TW201249777A - Dielectric ceramic composition and electronic component - Google Patents

Dielectric ceramic composition and electronic component Download PDF

Info

Publication number
TW201249777A
TW201249777A TW101107823A TW101107823A TW201249777A TW 201249777 A TW201249777 A TW 201249777A TW 101107823 A TW101107823 A TW 101107823A TW 101107823 A TW101107823 A TW 101107823A TW 201249777 A TW201249777 A TW 201249777A
Authority
TW
Taiwan
Prior art keywords
weight
parts
dielectric
subcomponent
composition
Prior art date
Application number
TW101107823A
Other languages
Chinese (zh)
Other versions
TWI476170B (en
Inventor
Masakazu Hirose
Daisuke Ohtsu
Masaru Abe
Original Assignee
Tdk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corp filed Critical Tdk Corp
Publication of TW201249777A publication Critical patent/TW201249777A/en
Application granted granted Critical
Publication of TWI476170B publication Critical patent/TWI476170B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

Provided is a dielectric ceramic composition with a high AC breakdown electric field, an excellent temperature property of an electrostatic capacitor, a high relative dielectric constant, and an excellent anti-reduction property. The dielectric ceramic composition of the present invention comprises: a main ingredient represented by the formula (Bax Biy)TiO3, a first minor ingredient, and a second minor ingredient, wherein 0.001≤y≤0.010, 0.975≤x+y≤1.010, the first minor ingredient is zinc oxide, the second minor ingredient is selected from at least one oxide of Y, La, Ce, Nd, Sm, Mn and Ni, the content of the first minor ingredient relative to 100 parts by weight of the main ingredient is great than 2 parts by weight and less than 12 parts by weight, and the content of the second minor ingredient relative to 100 parts by weight of the main ingredient is, counted according to oxide content, great than 0.008 parts by weight and less than 0.08 parts by weight.

