201250053 六、發明說明: 【發明所屬之技術領域】 一般而言,本發明之實施例係關於在底材上沉積材料之系統,此等 系統之元件,以及製造和使用此等元件及系統之方法。更具體而言,本 發明之實施例係關於在底材上沉積三五族半導體材料之化學氣相沉積系 統,此等系統之元件,以及製造和使用此等元件及系統之方法。 【先前技術】 化學氣相沉積(CVD)為一種用來在底材上沉積固態材料之化學製 程’普遍使用於半導體裝置之製造。在化學氣相沉積製程中,一底材曝露 在一種或多種試劑氣體下,該些氣體以引起一固態材料在底材表面上沉積 的方式進行反應,分解,或兩者皆有。 在習知技術中’一 CVD製程之具體類型稱為氣相磊晶(VPE)。在 VPE製程中’ 一底材在反應室内曝露於一種或多種試劑蒸汽下,該些氣體 以引起一固態材料在底材表面上磊晶沉積的方式進行反應,分解,或兩者 皆有。VPE製程經常用來沉積三五族半導體材料。當一 vpE製程中的試 劑蒸汽其中之一包括氫化物蒸汽時,該種製程可稱為氫化物氣相磊晶 (HVPE)製程。 HVPE.製程係用於形成二五族半導體材料,例如氮化嫁(GaN)。在 此等製程中,底材上的GaN磊晶生長是由氣化鎵(Gaa)與氨氣(νη3) 之間的氣相反應而引起,該氣相反應是在一溫度升高至大約介於5〇〇C5C及 1,000°C之間的反應室内進行。NH3可從一標準的氨氣來源供應之。 在一些方法中,提供GaCl蒸汽的方式是讓氣化氫(HC1)氣(可從一 標準的Hp氣來源供應之)通過加熱的液態鎵(Ga)上方,以便在反應 至内原地开)成GaCl。液態鎵可以加熱至一大約介於75〇〇c及850〇C之間 201250053 ^度《 GaCl及nh;則可以被導向至一加熱底材,例如一半導體材料之 曰曰圓’的表面(例如其上方)。於細年1仙日核發予S。丨。賺等人 之美國專利6,179,913號揭露了一用於此等系統及方法之氣體注入系統, 該專利之完整揭露茲以此述及方式納入本文。 在此等系統中’反齡可能需要對周圍環境開放,以補充液態鎵之來 源。此外,在此等系統中,反應室可能無法原地予以清潔。 為解決此等問’已有人開發出使用—前驅物Gad3外部來源之方 法及系統將4獅GaCl3直接注人反應室。此等方法及系統之範例揭 不於’舉例而吕,美國專利申請公開案號US2〇_223442M中,其係 於2009年9 Θ 1〇日以Arena等人之名公開,該專利申請公開之完整揭 露茲以此述及方式納入本文。 【發明内容】 此概要係為了以簡要形式介紹許多概念,這些概念將於本發明一些示 範性實施例之詳細敘述中進一步說明。此概要之目的並非指出申請之專利 標的之主要特點或基本特點,亦非用來限制申請專利標的之範圍。 在一些實施例中,本發明包含在一底材上沉積材料之方法,例如一半 導體材料。一來源氣體可予以引入一熱化氣體注入器,該來源氣體可在該 熱化氣體注入器内被熱分解,而形成一前驅氣體及一副產物。該副產物可 以在該熱化氣體注入器内與一液態試劑反應,以形成額外的前驅氣體。該 前驅氣體及額外的前驅氣體可以從熱化氣體注入器注入一反應室内的空 間’材料便可以在使用該前驅氣體的反應室内被沉積於底材上。 在額外的實施例中’本發明包含將一種或多種氣體注入一沉積系統反 應室内之熱化氣體注入器。該些熱化氣體注入器包括一進氣口,一熱化管 道,用於容納一液態試劑之一液體容器,及一排氣口。一途徑從該進氣口 延伸’通過該熱化管道至該液體容器一内部空間,然後從該液體容器之内 4 201250053 部空間延伸至該排氣口。該熱化管道具有一長度,該長度可以大於該進氣 口與該液體容器間的最短距離。 在其他實施例中,本發明包含沉積系統,該些沉積系統包括一反應 室及至少一熱化氣體注入器,該熱化氣體注入器係用於將一種或多種氣 體注入該反應室。該熱化氣體注入器包括一進氣口,一熱化管道,用於 容納一液態試劑之一液體容器,及一排氣口。一途徑從該進氣口延伸, 通過該熱化管道至該液體容器一内部空間,然後從該液體容器之内部空 間延伸至該排氣口。該熱化管道具有一長度,該長度可以大於該進氣口 與該液體容器間的最短距離。 【實施方式】 本文所提出之說明並非對任何特定元件,裝置,或系統之實際意見, 僅為用來描述本發明實施例之理想化陳述。 本文引用了一些參考資料,為了所有目的,該些參考資料之完整揭露 茲以此述及方式納入本文。此外,所引用之參考資料,不論本文如何描述 其特點,均不予承認為相對於本發明申請專利標的之習知技術。 本文所用「二五族半導體材料」一詞係指並包含至少主要包括元素週 期表中一種或多種ΙΠΑ族元素(B ’ A1,Ga,In及Ti)與一種或多種VA 族元素(N ’ P ’ As,Sb及Bi)之任何半導體材料。舉例而言,三五族半 導體材料包括但不限於 GaN,GaP,GaAs,InN,InP,InAs,AIN,A1P,201250053 VI. Description of the Invention: [Technical Field of the Invention] In general, embodiments of the present invention relate to systems for depositing materials on substrates, components of such systems, and methods of making and using such components and systems . More specifically, embodiments of the present invention relate to chemical vapor deposition systems for depositing tri-five semiconductor materials on substrates, components of such systems, and methods of making and using such components and systems. [Prior Art] Chemical vapor deposition (CVD) is a chemical process for depositing solid materials on a substrate, which is commonly used in the manufacture of semiconductor devices. In a chemical vapor deposition process, a substrate is exposed to one or more reagent gases which react, decompose, or both to cause deposition of a solid material on the surface of the substrate. In the prior art, a specific type of CVD process is called vapor phase epitaxy (VPE). In a VPE process, a substrate is exposed to one or more reagent vapors in a reaction chamber that reacts, decomposes, or both in a manner that causes epitaxial deposition of a solid material on the surface of the substrate. VPE processes are often used to deposit tri-five semiconductor materials. When one of the reagent vapors in a vpE process includes hydride vapor, the process can be referred to as a hydride vapor phase epitaxy (HVPE) process. The HVPE. process is used to form a Group II or five semiconductor material, such as nitrided (GaN). In these processes, GaN epitaxial growth on the substrate is caused by a gas phase reaction between gallium (Gaa) and ammonia (νη3), which is raised at a temperature to approximately It is carried out in a reaction chamber between 5 ° C 5 C and 1,000 ° C. NH3 is available from a standard source of ammonia. In some methods, the GaCl vapor is provided by passing a vaporized hydrogen (HC1) gas (available from a standard Hp gas source) over the heated liquid gallium (Ga) for opening to the reaction in situ. GaCl. The liquid gallium can be heated to a temperature between about 75 〇〇c and 850 〇C at 201250053 ^ degrees "GaCl and nh; then it can be directed to a heated substrate, such as a rounded surface of a semiconductor material (eg Above it). Issued to S on the 1st day of the fine year. Hey. A gas injection system for such systems and methods is disclosed in U.S. Patent No. 6,179,913, the entire disclosure of which is incorporated herein by reference. In these systems, the age of anti-age may need to be open to the environment to supplement the source of liquid gallium. In addition, in such systems, the reaction chamber may not be cleaned in place. In order to solve these problems, it has been developed to use the method and system of the external source of the precursor Gad3 to directly inject the 4 Lion GaCl3 into the reaction chamber. Examples of such methods and systems are disclosed in the 'U.S. Patent Application Publication No. US Pat. No. 2,223, 442, the entire disclosure of which is incorporated herein by The full disclosure is included in this article. This Summary is provided to introduce a selection of concepts in the form of a The purpose of this summary is not to indicate the main features or basic features of the patent application being applied, nor to limit the scope of the patent application. In some embodiments, the invention comprises a method of depositing a material on a substrate, such as a half conductor material. A source gas can be introduced into a thermal gas injector which can be thermally decomposed within the thermal gas injector to form a precursor gas and a by-product. The byproduct can be reacted with a liquid reagent in the heating gas injector to form additional precursor gases. The precursor gas and additional precursor gases can be injected into the space within the reaction chamber from the heating gas injector. The material can be deposited on the substrate in the reaction chamber where the precursor gas is used. In an additional embodiment, the invention comprises a hot gas injector that injects one or more gases into a reaction chamber of a deposition system. The heating gas injectors include an air inlet, a heating pipe for holding a liquid container of a liquid reagent, and an exhaust port. A path extends from the air inlet' through the heating conduit to an interior space of the liquid container and then extends from the interior of the liquid container to the exhaust port. The heating conduit has a length that can be greater than the shortest distance between the inlet and the liquid container. In other embodiments, the invention comprises a deposition system comprising a reaction chamber and at least one thermal gas injector for injecting one or more gases into the reaction chamber. The heating gas injector includes an air inlet, a heating pipe for accommodating a liquid container of a liquid reagent, and an exhaust port. A path extends from the air inlet through the heating conduit to an interior space of the liquid container and then extends from the interior space of the liquid container to the exhaust port. The heating conduit has a length that can be greater than the shortest distance between the inlet and the liquid container. The descriptions set forth herein are not intended to be an actual description of any particular elements, devices, or systems, and are merely intended to describe an idealized description of the embodiments of the invention. A number of references are cited herein, and the complete disclosure of such references is hereby incorporated by reference in its entirety for all purposes. In addition, the cited references, regardless of how they are described herein, are not admitted as prior art to the subject matter of the present invention. The term "two or five semiconductor materials" as used herein refers to and includes at least one or more of the lanthanum elements (B ' A1, Ga, In, and Ti) and one or more VA group elements (N ' P ). Any semiconductor material of 'As, Sb and Bi). For example, three-five semiconductor materials include, but are not limited to, GaN, GaP, GaAs, InN, InP, InAs, AIN, A1P,
