KR20120110027A - Dielectric ceramic composition and electronic component - Google Patents

Dielectric ceramic composition and electronic component Download PDF

Info

Publication number
KR20120110027A
KR20120110027A KR1020120029840A KR20120029840A KR20120110027A KR 20120110027 A KR20120110027 A KR 20120110027A KR 1020120029840 A KR1020120029840 A KR 1020120029840A KR 20120029840 A KR20120029840 A KR 20120029840A KR 20120110027 A KR20120110027 A KR 20120110027A
Authority
KR
South Korea
Prior art keywords
weight
parts
dielectric
ceramic composition
composition
Prior art date
Application number
KR1020120029840A
Other languages
Korean (ko)
Other versions
KR101279081B1 (en
Inventor
마사카즈 히로세
다이스케 오츠
마사루 아베
Original Assignee
티디케이가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티디케이가부시기가이샤 filed Critical 티디케이가부시기가이샤
Publication of KR20120110027A publication Critical patent/KR20120110027A/en
Application granted granted Critical
Publication of KR101279081B1 publication Critical patent/KR101279081B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Abstract

PURPOSE: A dielectric magnetism ceramic composition and electronic component is provided to increase alternating current breakdown field and temperature characteristic of electrostatic capacity. CONSTITUTION: A dielectric magnetism ceramic composition has a main component marked as the composition expression of (BaxBiy)TiO3, a first minor component and a second minor component. In the composition expression, y is 0.001<=y<=0.010, and the total sum of y and x is 0.975<=x+y<=1.010. The first minor component is zinc oxide. The second minor component is one oxide selected from Y, La, Ce, Nd, Sm, Mn and Ni. The first minor component is contained 2-12 parts by weight based on 100 parts by weight of the main component. The second minor component is contained 0.008-0.08 part by weight based on 100 parts by weight of the main component. The dielectric ceramic composition is used in a dielectric layer of the electronic component. The electronic components manufactured by the composition include a ceramic condenser(2).

Description

유전체 자기 조성물 및 전자 부품{DIELECTRIC CERAMIC COMPOSITION AND ELECTRONIC COMPONENT}Dielectric Ceramic Composition and Electronic Component {DIELECTRIC CERAMIC COMPOSITION AND ELECTRONIC COMPONENT}

본 발명은 유전체 자기(磁器) 조성물 및 전자 부품에 관한 것이다.TECHNICAL FIELD The present invention relates to dielectric ceramic compositions and electronic components.

전자 부품의 일례인 세라믹 콘덴서는 여러 가지 전자 기기에 사용되고 있으며, 고성능화에 대한 요구는 더욱더 높아지고 있다.Ceramic capacitors, which are examples of electronic components, are used in various electronic devices, and demand for higher performance is increasing.

스위칭 전원 회로의 Y 콘덴서이며 노이즈 필터로서 사용되는 세라믹 콘덴서는 끊임없이 전기적인 스트레스에 노출되기 때문에 화재나 감전의 위험성이 있다. 이 때문에, 이를 방지하기 위해 안전 규격 인정의 세라믹 콘덴서가 사용된다. 안전 규격 인정의 세라믹 콘덴서로서는, 세라믹 콘덴서가 파괴되지 않을 것, 즉 유전체 자기 조성물의 교류 파괴 전계(ACVB)를 높게 하는 것이 가장 중요하다. 또한, 이들 세라믹 콘덴서에서는 정전 용량의 온도 특성을 양호하게 하는 것도 중요하고, 교류 파괴 전계과 정전 용량의 온도 특성을 양립시키는 것이 바람직하다.Ceramic capacitors used as noise filters and Y capacitors in switching power supply circuits are constantly exposed to electrical stress, which may cause fire or electric shock. For this reason, the ceramic capacitor of safety standard approval is used in order to prevent this. As a ceramic capacitor with safety standards, it is most important that the ceramic capacitor is not destroyed, that is, the AC alternating electric field (ACVB) of the dielectric ceramic composition is high. Moreover, in these ceramic capacitors, it is also important to improve the temperature characteristics of the electrostatic capacitance, and it is preferable to make both the AC breakdown electric field and the temperature characteristics of the electrostatic capacitance compatible.

특허 문헌 1 및 특허 문헌 2에는 비교적 교류 파괴 전계가 높은 유전체 자기 조성물이 개시되어 있다. 그러나, 양자의 교류 파괴 전계는 높아도 5 ㎸/㎜ 정도이다. 또한, 이들 문헌에는 교류 파괴 전계와 정전 용량의 온도 특성을 양립시킨 유전체 자기 조성물은 개시되어 있지 않다.Patent Literatures 1 and 2 disclose dielectric ceramic compositions having a relatively high alternating current breaking field. However, the alternating current breakdown electric field of both is about 5 mA / mm. In addition, these documents do not disclose a dielectric ceramic composition in which the alternating current characteristics of the alternating electric field and the capacitance are compatible.

또한, 상기 세라믹 콘덴서의 전극으로는 Ag이나 Cu의 소부(燒付) 전극이 사용된다. 그러나 Ag은 대기 중에서 소부가 가능하지만 비용이 비싸다. 한편, Cu는 저렴하지만 소부시 환원 분위기로 할 필요가 있어, 콘덴서 소자가 환원 분위기에 노출됨으로써 산소 공위(空位)가 증가해 반도체화할 우려가 있다. 이 때문에, 콘덴서 소자의 반도체화를 방지하기 위해, 예를 들면 특허 문헌 3에서는 {Ba(1-x)Cax}A{Ti(1-y)Zry}BO3의 A/B 조성 제어가 행해지고 있다.As the electrode of the ceramic capacitor, a baking electrode of Ag or Cu is used. Ag, however, can be baked in the atmosphere but is expensive. On the other hand, although Cu is inexpensive, it is necessary to make it a baking atmosphere, and since a capacitor | condenser element is exposed to reducing atmosphere, oxygen vacancies may increase and it may become semiconductor. For this reason, in order to prevent the semiconductorization of a capacitor | condenser element, patent document 3, for example, controls A / B composition of {Ba (1-x) Ca x } A {Ti (1-y) Zr y } B O 3 . Is being done.

