TW201251056A - Solar cell module and production method for same - Google Patents

Solar cell module and production method for same Download PDF

Info

Publication number
TW201251056A
TW201251056A TW100142818A TW100142818A TW201251056A TW 201251056 A TW201251056 A TW 201251056A TW 100142818 A TW100142818 A TW 100142818A TW 100142818 A TW100142818 A TW 100142818A TW 201251056 A TW201251056 A TW 201251056A
Authority
TW
Taiwan
Prior art keywords
solar cell
electrode
cell unit
cell module
conductive
Prior art date
Application number
TW100142818A
Other languages
Chinese (zh)
Inventor
Takahiro Fujii
Hideaki Okumiya
Koichi Nakahara
Yasuhiro Suga
Original Assignee
Sony Chem & Inf Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chem & Inf Device Corp filed Critical Sony Chem & Inf Device Corp
Publication of TW201251056A publication Critical patent/TW201251056A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided are a solar cell module with high connection reliability and a production method for same. A conductive adhesive film (20) with a glass transition temperature of 130 DEG -180 DEG C is pasted onto a bus bar electrode (11) in one solar cell (2) and an A1 rear surface electrode (13) in another solar cell, tab lines (3) are temporarily positioned on top of the conductive adhesive film (20), and a heating and pressing head presses from the top surface of the tab lines (3).

