TW201213498A - Light generating method - Google Patents

Light generating method Download PDF

Info

Publication number
TW201213498A
TW201213498A TW100121281A TW100121281A TW201213498A TW 201213498 A TW201213498 A TW 201213498A TW 100121281 A TW100121281 A TW 100121281A TW 100121281 A TW100121281 A TW 100121281A TW 201213498 A TW201213498 A TW 201213498A
Authority
TW
Taiwan
Prior art keywords
light
primary light
photoluminescent material
primary
photoluminescent
Prior art date
Application number
TW100121281A
Other languages
Chinese (zh)
Inventor
Rifat Ata Mustafa Hikmet
Coen Theodorus Hubertus Fransiscus Liedenbaum
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201213498A publication Critical patent/TW201213498A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)

Abstract

The invention relates to a light generating apparatus for generating light. A primary light source (2) emits primary light, and a photoluminescent material (3) converts a part of the primary light into secondary light. Mixed light is generated by mixing non-converted primary light and the secondary light. An absorption cross section of the photoluminescent material is adapted such that, if the peak wavelength of the primary light would vary over a variation wavelength range of at least 20 nm, the color coordinate of the mixed light would vary by less than 10 SDCM. Different primary light sources emitting at different peak wavelengths within the variation wavelength range can therefore be used for generating mixed light having the same or similar color temperature. This leads to reduced requirements for choosing the primary light source to be used for manufacturing the light generating apparatus.

Description

201213498 六、發明說明: 【發明所屬之技術領域】 本發明係關於用於產生光之一光產生裝置及一光產生方 法。本發明進一步係關於可由光產生裝置使用之一光致發 光材料及用於製造該光產生裝置之一製造方法。 【先前技術】 US 7,646,032 B2揭示一種光產生裝置,該光產生裝置包 括發射初級光之一發光二極體,該初級光被引導至塗佈有 一構光體摻合物之一外殼。當由該初級光照射時,該磷光 體摻合物將該初級光轉換成白色次級光。此光產生裝置具 有該光產生裝置之製造係非常複雜且耗時之缺點。 【發明内容】 本發明之一目標係提供可以一較不複雜方式製造之一光 產生裝置。本發明之一進一步目標係提供對應之光產生及 製造方法’及可用於以一較不複雜方式製造該光產生裝置 之一光致發光材料。 在本發明之一第一態樣中,呈現一種用於產生光之光產 生裝置’其中該光產生裝置包括: -一初級光源,用於發射具有一發射光譜及一峰值波長之 初級光, 光致發光材料’用於將該初級光之一部分轉換成次級 光’其中該初級光源與該光致發光材料經組態以藉由混合 該初級光之尚未轉換為次級光之一部分與該次級光而產生 混合光,且 156255.doc 201213498 其中该光致發光材料之一吸收截面經組態以使得在該初級 光之該峰值波長將在至少20 nm之一變化波長範圍内變化 之情形下’該混合光之色座標將變化少於丨〇 SDCM(由 MacAdam所界定之色彩匹配標準偏差)。 在上文所提及之先前技術中,發光裝置之製造係非常複 雜且耗時的’此乃因該磷光體摻合物具有窄頻帶吸收特性 且該發光二極體之發射光譜因此必須與該磷光體摻合物之 層之厚度良好匹配,以便能夠獲得一所期望之色溫。然 而,在發光二極體之產生期間,幾乎不可能能夠一致地產 生發射具有相同峰值波長之相同發射光譜之發光二極體。 因此,獲得發射具有木同發射光譜及不同峰值波長之初級 光之發光二極體。自此等數個發光二極體,必須選擇具有 匹配該填光體摻合物之窄頻帶吸收特性之一發射光譜之發 光二極體,且必須調整該磷光體摻合物之厚度,以便獲得 白色光。由於根據本發明該光致發光材料之吸收截面經組 態以使得在該初級光之該峰值波長將在至少2〇 nm之一變 化波長範圍内變化之情形下,該混合光之該色座標將變化 少於10 SDCM,因此該光致發光材料具有一寬廣且優先地 平坦之吸收光譜,且對應於該光致發光材料之該寬廣且優 先地平坦之吸收光譜之以不同波長發射之不同初級光源可 用於產生具有相同或一相似色溫之次級光。此導致仔細選 擇匹配該光致發光材料之該頻帶吸收特性之該初級光源之 一減小要求’且因此允許以一較不複雜方式且以一減小製 造時間製造該光產生裝置。 156255.doc -5- 201213498 峰值波長之變化可視為發射光譜以及該峰值波長之一移 位。此移位可在製造該初級光源之製造過程期間引起,其 可導致具有相對於彼此移位之不同發射光譜之不同初級光 源。 界定由該光致發光材料所吸收之光之分率之該吸收戴面 優先地相依於在該發射光镨之波長範圍内該光致發光材料 之波長相依吸收與該初級光源之波長相依發射之乘積之積 分。特定而言,該吸收截面可藉由以下方程式界定: (^(λ)/(λ)ί/λ)/(|/(λ)£/Λ) , (1)201213498 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a light generating device for generating light and a light generating method. The invention further relates to a photoluminescence material usable by a light generating device and a method of fabricating the same. [Prior Art] US 7,646,032 B2 discloses a light generating device comprising a light emitting diode that emits primary light, the primary light being directed to an outer shell coated with a light body blend. The phosphor blend converts the primary light into white secondary light when illuminated by the primary light. The light generating device has the disadvantage that the manufacturing of the light generating device is very complicated and time consuming. SUMMARY OF THE INVENTION One object of the present invention is to provide a light generating device that can be fabricated in a less complex manner. It is a further object of the present invention to provide a corresponding light generating and manufacturing method' and a photoluminescent material that can be used to fabricate one of the light generating devices in a less complex manner. In a first aspect of the invention, a light generating device for generating light is provided, wherein the light generating device comprises: - a primary light source for emitting primary light having an emission spectrum and a peak wavelength, light a luminescent material 'for converting a portion of the primary light into a secondary light' wherein the primary light source and the photoluminescent material are configured to be converted to a portion of the secondary light by mixing the primary light with the time Level light produces mixed light, and 156255.doc 201213498 wherein one of the photoluminescent materials has an absorption cross section configured such that the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm 'The color coordinates of this mixed light will vary less than 丨〇SDCM (the color matching standard deviation defined by MacAdam). In the prior art mentioned above, the fabrication of the illuminating device is very complicated and time consuming 'this is because the phosphor blend has narrow band absorption characteristics and the emission spectrum of the luminescent diode must therefore be The thickness of the layer of the phosphor blend is well matched so that a desired color temperature can be obtained. However, during the generation of the light-emitting diodes, it is almost impossible to uniformly emit light-emitting diodes having the same emission spectrum having the same peak wavelength. Therefore, a light-emitting diode that emits primary light having a wood-like emission spectrum and different peak wavelengths is obtained. From such a plurality of light-emitting diodes, a light-emitting diode having an emission spectrum matching the narrow-band absorption characteristics of the light-filling body blend must be selected, and the thickness of the phosphor blend must be adjusted in order to obtain White light. Since the absorption cross section of the photoluminescent material according to the invention is configured such that the peak wavelength of the primary light will vary over a range of wavelengths of at least 2 〇 nm, the color coordinates of the mixed light will The variation is less than 10 SDCM, so the photoluminescent material has a broad and preferentially flat absorption spectrum, and different primary light sources emitting at different wavelengths corresponding to the broad and preferentially flat absorption spectrum of the photoluminescent material It can be used to generate secondary light having the same or a similar color temperature. This results in careful selection of a reduced requirement of the primary source that matches the band absorption characteristics of the photoluminescent material' and thus allows the light generating device to be fabricated in a less complex manner and with a reduced manufacturing time. 156255.doc -5- 201213498 The change in peak wavelength can be considered as the emission spectrum and one of the peak wavelength shifts. This shift can be caused during the manufacturing process of fabricating the primary source, which can result in different primary sources having different emission spectra that are displaced relative to one another. Determining, by the fraction of the light absorbed by the photoluminescent material, the absorption mask preferentially depends on the wavelength dependent absorption of the photoluminescent material in the wavelength range of the emission pupil and the wavelength of the primary source is emitted The integral of the product. In particular, the absorption cross section can be defined by the following equation: (^(λ)/(λ)ί/λ)/(|/(λ)£/Λ), (1)

