TW201224112A - Light conversion layer comprising an organic phosphor combination - Google Patents

Light conversion layer comprising an organic phosphor combination Download PDF

Info

Publication number
TW201224112A
TW201224112A TW100134643A TW100134643A TW201224112A TW 201224112 A TW201224112 A TW 201224112A TW 100134643 A TW100134643 A TW 100134643A TW 100134643 A TW100134643 A TW 100134643A TW 201224112 A TW201224112 A TW 201224112A
Authority
TW
Taiwan
Prior art keywords
light
yellow
layer
luminescent dye
red
Prior art date
Application number
TW100134643A
Other languages
Chinese (zh)
Inventor
Martinus Petrus Joseph Peeters
Rifat Ata Mustafa Hikmet
Rene Theodorus Wegh
Bommel Ties Van
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201224112A publication Critical patent/TW201224112A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)

Abstract

A light conversion layer comprising at least one sub-layer, for obtaining light having a color rendering index (CRI) of at least 80, comprising an organic phosphor combination comprising at least one yellow-green emitting dye showing an intrinsic emission below 510 nm, and/or an emission below 530 nm after self-absorption is disclosed. Also disclosed is a light emitting device comprising such a light conversion layer, as well as a method for manufacturing such a device.

Description

201224112 六、發明說明: 【發明所屬之技術領域】 本發明係關於用於發光器件中包括有機磷光體組合之光 轉換層。 【先前技術】 可使用有機發光分子(即磷光體)將來自LED之藍光轉換 成其他色彩。磷光體通常經選擇以獲得具有期望相關色溫 (CCT)及色彩再現指數(CRI)之光源。 此一系統之一個問題在於磷光體之明顯自吸收。由於自 吸收以及磷光體-磷光體相互作用,發射峰位置可紅移高 達50 nm。此紅移對CRI之影響對於發射光譜最接近藍色 LED發射之磷光體(換言之,綠黃色發光磷光體)最為重 要。由於黃綠色磷光體之明顯紅移(由於自吸收),在光譜 中藍色與來自磷光體之綠黃色發射之間將存在間隙,此極 大地降低CRI。 US 6,903,626 B2闡述視有機發光材料及光致發光材料之 組合而定,可獲得自約3000 K至約6000 K之CCT及自約60 至95之CRI之寬範圍。 然而,業内需要避免CRI由於磷光體之自吸收而降低之 特定磷光體組合。 【發明内容】 本發明之目的係克服此問題,且提供包括磷光體組合且 在高效率下導致期望CCT及CRI之光轉換層。 根據本發明之第一態樣,此及其他目的係藉由用於獲得201224112 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a light conversion layer for use in a light-emitting device comprising an organic phosphor combination. [Prior Art] Organic light-emitting molecules (i.e., phosphors) can be used to convert blue light from LEDs into other colors. Phosphors are typically selected to obtain a source of light having a desired correlated color temperature (CCT) and color rendering index (CRI). One problem with this system is the apparent self-absorption of the phosphor. Due to self-absorption and phosphor-phosphor interaction, the emission peak position can be red-shifted up to 50 nm. The effect of this red shift on CRI is most important for phosphors whose emission spectrum is closest to the blue LED emission (in other words, green-yellow phosphor). Due to the apparent red shift of the yellow-green phosphor (due to self-absorption), there will be a gap between the blue color in the spectrum and the green-yellow emission from the phosphor, which greatly reduces the CRI. US 6,903,626 B2 describes a wide range of CCTs from about 3000 K to about 6000 K and CRI from about 60 to 95, depending on the combination of organic light-emitting material and photoluminescent material. However, there is a need in the industry to avoid specific phosphor combinations in which CRI is reduced due to self-absorption of the phosphor. SUMMARY OF THE INVENTION It is an object of the present invention to overcome this problem and to provide a light conversion layer comprising a phosphor combination and resulting in a desired CCT and CRI at high efficiency. According to a first aspect of the invention, this and other objects are obtained by

S 158389.doc 201224112 色彩再現指數(CRI)為至少80之光的光轉換層達成,該光 轉換層包括至少一個子層及有機磷光體組合,該有機磷光 體組合包括至少一種黃綠色發光染料,該染料顯示低於 510 nm之固有發射及/或自吸收後低於530 nm之發射。 適宜地,黃綠色發光染料顯示在450 nm至510 nm、或 470 nm至510 nm之範圍内之固有發射。此外,黃綠色發光 染料適宜地具有在430 nm至480 nm之範圍内之固有吸收 峰0 發光層進一步包括至少一種紅色發光染料及/或至少一 種橙色發光染料,以提供白光。紅色發光染料可具有(例 如)在55 0 nm至700 nm之範圍内之固有發射,且橙色發光 染料可具有(例如)在5 10 nm至6 5 0 nm之範圍内之固有發 射。 黃綠色發光染料之適宜實例係磷光體Lumogen® F黃083 (BASF)、BASF熱塑性塑膠F 084綠金(CAS登錄號:2744-50-5)、及溶劑黃98(CAS登錄號:12671-74-8); 紅色發光染料之適宜實例係填光體Lumogen® F紅305 (BASF)、Lumogen® F粉紅 285 (BASF)、及 Lumogen® F 紅 300 (BASF)。 橙色發光染料之適宜實例係磷光體Lumogen® F橙240 (BASF) ' Lumogen® F黃 170 (BASF)、及下式(F2DPI)之化 合物: 158389.doc 201224112S 158389.doc 201224112 The color rendering index (CRI) is achieved for a light conversion layer of at least 80 light, the light conversion layer comprising at least one sub-layer and an organic phosphor combination comprising at least one yellow-green luminescent dye, The dye exhibits an intrinsic emission below 510 nm and/or an emission below 530 nm after self-absorption. Suitably, the yellow-green luminescent dye exhibits an intrinsic emission in the range of 450 nm to 510 nm, or 470 nm to 510 nm. Further, the yellow-green luminescent dye suitably has an intrinsic absorption peak in the range of 430 nm to 480 nm. The luminescent layer further includes at least one red luminescent dye and/or at least one orange luminescent dye to provide white light. The red luminescent dye can have, for example, an intrinsic emission in the range of 55 0 nm to 700 nm, and the orange luminescent dye can have an intrinsic emission, for example, in the range of 5 10 nm to 65 50 nm. Suitable examples of yellow-green luminescent dyes are phosphor Lumogen® F yellow 083 (BASF), BASF thermoplastic F 084 green gold (CAS accession number: 2744-50-5), and solvent yellow 98 (CAS accession number: 12671-74) -8); Suitable examples of red luminescent dyes are Lumogen® F Red 305 (BASF), Lumogen® F Pink 285 (BASF), and Lumogen® F Red 300 (BASF). A suitable example of an orange luminescent dye is the phosphor Lumogen® F Orange 240 (BASF) 'Lumogen® F Yellow 170 (BASF), and the compound of the following formula (F2DPI): 158389.doc 201224112