AlAs,InGaN,InGaP,InGaNP,等等。 近來已發展出改良的氣體注入器,以供將前驅物(33(:丨3自其外部來源 ✓主入反應至之方法及系統採用,此等方法及系統如前述之美國專利申請公 開案號US 2009/0223442 A1所揭露者。此等氣體注入器之範例揭露於,舉 例而言,美國專利申請案號61/157,112内,該專利申請係在2009年3月3 曰以Arena等人之名提出,該申請之完整揭露茲以此述及方式納入本文。 本文所用「氣體」一詞包含氣體(既無獨立形狀,亦無容積之流體)及蒸 g 5 201250053 汽(含有擴散液體或固態物懸浮其中之氣體),且「氣體」及「蒸汽」兩 詞在本文作同義詞使用。 本發明之實施例包括並使用新的氣體注入器,如下文進一步詳細說明 者。在一些實施例中,沉積系統100可以包括一 CVD反應室,亦可以包 括一 VPE反應室(例如,一 HVPE反應室)。作為非限定性質之範例, >儿積系統100可以包括一沉積系統,其如上文提及之美國專利申請公開案 號US 2009/0223442 A1所述,或如上文提及之美國專利申請案號 61/157,112所述。參閱圖1A&lB,以下為本發明之沉積系統1〇〇 一實施° 例之非限定性質範例,該沉積系統包含一反應室1〇2及一個或多個氣體注 入器(如下文進一步詳細說明)。 在以下之沉積系統100 (更明確而言,為沉積系統之反應室102) 說明中,「縱向」及「橫向」兩詞係指從圖1A及的觀點而言相對於 反應室102之方向’其中,縱向係指從圖1A觀點而言之垂直方向,以及 延伸至圖1B之平面之方向;橫向或側向則係指分別從圖ία及iB觀點而 言水平延伸之方向。橫向亦指延伸「橫越反應器」之方向。 沉積系統100包含反應室102,一用於支撐一個或多個工作件底材1〇6 之底材支標構造104 (例如,一承受器),欲達到在沉積系統1〇〇内,於 該些工作件底材上進行沉積或以其他方式提供材料。舉例而言,工作件底 材106可以包括晶粒或晶圓。沉積系統1〇〇更包括加熱組件ι〇8(圖iB), 其可以用於選擇性地加熱沉積系統1〇〇’以便在沉積製程期間將反應室1〇2 内的平均溫度控制在理想的升高溫度内。加熱組件可以包括,舉例而 言,電阻加熱組件或輻射加熱組件。 如圖1B所示,底材支撐構造104可以安裝在一主轴u〇上,該主軸 可以耦合(例如,直接結構輕合,磁力耦合,等等)至一諸如電動馬達之 驅動裝置112上’該驅動裝置係用於驅動主軸11〇之旋轉,進而驅動反應 室102内底材支撐構造1〇4之旋轉。 201250053 在一些實施例中’反應室102,底材支撐構造104,驅動主轴110,以及反 應室102内任何其他元件中的一個或多個,可以至少實質上包括一諸如陶 究氧化物(例如’二氧化矽(石英),氧化鋁,氧化锆,等等)之耐火陶 免材料,-碳化物(例如,碳化石夕,碳化棚,等等),或—氮化物(例如, 氮化矽,氮化硼,等等)。 沉積系統100更包含一用於將一種或多種氣體注入反應室1〇2,以及 將氣體從反應室102排出之氣體流量系統。參考圖1A,沉積系統1〇〇可 以包含二個氣體流入管道114A , U4B,U4C,其分別自氣體來源128A, 128B ’ 128C攜帶氣體。或者,可使用氣閥117A,U7B,U7C,以便分 別透過該些氣體流入管道114A,114B,U4C選擇性地控制氣體流量。 在一些實施例中,該些氣體來源Π8Α,128B,128C至少其中之一可 以包括一外部之GaCl3,InCl3,或AICI3來源,如美國專利申請公開案號 US 2009/0223442 A1 所述。而 GaCl3 ’ InCl3,及 A1C13 可以以二聚物之形 式存在,例如Gafl6,Infl6,及Aid。因此,該些氣體來源128A,128B, 128C至少其中之一可以包括一諸如G^d6,如^丨6,或alcu之二聚物。 作為一非限定性質之範例,該些氣體來源128A,128B,128c中的一個或 多個可以在每小時大約25公克以上,或甚至每小時· 5G公克以上的質 量流量(mass flow)下,提供帶有一三族前驅物成分之GaCl3蒸汽。此外, 在一些實施例中,該些氣體來源128A,128B,128C中的一個或多個可能 有能力維持此一流量達至少500次沉積製程,;!,〇〇()次沉積製程,2,〇〇〇次 沉積製程,或甚至3,000次沉積製程。 ’ 在實施例中,當該些氣體來源128A,128B,128C中的一個或多個為 - GaCls來源,或其包含-GaCb來源時’該GaC13來源可以包含一貯存 器,貯存器内之液態GaCl3維持在-至少$ 12〇〇c之溫度(例如約⑽〇c) 下’該GaCl3來源亦可以包含提向液態GaCl3蒸發率$物理方法。此等物 理方法可以包括,例如,一用於攪拌液態GaC〗3之裝置,一用於噴灑液態 GaCls之裝置,一用於使載體氣體快速流過液態GaC13之裝置,一用於使 201250053 載體氣體起泡通過液態GaCb之装置,一以超音波方式散佈液態GaCl3之 俯衝(dive) ’例如一壓電裝置,以及諸如此類者。作為一非限定性質之 範例,可在液態GaCb維持在一至少為12〇。(:之溫度下時,使一載體氣體, 例如He,N2,H2或Ar,起泡通過該液態GaCb,如此一來,該來源氣體 便可以包含一種或多種載體氣體。 在本發明一些實施例中,GaCb蒸汽進入該些氣體注入器15〇A, 150B ’ 150C中的一個或多個之通量(flux)可予以控制。例如,在使一載 體氣體起泡通過液態GaCb之實施例中,來自該些氣體來源128A,128B, 128C之GaCb通量,取決於一個或多個因素,包括,舉例而言,〇3(::13的 溫度,GaCls上方的壓力,以及起泡通過GaC13之載體氣體的流量。雖然 GaCb之質量通量(mass flux)原則上可受前述任何參數所控制但在一 些實施例中,可藉由使用一質量流量控制器變化載體氣體之流量,從而控 制GaCl3之質量通量。 在一些實施例中’該些氣體來源128A,128B ’ 128C中的一個或多個 可以有能力容納約25公斤以上,或約35公斤以上,或甚至約5〇公斤以 上的GaCb。例如,GaCb來源可以有能力容納介於大約5〇公斤至励公 斤之間的GaCb (例如,介於大約60及70公斤之間)。此外,GaCl3的多 個來源可用一分歧管連結起來,使該些氣體來源128A,128B,l28c形成 單-來源,可從-驢來雜換至另-績來源,而無計嶋作及/或沉 積系統100之使用。在沉積系統1〇〇維持運轉的情況下,用磬的氣體來源 可予以移除,並以新的、裝滿的氣體來源替換之。 在一些實施例中,該些氣體流入管道U4A,U4B,U4C的溫度可以 控制在介於該些氣體來源丨28A,職,128c的溫度與該些氣體^入器 150A ’ 150B ’ 150C的溫度之間。該些氣體流入管道114A,U4B,mc 之溫度’以及相關之質量流量感測器’控制器,及諸如此類的溫度,可以 從該些氣體來源128A’ 128B’ 128C各自出口處之第一溫度(例如約12〇〇c 以上),逐漸增加至該些氣體注入器150A,15〇B,15〇c處之第二溫度(例 2〇125〇〇53 如約160°C以下),以避免氣體(例如GaCb蒸汽)在該些氣體流入管道 114A,114B,114C内發生凝結及其他諸如此類的情況。或者,介於各個 氣體來源128A ’ 128B ’ 128C與各個氣體注入器150A,150B,15〇c之間 的氣體流入管道114A,114B,114C的長度,可為大約3英呎或更短,亦 可為大約2英呎或更短,或甚至為大約1英呎或更短。來源氣體的壓力可 使用一個或多個壓力控制系統予以控制。 每一氣體流入管道114A ’ 114B ’ 114C分別延伸至一各自的氣體注入 器150A,150B,150C,其各種不同的實施例將於下文中詳細揭露。 在額外的實施例中’沉積系統100可以包含少於三個(例如,一或二 個)的氣體流入管道及各自的氣體注入器,或者,沉積系統1〇〇可以包含 超過三個(例如,四個,五個,等等)的氣體流入管道及各自的氣體注入 器。 在圖1A及1B的實施例中,該些氣體注入器15〇A,15〇B,15〇c完 全位於反應室102外面。但在其他實施例中,該些氣體注入器15〇a,15〇b, 150C可以完全配置於反應室1〇2裡面,或該些氣體注入器i5〇A,15〇B, 150C的至少一部分可以局部延伸通過反應室ι〇2。 沉積系統1〇〇可以更包含三個氣體端口 116A,116B,116C,提供 反應室102外部及内部間的流體連通。每一氣體端口 116A,U6B,U6C 可以穿過反應室102的一個或多個壁面,頂板,或底板,在介於一各自 的氣體注入器150A,150B,150C與反應室102内一各自的氣體分散管 道118A,118B,118C之間提供流體連通。 反應室102内的該些氣體分散管道118A,U8B,118C可以用於將氣 體攜至該封閉體内的理想位置,且可以在沿著該些氣體分散管道U8A, 118B,118C的選定位置處包含開口 12〇。開口 12〇的所在位置及組構, 可以讓氣體朝選定方向注入反應室102内部,該選定方向係相對於底材支 撐構造104上承載之工作件底材1〇6。 201250053 如圖1A及1B所示,該些氣體分散管道118A,118C可以彼此相交, 如此一來,兩管道内的氣體便可以在穿過開口 120排出前混合在一起。因 此,該些氣體分散管道118A,118C所攜帶的氣體,諸如前驅氣體及载體 氣體,可以沿縱向流過反應室102 (從圖1A觀點而言之垂直方向),並 縱向在反應室102内從開口 120處朝著往工作件底材1〇6延伸之方向注 出,其注出方向至少實質上平行於工作件底材106之曝露主要上表面。而 氣體分散管道118B所攜帶的氣體’諸如前驅氣體及載體氣體,亦可以沿 縱向流過反應室102 ’並縱向通過反應室1〇2 ’從氣體分散管道118B之開 口 120處朝著往工作件底材106延伸之方向注出,其注出方向至少實質上 平行於工作件底材106之曝露主要上表面。 , 可使用管道支撐治具,將該些氣體分散管道118A,118B,118C支揮 並固持於反應室102的適當位置。 此處該些氣體分散管道118A,118B,118C之具體配置及組構,僅為 眾多可用於本發明實施例之配置及組構之一,且本發明之沉積系統1〇〇之 額外實施例可以在反應室102内具有不同的氣體分散管道組構及配置。 該些氣體分散管道118A,118B ’ 118C可予以主動加熱,被動加熱, 或被動與主動加熱並行。舉例而言,產熱組件(未顯示)可以定置在鄰近 該些氣體分散管道118A,118B,118C的至少一部分之處。在一些實施例 中,該些氣體分散管道118A ’ 118B,118C係由加熱組件1〇8予以加熱。 或者’被動傳熱構造(例如,包含表現類似一黑體之材料之構造)可以安 置在鄰近或接近反應室1〇2内該些氣體分散管道U8A,ii8B,118C的至 少一部分之處’以改進對該些氣體分散管道118A,118B,U8C之熱傳遞。 反應室102内可以提供被動傳熱構造(例如,包含表現類似一黑體之 材料之構造)’諸如美國專利申請公開案號us 2〇〇9/〇214785 A1所揭露 者,其係於2009年8月27日以Arena等人之名公開,該專利申請公開之 完整揭露茲以此述及方式納入本文。舉例而言,一傳熱板124 (在圖1A 及1B中以虛線表示)可以定置於反應室102内,該傳熱板124延伸跨越 201250053 反應室102 ’並位於底材支撐構造1〇4與由其所支撐的工作件底材1〇6上 方。該傳熱板124可藉由吸收來自加熱組件(例如加熱組件1〇8)的熱輻 射,協助熱化流至傳熱板124附件之製程氣體,並將所吸收的熱能再輻射 至製程氣體。 此種被動傳熱構造可以改進反應室102内部的熱傳遞,且可以改進反 應室内溫度的均勻性及一致性。該被動傳熱構造可以包括具備高發射率值 (接近完全發射)(黑體材料)之材料’該些材料亦耐得住在沉積系統1〇〇 内可能遭遇之高溫及腐蝕性環境。此等材料可以包括,例如,氮化鋁 (A1N),碳化矽(SiC),及碳化硼(&〇,其具有之發射率值分別 為 0.98,0.92,及 0.92 » 氣態副產物,載體氣體,及任何多餘的前驅氣體,可以經由一排氣口 126從反應室102排出。 如前所述’圖1A及1B中沉積系統1〇〇之該些氣體注入器15〇A, 150B,150C中的一個或多個可以為或包含下文進一步詳述之各種氣體注 入Is實施例之一。 在一些貫施例中,本發明一氣體注入器可以包含一如美國專利申請案 號61/157J12所述之熱化氣體注入器,但更包含用於容納一液態試劑之一 貯存器,該液態試劑係用來與一來源氣體(或一來源氣體之分解或反應產 物)反應。舉例而言,該貯存器可以用於容納—液態金屬或其他元素,例 如,液態鎵(Ga) ’液態銘(A1),或液態銦(In)。在本發明之其他實 施例中’該贿ϋ可用於容納—gj態試_便與—來源氣體(或—來源氣 體之分解或反應產物)反應。舉例而言,該貯存器可以用於容納一種或多 種材料之固體體積’例如’固態矽(Si)或固態鎂(Mg)。 圖2為本發明一氣體注入器2〇〇 一實施例之透視圖。如圖2所示該 氣體注入器2GG包含-進氣口 2G2,-排氣口 2G4,-熱化管道206,及-谷器210。該谷器21〇係用於容納一液態試劑。舉例而言,一液態金屬, 例如液態鎵,液態銦,液態铭,等等,可置於該容器21〇内。一來源氣體, 11 201250053 例如GaCl3,及一種或多種載體氣體(例如,H2),可供應至該進氣口 202。 該來源氣體可以從進氣口 202流入熱化管道206。熱化管道206可用於將 流過該熱化管道206之來源氣體予以加熱一段理想時間(亦即,一滯留時 間),該理想時間可以為以下三者之函數:熱化管道206内流動路徑的截 面積,來源氣體通過熱化管道206的流量,及熱化管道206的總長度。如 下文所進一步詳細討論,熱化管道206可加以塑形及組構,使其位於接近 一個或多個主動或被動加熱組件之處》 - 此外,熱化管道206可以包含一個或多個彎曲段或轉折,如此一來, 熱化管道206所佔據實體空間的長度,會顯著小於熱化管道206内流動路 徑的實際長度。換言之,熱化管道206的長度可以大於進氣口 202與液體 容器210間的最短距離。在一些實施例中,熱化管道206的長度可以至少 大約為進氣口 202與液體容器210間最短距離的兩倍,三倍,或甚至四倍。 舉例而言,熱化管道206可以具有一盤繞組構,如圖2所示,其包含多個 大致平行的筆直段,以端對端的方式,由角度延伸至18〇。的彎曲段連結在 —起。 熱化管道206可以包括一管狀物,該管狀物至少實質上包含一耐火材 料,例如石英。 在一些實施例中’來源氣體可以在熱化管道206内至少部分分解。例 如’在實施例中,當來源氣體包括GaCU及一包含H2的載體氣體時,該來 源氣體寸分解以形成氣態的GaCl及氣化氫(HC1)。 該些氣體從熱化管道206流進容器210。圖3為容器210之部分放大 剖視圖。如圖3所示,該容器210包含一底部壁面212,一頂部壁面214, 及至少一側壁面216。在圖2及圖3之實施例中,該貯存器具有__般圓 =形狀,因此,底部壁面212及頂部壁面214冑具有-圓形形狀,且至少 實質上為平面,而側壁面216至少實質上為圓柱形(例如,圓筒狀)。在 本發明的額外實施例中’該貯存器可以為其他幾何外形。底部壁面212, 12 201250053 頂部壁面214,及至少一側壁面216共同界定出一空心體,該空心體之内 部則界定出一貯存器以容納一液態試劑,例如液態鎵。 空心容器210内部空間的一部分可以裝入一液態試劑。舉例而言,容 器210可以裝入一液態試劑至圖3中虛線22〇所示之高度,如此一來,容 器210内的液態試劑上方便有一空位或空間222。從熱化管道2〇6流出的 氣體可以注入容器210内液態試劑上方的空間222。作為一非限定性質之 範例,從熱化管道206流出的氣體可以流過底部壁面212,然後流入一管 狀物224。在一些實施例中,該管狀物224可以包括熱化管道2〇6延伸進 容器210驗成部分。管狀物224可以延伸穿過置於液體容器内的液態試 劑’到達液態試劑上方的空間222。管狀物224可以包括一九十度的彎曲, 如此一來,官狀物224 —末端部分便會水平延伸於液態試劑上方。 如圖3所示’可以穿透管狀物224圓柱形侧壁,在面對液態試劑表面 的-側提供-開口’如此-來,流過管狀物224的氣體便會通過開口挪 而離開管狀物224,於離開開σ 226的氣體,可將之從該開口處往液態 试齊!表面的方向引導’以促進氣體的-種或多種成分與液態試綱的反 應例如在實施例中’當來源氣體包括一諸如載體氣體内所攜帶 ,Gaa;,且來源氣體已在熱化管道2()6内分解為包含氣態㈤及一諸如 氯化氣(HC1)之氯化物種時,液體容器内的液態試劑可以包括液態錄, 液態鎵可以與在熱化管道2〇6内產生的氯化氣體(例如,Η⑴反應,以 形成額外的氣態GaC卜在容器21〇内液態試劑上方^間222中的_, 可以經由-排氣端口 228流出該容器。舉例而言,該排氣端口 228可以位 於容器頂部壁面214處,f狀物224水平延伸部分的上方。排氣端口⑽ 可以通向-職管道23G,鋪氣管道的末端可叫定械體注入器· 谷IS 2川的各種: U至^貫貝上包括—耐火材料,例如石英。 ㈤可以為-形成GaN之理想前驅氣體。因此物 例如因⑽邮的熱分解(湖—包括Gac_2的來源氣體的種系 13 201250053 統中)而產生的氯化氫氣體(HCl),轉化成額外的GaCL·便可以避免多 餘乳化物對沉積的GaN材料的不利影響,因為氯化物種進入反應室 的量已減少。此等不利影響可能包含,舉例而言,氯原子與氮化鎵晶格結 合’及沉積的GaN薄膜發生破裂或脫層。將多餘的氯化氫氣體引 入反應室可能會使氯化氫對反應室内的GaN起到蝕刻劑的作用,從而降 低GaN的生長率或甚至妨礙GaN的生長。此外,讓多餘的氯化物種與液 態鎵反應以形成額外的GaC卜可使沉積系統1〇〇的效率因此而獲得改進。 圖4呈現一熱化氣體注入器3〇〇之另一實施例,該熱化氣體注入器包 含圖2之氣體注入器200與主動及被動加熱組件,該些加熱組件係用於加 熱氣體注入器200至少熱化管道206和容器210的部分。換言之,至少一 個加熱組件可以配置於接近熱化管道2〇6和液體容器210至少其中之一之 處,以加熱化氣體注入器200的熱化管道206和容器210至少其中之一。 如圖4所示’熱化氣體注入器3〇〇包含一圓柱形被動加熱組件3〇2, 其被配置在一大致為圓柱形的空間内,該空間被熱化氣體注入器2⑻的熱 化管道206所圍繞。 被動加熱組件302可至少實質上包括具有高發射率值(接近完全發射) (黑體材料)之材料,該些材料亦耐得住在沉積系統1〇〇内可能遭遇之高 溫及腐姓性環境。此等材料可以包括,例如,氮化(A1N),碳化石夕 (SiC) ’及碳化硼(b4C) ’其具有之發射率值分別為〇98,〇92,及〇92〇 被動加熱組件302可以為實心或空心。在一些實施例中,被動加熱組 件302可以為二〜,且一熱電偶可以定置於該被動加熱組件的内部空間以 監測並控制溫纟。在額外的實施例中,一圓柱形熱電偶可以定置在被動加 熱組件302四周,並介於該舞動加熱組件3〇2與周圍的熱化管道2〇6之間。 在額外的貫施例中,空心圓柱形的被動加熱組件可以配置在熱化管道 206的-個或多個筆直段的上方及四周。在此等實施例中―圓柱形熱電 偶可以疋置在空心圓柱形被動加熱組件與熱化管道2〇6被該空心圓柱形被 動加熱組件包圍的筆直段之間。 201250053 熱化氣體注入器300亦可以包含一主動加熱組件3〇4。該主動加熱組 件304 了以至少部分圍繞著氣體注入器2〇〇的熱化管道a%及容器21〇兩 者。在-些實施例中,主動加熱組件3G4可以為—般圓柱形,且可以完全 圍繞著熱化管道206及容器210的至少各一部分而延伸,如圖4所示。舉 例而言,主動加熱組件304可以包括以下至少其中之一:一電阻加熱組件, 一感應加熱組件,及一輻射加熱組件。如圖4所示,一絕緣套3〇6可以至 少貫貝上圍繞著氣體注入器200,被動加熱組件302,及主動加熱組件 304,以改進加熱製程的效率,藉由該加熱製程,主動加熱組件及被 動加熱組件302會將熱化管道206 (或至少其中所含的氣體)及容器21〇 (或至少其中所含的液態試劑及氣體)予以加熱。, 熱化氣體注·入器300的主動及被動加熱組件可以有能力將熱化管道 206’容器210’及來源氣體加熱至介於大約5〇〇〇c& 1〇〇〇〇c之間的溫度。 圖5呈現本發明一氣體注入器4〇〇之另一實施例。圖5的氣體注入器 400類似於圖2的氣體注入器200,且包含一進氣口 2〇2,一排氣口 2〇4, 一熱化管道406,及一容器21〇。該容器21〇可以如有關圖2及3所述者。 該熱化官道406實質上類似於圖2的熱化管道2〇6,但熱化管道4〇6係沿 著一螺旋路控(亦即’具有一螺旋組構)延伸,而非如圖2的熱化管道2〇6 具有一盤繞組構。 如圖5所不’本發明之實施例亦可以包含一外殼450。該外殼450可 以用於圍起並保護至少氣體注入器4〇〇中至少熱化管道4〇6及容器21〇的 部分。該外殼450亦可作為一額外的氣體傳導管道,其可以用於,舉例而 5 ’運送沖洗氣體(例如,惰性氣體)。舉例而言,外殼45〇可以包含一 進氣端口 452及一排氣端口 454,如此一來,一氣體便可流過進氣端口 452 與排氣端口 454之間的外殼45〇。在本發明的額外實施例中,可將一外殼 450提供 2的氣體注人$ ,圖4的氣體注人$ ,或下文所述之 任何其他氣體注入器。 3 15 201250053 繼續參考圖5,在操作中,一諸如GaCls的來源氣體及一諸如H2的載 體氣體,以一通常為每分鐘數百標準立方公分(sccm)的流入流量,經由 進氣口 202進入氣體注入器400。不過,該流量可以達到每分鐘2〇或 標準公升(SLM)或更高。氣態前驅物,例如Gaa,則在介於大約5〇〇〇c 及1,000。(2之間的溫度下’經由排氣口 204離開氣體注入器4〇〇。一.隋性 沖洗氣體’例如N2或一 &及Hz的混合物’以大約為一到五SLM的流入 流量’經由進氣端口 452進入外殼450,並至少在外殼45〇的内部維持— 超壓力(overpressure)。該惰性沖洗氣體經由排氣端口 454離開外殼45〇。 該惰性氣體通過外殼450時亦可予以加熱。 圖6呈現本發明一熱化氣體注入器500之另一實施例,其包含一氣 體注入器,該氣體注入器實質上類似於圖5之氣體注入器4〇〇,但沒有 外殼450。因此’熱化氣體注入器500包含一熱化管道406及一容器21〇, 如本文先前所述者。熱化氣體注入器500更包含一進氣口 202及一排氣 口 204。熱化氣體,主入器500更包含主動及被動加熱組件,如先前有關 圖4之氣體注入器300所述者。尤其,圖6的氣體注入器5〇〇包含先前 所述之圓柱形被動加熱組件302,其位在一大致為圓柱形的空間内,該 空間被氣體注入500的螺旋狀熱化管道406所圍繞。熱化氣體注入号 500亦可以包含一主動加熱組件304及一絕緣套3〇6,如先前有關圖4 所述者。如先前所討論’熱化氣體注入器500的主動及被動加熱組件可 以有能力將其熱化管道406及容器210加熱至介於大約5〇〇〇c及i,〇〇〇〇c 之間的溫度。 再參考圖1A,在本發明的一些實施例中,該些氣體注入器15〇a, 150B,150C中的兩個或多個可以用於產生一普通的三族金屬前驅物,以 便為進入反應室102之該特定三族金屬前驅物提供一增加之流量。每—氣 體注入器150A ’ 150B,150C僅能在一最大流量下,供應一三族金屬前驅 物及一種或多種載體氣體,該最大流量可以為以下兩者之函數:該氣體注 入器的尺寸,及該些氣體來源128A,128B,128C的容量。因此,對於需 201250053 要相對較大之三族金屬前驅物流入流量的大型反應室102而言,用於供應 單一種三族金屬前驅物的氣體注入器數目可予以選定,以便使該些氣體注 入器個別流量的總和,可以為三族金屬前驅物進入反應室的理想總流入流 量。 , 在本發明的額外實施例中’該些氣體注入器15〇A,150B,150C中的 兩個或多個可以用於產生不同的三族金屬前驅物,該些前驅物可以用於沉 積三族氮化物複合材料,其包含兩種以上不同的三族元素,例如InGaN, AlGaN ’ InAlGaN,等等。