Description

201251056 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種使用導電性接著膜將太陽電池單 元之表面/彦面電極與標記線(tab丨ine)連接之太陽電池模組 及其製造方法。本申請案係以2010年11月30日於日本提 出申請之曰本專利申請案編號為曰本專利特願 2010-266976者為基礎且主張其優先權,藉由參照而將該申 請案援用於本申請案中。 【先前技術】 先前,於結晶矽系太陽電池模組中,複數 -„,^^^(s〇lder coating),„^^ 構成的標記線(tab wire)而連接。標記線之一端側連接於 -太陽電池單元之表面電極,另一端側連接於鄰接之另一 太陽電池單元之背面電極,藉此將各太陽電池單元串聯連 接。 具體而言,太陽電池單元與標記線之連接係利用焊接 處理,將於太陽電池單元受光面銀糊網版印刷所形成之匯 流排電極及於太陽電池單元f面連接部形成之^電極、與 標記線連接。再者’於太陽電池單元背面之連接部以外之 區域形成有A1電極。 然而’由於焊接係利用 理,故有可能因太陽電池單 電極及背面電極之連接部產 2〇〇°C以上之高溫進行連接處 兀之翹曲、或於標記線與表面 生之内部應力、加上助熔劑之 201251056 殘潰等,…太陽電池單元之表面電極及背面 記線之間的連接可靠性降低。 、知 因此,對於太陽電池單元之表面電極及背面心心 §己線之連接出使用-種導電性接著膜,其可藉由相: 低溫下之熱壓接處理進行連接(例如參照專教獻卜 [專利文獻1]曰本特開20〇7·214533號公報 [專利文獻2]日本特開2〇〇8·135652號公報 【發明内容】 然而,使用導電性接著膜連接表面電極與背面電極 時,對於在高溫多濕等嚴酷之條件下使用太陽電池模組會 有連接可靠性降低的情況。 本發明係繁於上述先前之實際情況而提出者,本發明 提供一種具有高連接可靠性之太陽電池模組及其製 法。 本案發明人等經過潛心研究之後發現,藉由規定導電 性接著材料之硬化後之玻璃轉移點,可提高連接可靠性。 亦即,本發明之太陽電池模組係一太陽電池單元之表 面電極、及與該一太陽電池單元鄰接之另—太陽電池單元 之背面電極經由導電性接著材料由標記線電性連接而成, 其特徵在於:上述導電性接著臈之硬化後的玻璃轉移點為 130〜I8〇〇c 〇 又,本發明之太陽電池模組之製造方法係將一太陽電 池單兀之表面電極、及與該—太陽電池單元鄰接之另一太 201251056 陽電池單元之背面電極經由導雷 ,等電性接者材料由標記線電性 連接的太陽電池模組之製造方 丹将徵在於具有以下步 驟:暫時配置步驟,於上述一太 β 太陽電池早兀之表面電極及 上述另 太^電極单元之背面雷搞,目人 圩甸電極,貼合硬化後之玻璃轉 移點為130〜180。〇之導電性接葚时 者膜,於該導電性接著膜上 暫時配置標記線;及按壓步驟, 不J用加熱按壓頭自上述標 記線之上面進行按壓。 又本發明之太陽電池模组之贺jit古》土於时 及製粒方法係將一太陽電 池單7L之表面電極、及輿咭一 及興这太陽電池單元鄰接之另一太 陽電池單元之背面電極經由導 拱者材科由標記線電性 連接的太陽電池模組之製造方法, 丹将徵在於具有以下步 驟:暫時配置步驟,將上述一太 双陽電池早兀*之表面電極與 軚S己線、以及上述另一太陽電 — 早70之者面電極與標記線 隔者硬化後之玻璃轉移點為13G〜18Gt之導電性接著材料 而暫時配置;及層壓壓接步驟,於上述太陽電池單元之上 1面依序積層密封材、保護基材,利用層壓裝置自上述保 _之上面進行層壓壓接,使上述密封材硬化並且使上 述表面電極與標記線以及上述背面電極與標記線連接。 又,本發明之導電性接著材料係使太陽電池單元之表 面電極或背面電極與標記線電性連接之導電性接著膜,其 特徵在於:硬化後之玻璃轉移點為l3〇〜18〇t。 根據本發明,藉由導電性接著膜之硬化後的玻璃轉移 维-疋範圍内,則即便於高溫多濕等嚴酷之條件下亦可 維持尚連接可靠性。 201251056 【實施方式】 以下’ -面參照圖式,一面以如下順序詳細說明本發 明之實施形態。 1 ·太陽電池模組 2. 太陽電池模組之製造方法 3. 實施例 以下’-面參照圖式’一面詳細說明應用本發明之太 陽電池模組及其製造方法。應用本發明之太陽電池模組i 為:使用單晶型石夕光電轉換元件、多晶型光電轉換元件作 為光電轉換元件的結晶矽系太陽電池模組,或者使用積層 有由非晶矽所構成之單元與由微晶矽或非晶矽鍺所構成之 單元的光電轉換元件之薄膜矽系太陽電池。 < 1 ·太陽電池模組> 如圖1所示’太陽電池模組1具有串(strings ) 4且具 備將複數個該串4排列而成之矩陣(matrix ) 5 ,該串4係 藉由作為互連件(interconnector)之標記線3將複數個太 陽電池單元2串聯連接而成。繼而,以密封接著劑之片材6 夾持該矩陣5,且連同設置於受光面側之表面蓋板7及設置 於者面側之背板8 —併進行層壓’最後於周圍安裝紹等之 金屬框9,藉此形成太陽電池模組1。 作為密封接著劑例如可使用乙烯一乙烯醇樹脂(EVA, ethylene-vinyl alcohol resin)等透光性密封材。又,作為表 面蓋板7例如可使用玻璃或透光性塑膠等透光性材料。另 6 201251056 外,作為背板8,可使用以樹脂膜夾持玻璃或鋁箔而 層體等。 積 <1.1太陽電池單元> 如圖2及3所示,太陽電池模組之各太陽電池單元2 具有由矽基板所構成之光電轉換元件1〇。光電轉換元件 於受光面側設置有作為表面電極之匯流排電極u、及作為 集電極之指狀電極12,該指狀電極12係形成於與匯流排電 極11略成正交方向上。又’光電轉換元件ι〇於與受光面相 反之背面側設置有由鋁所構成之A1背面電極13。 並且,太陽電池單元2藉由標記線3將表面之匯流排 電極11與鄰接之太陽電池單元2之A1背面電極13加以電 性連接’藉此構成串聯連接之串4。標記線3與匯流排電極 11及A;1背面電極13係藉由導電性接著膜20而連接。 才"己線3可利用先前之太陽電池模組中所使用之標呓 線。標記線3例如係藉由使用5〇〜3〇…厚之帶狀銅二 且依需要實施鍵敷金、錢敷銀、鑛敷錫、鑛敷焊接等而形 成又’可預先於標記線3積層導電性接著膜,亦可進 而成形為捲軸形狀。 匯流排電極U係藉由塗佈Ag糊並加熱而形成。形成 於太陽電池單元2之夸‘ 光面之匯》IL排電極11為了減小遮擋 入射光之面積,控制陰影指 彳貝失而形成為例如1 mm寬之線 狀。匯流排電極11之數# 双里係考慮太除電池單元2之尺寸或 電阻而適當設定。 指狀電極⑴系藉由與匯流排電極U相同之方法,以與 201251056 匯流排電極11交叉之方式遍及太陽電池單元2之受光面之 大致整個面而形成。X,指狀電極12係每隔一定間隔 '例 如2mm形成具有例如約100心左右之寬度的線。 AU面電極13 4系將由紹所構成之電極藉由例如網版印 刷或濺錄等而形成於太陽電池單元2之背面。 再者,太陽電池單元2並非必須設置匯流排電極"。 於此情形時’太陽電池單元2係藉由與指狀電極12交又之 標記線3而彙集指狀電極12之電流。又,亦可於a丨背面 電極13以不會導致與標記線連接不良之程度形成開口部, 亦可藉此確保接著強度。 < 1.2導電性接著材料> 極*二a說月用以將太陽電池單元之表面電極或背面電 與性連接之導t性料 著材料之形狀並未限定為膜形狀,亦可為糊^物 樹二實Γ形態之導電性接著膜2°係於熱硬化性之黏合劑 樹月曰中刀散有導電性粒子而成者。 導電性粒子,並無特別限制,例如 金屬粒子、樹脂粒子經鍍金等所 :、銅專 得之粒子最外層施以絕緣被覆所成者。樹月曰粒子經鑛金所 導電性接著膜20之硬化後之破璃 刚。C,更佳為140〜赋。藉之= 圭為130〜 贿以上,則即便於高溫多濕等嚴酷之=璃:移點為 高連接可靠性。具體而言,於溫度下’亦可維持 可獲得低傳導電阻靠K驗令, ‘s己線剝離。硬化後之破201251056 VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell module in which a surface/neck electrode of a solar cell unit and a mark line are connected using a conductive adhesive film. Production method. This application is based on and claims the priority of the patent application No. 2010-266976, filed on Jan. 30, 2010 in Japan. In the present application. [Prior Art] Previously, in a crystalline lanthanide solar cell module, a plurality of -, ^^^(s〇lder coating), „^^ consisting of tab wires were connected. One end side of the marking line is connected to the surface electrode of the solar cell unit, and the other end side is connected to the back electrode of the adjacent other solar cell unit, whereby the solar cell units are connected in series. Specifically, the connection between the solar cell unit and the marking line is performed by a soldering process, and the bus bar electrode formed by the silver plate screen printing of the solar cell unit and the electrode formed on the f-side connecting portion of the solar cell unit are labeled. Wire connection. Further, an A1 electrode is formed in a region other than the connection portion on the back surface of the solar battery cell. However, due to the use of the soldering system, there is a possibility that the connection between the single-electrode and the back-electrode of the solar cell produces a warp at the junction where the temperature is higher than 2 °C, or the internal stress on the mark line and the surface. With the 201251056 smash of the flux, etc., the connection reliability between the surface electrode and the back surface of the solar cell unit is lowered. Therefore, for the connection between the surface electrode of the solar cell unit and the back center of the core, a conductive adhesive film can be used, which can be connected by a thermocompression bonding process at a low temperature (for example, refer to the special education). [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. 2, 135, 652. The use of a solar cell module under severe conditions such as high temperature and humidity may result in a decrease in connection reliability. The present invention has been made in view of the above-mentioned prior art, and the present invention provides a sun with high connection reliability. The battery module and the method of manufacturing the same. After intensive research, the inventors of the present invention found that the connection reliability can be improved by specifying the glass transition point after the curing of the conductive material, that is, the solar cell module of the present invention is The surface electrode of the solar cell unit and the back electrode of the other solar cell unit adjacent to the solar cell unit are marked by the conductive bonding material Sexually connected, characterized in that: the conductivity of the glass after the hardening of the glass transition point is 130~I8〇〇c 〇, and the manufacturing method of the solar cell module of the present invention is a surface of a solar cell unit The electrode and the back electrode of another solar cell unit adjacent to the solar cell unit are guided by lightning, and the solar cell module electrically connected by the marking material is electrically connected to the solar cell module. The following steps: a temporary configuration step, the surface electrode of the above-mentioned one-beta solar cell and the back surface of the above-mentioned other electrode unit are tapped, and the glass transition point after bonding hardening is 130-180. The conductive film is electrically connected to the film, and the marking line is temporarily disposed on the conductive adhesive film; and the pressing step is performed by pressing the upper surface of the marking line with the heating pressing head. Further, the solar battery module of the present invention He Ji's ancient time and granulation method is a solar cell single 7L surface electrode, and the other solar cell unit adjacent to the solar cell unit The manufacturing method of the solar cell module electrically connected by the marking line by the guiding member, the dan will be characterized by the following steps: a temporary configuration step, the surface electrode of the above-mentioned one shuangyang battery early* and the 軚S The above-mentioned sun, and the above-mentioned solar power, the glass transition point after the hardening of the surface electrode and the marking line is 13G to 18Gt, and is temporarily disposed; and the lamination step is performed in the sun a sealing material and a protective substrate are sequentially laminated on one surface of the battery unit, and laminated and pressure-bonded from the upper surface of the battery by a laminating device to harden the sealing material and to make the surface electrode and the marking line and the back surface electrode Further, the conductive adhesive material of the present invention is a conductive adhesive film which electrically connects the surface electrode or the back surface electrode of the solar cell to the marking line, and is characterized in that the glass transition point after hardening is 13 〇 〜 18〇t. According to the present invention, in the range of the glass transition dimension after the curing of the conductive adhesive film, the connection reliability can be maintained even under severe conditions such as high temperature and high humidity. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings. 1. Solar battery module 2. Manufacturing method of solar battery module 3. Embodiments The solar battery module to which the present invention is applied and a method of manufacturing the same will be described in detail below with reference to the drawings. The solar cell module i to which the present invention is applied is a crystalline lanthanide solar cell module using a single crystal type shi shi photoelectric conversion element, a polycrystalline photoelectric conversion element as a photoelectric conversion element, or a laminate composed of an amorphous yttrium. A thin film tantalum solar cell in which the unit is a photoelectric conversion element of a unit composed of microcrystalline germanium or amorphous germanium. <1·Solar battery module> As shown in Fig. 1, the solar battery module 1 has a string 4 and has a matrix 5 in which a plurality of the strings 4 are arranged, and the string 4 is borrowed. A plurality of solar battery cells 2 are connected in series by a marking line 3 as an interconnector. Then, the matrix 5 is sandwiched by the sheet 6 of the sealing adhesive, and the surface cover 7 provided on the side of the light receiving surface and the back sheet 8 disposed on the side of the face are laminated and finally mounted around. The metal frame 9 is thereby formed into the solar cell module 1. As the sealing adhesive, for example, a light-transmitting sealing material such as an ethylene-vinyl alcohol resin (EVA) can be used. Further, as the surface cover 7, for example, a light transmissive material such as glass or translucent plastic can be used. In addition, as the back sheet 8, as the back sheet 8, a layer or the like may be used by sandwiching a glass or an aluminum foil with a resin film. Product <1.1 Solar Cell Unit> As shown in Figs. 2 and 3, each solar cell unit 2 of the solar cell module has a photoelectric conversion element 1A composed of a germanium substrate. The photoelectric conversion element is provided with a bus bar electrode u as a surface electrode and a finger electrode 12 as a collector electrode on the light-receiving surface side, and the finger electrodes 12 are formed in a direction orthogonal to the bus bar electrode 11. Further, the photoelectric conversion element is provided on the back surface side of the light-receiving surface, and the A1 back surface electrode 13 made of aluminum is provided. Further, the solar battery unit 2 electrically connects the bus bar electrode 11 on the surface to the rear electrode 13 of the A1 of the adjacent solar battery cell 2 by the marking line 3, thereby constituting the string 4 connected in series. The mark line 3, the bus bar electrodes 11 and A, and the back surface electrode 13 are connected by a conductive adhesive film 20. Only "Xing Line 3 can utilize the standard line used in the previous solar cell module. The marking line 3 is formed, for example, by using a 5 〇 to 3 〇 thick copper ribbon and, if necessary, a key deposit, a silver deposit, a tin deposit, a mineral deposit, or the like, which can be formed in advance by the mark line 3 The conductive adhesive film may be further shaped into a reel shape. The bus bar electrode U is formed by applying an Ag paste and heating it. The IL row electrode 11 formed in the solar cell unit 2 is controlled to have a line shape of, for example, 1 mm wide in order to reduce the area of the incident light. The number of the bus bar electrodes 11 is considered to be appropriately set in accordance with the size or resistance of the battery unit 2. The finger electrode (1) is formed over the entire surface of the light receiving surface of the solar battery cell 2 so as to intersect the 201251056 bus bar electrode 11 by the same method as the bus bar electrode U. X, the finger electrode 12 forms a line having a width of, for example, about 100 centimeters at regular intervals, for example, 2 mm. The AU surface electrode 13 4 is formed on the back surface of the solar battery cell 2 by electrodes such as screen printing or smearing. Furthermore, the solar battery unit 2 does not have to be provided with a bus bar electrode. In this case, the solar cell unit 2 collects the current of the finger electrode 12 by the mark line 3 which is intersected with the finger electrode 12. Further, the back electrode 13 can be formed on the back surface of the electrode 13 so as not to cause a defect in connection with the mark line, and the bonding strength can be secured. <1.2 Conductive Substrate Material> The shape of the material used to electrically and electrically connect the surface electrode or the back surface of the solar cell unit is not limited to the film shape, and may be a paste. ^Electrical tree two real form of conductivity followed by a film 2 ° in the thermosetting bond tree moon 曰 刀 knife scattered conductive particles. The conductive particles are not particularly limited, and for example, metal particles, resin particles are plated with gold, or the like, and the outermost layer of the copper-dedicated particles is coated with an insulating coating. The saplings of the sapphire are fused by the mineral gold and then the glass is hardened. C, better for 140~ Fu. Borrowing = Gui is 130~ More than bribes, even in the hot and humid, such as harsh = glass: shift point for high connection reliability. Specifically, it can be maintained at a temperature to obtain a low conduction resistance by K-test, ‘s line peeling. Broken after hardening

