TW201018309A - Phosphor converted OLED illumination device - Google Patents

Phosphor converted OLED illumination device Download PDF

Info

Publication number
TW201018309A
TW201018309A TW098128696A TW98128696A TW201018309A TW 201018309 A TW201018309 A TW 201018309A TW 098128696 A TW098128696 A TW 098128696A TW 98128696 A TW98128696 A TW 98128696A TW 201018309 A TW201018309 A TW 201018309A
Authority
TW
Taiwan
Prior art keywords
light
conversion layer
luminescent material
illumination device
oled
Prior art date
Application number
TW098128696A
Other languages
Chinese (zh)
Inventor
Thomas Juestel
Claudia Michaela Goldmann
Hans-Peter Loebl
Joachim Opitz
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201018309A publication Critical patent/TW201018309A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

The invention relates to an illumination device (40) comprising a blue and/or a green emitting OLED (Ob, Og) and a converter layer (C_yr). The converter layer (C_yr) comprises at least one luminescent material selected from the group consisting of (a) (Zn1-x Cdx) (S1-ySey) and (In1-xGax)(P1-yAsy) with x, y ε [0, 1]; (b) uranine, rhodamine 6G, and rhodamine B; (c) complexes of Ir3+; (d) complexes of Tb3+; (e) the complexes [Eu(acac)3(X)], [Eu(ttfa)3(X)], [Eu(thd)3(X)], and [Eu(dibenzoylmethane)3(X)] with X=bipyridine, phenanthroline, diphenylphenathroline and further derivatives; and (f) SrLi2SiO4: Eu, (Ba, Sr)2 SiO4: Eu, and (Ca, Sr)2SiO4: Eu.