作為非限定性質之範例,第一氣體注入器15〇A 可以用於供應GaCl (經由熱分解GaCb及H2,以及經由使此種GaCl3及 Hz熱分解產生之氯化物種與液態鎵反應,將GaCl3及H2轉化為氣態的 GaCl),第三氣體注入器i50c可以用於供應Ιηα (經由熱分解111(:13及 A ’以及經由使此種inCb及N2熱分解產生之氣化物種與液態銦反應,將 I11CI3及N2轉化為氣態的lnci),第二氣體注入器15〇B則可以用於供應 氣態氨(NH3)。沉積系統1〇〇可以包含任何數目的理想氣體注入器,該 數目為提供每-前驅氣體之期望流量所需之氣體注入器數目,而該些前驅 氣體則為_贿雛之複合三五解導斷觸冑之氣體。 在本發明的其他額外實施例中’該些氣體注入器15〇A,15〇B,15〇c 至乂其中之-可以用於產生-摻雜劑前驅物(例如,氣化鐵(FeC1),氣 魏物種,或氣化鎮物種),其可以用於將一捧雜劑(例如,鐵,石夕,鎮 的原子或離子)攜進反應室1()2。在沉積製程期間,該摻雜劑前驅物可以 刀解及/或與反應室102内另—底材反應,以便使該摻雜継沉積中的三五 ,半導體材繼合。在此等實細巾,帛紐人_徽驅_氣體注入 器内的摻雜劑前驅物可以不需進行熱分解。例如,該氣體注入器可以包含 -貯存器’其係用於容納—固態試劑以便與—來源氣體(或—來源氣體之 刀解或反應產物)反應。舉例而言,該貯存器可以用於容納一種或多種材 料之固體體積,例如,固態秒(si)或固態鎂(Mg)。 § 17 201250053 因此’圖7呈現一氣體注入器500之範例,該氣體注入器可以用於將 此等摻雜劑前驅物注入反應室1〇2。氣體注入器5〇〇包含一進氣口 202, 一排氣口 204 ’及一容器210,如先前有關圖2及3所述者。一大致筆直 的管道502可以從進氣口 202延伸至容器210 (取代圖2及3的熱化管道· 206)。谷器210可以用於容納一液態金屬試劑,例如,液態銘,液態銦, 液態鐵,等等。 氣體注入器500亦可以包含主動及/或被動加熱組件,例如先前有關圖 4之氣體庄入器300所述之主動加熱組件304及絕緣套306。該些主動及/ 或被動加熱組件可以用於將容器210 (或至少該容器内所含的液體)加熱 至足以使該容器210内的金屬維持液體狀態之溫度。 一來源氣體,例如氣態的氫氯酸(HC1),可以從一氣體來源128A, 128B ’ 128C供應至進氣口 202。該來源氣體可以從進氣口 202經過管道 502流進容器210内,然後與容器内的液態金屬試劑反應,以形成一前驅 氣體(例如,InC卜A1C1,FeCl,等等)^該前驅氣體可以經由排氣口 2〇4 流出容器210。 相對於沉積系統100其他氣體注入器的流量,氣體經過氣體注入器 500的流量可予以選擇性的控制,以便控制所得三五族半導體材料中來自 摻雜劑前驅物所沉積之元素的濃度。 如先前所述,圖1A及1B中沉積系統10〇的該些氣體注入器15〇A, 150B ’ 150C可以完全位於反應室1〇2外面(如圖!八及1B所示),完全 位於反應室102裡面,或該些氣體注入器15〇A,15〇B,15〇c的至少一部 分可以局部延伸通過反應室102。圖8呈現本發明一沉積系統6〇〇 一額外 實例,除了至少氣體注入器15〇A,150B,150C:位於反應室1〇2裡面以 外,該沉積系統至少實質上類似於圖1八及1B的沉積系統1〇〇。 如上所述,本發明之熱化氣體注入器之實施例可以用於將氣態的三族 金屬前驅物注入一反應室内,以便處理三族氮化物化合物。舉例而言,在 一些實靶例中,本發明之熱化氣體注入器可以藉由熱分解GaCl3及Η〗,以 18 201250053 及藉由使此種叫及Hz熱分解產生之氯化物種(例如,氯化氫(hci)) 與液態鎵反應,GaCl3及h2概桃_⑽,雜將㈤注入一 反應室,以便在一 HVPE製程中沉積GaN。 本發明額外之非蚊之示範性實施例敘述如下。 實施例1 : -種在-底材上沉積半導體材料的方法,該方法包括:將 -來源氣則人-熱化氣體注人器;在該熱化氣體注人肋‘熱分解該來源 氣體,以形成-前驅氣體及-副產物;在該熱化氣體注入器内使該副產物 與-液態試劑反應’以形成額外的前驅氣體;將該前驅氣體及魏外前驅 氣體從熱化氣體注入器注入一反應室内的空間;以及在該反應室内使用該 前驅氣體,將材料沉積在底材上。 實施例2 :如實施例1之方法,其中將來源氣體引入熱化氣體注入器 包括將一載體氣體與GaCl3,I11CI3,及AICI3至少其中之一引入該熱化氣 體注入器。 實施例3 :如實施例2之方法’其中將一載體氣體與GaCl3,, 及AICI3至少其中之一引入熱化氣體注入器包括將Η?及GaCl3引入熱化氣 體注入器。 實施例4 :如實施例2之方法,其中在熱化氣體注入器内熱分解來源 氣體,以形成前驅氣體及副產物包括將GaCU,InCU,及A1C13至少其中 之一分解,以形成GaCl,InCl ’及A1C1至少其中之一與一氯化物種。 實施例5 :如實施例4之方法,其中將GaCL,InCl3,及A1C13至少其 中之一分解,以形成GaC1 ’ InC1,及AK:1至少其中之一與一氯化物種包 括分解GaCl3以形成GaC1及HC1。 實施例6 :如實施例5之方法’其中在熱化氣體注入器内使副產物與 液態試劑反應,以形成額外的前驅氣體包括使HC1與液態鎵反應,以形成 額外的GaCl。 實施例7 :如實施例1至6中任何一項之方法,其更包括:將另一來 源氣體,其包含把〇3及八1^13至少其中之一,引入另一熱化氣體注入器; 19 201250053 在該另一熱化氣體注入器内熱分解該另一來源氣體,以形成一前驅氣體, 其包含InCl及A1C1至少其中之一與一包含氯之副產物;在該另一熱化氣 體注入器内使該包含氣之副產物與一包含液態銦及液態鋁其中之一之液 態試劑反應,以形成額外的前驅氣體,其包含額外InCl及額外A1C1至少 其中之一;以及將來自該另一熱化氣體注入器之前驅氣體及額外前驅氣體 注入該反應室内的空間。 實施例8 :如實施例7之方法,其中在反應室内使用前驅氣體將材料 沉積在底材上包括沉積InGaN及AlGaN至少其中之一》 實施例9 :如實施例4至6中任何一項之方法,其中在熱化氣體注入 器内使副產物與液態試劑反應以形成額外的前驅氣體包括使氯化物種與 液態鎵’液態銦,及液態鋁至少其中之一反應,以形成額外的Gaa,額 外的InCl,及額外的A1C1至少其中之一。 實施例10 :如實施例1至9中任何一項之方法,其更包括選擇液態試 劑,以包含一液態金屬。 實施例11 :如實施例10之方法,其更包括選擇液態試劑,以包含液 態鎵,液態銦,及液態鋁至少其中之一。 實施例12 :如實施例1至11中任何一項之方法,其更包括:將另一 來源氣體引入另一氣體注入器;在該另一氣體注入器内使該另一來源氣體 與另一液態試劑反應,以形成一摻雜質前驅氣體;將來自該另一氣體注入 器之摻雜質前驅氣體注入該反應室内的空間;以及在該反應室内使用該播 雜質前驅氣體,以對沉積在底材上的材料進行摻雜。 實施例13 :如實施例12之方法,其中將另一來源氣體引入另一氣體 注入器包括將氣態的HC1引入該另一氣體注入器。 實施例14 :如實施例12或13之方法,其更包括選擇另一液態試劑以 包含液態鐵,液態銦,及液態鋁至少其中之一。 實施例15 : —熱化氣體注入器,其係用於將一種或多種氣體注入一沉 積系統之反應至’該熱化氣體注入盗包括:一進氣口;一熱化管道;用於 20 201250053 容納一液態試劑之一液體容 —,从及一途徑,其自 通過熱化管道至液體容器,空間,然後從液體容器之内部空間= 至 其帽化^ ^具有^,魏度大㈣氣容器間的最 實施例16 :如實施例15之執仆名触、| 液態金屬。 ,、,、化偷入器,其更包括液體容器内之 實施例17 :如實施例15之熱化氣體注入器,其更包括液體容器内之 液態鎵,液態銦,及液態鋁至少其中之—。 實施例18 :如實施例丄5至17中任何一項之熱化氣體注入器,其更包 括至少-加齡件’該加熱組件配置在接近熱化管道及液體容器至少其中 之一之處。 實施例19 :如實施例18之熱化氣體注入器,其中該至少-加偏且件 包括-被動加熱組件,該被動加熱組件至少實f上包含氮她(施), 碳化石夕(SiC),及礙化删(ΒΚ)至少其中之一。 實施例20:如實施例18或19之熱化氣體注入器,其中該至少一加熱 組件包括一主動加熱組件。 實施例21 :如實施例2〇之熱化氣體注入器,其中該主動加熱組件包 括一電阻加熱组件,一感應加熱組件,及一輻射加熱組件至少其中之一。 貫;^例22.如實此例15至21中任何一項之熱化氣體注入器,其中熱 化管道之長度至少大約為進氣口與液體容器間最短距離的兩倍。 實施例23 :如實施例22之熱化氣體注入器,其中熱化管道之長度至 少大約為進氣口與液體容器間最短距離的四倍。 實施例24:如實施例15至23中任何一項之熱化氣體注入器,其中熱 化管道及液體容器至少其中之一實質上包含石英。 g 實施例25 : —沉積系統,其包括:一反應室;以及至少一熱化氣體注 入器,其係用於將一種或多種氣體注入該反應室,該熱化氣體注入器包 括:一進氣口;一熱化管道;用於容納一液態試劑之一液體容器;一排氣 21 201250053 口;以及-途徑,其自進氣口延伸’通過熱化管道至液體容器—内部空間, 然後該液體容器之内部空間延伸至排氣口;其中熱化管道具有一長度,該 長度大於進氣口與液體容器間的最短距離。 實施例26 :如實施例25之沉積系、统,其中該至少一熱化氣體注入器 被配置於反應室外面。 實施例27 :如實施例25之沉積系、統,其中該至少一熱化氣體注入器 至少有部分被配置於反應室裡面。 實施例28 :如實施例25至27中任何一項之沉積系統,其更包括:至 少一氣體來源;以及至少一氣體流入管道,其係用於將一來源氣體從該氣 體來源攜帶至該至少一熱化氣體注入器之進氣口。 實施例29 :如實施例28之沉積系統,其中該至少一氣體來源包括 GaCl3,InCl3,及A1C13至少其中之一之來源。 實施例30 :如實施例25至29中任何一項之沉積系統,其更包括該液 體容器内之液態金屬。 實施例31 :如實施例25至29中任何一項之沉積系統,其更包括該液 體容器内之液態鎵,液態銦,及液態鋁至少其中之一。 實施例32 :如實施例25至31中任何一項之沉積系統,其更包括至少 一加熱組件,該加熱組件被配置在接近熱化管道及液體容器至少其中之一 之處。 實施例33 :如實施例32之沉積系統’其中該至少一加熱組件包括一 被動加熱組件,該被動加熱組件至少實質上包含氮化鋁(A1N),碳化石夕 (SiC),友碳化硼(Bf)至少其中之一。 實施例34 :如實施例32或33之沉積系統,其中該至少一加熱組件包 括一主動加熱組件。 實施例35 :如實施例34之沉積系統,其中該主動加熱組件包括一電 阻加熱組件,一感應加熱組件,及一辕射加熱組件至少其中之一。 22 201250053 實施例36 :如貫施例25至35中任何一項之沉積系統,其令熱化管道 之長度至少大約為進氣口與液體容器間最短距離的兩倍。 實施例37 ··如實施例25至36中任何一項之沉積系統,其中該至少一 熱化氣體注入器包括兩個或多個熱化氣體注入器。 實施例38 .如實施例37之沉齡統,其巾兩個或翔熱化氣體 注入器包括:一第一熱化氣體注入器,液態鎵置於該第一熱化氣體注入器 之液體容器内;以及一第二熱化氣體注入器,液態銦及液態鋁至少其中之 一置於該第二熱化氣體注入器之液體容器内。 實施例39 :如實施例38之沉積系統,其更包括:一第一氣體來源, 其係用於將GaCb供應至該第一熱化氣體注入器之進氣口;以及一第二氣 體來源’其係用於將InCls及AICI3至少其中之一供應至該第二熱化氣體注 入器之進氣口。 實施例40 :如實施例25至39中任何一項之沉積系統,其更包括:另 -氣體注入器,其係用於將-摻雜質前驅氣體注入反應室,該另一氣體注 入器包括:-進氣σ管道;-用於容納—液態摻雜試劑之液體容器; 一排氣口;以及一途徑,其自進氣口延伸,通過管道至液體容器一内部空 間’然後從液體容器之内部空間延伸至排氣口;以及一氣體來源,其係用 於將氣態的HC1供應至該另一氣體注入器之進氣口。 實施例41 :如實施例40之沉積系統,其更包括該液體容器内—液態 摻雜劑。 ^ 實施例42:如實施例41之沉積系統,其中該液態摻雜劑包括液態鐵。 實施例43 :如實施例25至42中任何一項之沉積系統,其中熱化管道 及液體容器至少其中之一實質上包括石英。 … 上述之本發明實施例並不會限制本發明之範圍,因為這些實施例僅為 本發明實施狀範例,本發縣摘附之糊帽賴及其雖同等效力 所界定。任何相當之實施例均屬於本發明範圍内。對熟悉習知技術者而 言’本文所示與所述之修改例,以及本發日月之各種修改例,例如所述組件^ 201250053 的替代性有用組合,將變得顯而易見 請範圍内。 此等修改例亦均屬於所附之專利申 【圖式簡單說明】 藉由參考町本發明减性實施例之勒綱,可更充分了解本發 明,該些實施例圖解於所附圖式内,其中: x 圖认為-橫剖面圖,其綱要性地呈現本發明一沉積系統之示範性實施 例’該沉積系統包括一反應室及至少一如本文所述之氣體注入器; 圖1B為沿著圖ία中的剖面線1Β·1Β呈現該圖所示反應室之橫剖面示竟 圖; " 圖2綱要性地呈現本發明—紐注人器之示範性實施例…個或多個該氣 體注入器可關於本發魏齡統之實施例巾,例如圖式i之沉積系統; 圖3為圖2之氣體注入器一部分之放大剖視圖; 圖4綱要性地呈現本發明-氣體注入器之另一實施例,其與圖2所示者相 似’但更包含主動及被動加熱組件; 圖5綱要性地呈現本發明一氣體注入器之另一示範性實施例,—個或多個 該氣體/主入器可以用於本發明沉積系統之實施例中,例如圖式1之沉積系 統; 圖6綱要性地呈現本發明一氣體注入器之另一實;^例,其與圖2所示者相 似,但更包含主動及被動加熱組件; 圖7綱要性地呈現本發明一氣體注入器之另一實施例,一個或多個該氣體 注入器可以用於將前驅氡體注入本發明之沉積系統實施例内的反應室 中,例如圖式1之沉積系統;及 圖8綱要性地呈現本發明一沉積系統之另一示範性實施例。 24 201250053 【主要元件符號說明】 150A、150B、150C、200 100 、 600 102 104 106 108 110 112 114A、114B、114C 116A ' 116B > 116C 117A、117B、117C 118A、118B、118C 120 124 126、204 128A、128B、128C 202 206、406 212 214 216 210 220 222 224 226 230 300 > 500 沉積系統 反應室 底材支撐構造 工作件底材 加熱組件 驅動主軸 驅動裝置 氣體流入管道 氣體端口 氣閥 氣體分散管道 開口 傳熱板 排氣口 氣體來源 400氣體注入器 進氣口 熱化管道 底部壁面 頂部壁面 側壁面 容器 虛線 空間 管狀物 開口 排氣管道 熱化氣體注入器 25 201250053 302 被動加熱組件 304 主動加熱組件 306 絕緣套 450 外殼 452 進氣端口 454 排氣端口 502 管道 26AlAs, InGaN, InGaP, InGaNP, and the like. Recently, improved gas injectors have been developed for use in methods and systems for the introduction of a precursor (33) from its external source ✓ primary reaction, such as the aforementioned US Patent Application Publication No. US 2009/0223442 A1. Examples of such gas injectors are disclosed, for example, in U.S. Patent Application Serial No. 61/157,112, filed on March 3, 2009, in the name of Arena et al. It is proposed that the complete disclosure of this application is incorporated herein by reference. The term "gas" as used herein includes a gas (having neither a separate shape nor a volumetric fluid) and steaming g 5 201250053 vapor (containing a diffusing liquid or solid matter) The gas is suspended therein, and the terms "gas" and "steam" are used synonymously herein. Embodiments of the invention include and use new gas injectors, as described in further detail below. In some embodiments, deposition System 100 can include a CVD reaction chamber, and can also include a VPE reaction chamber (e.g., an HVPE reaction chamber). As an example of a non-limiting nature, > A deposition system, as described in the above-referenced U.S. Patent Application Publication No. US 2009/0223442 A1, or as described in the above-referenced U.S. Patent Application Serial No. 61/157,112. See FIG. 1A & For a non-limiting example of a deposition system of the present invention, the deposition system includes a reaction chamber 1〇2 and one or more gas injectors (as described in further detail below). 100 (more specifically, the reaction chamber 102 of the deposition system) In the description, the terms "longitudinal" and "lateral" refer to the direction relative to the reaction chamber 102 from the viewpoint of FIG. 1A and the The vertical direction from the viewpoint of Fig. 1A, and the direction extending to the plane of Fig. 1B; the lateral or lateral direction refers to the direction extending horizontally from the viewpoints of Fig. 1 and iB, respectively. The lateral direction also refers to the extension "crossing reactor" The direction of the deposition system 100 includes a reaction chamber 102, a substrate support structure 104 (e.g., a susceptor) for supporting one or more workpiece substrates 1〇6, to be achieved in the deposition system. Inside, the work pieces Depositing or otherwise providing material on the substrate. For example, the workpiece substrate 106 can include a die or wafer. The deposition system 1 further includes a heating assembly ι 8 (Fig. iB), which can be used The deposition system is selectively heated to control the average temperature within the reaction chamber 1〇2 within a desired elevated temperature during the deposition process. The heating assembly can include, for example, a resistance heating assembly or a radiant heating assembly. As shown in FIG. 1B, the substrate support structure 104 can be mounted on a spindle u that can be coupled (eg, directly structurally coupled, magnetically coupled, etc.) to a drive unit 112 such as an electric motor. The drive unit is used to drive the rotation of the spindle 11 to drive the rotation of the substrate support structure 1〇4 in the reaction chamber 102. 