특허 문헌 1: 일본 특허공개 2006-096576호 공보Patent Document 1: Japanese Patent Application Laid-Open No. 2006-096576 특허 문헌 2: 일본 특허공개 2003-104774호 공보Patent Document 2: Japanese Patent Application Laid-Open No. 2003-104774 특허 문헌 3: 일본 특허공개 평10-36170호 공보Patent Document 3: Japanese Patent Application Laid-Open No. 10-36170

본 발명은, 이와 같은 실정을 감안하여 이루어진 것으로, 그 목적은 교류 파괴 전계가 높고 정전 용량의 온도 특성이 양호하며 비유전율이 높고 내환원성이 양호한 유전체 자기 조성물을 제공하는 것이다. 또한, 본 발명은 이와 같은 유전체 자기 조성물에 의해 구성되는 유전체층을 갖는 전자 부품을 제공하는 것도 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object thereof is to provide a dielectric ceramic composition having a high alternating current breaking field, good temperature characteristics of capacitance, high dielectric constant and good reduction resistance. It is also an object of the present invention to provide an electronic component having a dielectric layer composed of such a dielectric ceramic composition.

본 발명자들은, 상기 목적을 달성하기 위해 예의 검토한 결과, 유전체 자기 조성물의 조성을 특정 성분으로 하고, 이들 비율을 소정 범위로 함으로써, 상기 목적을 달성할 수 있다는 것을 알아내어 본 발명의 완성에 이르렀다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to achieve the said objective, the present inventors discovered that the said objective can be achieved by making a composition of a dielectric ceramic composition into a specific component, and making these ratio into a predetermined range, and came to complete this invention.

즉, 상기 과제를 해결하는 본 발명의 실시 형태에 따른 유전체 자기 조성물은,That is, the dielectric ceramic composition according to the embodiment of the present invention for solving the above problems,

(BaxBiy)TiO3의 조성식으로 표시되는 주성분과, 제1 부성분과, 제2 부성분을 갖는 유전체 자기 조성물로서,A dielectric ceramic composition having a main component represented by the composition formula of (Ba x Bi y ) TiO 3 , a first sub component, and a second sub component,

상기 조성식 중의 y가 0.001≤y≤0.010이고, 또한, 상기 조성식 중의 x와 y의 합계가 0.975≤x+y≤1.010이고,Y in the composition formula is 0.001 ≦ y ≦ 0.010, and the sum of x and y in the composition formula is 0.975 ≦ x + y ≦ 1.010,

상기 제1 부성분은 산화아연이고,The first accessory ingredient is zinc oxide,

상기 제2 부성분은 Y, La, Ce, Nd, Sm, Mn 및 Ni로부터 선택되는 적어도 1종의 산화물이고,The second accessory ingredient is at least one oxide selected from Y, La, Ce, Nd, Sm, Mn and Ni,

상기 제1 부성분은 상기 주성분 100 중량부에 대해 2 중량부 이상 12 중량부 이하 함유되고,The first subcomponent is contained 2 parts by weight or more and 12 parts by weight or less based on 100 parts by weight of the main component,

상기 제2 부성분은 상기 주성분 100 중량부에 대해 산화물 환산으로 0.008 중량부 이상 0.08 중량부 이하 함유되는 유전체 자기 조성물이다.The second accessory ingredient is a dielectric ceramic composition containing 0.008 parts by weight or more and 0.08 parts by weight or less in terms of oxide with respect to 100 parts by weight of the main component.

본 발명에 따르면, 교류 파괴 전계가 높고, 정전 용량의 온도 특성이 양호하며, 비유전율이 높고, 내환원성이 양호한 유전체 자기 조성물을 제공할 수 있다.According to the present invention, it is possible to provide a dielectric ceramic composition having a high alternating current breakdown field, good electrostatic capacitance temperature characteristics, high relative dielectric constant and good reduction resistance.

본 발명의 실시 형태에 따른 전자 부품은, 상기 유전체 자기 조성물 또는 상기 제조 방법에 의해 얻어지는 유전체 자기 조성물로 구성되는 유전체층을 갖는다.The electronic component which concerns on embodiment of this invention has a dielectric layer comprised from the dielectric ceramic composition obtained by the said dielectric ceramic composition or the said manufacturing method.

본 발명의 실시 형태에 따른 전자 부품으로는, 특별히 한정되지 않지만, 단판형(單板型) 세라믹 콘덴서, 적층 세라믹 콘덴서가 예시된다.Although it does not specifically limit as an electronic component which concerns on embodiment of this invention, A single plate type ceramic capacitor and a multilayer ceramic capacitor are illustrated.

도 1의 (A)는 본 발명의 일 실시 형태에 따른 세라믹 콘덴서의 정면도이고, (B)는 본 발명의 일 실시 형태에 따른 세라믹 콘덴서의 측면 단면도이다.1: (A) is a front view of the ceramic capacitor which concerns on one Embodiment of this invention, (B) is a side sectional view of the ceramic capacitor which concerns on one Embodiment of this invention.

이하, 본 발명의 실시 형태를, 도면에 나타내는 실시 형태에 기초해 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described based on embodiment shown in drawing.

세라믹 콘덴서(2)Ceramic Capacitors (2)

도 1의 (A)와 (B)에 나타내는 바와 같이, 본 발명의 실시 형태에 따른 세라믹 콘덴서(2)는 유전체층(10)과, 그 대향 표면에 형성된 한 쌍의 단자 전극(12, 14)과, 단자 전극(12, 14)에 각각 접속된 리드 단자(6, 8)를 갖고, 이들은 보호 수지(4)로 덮여 있다.As shown in Figs. 1A and 1B, the ceramic capacitor 2 according to the embodiment of the present invention includes a dielectric layer 10, a pair of terminal electrodes 12 and 14 formed on the opposite surface thereof, And lead terminals 6 and 8 connected to the terminal electrodes 12 and 14, respectively, which are covered with the protective resin 4.

세라믹 콘덴서(2)의 형상은 목적이나 용도에 따라 적절하게 결정하면 되지만, 유전체층(10)이 원판 형상인 원판형 콘덴서인 것이 바람직하다. 또한, 사이즈는 목적이나 용도에 따라 적절하게 결정하면 되지만, 통상적으로 직경이 5 내지 20㎜ 정도, 바람직하게는 5 내지 15㎜ 정도이다.Although the shape of the ceramic capacitor | condenser 2 may be suitably determined according to an objective and a use, it is preferable that the dielectric layer 10 is a disk-shaped capacitor of disk shape. Moreover, what is necessary is just to determine size suitably according to an objective and a use, Usually, about 5-20 mm in diameter, Preferably it is about 5-15 mm.

유전체층(10)Dielectric layer (10)

유전체층(10)은, 본 발명의 실시 형태에 따른 유전체 자기 조성물에 의해 구성된다.The dielectric layer 10 is comprised by the dielectric ceramic composition which concerns on embodiment of this invention.