X X 其中ν4(λ)係該光致發光材料之波長相依吸收係數且/(λ) 係該初級光之波長相依強度。優先地在完整發射光譜上或 僅在該發射光譜之一部分上執行積分。 一給定波長處之吸收可藉由以下方程式界定: 其中/σ(λ)表示與該光致發光材料接觸之前的該初級光強度 之強度且/α(λ)表示已橫穿該光致發光材料且尚未由該光致 發光材料吸收之該初級光束之強度。表達式亦可 稱為透射(transmission)。 已發現’ 20 nm之一變化波長範圍與混合光之色座標之 少於10 SDCM之一變化之組合允許大大減小製造該光產生 裝置之複雜性,但製造出的光產生裝置不會使該混合光之 色彩產生顯著偏差。 156255.doc 201213498 該吸收截面界定多少初級光被吸收且因此經轉換成次級 光及多少初級光被透射。以此方式,該吸收截面確定該混 合光之成分。然後可使用習知之色彩匹配函數在CIE色彩 空間中計算並定位該混合光之光譜。由於該初級光之該峰 值波長之一移位所致之吸收截面之變化導致該混合光之該 發射光譜之改變’且因此導致該混合光之該色座標在該 CIE色彩空間中之位置之改變。此變化可利用由MacA(jam 所界定之色彩匹配標準偏差(SDCM)或以另一方式來表 〇 達。 舉例而言,特定而言,在未發生該初級光之完全吸收之 一實施例中’一光致發光材料在0.92之一吸收截面處(亦 即’在吸收截面係0.92之具有一峰值波長之該初級光之一 發射光譜處)與一初級藍色光源組合使用,從而產生具有 3000 K之一色溫之混合白色光。若(舉例而言)在該初級光 之峰值波長之位置之一移位時該吸收截面改變至0.94,則 q 可觀察到5 SDCM之一改變。因此,該吸收截面之約2%之 改變可產生一 5 SDCM之改變且該吸收截面之約4%之變化 可產生10 SDCM之改變。因此’在一實施例中,在該初級 光之該♦值波長在至少20 nm之一變化波長範圍内變化之 情形下,該光致發光材料之該吸收截面之相對變化不超過 40/〇且進一步較佳地不超過2%,其中該吸收截面之一相對 變化優先地界定為該吸收截面之最大值與相對於該吸收截 面之該最大值之該吸收截面之最小值之間的差。 較佳地’在該初級光之該峰值波長將在至少2〇 nm之一 156255.doc 201213498 變化波長範圍内變化之情形下,該吸收截面具有不超過 1 0%,進一步較佳不超過5%,且更進一步較佳不超過2% 之一最大相對變化。 該初級光源與該光致發光材料優先地進一步經調適以使 得在該初級光之該峰值波長將在至少20 nm之一變化波長 範圍内變化之情形下,該混合光之該色座標將變化少於5 SDCM。 進一步較佳地,該變化波長範圍係至少40 nm且更進一 步較佳至少50 nm之一波長範圍。 該初級光源優先地係一發光二極體或一雷射。該初級光 源優先地經組態以發射藍色光。較佳地,該初級光源發射 具有在400 nm至480 nm之範圍中或在一紫外線波長範圍中 之一峰值波長之一發射光譜。 較佳地’初級光源經調適以使得該初級光之該發射光譜 具有至少15 nm之一半峰全幅值。 亦較佳地’該半峰全幅值係至少3〇 nm且更進一步50 nm。使用具有此等帶寬之一初級光源之一光產生裝置產生 一良好現色性指數。 该光致發光材料優先地經調適以提供磷光及/或螢光作 為次級光。該光致發光材料優先地包括一磷光體。 該初級光源與該光致發光材料優先地經組態以使得該混 s光係白色光。舉例而言,該初級光源可經調適以發射藍 色光且該光致發光材料可經調適以發射黃色及/或橙色及/ 或紅色光以使得該混合光係白色。 I56255.doc 201213498 較佳地,該光致發光材料包括一有機光致發光材料,特 定而言’有機磷光體。有機光致發光材料優先地係由有機 分子製成。有機光致發光材料通常係可大量使用之可持續 且相對低成本之材料。有機發光材料之吸收頻帶及發射頻 帶可經選擇成一般在無任何限制之情況下之任何吸收頻帶 及發射頻帶’特定而言’以使得該光致發光材料之該吸收 截面經組態以使得在該初級光之該峰值波長將在至少2〇 nm之一變化波長範圍内變化之情形下,該混合光之該色座 彳示將變化少於10 SDCM。此可(舉例而言)藉由選擇吸收頻 帶及發射頻帶以使得該光致發光材料具有一寬廣且平坦之 吸收光譜來達成,其中在該初級光之該波長在2〇 nm之一 範圍内變化之情形下,該光致發光材料之吸收截面具有不 超過10%之一相對變化。 亦較佳地,該光致發光材料經調適以使得該次級光之超 過60%之功率具有低於650 nm之一波長。該光致發光材料 Q 可包括具有一發射頻帶之一有機磷光體,其中高達650 nm 之發射之積分功率優先地係總積分功率之一分率,且其中 此分率優先地大於60% ’更較佳地大於8〇%,且更較佳地 大於90 /。。因此,該光產生裝置可經調適以使得該次級光 之該功率之一大部分係在可見範圍中且一小部分係在其中 人眼非常遲鈍之紅外線範圍中。該光致發光材料亦可經調 適以使得該次級光在該紅外線範圍中不發射。 進一步較佳地,該光致發光材料包括其等之間展示一共 振能量轉移之不同種類之光致發光元件。該等不同種類之 156255.doc 201213498 光致發光元件優先地係不同種類之光致發光分子,特定而 吕’不同種類之破光體分子。優先地,若一第一種類之_ 光致發光元件吸收該初級光之一部分,則該所接收能量之 一部分轉移至一第二種類之一光致發光元件,其中兩個種 類之光致發光元件發射與該初級光混合之次級光。該等不 同種類之光致發光元件優先地位於所謂之Foerster半徑内 且該第一種類之光致發光元件之發射頻帶至少部分地與該 第二種類之光致發光元件之吸收頻帶重疊。一般而言,相 對於該第一種類之分子之該第二種類之一分子之一小分率 係足以接收所有能量。在此一系統中,由該第二種類之分 子進行之該初級光之吸收遠低於由該第一種類之分子進行 之該初級光之吸收。發射次級光之該第二種類之分子之消 光特性及/或濃度優先地經調整以使得該混合物中之該第 一種類之分子之吸收與該第一種類之分子之吸收相當,以 便增寬包括該等不同種類之光致發光元件(亦即,該等不 同種類之光致發光分子)之光致發光材料之吸收頻帶。該 等不同種類之光致發光元件及及其濃度經選擇以使得包括 該等不同種類之光致發光元件之該光致發光材料之該吸收 截面經組態以使得在該初級光之該峰值波長將在至少2〇 nm之一變化波長範圍内變化之情形下,該混合光之該色座 私將變化少於10 SDCM。此可藉由(舉例而言)選擇不同種 類之光致發光το件及及其濃度以使得該光致發光材料具有 -寬廣且平坦之吸收光譜而達成,其中在該初級光之該波 長在20 nm之一範圍内變化之情形下,該光致發光材料之 156255.doc -10- 201213498 該吸收截面具有不超過i 0%之一相對變化。 不同種類之光致發光元件在其等特性方面存在不同,舉 例而s ’不同種類之光致發光元件在以下各方面中之至少 者存在不同:吸收頻帶、發射頻帶、結構、吸收及/或 發射光之過程等等。 舉例而。 第一種類之一光致發光元件可係Lumogen 貫色83且一第二種類之一光致發光元件可係蒽,其中此等 〇 兩個磷光體可經混合以用於產生該光致發光材料。該光致 發光材料亦可係由如Lum〇gen黃色83之磷光體與諸如 Lumogen紫羅蘭色57〇及/或聚第之其他發光分子)之另一混 合物製成。Lumogen黃色83與Lum〇gen紫羅蘭色57〇可(舉 例而言)由BASF公司提供。 右该光致發光材料包括Lum〇gen黃色83及蒽作為不同種 類之光致發光元件,則Lum〇gen黃色83之重量百分比對蒽 之重量百分比之比率優先地係〇.〇5或更大,進一步較佳〇ι 〇 A更大且更進-步較佳〇.15或更大。若該光致發光材料包 括Lumogen黃色83及Lum〇gen紫羅蘭色57〇作為不同種類之 光致發光元件,則Lumogen黃色83之重量百分比對 Lumogen紫羅蘭色57〇之重量百分比之比率優先地係〇 或 更大,進一步較佳0.1或更大且更進一步較佳〇15或更大。 而且,右該光致發光材料包括Lum〇gen黃色83及聚第作為 該等不同種類之光致發光元件,則Lum〇gen黃色之重量百 分比對聚第之重量百分比之比率優先地係〇·5或更大,進 一步較佳1.5或更大且更進一步較佳2或更大。 156255.doc -11 - 201213498 該光致發光材料可包括兩個或兩個以上之不同種類之光 致發光元件且優先地係提供不同色彩之次級光之不同種類 之光致發光元件之一混合物。此等不同種類之光致發光元 件亦可視為不同染料。 優先地選擇該等不同種類之光致發光元件之吸收頻帶及 發射頻帶以及其等在該光致發光材料内之比率以使得該整 個光致發光材料之該吸收光譜係寬廣且平坦的,以便產生 經組態以使得在該初級光之該峰值波長將在至少2 〇 nm之 一變化波長範圍内變化之情形下,該混合光之該色座標將 變化少於10 SDCM之一光致發光材料。 進一步較佳地,該等不同種類之光致發光元件彼此共價 連接。若該等不同種類之光致發光元件經彼此共價連接, 則可(特疋而5 )藉由調整s亥等不同種類之光致發光元件之 該等吸收頻帶之相對位置以及其等消光係數以使得在該初 級光之該峰值波長將在至少20 nm之一變化波長範圍内變 化之情形下’該混合光之該色座標將變化少於1 〇 SDCM而 獲得一相對寬廣且平坦之吸收光譜。 進一步較佳地,該光致發光材料包括一第一種類之一光 致發光元件之一第一層及位於該第一層上之一第二種類之 一光致發光元件之一第二層。藉由使用該層結構,可容易 地藉由選擇各別層中之該等分子之濃度及個別層之厚度來 獲得該光致發光材料之一所期望吸收(特定而言)以使得在 該初級光之該峰值波長將在至少20 nm之一變化波長範圍 内變化之情形下,該混合光之該色座標將變化少於1〇 156255.doc -12· 201213498 SDCM(特定而言)以使得達成一寬廣且平坦之吸收光譜。 進一步較佳地’該初級光源與該光致發光材料經組態以 使得 -該初級光之一第一部分被引導至該光致發光材料, -該初級光之一第二部分不被引導至該光致發光材料,且 -該次級光與以下各項中之至少一者彼此混合以用於產生 該混合光:a)該初級光之該第二部分及b)已橫穿該光致發 光材料但尚未轉變成次級光之該初級光之該第一部分之一 量。在該初級光源與該光致發光材料經調適以使得該初級 光之該第一部分完全由該光致發光材料吸收之情形下,優 先地使用選項a)。舉例而言’可藉助該光致發光材料僅覆 蓋該初級光源之一光出射表面之部分以將僅該初級光之一 第一部分引導至該光致發光材料。 進一步較佳地,該光致發光材料包括一第一種類之一光 致發光元件之一第一層及位於該第一層上之一第二種類之 一光致發光元件之一第二層’其中該初級光源與該光致發 光材料經組態以使得 -該初級光之一第一部分被引導至該第一層與該第二層之 組合以用於產生該次級光’ -該初級光之一第二部分不被引導至該第一層與該第二層 之該組合,且 -該次級光與該初級光之該第二部分彼此混合以用於產生 該混合光, 其中該第一層與該第二層之該組合經調適以使得該初級 156255.doc -13· 201213498 光之該第一部分被完全吸收。可藉由相應地選擇該等個別 層内之光致發光分子之濃度及該等個別層之厚度,而非將 其等混合在一起(此將導致大量自吸收)來簡單地選擇每一 層之一所期望之吸收。 進一步較佳地’該光產生裝置包括一區,該區具有:具 有該光致發光材料之至少一個第一區域及不具有該光致發 光材料之至少一個第二區域,其中該初級光之一第一部分 被引導至該至少一個第一區域以用於產生次級光且該初級 光之一第二部分被引導至該至少一個第二區域,其中該次 級光與以下各項中之至少一者彼此混合以用於產生該混合 光· a)該初級光之該第二部分及b)已橫穿該至少一個第一 區域但尚未轉變成次級光之該初級光之該第一部分之一 量。在該初級光源與該光致發光材料經調適以使得該初級 光之該第一部分完全由該光致發光材料吸收之情形下,優 先地使用選項a)。此組態可藉由提供該第二區域之—層來 形成,其中此層包括具有包含於該層中之該光致發光材料 之該等第一區域之一分佈。在一替代實施例中,該等第二 區域之一者或全部可包括不完全吸收被引導至此等第二區X X wherein ν4(λ) is the wavelength dependent absorption coefficient of the photoluminescent material and /(λ) is the wavelength dependent intensity of the primary light. Integration is preferably performed on the complete emission spectrum or only on one of the emission spectra. The absorption at a given wavelength can be defined by the following equation: where /σ(λ) represents the intensity of the primary light intensity prior to contact with the photoluminescent material and /α(λ) indicates that the photoluminescence has been traversed The intensity of the primary beam of material that has not been absorbed by the photoluminescent material. An expression can also be called a transmission. It has been found that the combination of a variation wavelength range of one of 20 nm and a color coordinate of the mixed light of less than 10 SDCM allows to greatly reduce the complexity of fabricating the light generating device, but the fabricated light generating device does not The color of the mixed light produces a significant deviation. 156255.doc 201213498 This absorption section defines how much primary light is absorbed and thus converted into secondary light and how much primary light is transmitted. In this way, the absorption cross section determines the composition of the mixed light. The spectrum of the mixed light can then be calculated and located in the CIE color space using conventional color matching functions. A change in the absorption cross section due to shifting of one of the peak wavelengths of the primary light results in a change in the emission spectrum of the mixed light' and thus a change in the position of the color coordinate of the mixed light in the CIE color space . This variation may utilize the color matching standard deviation (SDCM) defined by the MacA (jam) or in another way. For example, in particular, in one embodiment where no complete absorption of the primary light occurs 'a photoluminescent material is used in combination with a primary blue light source at an absorption cross section of 0.92 (i.e., 'at the emission spectrum of the primary light having a peak wavelength of 0.92 in the absorption cross-section system), resulting in 3000 A mixed white light of one color temperature of K. If, for example, the absorption cross section changes to 0.94 when one of the positions of the peak wavelength of the primary light is shifted, q can observe a change of 5 SDCM. A change of about 2% of the absorption cross section produces a change in 5 SDCM and a change of about 4% of the absorption cross section produces a change in 10 SDCM. Thus, in one embodiment, the ♦ value wavelength at the primary light is In the case of a change in a wavelength range of at least 20 nm, the relative change in the absorption cross section of the photoluminescent material does not exceed 40/〇 and further preferably does not exceed 2%, wherein one of the absorption cross sections changes relatively First defined as the difference between the maximum of the absorption cross section and the minimum of the absorption cross section relative to the maximum of the absorption cross section. Preferably, the peak wavelength of the primary light will be at least 2 〇 nm. In the case of a change in the wavelength range of 156255.doc 201213498, the absorption cross section has a maximum relative change of no more than 10%, further preferably no more than 5%, and even more preferably no more than 2%. Preferably, the light source and the photoluminescent material are further adapted such that in the event that the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm, the color coordinates of the mixed light will vary by less than 5 Further preferably, the varying wavelength range is at least 40 nm and more preferably at least 50 nm. The primary light source is preferentially a light emitting diode or a laser. It is configured to emit blue light. Preferably, the primary light source emits an emission spectrum having one of a range of wavelengths from 400 nm to 480 nm or one of the peak wavelengths in an ultraviolet wavelength range. The primary source is adapted such that the emission spectrum of the primary light has a full width at half maximum of at least 15 nm. It is also preferred that the full amplitude of the half peak is at least 3 〇 nm and further 50 nm. One of the primary light sources of the equal bandwidth produces a good color rendering index. The photoluminescent material is preferentially adapted to provide phosphorescence and/or fluorescence as secondary light. The photoluminescent material preferably includes a Phosphor. The primary light source and the photoluminescent material are preferentially configured such that the mixed light is white light. For example, the primary light source can be adapted to emit blue light and the photoluminescent material can be adapted To emit yellow and/or orange and/or red light to make the mixed light white. Preferably, the photoluminescent material comprises an organic photoluminescent material, in particular an 'organic phosphor. The organic photoluminescent material is preferably made of organic molecules. Organic photoluminescent materials are generally sustainable and relatively low cost materials that can be used in large quantities. The absorption band and the emission band of the organic luminescent material can be selected to be 'specifically' in any absorption band and emission band, generally without any limitation, such that the absorption cross section of the photoluminescent material is configured such that In the event that the peak wavelength of the primary light will vary over a range of wavelengths of at least 2 〇 nm, the color gamut of the mixed light will vary by less than 10 SDCM. This can be achieved, for example, by selecting the absorption band and the emission band such that the photoluminescent material has a broad and flat absorption spectrum, wherein the wavelength of the primary light varies within a range of 2 〇 nm In this case, the absorption cross section of the photoluminescent material has a relative change of no more than 10%. Also preferably, the photoluminescent material is adapted such that more than 60% of the power of the secondary light has a wavelength below one of 650 nm. The photoluminescent material Q may comprise an organic phosphor having one of the emission bands, wherein the integrated power of the emission up to 650 nm is preferentially a fraction of the total integrated power, and wherein the fraction is preferentially greater than 60% 'more It is preferably greater than 8%, and more preferably greater than 90%. . Accordingly, the light generating device can be adapted such that a majority of the power of the secondary light is in the visible range and a small portion is in the infrared range in which the human eye is very sluggish. The photoluminescent material can also be adapted such that the secondary light does not emit in the infrared range. Further preferably, the photoluminescent material comprises different types of photoluminescent elements that exhibit a resonant energy transfer between them. These different types of 156255.doc 201213498 photoluminescent elements are preferentially different types of photoluminescent molecules, specific and different types of light-breaking molecules. Preferentially, if a first type of photoluminescent element absorbs a portion of the primary light, one of the received energy is partially transferred to a photoluminescent element of a second type, wherein two types of photoluminescent elements A secondary light that is mixed with the primary light is emitted. The different types of photoluminescent elements are preferentially located within a so-called Foerster radius and the emission band of the first type of photoluminescent element at least partially overlaps the absorption band of the second type of photoluminescent element. In general, one of the molecules of one of the second species of the first species is sufficiently small to receive all of the energy. In this system, the absorption of the primary light by the molecules of the second species is much lower than the absorption of the primary light by the molecules of the first species. The extinction property and/or concentration of the second type of molecule that emits secondary light is preferentially adjusted such that absorption of the first species of molecules in the mixture is comparable to absorption of the molecules of the first species to broaden The absorption band of the photoluminescent material comprising the different types of photoluminescent elements (i.e., the different types of photoluminescent molecules). The different types of photoluminescent elements and their concentrations are selected such that the absorption cross section of the photoluminescent material comprising the different types of photoluminescent elements is configured such that the peak wavelength at the primary light In the case of a variation in the wavelength range of at least 2 〇 nm, the color of the mixed light will vary by less than 10 SDCM. This can be achieved, for example, by selecting different types of photoluminescent elements and their concentrations such that the photoluminescent material has a broad and flat absorption spectrum, wherein the wavelength of the primary light is 20 In the case where the range of nm varies, the photoluminescence material has a relative change of no more than i 0% of 156255.doc -10- 201213498. Different types of photoluminescent elements differ in their properties, for example, and different types of photoluminescent elements differ in at least one of the following aspects: absorption band, emission band, structure, absorption, and/or emission. The process of light and so on. For example. One of the first types of photoluminescent elements may be a Lumogen color 83 and one of the second types of photoluminescent elements may be entangled, wherein the two phosphors may be mixed for use in producing the photoluminescent material. . The photoluminescent material may also be made of another mixture of a phosphor such as Lum〇gen Yellow 83 and other luminescent molecules such as Lumogen Violet 57 and/or Poly. Lumogen Yellow 83 and Lum〇gen Violet 57 can be provided, for example, by BASF Corporation. The right photoluminescent material comprises Lum〇gen yellow 83 and yttrium as different kinds of photoluminescent elements, and the ratio of the weight percentage of Lum〇gen yellow 83 to the weight percentage of 蒽 is preferentially 〇. 5 or greater. Further preferably, 〇ι 〇A is larger and more advanced, preferably 1515 or greater. If the photoluminescent material comprises Lumogen Yellow 83 and Lum〇gen Violet 57 as different types of photoluminescent elements, the ratio of the weight percentage of Lumogen Yellow 83 to the weight percentage of Lumogen Violet 57 is preferentially 〇 or More, further preferably 0.1 or more and still more preferably 〇15 or more. Moreover, the right photoluminescent material comprises Lum〇gen Yellow 83 and Poly as the different kinds of photoluminescent elements, and the ratio of the weight percentage of Lum〇gen yellow to the weight percentage of the poly is preferentially 〇·5 Or larger, further preferably 1.5 or more and still more preferably 2 or more. 156255.doc -11 - 201213498 The photoluminescent material may comprise two or more different kinds of photoluminescent elements and preferentially provide a mixture of different kinds of photoluminescent elements of different colors of secondary light. . These different types of photoluminescent elements can also be considered as different dyes. Preferentially selecting the absorption and emission bands of the different types of photoluminescent elements and their ratios within the photoluminescent material such that the absorption spectrum of the entire photoluminescent material is broad and flat to produce The color coordinates of the mixed light will be varied by less than 10 SDCM of the photoluminescent material in the event that the peak wavelength of the primary light will vary over a range of wavelengths of at least 2 〇 nm. Further preferably, the different kinds of photoluminescent elements are covalently connected to each other. If the different types of photoluminescent elements are covalently linked to each other, the relative positions of the absorption bands of the different kinds of photoluminescent elements such as shai and their extinction coefficients can be adjusted (in particular) In the case where the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm, the color coordinate of the mixed light will vary by less than 1 〇SDCM to obtain a relatively broad and flat absorption spectrum. . Further preferably, the photoluminescent material comprises a first layer of one of the first type of photoluminescent elements and a second layer of one of the photoluminescent elements of the second type on the first layer. By using the layer structure, it is readily possible to obtain the desired absorption (in particular) of one of the photoluminescent materials by selecting the concentration of the molecules in the respective layers and the thickness of the individual layers so that at the primary In the case where the peak wavelength of light will vary over a range of wavelengths of at least 20 nm, the color coordinates of the mixed light will vary by less than 1〇156255.doc -12· 201213498 SDCM (specifically) to achieve A broad and flat absorption spectrum. Further preferably, the primary light source and the photoluminescent material are configured such that - a first portion of the primary light is directed to the photoluminescent material, - a second portion of the primary light is not directed to the a photoluminescent material, and - the secondary light is mixed with one another for generating the mixed light: a) the second portion of the primary light and b) have traversed the photoluminescence The amount of material that has not yet been converted into one of the first portions of the primary light of the secondary light. In the case where the primary light source and the photoluminescent material are adapted such that the first portion of the primary light is completely absorbed by the photoluminescent material, option a) is preferably used. For example, the photoluminescent material can be used to cover only a portion of the light exit surface of one of the primary light sources to direct only a first portion of the primary light to the photoluminescent material. Further preferably, the photoluminescent material comprises a first layer of one of the first type of photoluminescent elements and a second layer of one of the photoluminescent elements of the second type on the first layer Wherein the primary light source and the photoluminescent material are configured such that a first portion of the primary light is directed to the combination of the first layer and the second layer for generating the secondary light' - the primary light One of the second portions is not directed to the combination of the first layer and the second layer, and - the secondary light and the second portion of the primary light are mixed with one another for generating the mixed light, wherein the The combination of one layer and the second layer is adapted such that the first portion of the primary 156255.doc -13·201213498 light is completely absorbed. One of each layer can be simply selected by selecting the concentration of the photoluminescent molecules in the individual layers and the thickness of the individual layers accordingly, rather than mixing them together (which would result in a large amount of self-absorption). The desired absorption. Further preferably, the light generating device comprises a region having: at least one first region having the photoluminescent material and at least one second region having no photoluminescent material, wherein one of the primary light a first portion is directed to the at least one first region for generating secondary light and a second portion of the primary light is directed to the at least one second region, wherein the secondary light is at least one of Blending with each other for generating the mixed light, a) the second portion of the primary light and b) one of the first portions of the primary light that has traversed the at least one first region but has not yet been converted into secondary light the amount. In the case where the primary light source and the photoluminescent material are adapted such that the first portion of the primary light is completely absorbed by the photoluminescent material, option a) is preferably used. This configuration can be formed by providing a layer of the second region, wherein the layer includes one of the first regions having the photoluminescent material contained in the layer. In an alternate embodiment, one or all of the second regions may include incomplete absorption directed to the second regions