將黃綠色、紅色及橙色發光染料納入單一子層中,或另 一選擇為’將黃綠色、紅色及橙色發光染料納入獨立之子 層中。 例如’可將黃綠色發光染料納入第一子層中且可將紅色 及橙色發光染料納入第二子層中;或可將黃綠色發光染料 及紅色發光染料納入第一子層中且可將橙色發光染料納入 第二子層中;或可將黃綠色發光染料及橙色發光染料納入 第一子層中且可將紅色發光染料納入第二子層中。 適宜地,染料之重量相對量之範圍對於黃綠色發光染料 而言為1,對於橙色發光染料而言為〇至〇 4,且對於紅色 發光染料而言為〇至0.3。較佳地,染料之重量相對量對於 黃綠色發光染料而言W,料橙色發光染料而言為〇」至 〇·3,且對於紅色發光染料而言為〇 〇5至〇 2 ^ π w換層可進- 之子層中包括散射粒子(即漫射體功能)。 子層適宜地包括聚(甲基丙烯酸甲酯)(ΡΜΜΑ)、聚對 二甲酸乙二醋叫ΡΕΤ之共聚物、聚卜 Π:聚(甲基丙婦酸甲嶋乙婦、聚碳酸二: Α矽乳烷、及/或丙烯酸酯聚合物。 在本發明之一實施例中,將光轉換層佈置在漫射體上。 I58389.doc 201224112 本發明亦係關於包括上述光轉換層之發光器件。此一發 光器件適宜包括發射波長範圍為400 nm至500 nm、較佳 420 nm至480 nm、更佳440 nm至460 nm之藍光之光源。 此外,本發明係關於用於製造發光器件之方法,包括: -提供光源;及 -佈置上述光轉換層以接收自該光源所發射光之至少一部 分。 應注意本發明係關於申請專利範圍中所陳述特徵之所有 可能組合。 【實施方式】 在本申請案中,「Y」意指黃綠色磷光體,「◦」意指橙 色磷光體,「R」意指紅色磷光體,且「D」意指漫射體。 表示法(ROYD)、(ROY)D、(RO)YD、及(Y)(0)(R)(D)描 述本發明光轉換層之不同組態,其中括弧内所排列之大寫 字母係指佈置於共同層中之磷光體/漫射體。 換言之:(ROYD) =經混合以形成單一層之紅色、橙色、 黃色磷光體及漫射粒子;(R〇Y)D=紅色、橙色及黃色磷光 體混合於單一層中,該單一層放置於具有漫射粒子之層頂 部以形成雙層堆疊;(R〇)YD=紅色及橙色磷光體混合於單 一層中,該單一層放置於黃色層及具有漫射粒子之層頂部 以形成三層堆疊;(R)(0)(Y)(D)=彼此上下放置之四個獨立 之層。 在產生本發明之研究工作中,意外地發現磷光體之自吸 收問題可藉由包括有機磷光體之光轉換層解決,該有機磷 158389.doc 201224112 光體包括至少一種黃綠色發光染料,該染料具有至少一些 低於510 nm之固有發射、及/或在欲使用基質中自吸收後 低於530 nm之發射(取決於染料之發射帶與吸收帶之間之 重疊)。 該等磷光體亦可與其他色彩組合以獲得白光。藉由使用 本發明組合,在2700 K及3000 K下可獲得效率>i80 Lm/W〇pt &CRI>80之光。磷光體組合能夠將在400 nm至500 nm之波 長範圍内之藍光轉換成在53〇 111]1至7〇〇 nm之波長範圍内之 光。 本文所用之自吸收」係指由磷光體發射之一些輻射由 磷光體自身吸收之過程。在本發明之上下文中,「固有發 射」係指磷光體在沒有自吸收影響之情況下之發射。 隨者(例如)因增加層厚度或因增加層内之染料濃度而使 侍層中之吸收增加,自吸收增加。在器件中,冑自led所 發射之光不在黃/綠色帶具有其最大值之位置時出現此種 情況。此意味著需要增加層之厚度或層内之染料漠度,以 與發光分子將由對應於其吸收最大值之光激發之情形相比 充分吸收LED光。 藉由兩個實驗闡釋作為本發明基礎之基本理念,該兩個 實驗顯示使用兩種不同類型之綠i色發光璃光體之影響·· 在第-個實驗中,具有如圖!中所顯示之固有發射特性 之磷光體Lumogen® F黃083 (BASF)(在下文中 「F083」)與藍色(450 nm)發光二極體組合使用。材料具有 在大約485 nm處之低波長發射峰且在大約46〇⑽處開始發 I58389.doc 201224112 射。此磷光體與PMMA基質中之紅色及橙色發光磷光體(紅 /橙重量比為1:1)組合且展示在3000 K下之CRI為90。 圖2顯示對於增加層中染料量之自吸收影響。可以看到 485 nm處之峰開始消失且530 nm處之峰的強度開始增加。 然而,低於520 nm之其餘強度足以獲得大於80之CRI。在 進行反稍積時,485 nm處之峰具有20 nm之半峰全幅值 (FWHM)。 當使用具有圖1中所顯示固有發射光譜之磷光體 Lumogen® F黃170 (BASF)(在下文中稱為「F1 70」)時,可 藉由與橙色及紅色發光磷光體組合獲得CCT為3000 K之白 光。基於在525 nm處具有強發射峰之固有發射光譜,將預 期CRI = 80。然而對於此磷光體與橙色及紅色發光磷光體之 所有組合而言,不可能達到高於〜55之CRI。在圖3中顯示 PMMA層中不同量之F170之自吸收之影響。此處可看到, 525 nm處存在之峰開始消失。 亦測試另一黃綠色發光化合物(稱為F2DPI),其結構顯 示於圖4中。此分子亦與橙色及紅色發光磷光體組合。此 處同樣不可能獲得CRI高於60之白光。在圖5中顯示在不同 厚度下此分子之發光。(分子之發射光譜在500 nm處開 始;45 0 nm處之強峰係用於記錄發射光譜之激發光。) 該等實例顯示,具有期望之相關色溫(CCT)及色彩再現 指數(CRI)之光源可藉由仔細選擇磷光體組合中用於轉換 來自諸如LED等光源之藍光的綠黃色發光染料達成。特定 而言,有機磷光體需要包括黃綠色發光染料,該染料吸收The yellow-green, red, and orange luminescent dyes are incorporated into a single sub-layer, or alternatively the yellow-green, red, and orange luminescent dyes are incorporated into separate sub-layers. For example, a yellow-green luminescent dye may be incorporated into the first sub-layer and red and orange luminescent dyes may be incorporated into the second sub-layer; or a yellow-green luminescent dye and a red luminescent dye may be incorporated into the first sub-layer and may be orange The luminescent dye is incorporated into the second sub-layer; or the yellow-green luminescent dye and the orange luminescent dye can be incorporated into the first sub-layer and the red luminescent dye can be incorporated into the second sub-layer. Suitably, the relative amount by weight of the dye ranges from 1 for yellow-green luminescent dyes, from 〇 to 〇 4 for orange luminescent dyes, and from 〇 to 0.3 for red luminescent dyes. Preferably, the relative amount of the dye is W for the yellow-green luminescent dye, 〇" to 〇3 for the orange luminescent dye, and 〇〇5 to ^2 ^ π for the red luminescent dye. The layer may include - scattering particles (ie, diffuser function). The sub-layer suitably comprises a poly(methyl methacrylate) (ruthenium), a copolymer of polyethylene terephthalate, and a polydip: poly(methyl acetoacetate, acetaminophen, polycarbonate 2: Latexane, and/or acrylate polymer. In one embodiment of the invention, the light converting layer is disposed on the diffuser. I58389.doc 201224112 The present invention is also directed to a light emitting device including the above described light converting layer The light emitting device suitably comprises a light source emitting blue light having a wavelength in the range of 400 nm to 500 nm, preferably 420 nm to 480 nm, more preferably 440 nm to 460 nm. Further, the present invention relates to a method for manufacturing a light emitting device. Included: - providing a light source; and - arranging the light conversion layer to receive at least a portion of the light emitted from the light source. It should be noted that the present invention pertains to all possible combinations of the features recited in the claims. In the application, "Y" means yellow-green phosphor, "◦" means orange phosphor, "R" means red phosphor, and "D" means diffuser. Representation (ROYD), (ROY ) D, (RO) YD, and (Y) (0) (R (D) describes the different configurations of the light conversion layer of the present invention, wherein the capital letters arranged in parentheses refer to the phosphors/diffuses arranged in the common layer. In other words: (ROYD) = mixed to form a single layer Red, orange, yellow phosphor and diffuse particles; (R〇Y) D = red, orange and yellow phosphors mixed in a single layer placed on top of the layer with diffusing particles to form a two-layer stack (R〇) YD=red and orange phosphors are mixed in a single layer placed on top of the yellow layer and the layer with diffuse particles to form a three-layer stack; (R)(0)(Y)(D ) = four separate layers placed one above the other. In the work of producing the present invention, it was unexpectedly found that the self-absorption of the phosphor can be solved by a light converting layer comprising an organic phosphor 158389.doc 201224112 The light body comprises at least one yellow-green luminescent dye having at least some intrinsic emission below 510 nm and/or emission below 530 nm after self-absorption in the substrate to be used (depending on the emission band and absorption band of the dye) Overlap) The phosphors can also be combined with other colors to obtain white light. By using the combination of the present invention, an efficiency >i80 Lm/W〇pt &CRI>80 light can be obtained at 2700 K and 3000 K. Phosphor composition The ability to convert blue light in the wavelength range of 400 nm to 500 nm into light in the wavelength range of 53 〇 111] 1 to 7 〇〇 nm. Self-absorption as used herein refers to some radiation emitted by the phosphor. The process by which the phosphor itself absorbs. In the context of the present invention, "intrinsic emission" refers to the emission of a phosphor without self-absorption. The self-absorption is increased, for example, by increasing the layer thickness or by increasing the concentration of the dye in the layer. In the device, this occurs when the light emitted by the LED is not at the position where the yellow/green band has its maximum value. This means that it is necessary to increase the thickness of the layer or the degree of dye in the layer to sufficiently absorb the LED light as compared to the case where the luminescent molecule will be excited by light corresponding to its absorption maximum. The two concepts, which are the basis of the present invention, are explained by two experiments. The two experiments show the effect of using two different types of green i-color luminescent phosphors. · In the first experiment, there is a picture! The phosphor Lumogen® F Yellow 083 (BASF) (hereinafter "F083") and the blue (450 nm) light-emitting diode are used in combination with the inherent emission characteristics shown in the figure. The material has a low wavelength emission peak at approximately 485 nm and begins to emit I58389.doc 201224112 at approximately 46 〇 (10). This phosphor was combined with a red and orange luminescent phosphor (red/orange weight ratio of 1:1) in the PMMA matrix and exhibited a CRI of 90 at 3000 K. Figure 2 shows the self-absorption effect on the amount of dye in the added layer. It can be seen that the peak at 485 nm begins to disappear and the intensity at 530 nm begins to increase. However, the remaining intensity below 520 nm is sufficient to achieve a CRI greater than 80. At the inverse product, the peak at 485 nm has a full-width half-peak (FWHM) of 20 nm. When a phosphor Lumogen® F Yellow 170 (BASF) having an intrinsic emission spectrum as shown in Fig. 1 (hereinafter referred to as "F1 70") is used, a CCT of 3000 K can be obtained by combining with an orange and red luminescent phosphor. White light. Based on the intrinsic emission spectrum with a strong emission peak at 525 nm, CRI = 80 is expected. However, for all combinations of this phosphor and the orange and red luminescent phosphors, it is not possible to achieve a CRI above ~55. The effect of self-absorption of different amounts of F170 in the PMMA layer is shown in Figure 3. It can be seen here that the peak at 525 nm begins to disappear. Another yellow-green luminescent compound (referred to as F2DPI) was also tested, the structure of which is shown in Fig. 4. This molecule is also combined with orange and red luminescent phosphors. It is also impossible to obtain white light with a CRI higher than 60. The luminescence of this molecule at different thicknesses is shown in Figure 5. (The emission spectrum of the molecule starts at 500 nm; the strong peak at 45 0 nm is used to record the excitation light of the emission spectrum.) These examples show that there is a desired correlated color temperature (CCT) and color rendering index (CRI). The light source can be achieved by careful selection of a green-yellow luminescent dye in the phosphor combination for converting blue light from a source such as an LED. In particular, organic phosphors need to include a yellow-green luminescent dye that absorbs