본 발명의 실시 형태에 따른 유전체 자기 조성물은, (BaxBiy)TiO3의 조성식으로 표시되는 주성분과, 제1 부성분과, 제2 부성분을 갖고, 상기 조성식 중의 y는 0.001≤y≤0.010이고, 또한 상기 조성식 중의 x와 y의 합계가 0.975≤x+y≤1.010이다.The dielectric ceramic composition according to the embodiment of the present invention has a main component represented by the composition formula of (Ba x Bi y ) TiO 3 , a first subcomponent, and a second subcomponent, and y in the composition formula is 0.001 ≦ y ≦ 0.010. In addition, the sum of x and y in the said composition formula is 0.975 <x + y <= 1.010.

상기 조성식 중의 x는 Ba의 비율을 나타내고, x는 0.965≤x≤1.009, 바람직하게는 0.976≤x≤0.996이다. Ba이 이 범위로 함유됨으로써 정전 용량의 온도 특성이 양호해져, 비유전율이 향상하고 소결성이 양호해지는 경향이 된다.In the above composition formula, x represents a ratio of Ba, and x is 0.965 ≦ x ≦ 1.009, preferably 0.976 ≦ x ≦ 0.996. By containing Ba in this range, the temperature characteristic of the electrostatic capacity becomes good, the dielectric constant improves and the sinterability tends to be good.

상기 조성식 중의 y는 Bi의 비율을 나타내고, 0.001≤y≤0.010, 바람직하게는 0.003≤y≤0.009이다. Bi가 이 범위로 함유됨으로써 정전 용량의 온도 특성이 양호해져, 비유전율이 향상하는 경향이 된다.Y in the said composition formula represents the ratio of Bi, and is 0.001 <= y <= 0.010, Preferably it is 0.003 <= y <= 0.009. By containing Bi in this range, the temperature characteristic of the electrostatic capacity becomes good, and the dielectric constant tends to improve.

상기 조성식 중의 x와 y의 합계, 즉 Ba과 Bi 비율의 합계는, 바람직하게는 O.975≤x+y≤1.010, 보다 바람직하게는 0.976≤x+y≤1.005이다. x와 y의 합계량을 이 범위로 함으로써 소결성 및 비유전율이 향상하는 경향이 된다.The sum of x and y in the above composition formula, that is, the sum of Ba and Bi ratios is preferably O.975 ≦ x + y ≦ 1.010, more preferably 0.976 ≦ x + y ≦ 1.005. By setting the total amount of x and y in this range, the sintering property and relative dielectric constant tend to be improved.

상기 제1 부성분은 산화 아연이다.The first subcomponent is zinc oxide.

본 발명의 실시 형태에 따른 유전체 자기 조성물은, 제1 부성분을 상기 주성분 100 중량부에 대해 2 중량부 이상 12 중량부 이하, 보다 바람직하게는 2.5 중량부 이상 10 중량부 이하, 한층 더 바람직하게는 3 중량부 이상 10 중량부 이하 함유한다. 제1 부성분이 이 범위로 함유됨으로써 교류 파괴 전계가 향상해, 정전 용량의 온도 특성이 양호해지는 경향이 된다.In the dielectric ceramic composition according to the embodiment of the present invention, the first subcomponent may be 2 parts by weight or more and 12 parts by weight or less, more preferably 2.5 parts by weight or more and 10 parts by weight or less, more preferably 100 parts by weight of the main component. 3 parts by weight or more and 10 parts by weight or less are contained. By containing a 1st subcomponent in this range, an alternating current breakdown electric field will improve and the temperature characteristic of an electrostatic capacitance will become favorable.

상기 제2 부성분은 Y, La, Ce, Nd, Sm, Mn 및 Ni로부터 선택되는 적어도 1종의 산화물이고, 바람직하게는 Ce, Mn으로부터 선택되는 적어도 1종의 산화물이고, 보다 바람직하게는 Mn의 산화물이다.The second subcomponent is at least one oxide selected from Y, La, Ce, Nd, Sm, Mn and Ni, preferably at least one oxide selected from Ce, Mn, and more preferably Mn Oxide.

본 발명의 실시 형태에 따른 유전체 자기 조성물은, 상기 제2 주성분을 상기 주성분 100 중량부에 대해 산화물 환산으로 0.008 중량부 이상 0.08 중량부 이하, 보다 바람직하게는 0.01 내지 0.08 중량부, 한층 더 바람직하게는 0.02 내지 0.08 중량부 함유한다. 제2 부성분이 이 범위로 함유됨으로써 교류 파괴 전계가 향상해, 정전 용량의 온도 특성이 양호해지고 내환원성이 양호해지는 경향이 된다.In the dielectric ceramic composition according to the embodiment of the present invention, the second main component is 0.008 parts by weight or more and 0.08 parts by weight or less, more preferably 0.01 to 0.08 parts by weight, and even more preferably, in terms of oxide based on 100 parts by weight of the main ingredient. Contains 0.02 to 0.08 parts by weight. By containing a 2nd subcomponent in this range, an alternating current breakdown electric field improves and it becomes the tendency for the temperature characteristic of an electrostatic capacitance to become favorable, and reduction resistance will become favorable.

본 발명의 실시 형태에 따른 유전체 자기 조성물은, 산화 지르코늄을 상기 주성분 100 중량부에 대해 1.0 중량부 미만 함유하고 있는 것이 바람직하고, 보다 바람직하게는 O 중량부 이상 0.5 중량부 이하, 한층 더 바람직하게는 0 중량부이다. 산화 지르코늄이 이 범위를 넘게 함유되면, 교류 파괴 전계가 저하하는 경향이 된다.The dielectric ceramic composition according to the embodiment of the present invention preferably contains less than 1.0 part by weight of zirconium oxide with respect to 100 parts by weight of the main component, more preferably 0 parts by weight or more and 0.5 parts by weight or less, and even more preferably. Is 0 parts by weight. When zirconium oxide contains more than this range, there exists a tendency for an alternating current breakdown electric field to fall.

유전체층(10)의 두께는 특별히 한정되지 않고, 용도 등에 따라 적절하게 결정하면 되지만, 바람직하게는 0.3 내지 2㎜이다. 유전체층(10)의 두께를, 이와 같은 범위로 함으로써 중고압 용도에 적합하게 이용할 수 있다.Although the thickness of the dielectric layer 10 is not specifically limited, What is necessary is just to determine suitably according to a use etc., Preferably it is 0.3-2 mm. By setting the thickness of the dielectric layer 10 to such a range, it can be used suitably for a high pressure application.