201250053 In some embodiments, 'reaction chamber 102, substrate support structure 104, drive spindle 110, and any other element within reaction chamber 102, may at least substantially comprise an oxide such as a refractory ceramic material of cerium oxide (quartz), alumina, zirconia, etc., - carbide (for example, carbon carbide, carbonization shed, etc.), or - nitride (for example, tantalum nitride, Boron nitride, etc.). The deposition system 100 further includes a gas flow system for injecting one or more gases into the reaction chamber 1〇2 and discharging the gas from the reaction chamber 102. Referring to Figure 1A, a deposition system 1A can include two gas inflow conduits 114A, U4B, U4C that carry gas from a gas source 128A, 128B' 128C, respectively. Alternatively, gas valves 117A, U7B, U7C may be used to selectively control gas flow through the gas inflow conduits 114A, 114B, respectively. In some embodiments, at least one of the gas sources Α8Α, 128B, 128C can comprise an external GaCl3, InCl3, or AICI3 source, as described in U.S. Patent Application Publication No. US 2009/0223442 A1. GaCl3' InCl3, and A1C13 may exist in the form of a dimer such as Gafl6, Infl6, and Aid. Thus, at least one of the gas sources 128A, 128B, 128C can comprise a dimer such as G^d6, such as 丨6, or alcu. As an example of a non-limiting nature, one or more of the gas sources 128A, 128B, 128c may be provided at a mass flow of more than about 25 grams per hour, or even more than 5 G grams per hour. GaCl3 vapor with one or three precursor components. Moreover, in some embodiments, one or more of the gas sources 128A, 128B, 128C may be capable of maintaining the flow rate for at least 500 deposition processes, ;!, 〇〇() deposition process, 2, The deposition process, or even 3,000 deposition processes. In an embodiment, when one or more of the gas sources 128A, 128B, 128C are of the source -GaCls, or when the source of the -GaCb is included, the source of the GaC13 may comprise a reservoir, liquid GaCl3 in the reservoir Maintained at a temperature of at least $12 〇〇c (eg, about (10) 〇 c) 'The source of GaCl3 may also include a physical method of lifting the liquid GaCl3 evaporation rate. Such physical methods may include, for example, a device for agitating a liquid GaC, a device for spraying liquid GaCls, a device for rapidly flowing a carrier gas through a liquid GaC13, and a device for making a 201250053 carrier gas. A device that foams through a liquid GaCb, which disperses a dive of liquid GaCl3 in an ultrasonic manner, such as a piezoelectric device, and the like. As an example of a non-limiting nature, the liquid GaCb can be maintained at at least 12 Torr. (At the temperature, a carrier gas, such as He, N2, H2 or Ar, is bubbled through the liquid GaCb, such that the source gas may comprise one or more carrier gases. In some embodiments of the invention The flux of GaCb vapor into one or more of the gas injectors 15A, 150B' 150C can be controlled. For example, in an embodiment in which a carrier gas is bubbled through the liquid GaCb, The GaCb flux from the gas sources 128A, 128B, 128C depends on one or more factors including, for example, the temperature of 〇3 (::13, the pressure above the GaCls, and the carrier that foams through the GaC13) The flow rate of gas. Although the mass flux of GaCb can in principle be controlled by any of the aforementioned parameters, in some embodiments, the mass of the carrier gas can be varied by using a mass flow controller to control the mass of the GaCl3. Flux. In some embodiments, one or more of the gas sources 128A, 128B '128C may have a capacity to accommodate more than about 25 kg, or about 35 kg or more, or even about 5 kg. GaCb. For example, a GaCb source can have the ability to accommodate GaCb between about 5 kilograms to kilograms (eg, between about 60 and 70 kilograms). In addition, multiple sources of GaCl3 can be linked by a manifold. As a result, the gas sources 128A, 128B, and l28c form a single-source, which can be exchanged from - to other sources, without the use of the system and/or the deposition system 100. In the deposition system In the case of operation, the source of gas from helium can be removed and replaced with a new, filled gas source. In some embodiments, the temperature of the gas inflow lines U4A, U4B, U4C can be controlled at Between the temperatures of the gas sources 丨28A, the position, 128c and the temperatures of the gas generators 150A '150B '150C. The temperatures of the gases flowing into the conduits 114A, U4B, mc' and the associated mass flow sense The temperature of the detector 'controller, and the like, may be gradually increased from the first temperature at the respective outlets of the gas sources 128A' 128B' 128C (eg, above about 12 〇〇c) to the gas injectors 150A, 15 〇B,15〇c The second temperature (Example 2 〇 125 〇〇 53 such as below about 160 ° C) prevents condensation of gases (such as GaCb vapor) in the gas inflow conduits 114A, 114B, 114C and the like. The length of the gas inflow conduits 114A, 114B, 114C between the respective gas sources 128A '128B' 128C and the respective gas injectors 150A, 150B, 15〇c may be about 3 inches or less, or may be approximately 2 inches or less, or even about 1 inch or less. The pressure of the source gas can be controlled using one or more pressure control systems. Each gas inflow conduit 114A ' 114B ' 114C extends to a respective gas injector 150A, 150B, 150C, respectively, and various embodiments thereof will be disclosed in detail below. In additional embodiments, the deposition system 100 can include less than three (eg, one or two) gas inflow conduits and respective gas injectors, or the deposition system 1 can contain more than three (eg, Four, five, etc.) of the gas flow into the pipe and the respective gas injectors. In the embodiment of Figures 1A and 1B, the gas injectors 15A, 15B, 15〇c are located entirely outside of the reaction chamber 102. However, in other embodiments, the gas injectors 15A, 15〇b, 150C may be completely disposed in the reaction chamber 1〇2, or at least a part of the gas injectors i5〇A, 15〇B, 150C. It can be partially extended through the reaction chamber ι〇2. The deposition system 1 can further include three gas ports 116A, 116B, 116C that provide fluid communication between the exterior and interior of the reaction chamber 102. Each of the gas ports 116A, U6B, U6C may pass through one or more walls, a top plate, or a bottom plate of the reaction chamber 102, within a respective gas injector 150A, 150B, 150C and a respective gas within the reaction chamber 102. Fluid communication is provided between the dispersion conduits 118A, 118B, 118C. The gas dispersion conduits 118A, U8B, 118C in the reaction chamber 102 can be used to carry gas to a desired location within the enclosure and can be included at selected locations along the gas dispersion conduits U8A, 118B, 118C. Opening 12〇. The location and configuration of the opening 12〇 allows gas to be injected into the interior of the reaction chamber 102 in a selected direction relative to the workpiece substrate 1〇6 carried on the substrate support structure 104. 201250053 As shown in Figures 1A and 1B, the gas dispersing conduits 118A, 118C can intersect each other such that gases within the two conduits can be mixed together prior to exiting through the opening 120. Therefore, the gases carried by the gas dispersion pipes 118A, 118C, such as the precursor gas and the carrier gas, may flow longitudinally through the reaction chamber 102 (vertical direction from the perspective of FIG. 1A) and longitudinally within the reaction chamber 102. From the opening 120, it is directed toward the direction in which the workpiece substrate 1〇6 extends, the direction of which is at least substantially parallel to the exposed main upper surface of the workpiece substrate 106. The gas carried by the gas dispersion pipe 118B, such as the precursor gas and the carrier gas, may also flow through the reaction chamber 102' in the longitudinal direction and longitudinally through the reaction chamber 1〇2' from the opening 120 of the gas dispersion pipe 118B toward the working piece. The substrate 106 is directionally extended with a direction of at least substantially parallel to the exposed major upper surface of the workpiece substrate 106. The conduits can be supported by a pipe, and the gas dispersion pipes 118A, 118B, 118C are supported and held in place in the reaction chamber 102. The specific configuration and configuration of the gas dispersion pipes 118A, 118B, 118C herein are only one of many configurations and configurations that can be used in the embodiments of the present invention, and the additional embodiment of the deposition system of the present