158389.doc S 201224112 450 nm處之i光且具有至少一些低於510 nm之固有發射強 度、及1或自吸收後至少一些低於530 nm之發射強度。因 此’光4中藍色與來自碟光體之綠黃色發射之間之間隙足 夠小,以致獲得高於8G之Μ之CRI值。換言之,光譜中 將存在光⑽獲得大於8〇之cm 只綠色發光染料之固有發射光譜通常由若干相對窄(重 疊)之發射峰組成’例如在F〇83、(圖”及咖^(圖5) 之清形中。在該態樣中,相料係指反褶積半峰全幅值強 度(通申由FWHM表tf )為〇 nm至4〇 nm,例如2〇 nm。在此 一情形中,藉由顯示至少一個低於51〇 nm2固有發射峰來 滿足具有至少一些低於51〇 nm之固有發射之條件。 另一選擇為,黃綠色發光染料之固有發射光譜可由一或 多個較寬發射帶(即FWHM高於40 nm)組成。圖1〇中顯示由 一個寬帶組成之發射光譜之實例。密集之虛跡線係固有發 射’且鬆散之虛跡線係再吸收後之發射。 在此情形中,即使固有發射帶之最大值高於51〇 nm,藉 由使固有發射帶在半峰值強度處之短波長邊緣之光譜位置 低於510 nm來滿足具有至少一些低於51〇 nm之固有發射之 條件。在發射光譜由一個以上寬發射帶組成之情形中,至 ;一個反褶積固有發射帶之半峰值強度處之短波長邊緣的 光谱位置應低於510 nm。 在本發明之上下文中,當至少一個固有發射峰之半峰值 強度處之短波長邊緣的光譜位置低於51〇 nm時,認為滿足 特徵「顯示至少一個低於5 10 nm之固有發射」。158389.doc S 201224112 i-light at 450 nm and having at least some inherent emission intensity below 510 nm, and 1 or at least some emission intensity below 530 nm after self-absorption. Therefore, the gap between the blue light in the light 4 and the green-yellow emission from the optical body is sufficiently small to obtain a CRI value higher than 8G. In other words, there will be light (10) in the spectrum to obtain more than 8 〇 cm. The intrinsic emission spectrum of a green luminescent dye is usually composed of several relatively narrow (overlapping) emission peaks', for example, at F〇83, (Fig.) and coffee^(Fig. 5 In this aspect, the phase material refers to the full-amplitude intensity of the deconvoluted half-peak (from the FWHM table tf) to 〇nm to 4〇nm, for example 2〇nm. In this case A condition having at least some intrinsic emission below 51 〇 nm is satisfied by exhibiting at least one intrinsic emission peak below 51 〇 nm 2 . Alternatively, the intrinsic emission spectrum of the yellow-green luminescent dye may be one or more A wide emission band (ie, FWHM above 40 nm) is composed. An example of an emission spectrum consisting of a wide band is shown in Figure 1. The densely imaginary trace is inherently emitted' and the loosely imaginary trace is re-absorbed. In this case, even if the maximum value of the intrinsic emission band is higher than 51 〇 nm, it is satisfied that at least some are lower than 51 〇 nm by making the spectral position of the intrinsic emission band at the short-wavelength edge at the half-peak intensity lower than 510 nm. Inherent emission conditions. In the case of more than one wide emission band, the spectral position of the short wavelength edge at the half-peak intensity of a deconvolution intrinsic emission band should be below 510 nm. In the context of the present invention, when at least one intrinsic emission When the spectral position of the short-wavelength edge at the peak intensity of the peak is lower than 51 〇 nm, it is considered that the characteristic "displays at least one inherent emission below 5 10 nm" is satisfied.