단자 전극(12, 14)Terminal electrodes 12, 14

단자 전극(12, 14)은 도전재로 구성된다. 단자 전극(12, 14)에 이용되는 도전재로는, 예를 들어 Cu, Cu 합금, Ag, Ag 합금, In-Ga 합금 등을 들 수 있다. 한편, 종래는 단자 전극의 도전재에 Cu 또는 Cu 합금을 이용하는 경우, 단자 전극의 소부를 환원성 분위기 중에서 행할 필요가 있기 때문에, 유전체 자기 조성물이 반도체화할 우려가 있었다. 그러나, 본 발명의 실시 형태에 따른 유전체 자기 조성물은 내환원성이 양호하기 때문에, 단자 전극에 Cu 또는 Cu 합금을 사용해도 소부시의 유전체 자기 조성물의 반도체화를 방지할 수 있다.The terminal electrodes 12 and 14 are made of a conductive material. Examples of the conductive material used for the terminal electrodes 12 and 14 include Cu, Cu alloys, Ag, Ag alloys, In-Ga alloys, and the like. On the other hand, when Cu or a Cu alloy is used for the electrically conductive material of a terminal electrode conventionally, since baking of a terminal electrode needs to be performed in a reducing atmosphere, there exists a possibility that a dielectric ceramic composition may semiconductor. However, because the dielectric ceramic composition according to the embodiment of the present invention has good reduction resistance, even when Cu or a Cu alloy is used for the terminal electrode, the dielectric ceramic composition can be prevented from burning.

세라믹 콘덴서의 제조 방법Manufacturing method of ceramic capacitor

다음으로, 세라믹 콘덴서의 제조 방법에 대해 설명한다.Next, the manufacturing method of a ceramic capacitor is demonstrated.

우선, 소성 후에 도 1에 나타내는 유전체층(10)을 형성하게 되는 유전체 자기 조성물 분말을 제조한다.First, the dielectric ceramic composition powder which forms the dielectric layer 10 shown in FIG. 1 after baking is manufactured.

주성분의 원료 및 제1 부성분 및 제2 부성분의 원료를 준비한다. 주성분의 원료로는 Ba, Bi, Ti의 각 산화물 및/또는 소성에 의해 산화물이 되는 원료나, 이들의 복합 산화물 등을 들 수 있으며, 예를 들어 BaCO3, Bi2O3, TiO2 등을 이용할 수 있다. 그밖에, 예를 들어 수산화물 등, 소성 후에 산화물이나 티타늄 화합물이 되는 여러 가지의 화합물을 이용할 수도 있다. 이 경우, 금속 원소의 원소수가 맞도록 함유량을 적절하게 변경하면 된다.The raw material of a main component and the raw material of a 1st subcomponent and a 2nd subcomponent are prepared. Examples of the raw material of the main component include Ba, Bi and Ti oxides and / or raw materials which become oxides by firing, composite oxides thereof, and the like, and examples thereof include BaCO 3 , Bi 2 O 3 , and TiO 2 . It is available. In addition, for example, various compounds such as hydroxides, which become oxides or titanium compounds after firing, may be used. In this case, what is necessary is just to change content suitably so that the number of elements of a metal element may match.

또한, 주성분의 원료는 고상법(固相法)에 의해 제조해도 되고, 수열(水熱)합성법이나 옥살산염법(蓚酸鹽法) 등의 액상법에 의해 제조해도 되지만, 제조 비용면에서 고상법에 의해 제조하는 것이 바람직하다.In addition, although the raw material of a main component may be manufactured by the solid-phase method, and may be manufactured by liquid phase methods, such as a hydrothermal synthesis method and an oxalate method, by the solid-phase method from a manufacturing cost point of view, It is preferable to prepare.

제1 부성분 및 제2 부성분의 원료로는 특별히 한정되지 않고, 상기한 각 부성분의 산화물이나 복합 산화물, 또는 소성에 의해 이들 산화물이나 복합 산화물이 되는 각종 화합물, 예를 들어 탄산염, 질산염, 수산화물, 유기 금속 화합물 등으로부터 적절히 선택해 이용할 수 있다.It does not specifically limit as a raw material of a 1st subcomponent and a 2nd subcomponent, The various compounds which become these oxides or complex oxides by the above-mentioned oxide and complex oxide of each subcomponent, or baking, for example, carbonate, nitrate, hydroxide, organic It can select from a metal compound suitably, and can use.

본 발명의 실시 형태에 따른 유전체 자기 조성물의 제조 방법으로는, 우선 주성분의 원료 또는, 주성분의 원료와 부성분의 원료를 배합하고, 지르코니아 볼 등에 의한 볼 밀 등을 이용해 습식 혼합한다.In the method for producing a dielectric ceramic composition according to an embodiment of the present invention, first, a raw material of a main component or a raw material of a main component and a raw material of a subcomponent are blended and wet-mixed using a ball mill made of zirconia balls or the like.

얻어진 혼합물을 조립(造粒) 성형하고, 얻어진 성형물을 공기 분위기 중에서 가소성(假燒成)함으로써, 가소성 분말을 얻을 수 있다. 가소성 조건으로는, 예를 들어 가소성 온도를 바람직하게는 1100 내지 1300℃, 보다 바람직하게는 1150 내지 1250℃, 가소성 시간을 바람직하게는 0.5 내지 4 시간으로 하면 된다.A plastic powder can be obtained by granulating the obtained mixture and plasticizing the obtained molded product in an air atmosphere. As plasticity conditions, plasticity temperature becomes like this. Preferably it is 1100-1300 degreeC, More preferably, 1150-1250 degreeC, Plasticity time should just be 0.5 to 4 hours.

계속해서, 얻어진 가소성 분말을 볼 밀 등에 의해 습식 분쇄하고, 다시 혼합하고 건조해 유전체 자기 조성물 분말로 한다. 상기와 같이, 유전체 자기 조성물 분말을 고상법에 의해 제조함으로써, 원하는 특성을 실현하면서 제조 비용의 저감을 도모할 수 있다.Subsequently, the obtained plastic powder is wet-pulverized by a ball mill or the like, mixed and dried again to obtain a dielectric ceramic composition powder. As described above, by producing the dielectric ceramic composition powder by the solid phase method, the manufacturing cost can be reduced while realizing desired characteristics.