Description

201249777 四、 指定代表圖: (一) 本案指定代表圖為:第(1)圖。 (二) 本代表圖之元件符號簡單說明: 2 :陶瓷電容器; 4 :保護樹脂; 6、8 :引線端子; 1〇 :介電體層; 12、14.端子電極。 五、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: 盖〇 六、 發明說明: 【發明所屬之技術領域】 本發明係有關於介電體陶瓷組合物及電子元件。 【先前技術】 作為電子元件之一例的陶瓷電容器係被使用在各種電 子機器’近年來對高性能化的要求日益增高。 為切換電源電路的Υ電容器且作為雜訊濾波器所被使 用的陶瓷電容器係不斷曝露在電應力,因此會有火災或觸 電的危險性。因此,為防止該等情形而使用安全規格認定 的陶瓷電容器。以安全規格認定的陶瓷電容器而言,以陶 瓷電容器未被破壞,亦即提高介電體陶瓷組合物的交流崩 2 201249777 潰電場UCVB)最為重要。此外,在該等陶竟電容器中,使 靜電電容的溫度特性較為良好亦極為重要,以兼顧交流崩 潰電場與靜電電容的溫度特性為佳。 專】文獻1(日本特開2006-096576號公報)及專利 文獻2(日本特開2QG3 —μ·號公報)係揭示—種交流崩 :電場較高的介電體陶瓷組合物。但是,任一者即使交流 崩潰電場較高,亦為5kv/mm左右。此外,在該等文獻中 並未揭不兼顧又流崩潰電場與靜電電容的溫度特性的介 體陶瓷組合物。 此外以月Ij述陶究電容器的電極而言,使肖“或Cu ^燒接電極。但是Ag雖在大氣中可進行燒接,但是成本 ^另—方面’〜雖^廉價,但是在燒接時必須形成為還 原乳體%境’由於電容器㈣被曝露在還原氣體環境中, 因此會有氧空位增加而半導體化的可能性。因此,為 止電容件的半導體化,在例如專利文獻3( 10—贿〇號公報)中係進行(WMW = 的A/B的組成控制。 Fy} B〇3 【發明内容】 提供係,如上所示之實際情況所研創’其目的在 ’、X流朋潰電場高、靜電電容的溫度特性良好 對介電常數高、且浐、梦盾ω ώ 相 抗還原性良好的介電體陶瓷組合 外,本發明之日& + + 1 μ 此 體陶㈣〜 棱供一種具有冑由如上所示之介電 、、且S物所構成的介電體層的電子元件。 3 201249777 本發明人等為達成上述目的’精心研究結果,發現將 介電體陶瓷組合物的組成設為特定成分’將該等比率設為 預疋feu ’藉此可達成上述目的,而完成本發明。 亦即,解決上述課題之本發明之實施形態之介電體陶 究組合物係呈右:以「1¾。 d .、m . 、 . axBly)Ti〇3的組成式表示的主成 刀第1田1J成分、及第2副成分的介電體陶究組合物,其 中, ' 前述組成式中的y為UObgUH),而且前述組 成式中的X與y的合計為0.975各χ+ysmo, 前述第1副成分為氧化鋅, 前述第2副成分為選自Y、u、Ce、Nd、s 的至少1種氧化物, 刖述第1副成分相對前述主成分i 〇〇重量&,人 重皇份以上、12重量份以下, 刖述第2副成分柏斜二^、 J风刀相對則述主成分J 〇〇重量份, 物換算含有〇. 〇〇8重量份 里切以上、〇· 08重量份以下。 藉由本發明,可提供吞U·* .主& 1FJ > /、乂抓朋潰電%咼、靜電電容 度特性良好、相對介電11/皿 Μ組合物:數…抗還原性良好的介電體 本發明之實施形態之電子元件係具有藉由由前述介電 此 方法所得之介電體陶瓷紐人 物所構成的介電體層。 、· 5 Α以本發明之實施形態之電子元件而言,並未 疋,例示有單板型陶瓷電容 限 电谷益層積陶瓷電容器。 201249777 【實施方式】 X下根據圖不所示之實施形態來說明本發明之實施形 態。 陶瓷電容器2 如第1圖(A)、μ ! 第1圖(Β)所示,本發明之實施形態之 陶瓷電容器2係檨忐也曰 ‘ 專成為具有:介電體層1〇;形成在其相對 向表面的一對端子雷 卞冤極1 2、14 ;及分別與該端子電極丄2、 14相連接的引線端;β 、8,該等係被保護樹脂4所覆蓋。 陶瓷電容器2 的形狀若依目的或用途而適當決定即 可,以介電體層1 〇拟士 * 心成為圓板形狀的圓板型電容器為佳。 此外,該尺寸若依目姑―、m " 勺或用途而適當決定即可,通常直栌 為5〜2〇mm左右,較 住為5〜15mm左右。 (介電體層10) 介電體層10係鞋 你猎由本發明之實施形態之介電 組合物所構成。 丨电體陶是 本發明之實施形態之介電體㈣組合物係、具有 (Bax Biy)Ti〇3的組成式声_ 战式表不的主成分、第1副成分、 2副成分,前述組成式中的β 双刀及第 战式中的y為〇.〇〇l$ys〇.〇1〇, 述組成式中的X與y的人h U而且則 y 的。计為 〇.975 Sx+yg 1.〇1〇。 前述組成式中的在 係表不Ba的比率,X為〇 < S 1. 009,較佳為 n Q7i^ * 965^ χ . =x客〇. 996。以該範圍含有r — 此形成為靜電電容的溫声 ’错 吊數k升,燒結性良好的傾向。 電 201249777 前述組成式中的y係表示Bi的比率,& 〇 〇(n 0.010,較佳為〇.〇〇3$0〇.〇〇9。藉由以該範圍含有B — 形成為靜電電容的溫度特性變得較為良好,相對介電常1數 提升的傾向。 前述組成式中的Xl的合計,亦即BlBi的比率 的合計較佳為OJTSSx+ySmo,更佳為〇.976gx+y $1.005。藉由將X與y的合計量設為 ’形成為燒結 性及相對介電常數提升的傾向。 前述第1副成分為氧化鋅。 本發明之實施形態之介電體陶瓷組合物係含有第1副 成分相對前述主成分1〇〇重量份為2重量份以上、Μ重量 份以下’較佳為2.5重量份以上、1〇重量份以τ,更佳為 3重量份以上、10重量份以下。以該範圍含有第i副成分, 藉此形成為交流崩潰電場提升,靜電電容的溫度特性良好 的傾向。201249777 IV. Designated representative map: (1) The representative representative of the case is: (1). (2) The symbol of the symbol of this representative figure is simple: 2: ceramic capacitor; 4: protective resin; 6, 8: lead terminal; 1〇: dielectric layer; 12, 14. terminal electrode. 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: 盖 〇 6. Description of the invention: [Technical Field of the Invention] The present invention relates to a dielectric ceramic composition and an electronic component. [Prior Art] Ceramic capacitors, which are examples of electronic components, are used in various electronic devices. In recent years, there has been an increasing demand for high performance. The ceramic capacitor used to switch the tantalum capacitor of the power supply circuit and used as a noise filter is continuously exposed to electrical stress, so there is a risk of fire or electric shock. Therefore, ceramic capacitors approved by safety specifications are used to prevent such situations. In the case of ceramic capacitors identified by safety specifications, it is most important that the ceramic capacitors are not damaged, that is, to increase the dielectric collapse of the dielectric ceramic composition 2 201249777 collapse field UCVB). Further, in such ceramic capacitors, it is extremely important to make the temperature characteristics of the electrostatic capacitors relatively good, and it is preferable to take into consideration the temperature characteristics of the AC collapse electric field and the electrostatic capacitance. Japanese Laid-Open Patent Publication No. Hei. No. 2006-096576, and Patent Document 2 (Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2006-096576) disclose a dielectric ceramic composition having a high electric field. However, even if the AC crash electric field is high, it is about 5kv/mm. Further, dielectric ceramic compositions which do not take into account the temperature characteristics of the collapse electric field and the electrostatic capacitance are not disclosed in these documents. In addition, in the case of the electrode of the ceramic capacitor of the month Ij, the "" or "Cu" is burned to the electrode. However, although the Ag can be burned in the atmosphere, but the cost is different - the aspect is not cheap, but is burned. When the capacitor (4) is exposed to a reducing gas atmosphere, there is a possibility that the oxygen vacancy is increased and semiconductorized. Therefore, the semiconductorization of the capacitor is, for example, Patent Document 3 (10) - Bribe 公报 ) ) ( 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 The electric field is high and the temperature characteristic of the electrostatic capacitance is good. For the dielectric ceramic combination having a high dielectric constant and good resistance to reduction of 浐 and Mengdun ω ,, the day of the present invention & + + 1 μ of this pottery (four)~ An electronic component having a dielectric layer composed of a dielectric material and a S material as described above. 3 201249777 The present inventors have found that the dielectric ceramic composition is a result of careful research. The composition is set to specific The present invention can be achieved by setting the ratios to "pre-feu", that is, the dielectric ceramic composition of the embodiment of the present invention which solves the above problems is right: "13⁄4 d., m., axBly) The composition of the formula of Ti〇3, the main composition of the first group 1J component, and the second subcomponent dielectric ceramic composition, wherein 'the above composition formula y It is UObgUH), and the total of X and y in the above composition formula is 0.975 χ + ysmo, the first subcomponent is zinc oxide, and the second subcomponent is at least selected from Y, u, Ce, Nd, s. One type of oxide, the first sub-component is described as the weight of the main component i 〇〇, and the weight of the first sub-component is less than or equal to 12 parts by weight, and the second sub-component, the slanting slanting, and the J-knife are described. The main component J 〇〇 is part by weight, and the content is 〇. 〇〇 8 parts by weight or more, 〇·08 parts by weight or less. By the present invention, it is possible to provide a swallowing U·*. Main & 1FJ > /, scratching朋 电 电 咼, electrostatic capacitance characteristics, relative dielectric 11 / dish Μ composition: number ... good resistance to the reduction of the dielectric body The electronic component of the embodiment has a dielectric layer composed of a dielectric ceramic body obtained by the dielectric method described above. The electronic component according to the embodiment of the present invention is not defective. An example of the present invention will be described with respect to an embodiment of the present invention. The ceramic capacitor 2 is as shown in FIG. 1(A). In the first embodiment (Β), the ceramic capacitor 2 according to the embodiment of the present invention is specifically provided with a dielectric layer 1〇; a pair of terminal Thunders formed on the opposite surfaces thereof; Pole 1 2, 14; and lead terminals respectively connected to the terminal electrodes 丄 2, 14; β, 8, which are covered by the protective resin 4. The shape of the ceramic capacitor 2 is appropriately determined depending on the purpose or use, and it is preferable that the dielectric layer 1 is a disk-shaped capacitor having a circular plate shape. In addition, the size may be appropriately determined depending on the shape of the eye, m " spoon or use, and is usually about 5 to 2 mm, and is about 5 to 15 mm. (Dielectric layer 10) Dielectric layer 10 is a shoe. You are hunted by a dielectric composition according to an embodiment of the present invention. The electric ceramic pottery is a dielectric (four) composition system according to an embodiment of the present invention, and has a compositional formula of (Bax Biy) Ti〇3, a main component, a first subcomponent, and two subcomponents. The β double knives in the composition formula and the y in the first battle type are 〇.〇〇l$ys〇.〇1〇, the person h U and the y of the X and y in the composition formula. Calculated as 〇.975 Sx+yg 1.〇1〇. In the above composition formula, the ratio of Ba is not, and X is 〇 < S 1. 009, preferably n Q7i^ * 965^ χ . = x 〇. 996. In this range, r is formed, and the warm sound of the electrostatic capacitance is increased by a factor of k, and the sinterability tends to be good. Electricity 201249777 The y series in the above composition formula represents the ratio of Bi, & 〇〇 (n 0.010, preferably 〇.〇〇3$0〇.〇〇9. By including B in this range, it is formed as an electrostatic capacitance. The temperature characteristics are relatively good, and the dielectric constant tends to increase by a factor of 1. The total of the ratios of X1 in the composition formula, that is, the ratio of BlBi is preferably OJTSSx+ySmo, more preferably 976.976gx+y$1.005. The total amount of X and y is set to 'the sinterability and the relative dielectric constant are increased. The first subcomponent is zinc oxide. The dielectric ceramic composition according to the embodiment of the present invention contains the first one. The by-component is 2 parts by weight or more, more preferably 2.5 parts by weight or more, and 1 part by weight is τ, more preferably 3 parts by weight or more and 10 parts by weight or less based on 1 part by weight of the main component. The i-th subcomponent is contained in this range, whereby the AC collapse electric field is increased, and the temperature characteristics of the electrostatic capacitor tend to be good.