Description

201018309 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種照明裝置,其包括發射一藍光及/或 一綠光之有機發光二極體(OLED)及具有一發光材料之一 轉換層。 【先前技術】 上述種類之照明裝置係例如揭示於美國專利US 2006/0197437 A1號中,該美國專利US 2006/0197437 A1 號 亦提及可被用作轉換器之發光材料的一些實例。 【發明内容】 基於此背景,本發明之一目的係提供具有經改良屬性的 一照明裝置,其中尤其希望裝置具有一高演色指數及/或 流明當量。 此目的藉由根據技術方案1之一照明裝置達成。較佳實 施例揭示於附屬技術方案中。 根據本發明之一種照明裝置包括作為一基本組件之發射 一藍光及/或一綠光的有機發光二極體(OLED),用以產生 藍色及/或綠色原色光。在此背景内容中,一「發射藍光 之OLED」被假定為具有介於大約420奈米與500奈米之間 的其峰值發射,而「發射綠光之OLED」應具有介於大約 500奈米與560奈米之間的其峰值發射。若使用發射一藍光 之OLED與發射一綠光之OLED二者,則該二者可具有任何 適當之空間配置,例如一者置於另一者上地分層、彼此相 鄰地安置或分散於某矩陣陣列中。請注意,若藍光與綠光 141654.doc 201018309 之〇LED二者都存在,則單數用語「該〇led」會在下文中 回指該二者。 照明裝置進一步包括一轉換層’該轉換層至少部份地安 置於0LED之光輸纽徑中,亦㈣由OLED產生之原色光 之至少-部份先通過轉換層才可作為輸出祕開裝置。在 此通過期間’原色光可被吸收且以一經轉換(更長)波長重 新發射。轉換層包括至少—發光材料,該發光材料係選自 由以下材频成之群組,為了明確起見本文列出六個子群 組: aHZnhCdxXSbySey)、(lni.xGax)(Pi yASy),其中 χ、 ye [Ο, l],其中此等材料較佳地呈現為具有介於奈 米與5微米之間之一大小的微粒; b) 螢光鈉素(亦即螢光素之鈉)、玫瑰紅6G、玫瑰紅Β; c) Ir3+之錯合物’尤其係[Ir(苯基吼啶)3],其中苯基吨啶 亦被稱作4-笨基吡啶、p_苯基吡啶及3_苯基吼啶; d) Tb3+之錯合物,尤其係[Tb(苯甲酸鹽)3]、[Tb(柳酸 鹽)3]、[Tb(吡啶h] ’其中柳酸鹽係柳酸之鹽,及吡啶 係吡啶羧酸之鹽; e) 錯合物[Eu(acac)3(X)]、[Eu(ttfa)3(X)]、[Eu(thd)3(X)] 及[Ειι(二苯甲醯甲烷,其中x=聯吡啶、啡啉、 聯苯啡啉及其等替代物,其中 「acac」係乙酿丙酮, 「ttfa」係噻吩甲醯三氟丙酮之鹽,且「thd」係 2,2,6,6-四曱基·3,5-庚烷; 0 SrLi2Si04:Eu、(Ba,Sr)2Si04:Eu、(Ca,Sr)2Si〇4:Eu。 14l654.doc 201018309 轉換層可僅包括所列群組之—或若干(通常兩種或三種) 不同發光材m明裝置包括—發射綠光之〇led,則 轉換層通常不包括(需要)在綠光範圍中發射之—發光材 料0 因為轉換材料之吸收特徵非常適於OLED之發射光譜, 所以使用列舉之發光材料可達成具有較好發光屬性之一發 射白光的照明裝置。 在本發明之一較佳實施例中,轉換層僅包括發射黃光之 發光材料,亦即發光材料具有在大約52〇奈米至6⑽奈米之 Ιϋ圍内之-峰值發射。以此方式可達成具有—冷白光輸出 之一照明裝置。 在另一較佳實施例中,轉換層僅包括發射黃光及紅光之 發光材料,其中發射紅光之發光材料被假定為具有在大約 590 π米至660奈米之範圍内之一峰值發射。以此方式可達 成具有一暖白光輸出之一照明裝置。 在又另—實施例中’轉換層僅包括發射綠光及紅光之發 光材料,其中發射綠光之發光材料被假定為具有在大約 500奈米至570奈米之範圍内之一峰值發射。以此方式可達 成具有一冷與暖白光輸出之一照明裝置。 轉換層可完全由(若干)發光材料組成。但是,轉換層宜 包括其中篏入有發光材料之微粒之一基質材料。使用此一 粒狀結構使轉換層獨立於發光材料的化學及/或物理的混 合屬性,並容許經由微粒大小及密度而控制其光學屬性 (吸收及發射特徵)。 141654.doc •6- 201018309 大體而言,上述發光材料微粒可通常具有介於大約1奈 米與20微米之間之一平均微粒大小。若期望一半透明而非 全透明之轉換層,則微粒大小應介於0.丨微米與2〇微米之 間。但是若期望一透明轉換層,則微粒大小應小於1〇〇奈 米’其中以小於50奈米較佳。 在本發明之另一實施例中,發光材料可具有一量子點型 組合物。此可(例如)藉由在一基質材料中嵌入具有介於1奈 米與10奈米之間之一大小的微粒而達成。 發光材料之微粒可直接嵌入至某適合之基質材料中。然 而’在一較佳實施例中’微粒在嵌入之前加塗層於該等微 粒之表面上。使用一塗層可改良光内與外搞合性以及發光 材料之長期穩定性。適合之塗層材料包括例如Α1207、201018309 VI. Description of the Invention: [Technical Field] The present invention relates to a lighting device comprising an organic light emitting diode (OLED) emitting a blue light and/or a green light and a conversion layer having a light emitting material . [Prior Art] A lighting device of the above type is disclosed, for example, in U.S. Patent No. US 2006/0197437 A1, which also discloses some examples of luminescent materials that can be used as converters. SUMMARY OF THE INVENTION Against this background, it is an object of the present invention to provide an illumination device having improved properties, wherein it is particularly desirable for the device to have a high color rendering index and/or lumen equivalent. This object is achieved by a lighting device according to one of the first aspects. Preferred embodiments are disclosed in the accompanying technical solutions. A lighting device in accordance with the present invention includes an organic light emitting diode (OLED) that emits a blue light and/or a green light as a basic component for producing blue and/or green primary color light. In this context, a "blue-emitting OLED" is assumed to have a peak emission between about 420 nm and 500 nm, and a "green-emitting OLED" should have a value of about 500 nm. Its peak emission between 560 nm. If both an OLED emitting a blue light and an OLED emitting a green light are used, the two may have any suitable spatial configuration, such as one layered on the other, placed adjacent to each other or dispersed In a matrix array. Note that if both the blue and green 141654.doc 201018309 LEDs are present, the singular term "the 〇led" will refer back to the two below. The illumination device further includes a conversion layer' which is at least partially disposed in the optical path of the OLED, and (4) at least a portion of the primary color light produced by the OLED is first passed through the conversion layer as an output secret device. During this pass, the primary color light can be absorbed and re-emitted at a converted (longer) wavelength. The conversion layer comprises at least a luminescent material selected from the group consisting of: for the sake of clarity, six subgroups are listed: aHZnhCdxXSbySey), (lni.xGax) (Pi yASy), wherein χ, Ye [Ο, l], wherein the materials are preferably presented as particles having a size between one nanometer and 5 microns; b) fluorescein (also known as sodium luciferin), rose red 6G, rose red Β; c) Ir3+ complex 'in particular [Ir(phenyl acridine) 3], wherein phenyl ton pyridine is also known as 4-phenylpyridine, p-phenylpyridine and 3_ Phenyl acridine; d) a complex of Tb3+, especially [Tb (benzoate) 3], [Tb (salate) 3], [Tb (pyridine h] 'where salicylic acid a salt, and a salt of a pyridine-based pyridine carboxylic acid; e) a complex [Eu(acac)3(X)], [Eu(ttfa)3(X)], [Eu(thd)3(X)] and [Ειι (dibenzopyrene methane, where x = bipyridyl, phenanthroline, biphenylmorpholine and their alternatives, wherein "acac" is ethyl acetate, "ttfa" is the salt of thiophene guanidine trifluoroacetone, And "thd" is 2,2,6,6-tetradecyl-3,5-heptane; 0 SrLi2Si04:Eu, (Ba,Sr)2Si04: Eu, (Ca,Sr)2Si〇4:Eu. 14l654.doc 201018309 The conversion layer may only include the listed groups - or several (usually two or three) different luminescent materials, including the device - emitting green light Led, the conversion layer usually does not include (need) to emit in the green range - luminescent material 0 because the absorption characteristics of the conversion material are very suitable for the emission spectrum of the OLED, so the use of the listed luminescent materials can achieve better luminescent properties. A lighting device that emits white light. In a preferred embodiment of the invention, the conversion layer comprises only a luminescent material that emits yellow light, that is, the luminescent material has a peak-to-peak emission within a range of about 52 nanometers to 6 (10) nanometers. In this way, an illumination device having a cool white light output can be achieved. In another preferred embodiment, the conversion layer only includes a luminescent material that emits yellow light and red light, wherein the luminescent material that emits red light is assumed to have One of the peaks is emitted in the range of approximately 590 π to 660 nm. In this way, an illumination device having a warm white light output can be achieved. In yet another embodiment, the 'conversion layer only The luminescent material emitting green light and red light, wherein the green light emitting luminescent material is assumed to have one peak emission in a range of about 500 nm to 570 nm. In this way, a cold and warm white light can be achieved. Outputting one of the illumination devices. The conversion layer may consist entirely of the luminescent material(s). However, the conversion layer preferably includes a matrix material in which one of the particles of the luminescent material is incorporated. The use of the granulated structure allows the conversion layer to be independent of the luminescent material Chemical and/or physical mixing properties and allow control of its optical properties (absorption and emission characteristics) via particle size and density. 141654.doc • 6- 201018309 In general, the above luminescent material particles may typically have an average particle size of between about 1 nm and 20 microns. If a translucent, rather than fully transparent, conversion layer is desired, the particle size should be between 0. 丨 microns and 2 〇 microns. However, if a transparent conversion layer is desired, the particle size should be less than 1 nanometer' where less than 50 nanometers is preferred. In another embodiment of the invention, the luminescent material can have a quantum dot type composition. This can be achieved, for example, by embedding a particle having a size between one nanometer and one nanometer in a matrix material. The particles of the luminescent material can be directly embedded in a suitable matrix material. However, in a preferred embodiment, the particles are coated on the surface of the particles prior to embedding. The use of a coating improves the fit between the inside and the outside of the light and the long-term stability of the luminescent material. Suitable coating materials include, for example, Α1207,