invention can There are different gas dispersion conduit configurations and configurations within the reaction chamber 102. The gas dispersion conduits 118A, 118B' 118C can be actively heated, passively heated, or passively coupled with active heating. For example, a heat generating component (not shown) can be positioned adjacent at least a portion of the gas dispersing conduits 118A, 118B, 118C. In some embodiments, the gas dispersing conduits 118A' 118B, 118C are heated by the heating assembly 1〇8. Or a 'passive heat transfer configuration (eg, a configuration comprising a material that behaves like a black body) may be placed adjacent or near at least a portion of the gas dispersion conduits U8A, ii8B, 118C within the reaction chamber 1' to improve the pair The heat transfer of the gas dispersion pipes 118A, 118B, U8C. A passive heat transfer structure (e.g., a configuration comprising a material that behaves like a black body) can be provided in the reaction chamber 102, such as disclosed in U.S. Patent Application Publication No. 2 〇〇9/〇 214 785 A1, which is incorporated herein by reference. The disclosure of the entire disclosure of this patent application is hereby incorporated by reference in its entirety in its entirety. For example, a heat transfer plate 124 (shown in phantom in FIGS. 1A and 1B) can be positioned within the reaction chamber 102 that extends across the 201250053 reaction chamber 102' and is located in the substrate support structure 1〇4 Above the work piece substrate 1〇6 supported by it. The heat transfer plate 124 assists in the heating of the process gas flowing to the attachment of the heat transfer plate 124 by absorbing heat radiation from the heating assembly (e.g., the heating assembly 110) and re-radiating the absorbed heat energy to the process gas. Such a passive heat transfer configuration can improve heat transfer within the reaction chamber 102 and can improve the uniformity and consistency of the temperature within the reaction chamber. The passive heat transfer construction can include materials having high emissivity values (near full emission) (black body material) which are also resistant to the high temperatures and corrosive environments that may be encountered within the deposition system. Such materials may include, for example, aluminum nitride (A1N), tantalum carbide (SiC), and boron carbide (&〇, which have emissivity values of 0. 98,0. 92, and 0. 92 » Gaseous by-products, carrier gases, and any excess precursor gases may be withdrawn from the reaction chamber 102 via an exhaust port 126. One or more of the gas injectors 15A, 150B, 150C of the deposition system 1A of FIGS. 1A and 1B may be or include various gas injection Is embodiments as described in further detail below. One. In some embodiments, a gas injector of the present invention may comprise a thermal gas injector as described in U.S. Patent Application Serial No. 61/157 J12, but further comprising a reservoir for containing a liquid reagent, the liquid The reagent is used to react with a source gas (or a decomposition or reaction product of a source gas). For example, the reservoir can be used to hold liquid metal or other elements, such as liquid gallium (Ga) liquid (A1), or liquid indium (In). In other embodiments of the invention, the bribe can be used to contain a -gj state test to react with the source gas (or - decomposition of the source gas or reaction product). For example, the reservoir can be used to hold a solid volume of one or more materials' such as 'solid cerium (Si) or solid magnesium (Mg). Figure 2 is a perspective view of an embodiment of a gas injector 2 of the present invention. As shown in Fig. 2, the gas injector 2GG includes an intake port 2G2, an exhaust port 2G4, a heating pipe 206, and a barn 210. The barn 21 is used to hold a liquid reagent. For example, a liquid metal, such as liquid gallium, liquid indium, liquid imprint, etc., can be placed in the container 21〇. A source gas, 11 201250053, such as GaCl3, and one or more carrier gases (e.g., H2) may be supplied to the gas inlet 202. The source gas can flow from the gas inlet 202 into the heating conduit 206. The heating conduit 206 can be used to heat the source gas flowing through the heating conduit 206 for a desired period of time (i.e., a residence time), which can be a function of three of: the flow path within the heating conduit 206 The cross-sectional area, the flow of source gas through the heating conduit 206, and the total length of the heating conduit 206. As discussed in further detail below, the heating conduit 206 can be shaped and configured to be positioned adjacent to one or more active or passive heating components. - Additionally, the heating conduit 206 can include one or more curved segments. Or turning, as such, the length of the physical space occupied by the heating conduit 206 will be significantly less than the actual length of the flow path within the heating conduit 206. In other words, the length of the heating conduit 206 can be greater than the shortest distance between the inlet port 202 and the liquid container 210. In some embodiments, the length of the heating conduit 206 can be at least about twice, three times, or even four times the shortest distance between the inlet port 202 and the liquid container 210. For example, the heating conduit 206 can have a disk winding configuration, as shown in Figure 2, which includes a plurality of generally parallel straight segments extending from an angle to 18 turns in an end-to-end manner. The curved sections are connected together. The heating conduit 206 can include a tubular body that at least substantially comprises a refractory material, such as quartz. In some embodiments, the source gas can be at least partially decomposed within the heating conduit 206. For example, in the embodiment, when the source gas includes GaCU and a carrier gas containing H2, the source gas is decomposed to form gaseous GaCl and vaporized hydrogen (HC1). The gases flow from the heating conduit 206 into the vessel 210. Figure 3 is a partial enlarged cross-sectional view of the container 210. As shown in FIG. 3, the container 210 includes a bottom wall surface 212, a top wall surface 214, and at least one side wall surface 216. In the embodiment of FIGS. 2 and 3, the reservoir has a shape of a circle, and thus, the bottom wall surface 212 and the top wall surface 214 have a circular shape and are at least substantially planar, and the side wall surface 216 is at least substantially It is substantially cylindrical (for example, cylindrical). In an additional embodiment of the invention, the reservoir may be of other geometric shapes. The bottom wall 212, 12 201250053 top wall 214, and at least one side wall 216 collectively define a hollow body, the interior of which defines a reservoir to contain a liquid reagent, such as liquid gallium. A portion of the interior space of the hollow container 210 can be filled with a liquid reagent. For example, the container 210 can be filled with a liquid reagent to the height shown by the dashed line 22 in Figure 3, such that the liquid reagent in the container 210 facilitates a vacancy or space 222. The gas flowing out of the heating pipe 2〇6 can be injected into the space 222 above the liquid reagent in the vessel 210. As an example of a non-limiting nature, gas flowing from the heating conduit 206 can flow through the bottom wall 212 and then into a tube 224. In some embodiments, the tubular 224 can include a heating conduit 2〇6 extending into the vessel 210 assay portion. The tube 224 can extend through the liquid reagent ' disposed in the liquid container' to the space 222 above the liquid reagent. The tube 224 can include a ninety degree bend such that the end portion of the official 224 extends horizontally above the liquid reagent. As shown in Figure 3, 'the cylindrical side wall of the tubular member 224 can be penetrated, and the side-facing opening is provided on the side facing the surface of the liquid reagent." Thus, the gas flowing through the tubular member 224 will move away from the tubular through the opening. 