Sm 、 Μη 及 Ni 1種氧化物, 前述第2副成分係選自γ、La、Ce、Nd、 的至乂、1種氧化物’較佳為選自Ce、的至少 更佳為Μη的氧化物。 本發明之實施形態之介電體陶曼組合物係含有前述第 2副成分相對前述主成分100重量份以氧化物換算為〇 〇〇8 重量份以上、0.08重量份以下,較佳為〇 〇1〜〇 〇8重量 份’更佳為〇·〇2〜〇.〇8重量份。以該範圍含有第2副成分, 藉此形成為交流崩潰電場提升,靜電電容的溫度特性良 好’且抗還原性良好的傾向。 201249777 本發明之實施形態之介電 化結相對前述主成分1 〇〇重量 為0重量份以上、0.5重量份 氧化錯含有超過該範圍,則形 向0 體陶瓷組合物較佳為含有氧 份為未達1 · 〇重量份,較佳 以下,更佳為0重量份。若 成為交流崩潰電場降低的傾 介電體層10的 決定即可’較佳為 為如上所示之範圍 (端子電極12、14) 厚度並未特別限定,若依用途等而適當 〇·3〜2mm。將介電體層1〇的厚度形成 1藉此可適於使用在中高壓用途。 1 . — %所稱成u从艰卞冤極1 2、 14所使用的導電材而 ^ τ 舉如Cu ' Cu合金、Ag、Ag合 金、In-Ga合金等。其中,An oxide of Sm, Μη, and Ni, wherein the second subcomponent is selected from the group consisting of γ, La, Ce, Nd, and lanthanum, and one oxide is preferably at least more preferably Μη selected from Ce. Things. In the dielectric body of the present invention, the second subcomponent is contained in an amount of 〇〇〇8 parts by weight or more and 0.08 parts by weight or less, based on 100 parts by weight of the main component, preferably 〇〇. 1 to 〇〇 8 parts by weight 'more preferably 〇·〇2~〇.〇 8 parts by weight. In this range, the second subcomponent is contained, whereby the AC collapse electric field is increased, the temperature characteristics of the capacitance are good, and the reduction resistance is good. 201249777 The dielectric junction according to the embodiment of the present invention has a weight ratio of 0 parts by weight or more and 0.5 parts by weight of the oxidization error exceeds the range, and the shaped ceramic composition preferably contains oxygen. Up to 1 part by weight, preferably less, more preferably 0 part by weight. The thickness of the dielectric layer 10 which is reduced in the AC breakdown electric field is preferably 'the thickness of the range (terminal electrodes 12 and 14) as shown above. The thickness is not particularly limited, and is suitably 3 to 2 mm depending on the application or the like. . Forming the thickness of the dielectric layer 1 1 1 can be suitably used for medium and high voltage applications. 1 . — % is referred to as a conductive material used in difficult poles 1 2, 14 and ^ τ such as Cu 'Cu alloy, Ag, Ag alloy, In-Ga alloy, and the like. among them,

Cn i? r yv ^ 、 在舳子電極的導電材使用Cn i? r yv ^, used in the conductive material of the dice electrode