S 201251056 璃轉移點即便大於18Gt亦無礙,但硬化前之玻 增大,會導致熱壓接時之連接可靠性惡化。 κ占亦 又,導電性接著臈20之患;疫μ #从 〜議(^ 者膜2G之黏度較佳為於常溫附近為10 軸kPa.s,進而較佳為1〇〜5〇〇〇kpa· 性接著膜2。之黏度…0_kpa.s之範圍内 導電=膜20製成帶狀之捲軸之情形時,可防止所謂 出叙圍,並且可維持為一定之黏著力。 對於黏合劑樹脂之組成,只要不妨礙如上所述 ::並無特別限制,但更佳為含有膜形成樹脂、液狀環氧樹 月曰、潛伏性硬化劑及矽烷偶合劑。 Θ臈形成樹脂相當於平均分子量為10000以上之高分 量樹脂’就膜形成性之觀點而言,較佳為1G_〜8(^ 2平均分子量。作為膜形成樹脂,可使用環氧樹脂、改 質環氧樹脂、胺s旨樹脂、苯氧樹脂等各種樹脂,其中 膜形成狀態、連接可靠性等觀點而言適宜使用苯氧樹月^ 作:液狀環氧樹脂,只要於常溫具有流動性則 =制二市售之環氧樹脂均可使用。作為此種環氧樹脂,具 而δ可使用:萘型環氧樹脂、聯苯型環氧樹脂、酚醛清 環氧樹脂、㈣型環氧樹脂、⑤(祕叫型環氧樹脂、 4甲炫型環氧樹脂、齡芳院型環氧樹脂、蔡紛型環氧樹 氧樹脂、三苯甲烧型環氧樹脂等。該 酸樹月匕2 可組合2種以上使用。又,亦可與丙稀 樹月曰4其他有機樹脂適當組合而使用。 作為潛伏性硬化劑’可使用加熱硬化型、υν硬化型等 201251056 各種硬化劑。潛伏性硬化劑通常不會反應, 觸發活化後開始反應。觸發存在埶、光望 、 ”,、九、加壓等,可根據 用途而選擇使用。於使用液狀環氧樹脂之情形時,可使用 由㈣類、胺類、㈣、鏘鹽等所構成之潛伏性硬化劑。 作為石夕炫偶合劑可使用環氧系、胺基系、巯基-硫醚 系、脲系等…,本實施形態"交佳為使用環氧系石夕烷 偶合劑。藉此可提高有機材料與無機材料之界面之接著性。 又’作為其他添加組成物,較佳為摻合丙烯酸橡膠 (ACR’ 似5^ rUbbe〇、丁二稀橡膠(BR,bUtadiene n^er)、丁腈橡膠(NBR)等橡膠系之彈性粒子。彈性粒 子可吸收内部應力且不會抑制硬化,故而可賦予較高之連 接可靠性。 又,作為其他添加組成物,亦可含有無機填料。藉由 含有無機填料,可調整壓接時樹脂層之流㈣,且提高粒 子捕捉率。作為無機填料,可使用二氧化石夕、滑石、氧化 鈦、碳酸鈣、氧化鎂等,無機填料之種類並無特別限定。 裝U此種構成之導電性接著膜2 Q之情形時,使導電性 粒子、膜形成樹脂、液狀環氧樹脂、潛伏性硬化劑、及石夕 烧偶合劑溶解於溶劑中。作為溶劑,可使用甲#、乙酸乙 S旨等、或該等之混合溶劑。並且,將溶解所得之樹脂生成 用♦液塗佈於剝離片上’使溶劑揮發,藉此可獲得導電性 接著膜20。 <2.太陽電池模組之製造方法> 其人參…、圖3 A及圖3B說明太陽電池模組之製造方 201251056 法。本實施形態之太陽電池模組i之製造方法係於一太陽 電池單元2之匯流排電極11及另一太陽電池單元2之乂 背面電極13上,貼合硬化後之玻璃轉移點為13〇〜18〇它之 導電性接著膜20’且於導電性接著膜2〇上暫時配置標記線 3 ’利用加熱按壓頭自標記線3之上面進行按壓。 具體而言,首先,於光電轉換元件1〇之表面藉由塗佈 Ag糊並煅燒而形成指狀電極12及匯流排電極u,於背面 藉由A1網版印刷等而於標記線3之連接部形成Ai背面電 極13,製作太陽電池單元。 其次’於光電轉換元件10表面之匯流排電極u及背面 之A1背面電極13上貼合導電性接著膜2〇,且於該導電性 接著臈2 0上配設標記線3。 繼而’自標記線3之上方以一定之壓力進行加熱按壓, 藉此將標記線3與匯流排電極A1背面電極13電性連 接。此時,由於導電性接著膜2()之黏合劑樹脂與由^糊 所形成之匯流排電㉟u具備良好之接著性,因此標記線2 與匯流排電極"牢固地機械連接。又,標記線3與乂背面 電極13電性連接1熱壓接時之溫度係按照導電性接著材 料而適當設定,通常在12〇〜2〇〇t之範圍内。 以达封接著劑之片材6夾持該太陽電池翠元2連接而 成之矩陣5且連同设置於受光面側之表面蓋板7及設置於 背面側之背板8 -併進行層壓,藉此製造太陽電池模組卜 該層Μ時之孤度係按照密封接著劑而適當設定,通常在 〜160°C之範圍内。 201251056 於本實施形態中,藉由使用硬化後之玻璃轉移點為i3〇 〜180°C之導電性接著膜,可降低層壓太陽電池單元時之連 接不良。並且,即便於高溫多濕等嚴酷之條件下亦可維持 高連接可靠性。 又,本實施形態之導電性接著膜並不僅限於用於上述 之太陽電池模組之製造方法中,亦可用於將密封樹脂之項 化、及電極與標記線之連接同時進行的一併層壓壓接法。 根據該方法,由於不存在由將電極與標記線熱壓接後之層 壓所致的熱膨脹或熱收縮’故而可製造具有高連接可靠性 之太陽電池模組。 該太陽電池模組之製造方法係將一太陽電池單元之表 面電極、及與-太陽電池單元鄰接之另—太陽電池單元之 背面電極經由導電性接著材料由標記線電性連接的太陽電 :::組之製造方法’其中,將-太陽電池單元之表面電極 與才示記線、以及另一太嗒Φ_ 菩 .早兀之背面電極與標記線隔 者上述導電性接著材料暫時固定,於太陽電池單元之上下 序積層密封材、保護基材,㈣層壓裝置自保護基材 記線面進行層㈣接,使密封材硬化並且使表面電極與標 、以及皮面電極與標記線連接。 同時=的=樹脂之硬化、及電極與標記線之連接 了遲仃的層壓裝置進行說明。 3。係:::單=:=之=_圖。減*層壓機 12 201251056 部單元3!中設置切橡滕等可撓性片材34,藉由該可挽性 片材34,而將減麗層麗機3〇劃分為第i室35與第2室%。 又對上部單几3〗及下部單元32分別設置有配管37、 38以使得各室可分別獨立地進行内壓調整,即可藉由真 空果或壓縮機等而減壓、加魅且亦可通大氣。配管37藉 由切換閥39而分支為配管37a與配管37^ 2方向,配管 38藉由切換閥40而分支為配管38a與配管381?之2方向。 又,於下部單元32中設置有可進行加熱之平台41。 其次’說明使用該減壓層壓機3〇的具體之 首先’將上部單元31與下部單元32分離,於平㈣上, =放暫時固定有標記線之太陽電池單元之上下面依序積層 有密封材、保護基材(表面蓋板7、背板8)而成之積層物。 、繼而’將上部單元31與下部單元32經由密封構件Μ 以可刀離的方式形成為―體,之後於配管及配管… 分別連接真空泵’使第1室35及第2室36内成為高真空。 於使第2室36内徂姓达-士 保持為南真空之狀態下,切換切換閥39, S 3几向第1室35内導入大氣。藉此,將可撓性片松 34朝向第2室36推壓,結果積層物於平台41上受到加埶 並且受可撓性片材34按壓。該埶壓接時 …、 杜接著材料而適當設定,通常在12Q〜2啊之範圍内。電 熱壓接後’切換切換閥4〇,自配管规向 導入大氣^此,將可撓性片材34朝向第^ ^ 最後第1室35與第2室36之内屋變為相同。至35推回, 最後,將上部單元31與下部單元32分離,自平台“ 13 201251056 上取出經熱壓接處理之太陽電池模組。藉此,可將密封樹 脂之硬化、及電極與標記線之連接同時進行。 根據如上之太陽電池模組之製造方法,由於不存在由 將電極與標記線熱壓接後之層壓所致的熱膨脹或熱收縮, 故而可製造具有高連接可靠性之太陽電池模組。進而,由 於使用硬化後之玻璃轉移點為13〇〜l8〇t之導電性接著 膜’故而即便於高溫多濕等嚴酷之條件下,亦可維持高連 接可靠性。 [實施例] < 4 ·實施例> 以下說明本發明之實施例,但本發明並不限定於該等 實施例。 [實施例1 ] 如表1所示,摻合22質量份之苯氧樹脂A (品名: YP50,製造商名稱:新日鐵化學股份有限公司)、丨5質量份 之環氧樹脂B(品名:RKB系列,製造商名稱:Resin〇us “Μ 股份有限公司)、15質量份之丙烯酸橡膠(品名:SG-80-H, 製造商名稱:長潮化成股份有限公司)、45質量份之潛伏性 ,化劑(品名:Ηχ_3941 ’製造商名稱:旭化成股份有限公 司)、2質量份之矽烷偶合劑(品名:A-187,製造商名稱: Momentive Performance MateHals 股份有限公司)、及 1 $ 質 量份之導電性粒子(品名:AUL704,製造商名稱:積水化 學工業)’製備導電性接著膜之樹脂組成物。使用塗佈棒將 其塗佈於經剝離處理之 PET (polyethylene ter*ephthalate, 14 201251056 聚對苯二甲酸乙二酯)±,於8(rc之烘箱内乾燥5分鐘, 製作厚度為25 μηι之導電性接著膜。 繼而,使導電性接著膜硬化,使用依據JISK7244]法 所進行之動態黏彈性測定,求取硬化後之導電性接著膜之 玻璃轉移點(Tg),結果為132。(:。 其次,於6英吋之多晶Si單元(尺寸:15 6emxl5 6em, 厚度:180 a m)的由Ag所構成之表面電極部分及由A1 所構成之背面電極部分貼合導電性接著膜,於導電性接著 膜上暫時配置被覆有焊料之Cu標記線(寬度:2爪爪,厚度: 0.15 mm)。藉由加熱頭對標記線進行熱壓(18〇它、15秒、 2 MPa )而使導電性接著膜硬化,製作實施例i之評估樣品。 [實施例2] 如表1所示,摻合11質量份之苯氧樹脂A (品名: YP50,製造商名稱:新日鐵化學股份有限公司)、丨1質量份 之苯氧樹脂B (品名:jer6〇4,製造商名稱:三菱化學股份 有限公司)、15質量份之環氧樹脂B (品名:RKB系列,製 造商名稱:Resinous Kasei股份有限公司)、15質量份之丙 烯酸橡膠(品名:SG-80-H,製造商名稱:長瀨化成股份有 限公司)、45質量份之潛伏性硬化劑(品名:Ηχ_394丨,製 造商名稱.旭化成股份有限公司)、2質量份之矽院偶合劑 (〇σ 名· A-187 ’ 製造商名稱:M〇mentive Performance Materials股份有限公司)、及ι5質量份之導電性粒子(品 名:AUL704 ’製造商名稱:積水化學工業),製備導電性接 著膜之樹脂組成物。 15 201251056 除該製備以外 之評估樣品。又, 140〇C。 ,以與實施例1相同之方式製 硬化後之導電性接著膜之 J施例2 叹嗎轉移點為 [實施例3] 如表1所不,摻合5質量份之笨氧樹脂。 、。口 名:ΥΡ50, 製造商名稱:新日鐵化學股份有限公司)、17租方 7質量份之苯氧 樹脂Β (品名:jer6〇4,製造商名稱:三菱仆風ηιι 一 予股份有限公 司)、1 5質量份之環氧樹脂B (品名:RKB系列, 為造商名 稱:Resinous Kasei股份有限公司)、1 5皙晷々\ 貞篁伤之丙烯酸橡 膠(品名:SG-80-H,製造商名稱:長瀨化成股份有限公1 )、 45質量份之潛伏性硬化劑(品名:hx_3941,製造商名稱. 旭化成股份有限公司)、2質量份之矽烷偶合劑(品名: A-187,製造商名稱:Momentive Perf〇rmance Materiais 股 份有限公司)、及15質量份之導電性粒子(品名:aul7〇4, 製造商名稱:積水化學工業),製備導電性接著膜之樹脂組 成物。 除此以外’以與實施例1相同之方式製作實施例3之 評估樣品。又,硬化後之導電性接著膜之玻璃轉移點為164 °C。 [實施例4] 如表1所示’摻合22質量份之苯氧樹脂b (品名: jer6〇4,製造商名稱:三菱化學股份有限公司)、15質量份 之環氧樹脂B(品名:RKB系列,製造商名稱:Resinous Kasei 股份有限公司)、1 5質量份之丙烯酸橡膠(品名:SG-80-H, 16 201251056 製造商名稱:長瀨化成股份有限公司)、45質量份之潛伏性 硬化劑(品名:Hx_3941,製造商名稱:旭化成股份有限公 司)、2質量份之矽烷偶合劑(品名:A_187 ,製造商名稱: Momentive Performance Materials 股份有限公司)、及 15 質 量份之導電性粒子(品名:AUL7〇4,製造商名稱:積水化 學工業)’製備導電性接著膜之樹脂組成物。 除該製備以外’以與實施例!相同之方式製作實施例4 之評估樣品。又’硬化後之導電性接著膜之玻璃轉移點為 180〇C。 [比較例1] 於表面電極部分及背面電極部分塗佈助熔劑,暫時配 置被覆有焊料之Cu標記線。藉由加熱頭對標記線進行熱壓 ( 200°C、15秒、2 MPa)而使其連接,製作比較例t之評 估樣品。 [比較例2] 如表1所示,摻合22質量份之苯氧樹脂A (品名: YP50 ’製造商名稱:新日鐵化學股份有限公司)、15質量份 之環氧樹脂A (品名:EP828,製造商名稱:三菱化學股份 有限公司)、15質量份之丙烯酸橡膠(品名:sg,_h,製 造商名稱4瀨化成股份有限公仆45質量份之潛伏性硬 化劑(品名:Η X - 3 9 4卜製造商名稱:旭化成股份有限公司)、 2質量份之石夕院偶合劑(品名:Α_187,製造商名稱:S 201251056 The glass transfer point is not harmful even if it is larger than 18Gt, but the glass before the hardening increases, which will deteriorate the connection reliability during thermocompression bonding. κ 占 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Kpa·ability follows the adhesion of film 2. The viscosity of the film is in the range of 0_kpa.s. When the film 20 is formed into a strip-shaped reel, the so-called snagging can be prevented and the adhesive force can be maintained. The composition is not impeded as described above: it is not particularly limited, but more preferably contains a film-forming resin, a liquid epoxy resin, a latent curing agent, and a decane coupling agent. The hydrazine-forming resin corresponds to an average molecular weight. From the viewpoint of film formability of 10,000 or more high-component resin, it is preferably 1 G to 8 (average molecular weight of 2). As the film-forming resin, an epoxy resin, a modified epoxy resin, or an amine resin can be used. For various resins such as phenoxy resin, it is preferable to use a phenoxy tree as a liquid epoxy resin from the viewpoints of film formation state and connection reliability, and if it has fluidity at normal temperature, it is a commercially available epoxy. Resin can be used. As such an epoxy resin, δ can be used Use: naphthalene epoxy resin, biphenyl epoxy resin, novolac epoxy resin, (four) epoxy resin, 5 (secret epoxy resin, 4 methyl ether epoxy resin, age Fangyuan epoxy Resin, Tsai-type epoxy resin, triphenyl-based epoxy resin, etc. The acid tree can be used in combination of two or more kinds. It can also be combined with other organic resins of propylene tree For use as a latent hardener, it is possible to use various hardeners such as heat-curing type, υν-curing type, etc. The latent hardener does not normally react, and the reaction starts after the activation is triggered. Triggering exists in 埶, 光望, ”, 九And pressurization, etc., can be selected and used according to the use. When using a liquid epoxy resin, a latent hardening agent consisting of (4), an amine, (4), a sulfonium salt, etc. can be used. As the mixture, an epoxy-based, an amine-based, a mercapto-thioether-based, a urea-based, or the like can be used. In the present embodiment, the epoxy-based alkane coupling agent is used as the mixture, whereby the organic material and the inorganic material can be improved. The continuity of the interface. Also as another add group Preferably, it is a rubber-based elastic particle blended with an acrylic rubber (ACR' like 5^rUbbe〇, butyl bismuth rubber (BR), nitrile rubber (NBR), etc. The elastic particles can absorb internal stress. Further, it is possible to impart high connection reliability without suppressing hardening. Further, as another additive composition, an inorganic filler may be contained. By containing an inorganic filler, the flow of the resin layer during pressure bonding can be adjusted (4), and the particles can be improved. The inorganic filler may be used as the inorganic filler, such as cerium oxide, talc, titanium oxide, calcium carbonate or magnesium oxide, and the type of the inorganic filler is not particularly limited. The conductive particles, the film-forming resin, the liquid epoxy resin, the latent curing agent, and the sulphur coupling agent are dissolved in a solvent. As the solvent, a ##, an acetic acid, or the like, or a mixed solvent of these may be used. Further, a solvent for forming a resin obtained by dissolving is applied onto the release sheet, and the solvent is volatilized to obtain conductivity. Next, the film 20 is obtained. <2. Method of Manufacturing Solar Cell Module> The ginseng thereof, Fig. 3A and Fig. 3B illustrate the method of manufacturing the solar cell module 201251056. The manufacturing method of the solar cell module i of the present embodiment is applied to the bus bar electrode 11 of one solar cell unit 2 and the back surface electrode 13 of the other solar cell unit 2, and the glass transition point after bonding and hardening is 13〇~ 18〇 The conductive adhesive film 20' is temporarily placed on the conductive adhesive film 2A, and the marking line 3' is temporarily pressed from the upper surface of the marking line 3 by the heating pressing head. Specifically, first, the finger electrode 12 and the bus bar electrode u are formed by coating an Ag paste on the surface of the photoelectric conversion element 1 to be bonded, and the connection to the mark line 3 is performed on the back surface by A1 screen printing or the like. Ai back electrode 13 is formed to form a solar cell. Next, the conductive adhesive film 2 is bonded to the bus bar electrode u on the surface of the photoelectric conversion element 10 and the back surface electrode 13 on the back surface of the A1, and the mark line 3 is placed on the conductive layer 臈20. Then, the heat is pressed by a predetermined pressure from above the mark line 3, whereby the mark line 3 is electrically connected to the back surface electrode 13 of the bus bar electrode A1. At this time, since the adhesive resin of the conductive adhesive film 2 () has good adhesion to the bus bar 35u formed of the paste, the mark line 2 and the bus bar electrode are firmly mechanically connected. Further, the temperature at which the marking line 3 is electrically connected to the back surface electrode 13 and thermocompression-bonded is appropriately set in accordance with the conductivity-conducting material, and is usually in the range of 12 Torr to 2 Torr. A matrix 5 in which the solar cellite 2 is connected