MgO、MgAl204、La207、Y2〇7、Sc207、Ca2P207、Sr2P2〇7 及 Mg2P2〇7。 較佳地,在其中嵌入有發光材料微粒的基質材料可包括 一透明聚合物,例如PMMA(聚甲基丙烯酸甲酯)或PC(聚碳 ® 酸脂)。該等材料可舉例來說藉由射出成型而易於處理, 且該等材料產出可被習知地安裝於一插座中之機械穩定的 " 組件。 • 已提及發光裝置提供經改良之光產生屬性。較佳地,裝 置具有根據國際照明委員會(CIE)界定之大於85的一演色 指數Ra。 為了剪去發射光譜之不需要的部份,例如紅外(IR)分 量,照明裝置可視情況包括一彩色濾光鏡。 141654.doc 201018309 若一藍光及一綠光之OLED二者被併入至照明裝置中, 則較佳的是該等0LED係可被個別地控制,亦即對該等 OLED之電源供應可被單獨地設定。接著可選擇性地調整 光輸出之光譜組成。 【實施方式】 目前有機發光二極體(OLED)在小型自發射顯示器中被 商業化,舉例來說,有機發光二極體用於相機或蜂巢式電 話。OLED藉由電致發光之原理而工作。正電荷與負電荷 各自從陽極與陰極注入至具幾十奈米厚度之一堆疊之有機 層中。施加之電壓係僅在幾伏範圍内。當此等電荷透過有 機體而遷移時,此等電荷最後藉由形成一激子而重組。此 激子可以一定機率將其激發能量釋放成為一光子。此機率 越高,OLED裝置之效率就越高。於研究實驗室中已證實 高於50%之内部量子效率。藉由在真空製程中蒸鍍數層低 分子量有機材料來製造所謂的基於小分子的sm-OLED。在 另一科技中,使用印刷或其他濕沈積方法(pm-OLED)將聚 合物分子沈積於基板上。 對於除顯示器之外的應用,期望以具有一非常高之演色 指數(CRI>90)之優越的光品質建立用於照明之高亮度、高 效率及長壽命的白光OLED。 可(例如)藉由包括適合之轉換材料之一轉換層降頻轉換 一發射藍光之OLED而自OLED光源產生白光。但是,已知 之白光OLED光源的主要缺點係轉換層不匹配於藍光OLED 的發射光譜與所得白光光譜,而此不匹配遠離關於演色及 141654.doc 201018309 發光效力之一最佳值。 因此,本發明提議用於一般照明目的之具有經改良屬性 之一或若干新穎的OLED照明襞置,該等OLED照明裝置使 用轉換層以將發射藍光之〇LED(420奈米至500奈米)轉 換為暖或冷白光光源。此係藉由一轉換層達成’該轉換層 包括一或若干發光材料(舉例來說,可使用一黃磷、一黃 磷與紅磷,或一綠磷與一紅磷)。或者可使用以一紅磷使 一發射綠光之OLED轉換成紅光的部份轉換。將此部份轉 ® 換與一藍光發射體相結合可實現暖或冷白光。可以達成具 有—尚演色(Ra>85)及一高流明當量(>28〇 im/W〇pt )之一發 射光譜的方式來選定磷。而且,塗敷之發光材料可施敷有 一塗層,該塗層可改良光之内與外耦合性以及轉換層之長 期穩定性。由轉換層相對於激發來源(亦即〇led堆疊)具 更咼之穩定性,於是此一白光〇LED裝置在額定壽命期間 難以呈現色點偏移。 圖1至圖5示意性地繪示根據上文之概念之不同照明裝置 10至50。此等裝置包括用作轉換層之一發光屏該轉換層 安置為相鄰/平行於一平板〇LED基板,以提高自沉肋之 光外柄合性及達成一發射白光之光源。 繪示於圖1中之第一照明裝置1〇有益於達成具有一相當 局之演色的一冷白光光源。該冷白光光源包括一發射藍光 之OLED Ob及要求-半透明及發射黃光至橙光之轉換層 C_y,該轉換層c—y可包括展現從54〇奈米至6〇〇奈米範圍 内之寬頻帶發射的一或若干發光組合物。適合之發光材料 141654.doc -9- 201018309 可選自以下: 表1 : (ZiikCdxXSKySey)及(Im.xGaxXPi-yAsy),其中X、y e[0, 1] 螢光鈉素、玫塊紅6G、玫瑰紅B Ir3+之錯合物,尤其係[lr(苯基吡啶)3]MgO, MgAl204, La207, Y2〇7, Sc207, Ca2P207, Sr2P2〇7 and Mg2P2〇7. Preferably, the matrix material in which the luminescent material particles are embedded may comprise a transparent polymer such as PMMA (polymethyl methacrylate) or PC (polycarbonate). Such materials can be easily handled, for example, by injection molding, and the materials produce a mechanically stable "assembly that can be conventionally mounted in a socket. • It has been mentioned that illuminators provide improved light generation properties. Preferably, the device has a color rendering index Ra greater than 85 as defined by the International Commission on Illumination (CIE). In order to cut unwanted portions of the emission spectrum, such as infrared (IR) components, the illumination device may optionally include a color filter. 141654.doc 201018309 If both a blue light and a green light OLED are incorporated into a lighting device, it is preferred that the 0 LEDs can be individually controlled, ie the power supply to the OLEDs can be individually Ground setting. The spectral composition of the light output can then be selectively adjusted. [Embodiment] Currently, an organic light emitting diode (OLED) is commercialized in a small self-emissive display, for example, an organic light emitting diode for a camera or a cellular phone. OLEDs work by the principle of electroluminescence. Positive and negative charges are each injected from the anode and cathode into an organic layer stacked in one of several tens of nanometers in thickness. The applied voltage is only in the range of a few volts. When these charges migrate through the body, the charges are finally recombined by forming an exciton. This exciton can release its excitation energy into a photon with a certain probability. The higher the probability, the higher the efficiency of the OLED device. Internal quantum efficiencies above 50% have been demonstrated in research laboratories. A so-called small molecule-based sm-OLED is produced by evaporating several layers of low molecular weight organic materials in a vacuum process. In another technique, polymer molecules are deposited onto a substrate using printing or other wet deposition methods (pm-OLED). For applications other than displays, it is desirable to have a high brightness, high efficiency, and long life white OLED for illumination with superior light quality with a very high color rendering index (CRI > 90). White light can be generated from the OLED source, for example, by downconverting a blue-emitting OLED comprising a conversion layer of a suitable conversion material. However, the main disadvantage of the known white light OLED light source is that the conversion layer does not match the emission spectrum of the blue OLED and the resulting white light spectrum, and this mismatch is far from the best value for the color rendering and the luminous efficacy of 141654.doc 201018309. Accordingly, the present invention proposes one of the improved attributes or a number of novel OLED illumination devices for general illumination purposes that use a conversion layer to emit blue light LEDs (420 nm to 500 nm) Convert to a warm or cool white light source. This is achieved by a conversion layer comprising one or several luminescent materials (for example, a yellow phosphorus, a yellow phosphorus and red phosphorus, or a green phosphorus and a red phosphorus). Alternatively, a partial conversion of a green-emitting OLED to red light can be used with a red phosphor. Combine this part with a blue emitter to achieve warm or cool white light. Phosphorus can be selected in such a manner that one of the emission spectra (Ra>85) and one of the high lumen equivalents (>28〇 im/W〇pt) is emitted. Moreover, the coated luminescent material can be coated with a coating which improves the in-coupling and outcoupling properties of the light and the long-term stability of the conversion layer. The conversion layer is more stable with respect to the excitation source (i.e., the 〇led stack), so that the white light 〇 LED device is difficult to exhibit color point shift during the rated lifetime. 1 to 5 schematically illustrate different lighting devices 10 to 50 according to the above concept. Such devices include a luminescent screen that serves as a conversion layer that is disposed adjacent/parallel to a flat panel LED substrate to enhance the outer shank of the self-sinking ribs and to achieve a source of white light emission. The first illumination device 1 shown in Figure 1 is useful for achieving a cool white light source having a comparable color. The cool white light source comprises a blue light emitting OLED Ob and a required-translucent and yellow to orange light conversion layer C_y, and the conversion layer c-y may comprise a display ranging from 54 nanometers to 6 nanometers. One or several luminescent compositions emitted in a wide band. Suitable luminescent materials 141654.doc -9- 201018309 can be selected from the following: Table 1: (ZiikCdxXSKySey) and (Im.xGaxXPi-yAsy), where X, ye[0, 1] fluorescein, rose 6G, a complex of rose red B Ir3+, especially [lr(phenylpyridine) 3]