Lu或Cu合金時,由於 范 電極Μ > 、"還原性氣體環境中進行端子 電極的燒接’因此有介電 性。彳日β + & 亢、,且口物·+導體化的可能 還原性良好,因此即使…:體陶竞組合物由於抗 可防止Μ吐 電極使用CMCu合金,亦 燒接時的介電體陶竟組合物半導體化。 陶莞電容器之製造方法 接著說明陶竟電容器之製造方法。 示之介電體層 10的 首先,製造在燒成後形成第丨圖所 介電體陶瓷組合物粉末。 準備主成分的原 料。以主成分的原料 物及/或藉由燒成而 料及第1副成分及第 而言,列舉有:Ba、 形成為氧化物的原料、 2副成分的原 、T i的各氧化 或s亥專之複合 7 201249777 氧化物等’例如可使用BaCCb、Biz〇3、Ti〇2等。此外,亦可 使用例如氣氧化物等’在燒成後形成為氧化物或鈦化合物 的各種化合物。此時,以配合金屬元素的元素數的方式適 當變更含量即可。 此外,主成分的原料係可藉由固相法來製造,亦可藉 由水熱合成法或草gt鹽法等液相法來製造,若由製造成本 來看,以藉由固相法來製造為佳。 以第1副成分及第2副成分的原料而言,並未特別限 疋’可由上述各副成分的氧化物或複合氧化物、或藉由燒 成而形成為該等氧化物或複合氧化物的各種化合物,例如 碳酸鹽 '硝酸鹽 '氣氧化物、有機金屬化合物等中適當選 擇使用。 以本發明之實施形態之介電體陶曼組合物之製造方法 而吕,首& ’摻合主成分的原料、或主成分的原料與副成 分的原料’使用藉由氧化錯料之球磨機等來進行濕式混 合0 可將所得的混合物進杆;止私 Λ、jx/ u* 硬仃&拉、成形,將所得的成形物 在空氣環境中進行煅燒,藉此嬸μ 士 稽此獲侍俶燒粉末。以煅燒條件 而言,例如將煅燒溫度設為1100〜130(TC,較佳為115〇 〜125〇t,將煅燒時間較佳為設為〇 5〜4小時即可。 將接著所得的料粉末,藉㈣磨㈣進行濕式粉 碎’更加混合、乾燥而形成為介電體陶兗組合物粉末。如 上所述,ϋ由固相法來製造介電體陶究組合物粉末,藉此 可一面實現所希望的特性,-面達成製造成本的減低。 201249777 接著’在所得的介電體陶瓷組合物粉末添加適量黏合 劑,造粒,且將所得的造粒物成形為具有預定大小的圓板 狀,藉此形成為生胚成形體。接著,將所得的生胚成形體 進行燒成’藉此獲得介電體陶瓷組合物的燒結體。其中, 以燒成條件而言,並未特別限定,但是保持溫度以12〇〇〜 1400°C為佳,較佳為125〇〜135(rc,以將燒成氣體環境形 成為空氣中為佳。 在所得的介電體陶瓷組合物的燒結體的主表面印刷端 子電極,視需要進行燒接,藉此形成端子電極12、14。之 後’在端子電極12、14,藉由焊接等,將引線端子6、8 接。,最後以保護樹脂4覆蓋元件本體,而得如第】圖(A)、 第1圖(B)所示之單板型陶瓷電容器。 如上所示所製造的本發明之陶瓷電容器係透過引線端 子6、8而被構裝在印刷基板上等,而被使用在各種電 器等。 並非 的範 以上針對本發明之實施形態加以說明,惟本發明 堂到該實施形態任何限定’可在未脫離本發明之要旨 圍内以各種不同態樣實施,自不待言。 J如在上述貫施形態中,係例示介電體層為單層的 ^板型陶竟電容器作為本發明之電子㈣,但是以本發明 :電子元件而[並非限定為單板型陶究電容器,亦可為 ::客使用& 3上述介電體陶瓷組合物的介電體糊膏及電極 I的-般的印刷法或薄片法所製作的層積型陶£電容 201249777 (實施例) 以下根據更為詳細的實施例來說明本發明,惟本發明 並非限定於該等實施例。 試料1〜40 以主成分的原料而言,分別備妥BaC〇3、BhO3、TiCh及 第2副成分。接著’將所備妥的該等原料,以成為表丄的 試料1〜40所示組成的方式’分別秤量,藉由使用純水作 為溶媒之利用氧化錯球之球磨機來進行濕式混合。 接著,在將所得的混合物乾燥後,添加5重量%的水來 造粒、成形。接著,將所得的成形物,以在空氣中、I〗Μ °C、2小時的條件進行煅燒。將煅燒後的粉體,以擂溃機 進行粗粉碎而通過網篩後,將第i副成分(Zn〇)以成為表玉 所示組成的方式進行秤量、添加,而進行濕式粉碎。藉由 將其進行乾燥,而得具有表丨所示各組成(試料】〜飩的各 組成)的介電體陶瓷組合物粉末。 | 里罝佾,添 聚乙烯醇水溶液10重量份,接著進行造粒,在通過網 後,將所得的造粒粉以396MPa的壓力獲得直徑丨6 5咖 厚度約1. 2mm的圓板狀生胚成形體。 將所得的生胚成形體以在空氣中、125〇〜i35()t、 小時的條件進行燒成,藉此獲得圓板狀燒結體。 接著,在所得的燒結體的主表面的兩面塗佈“電極 另外在空氣中,以65(TC進行20分鐘燒接處理,藉此獲斗 第1圖所示之圓板狀陶瓷電容器的試料。所得的電容器言 10 201249777 料的介電體層η的厚度為約lmm,燒接電 此外’針對所得燒結體之中的一部分,為了二m 損失的變化量的絕對值, u疋"電 s 在主表面的兩面塗佈Cu電極,在 运原乳體%境中,以8 〇 〇 γ】n八 得第1圄所- η 進仃10刀知坧接處理,藉此獲 料… 板狀陶竟電容器的試料。所得電容器試 枓的介電體層1 〇的厚度 為、力lmm’燒接電極的直徑為12mm〇 者’針對所得的各電容器試料,藉由以下方法,八 別評估交流崩潰電場 '相對 /刀 ^ ▲ 耵;丨電㊉數静電電容的溫度特 性。§平估結果顯示於表1。 (交流崩潰電場(ACVB)) 交流崩潰電場(ACVB)係對電容器的試料,在電容器的 :知以ioov/s逐漸施加交流電場,測定在1〇_的漏電 =動的時點的電場值作為交流崩潰電場。交流崩潰電場 為佳,在本實施例中,以UkV/贿以上為良好。 (相對介電常數(ε )) 、相對介電常數ε係對電容器試料,在基準溫度2(rc, 以數位 LCR 計器(Agilent Technologies 公司製 4274A), 由在頻率1kHz、輸入訊號位準(測定電壓)i. 〇ν·的條件 下所測定出的靜電電容進行算出(無單位)。㈣介電常數 較问為佳,在本實施例中,以1 500以上為良好。 (介電損失的變化量的絕對值(%)) 將具有Ag電極的電容器試料的介電損失與具有電 極的電容器試料的介電損失’分別在基準溫度2(TC,以數 位 LCR 计益(Agi lent Technologies 公司製 4274A),在頻 11 201249777 的條件下進行 率1kHz、輸入訊號位準(測定電壓)i.〇Vrms 測定。 接著’將具有Ag電極的電容器試料的介 J ’丨€知失設為 「tan 5 (Ag)」,將具有Cu電極的電容器試料的介電損失 設為「tan(5 (Cu)」,算出下列式(1)所表示之介電損失的 變化量的絕對值(%)。 、’ I tan(5(Cu)-tan<5(Ag)| .·.〇) 介電損失的變化量的絕對值係成為抗還原性的指標, 意指數值愈小,抗還原性愈為良好。在本實施例中係以〇 7 以下為良好。 · (靜電電容的溫度特性) 對於電容器試料,以_2yc〜85<>c的溫度範圍測定靜電 電合,计算出在_25°c及85〇c的靜電電容相對在2〇〇c的靜 電電合的變化率(單位為%)。在本實施例中,以靜電電容變 化率位於-15%〜15%之間為良好。 12 201249777 【表1】 表 1. (Bax Biy)Ti〇3+ZnOx 重量份+ ay 重量份 試料 No 主成分 第1副成分 • ZnOx [重量份] 第2副成分 :α 交流崩潰 電場 (ACVB) [kV/mm] 相對介電 常數 介電損失 的變化量 的絕對值 [%] 靜電電容的 溫度特性[%] X y x+y α的種類 y [重量份] -25°C 85〇C 木1 0.985 0.005 0.990 4.0 - - 8.4 2058 0.8 -1.0 8.6 2 0.985 0.005 0.990 4.0 Υ203 0.020 8.3 2088 0.7 -4.0 14.5 3 0.985 0.005 0.990 4.0 La203 0.020 8.4 2006 0.7 -0.9 10.4 4 0.985 0. 005 0.990 4.0 Ce02 0.020 8.3 1978 0.2 -2.5 11.0 木5 0.985 0.005 0.990 4.0 Ce02 0.100 5.0 1520 1.9 12.1 40.3 6 0.985 0.005 0. 990 4.0 Nd203 0.020 8.1 1922 0.6 0.2 10.8 7 0.985 0.005 0.990 4.0 Sm203 0.020 8.1 1972 0.7 -0.9 9.5 * 8 0.985 0.005 0.990 4.0 Gd203 0.020 8.6 2071 1.3 -2.1 11.0 木 9 0.985 0.005 0.990 4.0 Dy203 0.020 8.1 2078 1.2 -2.9 12.4 木10 0.985 0.005 0.990 4.0 Fe203 0.020 5.4 2090 1.0 -1.8 9.0 11 0.985 0.005 0.990 4.0 Mn02 0.008 7.8 2037 0.7 -1.4 10.0 12 0. 985 0.005 0.990 4.0 Mn02 0.010 7.6 2085 0.5 -3. 0 11.5 13 0.985 0.005 0.990 4.0 Mn02 0.020 7.2 2147 0.3 -2.5 12.4 14 0.985 0.005 0.990 4.0 Mn02 0.040 7.5 2121 0.2 -2.5 12.3 15 0.985 0.005 0. 990 4.0 Mn02 0.060 7.4 2003 0.2 -2,7 12.3 16 0.985 0.005 0.990 4.0 Mn02 0.080 6.1 1950 0.2 -3.1 12.6 木17 0.985 0.005 0.990 4.0 Mn02 0.100 5.1 1959 0.6 0.2 8.7 木18 0. 985 0.005 0.990 4.0 C〇304 0.020 6.8 2065 0.9 -1.4 9.6 19 0.985 0.005 0.990 4.0 NiO 0.020 7.4 2085 0.7 -1.2 8.5 木20 0. 985 0. 000 0.985 6. 0 Ce02 0. 020 7.5 2670 0.5 -18.0 4.3 21 0.985 0.001 0.986 6.0 Ce02 0.020 7.2 2554 0.5 -14.9 5.0 22 0.985 0.004 0.989 6.0 Ce02 0.020 8.0 2110 0.5 -7.0 10.1 23 0.985 0.007 0.992 6.0 Ce02 0.020 8.5 1819 0.5 -2.0 11.4 24 0.985 0.008 0.993 6.0 Ce02 0.020 8.2 1696 0.4 0.5 12.9 * 25 0.985 0.010 0.995 6.0 Ce02 0.020 8.7 1365 0.4 1.0 13.7 26 1.005 0.005 1.010 6.0 Ce02 0.020 6.2 1910 0.3 7.5 14.9 木27 1.010 0.005 1.015 6.0 Ce02 0.020 未細敏地燒結 木28 0.965 0.005 0.970 6.0 Ce02 0.020 7.3 1901 0.4 -0.4 16.1 29 0.970 0.005 0.975 6.0 Ce02 0.020 8.0 1920 0.4 -1.0 14.8 木30 0.984 0.006 0.990 1.0 Ce02 0.010 5.1 2410 0.7 -11.5 10.6 31 0.984 0.006 0.990 2.0 Ce02 0.010 6.8 2203 0.5 -4. 6 12.7 32 0.984 0.006 0.990 4.0 Ce02 0.010 6.9 2126 0.5 -4.5 12.5 33 0.984 0.006 0.990 6.0 Ce02 0.010 7.3 2062 0.4 -4. 4 11.2 34 0.984 0.006 0.990 8.0 Ce02 0.010 8.1 2011 0.4 -4. 4 10.2 35 0.984 0.006 0.990 10.0 Ce02 0.010 7.8 1970 0.4 -4.1 8.6 36 0.984 0.006 0.990 12.0 Ce02 0.010 6.5 1915 0.3 -3.3 8.4 木37 0.984 0.006 0.990 15.0 Ce02 0.010 5.8 1843 0.3 -2.6 8.1 38 0.984 0.006 0.990 4.0 Ce02 0.020 7.5 2237 0.3 -5.2 14.6 39 0.984 0.006 0.990 6.0 Ce02 0.020 8.2 2150 0.2 -5.4 13.6 40 0.984 0.006 0.990 8.0 Ce02 0.020 7.1 2089 0.2 -5.4 13.1 ^比較例 由表l可確認以下情形。 由試料2〜4、6〜1 6、18、1 9可確認出:第2副成分 13 201249777 為選自 Y、La、Ce、Nd、u n ”m、Mn及Ni的至少1種氧化物, 别述第2…係相對前述主成分10。重量份,以氣化物 換算含有0.008重量份以卜n 量U上、〇·08重量份以下時(試料2 〜4、H'u〜16'19)m^MGd(^8)、In the case of Lu or Cu alloy, dielectric properties are obtained due to the electrode electrode Μ >"burning of the terminal electrode in a reducing gas atmosphere. On the next day, β + & 亢, and the possible reductive properties of the material and the conductor are good, so even if the body composition of the body is used to prevent the sputum electrode from using the CMCu alloy, the dielectric body is also burned. Tao Jing composition is semiconductorized. Method of Manufacturing Taowan Capacitor Next, the manufacturing method of Taoguan capacitor will be described. First, the dielectric layer 10 is formed to form a dielectric ceramic powder of the dielectric layer after firing. Prepare the raw material of the main ingredient. The raw material of the main component and/or the first subcomponent and the first component are calcined, and Ba: a raw material formed as an oxide, a raw material of two subcomponents, or each oxidation of T i or s Special composite 7 201249777 Oxide, etc. 