is sandwiched between the sheet 6 of the sealing agent, and the surface cover 7 disposed on the light receiving surface side and the back sheet 8 disposed on the back side are laminated. The degree of solitude of the solar cell module in which the layer is formed is suitably set according to the sealing adhesive, and is usually in the range of 〜160 °C. In the present embodiment, by using the conductive adhesive film having a glass transition point after hardening of i3 〜 to 180 ° C, the connection failure at the time of laminating the solar battery cells can be reduced. Moreover, high connection reliability can be maintained even under severe conditions such as high temperature and humidity. Further, the conductive adhesive film of the present embodiment is not limited to the above-described method for manufacturing a solar cell module, and may be used for laminating a sealing resin and simultaneously connecting electrodes and marking lines. Crimp method. According to this method, a solar cell module having high connection reliability can be manufactured because there is no thermal expansion or thermal contraction caused by the lamination pressure of the electrode and the marking wire after thermocompression bonding. The solar cell module is manufactured by electrically connecting a surface electrode of a solar cell unit and a back electrode of another solar cell unit adjacent to the solar cell unit via a conductive bonding material by a marking line: : The manufacturing method of the group, wherein the surface electrode of the solar cell unit and the trace line of the solar cell, and the other surface of the back electrode and the mark line of the other side of the solar cell are temporarily fixed to the sun. The battery unit is provided with a lower layer of sealing material and a protective substrate, and (4) a laminating device is layered (4) from the surface of the protective substrate, and the sealing material is hardened and the surface electrode and the surface electrode and the surface electrode are connected to the marking line. Simultaneous = = hardening of the resin, and the connection of the electrode to the marking line is explained by a lazy laminating device. 3. Department::: single =: = = = figure. In the reduction unit 12 201251056, the flexible sheet 34 such as cut oak is provided in the unit 3!, and the thin layer 3 is divided into the i-th chamber 35 by the pullable sheet 34 Room 2%. Further, the upper portion 3 and the lower unit 32 are provided with pipings 37 and 38, respectively, so that the respective chambers can be independently adjusted in internal pressure, and can be decompressed, enchanted, or enchanted by a vacuum fruit or a compressor. Through the atmosphere. The pipe 37 branches into the direction of the pipe 37a and the pipe 37^2 by the switching valve 39, and the pipe 38 branches into the two directions of the pipe 38a and the pipe 381 by the switching valve 40. Further, a platform 41 capable of heating is provided in the lower unit 32. Next, the description of the use of the vacuum laminator 3 首先 firstly separates the upper unit 31 from the lower unit 32, and on the flat (four), the solar cell unit temporarily fixed with the marking line is sequentially laminated. A laminate of a sealing material and a protective substrate (surface cover 7 and backing plate 8). Then, the upper unit 31 and the lower unit 32 are formed into a body so as to be detachable via a sealing member, and then the vacuum pump is connected to the piping and the piping to make the first chamber 35 and the second chamber 36 high vacuum. . In a state where the surname of the second chamber 36 is maintained at a south vacuum, the switching valve 39 is switched, and the air is introduced into the first chamber 35 by S3. Thereby, the flexible sheet loose 34 is pressed toward the second chamber 36, and as a result, the laminated body is twisted on the stage 41 and pressed by the flexible sheet 34. When the pressure is connected, the material is appropriately set, and is usually in the range of 12Q~2. After the electrothermal crimping, the switching valve 4 is switched, and the atmosphere is introduced from the piping guide, and the flexible sheet 34 is turned to the same as the inner chamber of the first chamber 35 and the second chamber 36. After pushing back to 35, finally, the upper unit 31 is separated from the lower unit 32, and the solar cell module subjected to thermocompression bonding is taken out from the platform "13 201251056. Thereby, the sealing resin can be hardened, and the electrode and the marking line can be removed. The connection is performed simultaneously. According to the manufacturing method of the solar cell module as described above, since there is no thermal expansion or thermal contraction caused by lamination of the electrode and the marking wire after thermocompression bonding, a solar having high connection reliability can be manufactured. Further, since the glass transition point after curing is a conductive adhesive film of 13 〇 to 18 〇 t, high connection reliability can be maintained even under severe conditions such as high temperature and high humidity. <4. EXAMPLES> The following describes the examples of the present invention, but the present invention is not limited to the examples. [Example 1] As shown in Table 1, 22 parts by mass of phenoxy resin A was blended. (Name: YP50, manufacturer name: Nippon Steel Chemical Co., Ltd.), 丨5 parts by mass of epoxy resin B (name: RKB series, manufacturer name: Resin〇us "Μ Co., Ltd.), 15 parts by mass It Ethylene rubber (product name: SG-80-H, manufacturer name: Changchao Chemical Co., Ltd.), 45 parts by weight of latent agent, chemical agent (product name: Ηχ_3941 'Manufacturer name: Asahi Kasei Co., Ltd.), 2 parts by mass The decane coupling agent (product name: A-187, manufacturer name: Momentive Performance MateHals Co., Ltd.), and 1 part by mass of conductive particles (product name: AUL704, manufacturer name: Sekisui Chemical Industry Co., Ltd.) The resin composition of the film. It was applied to the peeled PET (polyethylene ter*ephthalate, 14 201251056 polyethylene terephthalate) ± by a coating bar, and dried in an oven of 8 (rc for 5 minutes to make a thickness of 25 μηι Conductive adhesive film. Then, the conductive adhesive film was cured, and the glass transition point (Tg) of the conductive adhesive film after curing was determined by dynamic viscoelasticity measurement according to JIS K7244, and the result was 132. Next, a 6-inch polycrystalline Si unit (size: 15 6emxl5 6em, thickness: 180 am), a surface electrode portion made of Ag and a back electrode portion composed of A1 are bonded to the conductive adhesive film. On the conductive film, a Cu-coated wire (width: 2 claws, thickness: 0.15 mm) covered with solder was temporarily placed on the film. The mark was hot pressed (18 〇, 15 sec, 2 MPa) by a heating head. Conductivity followed by film hardening, and an evaluation sample of Example i was prepared. [Example 2] As shown in Table 1, 11 parts by mass of phenoxy resin A was blended (product name: YP50, manufacturer name: Nippon Steel Chemical Co., Ltd.) Company), 丨 1 part by mass of phenoxy tree Fat B (product name: jer6〇4, manufacturer name: Mitsubishi Chemical Corporation), 15 parts by mass of epoxy resin B (product name: RKB series, manufacturer name: Resinous Kasei Co., Ltd.), 15 parts by mass of acrylic acid Rubber (product name: SG-80-H, manufacturer name: Changchun Chemical Co., Ltd.), 45 parts by mass of latent hardener (product name: Ηχ_394丨, manufacturer name. Asahi Kasei Co., Ltd.), 2 parts by mass Brothel coupling agent (〇σ名·A-187 'Manufacturer name: M〇mentive Performance Materials Co., Ltd.), and ι 5 parts by mass of conductive particles (product name: AUL704 'Manufacturer name: Sekisui Chemical Industry Co., Ltd.), preparation The resin composition of the conductive adhesive film. 15 201251056 Evaluation sample other than the preparation. Further, 140 〇C., in the same manner as in Example 1, the conductive adhesive film was applied. The point is [Example 3] As shown in Table 1, 5 parts by mass of a stearoxy resin is blended. Name: ΥΡ50, manufacturer name: Nippon Steel Chemical Co., Ltd., 17 renter 7 Phenol resin 质量 (product name: jer6〇4, manufacturer name: Mitsubishi servant ηιι 一予股份有限公司), 15 parts by mass epoxy resin B (name: RKB series, manufacturer name: Resinous Kasei Co., Ltd., 1 5皙晷々\ 之 之 丙烯酸 丙烯酸 ( (product name: SG-80-H, manufacturer name: Changchun Chemical Co., Ltd.), 45 parts by mass of latent hardener (product name) :hx_3941, manufacturer's name. Asahi Kasei Co., Ltd.), 2 parts by mass of decane coupling agent (product name: A-187, manufacturer name: Momentive Perf〇rmance Materiais Co., Ltd.), and 15 parts by mass of conductive particles ( Product name: aul7〇4, manufacturer's name: Sekisui Chemical Industry Co., Ltd., to prepare a resin composition of a conductive adhesive film. Except for this, the evaluation sample of Example 3 was produced in the same manner as in Example 1. Further, the glass transition point of the cured conductive film after curing was 164 °C. [Example 4] As shown in Table 1, '22 parts by mass of phenoxy resin b (product name: jer6〇4, manufacturer name: Mitsubishi Chemical Corporation), 15 parts by mass of epoxy resin B (product name: RKB series, manufacturer name: Resinous Kasei Co., Ltd.), 15 parts by mass of acrylic rubber (product name: SG-80-H, 16 201251056 Manufacturer name: Changchun Chemical Co., Ltd.), 45 mass parts of latent property Hardener (product name: Hx_3941, manufacturer name: Asahi Kasei Co., Ltd.), 2 parts by mass of decane coupling agent (product name: A_187, manufacturer name: Momentive Performance Materials Co., Ltd.), and 15 parts by mass of conductive particles ( Product Name: AUL7〇4, manufacturer's name: Sekisui Chemical Industry Co., Ltd. 'Preparation of a resin composition of a conductive adhesive film. In addition to the preparation, 'with the embodiment! The evaluation sample of Example 4 was produced in the same manner. Further, the glass transition point of the conductive film after hardening was 180 〇C. [Comparative Example 1] A flux was applied to the surface electrode portion and the back electrode portion, and a Cu-coated wire coated with solder was temporarily disposed. The mark line was heat-pressed (200 ° C, 15 sec, 2 MPa) by a heating head to be connected, and an evaluation sample of Comparative Example t was produced. [Comparative Example 2] As shown in Table 1, 22 parts by mass of phenoxy resin A (product name: YP50 'manufacturer name: Nippon Steel Chemical Co., Ltd.) and 15 parts by mass of epoxy resin A (product name: EP828, manufacturer name: Mitsubishi Chemical Co., Ltd.), 15 parts by mass of acrylic rubber (product name: sg, _h, manufacturer name 4 濑 成 成 股份 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 9 4b manufacturer name: Asahi Kasei Co., Ltd.), 2 parts by mass of Shixiyuan coupling agent (product name: Α_187, manufacturer name:

Momentive Performance Materials 股份有限公司)、及 15 質 量份之導電性粒子(品名:AUL7G4,製造商名稱:積水化 17 201251056 學工業),製備導電性接著膜之樹脂組成物。 除該製備以外,以與實施例丨相同之方式製作比較例2 之評估樣品。又,硬化後之導電性接著膜之玻璃轉移點為 125〇C。 [比較例3] 如表1所示,摻合22質量份之苯氧樹脂C (品名: jerl〇31S,製造商名稱:三菱化學股份有限公司)、15質量 伤之環氧樹脂B (品名:RKB系列,製造商名稱:Resin〇usMomentive Performance Materials Co., Ltd., and 15 parts by mass of conductive particles (product name: AUL7G4, manufacturer's name: Sekisui 17 201251056), preparing a resin composition of a conductive adhesive film. An evaluation sample of Comparative Example 2 was produced in the same manner as in Example 除 except for the preparation. Further, the glass transition point of the conductive adhesive film after curing was 125 〇C. [Comparative Example 3] As shown in Table 1, 22 parts by mass of phenoxy resin C (product name: jerl〇31S, manufacturer name: Mitsubishi Chemical Corporation), and 15 mass-damaged epoxy resin B (product name: RKB series, manufacturer name: Resin〇us