Tb3+之錯合物,尤其係[Tb(苯甲酸鹽)3]、[Tb(柳酸鹽)3]或[Tb(吡啶)3] 錯合物[Eu(acac)3(X)]、[Eu(ttfa)3(X)]、[Eu(thd)3(X)]及[Eu(二苯甲醯甲 烷MX)],其中X=聯吡啶、啡啉、聯苯啡啉及進一步衍生物a complex of Tb3+, especially [Tb (benzoate) 3], [Tb (salate) 3] or [Tb (pyridine) 3] complex [Eu(acac)3(X)], [Eu(ttfa)3(X)], [Eu(thd)3(X)] and [Eu(diphenylmethylmethane methane MX)], wherein X = bipyridine, phenanthroline, biphenylphenoline and further derivatization Object

SrLi2Si04:Eu、(Ba,Sr)2Si04:Eu及(Ca,Sr)2Si04:Eu 用於將420奈米至500奈米之OLED輻射轉換成黃光至橙 光之額外發光材料可選自以下: 表2 : 組合物 λ最大值[奈米] (Sr1.y.zCay)Li2Si〇4:Euz (y=0.0-1.0, 0.0<z<0.2) 560-580 (Yi.w.x.y.zLuwGdxTby)3(Al,.aGaa)5〇,2:Cez (a, w, x, y=0.0-1.0, 0.0<z<0.2) 520-580 (Yl.w-x-y-zLuwGdxTby)3Al5-aSia〇12-aNa:Cez (a, w, x, y=0.0-1.0, 0.0<z<0.2) 560-580 (Sr1.y.zCay)2Si04:Euz (y=0.0-1.0, 0.0<z<0.2) 550-600 (Yi.x.y.zGdxLuy)2.aCaaSi4N6+aCi.a:Ce2 (a, x, y=0.0-1.0, 0.0<z< 0.2) 580-600 圖2繪示一經修改之照明裝置20,在此照明裝置20中已 添加一額外發射綠光的OLED基板Og。此照明裝置20之剩 餘組合物與圖1之相似。 141654.doc -10- 201018309 圖3繪示一照明裝置30之一進一步實施例,該照明裝置 3〇包括一發射藍光之〇LED Ob及一轉換層c_yr,該轉換層 C_yr包括轉換黃光及紅光之發光材料。如此可達成整個照 明裝置30之一暖白光光輸出。具有在黃光及/或紅光光譜 範圍内之適合之發光材料可選自表1。 此外’藉由具有介於400與560奈米之間之強吸收的Eu2+ 而活化的寬頻帶發射磷可選自以下: 表3 : -----------— 組合物 λ最大值[奈米] (Cai.y.zSry)S:Euz (y=0.0-1.0,0.0<z<0.2) 610-655 (Ca^x.y^SrxBa^SisNsrEUz (x, y=0.0-1.0, 0.0<z<0.2) 590-630 (Cai-x_y-zSrxBay)2Si5.aAlaNg.aOa;Euz (a=0.0-2*0? x5 y=〇.〇-l 〇 0.0<z<0.2) •’ 615-650 (Cai.y.zSry)AlSiN3:Euz (y=0.0-1.0, 0.0<z<0.2) 620-650 (Cai_x_y-zSrxBay)3Si2N2〇4:Euz (x,γ=〇·〇-1·〇, 〇·〇<2<〇·2) 620-640 或者’可添加關於光源之流明當量係有優勢的一發射紅 線的磷(590奈米至630奈米),因為較少的光係發射超過63〇 奈米(在此種情況下人眼睛的敏感度係非常低的)。此等發 射紅線之磷可選自以下: ❹SrLi2Si04:Eu, (Ba,Sr)2Si04:Eu and (Ca,Sr)2Si04:Eu The additional luminescent material for converting 420 nm to 500 nm OLED radiation into yellow to orange light can be selected from the following: Table 2: Composition λ maximum [nano] (Sr1.y.zCay) Li2Si〇4: Euz (y=0.0-1.0, 0.0<z<0.2) 560-580 (Yi.wxyzLuwGdxTby)3 (Al ,.aGaa)5〇,2:Cez (a, w, x, y=0.0-1.0, 0.0<z<0.2) 520-580 (Yl.wxy-zLuwGdxTby)3Al5-aSia〇12-aNa:Cez ( a, w, x, y=0.0-1.0, 0.0<z<0.2) 560-580 (Sr1.y.zCay)2Si04:Euz (y=0.0-1.0, 0.0<z<0.2) 550-600 ( Yi.xyzGdxLuy)2.aCaaSi4N6+aCi.a:Ce2 (a, x, y=0.0-1.0, 0.0<z< 0.2) 580-600 Figure 2 illustrates a modified illumination device 20, where the illumination device An additional OLED substrate Og emitting green light has been added to 20. The remaining composition of this illuminating device 20 is similar to that of Figure 1. 141654.doc -10- 201018309 FIG. 3 illustrates a further embodiment of a lighting device 3 that includes a blue-emitting LED Ob and a conversion layer c_yr, the conversion layer C_yr including conversion yellow and red Light luminescent material. In this way, a warm white light output of the entire illumination device 30 can be achieved. Suitable luminescent materials having a spectral range of yellow light and/or red light may be selected from Table 1. Furthermore, the broadband emission phosphor activated by Eu2+ having a strong absorption between 400 and 560 nm can be selected from the following: Table 3: ------------ Composition λ max Value [Nano] (Cai.y.zSry) S: Euz (y=0.0-1.0, 0.0<z<0.2) 610-655 (Ca^xy^SrxBa^SisNsrEUz (x, y=0.0-1.0, 0.0 <z<0.2) 590-630 (Cai-x_y-zSrxBay)2Si5.aAlaNg.aOa; Euz (a=0.0-2*0? x5 y=〇.〇-l 〇0.0<z<0.2) •' 615-650 (Cai.y.zSry)AlSiN3:Euz (y=0.0-1.0, 0.0<z<0.2) 620-650 (Cai_x_y-zSrxBay)3Si2N2〇4:Euz (x,γ=〇·〇-1 ·〇, 〇·〇<2<〇·2) 620-640 or 'additional red line of phosphorus (590 nm to 630 nm) that can be added to the lumen equivalent of the light source because less light The system emits more than 63 nanometers (in this case the sensitivity of the human eye is very low). The phosphorus of these red lines can be selected from the following: ❹