'For example, BaCCb, Biz〇3, Ti〇2, etc. can be used. Further, various compounds such as a gas oxide or the like which are formed as an oxide or a titanium compound after firing may be used. In this case, the content may be appropriately changed so as to match the number of elements of the metal element. Further, the raw material of the main component can be produced by a solid phase method, or can be produced by a liquid phase method such as a hydrothermal synthesis method or a grass gt salt method, and the solid phase method is used in terms of production cost. Manufacturing is better. The raw material of the first subcomponent and the second subcomponent is not particularly limited to being formed of the oxide or composite oxide of each of the subcomponents or by firing to form the oxide or composite oxide. Various compounds such as carbonate 'nitrate' gas oxides, organometallic compounds and the like are suitably used. According to the method for producing a dielectric Taman composition according to an embodiment of the present invention, a raw material of a main component or a raw material of a main component and a raw material of a subcomponent are used in a ball mill by oxidizing a wrong material. Waiting for wet mixing 0, the resulting mixture can be put into the rod; the crucible, jx/u* hard 仃 & pull, formed, and the obtained shaped product is calcined in an air environment, thereby 婶μ士士Get a simmered powder. In terms of calcination conditions, for example, the calcination temperature is set to 1100 to 130 (TC, preferably 115 Torr to 125 Torr), and the calcination time is preferably set to 〇 5 to 4 hours. By (four) grinding (four) wet pulverization 'more mixing and drying to form a dielectric ceramic ceramsite composition powder. As described above, cerium is prepared by a solid phase method to form a dielectric ceramic composition powder, thereby Achieving the desired characteristics, and achieving a reduction in manufacturing cost. 201249777 Then 'adding an appropriate amount of binder to the obtained dielectric ceramic composition powder, granulating, and forming the obtained granulated material into a circular plate having a predetermined size Then, the green body molded body is formed into a green body. Then, the obtained green body molded body is fired to obtain a sintered body of the dielectric ceramic composition. The firing conditions are not particularly limited. However, it is preferable to maintain the temperature at 12 〇〇 to 1400 ° C, preferably 125 〇 to 135 (rc, in order to form a firing gas atmosphere into air. The sintered body of the obtained dielectric ceramic composition is preferable. Main surface printed terminal electrode, as needed To be soldered, the terminal electrodes 12 and 14 are formed. Then, the lead terminals 6 and 8 are connected to the terminal electrodes 12 and 14 by soldering or the like. Finally, the element body is covered with the protective resin 4, and A single-plate type ceramic capacitor shown in Fig. (A) and Fig. 1(B). The ceramic capacitor of the present invention produced as described above is mounted on a printed circuit board through the lead terminals 6, 8 and the like. It is used in various electrical appliances, etc. The above description of the embodiments of the present invention is not limited thereto, but the present invention can be implemented in various different ways without departing from the gist of the present invention. J. In the above-mentioned embodiment, a dielectric type layer is exemplified as a single-layer type ceramic capacitor as the electron (4) of the present invention, but the present invention: an electronic component is not limited to a single-plate type ceramics. The capacitor may also be: a laminate type capacitor of the dielectric paste of the dielectric ceramic composition and the general printing method or the sheet method of the electrode I 201249777 (Example) ) The following is based on more detailed The present invention is not limited to the examples. Samples 1 to 40 BaC〇3, BhO3, TiCh and a second subcomponent are separately prepared from the raw materials of the main component. The prepared raw materials were weighed in a manner similar to the composition shown in the samples 1 to 40 of the watch, and were wet-mixed by using a ball mill using oxidized wrong balls using pure water as a solvent. After the mixture was dried, 5% by weight of water was added to granulate and form, and then the obtained molded product was calcined in the air at a temperature of 2 ° C for 2 hours. The calcined powder was After coarse pulverization by a masher and passing through a mesh screen, the i-th subcomponent (Zn〇) was weighed and added so as to have a composition shown in Table J, and wet pulverization was performed. By drying this, a dielectric ceramic composition powder having the respective compositions (samples ~ 饨) shown in Table 得 was obtained. The slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs of the slabs Embryo shaped body. The obtained green preform molded body was fired in the air at a temperature of 125 〇 to i35 () t for several hours to obtain a disk-shaped sintered body. Next, on both surfaces of the main surface of the obtained sintered body, "the electrode was additionally subjected to a heat treatment in the air at 65 (TC for 20 minutes) to obtain a sample of the disk-shaped ceramic capacitor shown in Fig. 1 . The thickness of the dielectric layer η of the obtained capacitor 10 201249777 is about 1 mm, and the burn-in electricity is further 'for a part of the obtained sintered body, the absolute value of the amount of change for the two m loss, u疋" The Cu electrode is coated on both sides of the main surface, and in the % of the original milk body, 8 〇〇 γ] n 八得第一圄所 - η 进仃 10 knife knows the connection process, thereby obtaining the material... The sample of the capacitor is obtained. The thickness of the dielectric layer 1 〇 of the obtained capacitor is 1 mm, and the diameter of the sintered electrode is 12 mm. For each of the obtained capacitor samples, the AC collapse electric field is evaluated by the following method. 