Kasei股份有限公司)、15質量份之丙烯酸橡膠(品名: SG-80-H,製造商名稱:長瀨化成股份有限公司)、45質量 份之潛伏性硬化劑(品名:Hx_3941,製造商名稱:旭化成 股份有限公司)、2質量份之矽烷偶合劑(品名:a_187,製 造商名稱:Momentive Perf0rmance MaterUls 股份有限公 司),、及15質量份之導電性粒子(品名:AUL7〇4,製造商 名稱:積水化學工業),製備導電性接著膜之樹脂組成物。 除該製備以外,以與實施例丨相同之方式製作比較例3 之評估樣品。X,硬化後之導電性接著膜之玻璃轉移 200〇C。 [評估試驗] 對於各評估樣品,將-4〇t〜10〇t之溫度循環反複進行 人循環' 2000次循環後,測定表面電極及背面電極之 電阻值。X,以目視觀察表面電極及背面電極上之標 的剝離。 表1中示出各樣品之評估結果。作為綜合判定之指標, 201251056 於初期〜2000次循環為止之可靠性試驗中,將表面電極中 之傳導電阻值為40Ω以下,背面電極中之傳導電阻值為15 Ω以下,且於表面電極與背面電極兩者均未觀察到標記線剝 離之情形評價為〇。又’於初期〜2000次循環為止之可靠 性試驗中,將表面電極中之傳導電阻值為40 Ω以下’背面 電極中之傳導電阻值為20 Ω以上,於表面電極與背面電極 之任一方觀察到標記線剝離之情形評價為△。又,於初期 〜2000次循環為止之可靠性試驗中,將表面電極中之傳導 電阻值為50 Ω以上,背面電極中之傳導電阻值為25 Ω以 上,於表面電極與背面電極兩方均觀察到標記剝離之情形 評價為X。 [表1]Kasei Co., Ltd.), 15 parts by mass of acrylic rubber (product name: SG-80-H, manufacturer name: Changchun Chemical Co., Ltd.), 45 parts by mass of latent hardener (product name: Hx_3941, manufacturer's name: Asahi Kasei Co., Ltd.), 2 parts by mass of decane coupling agent (product name: a_187, manufacturer name: Momentive Perf0rmance MaterUls Co., Ltd.), and 15 parts by mass of conductive particles (product name: AUL7〇4, manufacturer name: Sekisui Chemical Industry Co., Ltd., a resin composition of a conductive adhesive film is prepared. An evaluation sample of Comparative Example 3 was produced in the same manner as in Example 除 except for the preparation. X, the conductive after hardening, the glass of the film is transferred to 200 〇C. [Evaluation Test] For each evaluation sample, the temperature cycle of -4 〇t to 10 〇t was repeated for a human cycle of '2000 cycles, and the resistance values of the surface electrode and the back electrode were measured. X, visually observing the target peeling on the surface electrode and the back electrode. The evaluation results of each sample are shown in Table 1. As an indicator of comprehensive judgment, 201251056, in the reliability test from the initial stage to the 2,000 cycles, the conduction resistance value in the surface electrode is 40 Ω or less, and the conduction resistance value in the back surface electrode is 15 Ω or less, and the surface electrode is used. The case where no peeling of the marking line was observed with both of the back electrodes was evaluated as 〇. In the reliability test from the initial stage to the 2000th cycle, the conduction resistance value in the surface electrode is 40 Ω or less. The conduction resistance value in the back electrode is 20 Ω or more, and the surface electrode and the back electrode are used. The case where the marking line was peeled off was evaluated as Δ. Further, in the reliability test from the initial period to the 2,000 cycles, the conduction resistance value in the surface electrode was 50 Ω or more, and the conduction resistance value in the back surface electrode was 25 Ω or more, on both the surface electrode and the back electrode. The case where the peeling of the mark was observed was evaluated as X. [Table 1]