光致發光材料。 進一步較佳地,該光致發光材料具有自4〇〇 11〇1至48〇 nm至 480 nmPhotoluminescent material. Further preferably, the photoluminescent material has a range from 4〇〇11〇1 to 48〇 nm to 480 nm.

之光致發光元件, 定而言,該光致發光材料包括不同種類 其中該等不同種類之紐發光元件之組 156255.doc •14· 201213498 合產生自400 rnn至480 nm之一整個吸收頻帶。此允許該光 產生裝置使用發射具有在該藍色範圍中之一波長之光之一 初級光源’該光可經轉換成如黃色及/或橙色之其他顏色 用於產生次級光’該次級光可與該藍色初級光混合以用於 獲得白色光。該變化波長範圍因此優先地位於此吸收頻帶 ' 内。進一步較佳地,該吸收頻帶之範圍為自410 nm至460 nm且更進一步較佳地,該吸收頻帶之範圍為自42〇 11111至 450 nm。 在一實施例中’該光致發光材料係位於初級光源上。特 定而言’可在初級光源之一光出射表面上提供包括該光致 發光材料之一層。 進一步較佳地,該光致發光材料經配置以距該初級光源 具有一距離。在此所謂之遠端組態中,由該光致發光材料 轉換之光僅一小分率返回至初級光源,該初級光源優先地 係一發光二極體且其通常具有一低反射率且得到此光之一 Q 大部分。藉由使用該遠端組態,可因此改良該光產生裝置 之效率。 在本發明之一進一步態樣中,呈現一種供由光產生裝置 - 使用之光致發光材料,其中該光致發光材料經調適以將由 該光產生裝置之一初級光源所發射之具有一發射光譜及一 峰值波長之初級光之一部分轉換成次級光,其中藉由混合 尚未轉換成次級光之該初級光之一部分與該次級光而產生 混合光係,且其中該光致發光材料之一吸收截面經調適以 使得在該初級光之該峰值波長將在至20 nm之一變化波長 156255.doc •15- 201213498 範圍内變化之情形下,該混合光之該色座標將變化少於10 SDCM。 在本發明之一進一步態樣中’呈現一種用於製造一光產 生裝置之製造方法,其中該製造方法包括: -提供一初級光源用於發射具有一發射光譜及一峰值波長 之初級光, _提供一光致發光材料用於將該初級光之一部分轉換成次 級光, -組態該初級光源及該光致發光材料以藉由混合尚未轉換 成次級光之該初級光之一部分與該次級光而產生混合光, 其中該光致發光材料之一吸收截面經調適以使得在該初 級光之該峰值波長將在至少2 0 nm之一變化波長範圍内變 化之情形下,該混合光之該色座標將變化少於1 〇 SDCM。 在本發明之一進一步態樣中,呈現一種用於產生光之光 產生方法,其中該光方法包括: -藉由一初級光源發射具有一發射光譜及一峰值波長之初 級光, -藉由一光致發光材料將該初級光之一部分轉換成次級 光, -藉由混合尚未轉換成次級光之該初級光之一部分與該次 級光而產生混合光, 其中該光致發光材料之一吸收截面經調適以使得在該初 級光之該峰值波長將在至少20 nm之一變化波長範圍内變 化之情形下’該混合光之該色座標將變化少於10 Sdcm。 156255.doc -16- 201213498 應理解’如技術方案1之光產生裝置,如技術方案13之 光致發光材料、如技術方案14之製造方法及如技術方案15 之光產生方法具有相似及/或完全相同之較佳實施例;特 定而言,如附屬技術方案中所界定。 應理解,本發明之一較佳實施例亦可係該等附屬技術方 案與各別獨立技術方案之任一組合。 參考下文中所闡述之實施例將明瞭並闡明本發明之此等 及其他態樣。 【實施方式】 圖1示意性及實例性展示用於產生光之一光產生裝置之 一實施例。光產生裝置1包括用於發射初級光之一初級光 源2及用於將該初級光之一部分轉換成次級光之一光致發 光材料3 ’其中初級光源2與光致發光材料3經組態以藉由 混合該初級光與該次級光而產生混合光。該光致發光材料 之吸收截面經組態以使得在該初級光之峰值波長將在至少 20 nm之一變化波長範圍内變化之情形下,該混合光之色 座標將變化少於10 SDCM。特定而言,該光致發光材料優 先地經調適以使得在該初級光之該峰值波長將在至少2〇 nm之一變化波長範圍内變化之情形下,該吸收截面具有不 超過10°/。之一最大相對變化。因此,該光致發光材料具有 一寬廣且平坦之吸收光譜。在此實施例中,初級光源2包 括發射藍色光(較佳在400 nm至480 nm之範圍中)之三個發 光二極體。光產生裝置亦可包括少於或多於三個發光二極 體。此外,該等發光二極體可經調適以產生紫外光,且另 156255.doc •17· 201213498 外或另一選擇係,初級光源2可包括用於提供初級光之一 雷射。 光產生裝置1進一步包括用於混合由初級光源2發射之初 級光之一反射混合室4。初級光源2係位於反射混合室4内 在與光致發光材料3相對之一表面上。初級光源2及光致發 光材料3經配置而相對於彼此具有一距離。 光致發光材料3優先地經調適以提供磷光及/或螢光作為 次級光。在此實施例中,光致發光材料3包括具有一寬廣 發射頻帶之有機磷光體用於提供磷光作為次級光。 光致發光材料3包括不同種類之光致發光元件,在該等 不同種類之光致發光元件之間展示一共振能量轉移。該等 不同種類之光致發光元件係不同種類之磷光體分子,特定 而言,不同種類之有機磷光體分子。優先地,若一第一種 類之一光致發光元件吸收初級光之一部分,則所接收之能 量之刀轉移至一第一種類之一光致發光元件,其中兩 個種類之光致發光元件發射與該初級光混合之次級光。該 等不同種類之光致發光元件位於所謂之Foerster半徑内且 該第一種類之光致發光元件之發射頻帶至少部分地與該第 二種類之光致發光元件之吸收頻帶重疊。此示意性且實例 性圖解說明於圖2及圖3中。 圖2及圖3展示任意單元中相依於亦在任意單元中之波長 又之吸收值α及發射值e。在圖2中,展示一第一種類之光致 發光元件(在此實施例中,一第—有機磷光體)之一吸收光 譜20及一發射光譜22,及一第二種類之光致發光元件(在 156255.doc • 18- 201213498 此實施例中’ 一第二有機磷光體)之一吸收光譜21及一發 射光譜23。如圖2中可見,該第一種類之光致發光元件之 發射光譜22與該第二種類之光致發光元件之吸收光譜21重 疊。圖3實例性且示意性展示包括該第一種類之光致發光 元件及該第一種類之光致發光元件之一組合之光致發光材 料3之一吸收光譜24,及光致發光材料3之發射光譜25。如 圖3中可見,光致發光材料3之吸收光譜24已增寬且在一寬 & 波長範圍内係幾乎平坦的。優先地,吸收光譜24在400 nm 至480 nm之一波長範圍内係幾乎平坦的。藉由調整該等不 同種類之光致發光元件之頻帶位置及比率(特定而言加 權平均),獲得發射光譜25幾乎無改變(如圖3中所示意性且 實例性展示)之一平頂激發光譜。 第種類之光致發光元件(在此實施例中,一磷光體) 係(舉例而言)Lumogen黃色83且一第二種類之光致發光元 件可係一第一磷光體(其係蒽),其中此等兩個磷光體可經 Q 混合以用於產生光致發光材料。該光致發光材料亦可係由 不同種類之光致發光元件(特定而言,如Lum〇gen黃色83之 不同磷光體與諸如Lumogen紫羅蘭色57〇及/或聚苐之其他 光致發光分子)之另一混合物製成。該等不同種類之光致 發光元件可具有不同斯托克斯移位(St〇kes shiftp舉例而 言,一第一種類之光致發光元件可具有一較大之斯托克斯 移位且一第二種類之光致發光材料可具 斯移位。在-實施财,具有—較小之斯托克斯 Lumogen黃色83經與具有一較大之斯托克斯移位之八^^混 156255.doc -19· 201213498 合。該第一種類之光致發光元件之吸收光譜及該第二種類 之光致發光元件之吸收光譜係位於不同波長位置處。然 而,兩個種類之光致發光元件之發射光譜之波長位置優先 地係幾乎相同。一斯托克斯移位優先地經界定為相同電子 躍遷(electronic transition)之吸收光譜與放射光譜之頻帶最 高點之位置之間的波長差。 圖4實例性展示Lumogen黃色83之一吸收光譜。若 Lumogen黃色83與蒽混合,則所得之光致發光材料之吸收 光譜可增寬且係相對平坦,特定而言,在如圖5中實例性 展示之約400 nm至480 nm之一範圍中。 圖5展示藉由將Lumogen黃色83及蒽連同聚甲基丙烯酸 甲酯(PMMA) —起溶解於二氯甲烷中所產生之一光致發光 材料之一吸收光譜。在已將該溶液塗佈於一玻璃板上之 後,將該溶液乾燥。在此實施例中,所得之PMMA層具有 25微米之一厚度且含有0.13重量百分比之蒽及0.013重量百 分比之Lumogen黃色83。 在一進一步實施例中,將Lumogen黃色83與Lumogen紫 羅蘭色570連同PMMA—起溶解於二氣曱烷中。在已將該 溶液塗佈於一玻璃板上之後,將該溶液乾燥以獲得一 PMMA層,在此實施例中,該PMMA層具有25微米之一厚 度且含有0.46重量百分比之Lumogen紫羅蘭色570及0.036 重量百分比之Lumogen黃色83。此光致發光材料之一寬廣 且相對平坦之吸收光譜展示於圖6中。 在一進一步之實施例中,將Lumogen黃色83及聚第連同 156255.doc -20- 201213498 PMMA —起溶解於二氯曱烧中,且在已藉由該所得溶液塗 佈一玻璃板之後,將該溶液在該玻璃板上乾燥以獲得— PMMA層。在此實施例中,該PMMA層具有25微米之—厚 度且含有0.5重量百分比之Lumogen黃色83及0.33重量百分 比之聚苐。此光致發光材料之寬廣且相對平坦之吸收光譜 展示於圖7中。 選擇該等不同種類之光致發光元件之吸收頻帶及發射頻 帶以及其等在該光致發光材料内之比率以使得該整個光致 〇 發光材料之吸收光譜(特定而言)在400 nm至480 nm之一藍 色範圍中且進一步較佳在420 nm至450 nm之一藍色範圍中 係寬廣且平坦的。 在彼此共價連接或未彼此共價連接之情況下,該等不同 種類之光致發光元件彼此混合以形成光致發光材料。若不 同種類之光致發光元件在未彼此共價連接之情況下彼此混 合’則可藉由相應地調整不同種類之光致發光元件之吸收 Q 頻帶之位置及不同種類之光致發光元件在光致發光材料内 之相對分率而獲得一寬廣且平坦之吸收光譜(其亦可視為 一激發光譜)。由於該等不同種類之光致發光元件優先地 * 提供不同色彩之次級光,因此此等不同種類之光致發光元 件亦可視為不同染料。 若該等不同染料(亦即’不同種類之光致發光元件)經彼 此共價連接,則可調整該等不同染料之吸收頻帶之相對位 置以及其等消光係數,以便獲得光致發光材料之一寬廣且 平坦之吸收光譜。 156255.doc -21- 201213498 圖8示意性及實例性展示可與一初級光源(圖8中未展示) 組合用於發射初級光之光致發光材料之一配置,其中藉由 該光致發光材料之配置將該初級光之一部分轉換成次級 光。該光致發光材料之配置包括一第一種類之光致發光元 件(特定而言’ 一第一有機磷光體)之一第一層105,及位於 第一層105上之一第二種類之光致發光元件(特定而言,一 第二有機磷光體)之一第二層106。第一層105及第二層1〇6 形成經置於對初級光透明之一基板102上之光致發光材料 1 03。初級光源及光致發光材料1 03經組態以使得初級光之 一第一部分被引導至光致發光材料103且初級光之一第二 部分未引導至光致發光材料103。由光致發光材料1〇3產生 之次級光與該初級光之該第二部分彼此混合以用於產生混 合光。具有第一層105及第二層106之光致發光材料1〇3經 調適以使得由該初級光源(優先地係一發光二極體或一雷 射)產生之該初級光之該第一部分完全由光致發光材料1〇3 吸收。如圖8中可見,基板102之一光出射表面1〇9之僅部 分覆蓋有用於將僅該初級光之一第一部分引導至該第一層 105及該第二層106之光致發光材料103。若光出射表面1〇9 將由光致發光材料1 03完全覆蓋,則將無初級光洩漏(特定 而δ,右該初級光係藍色光’則無藍光泡漏)發生,此乃 因在此實施例中第一層105及第二層106將該初級光完全轉 換成次級光。完全轉換優先地意指超過99%之該初級光經 轉換成次級光。為得到該初級光之一洩漏(特定而言,藍 光洩漏)以藉由混合該初級光與該次級光而獲得白色光, 156255.doc •22- 201213498 光出射表面109僅部分地由光致發光材料103覆蓋。 圖9展示可由一初級光源(未展示)之初級光照射以用於 將初級光之一部分轉換成次級光之光致發光材料之一配置 之一進一步實施例。該初級光源優先地係用於發射初級光 (特定而言,用於發射初級藍色光)之一發光二極體或一雷 射。在對初級光透明之一透明基板202之一光出射表面209 上提供包括光致發光材料203之一層210以用於將該初級光 之一部分轉換成次級光,其中光致發光材料2〇3具有一寬 廣且平坦之吸收光譜且優先地包括至少兩個不同發光染 料,其中該至少兩個不同發光染料之一者完全吸收該初級 光。該初級光源與光致發光材料203經組態以藉由混合該 初級光與該次級光而產生混合光。 塗饰於基板202之表面209上之層210具有具有光致發光 材料203之至少一個第一區域207及不具有光致發光材料 203之至少一個第二區域208,其中該初級光之一第一部分 被引導至該至少一個第一區域207且該初級光之一第二部 分被引導至該至少一個第二區域208以用於產生次級光。 將該次級光與該初級光之該第二部分彼此混合以用於產生 混合光。亦在此實施例中,第一區域207中之光致發光材 料203優先地完全吸收被引導至此等第一區域之該初級 光。因此,包括完全吸收光致發光材料203之第一區域207 優先地分佈於提供於表面209上之層210内以使得在第一區 207中將該初級光之一第一部分轉換成次級光且該初級光 之一第二部分洩漏穿過層21 〇以用於與次級光混合。以此 156255.doc -23- 201213498 方式,謂得初級光之-藍光茂漏以用於藉由與該次級光 混合來產生白色光。完全吸收優先地意指超過99%之該初 級光經轉換成次級光。層21〇可(舉例而言)藉由混合兩個非 溶混透明聚合物且向該等聚合物之一者提供光致發光分子 而產生。此一系統可導致在一連續相中之一分散相之一形 成。在上述實例中,該分散相將形成含有光致發光材料 203之第一區域2〇7且該連續相將形成透明區域2〇8。亦可 能使用如發光分子可溶解於其中之一聚合物之一材料。然 後可對該聚合物進行切割或研磨以形成小粒子且然後混合 至形成該連續相之另一透明聚合物中。 上文參考圖8及圖9所闡述之基板ι〇2、2〇2可係初級光源 之一部分,其中表面109、2〇9係光出射表面,或基板 102、202可經放置以距該初級光源具有一距離,其中該初 級光入射基板102、2 02且離開該基板穿過光出射表面 109、209以照射光致發光材料。 為在初級光之峰值波長將在至少20 nm之變化波長範圍 内變化之情形下使混合光之色點之一最大變化小於1 〇 SDCM且(特定而言)小於5 SDCM(在光致發光材料完全吸收 初級光之上述實施例中),在初級光之峰值波長將在至少 20 nm之一變化波長範圍内變化之情形下該光致發光材料 之吸收載面優先地在0.99與小於1之間變化。因此,在此 等實施例中,在該初級光之該峰值波長將在至少2〇 nm2 該變化波長範圍内變化之情形下,該吸收截面之最大相對 變化優先地小於1 %。優先地,該光致發光材料之吸收光 156255.doc -24- 201213498 譜及發射光譜並不或幾乎不重疊,以便避免可導致色點之 較大改變之一高度自吸收。優先地,該光致發光材料經調 適以使得在該初級光之該峰值波長將在至少20 nm之一變 化波長範圍内變化之情形下,該吸收截面將在0.99至0.999 之一範圍内變化。 在下文中’將參考圖10中所示之一流程圖實例性闡述用 於產生光之一光產生方法之一實施例。 在步驟301中’初級光源發射初級光,且在步驟3〇2中, 藉由光致發光材料來將該初級光之一部分轉換成次級光, 其中該光致發光材料具有一吸收截面,該吸收截面經調適 以使得在該初級光之蜂值波長將在至少20 nm之一變化波 長範圍内變化之情形下,混合光之色座標將變化少於1〇 SDCM。此吸收截面優先地係藉由提供具有一寬廣且平坦 之吸收光谱以使得在該初級光之該峰值波長將在至少2〇 nm之一變化波長範圍内變化之情形下該吸收光譜具有不超 過10%之一最大相對變化之一光致發光材料而達成。在步 驟303中’藉由混合該初級光及該次級光而產生混合光。 在下文中,將參考圖11中所示之一流程圖實例性闡述用 於製造一光產生裝置之一製造方法之一實施例。 在步驟401中,提供用於發射初級光之初級光源,且在 步驟402中,提供用於將該初級光之一部分轉換成次級光 之光致發光材料’其中該光致發光材料具有一吸收截面, 該吸收截面經調適以使得在該初級光之峰值波長將在至少 20 nm之一變化波長範圍内變化之情形下,混合光之色座 156255.doc •25· 201213498 標將變化少於10 SDCM。此吸收截面優先地係藉由提供具 有一寬廣且平坦之吸收光譜以使得在該初級光之該峰值波 長將在至少20 nm之一變化波長範圍内變化之情形下該吸 收光譜具有不超過10%之一最大相對變化之一光致發光材 料而達成。在步驟403中,該初級光源與該光致發光材料 經組態以藉由混合該初級光及該次級光而產生混合光。特 定而s ’沿穿過該光致發光材料之光路徑之該光致發光材 料之厚度經調整以使得該混合光具有一所期望之色溫,特 定而言’以使得該所產生之混合光係白色光。此外,提供 §玄光致發光材料之步驟(步驟4〇2)可包括產生不同種類之光 致發光元件之一混合物,其中該等光致發光元件之吸收頻 帶及發射頻帶、其等在該混合物内之比率及(視情況)消光 係數經調適以使得該所產生之混合光具有一所期望之色 溫。舉例而言,可選擇具有產生所期望色溫所需之吸收頻 帶及發射頻帶且(視情況)具有獲得該所期望色溫所需之某 些消光係數之磷光體並用於製備不同種類之光致發光元件 之混合物。 與具有寬廣且平坦吸收光譜(特定而言,在藍色波長範 圍中)之光致發光材料相比,無機磷光體(如經Ce摻雜之 LuAG及YAG)或一單個有機磷光體(如Lumogen黃色83)僅 具有窄頻帶吸收特性。 圖12不意性展示—單個YAG:Ce磷光體之吸收頻帶3〇以 及不同發光二極體之三個不同之發射光譜31、32、33。如 圖12中可見’初級光源(其在此實例中係一發光二極體)之 156255.doc •26- 201213498 初級光之吸收在該所發射之初級光之波長改變之情形下改 變。此吸收改變導致初級光轉換成次級光之轉換之一改 變’且因此導致最終產生之混合光之色溫之一改變。在將 使用具有窄頻帶吸收特性之一磷光體(如單個Lumogen黃色 83碟光體)之情形下,該最終產生之光之色溫因此強烈地 相依於該吸收截面之位置。該最終產生之混合光之色溫對 該初級光之波長之此相依性實例性展示於圖13中之一 CIE 色彩空間中。如此圖中可見,若該初級光之該波長自42〇 nm改變至450 nm ’則該色溫自約20000 K改變至4000 K。 若該初級光改變至較大波長,則該色溫因此移位至較低溫 度。因此’一減小之初級光波長導致該所產生之混合光之 強烈藍移。在使用一单分量Lumogen黃色83之情形下, 亦將觀察到相同行為。 然而,若使用Lumogen黃色83與蒽之一混合物作為光致 發光材料’則在該初級光之該波長自420 nm修改至450 nm 之情形下’該所產生之混合光之色溫實質上不改變,乃因 此混合物在此波長範圍内之平坦吸收光譜。此圖解說明於 圖14中所示之CIE色彩空間中。Lumogen黃色83對蒽之比 率優先地係5%,進一步較佳係1 〇%,且更進一步較佳係 15%。 在该初級光之該峰值波長將在至少2〇 nm之一變化波長 範圍内變化之情形下,小於1 〇 SDCM之該混合光之該色座 標之一變化優先地意指’在該初級光之峰值波長將在具有 20 nm之一寬度之一變化波長範圍内變化之情形下或在該 156255.doc •27· 201213498 初級光之峰值波長將在具有大於20 nm之一寬度之一變化 波長範圍内變化之情形下,該混合光之該色座標將變化少 於 10 SDCM。 若光致發光材料不具有一寬廣且平坦之吸收頻帶,則通 常初級光源之發射光譜必須與該光致發光材料層之厚度良 好匹配’以便能夠獲得一所期望之色點。然而,在初級光 源(特定而言,發光二極體)之產生期間,幾乎不可能能夠 一致地產生相同波長發射之初級光源。因此,獲得優先地 在藍色範圍中發射之初級光源之一分佈。此意指該等初級 光源必須非常仔細約束且該光致發光材料之厚度必須經調 整以使得最終產生之光之色溫保持怪定。藉由使用具有寬 廣發射頻帶特性之有機磷光體,其中該吸收光譜(亦即, 激發光譜)係相對怪定,即有可能產生一光產生裝置,其 在無需方格化(binning)初級光源(特定而言’藍色發光二極 體)之情況下提供具有色點一致性之白色混合光。特定而 言’藉由提供具有一寬廣且平坦之吸收光谱之一光致發光 材料’相對於該波長變化(特定而言,相對於該藍色發光 二極體波長變化)之該方格化優先地不再係一問題,此可 導致產生光產生裝置之一顯著增加的良率且因此顯著成本 減小。 可在相對於初級光源之遠端配置及近端配置中使用光致 發光材料(特定而言,有機染料)。舉例而言,圖8及圖9中 所示之光致發光材料可位於初級光源之一表面上或此等光 致發光材料可經配置以距該初級光源具有一距離,舉例而 156255.doc -28- 201213498 言,如圖1中所示。因此,舉例而言,圖8及圖9中所示之 該等光致發光材料可由上文參考圖1所闡述之光產生裝置 使用。光致發光材料與初級光源之其他配置係可能的,只 要該初級光源與該光致發光材料經配置以使得該初級光之 光路徑橫穿該光致發光材料之至少一部分即可,其中其他 無機或有機磷光體層或化合物可存在於該初級光及/或該 次級光之光路徑中以用於進一步轉換該初級光及/或該次 級光。舉例而言’可自初級光及/或次級光產生三級光且 視情況可藉由光致發光材料產生其他次序之光,其中此等 不同次序之光中至少兩者經混合以產生具有優先地一白色 色彩之混合光,且其中優先地至少兩個不同種類之光致發 光元件(特定而言,兩個不同磷光體)之一混合物較佳地在 藍色波長範圍中包括一寬廣且平坦之吸收光譜。 在上文所提及之實施例中,闡述若干措施以產生具有一 所期望吸收截面變化之一光致發光材料。在此等實施例 中’該吸收截面經調適以使得在該初級光之該峰值波長將 在至少20 nm之一變化波長範圍内變化之情形下,該混合 光之該色座標將變化少於10 SDCM。亦可使用其他措施及 對應之光致發光材料,只要該吸收截面經調適以使得在該 初級光之該峰值波長將在至少20 nm之一變化波長範圍内 變化之情形下,該混合光之該色座標將變化少於i〇 sdcm 即可。 根據對圖式、揭示内容及隨附申請專利範圍之研究,熟 習此項技術者在實踐所主張之發明時可理解及實現對所揭 156255.doc -29- 201213498 示實施例之其他變化。 在申請專利範圍中,詞語「包括(comprising)」並不排 除其他元件或步驟’且不定冠詞「一(a)」或「一(an)」並 不排除複數個。 一單個單元或器件可實現申請專利範圍中所述之數個項 目之功能。在互不相同的附屬技術方案中陳述某些措施之 此一事實本身並不指示不能有利地使用此等措施之一組 合0 申請專利範圍中之任何參考符號皆不應視為限制該範 «#。 本發明係關於一種用於產生光的光產生裝置。一初級光 源發射初級光’且一光致發光材料將該初級光之一部分轉 換成次級光。藉由混合未經轉換之初級光與該次級光而產 生混合光。該光致發光材料之一吸收截面經調適以使得在 該初級光之峰值波長將在至少2〇 nm之一變化波長範圍内 變化之情形下’該混合光之色座標將變化少於丨〇 SDCM。 因此,可將以該變化波長範圍内之不同峰值波長發射之不 同初級光源用於產生具有相同或相似色溫之混合光。此導 致選擇欲用於製造該光產生裝置之該初級光源之減小的要 求。 【圖式簡單說明】 圖1不意性及實例性展示用於產生光之一光產生裝置之 一實施例; 圖2不意性及實例性展示兩個種類之光致發光元件之吸 156255.doc •30- 201213498 收光譜及發射光譜; 圖3實例性展示兩個種類之光致發光元件之一組合之吸 收光譜及發射光譜; 圖4實例性展示Lumogen黃色83之一吸收光譜; 圖5實例性展示Lumogen黃色83與蒽之一組合之一吸收 光譜; 圖6實例性展示Lum〇gen黃色紫羅蘭色57〇 之一混合物之一吸收光譜; 圖7實例性展示Lumogen黃色83與聚第之一混合物之一 吸收光譜; 圖8不意性及實例性展示用於產生光之一光產生裝置之 一進一步實施例; 圖9不意性及實例性展示用於產生光之一光產生裝置之 一進一步實施例; 圖1〇展示實例性圖解說明用於產生光之一光產生方法之 一實施例之一流程圖; 圖11展示實例性圖解說明用於製造一光產生裝置之—製 造方法之一實施例之一流程圖; 圖12實例性展示具有窄頻帶吸收特性之一無機YAG:ce 磷光體之一吸收光譜及不同發光二極體之發射光譜; 圖13展示圖解說明藉助減少初級光波長之混合光之一顯 著藍移之一CIE色彩空間;及 圖14展示僅圖解說明在該初級光波長經修改且使用本發 明之一光致發光材料之一實施例之情形下具有一白色色彩 156255.doc -31· 201213498 之混合光之一小移位之一 CIE色彩空間。 【主要元件符號說明】 1 光產生裝置 2 初級光源 3 光致發光材料 4 反射混合室 102 基板 103 光致發光材料 105 第一層 106 第二層 109 光出射表面 202 透明基板 203 光致發光材料 207 第一區域 208 第二區域 209 光出射表面 210 層 156255.doc -32-The photoluminescent element, in particular, the photoluminescent material comprises a plurality of different types of different types of neon light-emitting elements. 