'Relative/knife^ ▲ 耵; 温度Electric temperature characteristics of ten electrostatic capacitors. § The results of the flattening are shown in Table 1. (AC Crash Electric Field (ACVB)) AC Crash Electric Field (ACVB) is a sample of the capacitor, in the capacitor : Knowing that ioov/s gradually applies an alternating electric field The electric field value at the time of leakage = movement of 1 〇 _ is measured as the AC collapse electric field. The AC collapse electric field is preferable, and in the present embodiment, it is good to use UkV/Brit or more (relative dielectric constant (ε)), The relative dielectric constant ε is a capacitor sample at a reference temperature of 2 (rc, a digital LCR meter (4274A manufactured by Agilent Technologies) under the condition of a frequency of 1 kHz and an input signal level (measured voltage) i. 〇ν· The measured electrostatic capacitance is calculated (no unit). (4) The dielectric constant is better than that of the above, and in the present embodiment, it is preferably 1,500 or more. (The absolute value (%) of the amount of change in dielectric loss) The dielectric loss of the capacitor sample with the Ag electrode and the dielectric loss of the capacitor sample with the electrode are respectively at the reference temperature 2 (TC, which is calculated by the digital LCR (4274A, manufactured by Agilent Technologies) under the condition of the frequency 11 201249777. The progress rate is 1 kHz, and the input signal level (measurement voltage) is measured by i. 〇Vrms. Next, 'the capacitance of the capacitor sample having the Ag electrode is set to "tan 5 (Ag)", which will have a Cu electrode. capacitance The dielectric loss of the sample is "tan(5 (Cu)", and the absolute value (%) of the amount of change in dielectric loss represented by the following formula (1) is calculated. , ' I tan(5(Cu)-tan< 5(Ag)| . . . 〇) The absolute value of the amount of change in dielectric loss is an index of resistance to reduction, and the smaller the value of the index, the better the resistance to reduction. In this embodiment, it is 〇7 or less. It is good. ((The temperature characteristic of the electrostatic capacitance) For the capacitor sample, the electrostatic capacitance is measured in the temperature range of _2yc~85<>c, and the electrostatic capacitance at _25°c and 85〇c is calculated to be relative to 2〇. The rate of change in electrostatic coupling of 〇c (in %). In the present embodiment, it is preferable that the electrostatic capacitance change rate is between -15% and 15%. 12 201249777 [Table 1] Table 1. (Bax Biy) Ti〇3+ZnOx Parts by weight + ay Parts by weight No. Main component 1st component • ZnOx [Parts by weight] 2nd component: α AC collapse electric field (ACVB) [kV/mm] Absolute value of change in relative dielectric constant dielectric loss [%] Temperature characteristic of electrostatic capacitance [%] X y x+y Type of α y [Parts by weight] -25°C 85〇C Wood 1 0.985 0.005 0.990 4.0 - - 8.4 2058 0.8 -1.0 8.6 2 0.985 0.005 0.990 4.0 Υ203 0.020 8.3 2088 0.7 -4.0 14.5 3 0.985 0.005 0.990 4.0 La203 0.020 8.4 2006 0.7 -0.9 10.4 4 0.985 0. 005 0.990 4.0 Ce02 0.020 8.3 1978 0.2 -2.5 11.0 Wood 5 0.985 0.005 0.990 4.0 Ce02 0.100 5.0 1520 1.9 12.1 40.3 6 0.985 0.005 0. 990 4.0 Nd203 0.020 8.1 1922 0.6 0.2 10.8 7 0.985 0.005 0.990 4.0 Sm203 0.020 8.1 1972 0.7 -0.9 9.5 * 8 0.985 0.005 0.990 4.0 Gd203 0.020 8.6 2071 1.3 -2.1 11.0 Wood 9 0.985 0.005 0.990 4.0 Dy203 0.020 8.1 2078 1.2 -2.9 12.4 Wood 10 0.985 0.005 0.990 4.0 Fe203 0.020 5.4 2090 1.0 -1.8 9.0 11 0.985 0.005 0.990 4.0 Mn02 0.008 7.8 2037 0.7 -1.4 10.0 12 0. 9 85 0.005 0.990 4.0 Mn02 0.010 7.6 2085 0.5 -3. 0 11.5 13 0.985 0.005 0.990 4.0 Mn02 0.020 7.2 2147 0.3 -2.5 12.4 14 0.985 0.005 0.990 4.0 Mn02 0.040 7.5 2121 0.2 -2.5 12.3 15 0.985 0.005 0. 990 4.0 Mn02 0.060 7.4 2003 0.2 -2,7 12.3 16 0.985 0.005 0.990 4.0 Mn02 0.080 6.1 1950 0.2 -3.1 12.6 Wood 17 0.985 0.005 0.990 4.0 Mn02 0.100 5.1 1959 0.6 0.2 8.7 Wood 18 0. 985 0.005 0.990 4.0 C〇304 0.020 6.8 2065 0.9 -1.4 9.6 19 0.985 0.005 0.990 4.0 NiO 0.020 7.4 2085 0.7 -1.2 8.5 Wood 20 0. 985 0. 000 0.985 6. 0 Ce02 0. 020 7.5 2670 0.5 -18.0 4.3 21 0.985 0.001 0.986 6.0 Ce02 0.020 7.2 2554 0.5 -14.9 5.0 22 0.985 0.004 0.989 6.0 Ce02 0.020 8.0 2110 0.5 -7.0 10.1 23 0.985 0.007 0.992 6.0 Ce02 0.020 8.5 1819 0.5 -2.0 11.4 24 0.985 0.008 0.993 6.0 Ce02 0.020 8.2 1696 0.4 0.5 12.9 * 25 0.985 0.010 0.995 6.0 Ce02 0.020 8.7 1365 0.4 1.0 13.7 26 1.005 0.005 1.010 6.0 Ce02 0.020 6.2 1910 0.3 7.5 14.9 Wood 27 1.010 0.005 1.015 6.0 Ce02 0.020 Sintered wood 28 0.965 0.005 0.970 6.0 Ce02 0 .020 7.3 1901 0.4 -0.4 16.1 29 0.970 0.005 0.975 6.0 Ce02 0.020 8.0 1920 0.4 -1.0 14.8 Wood 30 0.984 0.006 0.990 1.0 Ce02 0.010 5.1 2410 0.7 -11.5 10.6 31 0.984 0.006 0.990 2.0 Ce02 0.010 6.8 2203 0.5 -4. 6 12.7 32 0.984 0.006 0.990 4.0 Ce02 0.010 6.9 2126 0.5 -4.5 12.5 33 0.984 0.006 0.990 6.0 Ce02 0.010 7.3 2062 0.4 -4. 4 11.2 34 0.984 0.006 0.990 8.0 Ce02 0.010 8.1 2011 0.4 -4. 4 10.2 35 0.984 0.006 0.990 10.0 Ce02 0.010 7.8 1970 0.4 -4.1 8.6 36 0.984 0.006 0.990 12.0 Ce02 0.010 6.5 1915 0.3 -3.3 8.4 Wood 37 0.984 0.006 0.990 15.0 Ce02 0.010 5.8 1843 0.3 -2.6 8.1 38 0.984 0.006 0.990 4.0 Ce02 0.020 7.5 2237 0.3 -5.2 14.6 39 0.984 0.006 0.990 6.0 Ce02 0.020 8.2 2150 0.2 -5.4 13.6 40 0.984 0.006 0.990 8.0 Ce02 0.020 7.1 2089 0.2 -5.4 13.1 ^Comparative Example The following can be confirmed from Table 1. From the samples 2 to 4, 6 to 16, 6 and 19, it was confirmed that the second subcomponent 13 201249777 is at least one oxide selected from the group consisting of Y, La, Ce, Nd, un "m, Mn, and Ni. In addition, the second part is 10 parts by weight of the main component, and is contained in an amount of 0.008 parts by weight in terms of vapor content, and when the amount is 上·08 parts by weight or less (samples 2 to 4, H'u to 16'19) )m^MGd(^8),

