバータと、80より大きいcriを有する蛍光体強化光源又は照明器具
JP6363061B2 (ja) 白色発光モジュール
US7989833B2 (en) Silicon nanoparticle white light emitting diode device
Nishida et al. High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors
EP2417219B1 (en) Luminescent converter for a phosphor- enhanced light source comprising organic and inorganic phosphors
Nizamoglu et al. Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index
JP4477854B2 (ja) 蛍光体変換発光デバイス
JP2020098913A (ja) 燐光体変換発光ダイオード、ランプ、及び照明器具
US9923126B2 (en) Light emitting device having high color rendering using three phosphor types
TWI570361B (zh) 波長轉換元件
JP2010050438A (ja) 白色発光ダイオード
JP6434919B2 (ja) 光源、照明器具及び外科的な照明ユニット
TW201224112A (en) Light conversion layer comprising an organic phosphor combination
KR20100134779A (ko) 발광 장치
KR101706600B1 (ko) 고연색성 백색 발광 소자
JP4927907B2 (ja) 白色発光蛍光体およびその発光装置
KR101652258B1 (ko) 고연색성 백색 발광 소자
TW201300704A (zh) 發光轉換器、磷光體強化光源或具有大於80之演色性指數之照明器具
KR101855391B1 (ko) 고연색성 백색 발광 소자
JP6357107B2 (ja) 蛍光体、発光装置及び照明装置
TW201248931A (en) Phosphor composition and white light emitting device using the same
KR20120059057A (ko) 백색 조명 장치