224, after leaving the gas of σ 226, it can be tested from the opening to the liquid state! The direction of the surface is guided to promote the reaction of the gas species or components with the liquid test, for example, in the embodiment The gas includes, for example, a carrier gas, Gaa; and the source gas has been decomposed in the heating pipe 2 () 6 to contain a gaseous (5) and a chlorinated species such as chlorinated gas (HC1), in the liquid container The liquid reagent may include a liquid recording, and the liquid gallium may react with a chlorinated gas (for example, ruthenium (1) generated in the heating pipe 2〇6 to form an additional gaseous GaC in the upper portion 222 of the liquid reagent in the container 21〇. The container may flow out through the exhaust port 228. For example, the exhaust port 228 may be located at the top wall 214 of the container above the horizontally extending portion of the f 224. The exhaust port (10) may lead to the service line 23G, gas pipeline The end can be called a fixed body injector. Various types of valley IS 2: U to ^ 贝 包括 includes - refractory material, such as quartz. (5) can be - the ideal precursor gas for the formation of GaN. Therefore, for example, thermal decomposition of (10) postal The hydrogen chloride gas (HCl) produced by the lake (the germline of the source gas containing Gac_2 13 201250053) can be converted into additional GaCL· to avoid the adverse effects of excess emulsion on the deposited GaN material, because of the chlorinated species. The amount entering the reaction chamber has been reduced. These adverse effects may include, for example, the binding of chlorine atoms to the gallium nitride lattice and the rupture or delamination of the deposited GaN film. The introduction of excess hydrogen chloride gas into the reaction chamber may Hydrogen chloride acts as an etchant on the GaN in the reaction chamber, thereby reducing the growth rate of GaN or even hindering the growth of GaN. Furthermore, allowing the excess chlorinated species to react with liquid gallium to form an additional GaC can cause the deposition system 1 The efficiency of the crucible is thus improved. Figure 4 shows another embodiment of a heating gas injector 3 comprising the gas injector 200 of Figure 2 and Moving and passive heating assemblies for heating the gas injector 200 to at least partially heat the conduit 206 and the vessel 210. In other words, the at least one heating assembly can be disposed adjacent to the heating conduit 2〇6 and the liquid container 210. One of them is to heat at least one of the heating pipe 206 and the vessel 210 of the gas injector 200. As shown in Fig. 4, the 'heating gas injector 3' includes a cylindrical passive heating component 3〇2 It is disposed in a generally cylindrical space surrounded by a heating conduit 206 of the heating gas injector 2 (8). The passive heating assembly 302 can at least substantially comprise a high emissivity value (near full emission) Materials (black body materials) that are also resistant to the high temperatures and rot environments that may be encountered in the deposition system. Such materials may include, for example, nitriding (A1N), carbon carbide (SiC) ' and boron carbide (b4C)' having emissivity values of 〇98, 〇92, and 〇92〇 passive heating components 302, respectively. Can be solid or hollow. In some embodiments, the passive heating assembly 302 can be two and a thermocouple can be positioned within the interior of the passive heating assembly to monitor and control the temperature. In an additional embodiment, a cylindrical thermocouple can be positioned around the passive heating assembly 302 and between the galloping heating assembly 3〇2 and the surrounding heating conduit 2〇6. In an additional embodiment, a hollow cylindrical passive heating assembly can be disposed above and around the one or more straight segments of the heating conduit 206. In these embodiments, the cylindrical thermocouple can be placed between the hollow cylindrical passive heating assembly and the straight section of the heating conduit 2〇6 surrounded by the hollow cylindrical driven heating assembly. The 201250053 heating gas injector 300 can also include an active heating assembly 3〇4. The active heating assembly 304 has both a heating conduit a% and a vessel 21 that at least partially surround the gas injector 2A. In some embodiments, the active heating assembly 3G4 can be generally cylindrical and can extend completely around the heating conduit 206 and at least portions of the vessel 210, as shown in FIG. For example, the active heating assembly 304 can include at least one of the following: a resistive heating assembly, an induction heating assembly, and a radiant heating assembly. As shown in FIG. 4, an insulating sleeve 3〇6 can surround at least the gas injector 200, the passive heating component 302, and the active heating component 304 to improve the efficiency of the heating process, and the heating process is actively heated. The assembly and passive heating assembly 302 heats the heating conduit 206 (or at least the gas contained therein) and the vessel 21 (or at least the liquid reagents and gases contained therein). The active and passive heating components of the heating gas injector 300 may have the ability to heat the heating conduit 206'container 210' and the source gas to between about 5 〇〇〇c & 1 〇〇〇〇c. temperature. Figure 5 presents another embodiment of a gas injector 4 of the present invention. The gas injector 400 of Figure 5 is similar to the gas injector 200 of Figure 2 and includes an air inlet 2〇2, an exhaust port 2〇4, a heating conduit 406, and a container 21〇. The container 21 can be as described in relation to Figures 2 and 3. The heating channel 406 is substantially similar to the heating pipe 2〇6 of FIG. 2, but the heating pipe 4〇6 is extended along a spiral path (ie, having a spiral structure) instead of The heating pipe 2〇6 of 2 has a winding structure. An embodiment of the invention may also include a housing 450 as shown in FIG. The outer casing 450 can be used to enclose and protect at least the portion of the gas injector 4 that heats the conduit 4〇6 and the vessel 21〇. The outer casing 450 can also serve as an additional gas conducting conduit that can be used, for example, to carry a flushing gas (e.g., an inert gas). For example, the housing 45A can include an intake port 452 and an exhaust port 454 such that a gas can flow through the housing 45〇 between the intake port 452 and the exhaust port 454. In an additional embodiment of the invention, a housing 450 may be provided with a gas injection of $, a gas injection of $, or any other gas injector as described below. 3 15 201250053 With continued reference to FIG. 5, in operation, a source gas such as GaCls and a carrier gas such as H2 enter through an inlet port 202 at an inflow rate of typically several hundred standard cubic centimeters per minute (sccm) per minute. Gas injector 400. However, this flow can reach 2 每 or standard liters per minute (SLM) or higher. Gaseous precursors, such as Gaa, are between about 5 〇〇〇 c and 1,000. (at a temperature between 2) exits the gas injector 4 via the exhaust port 204. An inertial flushing gas 'such as N2 or a mixture of & Hz' flows into the outer casing 450 via the inlet port 452 at an inflow flow of approximately one to five SLMs and is maintained at least within the outer casing 45〇 - overpressure ). The inert purge gas exits the outer casing 45A via the exhaust port 454. The inert gas can also be heated as it passes through the outer casing 450. Figure 6 shows another embodiment of a heating gas injector 500 of the present invention comprising a gas injector substantially similar to the gas injector 4 of Figure 5, but without the outer casing 450. Thus, the 'heating gas injector 500' includes a heating conduit 406 and a vessel 21, as previously described herein. The heating gas injector 500 further includes an air inlet 202 and an exhaust port 204. The heating gas, main injector 500, further includes active and passive heating components, as previously described with respect to gas injector 300 of FIG. In particular, the gas injector 5 of Figure 6 includes a cylindrical passive heating assembly 302 as previously described, which is positioned in a generally cylindrical space surrounded by a helical heating conduit 406 of gas injection 500. . The heated gas injection number 500 can also include an active heating assembly 304 and an insulating sleeve 3〇6 as previously described with respect to FIG. As previously discussed, the active and passive heating components of the heating gas injector 500 can have the ability to heat their heating tubes 406 and vessel 210 to between about 5 〇〇〇 c and i, 〇〇〇〇c. temperature. Referring again to FIG. 1A, in some embodiments of the invention, two or more of the gas injectors 15A, 150B, 150C may be used to generate a common Group III metal precursor for ingress reaction. The particular tri-group metal precursor of chamber 102 provides an increased flow rate. Each gas injector 150A '150B, 150C can only supply a tri-group metal precursor and one or more carrier gases at a maximum flow rate, which can be a function of: the size of the gas injector, And the capacity of these gas sources 128A, 128B, 128C. Thus, for a large reaction chamber 102 requiring a relatively large Group III metal precursor flow into the flow rate of 201250053, the number of gas injectors for supplying a single Group III metal precursor can be selected to inject the gases. The sum of the individual flows of the individual can be the ideal total inflow of the Group III metal precursor into the reaction chamber. In an additional embodiment of the invention, two or more of the gas injectors 15A, 150B, 150C may be used to produce different tri-group metal precursors, which may be used to deposit three A family nitride composite comprising two or more different triad elements, such as InGaN, AlGaN 'InAlGaN, and the like. As an example of a non-limiting nature, the first gas injector 15A can be used to supply GaCl (via thermal decomposition of GaCb and H2, and by reacting a chlorinated species produced by thermal decomposition of such GaCl3 and Hz with liquid gallium, GaCl3 And H2 is converted to