Dy(試料9)、Fe(試料1())士(試料18)時相比,介電損失 的變化量的絕對值較低,因此抗還原性較為“子,尤其與 第2副成分為Fe(試料1〇)時相比,交流崩潰電場較高。 由試料1〜4、6〜7、11 1 〇 分為選"、La、Ce、Nd s〜M、19可確認出:第2副成When Dy (sample 9) and Fe (sample 1 ()) (sample 18), the absolute value of the amount of change in dielectric loss is lower, so the resistance to reduction is more "sub, especially, the second component is Fe. (The sample 1 〇) is higher than the AC crash electric field. From the samples 1 to 4, 6 to 7, 11 1 〇, the selection is ", La, Ce, Nd s~M, 19 can be confirmed: 2nd Deputy

Nd、Sm、MnUi的至少1種氧化物, =第2副成分相對前述主成分1〇〇重量份,以氧化物換 异3有0.008重量份以上、〇.〇8重量份以下時(試料2〜:、 〜…與前述第2副成分的含量相對前述主成 分100重量份,以氧化物換算為〇重量份時(試料υ相比, 介電損失的變化量的絕對值較低,因此抗還原性較為良好。 由試料2〜7、11〜17、19可確認出…副成分為選 自…々、“,及旧的至”種氡化物^述 第2副成分係相對前述主成分1〇〇重量份,以氧化物換算 含有〇·_重量份以上、。,重量份以下時(試料pH、 11〜16、⑻’與前述第2副成分的含量相對前述主成分 m重量份’以氡化物換算為0·1()重量份時(試料5、⑺ 相比’交流崩潰電場較高,尤其與試料5相比,介電損失 的變化量的絕對值及靜電電容的溫度特性較為良好。 由試料30〜40可確認出:氧化鋅的含量為2重量份以 上、丄2重量份以下時(試料31〜36、38〜4〇),與不在該箱 14 201249777 圍時(試料30、37)相比,交法山、主 ^朋潰電場較高。 由試料21〜24、26〜29可確#^ ^ Α 啼D心出.組成式中的χ盥ν 的合計為 0.975Sx+ygh()1() ^ 科 21 〜24、26、29), 與X與y的合計不在該範圍時(铽 于匕式科27、28)相比,可細緻 地燒釔,而且靜電電容的溫度特性較為良好。 由試料2G〜25可確認出:組成式中的y為u〇i^ $〇. 〇〇8時(試料21〜24),與y不在該範圍時(試料2〇、 25)相比’靜電電容的溫度特性較為良好,而且相對介電常 數較高。 【圖式簡單說明】 第1圖(A)係本發明之一實施形態之陶瓷電容器的正 面圖,第1圖(B)係本發明之一實施形態之陶瓷電容器的侧 面剖面圖。 【主要元件符號說明】 2 :陶瓷電容器; 4 :保護樹脂; 6、8 :引線端子; 10 :介電體層; 12、14 :端子電極。 15At least one oxide of Nd, Sm, and MnUi, = the second subcomponent is 1 part by weight relative to the main component, and when the oxide is changed to 3, it is 0.008 parts by weight or more, and 〇. 8 parts by weight or less (sample 2) When the content of the second subcomponent is less than 100 parts by weight of the main component, and the amount of change in dielectric loss is lower than that of the sample, the absolute value of the amount of change in dielectric loss is low. It is confirmed that the second subcomponents are selected from the above-mentioned main components 1 from the samples 2 to 7, 11 to 17, and 19, and the subcomponents are selected from the group consisting of 々, ", and old to" saccharides. The amount by weight of bismuth is 〇·· parts by weight or more in terms of oxide. When the amount is less than or equal to the weight (sample pH, 11 to 16, (8) 'and the content of the second subcomponent relative to the main component m by weight' When the telluride is converted to 0·1 () by weight (sample 5, (7) is higher than the alternating current crash electric field, especially the absolute value of the dielectric loss and the temperature characteristic of the electrostatic capacitance are better than the sample 5. From the samples 30 to 40, it was confirmed that the content of zinc oxide was 2 parts by weight or more. When the amount is 2 parts by weight or less (samples 31 to 36, 38 to 4 inches), compared with the case where the container 14 is not covered by 201249777 (samples 30 and 37), the electric field of the Jiaoshan and the main body is higher. From the sample 21~ 24, 26~29 can be sure #^ ^ Α 啼D heart out. The total of χ盥ν in the composition formula is 0.975Sx+ygh()1() ^ Section 21~24, 26, 29), and X and y When the total amount is not in this range (compared to the formulas 27 and 28), the temperature can be burnt finely, and the temperature characteristics of the electrostatic capacitance are relatively good. From the samples 2G to 25, it is confirmed that y in the composition formula is u. 〇i^ $〇. 〇〇8 (samples 21 to 24), when y is not in this range (samples 2〇, 25), the temperature characteristics of the electrostatic capacitor are better, and the relative dielectric constant is higher. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1(A) is a front view of a ceramic capacitor according to an embodiment of the present invention, and Fig. 1(B) is a side cross-sectional view showing a ceramic capacitor according to an embodiment of the present invention. Description] 2: ceramic capacitor; 4: protective resin; 6, 8: lead terminal; 10: dielectric layer; 12, 14: terminal electrode.