S 158389.doc 201224112 類似地,在本發明之上下文中,當自吸收後至少一個發 射峰之半峰值強度處之短波長邊緣的光譜位置低於530 nm 時,認為滿足特徵「顯示自吸收後至少一個低於530 nm之 發射」。 已意外發現包括Lumogen F083(綠黃色)、Lumogen F240 (橙色)及Lumogen F305(紅色)之特殊組合的發光器件產生 效率及CRI方面之優良性質。 可依照本發明代替F083使用(即作為具有至少一些低於 510 nm之固有發射的黃綠色發光染料)之其他適宜磷光體 係例如BASF熱塑性塑膠F 084綠金(CAS登錄號:2744-50-5)、及溶劑黃 98(CAS 登錄號:12671-74-8)。 可依照本發明代替F240及F305使用(即作為橙色-紅色發 光染料)以與黃綠色發光染料組合達到大於80之CRI的其他 適宜碌光體係例如Lumogen® F粉紅285 (BASF)、 Lumogen® F紅 300 (BASF)、Lumogen® F黃 170 (BASF)、及 F2DPI(參見圖4)。另外,藉由常規實驗,熟習此項技術者 將能夠找到具有如在隨附申請專利範圍中所定義之所需性 質的其他磷光體。 欲與至少一個具有至少一些低於510 nm之固有發射的黃 綠色發光染料組合使用之紅色-橙色發光染料之數量可係 任何數量,較佳自1至5,更佳2。 可將Lumogen納入共同層或獨立之層中。可藉由使用不 同層厚度及/或層中不同發光染料濃度來達成不同色點。 基質材料中之染料濃度優選低於5 wt%,更佳低於0· 1 158389.doc -10- 201224112 wt%。 較佳地,總層厚度小於3 mm,更佳小於500微米。當使 用分廣結構時,個別層之厚度較佳小於i mm,更佳小於 100微米。 適宜地,將紅色及橙色發光染料混合於一個層中,於獨 立之層及第三層中之綠黃色發光染料具有漫射體功能。將 該等層以(例如)順序(R0)YD(即紅色+橙色_黃綠色漫射體) 彼此上下堆疊’其中紅色-橙色層最接近藍光源(但層之次 序可改變)。 另一選擇為’將所有三種lumogen全部混合於單一層 中’其中漫射體層在頂部。在另一實施例中’將所有組份 (紅色、撥色、綠黃色lum〇gen及用於漫射體功能之光散射 粒子)納入單一層中。 在所建議實施例中之每一者中lumogen之重量相對量之 範圍對於黃色而言為1,對於橙色而言為〇至〇·4且對於紅 色而言為0至0.3(視目標CCT而定)。更佳地,相對於黃綠 色染料量,橙色染料量之範圍為0.1至0.3,且紅色染料量 之範圍為0.05至0.2。 適宜地,將lumogen納入聚(甲基丙烯酸曱酯)(PMMA)之 層中。可用作基質之其他材料包括聚對苯二甲酸乙二醋 (PET)、PET之共聚物、聚萘二甲酸乙二酯(PEN)、聚(甲基 丙烯酸甲酯)聚苯乙烯、聚碳酸酯、聚矽氧、聚矽氧垸、 及丙烯酸酯聚合物。當併入若干磷光體/漫射體層時,佈 置該等層以使其彼此光學接觸。 158389.doc -11 - 201224112 就漫射體功能而言’可將諸如氧化鋁或氧化鈦粒子等無 機粒子或聚合物散射粒子納入層中。 本文所用之「染料」、「磷光體」及「Luin〇gen」可互換 使用,以描述將第一波長之光轉換成第二波長之光的發光 材料。 根據本發明欲使用之適宜光源係(例如)發光二極體 (LED)、燈或雷射。較佳地,根據本發明欲使用之光源發 射藍光’即在波長範圍400 nm至500 nm、較佳420 nm至 480 nm、更佳440 nm至460 nm内具有強度最大值。 可以以下方式製造包括本發明磷光體組合之發光器件: 將染料混合於聚合物中且然後產生薄膜。此可藉由首先 產生含有染料之化合物且最終產生漫射體粒子來實施。其 後,該粒子可經熔融處理(擠出)以產生發光材料於聚合物 基質中之薄膜。在替代方法中’可將聚合物及染料溶解於 適宜溶劑中且然後施加在基板頂部以產生發光塗層。可使 用各種組態以產生器件。 在圖ό中顯示包括本發明光轉換層之發光器件的兩個示 意性實例。圖6a顯示LED放置於具有高反射表面之混合室 中的組態’其另外稱為下射燈。將光轉換單元放置於出射 表面處用於產生白光。在圖讣中顯示將led放置於覆蓋有 高反射漫射體之圓柱體之底半部處的組態。圓柱體之另一 半由光轉換層覆蓋’光自該光轉換層離開器件。 實例 實例1 :分層系統(Y)(〇)(R)(D) 158389.doc •12· 201224112 使用三種Lumogen : F083,S 158389.doc 201224112 Similarly, in the context of the present invention, when the spectral position of the short-wavelength edge at the half-peak intensity of at least one of the emission peaks after self-absorption is lower than 530 nm, it is considered that the characteristic "displays at least one after self-absorption" Emissions below 530 nm". Luminescent devices including Lumogen F083 (greenish yellow), Lumogen F240 (orange), and Lumogen F305 (red) have unexpectedly been found to produce excellent efficiency in terms of efficiency and CRI. Other suitable phosphorescent systems such as BASF thermoplastic F 084 green gold (CAS accession number: 2744-50-5) may be used in accordance with the present invention in place of F083 (i.e., as a yellow-green luminescent dye having at least some inherent emission below 510 nm). And Solvent Yellow 98 (CAS registration number: 12671-74-8). Other suitable light systems that can be used in place of F240 and F305 (i.e., as orange-red luminescent dyes) in combination with yellow-green luminescent dyes to achieve CRI greater than 80 in accordance with the present invention, such as Lumogen® F Pink 285 (BASF), Lumogen® F Red 300 (BASF), Lumogen® F Yellow 170 (BASF), and F2DPI (see Figure 4). In addition, by routine experimentation, those skilled in the art will be able to find other phosphors having the desired properties as defined in the accompanying claims. The amount of red-orange luminescent dye to be used in combination with at least one yellow-green luminescent dye having at least some intrinsic emission below 510 nm may be any number, preferably from 1 to 5, more preferably 2. Lumogen can be incorporated into a common layer or a separate layer. Different color points can be achieved by using different layer thicknesses and/or different luminescent dye concentrations in the layer. The concentration of the dye in the matrix material is preferably less than 5 wt%, more preferably less than 0·1 158389.doc -10- 201224112 wt%. Preferably, the total layer thickness is less than 3 mm, more preferably less than 500 microns. When a wide structure is used, the thickness of the individual layers is preferably less than i mm, more preferably less than 100 microns. Suitably, the red and orange luminescent dyes are mixed in one layer, and the green-yellow luminescent dyes in the separate layers and the third layer have a diffusing function. The layers are stacked one on top of the other in a sequence (R0) YD (i.e., red + orange - yellow-green diffuser) where the red-orange layer is closest to the blue source (although the order of the layers can be changed). Another option is to 'mix all three lumogens in a single layer' where the diffuser layer is at the top. In another embodiment, all components (red, shaded, greenish yellow lum〇gen and light scattering particles for diffuser function) are incorporated into a single layer. The relative amount of weight of lumogen in each of the suggested embodiments ranges from 1 for yellow, from 〇 to 〇·4 for orange and from 0 to 0.3 for red (depending on target CCT) ). More preferably, the amount of the orange dye ranges from 0.1 to 0.3 with respect to the amount of the yellow-green dye, and the amount of the red dye ranges from 0.05 to 0.2. Suitably, the lumogen is incorporated into a layer of poly(p-methyl methacrylate) (PMMA). Other materials that can be used as a substrate include polyethylene terephthalate (PET), copolymers of PET, polyethylene naphthalate (PEN), poly(methyl methacrylate) polystyrene, polycarbonate Ester, polyoxo, polyoxonium, and acrylate polymers. When several phosphor/diffuser layers are incorporated, the layers are arranged to be in optical contact with each other. 158389.doc -11 - 201224112 In terms of diffuser function, inorganic particles or polymer scattering particles such as alumina or titanium oxide particles can be incorporated into the layer. As used herein, "dye", "phosphor" and "Luin〇gen" are used interchangeably to describe a luminescent material that converts light of a first wavelength to light of a second wavelength. Suitable light sources to be used in accordance with the present invention are, for example, light emitting diodes (LEDs), lamps or lasers. Preferably, the light source to be used in accordance with the present invention emits blue light having a maximum intensity in the wavelength range of 400 nm to 500 nm, preferably 420 nm to 480 nm, and more preferably 440 nm to 460 nm. A light-emitting device comprising the phosphor combination of the present invention can be fabricated in the following manner: The dye is mixed in a polymer and then a film is produced. This can be carried out by first producing a dye-containing compound and ultimately producing a diffuser particle. Thereafter, the particles can be melt processed (extruded) to produce a film of the luminescent material in the polymer matrix. In an alternative method, the polymer and dye can be dissolved in a suitable solvent and then applied to the top of the substrate to produce a luminescent coating. Various configurations can be used to create the device. Two illustrative examples of a light-emitting device comprising the light-converting layer of the present invention are shown in the drawings. Figure 6a shows the configuration of an LED placed in a mixing chamber with a highly reflective surface' which is otherwise referred to as a downlight. A light conversion unit is placed at the exit surface for generating white light. The configuration in which the led is placed at the bottom half of the cylinder covered with the highly reflective diffuser is shown in the figure. The other half of the cylinder is covered by a light conversion layer from which light exits the device. Example Example 1: Hierarchical system (Y) (〇) (R) (D) 158389.doc •12· 201224112 Using three Lumogen: F083,