141654.doc 201018309 表4 : 組合物 λ最大值[奈米] ALni.z(M〇i.yWy)〇8:Euz (A=Li, Na, K, Rb, Cs, y=0.0-1.0, 0.0 <z<1.0) 615 Ln2-z(M〇i.yWy)2〇9:Euz (Ln=La, Gd, Lu, y=0.0-1.0, 0.0<z< 0.5) 615 Ln2-2(Mo].yWy)3〇i2:Euz (Ln=La, Gd, Lu, y=0.0-1.0, 0.0<z< 0.5) 615 (Yi.x.y.zGdxLuy)2〇3:Euz(x, y=0.0-1.0, 0.0<z<0.5) 611 (Yi.x.y.zGdxLuy)3Al5〇]2:Euz (x, y=0.0-1.0, 0.0<z<0.5) 591 Ba2(Yi-x.y-zGdxLuy)2Si4〇i3:Euz(x, y=0.0-1.0, 0.0<z<0.5) 614 Ba2(Yi-x-y.zGdxLuy)2Ge4〇i3:Euz(x, y=0.0-1.0, 0.0<z<0.5) 616 (Yi.x.y.zGdxLuy)V〇4:Euz (x, y=0.0-1.0, 0.0<z<0.5) 620 (Yi.x.y.zGdxLuy)OF:Euz (x, y=0.0-1.0, 0.0<z<0.5) 612 (Yi.x.y-zGdxLuy)OCl:Euz(x, y=0.0-1.0, 0.0<z<0.5) 621 Lai .zO(Cl i .xBrx) :Euz (x=0.0-1.0,0.0<z<0.5 ) 619 Ba(Yi.x.y.zGdxLuy)B9〇i6:Euz (x, y=0.0-1.0, 0.0<z<0.5) 615 Ba3(Yi.x.y.zGdxLuy)(B〇3)3:Euz (x, y=0.0-1.0, 0.0<z<0.5) 593 (Yi.x.y.zGdxLuy)2Si〇5:Euz (x, y=0.0-1.0, 0.0<z<0.5) 613 (Yi,y.zGdy)2〇2S:Euz (y=0.0-l .0, 0.0<z<0.5) 620-630 圖4繪示一經修改之照明裝置40,在此照明裝置40中已 添加一額外之發射綠光的OLED基板Og。此照明裝置40之 剩餘組合物與圖3之相似 圖5繪示一照明裝置50之一進一步實施例,該照明裝置 50包括一發射藍光之OLED Ob及具有發光材料之一轉換層 141654.doc 12 201018309 C_yr,該轉換層(:_71·用於將光轉換為綠光及紅光光譜範圍 内之光。圖5進一步指示一彩色濾光鏡cf ’該彩色濾光鏡 CF可視情況添加以移除在此實施例及先前實施例中之發射 光譜的可能並不需要的部份。 適合之發光材料可選自表此外,發射紅光之發光材 料可選自表3及表4。而且,可藉由420奈米至500奈米輻射 激發及可藉由Eu2+或Ce3+活化之發射綠光的發光材料亦可 選自以下: ❿ 表5 : 組合物 ^max [奈米] (Bai-y-zSry)2Si〇4:Euz (y=〇_〇-L〇, 〇 〇<z s 〇 2) 500-550 (Cai-y.zSrgGajiEuz (y=〇.〇-l.〇, 〇_〇<z < 〇 2) 520-540 (Cai.y.zSry)Si2N202:Euz (y=0.0-l.〇5 〇.〇<z < 〇 2) 540-565 ----------L_Z__ 所有上文提及之在表1至5中之發光組合物較佳地被施身 為微尺度之粉末(平均微粒大小〇1微米至2〇微米)。此導至 一半透明而非全透明之散射轉換層。若需要一透明之轉去 層,施敷之發光組合物必須具有低於5〇奈米之一平均微寺 大小。或者,量子點型發光組合物(平均微粒大小丨奈米j 10奈米,舉例來說(Zni_xCdx)(Sl為)、(Ini xGax)(p】為) 、Si、Ge 或(Agl_xCUx)(Bri yIy),其中 χ、y=〇 〇1 〇卜亦; 被施敷於透明轉換層。 獲得透明轉換層之-進-步替代方法係應用有機發光木 141654.doc -13- 201018309 料’該等有機材料可溶解至一透明有機聚合物,舉例來說 PMMA或PC ^在藍光光譜範圍中展示一強吸收之適合的有 機發光材料係茈及其衍生物、香豆素及其衍生物、 Ln3 + (Ln=Eu 及 Tb)及 Ir3+與 Ru2+_ 錯合物。 根據本發明描述之照明裝置具有以下優點: -簡單構造(藍光/綠光之OLED+綠光/黃光/紅光之發光 屏); -可最佳化適合之無機磷及摻合物; -降解藍光OLED並不導致色點偏移; -使用一窄頻帶發射紅光之磷可防止在紅外輻射中之損 耗,該紅外輻射經常遇到使用一紅光(加上綠光,加 上藍光)有機發射體之「寬頻帶」白光之〇led; -改良光之外耦合性及如此提高壁式插座效率。 概括而言,根據本發明之照明裝置可被描述為具有一有 機發光疋件(OLED)及一轉換層之磷轉換有機發光二極體 (pcOLED)。照明裝置視情況可進一步具有一或更多個以下 之特徵: -0LED具有介於420奈米與5〇〇奈米之間之其峰值發射 (藍光 0LED); -0LED具有介於510奈米與56〇奈米之間之其峰值發射 (綠光 OLED); -轉換層包括從表丨至5之一或若干組合物; _照明裝置包括一彩色濾光鏡元件。 照明裝置可被用作光源以用於—般、廣告、自動及裝飾 141654.doc -14- 201018309 …、月或用於發信號或逆光照明之目的。 最後指出在本申請案中術語「包括」並不排除其他元件 或步驟,「一 「 , 」或一個」並不排除複數個,且一單個處 器或其他單元可實現若干構件之功能。本發明存在於每 一個新顆的特點特徵及特點特徵之每一個組合中。而且, 在專利申請範圍中之參考符號不應被視為限制其等範疇。 【圖式簡單說明】 圖1繪示具有藍光之OLED及黃光轉換層的照明裝置; 置; 圖2繪示具有藍光及綠光之OLED及黃光轉換層的照明裝 的照明裳 圖3繪示具有藍光之OLED及黃光與紅光轉換層 置; 圖4繪示具有藍光與綠光之〇LED及黃光與紅光轉換層的 照明裝置;及 圖5繪示具有藍光之OLED及綠光、黃光與紅光轉換層的 照明裝置。 【主要元件符號說明】 10 照明裝置 20 照明裝置 30 照明裝置 40 照明裝置 50 照明裝置 B 藍光 C_gr 轉換層 ❿ 141654.doc -15· 201018309 c_y 轉換層 C_yr 轉換層 CF 彩色濾光鏡 G 綠光 Ob 藍光之OLED 〇g 綠光之OLED R 紅光 Y 黃光 141654.doc -16141654.doc 201018309 Table 4: Composition λ max [n] ALni.z (M〇i.yWy) 〇 8: Euz (A=Li, Na, K, Rb, Cs, y=0.0-1.0, 0.0 <z<1.0) 615 Ln2-z(M〇i.yWy)2〇9: Euz (Ln=La, Gd, Lu, y=0.0-1.0, 0.0<z<0.5) 615 Ln2-2 (Mo ].yWy)3〇i2:Euz (Ln=La, Gd, Lu, y=0.0-1.0, 0.0<z<0.5) 615 (Yi.xyzGdxLuy)2〇3:Euz(x, y=0.0- 1.0, 0.0<z<0.5) 611 (Yi.xyzGdxLuy)3Al5〇]2: Euz (x, y=0.0-1.0, 0.0<z<0.5) 591 Ba2(Yi-xy-zGdxLuy)2Si4〇i3 :Euz(x, y=0.0-1.0, 0.0<z<0.5) 614 Ba2(Yi-xy.zGdxLuy)2Ge4〇i3:Euz(x, y=0.0-1.0, 0.0<z<0.5) 616 ( Yi.xyzGdxLuy)V〇4:Euz (x, y=0.0-1.0, 0.0<z<0.5) 620 (Yi.xyzGdxLuy)OF:Euz (x, y=0.0-1.0, 0.0<z< 0.5) 612 (Yi.xy-zGdxLuy)OCl:Euz(x, y=0.0-1.0, 0.0<z<0.5) 621 Lai .zO(Cl i .xBrx) :Euz (x=0.0-1.0,0.0<;z<0.5) 619 Ba(Yi.xyzGdxLuy)B9〇i6:Euz (x, y=0.0-1.0, 0.0<z<0.5) 615 Ba3(Yi.xyzGdxLuy)(B〇3)3:Euz (x, y=0.0-1.0, 0.0<z<0.5) 593 (Yi.xyzGdxLuy)2Si〇5:Euz (x, y=0.0-1 .0, 0.0<z<0.5) 613 (Yi,y.zGdy)2〇2S:Euz (y=0.0-l .0, 0.0<z<0.5) 620-630 Figure 4 depicts a modified illumination The device 40 has an additional green light emitting OLED substrate Og added to the illumination device 40. The remaining composition of the illuminating device 40 is similar to that of FIG. 3. FIG. 5 illustrates a further embodiment of a illuminating device 50 comprising a blue-emitting OLED Ob and a conversion layer having a luminescent material 141654.doc 12 201018309 C_yr, the conversion layer (:_71· is used to convert light into light in the green and red spectral range. Figure 5 further indicates a color filter cf 'this color filter CF can be added as needed to remove Potentially unneeded portions of the emission spectrum in this and previous embodiments. Suitable luminescent materials may be selected from the list. Further, the red-emitting luminescent material may be selected from Tables 3 and 4. The luminescent material excited by radiation from 420 nm to 500 nm and activated by Eu2+ or Ce3+ may also be selected from the following: ❿ Table 5: Composition ^max [Bai-y-zSry] 2Si〇4:Euz (y=〇_〇-L〇, 〇〇<zs 〇2) 500-550 (Cai-y.zSrgGajiEuz (y=〇.