156255.doc •14·201213498 combines one of the entire absorption bands from 400 rnn to 480 nm. This allows the light generating device to use a primary light source that emits light having one of the wavelengths in the blue range. The light can be converted to other colors such as yellow and/or orange for generating secondary light. Light can be mixed with the blue primary light for obtaining white light. The varying wavelength range is therefore preferentially within this absorption band '. Further preferably, the absorption band ranges from 410 nm to 460 nm and even more preferably, the absorption band ranges from 42 〇 11111 to 450 nm. In one embodiment, the photoluminescent material is located on the primary source. Specifically, a layer including the photoluminescent material may be provided on one of the light exit surfaces of the primary light source. Further preferably, the photoluminescent material is configured to have a distance from the primary source. In this so-called remote configuration, the light converted by the photoluminescent material is returned to the primary light source only at a fractional rate, the primary light source being preferentially a light-emitting diode and which typically has a low reflectivity and This light is mostly Q. By using this remote configuration, the efficiency of the light generating device can thus be improved. In a further aspect of the invention, a photoluminescent material for use by a light generating device is provided, wherein the photoluminescent material is adapted to emit an emission spectrum emitted by a primary light source of the light generating device And converting a portion of the primary light of a peak wavelength into secondary light, wherein the mixed light system is generated by mixing a portion of the primary light that has not been converted into secondary light and the secondary light, and wherein the photoluminescent material An absorption cross section is adapted such that the color coordinate of the mixed light will vary by less than 10 in the case where the peak wavelength of the primary light will vary from a wavelength of 156255.doc •15 to 201213498 to a wavelength of 20 nm. SDCM. In a further aspect of the invention, a method for fabricating a light generating device is presented, wherein the method comprises: providing a primary light source for emitting primary light having an emission spectrum and a peak wavelength, _ Providing a photoluminescent material for converting a portion of the primary light into secondary light, - configuring the primary light source and the photoluminescent material to mix a portion of the primary light that has not been converted into secondary light by The secondary light produces mixed light, wherein the absorption cross section of the photoluminescent material is adapted such that in the case where the peak wavelength of the primary light will vary within a wavelength range of at least 20 nm, the mixed light The color coordinates will vary by less than 1 〇 SDCM. In a further aspect of the present invention, a light generating method for generating light is provided, wherein the light method comprises: - emitting a primary light having an emission spectrum and a peak wavelength by a primary light source, by using a The photoluminescent material converts a portion of the primary light into secondary light, - producing mixed light by mixing a portion of the primary light that has not been converted into secondary light with the secondary light, wherein one of the photoluminescent materials The absorption cross section is adapted such that the color coordinate of the mixed light will vary by less than 10 Sdcm in the event that the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm. 156255.doc -16- 201213498 It should be understood that the light generating device of the first aspect, such as the photoluminescent material of claim 13, the manufacturing method of the technical solution 14, and the light generating method of the technical solution 15 are similar and/or The preferred embodiments are identical; in particular, as defined in the accompanying technical solutions. It should be understood that a preferred embodiment of the present invention may be combined with any of the associated technical solutions and the respective independent technical solutions. These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments illustrated herein. [Embodiment] Fig. 1 schematically and exemplarily shows an embodiment of a light generating device for generating light. The light generating device 1 comprises a primary light source 2 for emitting primary light and a photoluminescence material 3 for converting a portion of the primary light into a secondary light. The primary light source 2 and the photoluminescent material 3 are configured The mixed light is generated by mixing the primary light and the secondary light. The absorption cross section of the photoluminescent material is configured such that the color coordinates of the mixed light will vary by less than 10 SDCM in the event that the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm. In particular, the photoluminescent material is preferentially adapted such that in the case where the peak wavelength of the primary light will vary over a range of wavelengths of at least 2 〇 nm, the absorption cross section has no more than 10°/. One of the biggest relative changes. Therefore, the photoluminescent material has a broad and flat absorption spectrum. In this embodiment, the primary light source 2 includes three light-emitting diodes that emit blue light, preferably in the range of 400 nm to 480 nm. The light generating device may also include less than or more than three light emitting diodes. In addition, the light emitting diodes can be adapted to produce ultraviolet light, and in addition to or in another alternative, the primary light source 2 can include a laser for providing primary light. The light generating device 1 further includes a reflection mixing chamber 4 for mixing one of the primary lights emitted by the primary light source 2. The primary light source 2 is located in the reflective mixing chamber 4 on a surface opposite to the photoluminescent material 3. The primary light source 2 and the photoluminescent material 3 are configured to have a distance relative to each other. The photoluminescent material 3 is preferentially adapted to provide phosphorescence and/or fluorescence as secondary light. In this embodiment, the photoluminescent material 3 comprises an organic phosphor having a broad emission band for providing phosphorescence as secondary light. The photoluminescent material 3 comprises different kinds of photoluminescent elements exhibiting a resonant energy transfer between the different types of photoluminescent elements. These different types of photoluminescent elements are different types of phosphor molecules, in particular different types of organic phosphor molecules. Preferentially, if a photoluminescent element of a first type absorbs a portion of the primary light, the received energy knife is transferred to a photoluminescent element of a first type, wherein two types of photoluminescent elements emit Secondary light mixed with the primary light. The different types of photoluminescent elements are located within a so-called Foerster radius and the emission band of the first type of photoluminescent element at least partially overlaps the absorption band of the second type of photoluminescent element. This schematic and exemplary illustration is illustrated in Figures 2 and 3. Figures 2 and 3 show the absorption value a and the emission value e depending on the wavelength in any cell in any cell. In FIG. 2, a first type of photoluminescent element (in this embodiment, a first organic phosphor) is shown having an absorption spectrum 20 and an emission spectrum 22, and a second type of photoluminescent element. (In 156255.doc • 18-201213498 In this embodiment one of the 'one second organic phosphors' absorbs the spectrum 21 and an emission spectrum 23. As can be seen in Figure 2, the emission spectrum 22 of the first type of photoluminescent element overlaps the absorption spectrum 21 of the photoluminescent element of the second type. 3 is an exemplary and schematic representation of an absorption spectrum 24 of a photoluminescent material 3 comprising a combination of the first type of photoluminescent element and one of the first type of photoluminescent elements, and a photoluminescent material 3 The emission spectrum is 25. As can be seen in Figure 3, the absorption spectrum 24 of the photoluminescent material 3 has been broadened and is nearly flat over a wide range of wavelengths. Preferably, the absorption spectrum 24 is nearly flat in the range of one wavelength from 400 nm to 480 nm. By adjusting the band positions and ratios (specifically weighted averages) of the different kinds of photoluminescent elements, one of the flat-top excitation spectra of the emission spectrum 25 is obtained with almost no change (as shown in the schematic and exemplary example shown in FIG. 3). . The first type of photoluminescent element (in this embodiment, a phosphor) is, for example, Lumogen Yellow 83 and a second type of photoluminescent element can be a first phosphor (which is a system). Wherein the two phosphors can be Q mixed for use in producing a photoluminescent material. The photoluminescent material may also be composed of different kinds of photoluminescent elements (specifically, different phosphors such as Lum〇gen Yellow 83 and other photoluminescent molecules such as Lumogen Violet 57 and/or polyfluorene) Another mixture is made. The different types of photoluminescent elements can have different Stokes shifts. For example, a first type of photoluminescent element can have a larger Stokes shift and one The second type of photoluminescent material can have a Shift shift. In the implementation, there is a smaller Stokes Lumogen Yellow 83 with a larger Stokes shift. .doc -19·201213498. The absorption spectrum of the first type of photoluminescent element and the absorption spectrum of the second type of photoluminescent element are located at different wavelength positions. However, two kinds of photoluminescent elements The wavelength positions of the emission spectra are preferentially nearly identical. A Stokes shift is preferentially defined as the wavelength difference between the absorption spectrum of the same electronic transition and the position of the highest point of the band of the emission spectrum. 