계속해서, 얻어진 유전체 자기 조성물 분말에 바인더를 적당량 첨가해 조립하고, 얻어진 조립물을 소정의 크기를 갖는 원판상으로 성형함으로써, 그린 성형체로 한다. 그리고, 얻어진 그린 성형체를 소성함으로써, 유전체 자기 조성물의 소결체를 얻는다. 한편, 소성 조건으로는 특별히 한정되지 않지만, 유지 온도가 바람직하게는 1200 내지 1400℃, 보다 바람직하게는 1250 내지 1350℃이며, 소성 분위기를 공기 중으로 하는 것이 바람직하다.Subsequently, an appropriate amount of binder is added to the obtained dielectric ceramic composition powder and granulated, and the obtained granulated product is molded into a disk having a predetermined size to obtain a green molded body. Then, by firing the obtained green molded body, a sintered body of the dielectric ceramic composition is obtained. On the other hand, although it does not specifically limit as baking conditions, Preferably a holding temperature is 1200-1400 degreeC, More preferably, it is 1250-1350 degreeC, and it is preferable to make baking atmosphere into air.

얻어진 유전체 자기 조성물의 소결체의 주표면에 단자 전극을 인쇄하고, 필요에 따라 소부함으로써 단자 전극(12, 14)을 형성한다. 그 후, 단자 전극(12, 14)에 납땜 등에 의해 리드 단자(6, 8)를 접합하고, 마지막으로 소자 본체를 보호 수지(4)로 덮음으로써, 도 1의 (A) 및 (B)에 나타내는 바와 같은 단판형 세라믹 콘덴서를 얻는다.The terminal electrodes are printed on the main surface of the obtained sintered body of the dielectric ceramic composition and baked as necessary to form the terminal electrodes 12 and 14. Thereafter, the lead terminals 6 and 8 are joined to the terminal electrodes 12 and 14 by soldering or the like, and finally, the element body is covered with the protective resin 4 to thereby be connected to FIGS. 1A and 1B. The single plate ceramic capacitor as shown is obtained.

이와 같이 하여 제조된 본 발명의 세라믹 콘덴서는, 리드 단자(6, 8)를 개재해 프린트 기판 위 등에 실장되어, 각종 전자 기기 등에 사용된다.The ceramic capacitor of the present invention thus produced is mounted on a printed board or the like via the lead terminals 6 and 8 and used for various electronic devices.

이상, 본 발명의 실시 형태에 대해 설명했지만, 본 발명은 이러한 실시 형태로 하등 한정되는 것이 아니라, 본 발명의 요지를 일탈하지 않는 범위 내에서 여러 가지 다른 형태로 실시할 수 있음은 물론이다.As mentioned above, although embodiment of this invention was described, this invention is not limited at all to this embodiment, Of course, it can be implemented in various other form within the range which does not deviate from the summary of this invention.

예를 들어, 전술한 실시 형태에서는, 본 발명에 따른 전자 부품으로서 유전체층이 단층인 단판형 세라믹 콘덴서를 예시했지만, 본 발명에 따른 전자 부품은 단판형 세라믹 콘덴서로 한정되지 않으며, 상기한 유전체 자기 조성물을 포함하는 유전체 페이스트 및 전극 페이스트를 이용한 통상적인 인쇄법이나 시트법에 의해 제작되는 적층형 세라믹 콘덴서라도 된다.For example, in the above embodiment, as the electronic component according to the present invention, a single-layer ceramic capacitor having a single dielectric layer is exemplified, but the electronic component according to the present invention is not limited to a single-plate ceramic capacitor. A multilayer ceramic capacitor may be produced by a conventional printing method or sheet method using a dielectric paste and an electrode paste containing.

〈실시예〉<Examples>

이하, 본 발명을 한층 더 상세한 실시예에 기초하여 설명한다. 그러나, 본 발명은 이들 실시예로 한정되지 않는다.Hereinafter, the present invention will be described based on more detailed examples. However, the present invention is not limited to these examples.

시료 1 내지 40Samples 1-40

주성분의 원료로서 BaCO3, Bi2O3 Ti02 및 제2 부성분을 각각 준비하였다. 그리고, 준비한 이들 원료를, 표 1의 시료 1 내지 40에 나타내는 조성이 되도록 각각 칭량하고, 용매로서 순수를 이용한 지르코니아 볼에 의한 볼 밀에 의해 습식 혼합하였다.BaCO 3 , Bi 2 O 3 Ti0 2 and the second subcomponent were prepared as raw materials of the main component, respectively. And these prepared raw materials were each weighed so that it might become the composition shown to the sample 1-40 of Table 1, and it wet-mixed by the ball mill by the zirconia ball which used pure water as a solvent.

계속해서, 얻어진 혼합물을 건조한 후, 5 중량%의 물을 첨가해 조립하고 성형하였다. 그리고, 얻어진 성형물을 공기 중, 1150℃, 2 시간의 조건으로 가소성하였다. 가소성 후의 분말을 믹서로 조분쇄(粗粉碎)해 메시패스(mesh pass)를 통과시킨 후, 제1 부성분(ZnO)을 표 1에 나타내는 조성이 되도록 칭량해 첨가하고 습식 분쇄를 행하였다. 이를 건조함으로써, 표 1에 나타내는 각 조성(시료 1 내지 40의 각 조성)을 갖는 유전체 자기 조성물 분말을 얻었다.Subsequently, the obtained mixture was dried, then granulated and molded by adding 5% by weight of water. And the obtained molding was plasticized on condition of 1150 degreeC and 2 hours in air. The powder after plasticity was coarsely pulverized with a mixer and passed through a mesh pass. Then, the first sub ingredient (ZnO) was weighed and added so as to have the composition shown in Table 1, and wet grinding was performed. By drying this, the dielectric ceramic composition powder which has each composition shown in Table 1 (each composition of samples 1-40) was obtained.

얻어진 유전체 자기 조성물 분말 100 중량부에 대해 폴리비닐알코올 수용액 10 중량부를 첨가하고, 계속해서 조립해 메시패스를 통과시킨 후, 얻어진 조립 분말을 396 ㎫의 압력으로 성형하여 직경 16.5㎜, 두께 약 1.2㎜의 원판상의 그린 성형체를 얻었다.10 parts by weight of an aqueous polyvinyl alcohol solution was added to 100 parts by weight of the obtained dielectric ceramic composition powder, and then granulated and passed through a mesh path. The resulting granulated powder was molded at a pressure of 396 MPa, having a diameter of 16.5 mm and a thickness of about 1.2 mm. The disk-shaped green molded object was obtained.

얻어진 그린 성형체를 공기 중에서 1250 내지 1350℃, 2 시간의 조건으로 소성함으로써, 원판상의 소결체를 얻었다.The obtained green molded body was baked in the air at 1250-1350 degreeC on the conditions of 2 hours, and the disc shaped sintered compact was obtained.