〇-l.〇, 〇_〇<z &lt ; 〇 2) 520-540 (Cai.y.zSry) Si2N202: Euz (y=0.0-l.〇5 〇.〇<z < 〇2) 540-565 ---------- L_Z__ All mentioned above The luminescent compositions of Tables 1 to 5 are preferably applied as micro-scale powders (average particle size 〇 1 μm to 2 μm). This leads to a semi-transparent, rather than fully transparent, scattering conversion layer. The transparent transfer layer, the applied luminescent composition must have an average micro temple size of less than 5 〇 nanometer. Or, a quantum dot type luminescent composition (average particle size 丨 nano j 10 nm, for example (Zni_xCdx) (Sl is), (Ini xGax) (p) is), Si, Ge or (Agl_xCUx) (Bri yIy), wherein χ, y = 〇〇1 亦 亦 ;; applied to the transparent conversion layer. An alternative method for obtaining a transparent conversion layer is the application of organic luminescent wood 141654.doc -13- 201018309 Materials 'The organic materials can be dissolved into a transparent organic polymer, for example PMMA or PC ^ in the blue spectral range A suitable organic light-emitting material system and its derivatives, coumarin and its derivatives, Ln3 + (Ln=Eu and Tb) and Ir3+ and Ru2+_ complexes are shown. The illumination according to the invention is described. The device has the following advantages: - Simple construction (blue/green OLED + green / yellow) / red light illuminating screen); - can optimize the suitable inorganic phosphorus and blend; - degrade blue OLED does not cause color point shift; - use a narrow band to emit red light phosphorus can prevent in infrared radiation Loss, the infrared radiation often encounters the use of a red light (plus green light, plus blue light) organic emitters of the "wideband" white light led; - improved light outcoupling and thus improved wall socket efficiency . In summary, a lighting device in accordance with the present invention can be described as a phosphor converted organic light emitting diode (pcOLED) having an organic light emitting element (OLED) and a conversion layer. The illumination device may further have one or more of the following features as appropriate: - 0 LED has a peak emission between 420 nm and 5 Å nanometer (Blu-ray OLED); -0 LED has a relationship between 510 nm and The peak emission between 56 nanometers (green OLED); the conversion layer comprises one or several compositions from the surface to 5; the illumination device comprises a color filter element. The illuminating device can be used as a light source for general purpose, advertising, automatic and decorative purposes, for the purpose of signaling or backlighting. In the end, it is pointed out that the term "comprising" does not exclude other elements or steps in the present application. "a" or "an" does not exclude the plural, and a single device or other unit may perform the functions of several components. The present invention resides in each combination of characteristic features and characteristic features of each new one. Moreover, the reference signs in the scope of the patent application should not be construed as limiting the scope thereof. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an illumination device having a blue OLED and a yellow light conversion layer; FIG. 2 illustrates an illumination device of a luminaire with a blue and green OLED and a yellow light conversion layer. The OLED with blue light and the yellow and red light conversion layer are shown; FIG. 4 shows the illuminating device with the blue and green 〇 LED and the yellow and red light conversion layers; and FIG. 5 shows the OLED and green with blue light Illumination device for light, yellow and red light conversion layers. [Main component symbol description] 10 Illumination device 20 Illumination device 30 Illumination device 40 Illumination device 50 Illumination device B Blue light C_gr Conversion layer 141 141654.doc -15· 201018309 c_y Conversion layer C_yr Conversion layer CF Color filter G Green light Ob Blue light OLED 〇g green OLED R red light Y yellow light 141654.doc -16