4 exemplarily shows an absorption spectrum of Lumogen Yellow 83. If Lumogen Yellow 83 is mixed with ruthenium, the absorption spectrum of the resulting photoluminescent material can be broadened and relatively flat, in particular, as exemplified in FIG. Shown in the range of about 400 nm to 480 nm. Figure 5 shows one photoluminescence material produced by dissolving Lumogen Yellow 83 and yttrium together with polymethyl methacrylate (PMMA) in dichloromethane. One of the absorption spectra. After the solution has been applied to a glass plate, the solution is dried. In this embodiment, the resulting PMMA layer has a thickness of 25 microns and contains 0.13 weight percent bismuth and 0.013 weight. Percentage of Lumogen Yellow 83. In a further embodiment, Lumogen Yellow 83 and Lumogen Violet 570 together with PMMA are dissolved in dioxane. After the solution has been applied to a glass plate, The solution is dried to obtain a PMMA layer. In this embodiment, the PMMA layer has a thickness of one half of 25 micrometers and contains 0.46 weight percent of Lumogen violet 570 and 0.036 weight percent of Lumogen yellow 83. One of the photoluminescent materials is broad. And a relatively flat absorption spectrum is shown in Figure 6. In a further embodiment, Lumogen Yellow 83 and Poly are dissolved in dichlorohydrazine along with 156255.doc -20-201213498 PMMA. And after the glass plate has been coated by the obtained solution, the solution is dried on the glass plate to obtain a PMMA layer. In this embodiment, the PMMA layer has a thickness of 25 μm and contains 0.5. The weight percentage of Lumogen Yellow 83 and 0.33 weight percent polyfluorene. The broad and relatively flat absorption spectrum of the photoluminescent material is shown in Figure 7. The absorption and emission bands of the different types of photoluminescent elements are selected and The ratio in the photoluminescent material is such that the absorption spectrum of the entire photoluminescent material (specifically) is in the blue range of 400 nm to 480 nm and further preferably in the range of 420 nm to 450 nm. One of the blue ranges is broad and flat. The different kinds of photoluminescent elements are mixed with one another to form a photoluminescent material, either covalently linked to each other or not covalently linked to each other. If different kinds of photoluminescent elements are mixed with each other without being covalently connected to each other', the position of the absorption Q band of different kinds of photoluminescent elements and the different kinds of photoluminescent elements can be adjusted accordingly. A broad and flat absorption spectrum (which can also be considered as an excitation spectrum) is obtained by the relative fraction in the luminescent material. Since the different types of photoluminescent elements preferentially provide secondary light of different colors, such different types of photoluminescent elements can also be considered as different dyes. If the different dyes (ie, 'different kinds of photoluminescent elements) are covalently linked to each other, the relative positions of the absorption bands of the different dyes and their extinction coefficients can be adjusted to obtain one of the photoluminescent materials. Wide and flat absorption spectrum. 156255.doc -21- 201213498 Figure 8 shows schematically and exemplarily a configuration of a photoluminescent material that can be combined with a primary light source (not shown in Figure 8) for emitting primary light, wherein the photoluminescent material is utilized The configuration converts a portion of the primary light into secondary light. The arrangement of the photoluminescent material comprises a first layer 105 of a first type of photoluminescent element (specifically a 'first organic phosphor), and a second type of light on the first layer 105 A second layer 106 of one of the electroluminescent elements (specifically, a second organic phosphor). The first layer 105 and the second layer 1〇6 form a photoluminescent material 103 that is placed on a substrate 102 that is transparent to the primary light. The primary light source and photoluminescent material 103 are configured such that a first portion of the primary light is directed to the photoluminescent material 103 and a second portion of the primary light is not directed to the photoluminescent material 103. The secondary light generated by the photoluminescent material 1〇3 and the second portion of the primary light are mixed with each other for generating mixed light. The photoluminescent material 1〇3 having the first layer 105 and the second layer 106 is adapted such that the first portion of the primary light generated by the primary light source (preferably a light emitting diode or a laser) is completely Absorbed by the photoluminescent material 1〇3. As can be seen in Figure 8, only a portion of the light exit surface 1 〇 9 of the substrate 102 is covered with a photoluminescent material 103 for directing only a first portion of the primary light to the first layer 105 and the second layer 106. . If the light exit surface 1〇9 will be completely covered by the photoluminescent material 103, then no primary light leakage (specifically, δ, right primary light blue light 'no blue light bubble leakage) will occur, which is implemented here. In the example, the first layer 105 and the second layer 106 completely convert the primary light into secondary light. Full conversion preferentially means that more than 99% of the primary light is converted into secondary light. To obtain one of the primary light leakage (specifically, blue light leakage) to obtain white light by mixing the primary light and the secondary light, 156255.doc • 22-201213498 light exit surface 109 is only partially photo-induced The luminescent material 103 is covered. Figure 9 shows a further embodiment of one of the configurations of a photoluminescent material that can be illuminated by primary light from a primary source (not shown) for converting a portion of the primary light into secondary light. The primary light source is preferably used to emit a light-emitting diode or a laser that emits primary light (specifically, for emitting primary blue light). A layer 210 comprising a layer of photoluminescent material 203 is provided on one of the light exit surfaces 209 of the transparent substrate 202 that is transparent to the primary light for converting a portion of the primary light into secondary light, wherein the photoluminescent material 2〇3 There is a broad and flat absorption spectrum and preferentially includes at least two different luminescent dyes, wherein one of the at least two different luminescent dyes completely absorbs the primary light. The primary light source and photoluminescent material 203 are configured to produce mixed light by mixing the primary light with the secondary light. The layer 210 coated on the surface 209 of the substrate 202 has at least one first region 207 having a photoluminescent material 203 and at least one second region 208 having no photoluminescent material 203, wherein the first portion of the primary light Guided to the at least one first region 207 and a second portion of the primary light is directed to the at least one second region 208 for generating secondary light. The secondary light and the second portion of the primary light are mixed with each other for generating mixed light. Also in this embodiment, the photoluminescent material 203 in the first region 207 preferentially completely absorbs the primary light that is directed to the first regions. Accordingly, the first region 207 including the fully absorbing photoluminescent material 203 is preferentially distributed within the layer 210 provided on the surface 209 such that the first portion of the primary light is converted to secondary light in the first region 207 and A second portion of the primary light leaks through layer 21 〇 for mixing with the secondary light. In the manner of 156255.doc -23-201213498, a primary light-blue light leak is used for producing white light by mixing with the secondary light. Full absorption preferentially means that more than 99% of the primary light is converted into secondary light. Layer 21 can be produced, for example, by mixing two non-miscible transparent polymers and providing photoluminescent molecules to one of the polymers. This system can result in the formation of one of the dispersed phases in one continuous phase. In the above example, the dispersed phase will form a first region 2〇7 containing the photoluminescent material 203 and the continuous phase will form a transparent region 2〇8. It is also possible to use a material such as one of the polymers in which the luminescent molecules are soluble. The polymer can then be cut or ground to form small particles and then mixed into another transparent polymer that forms the continuous phase. The substrates ι 2, 2 〇 2 described above with reference to Figures 8 and 9 may be part of a primary light source, wherein the surfaces 109, 2 〇 9 are light exiting surfaces, or the substrates 102, 202 may be placed away from the primary The light source has a distance in which the primary light enters the substrate 102, 02 and exits the substrate through the light exit surface 109, 209 to illuminate the photoluminescent material. To maximally change one of the color points of the mixed light to less than 1 〇SDCM and (in particular) less than 5 SDCM in the case where the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm (in photoluminescent materials) In the above embodiment in which the primary light is completely absorbed, the absorption surface of the photoluminescent material is preferentially between 0.99 and less than 1 in the case where the peak wavelength of the primary light will vary within a wavelength range of at least 20 nm. Variety. Thus, in such embodiments, the maximum relative change in the absorption cross-section is preferentially less than 1% in the event that the peak wavelength of the primary light will vary over at least 2 〇 nm2 of the varying wavelength range. Preferably, the photoluminescent material absorbs light 156255.doc -24- 201213498 The spectrum and the emission spectrum do not or hardly overlap, in order to avoid a high degree of self-absorption which can result in a large change in color point. Preferably, the photoluminescent material is adapted such that in the event that the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm, the absorption cross-section will vary from one of 0.99 to 0.999. An embodiment of a light generating method for generating light will be exemplarily described hereinafter with reference to a flow chart shown in FIG. In step 301, the primary light source emits primary light, and in step 3〇2, one of the primary light is partially converted into secondary light by a photoluminescent material, wherein the photoluminescent material has an absorption cross section, The absorption cross section is adapted such that in the event that the bee value of the primary light will vary over a range of wavelengths of at least 20 nm, the color coordinates of the mixed light will vary by less than 1 〇 SDCM. The absorption profile is preferentially provided by providing a broad and flat absorption spectrum such that the absorption spectrum has no more than 10 in the case where the peak wavelength of the primary light will vary over a range of wavelengths of at least 2 〇 nm. One of the largest relative changes is achieved by one of the photoluminescent materials. In step 303, the mixed light is generated by mixing the primary light and the secondary light. Hereinafter, an embodiment of a manufacturing method for manufacturing a light generating device will be exemplarily explained with reference to a flowchart shown in Fig. 11. In step 401, a primary light source for emitting primary light is provided, and in step 402, a photoluminescent material for partially converting the primary light into secondary light is provided, wherein the photoluminescent material has an absorption a cross section, the absorption cross section being adapted such that in the case where the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm, the color 156255.doc •25·201213498 of the mixed light will vary by less than 10 SDCM. The absorption profile is preferentially provided by providing a broad and flat absorption spectrum such that the absorption spectrum has no more than 10% in the case where the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm. One of the largest relative changes is achieved by a photoluminescent material. In step 403, the primary light source and the photoluminescent material are configured to produce mixed light by mixing the primary light and the secondary light. Specifically, s 'the thickness of the photoluminescent material along the light path through the photoluminescent material is adjusted such that the mixed light has a desired color temperature, in particular 'to make the resulting