그리고, 얻어진 소결체의 주표면의 양면에 Ag 전극을 도포하고, 다시 공기 중, 650℃에서 20분간 소부 처리를 행함으로써, 도 1에 나타내는 바와 같은 원판상의 세라믹 콘덴서 시료를 얻었다. 얻어진 콘덴서 시료의 유전체층(10)의 두께는 약 1㎜이고, 소부 전극의 직경은 12㎜였다.And the Ag electrode was apply | coated to both surfaces of the main surface of the obtained sintered compact, and it baked again in air for 20 minutes at 650 degreeC, and obtained the disk shaped ceramic capacitor sample as shown in FIG. The thickness of the dielectric layer 10 of the obtained capacitor sample was about 1 mm, and the diameter of the baking electrode was 12 mm.

또한, 얻어진 소결체 중 일부에 대해서는 유전손실 변화량의 절대치를 측정하기 위해, 주표면의 양면에 Cu 전극을 도포하고, 환원 분위기 중, 800℃에서 10분간 소부 처리를 행함으로써, 도 1에 나타내는 바와 같은 원판상의 세라믹 콘덴서의 시료를 얻었다. 얻어진 콘덴서 시료의 유전체층(10)의 두께는 약 1㎜이고, 소부 전극의 직경은 12㎜였다.In addition, in some of the obtained sintered compacts, in order to measure the absolute value of the dielectric loss change amount, Cu electrode is apply | coated to both surfaces of a main surface, and baking process is performed for 10 minutes at 800 degreeC in reducing atmosphere, as shown in FIG. A sample of a disk-shaped ceramic capacitor was obtained. The thickness of the dielectric layer 10 of the obtained capacitor sample was about 1 mm, and the diameter of the baking electrode was 12 mm.

그리고, 얻어진 각 콘덴서 시료에 대해, 이하의 방법에 의해, 교류 파괴 전계, 비유전율, 정전 용량의 온도 특성을 각각 평가하였다. 평가 결과를 표 1에 나타낸다.And about each obtained capacitor | condenser sample, the temperature characteristic of the alternating current breakdown electric field, relative dielectric constant, and electrostatic capacitance was evaluated by the following method, respectively. The evaluation results are shown in Table 1.

(교류 파괴 전계(ACVB))(ACVB)

교류 파괴 전계(ACVB)는 콘덴서의 시료에 대해, 콘덴서의 양단에 교류 전계를 100 V/s로 서서히 인가하고 100㎃의 누설 전류가 흐른 시점에서의 전계치를 교류 파괴 전계로서 측정하였다. 교류 파괴 전계는 높은 편이 바람직하고, 본 실시예에서는 6.0 ㎸/㎜ 이상을 양호한 것으로 하였다.AC breakdown electric field (ACVB) measured the electric field value at the time when a 100 mA leakage current flowed by gradually applying an alternating electric field to 100 V / s with respect to the sample of a capacitor | condenser, and measured it as an alternating current breaking electric field. It is preferable that the alternating current breakdown electric field is higher, and in this embodiment, 6.0 mA / mm or more is considered to be good.

(비유전율(ε))(Dielectric constant (ε))

비유전율 ε는 콘덴서 시료에 대해, 기준 온도 20℃에서 디지털 LCR 미터(애질런트 테크놀러지사 제품 4274A)로 주파수 1㎑, 입력 신호 레벨(측정 전압) 1.0Vrms의 조건하에서 측정된 정전 용량으로부터 산출하였다(단위 없음). 비유전율은 높은 편이 바람직하고, 본 실시예에서는 1500 이상을 양호한 것으로 하였다.The relative dielectric constant ε was calculated from the capacitance measured under a condition of a frequency of 1 Hz and an input signal level (measured voltage) of 1.0 Vrms with a digital LCR meter (4274A manufactured by Agilent Technologies) at a reference temperature of 20 ° C for a capacitor sample. none). It is preferable that the dielectric constant is higher, and 1500 or more is considered to be good in the present embodiment.

(유전손실 변화량의 절대치(%))(% Of change in dielectric loss)

Ag 전극을 갖는 콘덴서 시료의 유전손실과 Cu 전극을 갖는 콘덴서 시료의 유전손실을, 각각 기준 온도 20℃에서 디지털 LCR 미터(애질런트 테크놀러지사 제품 4274A)로 주파수 1㎑, 입력 신호 레벨(측정 전압) 1.0Vrms의 조건하에서 측정하였다.The dielectric loss of the capacitor sample with the Ag electrode and the dielectric loss of the capacitor sample with the Cu electrode are measured at a frequency of 1 Hz with a digital LCR meter (4274A manufactured by Agilent Technologies Inc.) at a reference temperature of 20 ° C., respectively, and the input signal level (measured voltage) 1.0. Measurement was made under the condition of Vrms.

그리고, Ag 전극을 갖는 콘덴서 시료의 유전손실을 'tanδ(Ag)', Cu 전극을 갖는 콘덴서 시료의 유전손실을 'tanδ(Cu)'로 하여, 하기 식 (1)로 표시되는 유전손실 변화량의 절대치(%)를 산출하였다.Then, the dielectric loss of the capacitor sample having the Ag electrode is 'tan δ (Ag)' and the dielectric loss of the capacitor sample having the Cu electrode is 'tan δ (Cu)', and the amount of change in the dielectric loss represented by the following formula (1) The absolute value (%) was calculated.

|tanδ(Cu)-tanδ(Ag)| … (1)| tanδ (Cu) -tanδ (Ag) | ... (One)

유전손실 변화량의 절대치는 내환원성의 지표가 되며, 수치가 작을수록 내환원성이 양호하다는 것을 의미한다. 본 실시예에서는 0.7 이하를 양호한 것으로 하였다.The absolute value of the change in dielectric loss is an index of reduction resistance, and a smaller value means better reduction resistance. In this example, 0.7 or less was considered good.

(정전 용량의 온도 특성)(Temperature Characteristics of Electrostatic Capacity)

콘덴서 시료에 대해, -25℃ 내지 85℃의 온도 범위에서 정전 용량을 측정해, 20℃에서의 정전 용량에 대한 -25℃ 및 85℃에서의 정전 용량의 변화율(단위는 %)을 산출하였다. 본 실시예에서는 정전 용량 변화율이 -15% 내지 15% 사이에 있는 것을 양호한 것으로 하였다.For the capacitor samples, the capacitance was measured in the temperature range of -25 ° C to 85 ° C, and the rate of change of the capacitance at -25 ° C and 85 ° C (unit:%) relative to the capacitance at 20 ° C was calculated. In the present embodiment, it was assumed that the rate of change in capacitance was between -15% and 15%.