實施 例1 實施 例2 實施 例3 實施 例4 比較 例1 比較 例2 比較 例3 摻合 苯氧樹脂A 22 11 5 - 焊料 連接 22 - 苯氧樹脂B 11 17 22 - - 苯氧樹脂C - - • - 22 環氧樹脂A - - 15 - 環氧樹脂B 15 15 15 15 - 15 丙烯酸系橡膠 15 15 15 15 15 15 潛伏性硬化劑 45 45 45 45 45 45 矽烷偶合劑 2 2 2 2 2 2 導電性粒子 15 15 15 15 15 15 硬化後之玻璃轉移點(°c) 132 140 164 180 • 125 200 導通 電阻 初期(表面/背面) 40/15 40/15 40/15 40/15 40/15 40/15 40/15 1000 eye (表面/背面) 40/15 40/15 40/15 40/15 40/15 50/30 45/20 2000 eye (表面/背面) 40/20 40/15 40/15 40/15 50/25 80/350 50/40 TAB 剝離 初期(表面/背面) 無/無 無/無 無/無 無/無 無/無 無/無 無/無 1000 eye (表面/背面) 無/有 無/無 無/無 無/無 有/有 有/有 有/有 2000 eye (表面/背面) 無/有 無/無 無/無 無/無 有/有 有/有 有/有 綜合判定 Δ 〇 〇 〇 X X X 19 201251056 比較例1中,於溫度循環試驗之1000次循環中觀察到 表面及背面兩面之標記線剝離,於2000次循 π τ 1寻導電阻 上升。又,比較例2中,於溫度循環試驗之1〇〇〇次循環中 觀察到標記線剝離,於2〇〇〇次循環中傳導電阻卜 工力' 0又, 比較例3中,硬化後之玻璃轉移點為2〇〇t,但硬化前之玻 璃轉移點亦較大,故而於溫度循環試驗之1〇〇〇次循環中觀 察到標記線剝離’未能獲得良好之連接可靠性。 另一方面,實施例1中,於溫度循環試驗之1〇〇〇次循 環中觀察到背面之標記線剝離,但即便於2〇〇〇次循環中亦 未觀察到表面之剝離。又,於溫度循環試驗中傳導電阻之 變化較小。又,實施例2〜4中,即便於溫度循環試驗之2〇〇〇 -人循環中亦未觀察到表面或背面之標記線剝離,並且傳導 電阻無變化。 由以上結果可知,藉由將硬化後之玻璃轉移點為13〇 〜1 80°C之導電接著膜用於太陽電池模組,可獲得優異之連 接可靠性。 另外可知’尤其是硬化後之玻璃轉移點為140〜18〇。匚 之導電接著膜具有特別優異之連接可靠性。 【圖式簡單說明】 圖1係應用本發明之太陽電池模組之分解立體圆。 圖2係太陽電池模組之剖面圖。 圖3A及圖3B係太陽電池單元之剖面圖。 圖4係表示減壓層壓機之構成的剖面圖。 20 201251056 【主要元件符號說明】 1 太陽電池模組 2 太陽電池單元 3 標記線 4 串 5 矩陣 6 片材 7 表面蓋板 8 背板 9 金屬框 10 光電轉換元件 11 匯流排電極 12 指狀電極 13 A1背面電極 20 導電性接著膜 30 減壓層壓機 31 上部單元 32 下部單元 33 密封構件 34 可撓性片材 35 第1室 36 第2室 37、37a、37b、38、38a、38b 酉己管 21 201251056 39、40 41 切換閥 平台 22Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Blended phenoxy resin A 22 11 5 - Solder joint 22 - phenoxy resin B 11 17 22 - - phenoxy resin C - - • - 22 Epoxy Resin A - - 15 - Epoxy Resin B 15 15 15 15 - 15 Acrylic Rubber 15 15 15 15 15 15 Latent Hardener 45 45 45 45 45 45 Decane Coupler 2 2 2 2 2 2 Conductive Particle 15 15 15 15 15 15 Glass transition point after hardening (°c) 132 140 164 180 • 125 200 On-resistance initial (surface/back) 40/15 40/15 40/15 40/15 40/15 40/ 15 40/15 1000 eye (surface/back) 40/15 40/15 40/15 40/15 40/15 50/30 45/20 2000 eye (surface/back) 40/20 40/15 40/15 40/ 15 50/25 80/350 50/40 TAB Early peeling (surface/back) None / No / No / No / No / No / No / No / No 1000 eye (Surface / Back) No / No / Nothing / No No / No / There are / There are / There are 2000 eye (surface / back) No / No / No / No / No / There is / There is / There is a comprehensive judgment Δ 〇〇〇 XXX 19 201251056 Comparative Example 1 , Was observed on both sides of the front and back release marker, increased 2000 times to find the cycle-resistance π τ 1 to 1000 cycles of the temperature cycle test. Further, in Comparative Example 2, the mark line peeling was observed in one cycle of the temperature cycle test, and the conduction resistance work force '0 in the second cycle, and in Comparative Example 3, after hardening The glass transfer point was 2 〇〇t, but the glass transfer point before hardening was also large, so that the mark peeling was observed in the 1 〇〇〇 cycle of the temperature cycle test, 'good connection reliability was not obtained. On the other hand, in Example 1, the marking of the back surface was observed in the first cycle of the temperature cycle test, but no peeling of the surface was observed even in the 2 cycles. Also, the change in conduction resistance was small in the temperature cycle test. Further, in Examples 2 to 4, no peeling of the mark line on the surface or the back surface was observed even in the 2 〇〇〇 - human cycle of the temperature cycle test, and the conduction resistance was not changed. From the above results, it is understood that excellent connection reliability can be obtained by using a conductive adhesive film having a glass transition point of 13 〜 to 180 ° C after hardening for a solar cell module. In addition, it can be seen that, in particular, the glass transition point after hardening is 140 to 18 Å. The conductive adhesive film of 匚 has particularly excellent connection reliability. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an exploded perspective circle of a solar cell module to which the present invention is applied. Figure 2 is a cross-sectional view of a solar cell module. 3A and 3B are cross-sectional views of a solar cell unit. Fig. 4 is a cross-sectional view showing the configuration of a vacuum laminator. 20 201251056 [Explanation of main component symbols] 1 Solar cell module 2 Solar cell unit 3 Marking wire 4 String 5 Matrix 6 Sheet 7 Surface cover 8 Back plate 9 Metal frame 10 Photoelectric conversion element 11 Bus bar electrode 12 Finger electrode 13 A1 Back electrode 20 Conductive adhesive film 30 Pressure reducing laminator 31 Upper unit 32 Lower unit 33 Sealing member 34 Flexible sheet 35 First chamber 36 Second chamber 37, 37a, 37b, 38, 38a, 38b Tube 21 201251056 39, 40 41 switching valve platform 22