mixed light system White light. Furthermore, the step of providing a phantom photoluminescent material (step 4〇2) may comprise producing a mixture of one of a plurality of different types of photoluminescent elements, wherein the absorption and emission bands of the photoluminescent elements, etc. are within the mixture The ratio and (as appropriate) extinction coefficients are adapted such that the resulting mixed light has a desired color temperature. For example, a phosphor having an absorption band and a emission band required to produce a desired color temperature and (as appropriate) having some extinction coefficient required to obtain the desired color temperature may be selected and used to prepare different kinds of photoluminescent elements. a mixture. Inorganic phosphors (such as Ce-doped LuAG and YAG) or a single organic phosphor (such as Lumogen) compared to photoluminescent materials with a broad and flat absorption spectrum (specifically, in the blue wavelength range) Yellow 83) has only narrow band absorption characteristics. Figure 12 is a schematic representation of the absorption band 3 of a single YAG:Ce phosphor and three different emission spectra 31,32,33 of different light-emitting diodes. As can be seen in Figure 12, the primary source (which in this example is a light-emitting diode) 156255.doc • 26-201213498 The absorption of primary light changes in the event that the wavelength of the primary light emitted changes. This change in absorption causes one of the conversions of the primary light to be converted into secondary light to change' and thus causes one of the color temperatures of the resulting mixed light to change. In the case where a phosphor having a narrow band absorption characteristic (e.g., a single Lumogen Yellow 83 disc light body) is to be used, the color temperature of the finally generated light is therefore strongly dependent on the position of the absorption section. The dependence of the color temperature of the resulting mixed light on the wavelength of the primary light is exemplarily shown in one of the CIE color spaces of FIG. As can be seen from this figure, if the wavelength of the primary light changes from 42 〇 nm to 450 nm ′, the color temperature changes from about 20,000 K to 4000 K. If the primary light changes to a larger wavelength, the color temperature is thus shifted to a lower temperature. Thus, a reduced primary light wavelength results in a strong blue shift of the resulting mixed light. In the case of using a single component Lumogen Yellow 83, the same behavior will also be observed. However, if a mixture of Lumogen Yellow 83 and ruthenium is used as the photoluminescent material', the color temperature of the mixed light produced by the luminescence of the primary light is not changed substantially from 420 nm to 450 nm. This is the flat absorption spectrum of the mixture in this wavelength range. This illustration is illustrated in the CIE color space shown in Figure 14. The ratio of Lumogen yellow 83 to sputum is preferably 5%, further preferably 1%, and still more preferably 15%. In the case where the peak wavelength of the primary light will vary over a range of wavelengths of at least 2 〇 nm, a change in the color coordinate of the mixed light of less than 1 〇 SDCM preferentially means 'in the primary light The peak wavelength will vary over a range of wavelengths that vary by one of 20 nm or at 156255.doc •27·201213498 The peak wavelength of the primary light will be within a range of wavelengths having a width greater than 20 nm. In the event of a change, the color coordinates of the mixed light will vary by less than 10 SDCM. If the photoluminescent material does not have a broad and flat absorption band, then the emission spectrum of the primary source must generally match the thickness of the layer of photoluminescent material to enable a desired color point to be obtained. However, during the generation of the primary light source (specifically, the light-emitting diode), it is almost impossible to consistently generate the primary light source emitting at the same wavelength. Therefore, one of the primary light sources that are preferentially emitted in the blue range is obtained. This means that the primary light sources must be very carefully constrained and the thickness of the photoluminescent material must be adjusted so that the color temperature of the resulting light remains strange. By using an organic phosphor having a broad emission band characteristic in which the absorption spectrum (i.e., excitation spectrum) is relatively ambiguous, it is possible to produce a light generating device that does not need to binning the primary light source ( In particular, a white mixed light having color point uniformity is provided in the case of a 'blue light emitting diode'. In particular, by providing a photoluminescent material having a broad and flat absorption spectrum, the latticed priority is varied relative to the wavelength (specifically, relative to the wavelength of the blue light-emitting diode) The ground is no longer a problem, which can result in a significantly increased yield of one of the light generating devices and thus a significant cost reduction. Photoluminescent materials (specifically, organic dyes) can be used in remote and proximal configurations relative to the primary source. For example, the photoluminescent materials shown in Figures 8 and 9 can be located on one surface of the primary light source or such photoluminescent materials can be configured to have a distance from the primary light source, for example 156255.doc - 28- 201213498 words, as shown in Figure 1. Thus, for example, the photoluminescent materials shown in Figures 8 and 9 can be used by the light generating device described above with reference to Figure 1. Other configurations of the photoluminescent material and the primary light source are possible as long as the primary light source and the photoluminescent material are configured such that the light path of the primary light traverses at least a portion of the photoluminescent material, among other inorganic Or an organic phosphor layer or compound may be present in the light path of the primary light and/or the secondary light for further conversion of the primary light and/or the secondary light. For example, 'three levels of light may be generated from the primary light and/or the secondary light and, as the case may be, other order of light may be produced by the photoluminescent material, wherein at least two of the different orders of light are mixed to produce Preferentially a mixture of white colors, and wherein preferably a mixture of at least two different kinds of photoluminescent elements (specifically, two different phosphors) preferably comprises a broad range in the blue wavelength range Flat absorption spectrum. In the embodiments mentioned above, several measures are set forth to produce a photoluminescent material having a desired change in absorption cross-section. In such embodiments, the absorption cross section is adapted such that the color coordinates of the mixed light will vary by less than 10 in the event that the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm. SDCM. Other measures and corresponding photoluminescent materials may also be used, provided that the absorption cross section is adapted such that in the event that the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm, the mixed light The color coordinates will change less than i〇sdcm. Based on the study of the drawings, the disclosure, and the scope of the accompanying claims, those skilled in the art can understand and implement other variations of the disclosed embodiments of the 156255.doc -29-201213498. In the scope of the patent application, the word "comprising" does not exclude other elements or steps' and the indefinite article "a" or "an" does not exclude the plural. A single unit or device can fulfill the functions of several of the items described in the claims. The fact that certain measures are stated in mutually different subsidiary technical solutions does not in itself indicate that one of these measures cannot be advantageously used in combination. 0 Any reference symbol in the scope of the patent application should not be construed as limiting the scope. . The present invention relates to a light generating device for generating light. A primary light source emits primary light ' and a photoluminescent material converts a portion of the primary light into secondary light. The mixed light is produced by mixing the unconverted primary light with the secondary light. The absorption cross section of one of the photoluminescent materials is adapted such that the color coordinates of the mixed light will vary less than 丨〇SDCM in the case where the peak wavelength of the primary light will vary over a range of wavelengths of at least 2 〇 nm . Thus, different primary sources that emit at different peak wavelengths within the varying wavelength range can be used to produce mixed light having the same or similar color temperatures. This results in the selection of the reduced requirement of the primary source to be used to fabricate the light generating device. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an unintentional and exemplary embodiment showing one embodiment of a light generating device for generating light; FIG. 2 is a schematic and exemplary illustration of the attraction of two types of photoluminescent elements 156255.doc • 30-201213498 Receive spectrum and emission spectrum; FIG. 3 exemplarily shows the absorption spectrum and emission spectrum of one of two kinds of photoluminescent elements; FIG. 4 exemplarily shows one absorption spectrum of Lumogen yellow 83; Lumogen Yellow 83 combines with one of the cesium to absorb the spectrum; Figure 6 exemplarily shows one of the absorption spectra of one of the mixture of Lum〇gen Yellow Violet 57; Figure 7 exemplarily shows one of the mixture of Lumogen Yellow 83 and Poly Absorbing spectrum; Figure 8 is a schematic representation of an embodiment of one of the light generating devices for generating light; Figure 9 is a schematic and exemplarily showing a further embodiment of a light generating device for generating light; 1 〇 shows an example diagram illustrating one of the embodiments of one of the light generating methods for generating light; FIG. 11 shows an exemplary illustration for fabricating a light generating device - a flow chart of one embodiment of the manufacturing method; FIG. 12 exemplarily shows an absorption spectrum of one of the inorganic YAG:ce phosphors having a narrow band absorption characteristic and an emission spectrum of different light emitting diodes; FIG. 13 shows by means of One of the mixed light that reduces the primary light wavelength is significantly blue shifted by one of the CIE color spaces; and FIG. 14 shows only the case where the primary light wavelength is modified and an embodiment of one of the photoluminescent materials of the present invention is used A white color 156255.doc -31· 201213498 One of the mixed lights is one of the small shifts of the CIE color space. [Main component symbol description] 1 Light generating device 2 Primary light source 3 Photoluminescent material 4 Reflective mixing chamber 102 Substrate 103 Photoluminescent material 105 First layer 106 Second layer 109 Light exit surface 202 Transparent substrate 203 Photoluminescent material 207 First region 208 second region 209 light exit surface 210 layer 156255.doc -32-