Lumogen® F紅305 (BASF)(在下文中稱為 F305),及Lumogen® F Red 305 (BASF) (hereinafter referred to as F305), and

Lumogen® F 橙 240 (BASF)(在下文中稱為 F240) 在圖6a中示意性顯示之器件中使用四個獨立之層。使用 三種不同的Lumogen發射體可導致具有高效率及高CRI之 白光。在PMMA中使用之紅/橙比率(重量)為1,對於2700 K及3000 K二者而言獲得大於95之CRI及超過190 Lm/Wopt 之效率。 實例2:將紅色及橙色組合於單一層[(RO)YD】中 在圖6a中所顯示之組態中使用Lumogen F083(黃綠色)、 Lumogen F240(櫪色)及Lumogen F305(紅色)作為磷光體。 將紅色及橙色Lumogen混合於PMMA箔中。此箔與含有黃 綠色Lumogen之箔組合使用且將堆疊放在漫射體薄膜頂 部。確保層間光學接觸。藉由使用不同厚度之紅/橙色箔 (RO)及黃色箔(Y)來獲得不同色點。在箱中’使染料濃度 保持恒定》將該等箔施加在標準漫射體(D)上。圖7顯示效 率及CRI隨R/(R+〇)(即F305之重量量相對於紅/橙色箔中 F305及F240之重量量之和)而變化。 在積分球中量測下射燈(=6a)之性能。將轉換效率(CE)定 義為來自白色下射燈(即包含光轉換層)之流明除以來自相 同下射燈(圖6a)(即無光轉換層及漫射體)之藍光之光學瓦 特。對於此系統而言,對於R/(R+O) = 0.6而言黑體線(BBL) 158389.doc -13- 201224112 上CCT=3000 K時之效率據估計為187 Lm/Wopt,其中CRI 為約88。在此情形中有機磷光體系統之效率與無機遠程構 光體系統相當。 由於使用三種不同Lumogen及一種藍光源光譜,故存在 一種以上可導致相同白色點之解決方案。使用不同 R/(R+0)比率來實施更多實驗。令人驚訝地,發現可使用 Lumogen之不同組合獲得相同CRI,而效率顯著不同。例 如,在3000 K下(圖7),對於R/(R+O)=0.6而言效率僅為180 Lm/Wopt 或對於 R/(R+O)=0.2而言效率為210 Lm/Wopt,CRI 可能均為85。隨著橙色分數(=降低紅色分數)增加,CE增 加。預期此係由於用橙色(高LE)代替紅色(低LE)而使光譜 之流明當量增加。 在圖8中給出不同組態之光譜(在BBL上所有均内插至 3 000 K)。注意,三種組份之光譜貢獻與重量比不同。在 圖9中顯示來自不同光譜之紅色及橙色的光譜比隨重量比 之變化。可以看到,在0.2至0.6之R/(R+0)範圍中,光譜比 僅稍微變化。然而,如上文所顯示,該等光譜變化對效率 及CRI具有顯著影響。 實例3 :將紅色、橙色及黃色組合於單一層(ROY)D中 在實例2中,將橙色及紅色Lumogen混合於PMMA之單一 層中且黃色Lumogen及漫射體在獨立之層中(所有均光學接 觸)。在該實施例中,我們闡述在單一層中具有三種 Lumogen、在頂部具有漫射體之實驗,其在圖6b中所顯示 組態中使用Lumogen F083(黃色)、Lumogen F240(橙色)及 158389.doc -14· 201224112Lumogen® F Orange 240 (BASF) (hereinafter referred to as F240) uses four separate layers in the device schematically shown in Figure 6a. The use of three different Lumogen emitters results in white light with high efficiency and high CRI. The red/orange ratio (by weight) used in PMMA was 1, and a CRI greater than 95 and an efficiency exceeding 190 Lm/Wopt were obtained for both 2700 K and 3000 K. Example 2: Combining red and orange in a single layer [(RO)YD] Lumogen F083 (yellow-green), Lumogen F240 (yellow) and Lumogen F305 (red) were used as phosphorescence in the configuration shown in Figure 6a body. Red and orange Lumogen were mixed in PMMA foil. This foil was used in combination with a foil containing yellow-green Lumogen and placed on top of the diffuser film. Ensure optical contact between the layers. Different color points are obtained by using different thicknesses of red/orange foil (RO) and yellow foil (Y). The foils were applied to the standard diffuser (D) by keeping the dye concentration constant in the box. Figure 7 shows the efficiency and CRI as a function of R/(R + 〇) (i.e., the weight of F305 relative to the sum of the weights of F305 and F240 in the red/orange foil). The performance of the spotlight (=6a) is measured in the integrating sphere. The conversion efficiency (CE) is defined as the lumens from the white downlight (i.e., including the light conversion layer) divided by the optical watts of the blue light from the same downlight (Fig. 6a) (i.e., without the light conversion layer and diffuser). For this system, for R/(R+O) = 0.6, the efficiency of the black body line (BBL) 158389.doc -13- 201224112 at CCT=3000 K is estimated to be 187 Lm/Wopt, where CRI is approximately 88. In this case the efficiency of the organic phosphor system is comparable to that of the inorganic remote photostructure system. Due to the use of three different Lumogen and one blue source spectrum, there are more than one solution that can result in the same white point. More experiments were performed using different R/(R+0) ratios. Surprisingly, it was found that the same CRI can be obtained using different combinations of Lumogen with significantly different efficiencies. For example, at 3000 K (Fig. 7), the efficiency is only 180 Lm/Wopt for R/(R+O) = 0.6 or 210 Lm/Wopt for R/(R+O) = 0.2, The CRI may be 85. As the orange fraction (=reduce red fraction) increases, CE increases. This is expected to increase the lumen equivalent of the spectrum by replacing the red (low LE) with orange (high LE). The spectra of the different configurations are given in Figure 8 (all interpolated to 3 000 K on the BBL). Note that the spectral contributions of the three components are different from the weight ratio. The spectral ratios of red and orange from different spectra are shown in Figure 9 as a function of weight. It can be seen that in the range of R/(R+0) of 0.2 to 0.6, the spectral ratio changes only slightly. However, as shown above, these spectral changes have a significant impact on efficiency and CRI. Example 3: Combination of red, orange, and yellow in a single layer (ROY) D In Example 2, orange and red Lumogen were mixed in a single layer of PMMA and yellow Lumogen and diffuser were in separate layers (all Optical contact). In this example, we describe an experiment with three Lumogens in a single layer and a diffuser at the top, which uses Lumogen F083 (yellow), Lumogen F240 (orange), and 158389 in the configuration shown in Figure 6b. Doc -14· 201224112