Figure pat00001
Figure pat00001

표 1로부터, 이하의 사항을 확인할 수 있었다.From Table 1, the following items were confirmed.

시료 2 내지 4, 6 내지 16, 18, 19로부터, 제2 부성분이 Y, La, Ce, Nd, Sm, Mn 및 Ni로부터 선택되는 적어도 1종의 산화물이고, 상기 제2 부성분이 상기 주성분 100 중량부에 대해 산화물 환산으로 0.008 중량부 이상 0.08 중량부 이하 함유되어 있는 경우(시료 2 내지 4, 6 내지 7, 11 내지 16, 19)는, 제2 부성분이 Gd(시료 8), Dy(시료 9), Fe(시료 10), Co(시료 18)인 경우에 비해 유전손실 변화량의 절대치가 낮은 것으로부터, 내환원성이 양호하고, 특히, 제2 부성분이 Fe(시료 10)인 경우에 비해 교류 파괴 전계가 높아지는 것을 확인할 수 있었다.From Samples 2 to 4, 6 to 16, 18, and 19, the second subcomponent is at least one oxide selected from Y, La, Ce, Nd, Sm, Mn, and Ni, and the second subcomponent is 100 wt% of the main component. In the case of 0.008 parts by weight or more and 0.08 parts by weight or less (parts 2 to 4, 6 to 7, 11 to 16, 19) in terms of oxide, the second accessory ingredient is Gd (sample 8) and Dy (sample 9). ), The reduction in dielectric loss is lower than in the case of Fe (sample 10) and Co (sample 18), so that the reduction resistance is good, and in particular, the AC breakdown as compared with the case of Fe (sample 10) It was confirmed that the electric field increased.

시료 1 내지 4, 6 내지 7, 11 내지 16, 19로부터, 제2 부성분이 Y, La, Ce, Nd, Sm, Mn 및 Ni로부터 선택되는 적어도 1종의 산화물이고, 상기 제2 부성분이 상기 주성분 100 중량부에 대해 산화물 환산으로 0.008 중량부 이상 0.08 중량부 이하 함유되어 있는 경우(시료 2 내지 4, 6, 11 내지 16, 19)는, 상기 제2 부성분의 함유량이 상기 주성분 100 중량부에 대해 산화물 환산으로 O 중량부인 경우(시료 1)에 비해 유전손실 변화량의 절대치가 낮은 것으로부터, 내환원성이 양호하다는 것을 확인할 수 있었다.From Samples 1 to 4, 6 to 7, 11 to 16, 19, the second subcomponent is at least one oxide selected from Y, La, Ce, Nd, Sm, Mn, and Ni, and the second subcomponent is the main component. When 0.008 weight part or more and 0.08 weight part or less are contained (samples 2-4, 6, 11-16, 19) with respect to 100 weight part, content of the said 2nd subcomponent is 100 weight part of said main components It was confirmed that the reduction resistance was good because the absolute value of the change in dielectric loss was lower than that in the case of O parts by weight (sample 1) in terms of oxide.

시료 2 내지 7, 11 내지 17, 19로부터, 제2 부성분이 Y, La, Ce, Nd, Sm, Mn 및 Ni로부터 선택되는 적어도 1종의 산화물이고, 상기 제2 부성분이 상기 주성분 100 중량부에 대해 산화물 환산으로 0.008 중량부 이상 0.08 중량부 이하 함유되어 있는 경우(시료 2 내지 4, 6, 11 내지 16, 19)는, 상기 제2 부성분의 함유량이 상기 주성분 100 중량부에 대해 산화물 환산으로 0.10 중량부인 경우(시료 5, 17)에 비해, 교류 파괴 전계가 높고, 특히, 시료 5에 비해, 유전손실 변화량의 절대치 및 정전 용량의 온도 특성이 양호하게 되는 것을 확인할 수 있었다.From Samples 2 to 7, 11 to 17, 19, the second accessory ingredient is at least one oxide selected from Y, La, Ce, Nd, Sm, Mn, and Ni, and the second accessory ingredient is contained in 100 parts by weight of the main ingredient. When 0.008 parts by weight or more and 0.08 parts by weight or less are contained (samples 2 to 4, 6, 11 to 16, 19), the content of the second subcomponent is 0.10 in terms of oxide relative to 100 parts by weight of the main component. Compared with the weight part (samples 5 and 17), it was confirmed that an alternating current breakdown electric field was high, and especially, compared with the sample 5, the absolute value of the dielectric loss change amount and the temperature characteristic of the electrostatic capacitance became favorable.

시료 30 내지 40으로부터, 산화 아연의 함유량이 2 중량부 이상 12 중량부 이하인 경우는(시료 31 내지 36, 38 내지 40), 이 범위에서 벗어나는 경우(시료 30, 37)에 비해 교류 파괴 전계가 높은 것을 확인할 수 있었다.When the content of zinc oxide is 2 parts by weight or more and 12 parts by weight or less (samples 31 to 36, 38 to 40) from the samples 30 to 40, the alternating current breakdown electric field is higher than that in this range (samples 30 and 37). I could confirm that.

시료 21 내지 24, 26 내지 29로부터, 조성식 중의 x와 y의 합계가 0.975≤x+y≤1.010인 경우(시료 21 내지 24, 26, 29)에는, x와 y의 합계가 이 범위에서 벗어나는 경우(시료 27, 28)에 비해 치밀하게 소결 가능하고, 또한 정전 용량의 온도 특성이 양호하다는 것을 확인할 수 있었다.When the sum of x and y in a composition formula is 0.975 <= x + y <= 1.010 from the samples 21-24, 26-29 (samples 21-24, 26, 29), when the sum of x and y is out of this range Compared with (Samples 27 and 28), it was confirmed that it was possible to sinter densely and that the temperature characteristics of the electrostatic capacitance were good.

시료 20 내지 25로부터, 조성식 중의 y가 0.001≤y≤0.008인 경우는(시료 21 내지 24), y가 이 범위에서 벗어나는 경우(시료 20, 25)에 비해 정전 용량의 온도 특성이 양호하고, 또한 비유전율이 높은 것을 확인할 수 있었다.From samples 20 to 25, when y in the composition formula is 0.001 ≦ y ≦ 0.008 (samples 21 to 24), the temperature characteristics of the electrostatic capacitance are better than when the y is out of this range (samples 20 and 25), and It was confirmed that the relative dielectric constant is high.