Claims (1)

201213498 七、申請專利範圍: 1. 一種用於產生光之光產生裝置,其中該光產生裝置包 括: 一初級光源(2),用於發射具有一發射光譜及一峰值波 ' 長之初級光, - 一光致發光材料(3),用於將該初級光之一部分轉換成 次級光’其中該初級光源(2)與該光致發光材料(3)經組 態以藉由混合該初級光之尚未轉換為次級光之一部分與 〇 該次級光而產生混合光,且 其中該光致發光材料(3)之一吸收截面經調適以使得在 該初級光之該峰值波長將在至少20 nm之一變化波長範 圍内變化之情形下,該混合光之色座標將變化少於1〇 SDCM。 2. 如請求項1之光產生裝置,其中在該初級光之該峰值波 長將在至少20 nm之一變化波長範圍内變化之情形下, 該吸收截面具有不超過10%之一最大相對變化。 〇 3. 如請求項1之光產生裝置,其中該初級光源(2)經調適以 使得該初級光之該發射光譜具有至少15 nm之一半峰全 幅值。 4·如請求項1之光產生裝置,其中該變化波長範圍係介於 400 nm至480 nm之一範圍内。 5. 如請求項1之光產生裝置,其中該光致發光材料(3)包括 一有機光致發光材料。 6. 如請求項1之光產生裝置,其中該光致發光材料(3)經調 156255.doc 201213498 適以使得該次級光之超過60%之功率具有低於65〇 nm< 一波長。 7·如請求項1之光產生裝置’其中該光致發光材料包括不 同種類之光致發光元件,在該等不同種類之光致發光元 件之間展示一共振能量轉移。 8.如請求項丨之光產生裝置,其中該光致發光材料包括 Lumogen黃色83與以下元件中之至少—者之一混合物: 蒽、Lumogen紫羅蘭色570、聚苐。 9·如請求項丨之光產生裝置,其中該光致發光材料包括一 第一種類之一光致發光元件之一第一層(1〇5)及位於該第 一層(105)上之一第二種類之一光致發光元件之一第二層 (106)。 10. 如請求項1之光產生裝置,其中該初級光源與該光致發 光材料經組態以使得 該初級光之一第一部分被引導至該光致發光材料, 該初級光之一第二部分不被引導至該光致發光材 料,且 该次級光與以下各項中之至少一者彼此混合以用於產 生該混合光:a)該初級光之該第二部分及b)已橫穿該光 致發光材料但尚未轉變成次級光之該初級光之該第一部 分之一量。 11. 如請求項10之光產生裝置,其令該光致發光材料包括一 第一種類之一光致發光元件之一第一層(105)及位於該第 一層(105)上之一第二種類之一光致發光元件之一第二層 156255.doc 201213498 (106) ’其中該初級光源與該光致發光材料經組態以使得 該初級光之一第一部分被引導至該第一層(105)與該第二 層(106)之組合以用於產生該次級光, 該初級光之一第二部分不被引導至該第一層(1〇5)與該 第二層(106)之該組合,且 該次級光與該初級光之該第二部分彼此混合以用於產 生該混合光, 其中該第一層(105)與該第二層(106)之該組合經調適 以使得該初級光之該第一部分被完全吸收。 12. 如請求項1〇之光產生裝置,其中該光產生裝置包括一 區’該區具有:具有該光致發光材料之至少一個第一區 域(207)及不具有該光致發光材料之至少一個第二區域 (208),其中該初級光之一第一部分被引導至該至少一個 第一區域(207)且該初級光之一第二部分被引導至該至少 一個第二區域(208)以用於產生次級光,其中該次級光與 以下各項中之至少一者彼此混合以用於產生該混合光: a)該初級光之該第二部分及b)已橫穿該至少一個第一區 域(207)但尚未轉變成次級光之該初級光之該第一部分之 一量0 13. —種供由如請求項1之光產生裝置(1)使用之光致發光材 料’其中該光致發光材料(3)經調適以將由該光產生裝置 (1)之一初級光源(2)所發射之具有一發射光譜及一峰值 波長之初級光之一部分轉換成次級光,其中藉由混合尚 未轉換成次級光之該初級光之一部分與該次級光而產生 156255.doc 201213498 混合光,且其中該光致發光材料(3)之一吸收截面經調適 以使得在該初級光之該峰值波長將在至少2〇 nm之一變 化波長範圍内變化之情形下,該混合光之該色座標將變 化少於10 SDCM。 14. 一種用於製造一光產生裝置之製造方法,其中該製造方 法包括: 提供一初級光源(2)用於發射具有一發射光譜及一峰值 波長之初級光, 提供一光致發光材料(3)用於將該初級光之一部分轉換 成次級光, 組態該初級光源(2)及該光致發光材料(3)以藉由混合 尚未轉換成久級光之s亥初級光之一部分與該次級光而產 生混合光, 其中該光致發光材料(3)之一吸收截面經調適以使得在 該初級光之該峰值波長將在至少2〇 nm之一變化波長範 圍内變化之情形下,該混合光之該色座標將變化少於i 〇 SDCM。 15. —種用於產生光之光產生方法,該光方法包括: 藉由一初級光源(2)發射具有—發射光譜及—峰值波長 之初級光, 藉由一光致發光材料(3)將該初級光之一部分轉換成次 級光, 藉由混合尚未轉換成次級光之該初級光之—部分與該 次級光而產生混合光, 156255.doc -4- 201213498 其中該光致發光材料(3)之一吸收截面經調適以使得在 該初級光之該峰值波長將在至少20 nm之一變化波長範 圍内變化之情形下,該混合光之該色座標將變化少於10 SDCM。 〇 156255.doc201213498 VII. Patent Application Range: 1. A light generating device for generating light, wherein the light generating device comprises: a primary light source (2) for emitting primary light having an emission spectrum and a peak wave 'long length, a photoluminescent material (3) for converting a portion of the primary light into secondary light 'where the primary light source (2) and the photoluminescent material (3) are configured to mix the primary light The portion of the secondary light that has not been converted to the secondary light produces mixed light, and wherein the absorption cross section of the photoluminescent material (3) is adapted such that the peak wavelength at the primary light will be at least 20 In the case where one of the nm changes in the wavelength range, the color coordinates of the mixed light will vary by less than 1 〇 SDCM. 2. The light generating device of claim 1, wherein the absorption cross section has a maximum relative change of no more than 10% in the case where the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm. 3. The light generating device of claim 1, wherein the primary light source (2) is adapted such that the emission spectrum of the primary light has a full width at half maximum of at least 15 nm. 4. The light generating device of claim 1, wherein the varying wavelength range is in the range of 400 nm to 480 nm. 5. The light generating device of claim 1, wherein the photoluminescent material (3) comprises an organic photoluminescent material. 6. The light generating device of claim 1, wherein the photoluminescent material (3) is tuned to 156255.doc 201213498 such that a power of more than 60% of the secondary light has a wavelength below 65 〇 nm. 7. The light generating device of claim 1 wherein the photoluminescent material comprises a different type of photoluminescent element exhibiting a resonant energy transfer between the different types of photoluminescent elements. 8. The light generating device of claim 1, wherein the photoluminescent material comprises a mixture of Lumogen Yellow 83 and at least one of: 蒽, Lumogen Violet 570, polyfluorene. 9. The light generating device of claim 1, wherein the photoluminescent material comprises a first layer (1〇5) of one of the first types of photoluminescent elements and one of the first layer (105) A second layer (106) of one of the second types of photoluminescent elements. 10. The light generating device of claim 1, wherein the primary light source and the photoluminescent material are configured such that a first portion of the primary light is directed to the photoluminescent material, a second portion of the primary light Not being directed to the photoluminescent material, and the secondary light is mixed with one another for generating the mixed light: a) the second portion of the primary light and b) have traversed The photoluminescent material has not yet been converted into an amount of the first portion of the primary light of the secondary light. 11. The light generating device of claim 10, wherein the photoluminescent material comprises a first layer (105) of one of the first types of photoluminescent elements and one of the first layer (105) a second layer of one of the two types of photoluminescent elements 156255.doc 201213498 (106) 'where the primary light source and the photoluminescent material are configured such that a first portion of the primary light is directed to the first layer Combining (105) with the second layer (106) for generating the secondary light, a second portion of the primary light is not directed to the first layer (1〇5) and the second layer (106) a combination of the second light and the second portion of the primary light for mixing the mixed light, wherein the combination of the first layer (105) and the second layer (106) is adapted So that the first portion of the primary light is completely absorbed. 12. The light generating device of claim 1 , wherein the light generating device comprises a zone having: at least one first region (207) having the photoluminescent material and at least not having the photoluminescent material a second region (208), wherein a first portion of the primary light is directed to the at least one first region (207) and a second portion of the primary light is directed to the at least one second region (208) For generating secondary light, wherein the secondary light is mixed with one another for at least one of: a) the second portion of the primary light and b) have traversed the at least one The first region (207) but not yet converted into a quantity of the first portion of the primary light of the secondary light 0. 13. A photoluminescent material for use by the light generating device (1) of claim 1 The photoluminescent material (3) is adapted to convert a portion of the primary light having an emission spectrum and a peak wavelength emitted by the primary light source (2) of the light generating device (1) into secondary light, wherein The primary light that has not been converted into secondary light by mixing A portion of the secondary light produces 156255.doc 201213498 mixed light, and wherein the absorption cross section of the photoluminescent material (3) is adapted such that the peak wavelength of the primary light will vary by at least 2 〇 nm In the case of a change in the wavelength range, the color coordinates of the mixed light will vary by less than 10 SDCM. 14. A method of fabricating a light generating device, wherein the method comprises: providing a primary light source (2) for emitting primary light having an emission spectrum and a peak wavelength, providing a photoluminescent material (3) a portion for converting the primary light into secondary light, configuring the primary light source (2) and the photoluminescent material (3) to mix a portion of the primary light that has not been converted into long-term light The secondary light produces mixed light, wherein the absorption cross section of the photoluminescent material (3) is adapted such that the peak wavelength of the primary light will vary over a range of wavelengths of at least 2 〇 nm The color coordinates of the mixed light will vary by less than i 〇 SDCM. 15. A method for producing light for generating light, the method comprising: emitting primary light having an emission spectrum and a peak wavelength by a primary light source (2), by a photoluminescent material (3) One of the primary light is partially converted into secondary light, and the mixed light is generated by mixing a portion of the primary light that has not been converted into secondary light and the secondary light, 156255.doc -4- 201213498 wherein the photoluminescent material (3) One of the absorption cross sections is adapted such that the color coordinates of the mixed light will vary by less than 10 SDCM in the event that the peak wavelength of the primary light will vary over a range of wavelengths of at least 20 nm. 〇 156255.doc
TW100121281A 2010-06-18 2011-06-17 Light generating method TW201213498A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10166445 2010-06-18