Lumogen F305(紅色)作為礙光體。 藉由調節lumogen層之濃度及厚度獲得不同色點。在第 一例子中,將比率R/(R+0)Lumogen固定為0.3(源自 (RO)YD系統,實例2)。使用圖6b之組態在積分球中量測 系統之效率及CRI。 相對於實例2中之結果,CRI降低、紅色再現降低且效率 增加之事實表明,黃色、橙色及紅色之光譜貢獻有所改 變。當研究不同系統之光譜時,發現由於將不同lumogen 混合於一個層中,R/(O+R)=0.3之(ROY)D系統的光譜更類 似於對於(RO)YD系統而言R/(O+R) = 0,15之光譜,即CRI低 於80。在將三種lumogen混合至單一層中之情形中,需要 調節紅色及检色lumogen之重量比以獲得所需CRI。已發 現,對於(ROY)D系統而言,0.35之R/(R+0)重量比接近最 優,即導致在CCT 3000 K下CRI為84。 實例4:將紅色、橙色、黃色及散射粒子組合於單一層 (ROYD)中 在圖6b中所顯示組態中使用Lumogen F083(黃色)、 Lumogen F240(撥色)及Lumogen F305(紅色)作為填光體。 在此實施例中,將所有組份(三種lumogen及散射粒子)混合 至單一層中。將以重量計之R/(〇+R)固定為0.35以在3000 K下以最高效率獲得CRI = 80。在R之較低濃度下,CRI低於 80。在積分球中量測系統之效率及CRI。再次,CRI低於 (RO)YD系統者(在相同R/(0+R)重量比下)且CRI更低。可 藉由調節R/(0+R)比率來調節CRI及效率。 158389.doc -15- 201224112Lumogen F305 (red) acts as a light barrier. Different color points are obtained by adjusting the concentration and thickness of the lumogen layer. In the first example, the ratio R/(R+0) Lumogen was fixed to 0.3 (derived from the (RO) YD system, Example 2). Use the configuration of Figure 6b to measure the efficiency and CRI of the system in the integrating sphere. Relative to the results in Example 2, the fact that the CRI was lowered, the red reproduction was lowered, and the efficiency was increased, indicating that the spectral contributions of yellow, orange, and red were changed. When studying the spectra of different systems, it was found that the spectrum of the (ROY)D system with R/(O+R)=0.3 is more similar to R/( for the (RO)YD system due to the mixing of different lumogens in one layer. O+R) = 0,15 spectrum, ie CRI below 80. In the case where three lumogens are mixed into a single layer, it is necessary to adjust the weight ratio of the red and the color detection lumogen to obtain the desired CRI. It has been found that for the (ROY)D system, the R/(R+0) weight ratio of 0.35 is close to optimal, resulting in a CRI of 84 at CCT 3000 K. Example 4: Combining red, orange, yellow, and scattering particles in a single layer (ROYD) using Lumogen F083 (yellow), Lumogen F240 (dial), and Lumogen F305 (red) as the configuration shown in Figure 6b Light body. In this example, all components (three lumogens and scattering particles) were mixed into a single layer. R/(〇+R) by weight was fixed at 0.35 to obtain CRI = 80 at 3000 K with maximum efficiency. At lower concentrations of R, the CRI is below 80. Measure the efficiency and CRI of the system in the integrating sphere. Again, the CRI is lower than the (RO)YD system (at the same R/(0+R) weight ratio) and the CRI is lower. CRI and efficiency can be adjusted by adjusting the R/(0+R) ratio. 158389.doc -15- 201224112

實例5 :使用(ROYD)、(R)(0)(Y)(D)、(ROY)D、(RO)YD 使用三種Lumogen : F170,Example 5: Using (ROYD), (R) (0) (Y) (D), (ROY) D, (RO) YD using three Lumogen: F170,

Lumogen® F紅305 (BASF)(在下文中稱為 F305),及Lumogen® F Red 305 (BASF) (hereinafter referred to as F305), and