gaseous GaCl), and the third gas injector i50c can be used to supply Ιηα (via thermal decomposition 111 (: 13 and A ' and by reacting gasification species generated by thermal decomposition of such inCb and N2 with liquid indium) , converting I11CI3 and N2 into gaseous lnci), and second gas injector 15〇B can be used to supply gaseous ammonia (NH3). The deposition system 1〇〇 can contain any number of ideal gas injectors, the number is provided The number of gas injectors required for the desired flow rate of each precursor gas, and the precursor gases are the gases of the composite three-five-decompressing gas. In other additional embodiments of the invention, the gases The injectors 15A, 15〇B, 15〇c to - can be used to generate a dopant precursor (eg, gasified iron (FeC1), gas species, or gasified town species), Can be used to hold a mess (for example, iron Shi Xi, the town's atom or ion) is carried into the reaction chamber 1 () 2. During the deposition process, the dopant precursor can be knifed and/or reacted with another substrate in the reaction chamber 102 to make the blend The three-fifth in the deposition of the hybrid, the semiconductor material is followed. In these fine towels, the dopant precursor in the gas-injector can be thermally decomposed. For example, the gas injector A reservoir may be included that is used to contain a solid reagent for reaction with a source gas (or a source gas or a reaction product). For example, the reservoir may be used to hold a solid of one or more materials. Volume, for example, solid-state seconds (si) or solid magnesium (Mg). § 17 201250053 Thus 'FIG. 7 presents an example of a gas injector 500 that can be used to inject such dopant precursors into the reaction chamber. 1 〇 2. The gas injector 5 〇〇 includes an air inlet 202, an exhaust port 204' and a container 210 as previously described with respect to Figures 2 and 3. A substantially straight conduit 502 can be accessed from the air inlet 202 extends to the container 210 (instead of the heating tubes of Figures 2 and 3) 206) The barn 210 can be used to hold a liquid metal reagent, such as liquid imprint, liquid indium, liquid iron, etc. The gas injector 500 can also include active and/or passive heating components, such as previously related to FIG. The active heating assembly 304 and the insulating sleeve 306 are described by the gas injector 300. The active and/or passive heating assemblies can be used to heat the container 210 (or at least the liquid contained in the container) enough to make the container The metal in 210 maintains the temperature of the liquid state. A source gas, such as gaseous hydrochloric acid (HC1), may be supplied to a gas inlet 202 from a gas source 128A, 128B '128C. The source gas may flow from the gas inlet 202 through the conduit 502 into the vessel 210 and then react with the liquid metal reagent in the vessel to form a precursor gas (eg, InC A1C1, FeCl, etc.). The container 210 flows out through the exhaust port 2〇4. The flow of gas through the gas injector 500 can be selectively controlled relative to the flow rate of the other gas injectors of the deposition system 100 to control the concentration of elements from the dopant precursor deposited in the resulting Group III semiconductor material. As previously described, the gas injectors 15A, 150B' 150C of the deposition system 10A of Figures 1A and 1B can be completely outside the reaction chamber 1〇2 (as shown in Figures 8 and 1B), completely in response. Inside the chamber 102, or at least a portion of the gas injectors 15A, 15B, 15〇c, may extend partially through the reaction chamber 102. Figure 8 shows an additional example of a deposition system of the present invention, except that at least the gas injectors 15A, 150B, 150C are located within the reaction chamber 1A2, the deposition system being at least substantially similar to Figures 18 and 1B. The deposition system is 1〇〇. As noted above, embodiments of the heated gas injector of the present invention can be used to inject a gaseous Group III metal precursor into a reaction chamber to treat a Group III nitride compound. For example, in some practical examples, the heating gas injector of the present invention can thermally decompose GaCl3 and Η, to 18 201250053 and by chlorinating species such as Hz thermal decomposition (for example) Hydrogen chloride (hci) reacts with liquid gallium, GaCl3 and h2, and (5) is injected into a reaction chamber to deposit GaN in an HVPE process. Exemplary embodiments of the additional non-mosquito of the present invention are described below. Embodiment 1 : A method for depositing a semiconductor material on a substrate, the method comprising: a source gas, a human-heating gas injector; and a thermal decomposition gas of the source gas in the heating gas injection rib Forming a precursor gas and a by-product; reacting the by-product with the liquid reagent in the heating gas injector to form an additional precursor gas; and extracting the precursor gas and the external precursor gas from the heating gas injector Injecting into a space within a reaction chamber; and using the precursor gas in the reaction chamber to deposit material on the substrate. Embodiment 2: The method of Embodiment 1, wherein introducing the source gas into the heating gas injector comprises introducing a carrier gas to at least one of GaCl3, I11CI3, and AICI3 to the heating gas injector. Embodiment 3: The method of Embodiment 2 wherein introducing at least one of a carrier gas and GaCl3, and AICI3 into the heating gas injector comprises introducing helium and GaCl3 into the heating gas injector. Embodiment 4: The method of Embodiment 2, wherein thermally decomposing the source gas in the heating gas injector to form the precursor gas and by-products comprises decomposing at least one of GaCU, InCU, and A1C13 to form GaCl, InCl 'and at least one of A1C1 with a chlorinated species. Embodiment 5: The method of Embodiment 4, wherein at least one of GaCL, InCl3, and A1C13 is decomposed to form GaC1 'InC1, and at least one of AK:1 and a chlorinated species comprises decomposing GaCl3 to form GaC1 And HC1. Embodiment 6: The method of Embodiment 5 wherein the reaction of by-products with the liquid reagent in the heating gas injector to form additional precursor gases comprises reacting HC1 with liquid gallium to form additional GaCl. The method of any one of embodiments 1 to 6, further comprising: introducing another source gas comprising introducing at least one of 〇3 and 八1^13 into another heating gas injector 19 201250053 thermally decomposing the another source gas in the further heating gas injector to form a precursor gas comprising at least one of InCl and A1C1 and a by-product comprising chlorine; The gas-containing byproduct is reacted with a liquid reagent comprising one of liquid indium and liquid aluminum to form an additional precursor gas comprising at least one of additional InCl and additional A1C1; and Another heating gas injector drives the gas and additional precursor gas into the space inside the reaction chamber. Embodiment 8: The method of Embodiment 7, wherein depositing a material on the substrate using a precursor gas in the reaction chamber comprises depositing at least one of InGaN and AlGaN. Embodiment 9: Any one of Embodiments 4 to 6 a method wherein reacting a byproduct with a liquid reagent to form an additional precursor gas in a heating gas injector comprises reacting a chlorinated species with at least one of liquid gallium 'liquid indium, and liquid aluminum to form additional Gaa, Extra InCl, and at least one of the additional A1C1. Embodiment 10: The method of any of embodiments 1 to 9, further comprising selecting a liquid reagent to comprise a liquid metal. Embodiment 11: The method of Embodiment 10, further comprising selecting a liquid reagent to include at least one of liquid gallium, liquid indium, and liquid aluminum. Embodiment 12: The method of any one of embodiments 1 to 11, further comprising: introducing another source gas into another gas injector; and passing the another source gas to the other gas injector Resolving a liquid reagent to form a doped precursor gas; injecting a doped precursor gas from the another gas injector into a space within the reaction chamber; and using the seeded precursor gas in the reaction chamber to deposit The material on the substrate is doped. Embodiment 13: The method of Embodiment 12, wherein introducing another source gas to the other gas injector comprises introducing gaseous HC1 into the other gas injector. Embodiment 14: The method of Embodiment 12 or 13, further comprising selecting another liquid reagent to comprise at least one of liquid iron, liquid indium, and liquid aluminum. Embodiment 15: a heating gas injector for injecting one or more gases into a deposition system to 'the heating gas injection includes: an air inlet; a heating pipe; for 20 201250053 A liquid container containing one of the liquid reagents, from one way, from the passage of the heating pipe to the liquid container, the space, and then from the internal space of the liquid container = to its capping ^ ^ with ^, Wei Du large (four) gas container The most preferred