Publications (1)

Publication Number Publication Date
TW201213498A true TW201213498A (en) 2012-04-01

Family

ID=44351808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121281A TW201213498A (en) 2010-06-18 2011-06-17 Light generating method

Country Status (2)

Country Link
TW (1) TW201213498A (en)
WO (1) WO2011158144A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641646A (en) * 2019-11-07 2022-06-17 昕诺飞控股有限公司 Light emitting diode filament comprising three types of LEDs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2870831B1 (en) 2012-07-05 2020-06-17 Signify Holding B.V. A stack of layers comprising luminescent material, a lamp, a luminaire and a method of manufacturing the stack of layers
FR3035268A1 (en) * 2015-04-20 2016-10-21 Photofuel LIGHTING DEVICE EMITTING WHITE LIGHT

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG49324A1 (en) * 1991-11-13 1998-05-18 Eastman Chem Co Fluorescent pigment concentrates
CN1706227B (en) * 2002-10-18 2010-11-24 伊菲雷知识产权公司 Color electroluminescent displays
WO2005004202A2 (en) 2003-06-24 2005-01-13 Gelcore Llc Full spectrum phosphor blends for white light generation with led chips
JP4795360B2 (en) * 2004-12-06 2011-10-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Organic electroluminescent light source
DE102007022090A1 (en) * 2007-05-11 2008-11-13 Osram Opto Semiconductors Gmbh Light emitting component for lamp, has light source e.g. organic LED, emitting electromagnetic radiation of specific wavelength range, and adjustable transparent element arranged between light source and conversion unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641646A (en) * 2019-11-07 2022-06-17 昕诺飞控股有限公司 Light emitting diode filament comprising three types of LEDs

Also Published As

Publication number Publication date
WO2011158144A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
RU2632263C2 (en) Light converting unit, lamp and luminaire
US9869450B2 (en) Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector
TWI575181B (en) Light emission module
JP6913790B2 (en) Indoor light source and lighting equipment
Zhu et al. Spectral optimization of white light from hybrid metal halide perovskites
US20080284329A1 (en) Led with Improve Light Emittance Profile
TW201140890A (en) Lighting device with light source and wavelength converting element
Oh et al. New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs
RU2640780C2 (en) Lighting device with polymer containing luminescent fragments
JP2017502493A (en) Lamp for improved fluorescent whitening and color preference
JPWO2016092743A1 (en) Light emitting device
TW201040434A (en) Solid state illumination system with improved color quality
TW201218358A (en) Modulating method for CCT and LED light module and package structure thereof
TW201224112A (en) Light conversion layer comprising an organic phosphor combination
JP2013500596A (en) LIGHT EMITTING DIODE WITH COMPENSATED CONVERSION ELEMENT AND CORRECT CONVERSION ELEMENT
JP5889807B2 (en) Lighting device and lighting method
WO2016049955A1 (en) Light-emitting module
WO2012168821A1 (en) A phosphor enhanced light source for presenting a visible pattern and a luminaire
TW201213498A (en) Light generating method
WO2021025120A1 (en) Lighting device
KR101003472B1 (en) White LED device
WO2013150413A1 (en) Light emitting arrangement comprising quantum dots
RU2661441C1 (en) Controlled spectrum radiation source
Chakraborty et al. Design and operation of a hybrid LED/LD-pumped phosphor-converted white-light lamp
Tung et al. Using phosphor ZnB2O4: Mn2+ for enhancing the illuminating beam and hue standard in white light-emitting diodes