Lumogen® F橙 240 (BASF)(在下文中稱為 F240) 可使用CCT=3000 K之藍色LED光源製造燈。然而,不 可能獲得大於60之CRI。 熟習此項技術者應認識到,本發明決不限於上文所述較 佳實施例。相反,在隨附申請專利範圍之範疇内可有諸多 修改及變化。 【圖式簡單說明】 圖1顯示在不存在自吸收之情況下鱗光體Lumogen® F黃 083 (BASF)及磷光體Lumogen® F黃170 (BASF)之發射光 譜。 圖2顯示自吸收對磷光體Lumogen® F黃083 (BASF)之發 射光譜之影響。 圖3顯示自吸收對磷光體Lumogen® F黃170 (BASF)之發 射光譜之影響。 圖4顯示磷光體分子F2DPI之結構。 圖5顯示來自各種厚度之磷光體分子F2DPI之發光。 圖6a及6b顯示包括本發明光轉換層之發光器件的不同組 態。 圖7顯示對於含有組合於單層中之紅色及橙色磷光體 158389.doc -16· 201224112 ((RO)YD系統)之器件而言效率及CRI隨R/(R+0)之變化。 圖8顯示Lumogen組合之内插白譜,如在下射燈模組 (CCT=3000 K)中所量測。 圖9顯示對於(RO)YD系統而言,基於圖8之光譜之紅色 磷光體光譜分數與紅色磷光體重量分數之間的關係。 圖10顯示由寬發射帶組成之黃綠色發光染料的理論發射 光譜。 【主要元件符號說明】Lumogen® F Orange 240 (BASF) (hereafter referred to as F240) Lamps can be made using a blue LED source with CCT = 3000 K. However, it is not possible to obtain a CRI greater than 60. Those skilled in the art will recognize that the present invention is in no way limited to the preferred embodiments described above. On the contrary, many modifications and variations are possible within the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows the emission spectrum of the luminal Lumogen® F Yellow 083 (BASF) and the phosphor Lumogen® F Yellow 170 (BASF) in the absence of self-absorption. Figure 2 shows the effect of self-absorption on the emission spectrum of the phosphor Lumogen® F Yellow 083 (BASF). Figure 3 shows the effect of self-absorption on the emission spectrum of the phosphor Lumogen® F Yellow 170 (BASF). Figure 4 shows the structure of the phosphor molecule F2DPI. Figure 5 shows the luminescence of phosphor molecules F2DPI from various thicknesses. Figures 6a and 6b show different configurations of a light-emitting device comprising a light converting layer of the present invention. Figure 7 shows the efficiency and CRI as a function of R/(R+0) for devices containing red and orange phosphors 158389.doc -16· 201224112 ((RO)YD system) combined in a single layer. Figure 8 shows the interpolated white spectrum of the Lumogen combination, as measured in the downlight module (CCT = 3000 K). Figure 9 shows the relationship between the red phosphor spectral fraction based on the spectrum of Figure 8 and the red phosphor weight fraction for the (RO) YD system. Figure 10 shows the theoretical emission spectrum of a yellow-green luminescent dye composed of a broad emission band. [Main component symbol description]

10 LED 20 混合室 30 光轉換單元10 LED 20 mixing chamber 30 light conversion unit

40 LED 50 覆蓋有高反射漫射體之圓柱體之底半部 60 由光轉換層覆蓋之圓柱體之另一半 158389.doc · 17·40 LED 50 Covering the bottom half of the cylinder with a highly reflective diffuser 60 The other half of the cylinder covered by the light conversion layer 158389.doc · 17·

Claims (1)

201224112 七、申請專利範圍: 1. 一種用於獲得具有至少80之色彩再現指數(CRI)之光的光 轉換層,其包括: 至少一個子層,及 有機碟光體組合,其包括至少一種黃綠色發光染料, 該染料顯示低於5 10 nm之固有發射及/或自吸收後低於 530 nm之發射。 2. 如請求項1之光轉換層,其中該黃綠色發光染料顯示在 450 nm至5 10 nm、或470 nm至5 1 0 nm之範圍内之固有發 射。 3. 如請求項1或2之光轉換層,其中該黃綠色發光染料具有 在43 0 nm至480 nm之範圍内之固有吸收峰。 4. 如請求項1或2之光轉換層,其進一步包括至少一種紅色 發光染料及/或至少一種橙色發光染料。 5. 如請求項4之光轉換層,其中該紅色發光染料具有在550 nm至700 nm之範圍内之固有發射。 6. 如請求項4之光轉換層,其中該橙色發光染料具有在510 nm至650 nm之範圍内之固有發射。 7. 如請求項4之光轉換層,其中 該黃綠色發光染料係填光體Lumogen® F黃083 (BASF)、BASF熱塑性塑膠F 084綠金(CAS登錄號: 2744-50-5)、或溶劑黃 98(CAS 登錄號:12671-74-8); 該紅色發光染料係磷光體Lumogen® F紅305 (BASF)、 Lumogen® F 粉紅 285 (BASF)、或 Lumogen® F 紅 300 158389.doc 201224112 (BASF),且 該橙色發光染料係磷光體Lumogen® F橙240 (BASF)、 Lumogen®F黃170(8八3?)、或下式(?2〇卩1)之化合物:201224112 VII. Patent Application Range: 1. A light conversion layer for obtaining light having a color rendering index (CRI) of at least 80, comprising: at least one sublayer, and an organic disc combination comprising at least one yellow A green luminescent dye that exhibits an intrinsic emission below 5 10 nm and/or an emission below 530 nm after self-absorption. 2. The light conversion layer of claim 1, wherein the yellow-green luminescent dye exhibits intrinsic emission in the range of 450 nm to 5 10 nm, or 470 nm to 5 10 nm. 3. The light conversion layer of claim 1 or 2, wherein the yellow-green luminescent dye has an intrinsic absorption peak in the range of 43 0 nm to 480 nm. 4. The light converting layer of claim 1 or 2, further comprising at least one red luminescent dye and/or at least one orange luminescent dye. 5. The light conversion layer of claim 4, wherein the red luminescent dye has an intrinsic emission in the range of 550 nm to 700 nm. 6. The light conversion layer of claim 4, wherein the orange luminescent dye has an intrinsic emission in the range of 510 nm to 650 nm. 7. The light conversion layer of claim 4, wherein the yellow-green luminescent dye-based light-filling material Lumogen® F Yellow 083 (BASF), BASF thermoplastic plastic F 084 green gold (CAS accession number: 2744-50-5), or Solvent Yellow 98 (CAS Accession No.: 12671-74-8); Red Luminescent Dye Phosphor Lumogen® F Red 305 (BASF), Lumogen® F Pink 285 (BASF), or Lumogen® F Red 300 158389.doc 201224112 (BASF), and the orange luminescent dye is a compound of Lumogen® F Orange 240 (BASF), Lumogen® F Yellow 170 (8 8 3?), or the following formula (?2〇卩1): 8. 如請求項4之光轉換層,其中將該等黃綠色、紅色及橙 色發光染料納入單一子層中。 9. 如請求項4之光轉換層,其中將該等黃綠色、紅色及橙 色發光染料納入獨立之子層中。 10. 如請求項4之光轉換層,其中 將該㈢綠色發光染料納入第一子層中且將該等紅色及 橙色發光染料納入第二子層中,或 將該黃綠色發光染料及該紅色發光染料納入第一子層 中且將該橙色發光染料納入第二子層中,或 將該黃綠色發光染料及該橙色發光染料納入第一子層 中且將該紅色發光染料納入第二子層中。 11. 如請求項8之光轉換層,其中該等染料之重量相對量之 範圍對於該黃綠色發光染料而言為1,對於該橙色發光 染料而言為0至0.4且對於該紅色發光染料而言為〇至 〇·3,較佳地,對於該黃綠色發光染料而言為丨,對於該 橙色發光染料而言為U 0.3且對於該紅色發光染料而 158389.doc 201224112 言為0.05至0.2。 ,其在§亥等子層中之至少—者中 步包括散射粒子。 ,其中該等子層包括聚(曱基丙烯 12. 如請求項8之光轉換層 或在獨立之子層中進一 13. 如請求項8之光轉換層 酸甲醋)(PMMA)、聚對笨二甲酸乙二醒(ρΕΤ)、ρΕτ之共 聚物、聚萘二甲酸乙二酯(ΡΕΝ)、聚(甲基丙婦酸甲醋)聚 苯乙烯、聚碳酸酯、聚矽氧、聚矽氧烷、及/或丙烯酸酯 聚合物。 14.如請求項1或2之光轉換層,其中將該光轉換層佈置於漫 射體上。 15. —種發光器件,其包括如請求項丨至14中任一項之光轉 換層" 16. 如請求項15之發光器件,其包括發射波長範圍為4〇〇 nm 至 500 nm、較佳 420 nm 至 480 nm、更佳 44〇 11111至460 nm 之藍光之光源。 17. —種用於製造如請求項15或16之發光器件之方法,其包 括: 提供光源;及 佈置如請求項1至14中任一項之光轉換層,以接收自 該光源所發射光之至少一部分。 158389.doc8. The light conversion layer of claim 4, wherein the yellow-green, red, and orange luminescent dyes are incorporated into a single sub-layer. 9. The light conversion layer of claim 4, wherein the yellow-green, red, and orange luminescent dyes are incorporated into separate sub-layers. 10. The light conversion layer of claim 4, wherein the (3) green luminescent dye is incorporated into the first sub-layer and the red and orange luminescent dyes are incorporated into the second sub-layer, or the yellow-green luminescent dye and the red The luminescent dye is incorporated into the first sub-layer and the orange luminescent dye is incorporated into the second sub-layer, or the yellow-green luminescent dye and the orange luminescent dye are incorporated into the first sub-layer and the red luminescent dye is incorporated into the second sub-layer in. 11. The light converting layer of claim 8 wherein the relative amount of weight of the dye ranges from 1 for the yellow-green luminescent dye, 0 to 0.4 for the orange luminescent dye and for the red luminescent dye Preferably, it is 丨, preferably 丨 for the yellow-green luminescent dye, U 0.3 for the orange luminescent dye and 0.05 to 0.2 for the red luminescent dye 158389.doc 201224112. At least one of the sub-layers such as §Hai includes scattering particles. Wherein the sub-layers comprise poly(mercaptopropene 12. The light-converting layer of claim 8 or in a separate sub-layer. 13. The light conversion layer of acid vinegar of claim 8) (PMMA), poly-pair Ethylene diacetate (ρΕΤ), copolymer of ρΕτ, polyethylene naphthalate (ΡΕΝ), poly(methyl propyl ketone) polystyrene, polycarbonate, polyfluorene oxide, polyoxyl Alkane, and / or acrylate polymers. 14. The light conversion layer of claim 1 or 2, wherein the light conversion layer is disposed on the diffuser. 15. A light-emitting device comprising the light-converting layer of any one of claims 14 to 16. 16. The light-emitting device of claim 15, comprising an emission wavelength range of 4 〇〇 nm to 500 nm, A source of blue light from 420 nm to 480 nm, more preferably 44〇11111 to 460 nm. 17. A method for manufacturing a light emitting device according to claim 15 or 16, comprising: providing a light source; and arranging a light conversion layer according to any one of claims 1 to 14 to receive light emitted from the light source At least part of it. 158389.doc
TW100134643A 2010-09-28 2011-09-26 Light conversion layer comprising an organic phosphor combination TW201224112A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10180928 2010-09-28