Claims (1)

201249777 七、申請專利範圍: 1. 一種介電體陶瓷組合物,具有:以(Bax Biy)Ti〇3的 組成式表示的主成分、第1副成分、及第2副成分, 其中,前述組成式中的y為O.OOlSySO.OlO,而且 前述組成式中的X與y的合計為0.975Sx+yS1.010, 前述第1副成分為氧化辞, 前述第2副成分為選自Y、La、Ce、Nd、Sm、Μη及Ni 的至少1種氧化物, 前述第1副成分相對前述主成分100重量份,含有2 重量份以上、12重量份以下, 前述第2副成分相對前述主成分10 0重量份,以氧化 物換算含有0.008重量份以上、0.08重量份以下。 2. —種電子元件,具有由如申請專利範圍第1項之介 電體陶瓷組合物所構成的介電體層。 16201249777 VII. Patent application scope: 1. A dielectric ceramic composition having a main component, a first subcomponent, and a second subcomponent represented by a composition formula of (Bax Biy)Ti〇3, wherein the composition In the formula, y is O.OOlSySO.OlO, and the total of X and y in the composition formula is 0.975Sx+yS1.010, the first subcomponent is an oxidation word, and the second subcomponent is selected from Y, La. And at least one oxide of Ce, Nd, Sm, Μη, and Ni, wherein the first subcomponent is contained in an amount of 2 parts by weight or more and 12 parts by weight or less based on 100 parts by weight of the main component, and the second subcomponent is relative to the main component 100 parts by weight is contained in an amount of 0.008 parts by weight or more and 0.08 parts by weight or less in terms of oxide. An electronic component comprising a dielectric layer composed of the dielectric ceramic composition of claim 1 of the patent application. 16
TW101107823A 2011-03-28 2012-03-08 Dielectric ceramic compositions and electronic components TWI476170B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070633A JP5668569B2 (en) 2011-03-28 2011-03-28 Dielectric porcelain composition and electronic component

Publications (2)

Publication Number Publication Date
TW201249777A true TW201249777A (en) 2012-12-16
TWI476170B TWI476170B (en) 2015-03-11

Family

ID=46944385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101107823A TWI476170B (en) 2011-03-28 2012-03-08 Dielectric ceramic compositions and electronic components

Country Status (4)

Country Link
JP (1) JP5668569B2 (en)
KR (1) KR101279081B1 (en)
CN (1) CN102718478A (en)
TW (1) TWI476170B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101326850B1 (en) 2012-10-04 2013-11-11 기아자동차주식회사 System and method for controlling an oil pump
JP2023117901A (en) * 2022-02-14 2023-08-24 Tdk株式会社 Dielectric ceramic composition and single layer capacitor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL110574C (en) * 1957-10-18 1965-02-15 Philips Nv
JPS5545515B2 (en) * 1973-05-09 1980-11-18
JPS594803B2 (en) * 1974-12-27 1984-02-01 松下電器産業株式会社 High dielectric constant porcelain
JPS594802B2 (en) * 1974-12-27 1984-02-01 松下電器産業株式会社 Kouyudenritsujikisobutsu
JPS60101803A (en) * 1983-11-08 1985-06-05 松下電器産業株式会社 Composition for high dielectric constant porcelain material
US5780375A (en) * 1993-10-19 1998-07-14 E. I. Du Pont De Nemours And Company Thick film composition for modifying the electrical properties of a dielectric layer
US6107227A (en) * 1998-08-03 2000-08-22 Cts Corporation Barium neodymium titanate dielectric ceramic composition incorporating samarium oxide for improved electrical performance
TWI223817B (en) 2002-11-08 2004-11-11 Ind Tech Res Inst Dielectric material compositions with high dielectric constant and low dielectric loss
TWI290539B (en) * 2004-08-31 2007-12-01 Showa Denko Kk Barium titanate and capacitor
JP5228917B2 (en) * 2006-10-27 2013-07-03 日立金属株式会社 Semiconductor porcelain composition and method for producing the same
KR100886652B1 (en) * 2007-07-10 2009-03-04 충주대학교 산학협력단 Piezoelectric materials and Piezoelectric Ceramics
JP4840935B2 (en) * 2007-09-28 2011-12-21 双信電機株式会社 Ceramic multilayer substrate
CN101977845A (en) * 2008-03-19 2011-02-16 日本化学工业株式会社 Manufacturing method for barium titanate
WO2009136443A1 (en) * 2008-05-09 2009-11-12 独立行政法人宇宙航空研究開発機構 Dielectric porcelain composition
TWI378908B (en) * 2008-09-19 2012-12-11 Univ Nat Cheng Kung Ceramic composite material with both dielectric and magnetic properties

Also Published As

Publication number Publication date
TWI476170B (en) 2015-03-11
JP5668569B2 (en) 2015-02-12
CN102718478A (en) 2012-10-10
KR101279081B1 (en) 2013-06-26
KR20120110027A (en) 2012-10-09
JP2012201581A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5664228B2 (en) Dielectric porcelain composition and electronic component
JP5272754B2 (en) Dielectric porcelain composition and electronic component
TWI330624B (en) Electronic device
JP5278682B2 (en) Dielectric porcelain composition and electronic component
JP2009007209A (en) Dielectric porcelain and laminated ceramic capacitor using it
JP5910317B2 (en) Dielectric porcelain composition and electronic component
JP5418323B2 (en) Dielectric porcelain composition and electronic component
JP2010215427A (en) Barium titanate-based dielectric raw material powder, method for producing the same, method for producing ceramic green sheet and method for producing laminated ceramic capacitor
JP5012932B2 (en) Dielectric porcelain composition and electronic component
JP6636744B2 (en) Dielectric ceramic composition and electronic device using the same
JP5530140B2 (en) BNT-BT piezoelectric ceramics and manufacturing method thereof
TW201249777A (en) Dielectric ceramic composition and electronic component
JP5151039B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
KR20170078064A (en) Dielectric composition and multilayer ceramic capacitor comprising the same
WO2011002021A1 (en) Semiconductor ceramic and positive-coefficient thermistor
TWI412504B (en) A dielectric ceramic composition, a method for preparing a dielectric ceramic composition, and an electronic component
JP4984958B2 (en) Multilayer thermistor and manufacturing method
JP6020068B2 (en) Dielectric porcelain composition and electronic component
JP2008193042A (en) Laminated thermistor and its manufacturing method
JP2005281066A (en) Dielectric ceramic and multilayer ceramic capacitor
KR101429034B1 (en) Dielectric ceramic composition and electronic component
JP2008205343A (en) Manufacturing method of laminated type thermistor
JP5614503B2 (en) Dielectric porcelain composition and electronic component
JP2006096574A (en) Dielectric ceramic composition, laminated ceramic capacitor, and electronic component
JP2004345877A (en) Dielectric porcelain composition, manufacturing method therefor, dielectric porcelain using the same, and laminated ceramic component