Claims (1)

201018309 七、申請專利範圍: 1. 一種照明裝置(10至50),其具有發射一藍光及/或綠光之 OLED(Ob、〇g)及具有安置於該〇LED之光輸出路徑中之 一轉換層(c_y、c—yr、c—gr),其中該轉換層包括選自由 以下材料組成之群組的至少一發光材料: aHZnhCdxXSbSey)及(Ini-xGax)(PKyASy),其中 χ、 ' ye[o, 1]; b)螢光鈉素、玫瑰紅6G及玫瑰紅B ; ❹ c)Ir3 +之錯合物; d) Tb3 +之錯合物; e) 錯合物[EuQcacMX)]、[Eu(ttfaMx)]、[Eu(thd)3(x)] 及[Eu(二苯甲醯甲烷MX)],其中χ==聯吡啶、啡 啉、聯苯啡啉及其等替代物;及 f) SrLi2Si04:EU、(Ba,Sr)2Si04:Eu及(Ca,Sr)2Si〇4:Eu。 2. 如請求項1之照明裝置(10至50),其特徵為該發光材料包 括[Ir(苯基η比咬)3]。 粵3. #請求項!之照明裝置(1〇至5〇),其特徵為該發光材料包 括[Tb(笨曱酸鹽)3]、[Tb(柳酸鹽)3]或[几卜比啶)3]。 _ 4.如請求項!之照明裝置(10至50),其特徵為該轉換層 (C—y)僅包括發射黃光之發光材料。 5·如請求項】之照明裝置(10至50),其特徵為該轉換層 (c__yr)僅包括發射黃光或紅光之發光材料。 6.如請求項1之照明裝置(10至50),其特徵為該轉換層 (c一gr)僅包括發射綠光或紅光之發光材料。 141654.doc 201018309 7. 8. 9. 10. 11. 12. 13. 14. 如請求項1之照明裝置(1〇至50),其特徵為該轉換層 (_y C〜yr、c_gr)包括其中嵌入有該發光材料之微粒之 一基質材料。 如請求項7之照明裝置(臟5〇),其特徵為該等微粒具有 大約1奈米至20微米之一平均微粒大小’其中以大約〇1 微米至20微米或低於大約50奈米較佳。 如請求们之照明I置(1〇至50),其特徵為該發光材料具 有一量子點型組合物。 如請求項7之照明裝置(10至50),其特徵為該等微粒具有 一塗層。 如請求項7之照明裝置(10至50),其特徵為該基質材料包 括—透明聚合物,其中以PMMA(聚甲基丙烯酸曱酯)或 pc(聚碳酸脂)較佳。 如請求項1之照明裝置(1〇至50),其特徵為其具有大於85 之一演色指數。 如請求項1之照明裝置(10至50),其特徵為其包括一彩色 濾光鏡(CF)。 如請求項1之照明裝置(10至50),其特徵為其包括可個別 地控制之一藍光及一綠光的〇LED(Ob、〇g)。 141654.doc201018309 VII. Patent application scope: 1. A lighting device (10 to 50) having an OLED (Ob, 〇g) emitting a blue light and/or a green light and having one of light output paths disposed in the 〇LED a conversion layer (c_y, c-yr, c-gr), wherein the conversion layer comprises at least one luminescent material selected from the group consisting of: aHZnhCdxXSbSey) and (Ini-xGax) (PKyASy), wherein χ, ' ye [o, 1]; b) fluorescein, rose red 6G and rose red B; ❹ c) Ir3 + complex; d) Tb3 + complex; e) complex [EuQcacMX)], [Eu(ttfaMx)], [Eu(thd)3(x)] and [Eu(diphenylmethylmethane methane MX)], wherein χ==bipyridine, morpholine, biphenylmorpholine and the like; And f) SrLi2Si04: EU, (Ba, Sr) 2Si04: Eu and (Ca, Sr) 2 Si〇 4: Eu. 2. The illumination device (10 to 50) of claim 1, wherein the luminescent material comprises [Ir (phenyl η ratio bite) 3]. Yue 3. #Request item! Illuminating device (1〇 to 5〇) characterized in that the luminescent material comprises [Tb (stupidate) 3], [Tb (saltate) 3] or [bibidine] 3]. _ 4. As requested! The illumination device (10 to 50) is characterized in that the conversion layer (C-y) comprises only a luminescent material that emits yellow light. 5. The illumination device (10 to 50) as claimed in claim 1, wherein the conversion layer (c__yr) comprises only a luminescent material that emits yellow or red light. 6. The illumination device (10 to 50) of claim 1, wherein the conversion layer (c-gr) comprises only a luminescent material that emits green or red light. 141654.doc 201018309 7. 8. 9. 10. 11. 12. 13. 14. The lighting device (1〇 to 50) of claim 1 characterized in that the conversion layer (_y C~yr, c_gr) is included A matrix material in which one of the particles of the luminescent material is embedded. An illumination device (dirty 5) according to claim 7, characterized in that the particles have an average particle size of from about 1 nm to 20 μm, wherein about 〇1 μm to 20 μm or less than about 50 nm good. The illumination I is placed (1 to 50) as claimed, characterized in that the luminescent material has a quantum dot type composition. The illuminating device (10 to 50) of claim 7 characterized in that the particles have a coating. The illuminating device (10 to 50) of claim 7, wherein the matrix material comprises a transparent polymer, wherein PMMA (poly(methacrylate) or pc (polycarbonate) is preferred. The illumination device (1 to 50) of claim 1 characterized in that it has a color rendering index greater than 85. The illumination device (10 to 50) of claim 1 is characterized in that it comprises a color filter (CF). The illuminating device (10 to 50) of claim 1 is characterized in that it comprises 〇LEDs (Ob, 〇g) which can individually control one of blue light and one green light. 141654.doc
TW098128696A 2008-08-28 2009-08-26 Phosphor converted OLED illumination device TW201018309A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08105165 2008-08-28