Claims (1)

201251056 七、申請專利範圍: 1. 一種太陽電池模組,係一太陽電池單元之表面電極、 及與該一太陽電池單元鄰接之另一太陽電池單元之背面電 極經由導電性接著膜由標記線電性連接而成, 該導電性接著膜之硬化後的玻璃轉移點為13〇〜18〇 °c。 2. 如申請專利範圍第i項之太陽電池模組,其中,該導 電性接著膜之硬化後的玻璃轉移點為i4〇〜i 8〇它。 3. 如申請專利範圍第1或2項之太陽電池模組,其中’ 該太陽電池單元係由密封接著劑夾持,與表面片材及 片材一起層壓而成。 4. 一種太陽電池模組之製造方法,係將一太陽電池單元 $表面電極 '及與該—太陽電池單元鄰接之另—太陽電池 早元之背面電極經由導電性接著材料由標記線電性連接, s亥製造方法具有以下步驟: 暫時配置步驟,於該一太陽電池單元之表面電極及該 另一太陽電池單元之背面電極,貼合硬化後之玻璃轉移點 為130 180 C之導電性接著材料,於該導電性接著材料上 暫時配置標記線;及 按壓步驟,利用加熱按壓頭自該標記線之上面進行按 髮0 5 ·如申晴專利筋图笛」 乾圍第4項之太陽電池模組之製造方 法’其中,該導電性桩荽报+a a 接者膜之硬化後的玻璃轉移點為14〇 〜18(TC。 23 201251056 6 ·如申請專利範圍第4或5項之太陽電池模組之製造方 法,其中,於連接該標記線後,將太陽電池單元以密封接 著劑夾持’與表面片材及背面片材一起層壓。 7·—種太陽電池模組之製造方法,係將_太陽電池單元 之表面電極、及與該一太陽電池單元鄰接之另一太陽電池 單元之背面電極經由導電性接著材料由標記線電性連接, 該製造方法具有以下步驟:201251056 VII. Patent application scope: 1. A solar cell module, wherein a surface electrode of a solar cell unit and a back electrode of another solar cell unit adjacent to the solar cell unit are electrically connected by a marking film via a conductive adhesive film The glass transition point after hardening of the conductive adhesive film is 13 〇 18 〇 ° c. 2. The solar cell module of claim i, wherein the conductive transfer film has a glass transition point of i4〇~i 8〇. 3. The solar cell module of claim 1 or 2, wherein the solar cell unit is sandwiched by a sealing adhesive and laminated with the surface sheet and the sheet. A method for manufacturing a solar cell module, wherein a solar cell unit $surface electrode 'and a solar cell adjacent to the solar cell unit are electrically connected to each other via a conductive bonding material via a marking line The shai manufacturing method has the following steps: a temporary arranging step of bonding the surface of the solar cell unit and the back electrode of the other solar cell unit to a conductive transfer material of 130 180 C after bonding and hardening The marking line is temporarily disposed on the conductive adhesive material; and the pressing step is performed by using the heating pressing head from the top of the marking line to perform the pressing of the solar cell module of the fourth item. The manufacturing method of the group, wherein the conductive pile is reported to have a glass transition point of the hardened glass film of 14 〇 to 18 (TC. 23 201251056 6 • solar cell module according to claim 4 or 5 The manufacturing method of the group, wherein, after the marking line is connected, the solar cell unit is sandwiched with a sealing adhesive and laminated with the surface sheet and the back sheet. A solar cell module manufacturing method is characterized in that a surface electrode of a solar cell and a back electrode of another solar cell adjacent to the solar cell are electrically connected by a marking material via a conductive bonding material. The method has the following steps: 暫時配置步广 ——· s己線、以及該另 硬化後玻璃轉移.1 配置;及 層麼壓接步驟,於該太陽電池單元之上下面 密封材、保護基材,利用層壓裝置自該 :層壓壓接,使該密封材硬化並且使該表面電a: 以及該旁面電極與標記線連接。 、 ^ 種導電性接著材料,係使太陽電池單元 或背面電極與標記線電性連接, 面電極 其硬化後之玻璃轉移點為130〜18〇t。 24Temporary configuration steps - · s line, and the other hardened glass transfer. 1 configuration; and layer crimping steps, above the solar cell unit sealing material, protective substrate, using the lamination device Lamination crimping, hardening the sealing material and electrically connecting the surface a: and the side electrode to the marking line. , ^ Conductive bonding material, the solar cell unit or the back electrode is electrically connected to the marking line, and the surface transition point of the surface electrode is 130~18〇t. twenty four
TW100142818A 2010-11-30 2011-11-23 Solar cell module and production method for same TW201251056A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010266976A JP2012119441A (en) 2010-11-30 2010-11-30 Solar cell module and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW201251056A true TW201251056A (en) 2012-12-16

Family

ID=46171648

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100142818A TW201251056A (en) 2010-11-30 2011-11-23 Solar cell module and production method for same

Country Status (3)

Country Link
JP (1) JP2012119441A (en)
TW (1) TW201251056A (en)
WO (1) WO2012073702A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002229A1 (en) * 2012-06-28 2014-01-03 三洋電機株式会社 Method for manufacturing solar cell module and apparatus for manufacturing solar cell module
JP6030924B2 (en) * 2012-11-12 2016-11-24 デクセリアルズ株式会社 Conductive adhesive, solar cell module, and method for manufacturing solar cell module
JP6053567B2 (en) * 2013-02-26 2016-12-27 アイカ工業株式会社 Conductive adhesive film for connecting ribbon wire to solar cell surface electrode
JP6044503B2 (en) * 2013-10-08 2016-12-14 住友金属鉱山株式会社 Conductive adhesive film and multi-junction solar cell using the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992464B2 (en) * 1994-11-04 1999-12-20 キヤノン株式会社 Covering wire for current collecting electrode, photovoltaic element using the covering wire for current collecting electrode, and method of manufacturing the same
JPH08315885A (en) * 1995-05-16 1996-11-29 Hitachi Chem Co Ltd Circuit connecting material
JP3615906B2 (en) * 1997-05-28 2005-02-02 日立化成工業株式会社 Adhesive film for multilayer wiring boards
JP3915940B2 (en) * 1997-06-10 2007-05-16 日立化成工業株式会社 Insulating layer adhesive film
JP2000256628A (en) * 1999-03-08 2000-09-19 Hitachi Chem Co Ltd Adhesive material film, semiconductor mounting external connecting member, semiconductor device and their production
JP2002327162A (en) * 2001-03-01 2002-11-15 Hitachi Chem Co Ltd Anisotropically conductive adhesive composition, method for connecting circuit terminal and connection structure of the circuit terminal
JP2003243835A (en) * 2002-02-14 2003-08-29 Hitachi Chem Co Ltd Thermosetting adhesive film, multilayer printed wiring board and its producing method
KR101040002B1 (en) * 2006-08-29 2011-06-09 히다치 가세고교 가부시끼가이샤 Conductive adhesive film and solar cell module
WO2008044357A1 (en) * 2006-10-10 2008-04-17 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
JP4947660B2 (en) * 2008-03-17 2012-06-06 シャープ株式会社 Solar cell module and method for manufacturing solar cell module
JP5436901B2 (en) * 2009-03-23 2014-03-05 三洋電機株式会社 Manufacturing method of solar cell module
JP5446420B2 (en) * 2009-04-21 2014-03-19 デクセリアルズ株式会社 Solar cell module and manufacturing method thereof
WO2014002229A1 (en) * 2012-06-28 2014-01-03 三洋電機株式会社 Method for manufacturing solar cell module and apparatus for manufacturing solar cell module

Also Published As

Publication number Publication date
WO2012073702A1 (en) 2012-06-07
JP2012119441A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
KR101465924B1 (en) Production method for solar cell module, and solar cell module
TWI462312B (en) Solar cell module, solar cell module manufacturing method
JP5707110B2 (en) Conductive adhesive material, solar cell module and manufacturing method thereof
CN103797588B (en) The method of attachment of the manufacture method, solar module and welding of solar module
TWI495122B (en) Method for manufacturing solar cell module, solar cell module, connection method of solar cell and mark line
JP5892584B2 (en) Solar cell module and method for manufacturing solar cell module
WO2012133338A1 (en) Solar cell module, method for producing solar cell module, and tab wire
TW201251056A (en) Solar cell module and production method for same
TW201246587A (en) Solar cell module, manufacturing method for solar cell module, and conductive adhesive
TW201230361A (en) Thin-film solar cell module and method for producing the thin-film solar cell module
TWI565784B (en) Electrically conductive adhesive, solar battery module, and method for producing the solar battery module
JP5759220B2 (en) Solar cell module and method for manufacturing solar cell module
TW201251074A (en) Solar cell module and method of manufacturing solar cell module
KR20140066195A (en) Solar cell conductive adhesive and connection method using same, solar cell module, and method for producing solar cell module
TWI568005B (en) A solar cell module manufacturing method, a solar cell module manufacturing method, a solar cell module
JP2016164984A (en) Solar cell module, method for manufacturing the same, and conductive adhesive film