Publications (1)

Publication Number Publication Date
TW201224112A true TW201224112A (en) 2012-06-16

Family

ID=44735995

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100134643A TW201224112A (en) 2010-09-28 2011-09-26 Light conversion layer comprising an organic phosphor combination

Country Status (2)

Country Link
TW (1) TW201224112A (en)
WO (1) WO2012042415A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023820A (en) * 2016-11-23 2019-07-16 依视路国际公司 Optical goods comprising being resistant to photodegradative dyestuff

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045727B2 (en) * 2013-03-11 2016-12-14 フィリップス ライティング ホールディング ビー ヴィ Dimmable light emitting device
CA2907398A1 (en) 2013-03-15 2014-09-18 Gary W. Jones Ambient spectrum light conversion device
US10288233B2 (en) 2013-12-10 2019-05-14 Gary W. Jones Inverse visible spectrum light and broad spectrum light source for enhanced vision
US9551468B2 (en) * 2013-12-10 2017-01-24 Gary W. Jones Inverse visible spectrum light and broad spectrum light source for enhanced vision
CN106573933A (en) * 2014-08-21 2017-04-19 飞利浦照明控股有限公司 Highly efficient molecules showing resonant energy transfer
KR101975350B1 (en) * 2016-04-18 2019-05-07 주식회사 엘지화학 Color conversion film and backlight unit and display apparatus comprising the same
CN111465605A (en) * 2017-12-19 2020-07-28 巴斯夫欧洲公司 Cyanoaryl substituted benzo (thia) xanthene compounds
CN114484311A (en) * 2021-12-21 2022-05-13 肇庆三雄极光照明有限公司 LED lamp tube and lighting lamp without blue light and ultraviolet light

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9022343D0 (en) * 1990-10-15 1990-11-28 Emi Plc Thorn Improvements in or relating to light sources
JPH10338872A (en) * 1997-06-09 1998-12-22 Tdk Corp Color conversion material and organic el color display
JP3963253B2 (en) 2001-12-14 2007-08-22 富士通メディアデバイス株式会社 Surface acoustic wave device and duplexer using the same
DE10312679B4 (en) * 2003-03-21 2006-08-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method of changing a conversion characteristic of a spectrum conversion layer for a light-emitting device
US20060138938A1 (en) * 2004-12-27 2006-06-29 Tan Kheng L White LED utilizing organic dyes
EP2164302A1 (en) * 2008-09-12 2010-03-17 Ilford Imaging Switzerland Gmbh Optical element and method for its production
EP2417219B1 (en) * 2009-04-06 2013-05-29 Koninklijke Philips Electronics N.V. Luminescent converter for a phosphor- enhanced light source comprising organic and inorganic phosphors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023820A (en) * 2016-11-23 2019-07-16 依视路国际公司 Optical goods comprising being resistant to photodegradative dyestuff

Also Published As

Publication number Publication date
WO2012042415A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
TW201224112A (en) Light conversion layer comprising an organic phosphor combination
JP6032766B2 (en) Luminescence converter and phosphor-enhanced light source or luminaire having a CRI greater than 80
RU2623682C2 (en) White light emmission module
EP2140502B1 (en) Illumination system
JP2020098913A (en) Phosphor converted light emitting diode, lamp and luminaire
KR101955188B1 (en) Illumination device
Zhu et al. Spectral optimization of white light from hybrid metal halide perovskites
JP6290192B2 (en) Illumination device using a polymer containing a luminescent moiety
TWI570361B (en) Wavelength converting element
JP6339007B2 (en) Phosphor-enhanced lighting device with reduced color appearance, retrofit bulb and tube bulb
US9593812B2 (en) High CRI solid state lighting devices with enhanced vividness
JP2008270781A (en) Light-emitting device
US9313858B2 (en) Phosphor enhanced light source for presenting a visible pattern and a luminaire
CN103797294A (en) Light-emitting arrangement
JP2016514972A (en) Light source, luminaire and surgical lighting unit
JP2008235458A (en) White light emitting device, backlight using same device, display using same device, and illuminating apparatus using same device
CN107448780B (en) Quantum dot LED light-emitting device and preparation method thereof
Jia et al. Effect of composition and package structure of bi-color flexible remote phosphor film on the properties of remote white LEDs
WO2013150413A1 (en) Light emitting arrangement comprising quantum dots
TW201213498A (en) Light generating method
Singh et al. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source
KR20180052730A (en) Method for whitening the color of a phosphor in an off-state of a lighting application
KR101751736B1 (en) Functional particle layer and preparing method thereof
TW201018309A (en) Phosphor converted OLED illumination device
TW201300704A (en) A luminescent converter, a phosphor enhanced light source or a luminaire having a CRI larger than 80