Publications (1)

Publication Number Publication Date
TW201018309A true TW201018309A (en) 2010-05-01

Family

ID=41381644

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098128696A TW201018309A (en) 2008-08-28 2009-08-26 Phosphor converted OLED illumination device

Country Status (2)

Country Link
TW (1) TW201018309A (en)
WO (1) WO2010023603A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102345977B1 (en) 2014-08-26 2021-12-30 삼성전자주식회사 Organic photoelectronic device and image sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2404073B (en) * 2003-07-16 2006-05-17 Fuji Electric Co Ltd Method of manufacturing organic EL display panel,and method of manufacturing color-converting filter substrate

Also Published As

Publication number Publication date
WO2010023603A2 (en) 2010-03-04
WO2010023603A3 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
Xiang et al. Research progress of full electroluminescent white light-emitting diodes based on a single emissive layer
Ma et al. High color‐rendering index and stable white light‐emitting diodes by assembling two broadband emissive self‐trapped excitons
Zhang et al. Self‐quenching‐resistant red emissive carbon dots with high stability for warm white light‐emitting diodes with a high color rendering index
Lin et al. Highly thermal-stable warm w-LED based on Ce: YAG PiG stacked with a red phosphor layer
Wang et al. White light-emitting devices based on carbon dots’ electroluminescence
Chen et al. Advances in transparent glass–ceramic phosphors for white light-emitting diodes—A review
Wu et al. Phosphor-SiO2 composite films suitable for white laser lighting with excellent color rendering
Sun et al. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes
Li et al. Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting
He et al. Sm3+-activated gadolinium molybdate: an intense red-emitting phosphor for solid-state lighting based on InGaN LEDs
US9735386B2 (en) Quantum-dot based hybrid LED lighting devices
Song et al. Design of long-term stable red-emitting CsPb (Br0. 4, I0. 6) 3 perovskite quantum dot film for generation of warm white light
Xu et al. Design of a CaAlSiN3: Eu/glass composite film: Facile synthesis, high saturation-threshold and application in high-power laser lighting
Xiang et al. A chromaticity-tunable white LED by screen-printing red phosphor coating on PiG plates
TW201038714A (en) Phosphor and light emitting device
CN106664768B (en) Organic electroluminescent device and lighting device
CN102709482A (en) Phosphorescence and fluorescence combined white organic light emitting device
Kim et al. Advancement in materials for energy-saving lighting devices
TW201009050A (en) Red phosphor and forming method thereof for use in solid state lighting
TW201309977A (en) Wavelength converting element
Yin et al. The thermal stability performances of the color rendering index of white light emitting diodes with the red quantum dots encapsulation
CN103000822A (en) Preparing method for organic white LED illumination light source with high color-rendering index and adjustable color temperature
Cai et al. Phosphor geometry regulations with separated red and green quantum dot layers for high performance warm white light-emitting diodes
Jin et al. Targeting cooling for YAG: Ce3+-based laser-driven lighting device by blending high thermal conductivity AlN in phosphor-sapphire composite
CN108281568A (en) A kind of top emitting white light organic electroluminescent device and preparation method thereof