embodiment between: 16: as in Example 15, the name of the servant, | liquid metal. And the embodiment of the invention, the method further comprises: the heating gas injector of the embodiment 15 further comprising liquid gallium, liquid indium, and liquid aluminum in the liquid container. —. Embodiment 18: The heating gas injector of any of Embodiments 5 to 17, further comprising at least an ageing member. The heating assembly is disposed adjacent to at least one of the heating conduit and the liquid container. Embodiment 19: The heating gas injector of Embodiment 18, wherein the at least-biased member comprises a passive heating assembly, the passive heating assembly comprising at least nitrogen, carbonaceous (SiC) And obstruction (ΒΚ) at least one of them. Embodiment 20: The thermal gas injector of Embodiment 18 or 19, wherein the at least one heating assembly comprises an active heating assembly. Embodiment 21: The heating gas injector of Embodiment 2, wherein the active heating component comprises at least one of a resistance heating component, an induction heating component, and a radiant heating component. Example; ^ Example 22. The heating gas injector of any of embodiments 15 to 21, wherein the length of the heating conduit is at least about twice the shortest distance between the inlet and the liquid container. Embodiment 23: The thermal gas injector of Embodiment 22, wherein the length of the heating conduit is at least about four times the shortest distance between the inlet and the liquid container. The heating gas injector of any one of embodiments 15 to 23, wherein at least one of the heating conduit and the liquid container substantially comprises quartz. g Example 25: a deposition system comprising: a reaction chamber; and at least one thermal gas injector for injecting one or more gases into the reaction chamber, the thermal gas injector comprising: an intake a heating pipe; a liquid container for accommodating one of the liquid reagents; an exhaust gas 21 201250053; and - a route extending from the air inlet 'through the heating pipe to the liquid container - the internal space, and then the liquid The interior space of the container extends to the vent; wherein the heating conduit has a length that is greater than the shortest distance between the inlet and the liquid container. Embodiment 26: The deposition system of Embodiment 25, wherein the at least one heating gas injector is disposed outside the reaction chamber. Embodiment 27. The deposition system of Embodiment 25, wherein the at least one heating gas injector is at least partially disposed within the reaction chamber. The deposition system of any one of embodiments 25 to 27, further comprising: at least one gas source; and at least one gas inflow conduit for carrying a source gas from the gas source to the at least The inlet of a heating gas injector. Embodiment 29: The deposition system of Embodiment 28, wherein the at least one gas source comprises a source of at least one of GaCl3, InCl3, and A1C13. Embodiment 30: The deposition system of any of embodiments 25 to 29, further comprising liquid metal in the liquid container. The deposition system of any one of embodiments 25 to 29, further comprising at least one of liquid gallium, liquid indium, and liquid aluminum in the liquid container. Embodiment 32: The deposition system of any of embodiments 25 to 31, further comprising at least one heating assembly disposed adjacent to at least one of the heating conduit and the liquid container. Embodiment 33: The deposition system of Embodiment 32 wherein the at least one heating component comprises a passive heating component, the passive heating component comprising at least substantially aluminum nitride (A1N), carbon carbide (SiC), boron carbide ( Bf) At least one of them. Embodiment 34: The deposition system of Embodiment 32 or 33, wherein the at least one heating component comprises an active heating component. Embodiment 35: The deposition system of Embodiment 34, wherein the active heating assembly comprises at least one of a resistive heating assembly, an induction heating assembly, and a radiant heating assembly. The method of any one of embodiments 25 to 35, wherein the length of the heating pipe is at least about twice the shortest distance between the gas inlet and the liquid container. The deposition system of any one of embodiments 25 to 36, wherein the at least one heating gas injector comprises two or more heating gas injectors. Example 38. For example, the two or the heating gas injectors of the embodiment include: a first heating gas injector, the liquid gallium being disposed in the liquid container of the first heating gas injector; and a The second heating gas injector, at least one of liquid indium and liquid aluminum, is placed in the liquid container of the second heating gas injector. Embodiment 39: The deposition system of Embodiment 38, further comprising: a first gas source for supplying GaCb to the inlet of the first heating gas injector; and a second gas source It is used to supply at least one of InCls and AICI3 to the inlet of the second heating gas injector. Embodiment 40: The deposition system of any one of embodiments 25 to 39, further comprising: a further gas injector for injecting a dopant-doped precursor gas into the reaction chamber, the another gas injector comprising : - intake σ pipe; - liquid container for accommodating - liquid doping reagent; an exhaust port; and a path extending from the air inlet through the pipe to the inner space of the liquid container 'and then from the liquid container The interior space extends to the exhaust port; and a source of gas is used to supply gaseous HC1 to the inlet of the other gas injector. Embodiment 41: The deposition system of Embodiment 40, further comprising a liquid dopant in the liquid container. Embodiment 42: The deposition system of Embodiment 41, wherein the liquid dopant comprises liquid iron. The deposition system of any one of embodiments 25 to 42, wherein at least one of the heating conduit and the liquid container substantially comprises quartz. The above-described embodiments of the present invention are not intended to limit the scope of the present invention, as these embodiments are merely examples of the embodiments of the present invention, and the attached caps of the present invention are defined by their equivalent effectiveness. Any equivalent embodiments are within the scope of the invention. It will be apparent to those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The present invention is also fully described by reference to the drawings of the reduced embodiments of the present invention, which are illustrated in the drawings. , wherein: x is a cross-sectional view, which schematically illustrates an exemplary embodiment of a deposition system of the present invention. The deposition system includes a reaction chamber and at least one gas injector as described herein; A cross-sectional view of the reaction chamber shown in the figure is shown along the section line 1Β·1Β in the figure ία; " Figure 2 outlines an exemplary embodiment of the present invention - one or more The gas injector may be related to the embodiment of the present invention, such as the deposition system of the drawing i; FIG. 3 is an enlarged cross-sectional view of a portion of the gas injector of FIG. 2; FIG. 4 is a schematic representation of the gas injector of the present invention. Another embodiment, which is similar to that shown in Figure 2, but further comprises active and passive heating components; Figure 5 is an outline of another exemplary embodiment of a gas injector of the present invention, one or more Gas/master can be used in the present invention In the embodiment of the integrated system, for example, the deposition system of FIG. 1; FIG. 6 is an outline of another embodiment of a gas injector of the present invention; similar to the one shown in FIG. 2, but more active and passive. Heating assembly; Figure 7 is a schematic representation of another embodiment of a gas injector of the present invention, one or more of which may be used to inject a precursor body into a reaction chamber within an embodiment of the deposition system of the present invention, For example, the deposition system of Figure 1; and Figure 8 outline another exemplary embodiment of a deposition system of the present invention. 24 201250053 [Description of main component symbols] 150A, 150B, 150C, 200 100, 600 102 104 106 108 110 112 114A, 114B, 114C 116A '116B > 116C 117A, 117B, 117C 118A, 118B, 118C 120 124 126, 204 128A, 128B, 128C 202 206, 406 212 214 216 210 220 222 224 226 230 300 > 500 deposition system reaction chamber substrate support structure work piece substrate heating assembly drive spindle drive gas inflow pipe gas port gas valve gas dispersion pipe Open heat transfer plate exhaust gas source 400 gas injector inlet heating pipe bottom wall top wall side wall surface container dotted line space tubular opening exhaust pipe heating gas injector 25 201250053 302 passive heating component 304 active heating component 306 Insulation sleeve 450 housing 452 inlet port 454 exhaust port 502 conduit 26