Claims (2)

(BaxBiy)TiO3의 조성식으로 표시되는 주성분과, 제1 부성분과, 제2 부성분을 갖는 유전체 자기 조성물로서,
상기 조성식 중의 y가 0.001≤y≤0.010이고, 또한, 상기 조성식 중의 x와 y의 합계가 0.975≤x+y≤1.010이고,
상기 제1 부성분은 산화아연이고,
상기 제2 부성분은 Y, La, Ce, Nd, Sm, Mn 및 Ni로부터 선택되는 적어도 1종의 산화물이고,
상기 제1 부성분은 상기 주성분 100 중량부에 대해 2 중량부 이상 12 중량부 이하 함유되고,
상기 제2 부성분은 상기 주성분 100 중량부에 대해 산화물 환산으로 0.008 중량부 이상 0.08 중량부 이하 함유되는 유전체 자기 조성물.
A dielectric ceramic composition having a main component represented by the composition formula of (Ba x Bi y ) TiO 3 , a first sub component, and a second sub component,
Y in the composition formula is 0.001 ≦ y ≦ 0.010, and the sum of x and y in the composition formula is 0.975 ≦ x + y ≦ 1.010,
The first accessory ingredient is zinc oxide,
The second accessory ingredient is at least one oxide selected from Y, La, Ce, Nd, Sm, Mn and Ni,
The first subcomponent is contained 2 parts by weight or more and 12 parts by weight or less based on 100 parts by weight of the main component,
The second accessory ingredient is 0.008 parts by weight or more and 0.08 parts by weight or less in terms of oxide based on 100 parts by weight of the main component.
제1항에 기재된 유전체 자기 조성물로 구성된 유전체층을 갖는 전자 부품.An electronic component having a dielectric layer composed of the dielectric ceramic composition according to claim 1.
KR1020120029840A 2011-03-28 2012-03-23 Dielectric ceramic composition and electronic component KR101279081B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2011-070633 2011-03-28
JP2011070633A JP5668569B2 (en) 2011-03-28 2011-03-28 Dielectric porcelain composition and electronic component

Publications (2)

Publication Number Publication Date
KR20120110027A true KR20120110027A (en) 2012-10-09
KR101279081B1 KR101279081B1 (en) 2013-06-26

Family

ID=46944385

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120029840A KR101279081B1 (en) 2011-03-28 2012-03-23 Dielectric ceramic composition and electronic component

Country Status (4)

Country Link
JP (1) JP5668569B2 (en)
KR (1) KR101279081B1 (en)
CN (1) CN102718478A (en)
TW (1) TWI476170B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012113143A1 (en) 2012-10-04 2014-04-10 Hyundai Motor Company SYSTEM AND METHOD FOR CONTROLLING AN OIL PUMP

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL110574C (en) * 1957-10-18 1965-02-15 Philips Nv
JPS5545515B2 (en) * 1973-05-09 1980-11-18
JPS594802B2 (en) * 1974-12-27 1984-02-01 松下電器産業株式会社 Kouyudenritsujikisobutsu
JPS594803B2 (en) * 1974-12-27 1984-02-01 松下電器産業株式会社 High dielectric constant porcelain
JPS60101803A (en) * 1983-11-08 1985-06-05 松下電器産業株式会社 Composition for high dielectric constant porcelain material
US5780375A (en) * 1993-10-19 1998-07-14 E. I. Du Pont De Nemours And Company Thick film composition for modifying the electrical properties of a dielectric layer
US6107227A (en) * 1998-08-03 2000-08-22 Cts Corporation Barium neodymium titanate dielectric ceramic composition incorporating samarium oxide for improved electrical performance
TWI223817B (en) 2002-11-08 2004-11-11 Ind Tech Res Inst Dielectric material compositions with high dielectric constant and low dielectric loss
TWI290539B (en) * 2004-08-31 2007-12-01 Showa Denko Kk Barium titanate and capacitor
EP2096092A4 (en) * 2006-10-27 2011-05-18 Hitachi Metals Ltd Semiconductor ceramic composition and method for producing the same
KR100886652B1 (en) * 2007-07-10 2009-03-04 충주대학교 산학협력단 Piezoelectric materials and Piezoelectric Ceramics
JP4840935B2 (en) * 2007-09-28 2011-12-21 双信電機株式会社 Ceramic multilayer substrate
JPWO2009125681A1 (en) * 2008-03-19 2011-08-04 日本化学工業株式会社 Method for producing barium titanate
WO2009136443A1 (en) * 2008-05-09 2009-11-12 独立行政法人宇宙航空研究開発機構 Dielectric porcelain composition
TWI378908B (en) * 2008-09-19 2012-12-11 Univ Nat Cheng Kung Ceramic composite material with both dielectric and magnetic properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012113143A1 (en) 2012-10-04 2014-04-10 Hyundai Motor Company SYSTEM AND METHOD FOR CONTROLLING AN OIL PUMP

Also Published As

Publication number Publication date
JP2012201581A (en) 2012-10-22
CN102718478A (en) 2012-10-10
JP5668569B2 (en) 2015-02-12
TW201249777A (en) 2012-12-16
KR101279081B1 (en) 2013-06-26
TWI476170B (en) 2015-03-11

Similar Documents

Publication Publication Date Title
KR101258997B1 (en) Dielectric ceramic composition and electronic component
JP5272754B2 (en) Dielectric porcelain composition and electronic component
KR101432442B1 (en) Dielectic ceramic composition and electronic device
JP7133310B2 (en) Dielectric compositions and electronic components
KR101178952B1 (en) Dielectric ceramic composition and electronic component
JP5012932B2 (en) Dielectric porcelain composition and electronic component
KR101767672B1 (en) Dielectric ceramic composition and electronic component
JP4946822B2 (en) Dielectric porcelain composition and electronic component
JP4710574B2 (en) Dielectric porcelain composition and electronic component
TW201943675A (en) Dielectric ceramic composition and ceramic electronic part
KR101279081B1 (en) Dielectric ceramic composition and electronic component
TW201945315A (en) Dielectric ceramic composition and ceramic electronic part
KR101352607B1 (en) Dielectric ceramic composition, production method thereof and electronic element
KR101429034B1 (en) Dielectric ceramic composition and electronic component
JP6020068B2 (en) Dielectric porcelain composition and electronic component
JP5614503B2 (en) Dielectric porcelain composition and electronic component
JP2023117901A (en) Dielectric ceramic composition and single layer capacitor
JP2023117898A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160517

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190530

Year of fee payment: 7